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An effective anisotropic poroelastic model for elastic
wave propagation in finely layered media

Asiya M. Kudarova1, Karel N. van Dalen2, and Guy G. Drijkoningen2

ABSTRACT

Mesoscopic-scale heterogeneities in porous media cause
attenuation and dispersion at seismic frequencies. Effective
models are often used to account for this. We have devel-
oped a new effective poroelastic model for finely layered
media, and we evaluated its impact focusing on the angle-
dependent attenuation behavior. To enable this, an exact sol-
ution was obtained for the response of a periodically layered
medium to a surface point load using Floquet’s theory. We
compared this solution with that of the new model and the
equivalent viscoelastic vertical transverse isotropic medium
available from existing literature. We have observed that the
quasi-P (qP) wave dispersion and attenuation was predicted
with high accuracy by the new effective poroelastic model.
For the quasi-S (qS) wave, the effective poroelastic model
provides a perceptibly better prediction of the attenuation,
resulting in closer to the exact waveforms. The qS-wave
attenuation is underestimated by the effective viscoelastic
model, whereas for the qP-wave, the model gives accurate
predictions in all cases except for highly permeable weak-
frame media.

INTRODUCTION

Horizontally layered models are commonly used for the analysis
of wave propagation in reservoir rocks and sediments. This is a
compromise between a relatively accurate representation of hetero-
geneities in rocks and simplicity of computations. Assuming lateral
homogeneity is reasonable because the variations in properties in
the direction normal to the layering are typical for most reservoir
rocks and sediments. Layered models allow us to study the effects

of local inhomogeneities at the macroscopic scale. The layers can
represent mesoscopic-scale heterogeneities when their thicknesses
are much larger than the typical pore and grain sizes, but smaller than
the wavelength of a propagating wave. Mesoscopic heterogeneities
are known to cause strong dispersion and attenuation of seismic
waves due to the subwavelength scale wave-induced fluid flow
(Müller et al., 2010). The attenuation is particularly strong when a
medium is saturated with different fluids with a large contrast in com-
pressibility (White et al., 1975; Carcione and Picotti, 2006).
The commonly used equations describing wave propagation in

fluid-saturated media are Biot’s (1962) equations of poroelasticity.
This theory predicts one S- and two P-waves in a macroscopically
homogeneous medium. It is widely accepted that Biot’s theory
underestimates observed attenuation and dispersion of elastic waves
(Johnston et al., 1979; Winkler, 1985; Gist, 1994). One of the rea-
sons is a violation of the assumption of uniform saturation with a
single fluid. Inhomogeneities in solid-frame properties also cause at-
tenuation. Many models for wave propagation in heterogeneous
porous media were developed to address this effect. Each model pro-
poses an attenuation mechanism that is based on certain assumptions.
These assumptions are related, among other things, to the scale of the
heterogeneities and their distributions, and the frequency range of
interest. Depending on the scale of observations, different models
are used to study wave attenuation and dispersion. Attenuation due
to dissipation at the pore scale is described by a squirt-flow mecha-
nism (O’Connell and Budiansky, 1977; Mavko and Nur, 1979;
Palmer and Traviola, 1980; Dvorkin and Nur, 1993). Differences
in fluid saturation between thin compliant pores and larger stiffer
ones, the presence of thin cracks, different shape and orientation of
the pores, as well as distribution of immiscible fluids in a pore cause
attenuation and dispersion due to local or squirt flow. This mecha-
nism usually plays a role at ultrasonic frequencies. At seismic
frequencies, another attenuation mechanism caused by the subwave-
length-scale fluid flow due to the presence of mesoscopic-scale
heterogeneities plays a role. This mechanism is not captured by
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Biot’s theory, which accounts for a global (wavelength-scale) flow
attenuation mechanism. Because gas, oil, and water are often present
in the rocks and sediments as mesoscopic-scale patches, multiple
models are being developed that describe attenuation of seismic
waves in such heterogeneous media.
One of the pioneering works on seismic attenuation caused by the

wave-induced fluid flow is the work of White et al. (1975), in which
a periodically layered porous medium was considered, and a fre-
quency-dependent plane-wave modulus was derived for normal
wave incidence. Similar but differently derived moduli were re-
ported in other publications (Norris, 1993; Brajanovski and Gure-
vich, 2005; Vogelaar and Smeulders, 2007). Some other models of
effective P-wave moduli make use of a frequency-dependent
branching function that connects the low- and high-frequency limits
(e.g., Johnson, 2001). Krzikalla and Müller (2011) introduce an ef-
fective vertical transverse isotropic (VTI) medium to describe
propagation of quasi-P (qP) and quasi-S (qS) waves at different an-
gles. In their model, the low- and high-frequency elastic moduli
from poroelastic Backus averaging by Gelinsky and Shapiro (1997)
are connected by a frequency-dependent function — the effective
P-wave modulus of White et al. (1975) for periodic layering and
normal incidence. For a randomly layered medium with a small
fluctuation of parameters, the frequency-dependent function can
be derived from Gelinsky et al. (1998). With the approach used by
Krzikalla and Müller (2011), any model where a plane-wave modu-
lus for P-wave propagation normal to the layering is derived can be
extended for arbitrary angle of incidence. Another approach to com-
pute the frequency-dependent coefficients of the effective VTI
medium numerically was proposed by Carcione et al. (2011). The
resulting effective medium in both approaches is governed by the
equations of a viscoelastic VTI medium, and has five complex-
valued frequency-dependent stiffnesses. This means that the fluid-
to-solid relative motion is not explicitly present in the model.
Instead, the information about attenuation caused by the interaction
of the fluid and solid phases at the subwavelength scale is included
in the frequency dependence of the effective stiffnesses. Further-
more, this effective model does not incorporate a slow P-wave
on the macroscopic scale, as predicted by Biot’s theory. On the one
hand, this is advantageous from the computational point of view as
the presence of the slow wave requires a very fine meshing in 3D
numerical simulations. On the other hand, Biot’s global flow
mechanism — macroscopic attenuation due to viscous forces be-
tween fluid and solid phases — is not captured in the equations of
viscoelasticity, which may be disadvantageous even in the seismic
frequency range (Kudarova et al., 2013).
In this paper, we combine the effective constants from the poroe-

lastic Backus averaging (Gelinsky and Shapiro, 1997) and the
method proposed by Krzikalla and Müller (2011). We use the ef-
fective P-wave moduli introduced by Kudarova et al. (2013). This
results in the effective stiffnesses of an effective poroelastic VTI
medium governed by Biot’s equations. This effective medium ac-
counts for the macroscopic (Biot’s global flow) attenuation via the
effective inertia and viscous terms used in Biot’s equations, and for
the mesoscopic (subwavelength scale) attenuation via the frequency
dependence of the effective stiffnesses. We consider wave propaga-
tion in a 2D half-space, subject to a point source at the surface. Sol-
utions to this problem are obtained for the effective viscoelastic
model mentioned above and for the newly derived poroelastic
model. As a reference, an exact analytical solution is obtained with

the use of Floquet’s (1883) theory. The responses predicted by all
three solutions are compared.
The paper is structured as follows: First, Biot’s equations are

briefly reviewed. Second, the equations for the effective viscoelastic
model are presented. Then, the effective poroelastic model is intro-
duced. The numerical examples follow, where predictions by all
models are compared based on the responses in the time domain.
The discussion of the results and conclusions finalizes the paper.

THEORETICAL MODELS

In this section, we present the equations of Biot’s theory, followed
by the equations of the effective viscoelastic model and the ones
of the effective poroelastic model. The exact solution for a periodi-
cally layered medium governed by Biot’s equations is given in Ap-
pendix A.

Biot’s theory

Biot’s (1962) equations of motion read

τij;j ¼ ρüi þ ρfẅi; (1)

−p;i ¼ ρfüi þ
αijρf
ϕ

ẅj þ ηrij _wj: (2)

Throughout this paper, a comma in the subscript denotes a spatial
derivative, an overdot denotes a time derivative, and the summation
convention for repeated indices is assumed. The following notations
are used: ρf , ρs are the fluid and solid grain densities, respectively;
ϕ is the porosity, and the total density ρ ¼ ð1 − ϕÞρs þ ϕρf;
αij ¼ α∞δij, where α∞ is the tortuosity, δij is the Kronecker delta,
and η is the fluid viscosity; τij are the elements of the total stress
tensor, p is the fluid pressure, and u and w are the displacements of
the solid phase and the relative fluid-to-solid displacement multi-
plied by ϕ, respectively. Tensor r ¼ k−10 , where the elements of
k0 are the permeabilities kij, and for the isotropic case kij ¼
k0δij. The high-frequency correction to Biot’s viscous damping fac-
tor is commonly adopted to account for dynamic effects, resulting in
the dynamic permeability k̂0 ¼ k0ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ iωM∕ð2ωBÞ

p þ iω∕ωBÞ−1
(and consequently, a temporal convolution operator in equation 2),
where M is the parameter that depends on the pore geometry, per-
meability, and porosity (Johnson et al., 1987). The real part of the
square root is taken greater than zero. Throughout the paper, we
assume M ¼ 1; it was shown to be accurate for several pore types
(Smeulders et al., 1992). Biot’s critical frequency ωB ¼ ϕη∕
ðk0α∞ρfÞ separates the low-frequency regime from the regime,
where inertial and viscous forces dominate.
Throughout the paper, a circumflex accent f̂ above a quantity

stands for frequency-wavenumber dependence (or frequency only,
if there is no wavenumber dependence). The Fourier transform is
applied for transforming to the frequency-wavenumber domain:

f̂ðkx;z;ωÞ¼
Z

∞

−∞

Z
∞

−∞
expð−iωtþ ikxxÞfðx;z;tÞdtdx: (3)

The inverse Fourier transform is given by

T176 Kudarova et al.
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fðx; z; tÞ ¼ 1

2π2

Z
∞

0

Re

�Z
∞

−∞
f̂ðkx; z;ωÞ

× expðiωt − ikxxÞdkx
�
dω: (4)

Only positive frequencies are considered because the negative fre-
quency components do not provide information independent of
the positive components. We study propagation of the plane waves
in the x − z plane, where x is the horizontal direction and z is the
vertical direction.
The stress-strain relations for an isotropic medium read

τxx ¼ E1ux;x þ ðE1 − 2μÞuz;z þ E2ðwx;x þ wz;zÞ;
τzz ¼ ðE1 − 2μÞux;x þ E1uz;z þ E2ðwx;x þ wz;zÞ;
τxz ¼ μðux;z þ uz;xÞ;
−p ¼ E2ðux;x þ uz;zÞ þ E3ðwx;x þ wz;zÞ; (5)

where the coefficients are defined as follows (Biot, 1962):

E1 ¼ Pþ 2Qþ R; E2 ¼ ðQþ RÞ∕ϕ; E3 ¼ R∕ϕ2;

P ¼ ϕKm þ ð1 − ϕÞKfð1 − ϕ − Km∕KsÞ
ϕþ Kfð1 − ϕ − Km∕KsÞ∕Ks

þ 4

3
μ;

Q ¼ ϕKfð1 − ϕ − Km∕KsÞ
ϕþ Kfð1 − ϕ − Km∕KsÞ∕Ks

;

R ¼ ϕ2Kf

ϕþ Kfð1 − ϕ − Km∕KsÞ∕Ks
: (6)

In the above equations, Ks, Kf , and Km are the bulk moduli of the
solid grains, fluid, and the drained frame, respectively, and μ is the
shear modulus of the drained frame.
In the frequency-wavenumber domain, we look for plane-wave

solutions of the equations 1 and 2 in the form

û ¼ ðÛx; Ûz; Ŵx; ŴzÞT expð−ikzzÞ: (7)

In the isotropic case, the P- and S-wave motions are decoupled. The
corresponding dispersion relations are obtained by introducing
the displacement potentials ½ϕ̂s; ψ̂s; ϕ̂f; ψ̂f� ¼ ½Φ̂s; Ψ̂s; Φ̂f; Ψ̂f�×
expð−ikzzÞ, where

ûx ¼ −ikxϕ̂s − ψ̂ s;z; ŵx ¼ −ikxϕ̂f − ψ̂f;z;

ûz ¼ ϕ̂s;z − ikxψ̂ s; ŵz ¼ ϕ̂f;z − ikxψ̂f: (8)

Substitution of these relations into equations 1 and 2 leads to the
dispersion equation

fðE1E3 − E2
2Þs4 − ðρE3 þ m̂E1 − 2ρfE2Þs2

þ ρm̂ − ρ2fgfμm̂s2 − ρm̂þ ρ2fg ¼ 0: (9)

In equation 9, s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2z

p
∕ω denotes slowness. The operator

m̂ ¼ ρfα∞∕ϕþ b̂∕ðiωϕ2Þ, where b̂ ¼ b0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ iω∕ð2ωBÞ

p
is the

dynamic viscous factor (the real part of the square root is positive),
and b0 ¼ ηϕ2∕k0. The first brace term in equation 9 is a dispersion
equation for P-waves, and the second one is that for S-waves.

Effective viscoelastic VTI model

We first introduce the equations for the effective viscoelastic
model, and then, the additional parameters are defined to obtain
the equations of motion for the effective poroelastic model, given
in the next section. The effective VTI model for wave propagation
in layered media at arbitrary angle was presented by Krzikalla and
Müller (2011). This effective model makes use of the poroelastic
Backus averaging (Gelinsky and Shapiro, 1997) and the effective
plane-wavemodulus obtained for a periodic 1Dmedium (White et al.,
1975). The resulting equations in the effective medium are equations
of elasticity with frequency-dependent coefficients. Throughout the
paper, we refer to this model as the viscoelastic model.
The analysis of dispersion and attenuation predicted by this

model for media with inhomogeneities in frame properties is carried
out by Krzikalla and Müller (2011). In the current paper, we present
the space-time domain responses of the effective medium to a sur-
face point load. We discuss examples with inhomogeneities in solid
frame and fluid properties. The equations used in this analysis are
outlined below.
The equations of motion for the effective VTI viscoelastic model

read

−ikxτ̂xx þ τ̂xz;z ¼ −ω2ρûx;

−ikxτ̂xz þ τ̂zz;z ¼ −ω2ρûz; (10)

where ρ is the density of the homogenized medium obtained by
averaging over the layers 1 and 2 of the periodic cell: ρ¼hρðzÞi.
Throughout the paper, the angular brackets denote averaging over
the layers in the periodic cell

hfi ¼ 1

L

Z
L
fðzÞdz: (11)

The stress-strain relations for the effective viscoelastic VTI model
read

τ̂xx ¼ −ikxÂûx þ F̂ûz;z;

τ̂xz ¼ D̂ðûx;z − ikxûzÞ;
τ̂zz ¼ −ikxF̂ûx þ Ĉuz;z: (12)

In the effective medium, the stiffnesses in the above equations are
frequency dependent. The expressions for the effective stiffnesses
Â, F̂, Ĉ, and D̂ were obtained by Gelinsky and Shapiro (1997) in
two limiting cases of relaxed and unrelaxed pore pressures (the ex-
pressions are given in Appendix C). These limits are referred to as
quasistatic and no-flow limits, respectively. It is assumed that the
fluid flow is independent of the loading direction (i.e., direction of
wave propagation), and a single relaxation function connects the
relaxed and unrelaxed limits of the effective stiffnesses. This func-
tion is based on a frequency-dependent modulus ĉðωÞ, derived
originally by White et al. (1975). The expression for ĉðωÞ is given
in Appendix C. The normalized relaxation function reads

Effective anisotropic poroelastic model T177
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R̂ðωÞ ¼ ĉðωÞ − Cu

Cr − Cu ; (13)

where the superscripts r and u refer to the relaxed and unrelaxed
limits, respectively. The effective stiffnesses then read

fÂ; Ĉ; F̂; D̂g ¼ fA;C; F;Dgu

− R̂ðωÞðfA;C; F;Dgu − fA;C; F;DgrÞ:
(14)

It follows from equation 14 that Ĉ ¼ ĉðωÞ. Because the shear
modulus does not depend on the fluid pressure, it is the same in
the relaxed and the unrelaxed cases, and the effective shear modulus
D̂ does not depend on frequency:

D̂ ¼ Du ¼ Dr ¼
�
1

μ

�
−1
: (15)

To obtain the dispersion equations of the effective viscoelastic
VTI model, we look for the solution of equation 10 in the fre-
quency-wavenumber domain in the form

ðûx; ûzÞ ¼ ðÛx; ÛzÞ expð−ikzzÞ: (16)

Substituting this into equation 10 and taking into account equa-
tion 12 provides the following solutions of the dispersion equation:

k�1z¼�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ1þ ffiffiffiffiffi

ϵ2
p

2D̂Ĉ

s
; k�2z¼�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ1−

ffiffiffiffiffi
ϵ2

p

2D̂Ĉ

s
;

ϵ1¼ρðĈþD̂Þ−ðÂĈ−2D̂F̂−F̂2Þk2x;
ϵ2¼ðÂ2Ĉ2−4ðÂĈþF̂ÞD̂−2F̂2ðÂĈ−2D̂2ÞþF̂3ð4D̂þF̂ÞÞk4xþ

þ2ρðF̂ðD̂þĈÞðF̂þ2D̂ÞþĈD̂ð2D̂þÂÞ−ÂĈ2Þk2xþρ2ðĈ−D̂Þ2:
(17)

The pairs of the wavenumbers k�1z;2z correspond to upgoing
and downgoing qP- and qS-waves. The amplitude ratios Ûz∕Ûx

read

�
Ûz

Ûx

��

1;2

¼ ρω2 − Âk2x − D̂ðk�1z;2zÞ2
ðF̂ þ D̂Þkxk�1z;2z

: (18)

Effective poroelastic VTI model

In this section, we introduce the effective poroelastic model based
on the poroelastic Backus averaging (Gelinsky and Shapiro, 1997)
and the effective plane-wave moduli obtained for P-wave propaga-
tion at normal incidence in a periodically layered porous medium
(Kudarova et al., 2013). These effective moduli result from using
the boundary conditions at the interfaces of the periodic cell different
from those used in White’s et al. (1975) model. The no-flow condi-
tion is replaced with the pressure continuity condition, allowing fluid
flow at the macroscopic scale. As a result, two additional plane-wave
moduli are derived to describe the effective mediumwith Biot’s equa-

tions. These effective moduli are used to define the effective stiff-
nesses B̂6, B̂7, and B̂8 (notation used as in Gelinsky and Shapiro,
1997) required to describe the effective poroelastic VTI model. Apart
from the effective stiffnesses, the effective densities have to be de-
fined. We use the results obtained by Molotkov and Bakulin
(1999), who showed that the effective medium representing a stack
of Biot’s layers is a generalized transversely isotropic Biot’s medium.
In this poroelastic medium, the densities and the viscous terms in
Biot’s equations are defined differently in the x- and z-directions.
The equations of motion read

−ikxτ̂xx þ τ̂xz;z ¼ −ω2ρ̂xûx − ω2ρ̂fxŵx;

−ikxτ̂xz þ τ̂zz;z ¼ −ω2ρzûz − ω2ρfzŵz;

ikxp̂ ¼ −ω2ρ̂fxûx − ω2m̂xŵx;

−p̂;z ¼ −ω2ρfzûz − ω2m̂zŵz; (19)

where the coefficients on the right side read (Molotkov and Bakulin,
1999)

ρ̂fx ¼
s1ρf1m̂2 þ s2ρf2m̂1

s1m̂2 þ s2m̂1

; m̂x ¼
�
1

m̂

�
−1
;

ρ̂x ¼ hρi − s1s2ðρf1 − ρf2Þ2
s1m̂2 þ s2m̂1

;

ρz ¼ hρi; ρfz ¼ hρfi; m̂z ¼ hm̂i: (20)

The indices 1 and 2 in equation 20 refer to the layers 1 and 2. The
volume fractions of the layers are s1 ¼ l1∕L and s2 ¼ l2∕L.
The stress-strain relations read

τ̂xx ¼ −ikxÂûx þ F̂ûz;z þ B̂6ð−ikxŵx þ ŵz;zÞ;
τ̂zz ¼ −ikxF̂ûx þ Ĉûz;z þ B̂7ð−ikxŵx þ ŵz;zÞ;
τ̂xz ¼ D̂ðûx;z − ikxûzÞ;
−p̂ ¼ −ikxB̂6ûx þ B̂7ûz;z þ B̂8ð−ikxŵx þ ŵz;zÞ: (21)

The frequency-dependent stiffnesses in equation 21 are defined in
the same way as in the effective viscoelastic model, but the fre-
quency dependence is incorporated via the effective plane-wave
moduli obtained by Kudarova et al. (2013). These effective moduli
are obtained from the solution of the 1D problem for the periodic
cell consisting of two isotropic layers (see Figure 1a), where har-
monic stress and pressure are applied to the outer edges of the cell
normal to the layering. The layers are governed by Biot’s equa-
tions 1 and 2 (with z-dependent field variables uz, wz, τzz, and p).
The problem is solved in the frequency domain. In each layer, the
displacements uz and wz are found as upgoing and downgoing plane
waves (a fast and a slow P-wave), resulting in eight unknown am-
plitudes. These amplitudes are found from the following boundary
conditions: continuity of the intergranular stress σzz, pore pressure
p, displacements uz and wz at the interface between the layers, and
continuity of the total stress τzz and pressure p at the outer edges of
the cell. The strains uz;z and wz;z are found as the difference between
the displacements at the outer edges of the unit cell, divided by the
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cell width. This gives us the coefficients of the frequency-dependent
symmetric compliance matrix α̂ij:

ûz;z ¼ α̂11τ̂zz þ α̂12p̂;

ŵz;z ¼ α̂12τ̂zz þ α̂22p̂: (22)

They are equated to the coefficients of the compliance matrix ob-
tained from Biot’s stress-strain relations (equation 5, for 1D case,
with kx ¼ 0):

ûz;z ¼
1

Δ̂
ðÊ3τ̂zz þ Ê2p̂Þ;

ŵz;z ¼
1

Δ̂
ð−Ê2τ̂zz − Ê1p̂Þ; Δ̂ ¼ Ê1Ê3 − Ê2

2: (23)

Then, the frequency-dependent elastic parameters Ê1, Ê2, and Ê3

are found, describing attenuation and dispersion due to wave-in-
duced mesoscopic fluid flow in 1D periodically layered medium:

Ê1¼
α̂22

α̂11α̂22− α̂212
; Ê2¼−

α̂12
α̂11α̂22− α̂212

; Ê3¼
α̂11

α̂11α̂22− α̂212
:

(24)

The coefficients αij are computed numerically by solving a system
of eight by eight linear algebraic equations corresponding to eight
boundary conditions in the cell problem, mentioned above.
Following Krzikalla andMüller (2011), we introduce a branching

function

R̂1ðωÞ ¼
Ê1ðωÞ − Cu

Cr − Cu (25)

to obtain the frequency-dependent effective moduli Â, Ĉ, and F̂:

fÂ; Ĉ; F̂g ¼ fA;C; Fgu − R̂1ðωÞðfA;C; Fgu − fA;C; FgrÞ:
(26)

As discussed above, the modulus D̂ is not frequency dependent and
is defined in equation 15. Note that R̂1ðωÞ is equivalent to R̂ðωÞ
(equation 13) when the frequency is much lower than Biot’s critical
frequency ωB. The effective plane-wave modulus Ê1 is an extension
of White’s frequency-dependent modulus ĉðωÞ to higher frequen-
cies, first proposed by Vogelaar and Smeulders (2007). Further gen-
eralization is proposed by Kudarova et al. (2013), where the no-flow

boundary conditions at the outer edges of the unit cell are replaced
by the pressure continuity condition, allowing the global flow to
take place. This results in additional effective moduli Ê2 and Ê3

defined in equation 24, which are used to describe the effective Bi-
ot’s medium.
By comparing the expressions for τzz and p in equation 5 (with

incorporated frequency-dependent coefficients, Ê1, Ê2, and Ê3, in-
troduced above) and equation 21, we can find out how the other
moduli of the effective poroelastic VTI model should be chosen.
First, it can be observed that

B̂7 ¼ Ê2; B̂8 ¼ Ê3: (27)

Next, the effective coefficient B̂6 should be obtained. In the particular
case when the shear modulus is constant throughout the layers, there
is no anisotropy in the stiffness matrix of the effective poroelastic
medium, and B̂6 ¼ B̂7 ¼ Ê2. Anisotropy remains in the viscous
and inertia terms, according to their definition in equation 20. In gen-
eral case, complying with the method used by Krzikalla and Müller
(2011), the frequency dependence of B̂6 is specified using a second
normalized relaxation function:

R̂2ðωÞ ¼
Ê2 − Bu

7

Br
7 − Bu

7

: (28)

The final expression for the effective modulus B̂6 then reads

B̂6 ¼ Bu
6 − R̂2ðωÞðBu

6 − Br
6Þ: (29)

Now, all effective constants have been determined. For clarity, we
underline that the effective poroelastic model incorporates the meso-
scopic and the macroscopic attenuation mechanisms; the former is
captured by the effective stiffnesses in equation 21, whereas the latter
comes in through the effective terms defined in equation 20.
To obtain the dispersion equation of the effective poroelastic VTI

model, we look for the solution of equation 21 in the form

fûx; ûz; ŵx; ŵzg ¼ fÛx; Ûz; Ŵx; Ŵzg expð−ikzzÞ: (30)

Substitution of equation 30 into the stress-strain relations (equa-
tion 21) and the equations of motion (equation 19) gives the disper-
sion relation detðMÞ ¼ 0 with solutions kzðkxÞ, whereM is a matrix
with coefficients given as

Figure 1. Point-force source at the top of the lay-
ered half-space and receivers (a) on a horizontal
line below the source and (b) on the arc.
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M¼

2
66664
Âk2xþD̂k2z−ω2ρ̂x ðD̂þF̂Þkxkz B̂6k2x−ω2ρ̂fx B̂6kxkz

ðF̂þD̂Þkxkz Ĉk2zþD̂k2x−ω2ρz B̂7kxkz B̂7k2z−ω2ρfz
−B̂6k2xþω2ρ̂fx −B̂7kxkz −B̂8k2xþm̂xω

2 −B̂8kxkz
−B̂6kxkz −B̂7k2zþω2ρfz −B̂8kxkz −B̂8k2zþm̂zω

2

3
77775:

(31)

The matrix determinant detðMÞ ¼ 0 provides the dispersion relation:

c1k6z þ c2k4z þ c3k2z þ c4 ¼ 0: (32)

Explicit expressions for the coefficients ci are not presented here for
the sake of brevity; they can be expressed in terms of the elements of
the matrix M. The solution of equation 32 is

k�1z ¼�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a
6c1

−
2

3

3c1c3−c22
c1a

−
c2
3c1

s
;

k�2z ¼�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ð1− i

ffiffiffi
3

p
Þ a
12c1

þ 2ð1þ i
ffiffiffi
3

p
Þ3c1c3−c22

6c1a
−

c2
3c1

s
;

k�3z ¼�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ð1þ i

ffiffiffi
3

p
Þ a
12c1

þ2ð1− i
ffiffiffi
3

p
Þ3c1c3−c22

6c1a
−

c2
3c1

s
;

(33)

where

a¼
�
12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð27c21c24−18c1c2c3c4þ4c1c33þ4c32c4−c22c

2
3Þ

q
c1

−108c4c21þ36c1c2c3−8c32

�
1∕3

: (34)

These vertical components of the wavenumbers correspond to the
upgoing and downgoing fast qP-, the slow qP-, and the qS-waves.

RESULTS

In this section, we compare the space-time domain responses of
three half-spaces subject to a surface point source (vertical stress
component) and evaluate the performance of the effective models
for media with different properties. The first half-space consists of
periodically alternating layers, where each layer is governed by Bi-
ot’s equations. The exact analytical solution presented in Appendix A
is used to obtain the response in the frequency-wavenumber domain.
The response in the space-time domain is obtained with the use of the
inverse Fourier transform (equation 4). The second half-space is a
homogeneous VTI medium governed by the equations of the effec-
tive viscoelastic VTI model outlined above, originally introduced by
Krzikalla and Müller (2011). The third half-space is a homogeneous
VTI medium governed by the equations of the effective poroelastic
VTI model introduced in this paper.

Configuration

We consider a periodically layered half-space with the normal
stress at the surface applied at some reference point x ¼ 0. The
receivers are located on one horizontal line (Figure 1a) and on the
arc of a circle with the radius r (Figure 1b). The latter configuration
is instrumental to highlight angle-dependent effects. The sets of the
material parameters are given in Table 1 (solid frame properties) and
Table 2 (saturating fluids properties). The examples with rocks and
water- and gas-saturated coarse sand were used by Gelinsky and Sha-
piro (1997). The properties of the coarse and medium sands originate
from Turgut and Yamamoto (1990). The example with alternating
layers of a water and CO2-saturated sandstone were introduced by
Carcione et al. (2011).
The boundary conditions at the top interface z ¼ 0 read

τzz ¼ fðtÞδðxÞ; τxz ¼ 0; p ¼ 0: (35)

For the effective VTI viscoelastic model, only the first two boun-
dary conditions apply because the fluid pressure is not present in the
equations of the viscoelastic model. For the function fðtÞ, a Ricker
wavelet is used:

fðtÞ ¼ f0ð1 − 2π2f2Rðt − t0Þ2Þ expð−π2f2Rðt − t0Þ2Þ: (36)

Table 1. Sets of material properties chosen for numerical examples.

Parameter Notation Units Rock 1 Rock 2 Sandstone Medium sand Coarse sand

Density of solid grains ρs kg∕m3 2650 2650 2650 2650 2650

Bulk modulus of solid grains Ks GPa 40 40 40 36 36

Bulk modulus of frame Km GPa 12.7 4.3 1.37 0.108 0.217

Porosity ϕ – 0.15 0.17 0.36 0.4 0.35

Permeability k0 m2 10−13 2 ⋅ 10−13 1.6 ⋅ 10−12 10−11 10−10

Shear modulus μ GPa 20.3 8.8 0.82 0.05 0.1

Tortuosity α∞ – 1 1 2.8 1.25 1.25

Biot’s critical frequency (water) ωB
2π kHz 1500 850 80.3 5.1 0.445

Biot’s critical frequency (CO2)
ωB
2π kHz 445 252 23.9 9.5 0.8

Biot’s critical frequency (gas) ωB
2π kHz 107 60 5.7 2.3 0.2
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In the above equation, f0 is a constant scaling coefficient with the
dimension of stress (Pa), fR is the central frequency of the wavelet,
and t0 is an arbitrary time shift chosen, such that the dominant part
of the wavelet lies within the positive domain t > 0; only the com-
ponents that are infinitely small are left in the domain t < 0. In the
examples, we compare the vertical components of the solid dis-
placements uz.

Numerical examples

First, we look at the response of a medium consisting of alter-
nating water-saturated rocks 1 and 2. The receivers are located on
a horizontal line at a vertical distance z ¼ 400 m from the source,
and the layer thicknesses are l1 ¼ l2 ¼ 0.2 m. The wavelet param-
eters are fR ¼ 50 Hz, f0 ¼ 109 Pa, and t0 ¼ 0.022 s. Because
there is a variation in the shear modulus of the layers, the effective
viscoelastic medium is a VTI medium, as well as the effective po-
roelastic medium. The exact solution describes the original layered
medium. Time-domain responses are shown in Figure 2. In all the
plots, the dashed black line corresponds to the solution predicted
by the effective viscoelastic model, the solid black line corresponds
to the exact analytical solution, and the solid gray line corresponds
to the effective poroelastic model. In Figure 2, all three lines coin-
cide; the effective models are in agreement with the exact solution
for the qP- and qS-waves, as well as for the head wave that can be
distinguished.
The second example is a medium consisting of sandstone layers

with alternating water and CO2 saturations, and the thicknesses of
the layers are the same as in the previous example. This configu-
ration is considered by Carcione et al. (2011), who report a good
match between the dispersion and attenuation predictions by their

numerical solution and the analytical solution of Krzikalla and
Müller (2011). The shear modulus is constant throughout the layers,
which means that the effective viscoelastic medium is isotropic re-
sulting in decoupling between P- and S-wave motions. In this par-
ticular case, the qS-wave velocity in the effective viscoelastic model
is equal to the S-wave velocity v ¼ ffiffiffiffiffiffiffiffi

μ∕ρ
p

, where μ is a real-valued
shear modulus and ρ is a real-valued effective density. Hence, the
effective viscoelastic model does not predict any S-wave attenua-
tion. However, the effective poroelastic model is not isotropic be-
cause of the anisotropy in the effective density terms (equation 19).
Therefore, the qS-wave is attenuated in the effective poroelastic
model and the exact solution. To observe this effect, the central fre-
quency of the wavelet in this example is increased to 200 Hz and
t0 ¼ 0.0055 s. The qP-wave waveforms are shown in Figure 3 and
the qS-wave ones in Figure 4. It can be observed that the qP-wave-
forms are all in agreement (all lines coincide), but the qS-wave
attenuation is underestimated by the effective models; with the ef-
fective viscoelastic model, it is underestimated to a greater extent,
whereas the difference between the predictions by the effective
poroelastic model and the exact solution is smaller.
In the effective poroelastic model, Biot’s global flow mechanism

causes qS-wave attenuation captured by the viscous terms in equa-
tion 19. This mechanism is not present in the effective viscoelastic
model, which could result in different predictions as shown in
Figure 4. However, the influence of Biot’s global flow mechanism
at this frequency range well below Biot’s critical frequency (see
Table 1) is probably small, which is confirmed by the fact that
the predictions for the qP-waveforms match for all models. The
observed differences in the qS-waveforms are likely to be related
to the different description of the mesoscopic-scale attenuation
mechanism in the models. In the viscoelastic model, there is no
S-wave attenuation; in the poroelastic model, the mesoscopic-scale
attenuation of the qS-wave is captured in the compressional motion,
associated with the qS-wave. The difference between the effective
poroelastic model qS-waveform and that of the exact solution is

Figure 2. Time-domain response at a depth z ¼ 400 m for different
x. The medium consists of water-saturated alternating layers of rocks
1 and 2, l1 ¼ l2 ¼ 0.2 m, fR ¼ 50 Hz. All three lines coincide.

Figure 3. The qP-waveforms at a depth z ¼ 400 m for different x.
The medium consists of water- and CO2-saturated sandstone layers,
l1 ¼ l2 ¼ 0.2 m, fR ¼ 200 Hz. All three lines coincide.
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probably due to more complicated fluid pressure distribution asso-
ciated with the qS-wave (Wenzlau et al., 2010), which is not cap-
tured by the effective moduli derived for the 1D cell problem.
It was shown by Kudarova et al. (2013) that Biot’s global flow

mechanism is important for predictions of P-wave attenuation at
seismic frequencies for highly permeable weak-frame media. In
the next examples, we consider such media to compare the predic-
tions of the three models considered in this paper for qP- and qS-
waves. First, water-saturated alternating layers of medium sand

Figure 4. The qS-waveforms at a depth z ¼ 400 m for different x.
The medium consists of water- and CO2-saturated sandstone layers,
l1 ¼ l2 ¼ 0.2 m, fR ¼ 200 Hz. The actual arrival times are not
shown here, the interval between the arrival times t ¼ 0.01 s is
chosen for visualization purposes.

Figure 5. The qP-waveforms at a depth z ¼ 400 m for different x.
The medium consists of water-saturated medium and coarse sand,
l1 ¼ l2 ¼ 0.2 m, fR ¼ 50 Hz. Solid gray and black lines coincide.
The actual arrival times are not shown here, and the interval between
the arrival times t ¼ 0.01 s is chosen for visualization purposes.

Figure 6. The qS-waveforms at a depth z ¼ 400 m for different x.
The medium consists of water-saturated medium and coarse sand,
l1 ¼ l2 ¼ 0.2 m, fR ¼ 50 Hz. The actual arrival times are not shown
here, and the interval between the arrival times t ¼ 0.1 s is chosen for
visualization purposes.

Figure 7. The qP-waveforms at a depth z ¼ 100 m for different x.
The medium consists of the layers of coarse sand, l1 ¼ 0.09 m
(water saturated), l2 ¼ 0.01 m (gas saturated), fR ¼ 50 Hz. Each
trace is multiplied by the corresponding propagation distance,
and the traces predicted by the effective viscoelastic model are
scaled by the factor 0.1.
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and coarse sand are considered. The thicknesses of the layers
are l1 ¼ l2 ¼ 0.2 m, and the receivers are located at a depth
z ¼ 400 m. The central frequency of the wavelet fR ¼ 50 Hz. It
can be observed from the waveforms of the qP- (Figure 5) and
qS-waves (Figure 6) that the effective viscoelastic model underes-
timates qP- and qS-waves attenuation. The effective poroelastic
model predicts the same qP-waveforms as the exact solution,
and its predictions for the qS-wave are closer to the exact solution
than the predictions of the effective viscoelastic model. In this ex-
ample, the effective viscoelastic model is also a VTI medium because
there is a variation in the shear moduli of the layers. The P- and S-
wave motions are coupled; therefore, the qS-wave is not lossless.

However, Biot’s global flow mechanism is not captured by the vis-
coelastic model; this is why the model gives inaccurate predictions.
Clearly, the attenuation caused by Biot’s global flow mechanism is
not negligible at low frequencies for highly permeable media. The
difference in the qS-waveforms predicted by the effective poroelastic
model and the exact solution, which changes with offset, suggests
again that the mesoscopic-scale attenuation mechanism incorporated
in the model via the effective frequency-dependent elastic moduli
derived from the 1D cell problem fails to predict the qS-wave attenu-
ation with high accuracy.
The attenuation of seismic waves is known to be very pronounced

in finely layered porous media with patchy saturation (Carcione and
Picotti, 2006). The next example is a finely layered coarse sand sa-
turated with water and gas. The layer thicknesses are l1 ¼ 0.09 m

(water saturated) and l2 ¼ 0.01 m (gas saturated). The vertical dis-
tance from the source to the receivers is z ¼ 100 m. The wavelet’s
central frequency fR ¼ 50 Hz. The time-domain responses for the
horizontal line of receivers are depicted in Figure 7 (qP-wave) and
Figure 8 (qS-wave). The horizontal positions of the receivers are
chosen differently than in the previous examples, for visualization
purposes (the medium is highly attenuative). Clearly, the effective vis-
coelastic model vastly underestimates the attenuation, to a much
greater extent than in the previous examples, whereas the effective
poroelastic model is in good agreement with the exact solution.
The effective viscoelastic model also predicts lower qP-wave veloc-
ities than the poroelastic model and the exact solution, as can be seen
in Figure 7. The waveforms predicted by the effective viscoelastic
model are also different, suggesting that the dispersion is not captured
properly. It can be observed in the ðf; kxÞ domain that the effective
poroelastic model (Figure 9a) and the exact solution (Figure 9b) are in
good agreement, whereas the amplitudes predicted by the effective
viscoelastic model (Figure 9c) are much higher and the P-wave veloc-
ity is lower.
Because highly permeable media are highly dispersive and attenu-

ative, it is interesting to explore the angle-dependent effects in more
detail with the configuration of receivers depicted in Figure 1b. The
distance from source to the receivers is r ¼ 100 m. The results for
this configuration are depicted in Figures 10 and 11. In these plots,
the time-domain responses are shown for the locations of receivers at
different angles θ. The results for the qP-wave are depicted in Fig-
ure 10. The deviation of the predictions of the effective viscoelastic
model from the exact result is visible even at normal incidence; this

Figure 8. The qS-waveforms at a depth z ¼ 100 m for different x.
The medium consists of the layers of coarse sand, l1 ¼ 0.09 m
(water saturated), l2 ¼ 0.01 m (gas saturated), fR ¼ 50 Hz. The ac-
tual arrival times are not shown here, and the interval between the
arrival times t ¼ 0.04 s is chosen for visualization purposes. The
traces predicted by the effective viscoelastic model are scaled by
the factor 0.5.

Figure 9. Logarithm of the amplitude spectrum in the ðf; kxÞ-domain for the vertical component of solid particle displacement at a depth
z ¼ 100 m. Water- and gas-saturated coarse sand.
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result is consistent with that obtained by Kudarova et al. (2013).
The effective poroelastic model predicts the same attenuation and
dispersion as the exact solution. It can be observed in Figure 10 that
the effective viscoelastic model does not correctly predict the angle-
dependent dispersion of this medium. There is a significant phase
shift between the predictions of the viscoelastic and poroelastic sol-

utions, observed by the change in the waveform. The dispersion
effects are very pronounced in the effective poroelastic model and
the exact solution: with increasing angle, the waveform spreads.
There is again some difference in the predictions of the effective

poroelastic model and the exact solution for the qS-wave as can be
seen in Figure 11. In these highly dispersive media, the qS-wave
attenuation due to the mesosocopic-scale wave-induced fluid flow
is more significant than in less permeable stiffer rocks. However, as
mentioned above, the S-wave attenuation and dispersion due to
mesosocopic effects is not fully correctly described by the effective
models. Still, the effective poroelastic model gives better predic-
tions of the qS-wave attenuation than the viscoelastic model.
In this section, we have observed that the qP- and qS-waveforms are

predicted accurately for rocks 1 and 2 (Figure 2), where the influence
of Biot’s global flow mechanism is negligible, and the mesoscopic-
scale attenuation mechanism is captured properly by the effective
moduli in both models. The differences in qS-waveforms are more
pronounced with increasing the frequency and for softer sandstones
(Figure 4). Biot’s global flow mechanism becomes nonnegligible
for unconsolidated sands (Figures 5–11), resulting in underestimation
of qP- and qS-waves attenuation by the effective viscoelastic model;
however, the poroelastic model predicts the proper qP-wave attenua-
tion for such materials, whereas the qS-wave attenuation has higher
accuracy than that predicted by the viscoelastic model.

DISCUSSION

The effective models discussed in this paper are based on the
assumption that the direction of fluid flow is always perpendicular
to the layering. The frequency-dependent functions in both effective
models describe the attenuation due to interlayer flow at normal
incidence. It was shown in this study that this assumption is reason-
able for qP-waveforms. The predictions by the effective poroelastic
model are in good agreement with the predictions by the exact sol-
ution. Predictions by the effective viscoelastic model are in agree-
ment with the exact solution only in situations in which Biot’s
global flow mechanism is not significant.
The exact solution is readily available for periodically layered

media. One may question the justification of the development of
effective models for such configurations. However, it is much easier
to work with effective homogenized equations giving simpler ex-
pressions. The model of White et al. (1975) is an example; many
publications report on studies with this model already for decades.
The effective models for periodic structures can in many cases be
extended to the nonperiodic case to handle more complicated geom-
etries. The exact analytical solution available for periodically dis-
tributed inclusions validates the methods used to obtain the effective
models. Although only 2D numerical examples were shown, the
models discussed in this paper can be used to solve problems in

Figure 11. The qS-waveforms at a distance r ¼ 100 m from the
source at different angles. The medium consists of the layers of coarse
sand, l1 ¼ 0.09 cm (water saturated), l2 ¼ 0.01 m (gas saturated),
fR ¼ 50 Hz.

Figure 10. The qP-waveforms at a distance r ¼ 100 m from the
source at different angles. The medium consists of the layers of coarse
sand, l1 ¼ 0.09 m (water saturated), l2 ¼ 0.01 m (gas saturated),
fR ¼ 50 Hz. Solid gray and black lines coincide.

Table 2. Mechanical properties of the sample pore fluids.

Parameter Notation Units Water Gas CO2

Density ρf kg∕m3 1000 140 505

Bulk modulus Kf GPa 2.25 0.056 0.025

Viscosity η Pa*s 0.001 0.00022 0.00015
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3D and can be extended to the situation of nonperiodic layering
when different frequency-dependent relaxation functions are used
(derived for a nonperiodic case).
Viscoelastic models are often advantageous over the poroelastic

ones because they require fewer parameters and improve computa-
tional efficiency. However, poroelastic models are required for pre-
dictions of frequency-dependent attenuation in highly permeable
media, such as shallow marine sediments with an inhomogeneous
frame and partial saturation, and unconsolidated sand reservoirs.

CONCLUSION

Finely layered porous media can be highly dispersive and attenu-
ative, for example, due to the variations in the properties of saturating
fluids, the presence of soft layers and fractures. In this paper, a new
effective poroelastic model is proposed for wave propagation in such
layered porous media. In this new model, the attenuation of seismic
waves at mesoscopic scale is described by three frequency-dependent
relaxation functions, which were computed for P-waves at normal
incidence. The extension to the angle-dependent propagation is pro-
vided by the use of poroelastic Backus averaging. The effective mod-
els (the viscoelastic and the poroelastic one) are validated with the
exact analytical solution obtained with the use of Floquet’s theory
applied to Biot’s equations with periodically varying coefficients.
The effective models predict different qP-wave attenuation and
dispersion for soft unconsolidated layers. This is explained by the
fact that Biot’s global flow attenuation mechanism is not included
in the effective viscoelastic model. The examples show that the
effective poroelastic model predicts the qP-waveform with high
accuracy.
There is a major difference in the predictions of qS-wave attenu-

ation by the effective viscoelastic model and the newly introduced
poroelastic model. The effective viscoelastic model predicts meso-
scopic attenuation of qS-waves due to the coupling between P- and
S-wave motions. The effective medium is isotropic when the shear
modulus is constant; then, there is no coupling between P- and S-
wave motions. In this case, the S-wave in the effective viscoelastic
model is lossless. However, the effective poroelastic model predicts
mesoscopic S-wave attenuation even for constant shear modulus; in
addition, there is attenuation due to Biot’s global flow. The numeri-
cal examples show that this results in a perceptible differences be-
tween the waveforms predicted by the effective viscoelastic and
poroelastic models, and that the predictions by the effective poroe-
lastic model are much closer to the exact result.
We conclude that the method used for extension of the attenua-

tion and dispersion caused by the interlayer flow in 1D to the ar-
bitrary angle of incidence provides a very good match between the
resulting effective model and the exact solution, especially for the
qP-wave. The effective poroelastic VTI model, introduced in this
paper, is advantageous when soft unconsolidated layers are present.
It is also applicable at a broader frequency range than the effective
viscoelastic model.
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APPENDIX A

ANALYTICAL SOLUTION FOR PERIODICALLY
LAYERED POROUS MEDIUM

The solution of first-order differential equations with periodic co-
efficients can be obtained using Floquet’s (1883) theorem. This
theory is extensively used in numerous applications in different dis-
ciplines. In particular, it has been applied to elastic composites by
Braga and Hermann (1992) and to a 1D poroelastic composite by
Norris (1993) and Kudarova et al. (2013). In this appendix, we ap-
ply the method to a 2D poroelastic composite to obtain an analytical
solution that will be used to validate the effective models. The pro-
cedure is outlined below.
We consider a periodically layered medium consisting of alter-

nating layers 1 and 2, with the thicknesses l1 and l2, and the period
L ¼ l1 þ l2 (see Figure 1a). Each layer is described by Biot’s equa-
tions of poroelasticity (equations 1 and 2), and each layer is isotropic.
The equations of motion (equations 1 and 2), with the stress-strain
relations (equation 5) substituted, can in the frequency-wavenumber
domain be written in the matrix notation:

∂f̂
∂z

¼ iN̂ f̂; (A-1)

where N̂ is a matrix given in Appendix B; f̂ ¼ ½v̂z; ξ̂z; σ̂xz; σ̂zz; p̂; v̂x�
is a vector-containing field variables; v̂z and v̂x are the z- and x-com-
ponents of the solid particle velocity, respectively; ξ̂z ¼ ð1 − ϕÞv̂zþ
ϕv̂fz , where v̂

f
z is a vertical component of the fluid particle velocity;

σ̂xz ¼ −τ̂xz and σ̂zz ¼ −τ̂zz − p̂ are the intergranular stresses.
The elements of the matrix N̂ are periodic functions of the vertical

coordinate z (with the period L) and depend on frequency ω and
horizontal slowness sx ¼ kx∕ω. According to Floquet (1883), the
solution of equation A-1 can be found in the form

f̂ ¼ ŶðzÞc; Ŷ ¼ F̂ðzÞ expðiÂzÞ; (A-2)

where c is a vector containing six constants to be defined by
the boundary conditions and matrix F̂ðzÞ is a periodic matrix,
F̂ðzÞ ¼ F̂ðzþ LÞ; matrix Â is constant with respect to z. To find
the matrices F̂ and Â, let us consider the solution of equation A-1
within one period L that consists of two layers and is referred to
as a periodic cell.
For a stack of layers, the solution of equation A-1 can be ex-

pressed via the propagator matrix P̂ðzÞ: f̂ðzÞ ¼ P̂ðzÞf̂ðz0Þ, where
z0 is the vertical coordinate of the top interface. It follows from this
expression that P̂ðz0Þ ¼ I, where I is the identity matrix. Using Flo-
quet’s solution equation A-2 at z ¼ z0, one finds f̂ðz0Þ ¼ F̂ðz0Þ
expðiÂz0Þf̂ðz0Þ, and consequently, F̂ðz0Þ expðiÂz0Þ ¼ I. From this
relation and the periodicity of F̂ðzÞ, it follows that

f̂ðz0þLÞ¼ F̂ðz0ÞexpðiÂz0ÞexpðiÂLÞf̂ðz0Þ¼expðiÂLÞf̂ðz0Þ:
(A-3)

On the other hand, using the propagator matrix, we have
f̂ðz0 þ LÞ ¼ P̂ðz0 þ LÞf̂ðz0Þ. Hence, P̂ðz0 þ LÞ ¼ expðiÂLÞ.
Let us now consider the solution for the two layers of the periodic

cell with the coordinates z0 ≤ z ≤ z0 þ l1 for layer 1 and z0 þ l1 ≤
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z ≤ z0 þ L for layer 2. In each of the layers 1 and 2, the solution of
equation A-1 is

f̂kðzÞ ¼ M̂kðzÞf̂ðzkÞ; k ¼ 1;2;

M̂kðzÞ ¼ expðiN̂kzÞ; M̂kðzkÞ ¼ I; (A-4)

where zk is the vertical coordinate of the top interface of the layer k.
Following this solution, f̂ðz0 þ l1Þ ¼ M̂1ðl1Þf̂ðz0Þ and f̂ðz0 þ LÞ ¼
M̂2ðl2Þf̂ðz0 þ l1Þ ¼ M̂2ðl2ÞM̂1ðl1Þf̂ðz0Þ. Hence,

P̂ðz0 þ LÞ ¼ expðiÂLÞ ¼ expðiN̂2l2Þ expðiN̂1l1Þ: (A-5)

Matrix Â is now defined via the relation of the matrix exponentials
in equation A-5. The eigenvalues of the matrix Â are the so-called
Floquet wavenumbers that govern the wave propagation in periodic
media. The first step in finding these wavenumbers is to find
the matrix exponentials expðiN̂klkÞ, k ¼ 1;2. To compute this ma-
trix, it is convenient to use the eigendecomposition N̂k ¼
L̂kΛ̂kL̂

−1
k , where L̂k is a matrix containing the eigenvectors of

the matrix N̂k and Λ̂k is a diagonal matrix containing its eigenval-
ues, which are the vertical components of the wavenumbers gov-
erning wave propagation inside the layer:

k�1z ¼ �ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−d̂1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d̂21 − 4d̂0d2

q
2d2

− s2x

vuut
;

k�2z ¼ �ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−d̂1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d̂21 − 4d̂0d2

q
2d2

− s2x

vuut
;

k�3z ¼ �ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d̂0
μρ̂22

− s2x

s
; (A-6)

where d̂0 ¼ ρ̂11ρ̂22 − ρ̂212, d̂1 ¼ −ðPρ̂22 þ Rρ̂11 − 2Qρ̂12Þ, d2 ¼
PR −Q2, and the density terms ρ̂ij are defined in Appendix B.
The vertical wavenumbers in equation A-6 correspond to the up-
going, downgoing fast, slow P-, and S-waves. The elements of the
matrices L̂k are not explicitly presented here for the sake of brevity.
They are expressed via the elements of the matrices N̂k and can be
found using the eigendecomposition. The vertical components of
the Floquet wavenumbers kFiz are expressed via the eigenvalues τi
of the matrix expðiÂLÞ: τi ¼ expðikFizLÞ.
The next step toward obtaining the solution of equation A-1 is to

find the periodic matrix F̂ðzÞ. Without loss of generality, we assume
the coordinate of the top interface z0 ¼ 0. Let us define the local
coordinate zn ¼ z − ðn − 1ÞL, where n is the number of the peri-
odic cell and 0 ≤ zn ≤ L. Then, the following equalities hold:

P̂ðzÞ ¼ F̂ðzÞ expðiÂzÞ ¼ F̂ðznÞ expðiÂznÞ expðiÂLðn − 1ÞÞ
¼ P̂ðznÞ expðiÂLðn − 1ÞÞ: (A-7)

Right-multiplying equation A-7 by expð−iÂzÞ results in the expres-
sion

F̂ðzÞ ¼ P̂ðznÞ expð−iÂznÞ; (A-8)

where the propagator matrix P̂ðznÞ is defined as

P̂ðznÞ ¼
�

M̂1ðznÞ; 0 ≤ zn ≤ l1;
M̂2ðzn − l1ÞM̂1ðl1Þ; l1 ≤ zn ≤ L:

(A-9)

The matrices F̂ and Â have been determined in equations A-5
and A-8, and the solution of equation A-1 can now be obtained:

f̂ðzÞ ¼ F̂ðzÞ expðiÂzÞf̂ð0Þ ¼ P̂ðznÞ expðiÂLðn − 1ÞÞf̂ð0Þ:
(A-10)

The vector f̂ð0Þ is the solution of Biot’s equations related to the
top layer:

f̂ðz0Þ ¼ Ŝ½A1 A2 A3 A4 A5 A6 �T: (A-11)

The elements of matrix Ŝ are given in Appendix B. The unknown
amplitudes Ai are defined by the boundary conditions. In the exam-
ples that follow, we consider the half-space subject to a point-source
τzz ¼ fðtÞδðxÞ at the top interface. In this case, the following six
boundary conditions are applied: At the top interface z ¼ 0, the stress
σzz is continuous, σzx ¼ 0, fluid pressure p ¼ 0, and the radiation
condition, which implies the absence of all three upgoing waves.

APPENDIX B

MATRICES OF COEFFICIENTS IN
THE ANALYTICAL SOLUTION

The matrix of coefficients N̂ in the equations A-1 reads

N̂¼ω

�
0 N̂a

N̂b 0

	
;

N̂a¼

2
66664
− R

d2
ϕQ0

d2
sx


1−2μR

d2

�
:: s2xϕ2

ρ̂22
−ϕðϕP−ð1−ϕÞQÞ

d2
þϕð1−ϕÞQ0

d2
sx


1−ϕ−ϕρ̂12

ρ̂22
þ2μϕQ0

d2

�
:: :: 4μs2x



1−μR

d2

�
þ ρ̂2

12

ρ̂22
− ρ̂11

3
77775;

N̂b¼

2
66664

2ρ̂12ð1−ϕÞ
ϕ − ρ̂22ð1−ϕÞ2

ϕ2 − ρ̂11
ρ̂22ð1−ϕÞ

ϕ2 − ρ̂12
ϕ sx

:: − ρ̂22
ϕ2 0

:: :: −1
μ

3
77775; (B-1)

where the dots denote the elements below the diagonal, which are
equal to the corresponding elements above the diagonal because

matrices N̂a and N̂b are symmetric. In the elements of N̂, sx ¼
kx∕ω is the horizontal slowness, ρ̂12 ¼ −ðα∞ − 1Þϕρf þ ib̂∕ω,
ρ̂11 ¼ ð1 − ϕÞρs − ρ̂12, and ρ̂22 ¼ ϕρf − ρ̂12. The damping operator

b̂ ¼ b0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ iω∕ð2ωBÞ

p
, where b0 ¼ ηϕ2∕k0. The coefficients

d2 ¼ PR −Q2, Q 0 ¼ Q − ð1 − ϕÞR∕ϕ.
The elements of the matrix Ŝ from equation A-11 read Ŝij ¼

ĝiðk�jzÞ, where k�jz, j ¼ 1; ::; 6 are the six wavenumbers defined
in equation A-6. The functions ĝiðkzÞ, i ¼ 1;6 read
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ĝ1¼ iω; ĝ2¼ iωð1þβzfÞ;
ĝ3¼−ið1−ϕÞE3ðkzβzfþkxβxfÞþ iðμkz−ð1−ϕÞE2kxÞβx

− iðE2kzþμkxÞ;
ĝ4¼ iððE1−2μÞkx−ð1−ϕÞE2kxÞðβxþ iðE2−ð1−ϕÞE3Þ

×ðβxfkxþβzfkzÞþ ikzðE1−ð1−ϕÞE2Þ;
ĝ5¼ iE2ðkzþβxkxÞþE3ðkzβzfþkxβxfÞ; ĝ6¼ iωβx: (B-2)

The coefficients βzf , βxf , and βx are the ratios of the amplitudes Ŵz,
Ŵx, and Ûx from equation 7 to Ûz, respectively. They read

βx¼−
m̂kxkz
Δ

ðω2ðE2ρfþm̂ðμ−E1ÞÞþk2zðE0−μE3Þ;

βzf¼−
1

Δ
ðω4m̂0−ω2ððm̂μρfþm̂0E2Þk2zþρfk2xðρfE2−m̂E1ÞÞþ

þm̂μE2k4zþðμðm̂E2−ρfE3ÞþE0ρfÞk2zk2xÞ;
Δ¼m̂ω4m̂0−ω2ððm̂0E3þm̂2μÞk2zþm̂ðm̂E1−ρfE2Þk2xÞ

þm̂k2zðμE3k2zþE0k2xÞ;
βxf¼−

ρf
m̂
βx; m̂0 ¼m̂ρ−ρ2f; E

0 ¼E1E3−E2
2: (B-3)

APPENDIX C

FORMULAS FOR THE EFFECTIVE
VISCOELASTIC VTI MEDIUM

The formulas for relaxed and unrelaxed elastic coefficients used
by Krzikalla and Müller (2011) and used in this paper were origi-
nally derived by Gelinsky and Shapiro (1997). The unrelaxed co-
efficients read

Au ¼
�
4μðλuþ μÞ

Pu

�
þ
�

1

Pu

�
−1
�
λu

Pu

�
2

;

Cu ¼
�

1

Pu

�
−1
; Fu ¼

�
1

Pu

�
−1
�
λu

Pu

�
; Du ¼

�
1

μ

�
−1
;

Bu
6 ¼ Bu

7 ¼
�1−ϕ

Ks
− Kb

K2
s
þ ϕ

Kf

ð1− Kb
Ks
Þ

�−1

: (C-1)

In equation C-1,

λu ¼ Kb −
2

3
μþ

�
1 −

Kb

Ks

�
2
�
1 − ϕ

Ks
−
Kb

K2
s
þ ϕ

Kf

�
−1
;

Pu ¼ λu þ 2μ: (C-2)

The unrelaxed limit of B8 is not defined because this coefficient is
not present in the stress-strain relations because ∇w ¼ 0 (the no-
flow condition; see Gelinsky and Shapiro, 1997). The relaxed co-
efficients read

Ar¼
�
4μðλrþμÞ

Pr

�
þ
�

1

Pr

�
−1
�

λ

Pr

�
2

þðBr
6Þ2
Br
8

;

Cr¼
�

1

Pr

�
−1
þðBr

7Þ2
Br
8

; Fu¼
�

1

Pr

�
−1
�
λr

Pr

�
þBr

6B
r
7

Br
8

; Du¼
�
1

μ

�
−1
;

Br
6¼−Br

8

��
2ð1−Kb

Ks
Þμ

Pr

�
þ
�
1−Kb

Ks

Pr

��
λr

Pr

��
1

Pr

�
−1
�
;

Br
7¼−Br

8

�
1−Kb

Ks

Pr

��
1

Pr

�
−1
;

Br
8¼

��
1−ϕ

Ks
−
Kb

K2
s
þ ϕ

Kf

�
þ
�ð1−Kb

Ks
Þ2

Pr

�
−
�
1−Kb

Ks

Pr

�2�
1

Pr

�
−1
�

−1
:

(C-3)

In equation C-3,

λr ¼ Kb −
2

3
μ; Pr ¼ λr þ 2μ: (C-4)

The frequency-dependent plane-wave modulus that connects the re-
laxed and unrelaxed regimes (see equation 14) was derived by
White et al. (1975). It is defined by the following relations:

ĉðωÞ¼ c�

1þ2ðR1−R2Þ2i∕ðωLðZ1þZ2ÞÞ
; c� ¼ hðPuÞ−1i−1;

(C-5)

where for each layers 1 and 2

R ¼
�
1 −

Kb

Ks

�
Ka

Pu
; Ka ¼

�
1 − ϕ

Ks
−
Kb

K2
s
þ ϕ

Kf

�
−1
;

Z ¼ Z0 cot

�
1

2
αwl

�
; Z0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηKei∕ðωk0Þ

p
;

αw ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−iωη∕ðk0KeÞ

p
; Ke ¼ Ka

�
Kb þ

4

3
μ

�
∕Pu: (C-6)
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