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On the mechanical vibrator-earth contact geometry and its dynamics

Rik Noorlandt1 and Guy Drijkoningen2

ABSTRACT

The geometry of the contact between a vibrator and the
earth underneath influences the dynamics of the vibrator.
Although a vibrator might appear to be well-coupled with
the earth on a macroscale, perfect coupling certainly does
not occur on the microscale. With the aid of contact
mechanical modeling and concepts, it can be shown that this
lack of contact at the microscale, or rather the change thereof
during a sweep, can have a significant effect on the dynam-
ics of the vibrator-earth system. Modeling of such changing
contact predicts that the dynamic behavior varies consider-
ably with the vibrator drive level. The most significant effect
predicted by the model is a decrease in the base-plate res-
onance frequency with an increasing drive level. Extensive
drive-level tests carried out in a field experiment confirm this
change of resonance behavior with drive level.

INTRODUCTION

Seismic vibrators are typically used to send out sweep signals.
Distributing frequency content over time reduces the amount of in-
stantaneous power that a vibrator has to deliver, but these lengthy
signals need to be compressed during processing. To do this, one
needs to know the source signal, which is most commonly mea-
sured at the vibrator.
Measuring the source signal, however, is not a trivial task, be-

cause the source consists of multiple elements that dynamically in-
teract with each other. A model of the main components of a
vibrator is shown in Figure 1. The most common method to deter-
mine the source wavelet is the weighted-sum-ground-force method
(Castanet and Lavergne, 1965). This method relies on two basic
assumptions: First, it is assumed that the total force a vibrator exerts
on the ground can be measured, and second, it is assumed that this
force is a measure of the seismic wavelet in the far-field.

The force the vibrator exerts on the ground is determined by sum-
ming the measured accelerations of the reaction mass and base
plate, after being multiplied with their respective mass. In this
way, the net forces on the reaction mass and base plate are added
together. From Figure 1, it is clear that the forces between the plate
and reaction (RM support and driving force) are removed from this
sum. The forces left in the sum are the support of the hold-down
mass and the total of the interaction between the base plate and the
earth (HD support and BP-earth interaction). Typically, the hold-
down mass is ignored because its support is designed to pass its
weight without affecting the dynamics of the base plate at frequen-
cies above approximately 5 Hz. Therefore, the weighted sum of the
reaction mass and base-plate acceleration equals the total force on
the ground (with opposite sign). Although this method is now most
common, there was some debate before it was accepted, see papers
by Lerwill (1981), Sallas and Weber (1982), Lerwill (1982), and
Sallas (1984).
The assumption that the seismic wavelet measured in the far-field

is, up to a derivative, proportional to the total force the vibrator ex-
erts on the ground, can be taken from the work of Miller and Pursey
(1954, 1955). Miller and Pursey (1954), similar to the earlier work
of Reissner (1936), formulate the behavior of an isotropic elastic
half-space with a uniform circular pressure field acting on it. They
find that, in such a case, the particle displacement is proportional to
the pressure. If the pressure beneath the base plate is uniform, it
simply equals the force divided by the plate area, and therefore,
the seismic wavelet in the far-field should be proportional to the
weighted-sum ground force.
However, in practice, there is a difference between the weighted-

sum-ground-force signal and the wavelet observed in the far-field.
Many papers are devoted to the mismatch among the actual force
(typically measured with load cells), the weighted-sum-ground-
force method, and the seismic far-field wavelet; see, for example,
Baeten et al. (1988), Van Der Veen et al. (1999), Wei (2008, 2009),
Shan et al. (2009), Saragiotis et al. (2010), Wei et al. (2010), Sallas
(2010), and Poletto et al. (2011). Any difference between the seis-
mic far‐field wavelet and the source wavelet measured at, and used
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to control, the source will cause a decrease of source repeatability
and seismic resolution. Martin and Jack (1990), Aritman (2001),
and Meunier (2011) provide some examples.
The mismatch is a direct consequence of the assumptions made

not being valid. The vibrator components are typically assumed to
be rigid, whereas in practice they are not. Baeten and Ziolkowski
(1990) propose a model to account for the flexibility of the base
plate. In their model, the contribution of the base-plate acceleration
to the weighted-sum ground force is adjusted and decreases with
frequency. Their model shows that flexure of the base plate is
mainly of importance at high frequencies. Lebedev and Beresnev
(2005) come to the same conclusion and also show that although
the flexure is not influencing the waves radiating from the source
much, it does affect the measurement of the base-plate acceleration.
In their examples, different positions of the acceleration sensor on
the base plate cause traveltime mismatches of up to approxi-
mately 0.6 ms.
In addition to the base-plate flexure, the fact that the vibrator is

placed on a rough surface (as indicated in Figure 1), also causes the
assumption of a uniform pressure distribution beneath the base plate
to be violated. Although this will mainly affect the propagation at
higher frequencies only, where wavelengths becomes more nearly
equal to the size of the base plate (Lebedev and Beresnev, 2005), it
can have a major influence on the dynamics of the vibrator, as we
will show in this paper.
The contact between the vibrator and the earth as a cause of sig-

nal distortion has been mentioned in the past. Lebedev and Beres-
nev (2004) and Lebedev et al. (2006) propose a model in which the
contact acts as a nonlinear spring. In their model, the “contact
spring” is weaker in tension (base plate moving away from the con-
tact) than in compression (base plate moving toward the contact). In
this paper, this contact behavior is studied in more detail. First, we
show some results of quasistatic modeling. The importance of the
shape of a contact is made clear by an analytical example. The out-
come of numerical modeling of a rough contact and its sensitivity to
several parameters are presented. Then, we describe a dynamic
model that can not only reproduce the quasistatic results of the

rough contact but also is capable of predicting the behavior of
the contact when a sweep force is applied to the base plate. The
predictions of the dynamic model are then compared with some
field measurements. The field measurements were carried out to in-
vestigate the nonlinear, drive-level-dependent behavior of the vibro-
seis setup. We conclude this paper with a discussion of this work, its
implications for field surveys and conclusions that may be drawn.

CONTACT MECHANICS

Normally, a seismic vibrator is not fixed to the ground, and its
contact is simply established by its weight. The driving engine is
then used to generate a time-varying pressure that is added to
the static pressure caused by gravity. The total pressure can increase
and decrease, but care is taken to make sure that some pressure is
left to keep the vibrator, at least at macroscale, in contact with the
ground. Normally, the (static) gravity component is ignored because
it is not recorded by the geophones. However, this can only be done
if the vibrator-earth system behaves linearly, which is most probably
not the case as indicated by the harmonics observed in the field. The
displacement of the ground might not be linearly related to the driv-
ing force due to the intrinsic material properties or the geometry of
the setup or both. Although material-induced nonlinearity changes
from material to material, geometry-induced nonlinearity can in
principle occur with every material beneath the vibrator, such as
soil, rock, asphalt, concrete, ice, etc. The main goal of this paper
is to describe the effect such a contact geometry might have.
Although the vibrator plate is relatively flat, the ground under-

neath is not. Therefore, at the microscale, the plate will not be
in contact with the ground over its complete or nominal area, as
shown in Figure 1. In general, the true contact area, places where
ground and base-plate molecules interact, is only a fraction of the
nominal contact area. Measurements presented by Dean et al.
(2015) show that 3% of the contact area can carry as much as
20% of the total load. The distribution of the plate-earth contacts
is a function of the applied force and therefore will change under
dynamic loading.
The study of the pressure and contact distribution is part of the

field of contact mechanics; for a good introduction, see the book of
Popov (2010). Hertz (1881) published one of the first papers de-
scribing the behavior of two elastic materials in contact. He shows
that if two curved elastic half-spaces are pressed together, the dis-
placement and contact area are related in a nonlinear way to the
force applied.

Simple contact geometry

The exact force-displacement relation strongly depends on the
shape and material of the bodies brought in contact. To illustrate
the effect of shape, Figure 2 shows the cross section of differently
curved bodies and their force-displacement relations when pressed
on a flat half-space of the same material. The shape of these mod-
eled bodies has a vertical axis of symmetry and a height h propor-
tional to the distance to this symmetry axis r raised to a certain
power n:

hðrÞ ¼ αð1−nÞrn; (1)

where α is a normalization constant. In our example, the value of α
was set to 250 mm, equal to maximum value of r. The base of these

Figure 1. Model of main components of a seismic-exploration vibra-
tor. The driving engine is placed between the reaction mass and base
plate (driving force). Parallel to this there might be a support structure
to hold the reaction mass (RM support). To prevent the base plate
from decoupling from the earth a hold-down system might be present
(HD support). The translation of the forces between the elements of
the vibrator to a seismic wave occurs at the contact between the base
plate and the earth (BP-earth interaction).
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shapes becomes flatter with increasing power. The behavior of such
axisymmetric contacts has, for example, been described by Heß
(2012) and Popov (2013). The force-displacement relation for
power law profiles shown in Figure 2a is given by equation 21
of Popov (2013) and is proportional to the applied force to a power
n∕ðnþ 1Þ as plotted in Figure 2b. The flatness of the base is clearly
reflected in these force-displacement curves. It is clear that the
smallest displacement for a given force is produced by two flat sur-
faces brought into contact. The flatter the contact, i.e., the higher the
power used, the better it approaches the linear behavior of two flat
bodies brought into contact. For contacts with this geometry, the
contact acts as a spring that becomes stiffer (weaker) with increas-
ing (decreasing) force.

Rough surface contact

Although the axisymmetric contact example shows an important
property of contact mechanics, it is not well-suited to describe real-
life situations for at least two reasons. First, the geometries are as-
sumed to be perfect, and second, there is only a single contact act-
ing. If two real materials are pressed together there typically will be
several locations were the two materials are in contact. The number
of locations and the shape of these contacts change with the applied
load. The calculation of solutions to this problem is not straight for-
ward because “the displacement at any point of
the surface depends on the entire pressure distri-
bution inside the contact area (Heß, 2012)” and,
in general, numerical schemes solve this itera-
tively. Typically, a certain total displacement is
assumed, and the associated deformation and
pressure distributions are calculated. The total
of the pressure distribution is then compared with
the applied load and the total displacement is ad-
justed until they match. To investigate the behav-
ior of the vibrator-soil contact, we made use of a
program based on Vollebregt (2014), but simi-
lar results can be obtained with the code made
available by Sainsot and Lubrecht (2011). Both
programs are able to quasistatic model the de-
formation of arbitrary, but discretized, surfaces
brought into contact under different loading. In
principle, the smallest details of the ground mi-
crotopography should be taken into account, but,
following the argument of Persson (2001), there
typically exists a natural macroscopic limit to the
smallest details needed to accurately model the
contact behavior.
To obtain an idea of the typical force-displace-

ment curves belonging to the vibrator-ground
contact, a sensitivity study was carried out, using
varying profile roughness (lateral and vertical)
and soil materials. The base plate was modeled as
a flat solid steel plate with a constant shear mod-
ulus of 80 GPa and a Poisson’s ratio of 0.3. The
grid that was used to perform the calculation was
1 × 1.8 m, similar to the size of the base plate of
the vibrator used in the field which is described
later, and was sampled every 2.2 mm, resulting in
a grid of approximately 370,000 height samples.
Three different levels of profile coarseness were

created with a pseudorandom number generator. The coarsest grid
was created by populating 100 samples uniformly over the 370,000
grid points and interpolating in between. For the finer grids 900,
respectively, 8100 samples were used as starting point. The grids
were filtered to remove wavelengths below 10 mm, as to prevent
numerical artifacts in the modeling. Finally, these three grids were
cumulatively summed and normalized. Figure 3 shows an example
of the three grids produced in this way.
Figure 4a shows the force-displacement relation when the steel

base plate is pushed onto the different profiles presented in Figure 3,
assuming a ground shear modulus of 100 MPa, a Poisson’s ratio of
0.45, and a maximal profile height of 1 mm. For comparison, the
result obtained with a flat profile has been plotted as well. The force
range was chosen roughly the same as that of a typical vibrator with
a static hold-down force of approximately 300 kN and a driving
force of approximately �275 kN. The results of the rough contact
profiles differ significantly from that of the flat contact, but are mu-
tually hardly distinguishable. Using the profile in Figure 3c, the
height, shear modulus, and Poisson’s ratio were varied to study their
impact on the force-displacement curves. These results are shown in
Figure 4b–4d, respectively.
From the curves in Figure 4, it is clear that the force-displacement

relation shows a different behavior at small and large loads. At small
loads, the curve is nonlinear and similar to the force-displacements

F

F

F

F

half-space

a) b)

αα
α

α

α

α

α

Figure 2. The 3D axis symmetric bodies. (a) Different gray scales and (b) their force-
displacement relation when pressed onto a half-space of the same material. The black
arrows indicate the direction of the force and displacement. Values for parameters: shear
modulus: 200 MPa; Poisson’s ratio of 0.45.

Figure 3. Profiles as used to model the force-displacement relations. Increasing lateral
details from (a-c).
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shown in Figure 2; the contact becomes stiffer with force. At larger
loads, the curves shown in Figure 4 deviate from those in Figure 2
by showing almost linear behavior. The reason for this dual behav-
ior is simple. At small loads, only a limited number of contacts are
actively carrying the load. With an increasing load, the area of con-
tact expands rapidly, until, at high loads, this expansion rate de-
creases and the contact starts to behave more and more as one
single flat contact, leading to a more linear behavior. This is also
the reason why profile height and strength play a dominant role
because they control how easily the profile becomes “flat” under
loading. The different profiles and Poisson’s ratios did not affect
the force-displacement relation significantly. Because the modeling
relies on the pseudorandom number generator, the calculation was
repeated for 20 different starting seeds. These calculations produced
very similar force-displacement relations.
It is important to note that the loads in Figure 4 represent total

load, i.e., the sum of the static and dynamic forces of the vibrator. It
shows that in those parts of a sweep in which the dynamic force on
the base-plate points in the downward direction, i.e., increasing the
total load, the contact behaves more linear. However, if the dynamic
force drives the base plate upwards, the contact becomes less linear.
At high drive levels, the total load can decrease significantly during
parts of the sweep, and although the vibrator stays in contact with
the ground, the relative resistance it experiences from the ground is
greatly reduced. In that sense, base-plate decoupling should be con-
sidered as a gradual process, instead of a binary one. Also note that,
comparing these results with the contact models of Lebedev et al.

(2006), the rest position and load of the vibrator does not act as
special situation from which behavior is different in a compression
or tension state. In the examples given in Figure 4, a transition be-
tween behaviors occurs at forces that only depended on the geom-
etry and parameters of the contact itself.
The curves shown in Figure 4 are only valid for elastic interac-

tion, such that the profiles recover their original shapes, when they
are not in contact anymore. The ground-vibrator interaction, how-
ever, causes permanent deformation, mainly to the ground, as well.
When the base plate is lowered and the hold-down system is acti-
vated, the pressure on the individual contact points can easily ex-
ceed the elastic limit. The soil will deform until both surface profiles
are more alike and the pressure is shared by a larger contact area.
During a sweep, the pressure on the ground dynamically reaches
(much) larger values, and as long as the contact area is not large
enough to sustain the local pressure elastically, permanent deforma-
tion will occur. It is expected that the role of permanent deformation
will decrease after several sweeps, such that the elastic behavior,
with a force-displacement relation similar to that of Figure 4, but
with a fixed permanent displacement offset, becomes dominant.
Although the role of permanent deformation is expected to decrease
with the number of sweeps, it will not always be the case. Meunier
(2011, p. 112, figure 20) provides an example, in which even after
60 sweeps the difference between the 59th and 60th record, ampli-
fied by a factor of 20, resembles the 59th record. This clearly in-
dicates that conditions between the 59th and 60th varied and most
probably were caused by permanent deformation of the road on

which the vibrator was placed.

Contact dynamics: Single nonlinear
spring

Knowing the force-displacement relation of a
quasistatic contact, it is instructive to investigate
the dynamic effect such a relation would have
on the base plate. Because our main interest is
the effect of the contact, we ignored the dynamic
behavior of the reaction mass and hold-down sys-
tem, but did take into account their weight on the
top of the base plate. The contact spring (beneath
the base plate) was chosen to behave such as the
reference contact (solid black curve of Figure 4).
This setup has some similarities with a Duffing
oscillator (Walker, 1995). Analytic solutions for
such systems can only be found under some very
restrictive conditions, mainly due to the fact that
the solutions strongly depend on the driving am-
plitude and damping. Therefore, we chose to
model the time behavior numerically, using a stan-
dard ordinary differential equation (ODE) solver.
The driving force was a simple 12 s 8–80 Hz lin-
ear sweep, with 250 ms cosine tapers on both
ends, the same was used for the field measure-
ments described later. Some damping was needed
to prevent the base plate from decoupling. The
amount of damping was set such that at 100%
drive level, the dynamic forces on the base plate
just did not exceed the static ones.
Figure 5 shows a small time window of the

modeled acceleration of the base plate for differ-
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Figure 4. Force-displacements curves for (a) the different profiles of Figure 3 (also in-
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100 MPa, and a Poisson’s ratio of 0.45.
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ent drive levels. At low drive levels, the signal stays sinusoidal, but
at high drive levels, the acceleration amplitude becomes asymmetric
and more sawtooth shaped. It is clear that even for a linear elastic
earth, the contact between the vibrator and soil can cause a nonlin-
ear distortion on the base-plate acceleration and therefore will affect
the weighted-sum-ground-force signal.

Contact dynamics: Winkler foundation

Up to now, we have used the quasistatic approach to determine
the contact behavior. Although this gives useful insights, a crucial
property of the contact dynamics might have been ignored. Con-
sider the potential vibrator-ground contact area to be divided in
three groups: part of the area will stay in contact at all times, part
of that area will never get in direct contact, and in some area the
contact will be made and lost repeatedly during the sweep. The
behavior of this last group is not well-represented in the examples
above nor in the model proposed by Lebedev and Beresnev (2004)
and might give a twist to the quasistatic results presented before,
because this group might behave dynamically on their own while
not in contact with the vibrator.
To solve the rough contact problem dynamically in a fully 3D

setup is difficult and there is hardly any literature available on this
topic. For these kinds of problems, the difficult 3D problem is typ-
ically replaced by a phenomenological model that is much simpler,
but captures the essence of the problem. Instead of the contact, a set
of linear springs with different heights, also called a Winkler foun-
dation, is modeled. Rules for converting the full problem to such a
model can be found in the work done by Heß (2012) and Popov
(2013). Lebedev and Beresnev (2004), based on the work of Ru-
denko and Vu (1994), propose to use a Winkler foundation model
(Figure 1 in their paper) to describe the vibrator-earth contact. To
analyze the dynamic behavior of the contact, we use a similar
model, see Figure 6, with the difference that the contact springs
(top springs in Figure 6) are not allowed to extend beyond a certain
threshold value (different for each spring) and are connected to
some “ground” mass. Each individual ground mass is allowed to
move freely but has a restoring force with respect to its displace-
ment from a certain reference plane. In this model, the ground can
move independently from the base plate, making the dynamic
behavior most likely different from its static behavior.
Instead of trying to convert our rough profiles shown in Figure 3

to an equivalent Winkler foundation directly, we
chose to use the quasistatic results (Figure 4),
modeled with the program from Vollebregt
(2014), and fit these with the multispring model
of Figure 6. The force-displacement curves ob-
tained with rough surfaces, presented in Figure 4,
indicate that the contact becomes stiffer with in-
creasing load. For the multispring model, this
translates to more springs being in contact with
the base plate at higher loads. Two steps were
made to determine the appropriate spring height
distribution, and hence the number of springs in
contact at a certain displacement, to fit the refer-
ence force-displacement relation of Figure 4.
First, the spring constants were fixed to a fraction
of the smallest stiffness found in the force-dis-
placement curve. Second, the number of springs
needed to compensate the load was calculated at

every displacement along the curve. For the reference curve in Fig-
ure 4, approximately 50 springs were needed. As a last step, the
masses between the springs were chosen such that their sum
equaled the mass of the base plate.
With these parameters, the behavior of the base plate was then

determined numerically when loaded with a static force of approx-
imately 320 kN and driven by a linear sweep at many different drive
levels ranging from 10% to 90% of 275 kN. Some damping was
added to the masses to keep the base plate in contact to at least
a single mass-spring unit.
It is interesting to study the resulting transfers from the driving

force, the linear sweep, to the base-plate displacement for different
drive levels. Figure 7 shows the amplitude and phase response of the
system when driven by a linear 8–80 Hz 12 s sweep. For this contact
model, the base plate has a resonance frequency of approximately
60 Hz at the 10% drive level, which interestingly drops down to
approximately 44 Hz at the 90% drive level. If the system is de-
scribed as a single harmonic oscillator, the resonance frequency
would be proportional to the square root of the effective stiffness.
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Figure 5. Small time window of the modeled base-plate accelera-
tion when driven by a 12 s linear sweep from 8 to 80 Hz and placed
on a contact spring with a force-displacement shown by the solid
black line in Figure 4. Amplitudes were normalized for drive level.

a) b)

Figure 6. Multispring contact model. (a) Base plate just before it exerts a force on the
ground, only a few springs are in contact. (b) After applying the static load of the weight
of the base plate, reaction and hold-down mass, more springs are in contact and some
masses are displaced.

Vibrator-earth contact P27

D
ow

nl
oa

de
d 

08
/0

3/
16

 to
 1

31
.1

80
.5

8.
12

3.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



A frequency drop of approximately 75% thus translates to a reduc-
tion of the effective stiffness by almost a half. The amplitude and the
width of the frequency peak increases slightly from low drive level
to higher. Some striped patterns below the resonance frequency and
especially at large force levels, indicating harmonic distortion, are
also visible.

FIELD OBSERVATIONS

In 2012, a data set was obtained specifically focused on deter-
mining the amplitude-dependent behavior of vibrator-soil interac-
tion. Part of the data shown here were presented before by
Noorlandt et al. (2013). The experiment took place near Devine,
Texas. The vibrator used was a modified 266 kN (60,000 lbf) vi-
brator from INOVA, mounted on an AHV-IV vehicle. The modifi-
cations mainly dealt with reducing the harmonic distortion. The
experiment basically consisted of repeating the same linear 8–
80 Hz 12 s sweep, with different drive levels. Ten different drive
levels from 5% to 90% were used, and each drive level was repeated
10 times. After finishing the last sweep at a drive level of 90%, the
whole sequence was repeated. In total, 200 sweeps were performed
without moving the vibrator or lifting the base plate. The entire ex-
periment was repeated at a second location only 20 m from the first,
but with different top soil conditions. At the first location, the base

plate was placed on grass-covered soil, at the second location on
bare soil. The vibrator controller was set to follow the amplitude
of weighted-sum ground force and the phase of the reaction mass.
This was done such that the vibrator stayed within safe limits, with-
out incorporating too much phase information from the base plate.
The idea behind this procedure is to get information on the in-

fluence of the drive level, permanent deformation, and repeatability
of the source. Permanent deformation is thought to be dependent
mainly on the soil characteristics directly beneath the base plate,
the maximum amount of force applied, and the number of sweeps.
By keeping the vibrator on the same location during the experiment,
it is expected that the compaction of the soil reduces with number of
sweeps performed. It is thus expected that the last sweeps of each
set of 10 are more comparable than the first, and that after complet-
ing the first sequence, the lower drive-level sweeps of the second
sequence are more repeatable than those of the first sequence.
Figure 8 shows the measured accelerations and weighted-sum-

ground-force amplitude spectra for the first location. In that figure,
each force strip consists of 10 consecutive sweeps. The figure dis-
plays a total of 200 sweeps. The amplitudes have been divided by
drive-level percentages to make them comparable. Several observa-
tions can be made. First of all, it is clear that the controller does a
good job, especially above approximately 24 Hz; the weighted-
sum-ground-force signal has a flat amplitude spectrum, whereas

the individual acceleration signals have not.
The 10 sweeps done at each drive level produce
very comparable amplitude spectra and the re-
peatability in both sequences seems to be equal.
The most striking, however, is that the base-plate
acceleration signals show a resonance, whose
frequency decreases with the drive level. In the
second sequence, the amplitude of the base-plate
resonance is a little bit smaller at the lower drive
levels.
To study this behavior in more detail, a correc-

tion has to be made for the fact that the driving
signal was adjusted dynamically by the controller
and thus has no flat spectra, as is clearly shown in
Figure 8a. To remove the effect of the controller,
the dynamic transfer from the total driving force
acting on the base plate to its displacement was
calculated. Ignoring the hold-down system again,

Figure 7. Transfer of driving force to base-plate displacement for multispring contact
model (Figure 6). (a) Amplitude and (b) phase spectra for different drive levels.

Figure 8. Measured amplitude spectra for different drive levels at first location (grass-covered soil). (a) Reaction mass, (b) base-plate accel-
eration, and (c) the weighted-sum combination of both. Amplitudes divided by drive-level percentages.
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the total driving force equals the reaction mass times its (negative)
acceleration (Figure 1). The base-plate displacement can be found
by twice integrating its acceleration, which was done in the fre-
quency domain. Having determined both signals, the transfer func-
tion is obtained by dividing the displacement signal by the force
signal.
Figure 9 shows the transfer functions obtained for the first loca-

tion, whereas Figure 10 shows the transfers for the second location
nearby. The responses at these locations differ a bit, but the main
features coincide. In both cases, a resonance is present that becomes
stronger with the drive level. Also the frequency at which this am-
plification occurs decreases with the drive level; although, this is
clearer in the first location and sequence than in the second location.
Comparing the first sequence with the second sequence, it is notable
that the behavior at the low drive levels is less comparable between
sequences than those of the high drive levels. This is probably
caused by the permanent deformation of the ground beneath the
vibrator due to the high force levels in the first sequence. Further-
more, at the second location, where the vibrator was placed on bare
soil, dust clouds from underneath the base plate were observed at
high frequencies. The amount of dust did not noticeably decrease,
even for the very last sweep, indicating that the contact was rela-
tively poor and still reshaping even after approximately 200 sweeps.
Besides the dynamic aspects of the vibrator, the wavelet that the

vibrator produces at different drive levels is, from
a seismic perspective, even more interesting. Fig-
ure 11 shows for the first location the measured
weighted-sum ground force and geophone re-
sponse at 850 m depth after correlation with
the pilot signal. The ground-force signal is al-
most completely the same for all drive levels
and the two different sequences. It is also sym-
metric in time, indicating that the pilot and
weighted-sum ground force are very alike. How-
ever, the signal measured in the borehole is not as
stable and changes with drive level. The first
arrival shifts a couple of ms to later times when
comparing the 5% and the 90% case, for both
sequences. The recordings of both sequences
are very similar, indicating that the difference
in spectra between these sequences (Figures 8
and 9) only have minor effect. Similar time shifts
with drive-level variation were observed by Mar-
tin and Jack (1990). Therefore, it should be
stressed that the weighted-sum-ground-force sig-
nal is only an estimate of the vibrator signature,
and depending on soil conditions and drive level,
might be less applicable. Similar observations
were presented by Meunier (2011, p. 109,
figure 16).

DISCUSSION

There are quite some similarities between the
measured transfer signals shown in Figures 9 and
10 and the modeled transfers of the Winkler
foundation model shown in Figure 7. In both
cases, a resonance frequency is present whose
frequency decreases with amplitude. Such shift
of frequency cannot be predicted by a fully linear

model in which source amplitude does not play a role in the dy-
namic behavior. It is therefore tempting to interpret the frequency
shifts observed in the field as a contact-mechanical effect; however,
the vibrator-earth contact might not be the only effect observed.
Reust (1993) argues that, because most soils are sublinear (force-

weakening), a decrease of resonance frequency with increasing
drive level could be expected (see his figure 5). In a field experiment
comparable to ours, Johnson et al. (2009) find very similar de-
creases of resonance frequency with drive level. They contribute
this frequency decrease to “modulus softening as a function of drive
amplitude” and show that this happens both at the source and be-
tween the (nearby) receivers (see their figures 7 and 8). Their argu-
ment to calculate the receiver-receiver ratios is to “reduce any
contamination from potential nonlinear coupling of the vibrator
plate to the ground.” Because the resonance behavior in their
source-to-receiver ratios is different from their receiver-to-receiver
ratios, we conclude that contact mechanics played a role in their
measurements.
It would be nice to be able to distinguish material and contact

induced nonlinearity, but for this, further investigation of this topic
is needed. Below, we discuss several shortcomings and improve-
ment possible to the modeling, experiment, and processing.
Several simplifications were made in the modeling. All of the

results in this work are based on the assumption that the materials

Figure 9. Transfer of total driving force to base-plate displacement for field data at first
location (grass-covered soil). (a) Amplitude and (b) phase spectra for two sequences of
increasing drive levels.

Figure 10. Transfer of total driving force to base-plate displacement for field data at
second location (bare soil, 20 m away from first location). (a) Amplitude and (b) phase
spectra for two sequences of increasing drive levels.
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in contact can be described as linear elastic continua, which might
not be appropriate for the materials a seismic vibrator encounters in
the field, such as rock, soil, asphalt, concrete, etc. From the often
observed permanent deformation of the material below the base
plate, it is clear that this material does not behave purely elastically
or, as the work of Johnson et al. (2009) indicates, linear. In our ap-
proach to use the quasistatic results in the multispring model (Fig-
ure 6), the horizontal interaction within the contact was ignored
completely. This should be taken into account because a vertical
pressure will convert to vertical and horizontal displacements
and thus will lead to a different deformation of the contact area than
the one predicted by the current model.
On the experiment side, the main shortcoming is that only two

vibrator parameters are measured, such as the accelerations of the
base plate and reaction mass. Converting these two macroscopic
parameters to many microscopic parameters is inherently non-
unique. Load cells or more accelerometers will not solve this prob-
lem because first of all they provide macroscopic information only,
and second, in the case of load cells, they alter the contact dramati-
cally. However, insight in the dynamics of the vibrator-ground con-
tact can be obtained with a pressure mapping device, without
affecting the contact a lot. Results presented by Dean et al.
(2015) are promising and show that the pressure underneath the
base plate is far from uniform.
Regarding the data processing, one could argue that the concept

of a transfer function is only valid in the linear regime and care has
to be taken not to over interpret the results for the nonlinear case
observed. Some of the response might be more dependent on tim-
ing, and thus on the choice of sweep, than on frequency as sug-
gested by the plot. To be able to determine the time dependency,
not only the amplitude of the sweep should be changed but also
its frequency range and sweep rate.

Implications for field measurements

Several lessons can be drawn from the conducted studies. From
the modeling conducted it is clear that the contact behaves most
nonlinear at small total loads (Figure 4). To avoid small total loads,
the dynamic force on the base plate should be substantially smaller
than the static force given by the total weight of the base plate, re-
action mass, and hold-down system. Although not directly con-
firmed by our field data, lower drive levels did produce smaller
levels of resonance amplification. Preparation of the contact can
help to minimize the contact-mechanical effects. The smaller the
height of the airs gaps between the base plate and the earth the better
(Figure 4b). To decrease the influence of permanent deformation
insweeping seems to be a good idea, but from the field measure-
ments it is observed that this is probably only effective if the contact
preparation sweeps have a (much) larger drive level than the suc-
ceeding (production) sweeps. Measuring the pressure distribution
underneath the complete base plate with a thin sensor would capture
the effect of the base-plate flexure and contact mechanical effects,
leading to a better ground force estimation. The work of Dean et al.
(2015) showed that this is now possible.

CONCLUSION

We show that the contact between the vibrator and ground can
have a significant effect on the behavior of the vibrator. Even if the
applied force on the ground stays within its linear elastic limits, the
geometry of the vibrator-ground contact can cause the displacement
to respond nonlinearly to the applied force. As a consequence, the
displacement changes asymmetrically with a force increase or de-
crease. Extending the quasistatic force-displacement relation to a
dynamic study, with the help of a Winkler foundation model, it
was shown that a reduction in base-plate resonance frequency with
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Figure 11. (a) Weighted-sum ground-force signal and (b) vertical-component borehole-geophone signal correlated by normed pilot signal for
different drive levels. For each drive level, the eighth sweep was plotted. Amplitudes divided by drive-level percentages and normed by overall
maximum per plot.
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the drive level was to be expected. Field measurements performed
with different drive levels show similar behavior, but other causes
cannot be excluded and have been discussed. Moreover, the field
measurements showed that the measured weighted-sum ground
force was stable for different drive levels, but that the shape and
timing of the wavelet observed in the borehole was not. Overall,
it should be concluded that the drive level, next to the kind of sweep,
is an important control variable.
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