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Continuous Integration and Delivery (CI/CD) practices have shown several benefits for software development

and operations, e.g., faster release cycles and early discovery of defects. For Cyber-Physical System (CPS)

development, CI/CD can help achieving required goals, such as high dependability, yet it may be challenging to

apply. This paper empirically investigates challenges, barriers, and their mitigation occurring when applying

CI/CD practices to develop CPSs in 10 organizations working in 8 different domains. The study has been

conducted through semi-structured interviews, by applying an open card sorting procedure together with

a member-checking survey within the same organizations, and by validating the results through a further

survey involving 55 professional developers. The study reveals several peculiarities in the application of

CI/CD to CPSs. These include the need for (i) combining continuous and periodic builds, while balancing

the use of Hardware-in-the-Loop (HiL) and simulators; (ii) coping with difficulties in software deployment

(iii) accounting for simulators and HiL differing in their behavior; and (vi) combining hardware/software

expertise in the development team. Our findings open the road towards recommenders aimed at supporting

the setting and evolution of CI/CD pipelines, as well as university curricula requiring interdisciplinarity, such

as knowledge about hardware, software, and their interplay.
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1 INTRODUCTION
Cyber-Physical Systems (CPSs) comprise heterogeneous software and hardware components inter-

acting with each other. They aim at automating operations in different domains, such as automotive,

aerospace, healthcare, or railways. As it happens for any software system, CPSs continuously

evolve to cope with new customer requirements and technology changes. However, CPSs require a

tailored development and operation (DevOps) process and are more challenging to evolve than

conventional software [32, 51, 73, 74].

In such a context, adopting effective Continuous Integration and Delivery (CI/CD) practices off

the DevOps menu is extremely relevant for setting the execution environment, e.g., Hardware-in-
the-Loop (HiL) or simulators. Even though CI/CD has been found effective in introducing several

advantages in software development, e.g., the reduction of release cycles and the early discovery of

defects [75], its application implies overcoming barriers and challenges [9, 33].

When enacting CI/CD for CPSs, it is expected that further barriers and challenges will arise.

In general, existing CI/CD technology cannot be applied to CPSs as is [39]. On the one hand,

CPSs demand suitable Verification & Validation (V&V) techniques, and the interaction with HiL

or the need to replace them with suitable mock-ups or simulators make the application of CI/CD

challenging at best. On the other hand, while for conventional software systems good and bad

practices for applying CI/CD have been defined [15, 85], for what concerns CPSs, the practice is

still immature to be able to do so. Specifically, the combination of (very diversified and evolving)

hardware devices and software, the complex execution scenarios, and the need for simulating

hardware components during some build stages introduce new facets that must be considered when

setting up a CPS development process, and in particular CI/CD pipelines for CPS development.

This paper aims to empirically investigate the challenges and barriers practitioners encounter

while setting up and maintaining a CI/CD pipeline for CPSs, as well as the mitigation strategies

adopted to deal with them. Specifically, the study has been conducted through (i) semi-structured

interviews with 10 industrial practitioners involved in CPS development for 8 different domains,

i.e., aerospace, automotive, energy, healthcare, railways, robotics, identification technology (i.e.,
Radio Frequency IDentification - RFID), and acoustic sensors, (ii) by applying open coding [35] and

card sorting [68] to the interview transcripts, (iii) by conducting a member-checking survey within

the same organizations involved in the interviews aiming at corroborating the relations between

challenges/barriers and mitigation strategies, and (iv) by assessing the relevance of the identified

challenges/barriers and related mitigation through a survey involving 55 practitioners involved in

CPS development for 9 different domains.

We start by characterizing the CI/CD practices of the interviewed organizations, focusing more

on their build automation processes. In doing this, we target three aspects of CI/CD for CPSs,

namely (i) the pipeline setting, (ii) the involved phases (e.g., static analysis, testing, delivery, etc.),
and (iii) the usage and configuration of simulators and/or HiL. After that, we look at challenges

and barriers the organizations encounter, as well as mitigation strategies being adopted to deal

with them.

The elicited set of challenges, barriers and mitigation strategies are impactful by providing

insights to project leaders and developers, guiding them to configure CI/CD pipelines for CPSs, as

well as to staff projects properly coordinate resources with different skills and expertise and acquire

equipment. Furthermore, results highlight directions in which education for CPS development

must be improved. This includes not only covering interdisciplinary topics between software

development, measurements, and automated control, but also a proper introduction to software

architectures and design principles, making CPS development flexible enough when switching

between simulators and HiL. Last but not least, we identify areas where further research is required,
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among others domain-aware decision making, the integration of simulators and HiL in the pipeline,

and further research in the area of test automation and flakiness detection/avoidance. The specificity

of each CPS not only makes some lessons hard to generalize (each pipeline tends to be very different

from others), but this also poses challenges when leveraging machine learning approaches upon

developing recommender systems.

Paper structure. The rest of the paper is organized as follows. As basis for the study, Section 2

discusses the relevant literature. Section 3 describes the study methodology, while Section 4 reports

and discusses the study results. Section 5 details the study implications, while threats to the study

validity are discussed in Section 6. Finally, Section 7 concludes the paper and outlines future

directions.

The study material (after redacting interview transcripts) is available online [84].

2 RELATEDWORK
This section discusses the literature related to (i) CPS development leveraged for the inception of our

study, (ii) CI/CD process, and (iii) CI/CD good and bad practices. Note that this is not an exhaustive

systematic literature review on the topic, but rather it points out papers discussing challenges in

CPS development and in CI/CD. Finally, it is important to highlight that, while challenges related

to CPS development are already investigated from previous literature, to the best of our knowledge,

there is very limited empirical evidence on how such challenges translate when setting a CI/CD

pipeline for CPS development.

2.1 Development of Cyber-Physical Systems
CPSs are more complex and difficult to design, develop, test, and integrate than conventional

software systems [32, 51, 73, 74]. Specifically, Törngren et al. [74] investigated how CPSs’ engi-

neering deals with the complexity of CPS design, and of the environment in which CPSs operate.

In this context, it is of paramount importance to perform run-time verification of safety require-

ments [27], as well as testing encapsulating model-in-the-loop (MiL) [66], software-in-the-loop

(SiL), and hardware-in-the-loop (HiL) [2]. With respect to previous studies, we investigate how CPS

complexity impacts the setting of CI/CD pipelines, and how developers deal with such complexity.

Considering the costs, risks, and complexity of conducting system testing in a real environ-

ment [12, 40], simulation is becoming one of the cornerstones in developing and validating CPSs.

CPS developers mainly rely on basic simulation models [29, 67], as well as rigid body [50, 86] and

soft body simulation environments [25, 62]. The usage of CPS simulation environments enables

automated test generation and execution [37, 54]. However, the limited budget allocated for testing

activities and the virtually infinite testing space pose challenges for adequately exercising the CPS

behavior [4, 20, 82]. We complement previous studies by looking at the challenges, barriers, and

related mitigation strategies when integrating and combining simulators and HiL in CI/CD to

support the development, V&V, and evolution of CPSs.

Related to DevOps applications in a CPS context, Park et al. [56] analyzed the use and challenges of
the digital twin to enable DevOps approaches for cyber-physical production systems to continuously

improve them. Specifically, Park et al. identified challenges related to (i) discrepancies between

models and their physical counterparts, (ii) integration between heterogeneous models due to the

complexity of CPSs, and (iii) security issues due to the tight coupling between the digital twin and

the physical environment. Instead of only looking at automating the production process, we focus

more on the CI/CD process for CPS development and evolution.

Finally, Mårtensson et al. [52] identified factors to consider for applying CI to software-intensive

embedded systems, such as complexity of user scenarios, compliance to standards, long build times,

security, and test environments. These factors represent real impediments for companies who want
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148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

1:4 Zampetti et al.

Table 1. Challenges in CPS development from previous literature.

Ref. CPS-related development challenges

[74] Environment complexity, co-designing hardware and software

[27] Test generation/automation, verification of safety requirements

[2] Integration of MiL, SiL, and HiL

[12, 40] Where testing is performed (HiL vs. simulators)

[25, 29, 50, 62, 67, 86] Implementation of simulators

[4, 20, 82] Simulator challenges/adequacy

[52] Standards, long build, security, architecture, test environments of embedded systems

[56] Digital twin adoption in manufacturing and related design challenges

to adopt CI for embedded systems. While using different research methods, our study is wider

than Mårtensson et al. (10 semi-structured interviews, plus an external survey with 55 participants

vs. case studies with 2 companies), and considers the whole CI/CD process from development

to delivery to the customer side. Finally, while we confirm findings from Mårtensson et al. [52],
our study deepens the analysis of different CI/CD aspects (e.g., setting, phases, and execution

environment) for CPSs, and not only in relation to seven CI cornerstones.

Table 1 summarizes the main challenges during CPS development, as stated in previous literature,

that are used to drive our study, although we do not focus on specific implementation details

of simulators. We leverage the challenges identified by the aforementioned studies to devise the

interview guide, in particular those related to (i) the complexity of the underlying environment, (ii)

certification and compliance to standards, (iii) test automation, (iv) testing of safety requirements,

and (v) MiL, HiL, and simulators.

2.2 CI/CD process
Hilton et al. [34] found that CI is becoming very popular in open source projects. The latter is

also true in industry, even if Ståhl and Bosh [69, 70] found that there is not a uniform adoption

of CI in industry. Furthermore, Vasilescu et al. [75] showed that CI practices improve developers’

productivity without negatively impacting the overall code quality. Finally, Ståhl et al. [71], in a

study involving three companies, found that the lack of traceability may prevent the application of

CI in conventional software systems.

From a different perspective, Elazhary et al. [18] looked at the extent to which companies

follow the CI practices by Fowler and Foemmel [21] through interviews. Their results emphasized

differences among companies in terms of repository structure, testing automation, long build,

and deployment challenges. While we share some goals with Elazhary et al., our study, and the

dimensions being investigated, relate to CI/CD application for CPS development. In a different

study, Elazhary et al. [17] used grounded theory to investigate human factors in CI. Even if our

study considers human factors, it is not focused on that.

Vassallo et al. [79] investigated, by surveying developers of a large financial organization, the

adoption of the CI/CD pipeline during development activities, confirming what is known from

existing literature (e.g., the execution of automated tests to improve the quality of their product), or

confuting them (e.g., the usage of refactoring activities during normal development).

Finally, deepening the continuous delivery practice, Chen [10] analyzed four years of CD adoption

in a multi-billion-euro company, and identified a list of challenges related to CD adoption. Savor

et al. [64], instead, by analyzing the CD adoption in two industrial companies, found that it does

not negatively impact developer productivity even when the project increases in terms of size and

complexity.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.
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Differently from previous studies, our goal is to shed light on the CI/CD process focusing on the

peculiarities of CPS development.

2.3 CI/CD barriers and bad practices
Different authors studied barriers and/or challenges in adopting CI/CD. These were initially iden-

tified by Duvall et al. [13], and are related to the need for maintaining a fully automated build

process, handling dependencies, having different levels of builds, and coping with different target

environments.

Hilton et al. [33] studied barriers developers encounter when moving toward CI, i.e., quality
assurance, security, and flexibility. Olsson et al. [55], instead, looked at the challenges faced while

migrating towards CD: the complexity of the deployment environment, the need to achieve timely

delivery, and the lack of a complete overview of all the development projects.

Previous research also found that CI/CD may be wrongly applied, leading to bad practices.

Specifically, CI/CD antipatterns have been defined by Duvall [15], and empirically elicited by

Zampetti et al. [85] from interviews and Stack Overflow posts. Our study is complementary to

that although, where appropriate, we compare the practices observed in our context (CPS-specific)

with bad practices recommendations from previous studies. Researchers have developed different

kinds of tools to detect and remove antipatterns from CI configuration files [23, 78], analyzing the

pipeline aging by observing its execution [77], skipping builds [3], or coping with security-related

issues in infrastructure-as-code [60].

To the best of our knowledge, there is no such broad investigation on the application of CI/CD

in CPS development and evolution, as well as the challenges and barriers faced together with

mitigation strategies to overcome them.

3 EMPIRICAL STUDY DEFINITION AND PLANNING
The goal of this study is to investigate the CI/CD practices for CPS development, to identify

challenges and barriers encountered in such practices, together with mitigation strategies adopted

to overcome them. The perspective is of researchers interested to support developers in configuring

CI/CD pipelines for CPSs, and practitioners setting, using and evolving CI/CD pipelines for CPS

development. The context fromwhichwe have inferred the set of challenges and barriers with related

mitigation strategies encountered when setting or evolving CI/CD pipeline for CPS development

consists of 10 organizations developing CPSs for 8 different domains. To assess the identified set

of challenges/barriers and related mitigation strategies, we have surveyed 55 practitioners (not

involved in the first step of this study) developing CPSs for 9 different domains.

We start by creating organizational profiles by looking at the CI/CD practices adopted by the

interviewed organizations, and in general all the practices the organizations are adopting to

automate different stages of a build. Specifically, we look at the conditions that determine (i) the

setting of the CI/CD pipeline, e.g., whether an incremental build is used, when the build is triggered,

or whether build matrices are used; (ii) the phases instantiated in the pipeline, e.g., static analysis,
various testing levels, or deployment; and (iii) the use of simulators and HiL in the context of the

CI/CD pipeline.

The study addresses the following two research questions:

• RQ1: What are the challenges and barriers respondents encounter, and how do developers
deal with them? After having characterized the CI/CD and build automation practices, we

investigate the challenges (e.g., the need to cope with a slow build or flakiness, or with phases

not easy to automate) and barriers (e.g., limited availability of software and/or hardware

resources) encountered by the interviewed organizations when dealing with the setting
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or evolution of the CI/CD pipeline for CPS development. Furthermore, we highlight the

strategies (e.g., to adopt a pipeline that relies on both simulators and HiL in different build

stages) adopted by the interviewed organizations to deal with challenges and barriers. We

validated the relations between challenges/barriers and mitigation strategies through a

member-checking survey with the same interviewees or practitioners belonging to the same

team of the interviewees involved in the semi-structured interviews.

• RQ2: How relevant are the identified CI/CD challenges/barriers and their mitigation for practi-
tioners involved in CPS development? While in the previous research question we identified

a set of challenges and barriers with related mitigation strategies as experienced by our

interviewees, this research question aims at performing an external validation by survey-

ing practitioners involved in the setting, evolution or usage of a CI/CD pipeline for CPS

development.

Interviews

Transcript

Creation

Participant

Recruitment

Transcript coding

and memoing

Annotator 1

Annotator 2

Discussion & conflict resolution 

Categorization of Practices, 
challenges, barriers, mitigations

Open Coding (in four steps)

Member-Checking 
Survey External Survey

Fig. 1. Study methodology.

The study methodology used for addressing the research questions is depicted in Figure 1

and described in the following. After having recruited participants to be involved in the semi-

structured interviews through personal knowledge, we conducted the interviews and transcribed

their content. Note that, since this is an exploratory study, we prefer to rely on convenience sampling,

as previously done in literature [18, 33]. This is because practitioners involved in CPS development

represent a hidden population, therefore we did not have a sampling frame [8]. The latter helps us to

conveniently reach a suitable number of study participants. After that, we performed an incremental

(in four steps) open coding [35] of the transcripts, discussing the independent coding of multiple

annotators, solving conflicts, and creating, through a card sorting strategy [68], categorizations for

practices, as well as for barriers, challenges, and mitigation strategies. The relationships between

challenges/barriers and mitigation strategies have been validated through a member-checking

survey, and, finally we performed a further survey to validate our findings beyond the interview

context.

3.1 Data Collection: Semi-structured interviews
We defined the interview structure through an iterative process, which started from the existing

knowledge on the topic summarized in Table 1 (see Section 2). From such knowledge, all theoretical

pending points were distilled and matched with interview structure areas and questions for each

interview structure area. As summarized in Table 2, we start with demographics about the organi-

zation and the interviewee, and get a first glance at the development and lifecycle management

practices [5] adopted in the context of interest. Then, we gather data about the pipeline structure

and technology, paying particular attention to V&V and deployment. We then explore the usage of

simulators and HiL. We also investigate the presence of any machine learning or (ML)-intensive

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.
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Table 2. Interview structure

Section Content
Overview Company description, domain, programming languages

Respondent background and role

CI/CD pipeline structure Phases and steps

Tools (versioning, build automation, CI/CD, use of containers)

Verification and Validation approaches

Deployment

Simulators and HiL Simulator development/acquisition

Simulator/HiL integration in the pipeline

Simulators vs HiL tradeoffs

ML-based components In the developed software

In the pipeline

CI/CD pipeline configuration Pipeline stability

Build strategies

Triggering

Conclusion Challenges

Barriers

Expected benefits

components to be automated (e.g., trained/tuned) or executed by the pipeline over any CPSs soft-

ware artifact, or, conversely, the use of ML and Artificial Intelligence (AI) for pipeline automation

(e.g., as part of the testing oracle), i.e., AIOps [11]. After that, we investigated how the interviewees

configure the overall CI/CD pipeline in terms of build triggering strategies and the possibility to

handle different pipeline configurations, each one environment-specific. The interview ends with

general questions about the main benefits achieved, barriers encountered, and challenges to tackle

when configuring and evolving the CI/CD pipeline.

Table 3. Participant Demographics

Org𝐼𝐷
Organization Role CPS

Domain Size Exp. (Y)
O1 Aerospace Small R&D Manager 8

O2 Healthcare Large DevOps Architect 18

O3 Acoustic Sensors Small SW and HW Integrator 6

O4 Robotics Medium Team Leader 7

O5 Automotive Large R&D Manager 20

O6 Aerospace Large R&D Manager 20

O7 Railways Large SW and HW Integrator 10

O8 Railways Micro Team Leader 25

O9 Identification Technology Micro Software Engineer 3

O10 Energy Large Project Leader 5

Interview participant selection. The interview participants have been selected based on

personal knowledge, with the goal of identifying experienced practitioners over the theoretical

constructs (CI/CD pipelines for CPS) under investigation. The resulting study size (10) is not particu-

larly high, yet on the same order of magnitude as similar interview-based studies on CI/CD [18, 33]

(although the study by Hilton et al.was followed by a larger survey). It has to be considered also that,
differently from previous studies, we targeted a very specific development domain and technology

(i.e., application of CI/CD for CPSs in industrial settings). After participants accepted our invitation,

we gave them an overview of the questions to expect in the interview, to allow them to gather any

additional information.
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Table 3 summarizes demographic information about organizations and interviewees involved

in the study. Five out of ten organizations are large (i.e., over 1,000 employees), one is medium

(i.e., between 50 and 1,000 employees), two are small (between 10 and 20 employees), and two are

micro (less than ten employees). Furthermore, the sample covers eight different domains: aerospace,

automotive, energy, healthcare, railways, robotics, identification technology (i.e., RFID), and acoustic
sensors. Finally, the participants’ professional experience in the CPS field varies from 3 to 25 years,

with varying job titles, and all of them are currently involved in the configuration of the CI/CD

pipeline.

As it will be clearer later, we intentionally selected participants having different maturity levels

in the implementation of a CI/CD pipeline for CPSs. That is, we also included organizations that,

while having experience in setting CI/CD pipelines, only partially automated CPS builds, without

having a full-fledged CI/CD pipeline. This allowed us to understand, in those cases, how they

automated certain phases, as well as the reasons why they are still facing challenges in having a

complete CI/CD pipeline.

Conducting interviews. Interviews were conducted using a videoconferencing system, by

one researcher (with the support of one-two other researchers), following an order based on

interviewees’ availability. Before starting the interview, the interviewer recalled study goals and

gathered consent for recording. The interview structure was followed rigorously, varying only the

level of detail over different areas of the interview based on the provided answers. For instance, if

a participant mentioned the use of simulators, we asked deeper questions on the topic, while we

skipped questions not applicable to a given participant. It is important to remark that, interviews

are treated as independent from each other, meaning that questions were not adjusted over different

interviews. This is because, as shown in Table 3, the involved organizations cover a broad range of

domains, and the main goal was to achieve a similar understanding among those domains.

Creating transcripts. After interviews have been completed, a researcher transcribed the audio,

creating a document organized into sections as Table 2. The transcripts contain a total of 15,329

words and 787 sentences.

3.2 Data Analysis from interview transcripts
Two authors, experts of the domain, (hereinafter referred to as “coders”), independently used

online spreadsheets to assign codes (i.e., open coding) to sentences in the transcripts. The coding

was carried out following the approach illustrated by Hoover [35], i.e., annotating a code near

sentences of the transcript. A code is defined as a mnemonic label identifying a concept defined in

a text fragment, e.g., by applying the label ’TEST’ to any part of text reflecting a software testing

activity. Wherever appropriate, the coder added a memo that could be leveraged to better explain

the observed phenomenon, as well as to identify possible relationships between codes dealing with

different aspects of the CI/CD pipeline setting and evolution.

Open coding has been performed over four subsequent sessions by arranging the 10 interview

transcripts into four groups. Each group included two, three, four, and one interview, respectively.

After each coding session, the coders held a discussion meeting, in which similar codes created

by multiple coders were merged, and conflicts were resolved. After each round, we computed

the Krippendorff 𝛼 [45] to determine the achieved level of agreement. The obtained 𝛼 values for

the four iterations were 0.65 (close to the minimum acceptability of 𝛼 = 0.66 [45]), 0.71, 0.69, and

0.86 (substantial agreement). Starting from the second iteration, the coders could reuse, through a

drop-down cell, codes created during previous iterations, or create new ones. Note that, to further

limit agreement by chance, each code annotation was reviewed during the meetings, not just the

disagreements.
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During the discussion meetings, broad groups of codes were also defined. For instance, we

distinguished codes belonging to the CI/CD pipeline from those related to the development process.

Also, we started grouping codes belonging to different phases of the pipeline, and codes related

to challenges, barriers, and mitigation strategies. Such a categorization started during the first

discussion meeting and then was refined over the next ones. After the first two sessions of the open

coding (after the first session the set of codes was too immature for this purpose), three researchers

iteratively produced—by adopting a card sorting strategy [68]—the first version of a mind map

grouping codes into categories. Such a mind map has been used as a support to ease the subsequent

open coding phases and to evaluate the extent to which non-leaf nodes were saturated. Note that

we do not expect a full saturation [63] in this study, due to the high diversity of the considered

application domains. The mind map was then refined after each subsequent coding phase.

Overall, we identified a set of 179 codes, which led to the construction of a categorization of

codes explaining the phenomenon, organized across 43 high-level categories.

Finally, the two coders performed three iterations over the transcripts, codes, and memos to

derive relations between different codes. For instance, it is possible that process constraints (e.g., the
need to use a specific type of simulator or tool imposed by the domain, or to adopt certain coding

standards), introduce challenges while setting the pipeline (e.g., the need to cope with phases not

easy to automate, or slow build and flakiness) that may be addressed by relying on a particular

mitigation strategy (e.g., push small changes when using incremental builds). As an example, when

talking about flaky behavior experienced in the build process, O4 mentioned that: “of course, we
have some retry for network issues”, while “in case of resources problems we do not have retries, but the
pipeline maintainers can open issues aimed at solving the problem. The outcome of this step consists

of 90 relations from 128 sentences. We will present how different codes relate to each other and are

spread among different organizations through storytelling.

3.3 Member-checking survey to validate relations between challenges/barriers and
mitigation strategies

To verify our understanding of how the interviewed organizations act to address the challenges

and barriers encountered while setting and maintaining the CI/CD pipeline for CPS development,

we conducted a member-checking survey by involving the interviewees themselves, or people

working in the same team of the interviewees. Asking outside the same team, especially in large

organizations, would have reached completely different projects or even different domains, even

unrelated to CPS, making the member-checking worthless.

The survey has been designed by following guidelines for survey design and operation from

social science [31] and software engineering [41–44, 57]. Specifically, the survey contains:

• An introduction explaining the study goals;

• A set of ten sections in which we validate the relations between the 10 challenges/barriers

for which we found at least one mitigation strategy from the transcripts;

• A demographic section in which we asked the participant: the application domain, the role

within the organization, the years of experience in CPS development, as well as information

about the CI/CD pipeline (i.e., (i) whether or not the organization has a CI/CD pipeline in

place, (ii) years from its introduction, and (iii) how the participant interacts with it).

Since themain goal of the survey is to validate our correct understanding of the challenges/barriers

and related mitigation strategies, we asked the participants to provide their personal contacts

(among them the name of the organization) mainly for traceability purposes.

For each section in the survey, we start by asking whether or not the challenge/barrier has

been faced at least once by the team they are working with. Specifically, instead of using a yes/no
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question, we added a third option aimed at highlighting those cases where the challenge/barrier

cannot be encountered due to the development process adopted by the organization. For instance,

if an organization does not use HiL in its development process, it will never experience problems

due to the high cost or lack of scalability of the hardware devices. If the challenge/barrier has

been encountered at least once within the organization, we list a set of questions, each one aimed

at investigating the adoption of the identified mitigation strategy to overcome the previously

presented challenge/barrier. Specifically, the respondent could choose between three different

options: (i) yes, and we used it, (ii) yes, but we never used it, and (iii) no. Two out of 17 questions

dealing with mitigation strategies provide only two options: (i) yes, it happened, and (ii) no, it never

happened. At the end of each section, respondents could use an optional free comment field to

provide additional mitigation strategies adopted for overcoming the related challenge/barrier.

The questionnaire was administrated through Survey Hero
1
, and we kept the questionnaire open

for 12 weeks. Note that nobody reported having particular issues (e.g., privacy issues) with the

used survey administration tool. Furthermore, because of constraints imposed during the survey

administration, we had to keep it anonymous.

After closing the survey, we obtained eleven responses from the 10 organizations involved in the

semi-structured interviews. Specifically, for O5 we obtained two different responses, even if one of

them did not provide demographic information. Among the 10 respondents providing their personal

contacts, four of them have also participated in the semi-structured interviews. Furthermore, 4

are R&D Managers, 3 are software and hardware integrators, 2 are DevOps Architects, and 1 is

a DevOps QA Engineer. In terms of years of experience with CPS development, five respondents

have between 1 and 5 years of experience, two respondents between 5 and 10, and the remaining

two more than 10 years. Seven out of nine participants (the ones answering this specific question),

declare that their organization already has in place a CI/CD pipeline used while developing CPSs (1

introduced it less than one year ago, 1 has a mature pipeline introduced more than five years ago,

while 5 between one and five years ago), and in terms of the way they interact with the pipeline,

among the six participants who answered this question, 1 only uses the CI/CD pipeline, 2 are

involved in its setting and maintaining, and 3 set, maintain, and use it for their development tasks.

3.4 Evaluation through an external survey
To address RQ2 we conducted a survey involving practitioners using (or trying to set up) a CI/CD

pipeline for CPS development in their organization. To recruit participants we used two different

sources:

(1) Snowball sampling [30], i.e., we shared the survey link to some personal contacts and encour-

aged them to indicate us further participants. This choice has been dictated because, while

we had a relatively limited set of contacts reachable with our knowledge, snowballing could

help us to reach the relevant people (those involved in CPS development by relying on a

CI/CD pipeline).

(2) An infrastructure for recruiting survey participants, namely Prolific2. This platform allows to

reach additional participants, by paying a small fee. The platform has a participant screening

facility (we required participants to have at least a bachelor’s degree in computer science

or similar, and knowledge about relevant software development technology, including ver-

sioning, monitoring, virtualization, and testing). Also, similarly to what was done in the

member-checking survey, we collected further information about CI/CD competences to

further filter participants. At the same time, we are aware that with Prolific we have less

1
https://www.surveyhero.com/

2
https://www.prolific.co

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://www.surveyhero.com/
https://www.prolific.co


491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

Continuous Integration and Delivery Practices for Cyber-Physical Systems: An Interview-Based Study 1:11
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Fig. 2. CPS domains from the external validation survey

control over the participants’ reliability than with snowballing. To mitigate this problem,

our online package contains separate results belonging to the snowball sub-sample and the

Prolific sub-sample.

The online survey presented to the participants has: (i) an introduction explaining the study

goals, i.e., to assess a catalog of challenges and barriers concerning the setting and maintaining of a

Continuous Integration (CI) and Continuous Delivery (CD) pipeline for CPS development; (ii) 14

sections in which we validate challenges, barriers and mitigation strategies; and (iii) a demographic

section similar to the one described in Section 3.3.

We started by asking, for each challenge/barrier (properly grouped in categories), whether they

have ever encountered it as a factor preventing/limiting the setting up of a CI/CD pipeline, or, if the

participant did not encounter it, whether she perceive the challenge/barrier as a real impediment.

Specifically, the respondent could choose between four different options: (i) yes, it is relevant (and

I encountered it), (ii) yes, it is relevant (but I never encountered it), (iii) no, I do not consider it

as relevant, and (iv) does not apply to my context. If at least one of the challenges/barriers in the

category was felt as relevant to the respondent, the survey shows a new section asking about the

mitigation strategies used (or felt as relevant) to address the previously selected challenges/barriers

by using a multiple choice answer. Specifically, the respondent could choose among the mitigation

strategies we obtained as a result of RQ1, but could also add new (unseen) mitigation strategies.

Finally, the survey contains an open-ended question aimed at collecting other challenges/barriers

that did not apply to the 10 interviewed organizations.

Also in this case, the survey has been administrated through Survey Hero, and nobody reported

having particular issues with this administration tool. For the snowball sample, the questionnaire

has been left open for one month, and due to constraints imposed during the survey administration,

we kept it anonymous. For what concerns Prolific, we obtained the requested responses within the

same days the survey has been opened.

In the end, we obtained 19 responses from the snowball sampling, and 50 further responses from

Prolific. However, through a screening of the participants’ answers we discarded 14 responses from

Prolific, i.e., (i) it was difficult to infer whether or not the participant works for CPS development,
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e.g., education or applications for cosmetic stores, and (ii) the participant declares to not have a

CI/CD pipeline in place within the organization, and at the same time declares that the CI/CD

pipeline has been adopted only recently. As a result, we obtain a final set of 55 valid responses

covering 9 different application domains (as shown in Figure 2).

Among the respondents providing demographic information (51), in terms of the role played in

their organization, there are: 23 software and hardware integrators, 13 R&D Managers, 7 DevOps

Architects, 5 software developers/testers, 1 Project Manager, and 1 CTO (Chief Technology Officer).

In terms of years of experience with CPS development, 19 respondents have less than 1 year of

experience, 27 between 1 and 5, two respondents between 5 and 10, and the remaining three more

than 10 years. 47 out of 51 respondents declare that their organization already has in place a CI/CD

pipeline used while developing CPS (19 introduced it less than one year ago, seven have a mature

pipeline introduced more than five years ago, while 21 between one and five years ago.) Finally, in

terms of the way our respondents interact with the pipeline, 31 only use the CI/CD pipeline, six are

involved in its setting and maintaining, and the remaining 10 set, maintain, and use the pipeline for

their development tasks. Finally, among the respondents who declare that their organization does

not have a CI/CD process in place for CPS development, three declare being involved in setting it.

4 STUDY RESULTS
In the following, we report and discuss the results addressing the RQs defined in Section 3. To

properly contextualize challenges, barriers, and their mitigation strategies, it is important to

summarize the development process of the interviewed organizations. Specifically, Section 4.1

briefly describes, for each organization participating in the semi-structured interviews, the CPS

development process, focusing more on the adoption of CI/CD pipelines and, in general, on their

level of build automation. The interested reader could find more details in the Appendix.

4.1 Contextualization: Organization Profiles
Table 4 provides an overview of the main analyzed dimensions for the 10 organizations considered

in our study. In the following we briefly describe them.

4.1.1 O1 (Aerospace). O1 is involved in verification and validation (V&V) tasks for aerospace

software (i.e., on-board software for satellites), hence their CI/CD pipeline is only for V&V and

not for development. The standards in the aerospace domain enforce the adoption of conventional

programming languages, i.e., “We mainly use ANSI C-99 following the MISRA rules”, as well as the
need for certifying software.

O1 started to adopt CI/CD practices for CPSs less than one year ago. Due to the application

domain and the related standards and certification constraints, the pipeline compiles the software

provided and developed by the customer, relies on SonarQube for static code analysis checks,

and executes unit and robustness tests to “check how the system behaves/reacts in the presence of
unexpected inputs”. The triggering of the pipeline is almost manual, even if there are scheduled

nightly builds for running test suites requiring a long time to complete.

Finally, O1 cannot involve HiL in the pipeline, as it would require a clean room not accessible

from the outside. Instead, it relies on third-party simulators provided by the customer, reduc-

ing the costs/efforts needed to develop the simulators from scratch, as well as guaranteeing the

trustworthiness of the outcome being produced.

4.1.2 O2 (Healthcare). O2 is a large organization involved in the healthcare domain. It adopts

conventional programming languages, i.e., mainly C# and C++ during the development process.

O2 has a CI/CD pipeline in place for CPS development that has been introduced 4 years ago, and

they are still improving it. Furthermore, based on its application domain, O2 is constrained to “follow
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Table 4. Summary of the CPS development process adopted within the 10 interviewed organizations (i.e.,
O𝐼𝐷 ). The ✓ (✗) occurs when the property (does not) apply to the organization; the — represents cases where
the property is not applicable/available for the organization; ● means that the phase is automatized within
the pipeline; ◗ means that the phase is automatized but not included in the pipeline; ❍ means that the phase
is done manually.

Property

Organizations

O1 O2 O3 O4 O5 O6 O7 O8 O9 O10

Prog. Language C

C# C C++

RTJ

C

C

C C# Java

C++ C++ Python C++ C++ Java Python

Pipeline Maturity < 1 [1, 5) ✗ — < 1 — [1, 5) ✗ ✗ ≥ 5

Phases

Static Analysis ● ● ✗ ● ✗ ● ❍ ❍ ✗ ●
Unit Test ● ● ❍ ● ● ● ● ❍ ◗ ●
Int. Test ✗ ● ❍ ● ✗ ● ● ❍ ◗ ●
System Test ✗ ● ✗ ● ✗ ◗ ◗ ❍ ❍ ✗
Non-Func. Test ● ◗ ❍ ❍ ◗ ❍ ◗ ❍ ◗ ●
Deploy ✗ ● ◗ ● ● ● ● ◗ ◗ ●

Triggering

Continuous ✓ — ✓ ✓ ✓ ✓ — —

Incremental ✓ — — — ✓
Nightly ✓ ✓ — ✓ ✓ — —

Pipeline Config.

Env. Stable

Domain

— Stable —

Device Device

— — Stable

specific specific specific

Staged

✗ ✓ — ✗ ✗ ✗ ✓ — — ✗
Builds

Mocking ✗ ✗ — ✗ ✗ ✗ ✗ — — ✓

Simulators Ext. Int. — Ext. Int. Int. Int. Int. Int. Int.

HiL ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Containerization VMs — — —

—

✓ — ✓ — ✗ ✗

Docker — — —

Deploy

✗ ✗ — — Deploy HiL Deploy

and HiL

medical application frameworks providing a base set of rules in terms of how to build applications and
how to integrate them”.

O2 adopts both incremental and nightly builds. While nightly builds leverage HiL and run three

different types of testing, namely unit/component, sub-system, and system testing, incremental

builds leverage self-developed simulators to provide developers fast feedback about the impact

of their changes, i.e., only a subset of the whole set of functional tests are executed. Furthermore,

both incremental and nightly builds run static code analysis tools. Finally, nightly builds imply an

automated deployment on a “real” Computed Tomography (CT) scanner, i.e., “physical systems that
are equivalent to the real hardware in the CT Scanner but not connected to anything around it which
has a simulator running on it”.

4.1.3 O3 (Acoustic Sensors). O3 is involved in CPS innovation for the industry, among others, the

development of the SPL Noise Meter Board, by using conventional programming languages, i.e.,
Python for testing and C, C++ for micro-controllers development. Each team is composed of both

software and hardware experts who work together.

O3 does not have a CI/CD pipeline for CPS development, however, the deployment is fully

automated, while the testing is manual, i.e., impossibility to automatically test acoustic signals.

Finally, at the moment, O3 only uses real hardware devices, yet they wish to include simulators in

their CI/CD process.
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4.1.4 O4 (Robotics). O4 is involved in the development of autonomous robots, and similarly to

O3, each team accounts for both hardware and software experts. In their development process,

O4 mainly adopts C++, together with Python for users’ interfaces and for interacting with the

hardware devices.

O4 has a fully containerized (using Docker) pipeline for CPS development. It relies on continuous

and nightly builds for running regression testing activities on already packaged components and

for deployment to the customers. Furthermore, continuous builds also execute static code analysis

tools to inform developers about code quality degradation, and unit tests relying on simulators. The

application domain does not introduce certification constraints, while it hinders the automation of

non-functional testing within the pipeline. Finally, O4 relies on third-party simulators and HiL into

different stages of the whole CI/CD process.

4.1.5 O5 (Automotive). O5 is a large organization operating in the automotive domain working

on the software-focused driving platform. This is the only organization in our study relying on

real-time languages, i.e., real-time Java to cope with scheduling requirements of embedded systems.

O5 already has a CI/CD pipeline in place mainly for deployment purposes, even if it is working

on improving it. However, unlike the others, O5 relies on virtual machines instead of using Docker

containers. Moreover, O5 does not test all the developed modules together since it “deploy[s]
individual bundles to a platform.”

Finally, since O5 develops software for embedded entertainment in the automotive domain, the

HiL is only available for a final validation on the customer’s side, so most of the work is done

relying on virtual environments.

4.1.6 O6 (Aerospace). O6 operates in the aerospace domain, and it is mainly involved in developing

and refining the routing algorithm for the Free Route Airspace (FRA). Similarly to O1, it relies on

conventional languages: “C and C++ [are] used for the back-end.”
O6 already has a CI/CD pipeline including static code analysis, unit testing, integration testing,

and deployment. Similarly to O1, it is required that the developed code satisfies strict certification

requirements that are mainly checked by relying on code coverage tools. However, differently

from other organizations, O6 does not rely on nightly builds, meaning that also time-intensive

tasks are executed at each change: “even the slow builds are continuously built.” Finally, the pipeline
provides a monitoring mechanism for what concerns aspects of the real-time operating system

such as scheduling and memory that “gives us the possibility to collect feedback/evidence that may
help us in obtaining the certifications.”

As regards HiL and simulators, O6 relies on both, however it does “not have simulators and HiL
in the same pipeline mostly for certification issues.”

4.1.7 O7 (Railways). O7 is involved in delivering software for railways, i.e., Train Control Manage-

ment System (TCMS). In terms of programming languages being used, the interviewee mentions

the need of adapting the programming language to the device on which the software has to be

executed.

O7 already has a CI/CD pipeline in place for CPS development that, at the moment, is in a

continuous improvement state. Based on the application domain, O7 adopts staged builds following

the “green-build rule”. In the first stage, the build process is executed on a virtual machine, and in

the presence of a green status, all the components are deployed together, enabling the execution on

the virtual train. In the presence of a green status, it is possible to move to the next stage that relies

on the hardware test track, “where [there is] the whole set of devices and even some more that [are
not] in the virtual train.” Finally, in the presence of a green status it is possible to run the last stage

relying on a real train. All the stages include functional testing, while the deployment is automated
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only for the first stage. Based on the previous statements, it is possible to conclude that O7 adopts

both simulators and HiL in different stages of the build process, with the use of HiL occurring only

in the last stage of the pipeline.

4.1.8 O8 (Railways). O8 is involved in the railways domain, i.e., the development of a specific

component used for transmitting data between on-board and ground applications. O8 uses C and

C++ (i.e., conventional programming languages), and it has strict certification requirements, e.g.,
compliance with the railway standards and specifications.

O8 does not have a CI/CD pipeline in place for CPS development and it has, in general, little

automation in the development process, i.e., only the adherence to standards and specifications

is automated. Finally, due to the high cost of the hardware devices in this particular domain, O8

mainly relies on simulators that are self-developed. However, once per week, O8 performs a testing

session with a real “train running in a real environment with real traffic”.

4.1.9 O9 (Identification Technology). O9 is involved in “develop[ing] software relying on identification
technologies such as RFID [(Radio Frequency IDentification),] Bluetooth low energy or bar codes”,
relying on conventional programming languages such as Java and C#.

Due to a lack of culture for setting a pipeline dealing with sensors and actuators, O9 does not have

a CI/CD pipeline for CPS development. However, the testing phases are almost fully automated. For

what concerns the deployment of CPS-related software, O9 relies on Docker for creating images

that are manually deployed onto the servers. The development process also features a monitoring

component for the internal development platform and customers’ devices, to notify about anomalies

and errors, as soon as they occur. Finally, the development process considers both (self-developed)

simulators and HiL.

4.1.10 O10 (Energy). O10 is involved in the development of prototypes and proof of concepts for

the energy domain. It has a mature (i.e., introduced in 2016) pipeline for CPS development that

uses conventional programming languages, mostly Java and Python.

Other than having a compilation phase, the CI/CD pipeline is aimed at executing static code

analysis tools and linters, unit, and integration tests, followed by a deployment phase where the

packaged version of the software is usually stored into an artifact repository as a docker image.

O10 does not rely on nightly builds, while it only uses incremental builds.

O10 does not need to run the software on embedded devices, implying that O10, other than

simulating the hardware when needed, mainly replaces it with mock-ups. Only when the real

devices are available and it is safe to use them for testing, O10 uses Docker images for checking the

correct behavior over the real devices.

4.2 RQ1: What are the challenges and barriers respondents encounter, and how do
developers deal with them?

This research question describes barriers and challenges emerging from the semi-structured inter-

views. We start by describing the challenges related to the CPS development process in general.

Then, we describe barriers and challenges encountered when setting and maintaining the CI/CD

pipeline for CPS development, together with the related mitigation strategies. Note that we did not

find mitigation strategies for all the barriers and pipeline-related challenges and, as described in

Section 3.3, the member-checking survey only considers the barriers/challenges for which there

was an explicit mitigation strategy reported by at least one of the interviewed organizations.

4.2.1 Process-related challenges. Table 5 reports the process-related challenges identified in our

interviews, together with the traceability among which challenge has been encountered by which

organization. It is important to remark that process-related challenges may not be specific to CI/CD,
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Table 5. Process-related challenges

Category ID Challenge Organizations

General

PRC1 Cycle-time reduction O2

PRC2 Onboard developers O7

Culture

PRC3 Limited CI/CD culture O1

PRC4 Limited CI/CD culture for CPS development O9

Environment

PRC5 Complexity of the environment O2, O4, O5, O6, O8

PRC6 Variability of the environment O7

PRC7 Lack of redundancy in the environment O7

Testing

PRC8 Test cases manually derived O5, O8

PRC9 Test cases manually executed O3, O9

PRC10 Different interpretations for the same requirements O7

PRC11 Need a controlled environment for test automation O3, O4

PRC12 Complexity in oracle specification for test automation O3, O5, O6, O8, O9

PRC13 Complexity for deriving integration tests O10

PRC14 Complexity for deriving safety tests O4, O5, O8

Deployment

PRC15 Late deployment O2

PRC16 Expensive deployment O7

Simulators

PRC17 Lack of trustworthiness for simulators O3

PRC18 Complexity for oracle automation with simulators O8

but are, more in general, challenges in the development process that, based on what was reported

by the interview participants, have an impact on setting up and maintaining a CI/CD pipeline.

The challenges have been grouped into six different categories, i.e., general, culture, environ-
ment, testing, deployment, and simulators. For each category, in the following, we provide a brief

description of the challenges belonging to it, together with some examples.

General. This category accounts for two challenges, each one mentioned by only one out of ten

organizations. One of the main benefits of adopting a CI/CD pipeline is related to the overall cycle

time reduction (PRC1). However, even if O2 has already invested effort and money in reducing the

release time, it already sees space for reducing it: “The biggest problem ... is cycle time. Three years
ago, the cycle time was six weeks, while now we could do it every day. It is still not enough from a
developer perspective because the feedback is not fast enough.” While this challenge also applies to

conventional software, when it comes to the CPS context, the challenge is exacerbated mainly due

to the need of interacting with both HiL and simulators. In this regard, O2 mentioned that the cycle

time cannot be easily reduced due to (i) the high costs for the infrastructure, and (ii) the translation

of test strategies to hardware devices being very demanding”.

O7 is facing problems when trying to onboard new developers (PRC2) mainly due to the com-

plexity of the railways’ domain, as also found by Törngren et al. [74]. The interviewee stressed
that in the railways’ domain it is crucial to follow specific standards that need to be known and

properly understood by developers and testers.

Culture. This category groups two challenges related to the presence of a limited CI/CD culture

in the development teams. This may limit the possibility of properly leveraging CI/CD facilities

throughout the development process. O1 reports the adoption of a pipeline that only includes tasks

that are easy to automate mainly due to “lack of knowledge” (PRC3), as also found by Zampetti

et al. [85]. Instead, while O9 has already in place a pipeline for developing and deploying mobile

apps to the app-store (i.e., “The setting of a CI/CD pipeline in the mobile context has been very easy” ),
it does not have a pipeline for CPS development due to “a lack of a deeper knowledge in the CI/CD
context for CPS”, in particular for what concerns the interaction between software and hardware

components (PRC4). Specifically, there is a need for knowledge on how to properly account for the
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inclusion and setting of both HiL and simulators in the CI/CD pipeline configuration, as well as

how to include a feedback mechanism to gather information directly from the field.

Environment. This category features three different challenges dealing with the characteristics

of the physical environment in which the developed code has to be deployed.

Among them, only PRC5, i.e., environment complexity, is mentioned by multiple organizations

(five out of ten), while the remaining two only come from O7. The complexity of the environment

impacts the execution environment being set (i.e., simulators or HiL). The unavailability of third-

party simulators (and the need for self-developing them) impacts the ability to simulate certain

behaviors, or even in deviations between HiL and simulated environments. The consequence is

that builds executed on simulators will have a different outcome when run on HiL. For instance, O4

mentioned: “Walking is not so easy to simulate so we need a real walking robot for spotting bugs”,
while O8 stated: “It could be difficult, demanding and expensive to have a one-to-one relationship
between simulators and real systems”. Our findings stress what is already known from previous

literature in terms of relying on simulated environments, i.e., the testing over simulators may fail

to expose problems that would only manifest when running the system on the real hardware [52].

O7 faces a problem related to the high environment variability (PRC6) [74], due to trains hav-

ing different characteristics: “We can rarely copy-paste software that has to run on different train
architectures.” At the same time, O7 also faces a challenge due to the structure of its development

process that is not cloud-based and has no redundancy (PRC7), implying that “in the presence of
network issues or server issues we are totally black and this is affecting everyone.”

Testing. This category groups seven challenges. O5 and O8 mention as a challenge the substantial

manual effort required for the test case specification process (PRC8). O3 and O9, instead, felt the

manual execution of testing activities to be challenging, i.e., PRC9 (e.g., “Another big barrier is related
to the test case execution that, at the moment, we are doing manually since both the environment
setting and the oracle definition require manual intervention” for O9). Our findings confirm what is

already pointed out by Mårtensson et al. [52] in terms of the presence of complex user scenarios

implying the need of manual testing.

O7 found it difficult to automate the test case specification mainly because the standards might

be interpreted differently by different developers, and both might be correct (PRC10) — “how do you
read the standard? The standard is interpreted so the same requirement can be differently interpreted
by different people (a challenge for automation).” A different challenge experienced by O3 and O4 is

related to the need for a controlled test environment (PRC11) impacting the execution environment

to be used in the pipeline. For instance, O3 mentioned: “Since the output of the system is sound and
the test should check the sound quality it is better to have it in a controlled environment that makes
use of simulation.”

Another test automation challenge is related to oracle specification (PRC12), as mentioned by five

out of 10 organizations. The impossibility of specifying an automated oracle hinders what kinds

of tests one can run in the pipeline. This may happen, for instance, when one needs to evaluate a

signal received from a sensor, i.e., “The main challenges for automatizing the test execution: a good
way to model the test itself and have an oracle that can compare with the actual behavior.” stated
by O3. This aspect has already been mentioned by Mårtensson et al. [52], however, while they
only talked about usability testing, we stress more the impediment in automatically determining

and checking the test oracles, also for functional testing mainly due to outcome coming from real

hardware devices working in a real environment with many external factors to control for, e.g., to
check the quality of the acoustic signal coming from sensors (O3).

The remaining two challenges are related to difficulties encountered when specifying/deriving

integration (PRC13) and safety (PRC14) tests. As regards the former, O10 develops prototypes

requiring the interconnection of many different sub-components. This makes it difficult to determine
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Table 6. Pipeline-related barriers

Category ID Barrier Organizations

Resources

B1 Limited human resources O8, O9

B2 Limited availability of software and/or hardware resources O1, O2, O3, O4, O5, O6, O7, O8, O9, O10

Domain

B3 Complex non-functional requirements O6

B4 Security configuration prevents CD O2

B5 HiL not usable, e.g., for safety or security reasons O1, O2, O8, O9, O10

the expected system behavior: “It is quite hard to derive integration test cases due to the complex
combination of all different parts.” As regards the specification of safety tests, in agreement to what

indicated by Gautham et al. [27], O4, O5, and O8 pointed out the complexity to identify situations

“that could never happen.” or “that you do not expect to happen.” Checking for safety requirements is

highly important, especially in those domains, such as aerospace and railways, where the safety

integrity level (SIL) of the system must be equal to or higher than three.

Deployment. This category features two challenges occurring when deploying software on the

customers’ side. Having deployment too late in the development process (PRC15) may result in

installation issues (PC9 in Table 7), as experienced by O2: “ we will not be able to run the software on
the system because the installation even does not work on the system, because the update/upgrade does
not work, or because the system behavior is not being considered in the early stages of development.”
Then, there are cases where the deployment is expensive (PRC16) in terms of time and effort

needed to complete it. This impacts both the type of execution environment adopted within the

pipeline, as well as the build triggering strategy. As experienced by O8 in the railways’ domain, the

deployment on a test track requires “one day with people involved in the testing and on a train a
couple of days where many people need to be involved.”
The late and expensive deployment is strictly related to the CPS nature. Indeed, as already

highlighted in Section 4.1, the organizations deploy on real hardware devices only during the

last stages of the overall CI/CD process, mainly due to the high costs of the hardware in specific

domains such as railways and aerospace.

Simulators. The last category, among the process-related challenges, deals with the usage of

simulators. O3 pointed out the presence of scenarios where it is complex to trust the outcome

provided by the simulators since there might be many external factors impacting the behavior of

the system in a real environment (PRC17). Finally, as reported by O8, some scenarios cannot rely

on simulators. Specifically, if it is complex for a human to specify the expected behavior for some

scenarios, of course, it is not possible to rely on simulators that can emulate the same behavior

(PRC18).

4.2.2 Barriers for CI/CD pipeline setting and maintaining and related mitigation. Table 6 summarizes

the five barriers encountered by the ten organizations when applying CI/CD to CPSs. These barriers

have been grouped into two categories, described in the following.

Resources. This category groups the barriers dealing with limited availability of human (B1)

and software and/or hardware resources (B2), both influencing the type of execution environment

adopted within the pipeline. While we are aware that those barriers can also apply to conventional

software systems, the barriers worsen for CPS development, where it is mandatory (i) to rely on

simulators, mostly self-developed where you need high expertise about the domain, and (ii) to use

HiL that is very expensive in particular CPS domain such as railways and aerospace. For instance,

O8 mostly relies on HiL due to limited availability of human resources having the skills needed to

develop/configure simulators — “given the needs and the budget of our company, it’s much better for
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more complex scenarios to rely on the hardware in the loop and only use simulations when whatever
needs to be simulated is very simple.”
All the interviewed organizations reported the limited availability of software and hardware

resources. Specifically, O6 mentioned: “Based on the fact that in the avionics domain the cost of the
hardware is very expensive, we do most of the work in simulated environments”, while O7 stated that

“Resources for the hardware devices (hardware test tracks and testbeds as real trains) represent an issue
for us. We have a limited number of test tracks.”
As reported in Table 8, the analysis of the interviews’ transcripts (see Table 8) has elicited two

mitigation strategies: (i) prioritize and select the test cases to be included within the pipeline (i.e.,
“Some strategies rely on genetic algorithms to optimize the resources available for the testing execution
environment” from O1), and (ii) adopt incremental builds mainly relying on impact analysis, as

reported by O2 — “for what concerns rolling builds we try to limit the amount of testing being executed
in them to be as fast as possible.” The member-checking survey confirms the previous findings, and,

as shown in Table 8, six out of ten organizations (O1, O2, O5, O6, O7, O10) report to rely on test

prioritization, while O3, O4, O8, and O9 consider it useful while having never used it. As regards

the adoption of incremental builds, instead, O1, O2, O4, O7 and O9 mention its adoption, while O8

considers it a useful approach to deal with limited hardware/software resources.

Alternative solutions reported in the member-checking survey to cope with limited availability

of resources are “architectural changes with improved testing concepts” (O7), and, unsurprisingly,

“platform virtualization” (O5).

Domain. This category includes three different barriers, two of them highlighted by only one

organization. Specifically, B3 and B4 are related to difficulties arising when automating certain

phases in the CI/CD pipeline. For instance, O6 had to cope with the use of a real-time operating

system which made task automation difficult, i.e., “the complexity of integrating within the pipeline
the execution of nonfunctional testing and system testing” , while O2 could not implement automated

deployment due to security policies for the healthcare domain: “We cannot deploy at the moment
because a change in the security configuration of the software prevented our standard [deployment]
process.”

B5 is related to coping with a complex execution environment. Specifically, O10 mentions that they

could not integrate HiL in the CI/CD pipeline for safety reasons, and adopts simulation/mocking

for the hardware devices to overcome it. As shown in Table 8, all the organizations facing this

barrier used the same mitigation strategy to deal with it. Furthermore, O2 mentions the possibility

to rely on “digital twin hardware that avoids the safety issues (no moving parts, no radiation) but
simulates the hardware to some much better”.

4.2.3 Pipeline-related challenges and related mitigation. Table 7 summarizes the pipeline-related

challenges faced by the 10 organizations. The challenges have been grouped into five categories,

each one related to a specific aspect of the CI/CD pipeline setting and evolution, i.e., pipeline
properties, thoroughness, simulators, HiL, and flaky behavior. In the following, we discuss each

identified challenge, together with some examples from the study participants’ experiences, and

related mitigation strategies.

Pipeline Properties. This category accounts for six different challenges, two of which deal with

the build execution time (PC1 and PC2), while the remaining four are related to the overall pipeline

configuration. Four out of 10 organizations faced long build execution time, influencing the type of

tasks automatized within the pipeline. For example, O6 mentioned: “Slow builds hinder the inclusion
of running non-functional testing in the pipeline.” While this is also considered a relevant challenge

for conventional applications [14, 77, 85], for CPSs the problem can be further exacerbated when

deploying and executing software on simulators or HiL. The latter confirms what is already found
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Table 7. Pipeline-related challenges

Category ID Challenge Organizations

Pipeline Properties

PC1 Long build execution time O1, O2, O4, O5, O6, O7, O8

PC2 Build time estimation O9

PC3 Static code analysis tools configuration O3, O7

PC4 Lack to access the production code from the pipeline O1

PC5 CI/CD configuration highly coupled with the environment O2, O5

PC6 Reusability of build artifacts O2

Thoroughness

PC7 Development environment detached from the execution environment O1

PC8 Detecting deployment-related errors O2, O6

PC9 Continuous installation O2, O3, O4, O5, O7, O8

PC10 Closing the loop introduces performance degradation O5

PC11 Complexity in closing the loop due to uncontrollable factors O4, O9

PC12 Complexity in closing the loop due to data collection from the field O5

Simulators

PC13 Limited in their functionality O1, O2, O4, O5, O7, O8, O9, O10

PC14 Functional correctness O5, O6, O7, O10

PC15 Deal with real-time properties O5, O9

PC16 Interaction with the environment O2, O3, O4, O5, O6, O7, O8, O9

PC17 Accessibility O1, O5, O7, O9, O10

HiL

PC18 Availability O10

PC19 Automated deployment on HiL O7, O8, O9

PC20 Test Automation on HiL O2, O4, O6, O7, O9

PC21 Costs and scalability O1, O2, O3, O4, O5, O7, O8, O9

Flaky Behavior

PC22 Dependency installation O4

PC23 Features’ interaction O2

PC24 HiL availability O10

PC25 HiL inputs O5, O10

PC26 Lack of control over resources O2, O4, O5, O6, O7, O9, O10

PC27 Network issues O1, O2, O4, O5, O6, O7, O9, O10

PC28 Timing issues O4, O10

by Mårtensson et al. [52] highlighting how working with a highly integrated (tightly coupled)

system, a small delivery to the main track may cause building and linking of a large part of the

system resulting in long build times. The latter has been also mentioned by O2 where there is a

single integration branch where the components developed by their 70 teams are integrated into a

single join point: i.e., “each component has a test service so running unit tests is very fast but we have
a huge amount of high-level testing that is easy to write but kills us in terms of execution time”. By
looking at the result of the survey (see Table 8), the interviewed organizations mentioned a wide

set of actions to deal with the above challenge. One possibility is to prioritize and select only a

subset of test cases in the test suite to be executed (used also by O1, O2, and O7, and considered a

useful action by O4 and O8). A different approach, highlighted by O2, deals with the introduction

of parallelization within the overall build process, i.e., “We have 20 test machines in parallel for
managing the overall test size, especially for nightly builds.”. The latter is also used by O4, O5, O6,

and O7, while O8 only felt it as useful. It is also possible to run the whole build process only within

nightly builds, even if this may be controversial since it defeats the CI/CD purpose [13]. However,

this is considered acceptable for O1, as its pipeline is limited in scope, i.e., used only for V&V

purposes. Also O2, O5, O6, and O7 rely on nightly builds to execute time-intensive tasks, while

adopting incremental builds during working hours (O2, O5, and O10). The latter is also used by O7

and O8, while O4 and O6 consider the mitigation useful even if they have never adopted it.

A different challenge, experienced by O9, that can also apply to conventional systems, while it is

more critical for CPSs, is related to the build time variability (PC2), due to the adopted infrastructure

“since our platform works in the cloud we need to know how much time it is required to acquire and
elaborate a huge amount of data points”.

Moving to the overall pipeline configuration, in the absence of clear coding standards or guide-

lines, the adoption of code style checking tools becomes problematic, if not unfeasible (PC3). In
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Table 8. Relations between challenges/barriers and mitigation strategies as seen from the semi-structured
interviews and the member-checking survey. In bold there are the organizations that do not rely on the
mitigation while considering it a useful solution.

Challenge/Barrier Mitigation Organizations

B2: Limited hw/sw resources

Test Prioritization O1, O2, O3, O4, O5, O6, O7, O8, O9, O10

Incremental Builds O1, O2, O4, O7, O8, O9

B5: Domain hinders HiL Rely on sim./mock-up O1, O2, O8, O9, O10

PC1: Long build

Test Prioritization O1, O2, O4, O7, O8

Adopt Parallelization O2, O4, O5, O6, O7, O8

Nightly Builds O1, O2, O4, O5, O6, O7, O8

Incremental Builds O2, O4, O5, O6, O7, O8

PC9: Continuous installation Containerization O3, O4, O5, O7, O8

PC13: Sim. limited func. Combine sim. and HiL O4, O7, O8, O9, O10

PC16: Sim. coupled with env. Combine sim. and HiL O2, O3, O4, O8, O9

PC17: Sim. accessibility Timeout O1, O5, O7, O10

PC21: HiL costs and scalability

Combine sim. and HiL O1, O2, O3, O4, O5, O7, O8, O9

Green-build rule O2, O3, O4, O7

PC26: No resources’ control

Fix the code O4, O6, O7, O9, O10

Fix pipeline config. O6, O7, O9

PC27: Network issues Retry O2, O4, O5, O6, O7, O10

this scenario, approaches for coding style inference may be desirable [61, 83]. Similar considera-

tions apply to bug-finding tools, sometimes inapplicable to CPSs for automating code review, as

experienced by O7: “we need expertise on the developers’ side for determining whether or not a train
is behaving in the expected way.” The latter is strictly related to PRC2 where, in the presence of

safety-critical systems, like the ones in the aerospace and railways domains, it is very difficult to

find skilled experts in the domain from both the hardware and software viewpoints.

The lack of access to production code (as experienced by O1) limits the ability to properly set

static analysis or testing tools (PC4) — “One big challenge is that we need to guarantee the protection
of the source code: How to test a component without having its production code?” The latter is a

specialization of the restricted access to information due to security aspects impediment found

by Mårtensson et al. [52]. On the same line, there is a challenge (PC5) related to the extent to

which technology restrictions, or restrictions coming from the application domain, may impact

the pipeline setting. For instance, O2 mentioned that “the Windows situation does not help us with
dockerization”, and at the same time, they are having trouble in properly configuring the CI/CD

pipeline for CPS since “[they] need to follow medical application frameworks providing a base set of
rules in terms of how to build applications and how to integrate them.” The latter results in the last

challenge related to the impossibility to reuse previously built artifacts (PC6) in the integration

branch (i.e., O2 mentioned:“It’s a huge pain that we do not reuse artifacts” ), mainly due to constraints

imposed by the domain.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.



1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1:22 Zampetti et al.

Thoroughness. This category groups six challenges related to (i) ensuring the overall accuracy

and completeness of the CI/CD pipeline (PC7, PC8, PC9) scattered across eight organizations, and (ii)

closing the DevOps loop by gathering data from the hardware, i.e., PC10, PC11 and PC12 experienced

by three out of 10 organizations.

O1 faces a challenge related to having a development environment detached from the execution

environment (PC7). Another challenge (PC8 experienced by O2 and O6) occurs in the presence

of incremental deployment, which makes it difficult to detect and isolate deployment errors.

Furthermore, O6 reported how this even makes it necessary to reconfigure the entire pipeline — “you
deploy blocks, if there is an error in one of the blocks detecting it and reconfigure and reset the pipeline
is a problem.” Finally, continuous installation (PC9) cannot be achieved due to the late deployment

strategy (PRC17). This is because changes to the environment impact the pipeline configuration,

which needs to be adapted every time. For what concerns continuous installation problems, O2,

O3, O4, O5, O7 and O8 have encountered them, with O4 pointing out that using containerization

it is possible to facilitate the switching between software versions to deploy, meaning that it will

be possible to handle the variability of the environment in terms of dependencies. As shown in

Table 8, containerization is also used by O5, while O3, O7 and O8 consider it a viable solution.

Moving on to the need for closing the DevOps loop, the interviews indicated three different

challenges hindering the acquisition of data from the physical environment (or hardware device).

Working in a CPS context implies having a tight interaction with multiple hardware devices, i.e.,
sensors and actuators, in which gathering data from them could be problematic due to the presence

of many external environmental factors that must be taken into account, as well as the need

for having invasive measurement instruments directly in the field. Specifically, O5 stressed the

introduction of performance degradation (PC10) due to invasive measurement instruments: “The
challenge is that monitoring becomes invasive with respect to the system performance.”, as well as
the presence of noise in the collected data (PC12): “There are architectural ways to deal with that
so that if some sensor does not update on time, you still can make a relatively informed decision. But
even then, you have to make sure that the drift is not over a certain size because then you cannot
make reasonable decisions anymore.” O4 and O9 highlighted the presence of uncontrollable factors

in a CPS execution environment, making it challenging to close the DevOps loop. For instance, O4

reported: “Differently from other software applications, there is data that we cannot control such as
the presence of something on the floor that the robot is not able to perceive so it will fail. You have to
analyze the video data and this is very hard.”
Simulators. This category groups five challenges related to simulators’ issues and limitations

stressed more in the CPS domain due to the high environment complexity [74], which very often

results in having scenarios that cannot be emulated, such as in the presence of many external

environmental factors to be controlled. Specifically, the need to develop them in-house or the lack

of specific skills may lead to simulators that are limited in their functionality (PC13). For instance,

O8 stated: “we prefer to spend time in testing on real hardware instead of spending time in developing
complex simulators”, while O4 reported: “Walking is not so easy to simulate, so we need a real walking
robot for spotting bugs.” As shown in Table 8, it is a common habit to adopt a pipeline that relies on

both simulators and HiL in different build stages to overcome the above challenge. A clear example

of this happens in O7, where there is a build process made up of three different build stages, each

one adopting a specific execution environment (see Section 4.2).

A lack of knowledge about the device/system to simulate can lead to wrong assumptions, affecting

the simulator’s correctness (PC14) as experienced within O10: “This happens more at the beginning
of a project when you are not too familiar with the device and you make assumptions on how it works.”
These problems might have an impact on the whole CI/CD pipeline setting and trustworthiness,
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because it is possible to have deviations of themonitored system behavior between the real hardware

and simulators.

As experienced by O5, the limited capability to simulate real-time properties (PC15) hinders the

applicability of simulators or at least raises the need for further tests on HiL. The latter is also

confirmed by O9: “for what concerns the simulation for the RFID we think that the simulation will not
give us any benefits due to their unpredictable behavior.”
Likewise PC13, the high level of interaction between different components (PC16) forces orga-

nizations to directly test feature interaction by using real devices, instead of simulating them.

Indeed, when using simulators for CPSs it is important to remark that they have to interact with a

too complex environment that must be simulated as well. As an example, O6 mentions problems

faced when simulating a car behavior “for the CAN data, what do you want to wish to happen here?
If you are driving around something you need to know how fast the wheels are turning, as well as
what the engine revolutions are together with other sensitive data you might pick up over the canvas.
There are a lot of details that are very application dependent.” Also in this case, as shown in Table 8,

organizations rely on pipeline configurations including different execution environments, i.e., five
out of eight organizations facing the challenge declare that this is a useful mitigation strategy (O2,

O3, O4, O8, O9).

If an organization has to test third-party software, as in the case of O1, there may be the need

to run the simulated environment on a remote machine which may turn out problematic to be

properly integrated into a local pipeline (PC17), due to network security restrictions. Such a scenario

typically occurs in the development of safety-critical systems (which very often are CPSs), because

the software needs to be tested by somebody different from the development organization. To deal

with this problem, O1 mentions the usage of “timeout” within the pipeline. As shown in Table 8,

O1 and O5 handle external simulator unavailability through timeouts, while O7 and O10 consider

this useful yet they do not use it. O1 also mentions they often “request some customization at the
customer side of their simulators. Sometimes it is accepted, most of the times not.”
HiL. This category groups four challenges related to issues and limitations of using HiL in the

CI/CD pipeline. As shown in Table 7, three out of four challenges in this category are experienced

by multiple organizations, while PC18 is organization-dependent. Specifically, O10 faces problems

with checking hardware availability before running tests (PC18): “One of the biggest problems, when
any particular hardware is involved, is that the hardware may either not be available, or it may be
switched off”.
From a different perspective, as experienced by O7, O8, and O9, deployment on HiL may be

challenging (PC19). Specifically in O8 “remote installation cannot be used with real systems” , while
in O9 “The other challenge is related to having a fully automated deployment over the customers’
server in which it is possible to have full control on what is going on and try to identify, as soon as
possible, failures/errors occurring during the deployment.”

Testing on HiL (PC20) is considered very demanding to achieve. O2 reports: “If you translate test
strategies to the hardware it is very demanding.” and this is mostly a consequence of limited human

resources being available. However, there are cases where testing on HiL is constrained by the high

cost and lack of scalability (PC21) of the hardware devices/systems “This costs and does not scale”
for O2, or “ it is very costly to test on trains” for O7.

As shown in Table 8, the study participants identified two possible strategies to deal with these

cost and scalability problems: (i) relying on a mixed pipeline where continuous builds run on

simulators and some periodic builds on HiL (used by O2, O4, and O9, and considered useful by O1,

O3, O5, and O8), or (ii) adopting the green build rule when transitioning between simulators and

HiL [15], as highlighted by O7: “Only when the tests in the virtual train are green can we move to
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the next step.”, and also used by O2, O3 and O4. The alternative would be, as pointed out by the O5

survey respondent, “working with virtual devices instead of real hardware devices.”
Flaky behavior. This category accounts for seven different root causes that may lead to non-

determinism in the build execution used for CPS development. Flakiness related to non-determinism

during test execution [89] has been largely studied [16, 46, 48, 58, 90] and approaches to detect

and cope with it have been proposed [47, 49, 59, 65, 87]. While similar to conventional software,

dependency installation within the pipeline (PC22) may result in pipelines having a flaky behavior,

e.g., for O4 “ROS uses GitHub repositories for dependency resolution so when GitHub or the repositories
are down our build jobs will fail due to the impossibility of resolving dependencies”, or else little

control over external resources (PC26), e.g., “the most important root cause we experienced is related
to the load on the server-side”, the root causes behind flaky behavior in CPSs may be different from

conventional software. Specifically, a CI/CD pipeline for CPSs can suffer from flakiness due to:

• The complex interacting environment (PC23), i.e., CPSs are systems of systems with tight

interactions among different components, e.g., for O2 “the complexity of [the] subsystems
whose features interact across many indirections may lead to non-deterministic behaviors” ;

• HiL unavailability (PC24), where without a proper check of the availability of hardware,

the build outcome might fail intermittently since the pipeline was not able to properly

communicate with the device, i.e., O10 reported: “We experienced flakiness in terms of non-
deterministic behavior mainly due to hardware not being available”. In this specific scenario, it

is important to properly discriminate between intermittent failures caused by communication

issues with the HiL from failures due to wrongly implemented functionality;

• Presence of noise in the measurements (PC25) when using HiL i.e., difficulty in removing the

effect of external environmental factors from the data read from the sensors, as experienced

by O5 and O10. Specifically, for O10 “Other times the charge level that you read out would go a
little bit higher or there is noise in the measurements”, while for O5 “you need to understand
what your sensors are sensing and what the acceptable range of inputs are” ;

• Network issues (PC27) where, for instance, glitches in the network lead to a connections

being lost as reported by O10, stressed more in the CPS domain where you need to control

among the communication occurring across a huge number of different hardware devices

operating in a complex environment;

• Simulators not coping with timing issues (PC28), e.g., O10 stated: “the last problem is related to
multi-threaded programming”.

For what concerns flakiness mitigation, as highlighted in Table 8, when the problem is related to

the lack of control over resources (PC26), the solutions adopted are (i) to change and fix the pipeline

configuration, i.e., O7 stated: “The misbehavior is reported back to the integration team responsible for
the Jenkins configuration to find a solution.” ), as well as (ii) to fix the root cause of the flaky behavior
within the code: “to not experience it anymore in the system” from O2. When the root cause of the

flaky behavior is in the networking (PC27), the organizations leverage the “usual” retries (O2, O4,

O5, O7, O10): e.g., “of course we have some retry for network issues” for O4, or “For what concerns
flaky connections, you have to be concerned about missed messages and retries” for O5, O6, instead

only considers it a viable solution. Furthermore, the respondent belonging to O2 mentioned as an

alternative solution the “introduction of quarantine builds together with an appropriate process of
how to deal with these tests”.
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4.3 RQ2: How relevant are the identified CI/CD challenges/barriers and their mitigation
for practitioners involved in CPS development?

This research question describes the results of the evaluation of the findings in RQ1 made through

an external survey leveraging practitioners that have not been involved in the semi-structured

interviews. Note that we have only validated the barriers and the pipeline-related challenges

together with their associated mitigation strategies.

As regards the five barriers encountered when trying to configure a CI/CD pipeline for CPS

development, by looking at the results in Figure 3, we found that among the participants who

answered each question, the limited number of human and software/hardware resources together

with the presence of complex non-functional requirements to be checked within the pipeline are

the ones felt as more relevant (> 72%). Furthermore, while 30 out of 55 respondents still consider

as relevant the barriers dealing with security aspects hindering the inclusion of HiL in the CI/CD

process, 31% do not consider such barriers as a real impediment. All the three mitigation previously

identified were considered relevant by the survey participants. Specifically, the adoption of test

case prioritization techniques is predominant (31 out of 55 respondents), followed by the usage of

simulators or mock-ups (28), and the usage of incremental builds (17).

B1: Limited human resources

B2: Limited sw/hw resources

B3: Complex non-func. requirements

B4: Security configuration prevents CD

B5: HiL not usable for safety/security reasons

Responses (cumulative)
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Not Relevant Does not Apply

Fig. 3. Results of barriers perception

Figure 4 shows the results of the survey in terms of the six challenges belonging to the Pipeline

Properties category. Unsurprisingly, 47 out of 55 respondents consider the long build execution

time as a relevant challenge. Also, while from the semi-structured interviews the remaining five

challenges were experienced by one or at most two different organizations, the survey indicates

how some of such challenges are felt as relevant by more than 69% of our participants. These are (i)

the need to properly estimate the build time before timing out the CI/CD process, (ii) the difficulty in

properly configuring static code analysis tools, and (iii) the presence of a CI/CD configuration highly

coupled with the environment. Regarding the impossibility of having access to the production code,

if we do not consider the seven participants reporting that this challenge cannot apply to their

context, ≃ 31% of the respondents do not consider it as a relevant challenge.

Moving onto the mitigation strategies, more than half of our respondents (30) rely on test case

prioritization techniques, 28 rely on parallelization, 26 rely on nightly builds for time-intensive

tasks, while 18 consider useful the adoption of incremental builds during normal working hours.

Finally, one participant reported a new mitigation strategy dealing with long builds where “we
simulate faster than in the reality where possible”, however, the same participant also points out
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the drawback of this mitigation, i.e., having different build outcomes when using simulators and

HiL—“this can introduce subtle timing differences in the test results”.

PC1: Long build execution time

PC2: Build time estimation

PC3: SCATs configuration

PC4: Lack to access production code

PC5: CI/CD config. coupled with env.

PC6: Reusability of build artifacts
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Fig. 4. Results of pipeline challenges perception: Pipeline Properties

For what concerns pipeline-related challenges in the Thoroughness category dealing with

ensuring the overall accuracy and completeness of the CI/CD pipeline (see PC7, PC8 and PC9 in

Figure 5), differently from the RQ1 results, more than half of our survey respondents consider

the presence of a development environment detached from the execution environment as a real

impediment to set up a CI/CD process for CPSs. This is also true for the difficulties in detecting

deployment-related errors (39 respondents). The above differences stress the impossibility to have

a “standardized” CI/CD configuration that can be applied to almost all the CPS domains. While

all participants considered the adoption of containerization a viable solution to overcome these

challenges, one newmitigation strategy comes up from a survey participant which, for PC8, suggests

the possibility of developing and adopting static analysis tools able to analyze (and detect errors

from) deployment scripts.

Moving to the three challenges related to closing the DevOps loop by gathering data from

the hardware, i.e., real environment, by looking at the bottom part of Figure 5 it is possible to

state that more than 65% of the respondents consider them as relevant, with the presence of

uncontrollable factors to account for having the highest percentage (≃ 71%). While from RQ1 we

did not find any mitigation strategy for these challenges, we obtained some feedback from eight

survey respondents. First of all, it could be possible to continuously analyze the logs also after the

operation has started. At the same time, one survey respondent points out the possibility to make

the monitoring less impactful on performance by “disabl[ing] invasive logging methods”. For what
concerns the presence of uncontrollable factors, one respondent pointed out how using continuous

testing allows to “better overcome the problem of the uncontrollable factors in real life systems and
usually diminish the future costs and improve efficiency”. There are also mitigation strategies dealing

with the overall CI/CD process. Specifically, one respondent mentions the possibility to use parallel

DataOps observability pipeline, i.e., “we use ELK, but it is still under debate/migration”. While a

different respondent highlights as possible mitigation the presence of “cross-functional teams which
bring in more collaborations and ideas”.

Figure6showstheresultsoftheexternalvalidationsurveyforthechallengesdealingwiththe

inclusion of simulators in the CI/CD process. As can be seen from the figure, at least 36 out of 55
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PC7: Development env. detached from execution env.

PC8: Detecting deployment errors

PC9: Continuous installation

PC10: Closing the loop-performance degradations

PC11: Closing the loop-uncontrollable factors

PC12: Closing the loop-data collection from the field
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Fig. 5. Results of pipeline challenges perception: Thoroughness

respondents considered such challenges relevant. The only exception is the challenge of dealing

with the impossibility of accessing the third-party simulators adopted in the pipeline (PC17). In this

case, 13 respondents mention that it does not apply to their context, meaning that the simulators

are mainly self-developed within the organization they belong to. In terms of mitigation, instead,

(i) 28 respondents use a CI/CD process made up of both simulators and HiL for overcoming the

presence of limited functionality, (ii) 24 use both simulator and HiL for overcoming the complexity

due to a tight interaction among different components and the environment, and (iii) among the 31

respondents struggling with the simulators’ accessibility, 14 adopt the “timeout” feature.

PC13: Limited in functionality

PC14: Functional correctness

PC15: Deal with real-time properties

PC16: Interaction with the env.

PC17: Accessibility
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Fig. 6. Results of pipeline challenges perception: Simulators

As regards the four challenges dealing with the inclusion of HiL in the CI/CD process, as shown

in Figure 7, the costs and scalability challenge is the predominant one (49 out of 55 respondents),

followed by the need to check for HiL availability (41), and the complexity for automating both

deployment and testing activities on HiL (42 and 40 respondents for PC19 and PC20 respectively).

No new mitigation strategy comes up from the survey results. However, 28 respondents confirm

that the adoption of simulators and HiL in different build stages can help to deal with costs and

scalability issues, while 19 adopt the “green-build” rule, i.e.,, HiL can only be considered when the

CI/CD process relying on simulators has a green status.
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PC18: Availability

PC19: Automated deployment on HiL

PC20: Test automation on HiL

PC21: Costs and scalability
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Fig. 7. Results of pipeline challenges perception: HiL

The last category of pipeline-related challenges being validated through the external survey

considers the root cause for flaky behavior experienced in the CI/CD process. As shown in Figure 8,

for each challenge we have that more than half of our respondents consider it relevant for CPSs.

Moreover, 49 out of 55 respondents consider challenging to deal with HiL availability and simulators

not coping with timing issues. Unsurprisingly, the two challenges being not specific to the CPS

development, i.e., PC22 and PC26, are the ones where several respondents (13 and 12 respectively)

mentioned that it is not relevant. Fixing the pipeline configuration is the most frequent mitigation

strategy, as indicated by 31 respondents, while no further mitigation strategies are suggested.

PC22: Dependency installation

PC23: Features' interaction

PC24: HiL availability

PC25: HiL inputs

PC26: Lack of control over resources

PC27: Network issues

PC28: Timing issues
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Fig. 8. Results of pipeline challenges perception: Flaky Behavior

Finally, by looking at the 15 answers to the open-ended question aimed at eliciting other chal-

lenges that we did not encounter in the semi-structured interviews, we gathered the following,

additional challenges:

(1) Guaranteeing the supply chain security (three respondents);

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.



1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

Continuous Integration and Delivery Practices for Cyber-Physical Systems: An Interview-Based Study 1:29

(2) The impossibility to use simulated environments unless the quality of specific data types is

ensured (one respondent);

(3) The need to have field tests included in the DevOps cycle even with a lower frequency as both

simulators and HiL can only cover a fraction of what usually happens during real field testing

activities (one respondent);

(4) The difficulty to implement a “quick-retry” feature in the CI/CD process, to selectively rollback

at specific stages mainly because this is highly dependent on the infrastructure language

(one respondent); and

(5) The difficulty to reduce the build execution time when dealing with HiL due to the need for
checking the HiL availability, i.e., “very long hardware boot times” (one respondent).

5 DISCUSSION AND IMPLICATIONS
This section summarizes the main findings and implications of our study. We divide the section

into implications for (i) developers, (ii) educators, and (iii) researchers.

5.1 Implications for developers
We start by discussing what, based on insights learned from this study, developers must consider

when trying to set up and evolve a CI/CD pipeline for CPS development.

Simulators are necessary to achieve continuous builds on CI/CD pipelines. Performing

CI/CD on real hardware is often unfeasible, for different reasons. The automated deployment may

be complicated, or the hardware may not be available onsite. Also, organizations doing V&V tasks

only may have limited/no access to hardware, simulators, or even to the production code. Therefore,

simulation is often the only choice available. However, having a reliable simulator is challenging

for many CPS developers. While in some cases simulators come from hardware producers, in other

circumstances the only option is to develop them in-house. This requires the allocation of suitable

skills and efforts in the development process. Failing to do so would have severe consequences

on the ability to setup not only CI/CD, but even simple test automation without relying on the

hardware directly, when this is possible.

Balancing the use of simulators and HiL in the pipeline. Deploying and running CPSs on

HiL at every change could be troublesome, expensive, and may result in slow feedback. At the same

time, for the reasons mentioned before, it is unlikely that developers could fully trust a quality

assessment performed solely on simulators. Therefore, it is highly desirable to configure staged

builds relying on different execution environments, namely (i) continuous builds on simulators,

aimed at providing fast feedback to developers (e.g., about the outcome of static checks, or possible

integration issues discovered by tests); and (ii) periodic (e.g., nightly) builds on HiL, to verify

whether the assumptions made on simulators are still valid, checking properties that often cannot

be verified on simulators (e.g., response time properties), testing the system in scenarios that cannot

be easily simulated, or verifying the compatibility of the software against hardware variants not

fully reproduced by the simulators.

Late delivery is the crux of CPS development. For the reasons explained above, CPS software
tends to reach target production hardware very late in the development. This has several negative

side effects, including the late discovery of defects that could not be identified through simulation,

but also having a system that reaches the end user very late. Allocating sufficient effort, resources,

and competences to enable automated delivery is therefore highly desirable.

Having hardware experts onboard may be a plus. Based on what we learned from this study,

it is clear how CPS development may highly benefit from the availability of both software and

hardware experts so that it is much easier to self-develop simulators whose behavior is as much
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as possible like the one of the real device. This would help to reduce the differences that might

be observed in terms of build outcome, e.g., the number and type of failing tests, when running

the process on simulators and HiL. On the one hand, the presence of hardware experts in a team,

when available, has been found useful by our interviewees. On the other hand, a context in which

both hardware and software evolve makes tasks such as change impact analysis more challenging

to handle, e.g., to determine whether and to what extent a hardware change would impact some

software components, or some software evolution would hinder the integration of certain pieces of

hardware.

5.2 Implications for educators
In the following, we discuss what, based on insights learned from this study, would be expected for

what concerns the creation (or enhancement) of curricula related to CPS development.

Blended curricula with hardware and software competencies. Any effective DevOps

organizational setting or management of a CI/CD pipeline likely requires software engineering

expertise other than what is currently taught in regular graduate-level courses, e.g., knowledge
about the hardware, software-hardware interplay, and domain standards expertise. On the one

hand, university curricula shall strive to include such aspects in their teaching. On the other hand,

practitioners should more actively engage in standardizing CPS application lifecycle management

practices, patterns, and tools to enable the aforementioned educational augmentation exercise.

Specialized courses on simulator development. In a context for which CPS specific curricula

are highly desirable, one competence assumes paramount importance, and this is the development

of simulators. The latter requires combining knowledge from physics, automated control (e.g.,
system dynamics, discrete systems), and virtual reality (many simulators leverage 3D or even

virtual reality environments, similar to those used in video games).

Teaching CI/CD in complex, heterogeneous environments. CI/CD is oftentimes taught

in the context of conventional system development. To favor the adoption of CI/CD for complex

systems, and in particular for CPSs, courses on CI/CD should touch on topics related to (i) coping

with complex hardware or simulators attached to the pipeline, and (ii) pondering fast builds with

the need for testing a CPS on multiple devices (or simulators), where this is appropriate. Also, while

conventional CI/CD literature advocates “building at every change” [13], CPS developers need to

face with reality, and therefore such a common wisdom need to be revisited. Similarly, we found

that for large and complex CPSs “retest all” does not work, and therefore incremental builds are a

widely adopted practice.

Software architectures for CPSs. CPSs heavily interact with HiL interfaces (and sometimes

multiple HiL, having different characteristics and varying APIs) and, during the development

process, with simulators. The latter may be updated or even replaced by better ones. From an

educational perspective, it is desirable that courses related to software architectures properly treat

such scenarios, discussing the proper architectural choices or design choices allowing an easy (even

at run-time) replacement of different kinds of HiL and simulators in the software systems. Software

components of CPSs may need to be deployed on, or interact with, multiple types of devices (e.g.,
a control software may be deployed on different car models). This requires that developers must

have suitable knowledge of product line engineering and follow related practices when designing

CPSs. Furthermore, it is desirable to teach prospective CPS developers about how to design a CPS

architecture to make a system scalable, but also secure, and easy to be monitored and tested.

5.3 Implications for researchers
Implications for researchers aim at developing approaches and tools to support developers in setting

up, maintaining, and using CI/CD pipelines for CPSs.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.



1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

Continuous Integration and Delivery Practices for Cyber-Physical Systems: An Interview-Based Study 1:31

The target environment of CPS is multifaceted and diversified, making CI/CD pipelines
complex and expensive. Often a CPS may target multiple devices, as well as both HiL and

simulators. This may entail a build matrix against which the pipeline must be run, i.e., the matrix

describes different combinations of parameters (e.g., simulator models, HiL instances, other settings)

for the build. That being said, it is possible that, while some changes may entail different behavior

on different matrix instances, other changes do not, and therefore running the build on all possible

configurations would be a waste of resources. On the one hand, this stimulates research towards

approaches aimed at recommending the creation of a suitable build matrix system based on similar

systems, and in general systems targeting similar devices. Also, these kinds of recommenders

should be able to point out the need for maintaining build matrices by learning “from the crowd”,

e.g., the need to prune out obsolete environments and add new ones. On the other hand, proper

approaches should be developed to trigger builds on different matrix instances based on the changes

performed.

Coping with multiple root causes for flaky behavior. The complex technological stack,

the behavior of simulators and HiL, their (sometimes uncontrollable) unavailability or lack of

accessibility, and the mechanisms used to collect test outputs (e.g., sensors or video cameras)

require not only to better monitor all possible elements causing flakiness, but also to combine

and enhance various mitigation approaches, including checking the status of HiL/simulators, and

leveraging the “usual” retries. As indicated by the participants, flaky behaviors in CPSs are often

due to the complex interacting environment (e.g., lack of complete control on the hardware status)

rather than on the order with which the tests are executed. Hence, flaky test detectors that target

flaky tests considering their ordering [24, 88] are not effective for environment-dependent flakiness.

CPS-specific detectors could be inspired to those for undetermined specifications [87], or based on

machine learning models [59] but trained on CPSs data and encompassing CPS-specific features,

e.g., changes to simulators or HiL configurations, as well as their build logs. To improve CI/CD

infrastructures for CPS, it may be useful to develop recommenders, integrated into the pipeline,

able to support developers in the identification of flakiness behavior, and identify its root causes.

Challenges in automated test execution. We found that one of the reasons that impede

full CI/CD automation for CPS is the difficulty to automate test execution, especially when the

system is deployed on the hardware. That is, the system receives inputs from sensors and interacts

with actuators. Full test automation requires (i) tools, such as scenario generators or record replay

tools able to seed inputs to the CPS, and (ii) the capability of CI/CD infrastructure to support the

execution of such tools. Very often these tools are GUI-oriented and not particularly well-suited to

be integrated in a CI/CD pipeline.

Challenges in automated oracle creation. The CPS execution environment (e.g., simulators

or HiL) drastically complicates the definition and automatic check of oracles. The latter requires

to ponder several factors: (i) the test scenario (or requirement to assess); (ii) the accepted level

of realism in simulations; (iii) the readiness level or maturity of the hardware proxies used in

the pipeline; and (iv) the output sources, e.g., based on actual sensors’ data or mocking/synthetic

data. Besides, the oracles consist of value ranges (e.g., time intervals) instead of scalars, or they

may be signals that need to be properly processed, as highlighted in existing studies on testing

for CPS [6, 53]. It may be important to account for non-functional properties, including timing

ones [80]. Also, to cope with inputs originating from sensors or even from a multimedia recording

of the CPS execution (as pointed out by O3 and O4), it is desirable to develop approaches for pattern

recognition [28, 38, 72].

Need for specific fault models. Looking more broadly at configuring V&V phases within

the CPS pipeline, respondents would like to early discover some defects through static analysis.

This requires a clear fault modeling in the CPS context (as the ones for autonomous cars [26] and
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unmanned vehicles [81]), but also to develop CPS-specific linters, which can be integrated into the

CI/CD pipelines to allow early detection of build failures, hence avoid to perform expensive testing

activities, and hence long builds, which constitute a major problem for CPS developers according

to our study results. Moreover, CPS-specific fault models can be useful for other purposes, not only

to facilitate root-cause analysis [26], but also to create domain-specific mutation testing strategies,

as it has been done in other cases such as deep learning [36] or mobile development [19, 76].

6 THREATS TO VALIDITY
Threats to construct validity concern the relationship between theory and observations. The in-

terview participants might have misinterpreted our questions, or they might have reported their

personal (and biased) views of the phenomenon. While this is typical for interview-based stud-

ies [17, 33], we mitigated the threat by using semi-structured interviews and following up with

clarifications every time we realized this was needed.

There could be threats to construct validity related to how survey respondents interpreted

the survey questions and provided their answers. We have mitigated this threat by providing a

self-explanatory description of the challenges, barriers, and mitigation strategies. Also, we left them

the possibility to provide open comments to also point out cases of misunderstanding. However,

based on the provided answers, we had no evidence of cases where respondents had difficulties in

understanding the posed questions. In addition, for the external survey, we leveraged demographic

information to filter out responses where the information provided made it evident that a participant

had not the required knowledge.

Threats to internal validity concern confounding factors that could have influenced our results.

To limit subjectivity in our coding, we employed multiple coders, computed inter-rater reliability,

and used follow-up discussions not only to resolve cases of inconsistent coding, but to review

any single coding. We elicited codes and relations only based on explicit occurrences of words

in the transcripts. However, we could not exclude imprecision due to our interpretation of the

participants’ answers.

Another threat could be the low representativeness of the respondents in the semi-structured

interviews and, to some extent, in the external survey. In the first case, participants were obtained

through personal contacts, as we need people available to participate in a relatively long interview.

However, such participants cover a relatively diversified set of domains (8). As for the survey, the

use of snowballing and especially the use of Prolific allowed us to mitigate a possible bias due to

the direct personal contacts.

Threats to reliability validity relate to the extent to which results can be reproduced. To achieve

this goal, we (i) have described the data collection and analysis process in detail, and (ii) provide in

our replication package the detailed outcome of the coding phases.

Finally, threats to external validity concern the generalizability of our findings. The interview-

based study has been conducted involving 10 organizations developing CPS for 8 different domains.

We are aware that the obtained findings may not generalize to different organizations and domains.

Indeed, from the performed interviews, we found that CI/CD pipelines were extremely different from

case to case. Therefore, as in other interview studies conducted within a limited set of organizations,

and also considering the study topic, the generalizability is relatively limited. To mitigate this

threat, when addressing RQ2 we have validated the findings collected in RQ1 through an external

survey with practitioners different from the ones involved in our semi-structured interviews, and

belonging to 9 domains. Still, it is possible that, also in this case, as Figure 2 shows, some domains

are better covered than others, as well as some are still not covered at all.
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7 CONCLUSION AND FUTUREWORK
In this paper, we investigated the adoption, usage, and evolution of CI/CD pipelines for CPS

development, by focusing on challenges and barriers that DevOps teams face when setting up

or evolving CI/CD processes for CPS development highlighting that the configuration is highly

dependent on the domain. The study is based on interviews from 10 organizations developing CPSs

in 8 different domains, followed by a member-checking survey within the same development teams,

and an external validation survey involving 55 participants from 9 domains. By performing an

open coding on the interview results, we have elicited a set of challenges/barriers, along with their

mitigation strategies.

The obtained findings are a first step towards supporting DevOps teams in properly using and

configuring CI/CD for CPSs. Also, they have implications on how to enhance education/training

for CPS developers, and trigger future research. Based on that, future work aims at triangulating

this study through other channels, e.g., in-field observations, and at investigating bad practices in

applying and maintaining CI/CD for CPSs. In particular, our goal will be to automatically detect, by

analyzing CI/CD pipeline configurations and run-time data, problematic situations (“smells”) that

would require an intervention on the DevOps side, and, for what possible, automatically suggest

repairs.
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APPENDIX - DETAILS ABOUT THE INTERVIEW PARTICIPANTS
The interviews’ transcripts together with the labeling procedure helped us in forming organization

profiles, focusing more on how the interviewed companies set and maintain a pipeline for CPS

development.

In the following, we detail the development process of the interviewed organizations, focusing

more on the status of their CI/CD pipeline in terms of (i) build triggering strategies (e.g., continuous
or periodic), (ii) co-existence of multiple pipeline configurations (e.g., for different devices) and
the frequency of changes occurring to them, (iii) the phases being automated/executed within the

pipeline, and (iv) the usage and setting of HiL and simulators within the pipeline (e.g., a pipeline
can be a mix of different environments used in different circumstances). In the following, for

each organization participating in the interviews, we describe—by leveraging the codes elicited

during the interviews’ transcripts analysis phase—the CPS development process and especially the

adoption of CI/CD pipelines and, in general, of build automation
3
.

O1 (Aerospace)
Context: O1 is involved in verification and validation (V&V) tasks for aerospace software (i.e., on-
board software for satellites), hence their CI/CD pipeline is only for V&V and not for development.

This is because, due to the safety integrity level (SIL) of the CPS, the development and the V&V

teams and pipelines must be kept distinct [22]. O1 relies on conventional programming languages

dictated by standards in the aerospace domain (“We mainly use ANSI C-99 following the MISRA
rules” ). This implies the need for certifying software (i.e., following the Motor Industry Software

Reliability Association (MISRA) standards [1, 7]).

Pipeline status: O1 has started adopting CI/CD practices less than one year ago, mainly due

to a limited culture within the team about CI/CD principles. Moreover, it does not have a strict

separation of roles for what concerns the type of interaction with the pipeline (“a developer who
needs to customize a CI/CD pipeline by simply using yaml files can customize it directly” ). O1 does not

rely on build matrices with jobs related to different environment variants since “the pipeline does
not have to change/evolve based on the changes in the technologies being used (version for compilers
and or programming languages), the aerospace domain follows the waterfall process. So everything is
[frozen]: no changes may occur later on in the process.”
Automated tasks: Due to the application domain and the related standards and certification

constraints, the pipeline compiles the software provided and developed by the customer, relies

on SonarQube for (i) checking the fulfillment of the MISRA rules for certification, (ii) identifying

maintainability problems (i.e., “we also have non-functional requirements expressed in terms of rules
available in SonarQube” ) mainly related to the presence of duplicated code, and (iii) identifying bugs

as soon as they are introduced, and executing unit and robustness tests to “check how the system
behaves/reacts in the presence of unexpected inputs ([e.g., ] inputs having values out of the admissible
range)”. Furthermore, considering the overall scope of the pipeline, its triggering is manual, even if

there are also nightly builds used for running test suites requiring a long time to complete. It is

important to note that the testing criteria to derive the test cases to include within the pipeline are

expressed from the customer as non-functional requirements (“ i.e., use MC/DC for deriving the test
suite” ). Finally, O1 has to consider time constraints for the pipeline setting to deal with possible

issues that may arise when launching the simulator (e.g., memory leaks or impossibility to access

the simulator).

HiL and simulators: O1 cannot involve HiL in the pipeline, as it would require a clean room not

accessible from the outside. Instead, it relies on third-party simulators dictated by the customer. This

3
The interested reader could find the code mind maps in the replication package [84].
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is because the customer follows “a framework for simulation aimed at hosting different simulators
for different satellite models for the digital twin of the satellite”. Relying on third-party simulators

helps in reducing the costs/efforts needed to develop the simulators from scratch, as well as, helps

in guaranteeing the trustworthiness of the outcome being produced and provided to the customer.

Of course, the level of trustworthiness increases for those cases where the simulator is provided by

the same vendor of the hardware device that must be simulated.

O2 (Healthcare)
Context: O2 is a large organization involved in the healthcare domain: it provides Computed

Tomography (CT) scanners for clinical use. As regards the development process, O2 has a team for

each component being developed —around 17 different teams working on 70 branches— together

with an integration branch where all the other branches are integrated into a “single joined point”.
Furthermore, each team adopts conventional programming languages, i.e., mainly C# and C++.

Pipeline status: O2 already has a CI/CD pipeline in place for CPS development that has been

introduced 4 years ago, and they are still improving it. Furthermore, based on its application

domain, O2 is constrained to “follow medical application frameworks providing a base set of rules
in terms of how to build applications and how to integrate them”. The latter requires the adoption
of processes aimed at verifying whether or not the overall development process adheres to the

regulatory standards for developing medical applications.

Automated tasks: O2 adopts both incremental and nightly builds. Of course, the tasks involved in

the different types of builds, as well as, the execution environment involved in them vary. Specifically,

nightly builds leverage HiL, and run three different types of testing, namely unit/component, sub-

system, and system testing. To provide developers fast feedback about the impact of their changes,

O2 relies on incremental builds executing only a subset of the whole set of functional tests — by

doing “impact based testing to figure out the impact of the changes and select the tests to be executed
based on the impact.” To control the overall build execution time, O2 encourages developers to push

small changes leading to “small sets of tests to be executed.” Finally, both incremental and nightly

builds run static code analysis tools mainly aimed at identifying maintainability and security flows

in the code.

There is a specific type of build aimed at checking performance requirements like “test whether
each component (some components) stays within the resource limits they are assigned to”. The outcome

of such a build is compared over time to identify and monitor possible performance degradation

within the whole system. Moreover, O2 has a specific DevOps team for checking the fulfillment of

security requirements, even if this is not done continuously while only “near the finalization of the
product”, and it is not automated.

HiL and simulators: As explained above, both the triggering strategies adopted by O2 and the

tasks being automatized within each type of build influence the choice between using simulators

and/or HiL. Nightly builds have an automated deployment on a “real” CT Scanner “without reusing
existing artifacts while building all of them from scratch in a clean environment”, for executing the
whole test suite in a real production environment. Note that, when talking about “real” CT Scanner,

O2 refers to “physical systems that are equivalent to the real hardware in the CT Scanner but not
connected to anything around it which has a simulator running on it”.

For what concerns simulators, O2 relies on self-developed simulators — there are suitable knowl-

edge and skills to properly develop simulators, i.e., O2 develops both the software and the hardware.

However, at the moment, O2 does not use simulators (“mainly used for functional testing only” ) for
checking non-functional (i.e., performance) requirements.
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O3 (Acoustic Sensors)
Context: O3 is involved in CPS innovation for the industry, among others the development of the

SPL Noise Meter Board, i.e., a low-cost, high quality, electronic sensing board capable of measuring

noise of the environment. It does not have any separation of roles between the members of the team

(“The team is the company.” ), however, the team is composed of both software and hardware experts

who work together, simplifying the overall development process, in particular for those activities

requiring the integration and communication between software and hardware components (“Useful
for sensors’ integration... [it] help[s] having knowledge about the hardware components, how they
work and how it is possible to communicate with them.” )
O3 adopts a pull-request (PR) development process with one branch per feature (i.e., “Several

branches for maintaining and developing different features.” ) Furthermore, even if it does not have

strict guidelines in terms of coding standards, O3 attempts to adopt similar coding styles within

each branch. Finally, it relies on conventional programming languages, i.e., Python for testing and

C, C++ for micro-controllers development.

Pipeline status: At the moment, O3 does not have a CI/CD pipeline for CPS development.

Automated tasks: Even if O3 does not have a CI/CD pipeline in place, the deployment is

fully-automated, while the testing is still manual mainly due to the impossibility of automating the

oracle specification, in particular for testing acoustic signals. Furthermore, even if O3 does not have

certification constraints for the developed code, they need to cope with certification constraints

“for the acoustic signals.”
HiL and simulators: O3 only uses real hardware devices, even if within the organization there is

the wish of including simulators in the process to test the acoustic signal (i.e., the main outcome of

their product) in a controlled environment, i.e., “removing noise from the surrounded environment.”

O4 (Robotics)
Context: O4 is involved in the development of autonomous robots, and is made up of several

development teams where each team accounts for both hardware and software developers. Fur-

thermore, it adopts a PR development process with one branch per feature (i.e., “We have a branch
for each feature that needs to be implemented and/or improved and we use PRs to merge the work in
the stable release branch.” ) Based on the application domain, it mainly adopts C++, together with

Python for users’ interfaces and for interacting with the hardware devices.

Pipeline status: O4 has a fully containerized (using Docker) pipeline for CPS development.

It relies on continuous and nightly builds, even if they are not used for running time-intensive

tasks, i.e., “(that is not so expensive in terms of execution time)”, while for running regression testing

activities on already packaged components and for deployment to the customers. Furthermore, the

CI/CD configuration is pretty stable meaning that, even if each branch may rely on a customized

CI/CD process, the configuration does not have to change over time.

Automated tasks: Our interviewee mentions the execution of static code analysis tools to

inform developers about code quality degradation, and unit tests relying on simulators. Only when

a PR is peer-reviewed and there are no failures in the entailed CI/CD process, it is possible to merge

the change on the stable repository and enact a release process for shipping the product to the

customers. O4 monitors the overall quality of the development process in terms of static analysis

metrics and code coverage from the unit test execution. The application domain does not introduce

certification constraints, i.e., “If you want to sell a robot you do not need to have a certified robot”,
while it hinders the automation of non-functional testing within the pipeline. Specifically, our

interviewee mentions the manual execution of reliability and safety tests “running the robot a long
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time with a guy supervising the test execution to understand when and why the robot starts to not
work anymore”, or “guaranteeing that once pressing the stop button the robot actually shuts down”.
HiL and simulators: O4 relies on third-party simulators and HiL. One point raised by our

interviewee is related to the partial usage of Docker on the hardware so that it is possible to run

the robot in a privileged mode and switch between software versions quite easily: “each one may
choose the version of the software that has to be run over the robot.”

O5 (Automotive)
Context: O5 is a large company operating in the automotive domain working on the software-

focused driving platform. The development process is organized into three different teams each

one with a specific goal: “one working on virtual machines, one working on web services because we
provide DevOps solutions for embedded systems, and finally, we have a small team working on customer
delivery with the goal of adapting our tools to the customers’ needs.” This is the only organization in

our study relying on real-time languages, i.e., real-time Java to cope with scheduling requirements

of embedded systems.

Pipeline status: O5 already has a CI/CD pipeline in place mainly for deployment purposes (“we
are able to support updating software on devices on the fly” ), even if it is working on improving it —

“it is still kind of an infancy we are still working on improving”.
Automated tasks: O5 mainly uses the pipeline for deployment. However, differently from other

organizations, O5 relies on virtual machines instead of using containers for several reasons: (i)

better control over the resources (i.e., “the ability to enforce our resource usage inside the virtual
machine while you do not have quite the same extent with a container” ), (ii) versioning capability, i.e.,
“when a new service comes in, you register it so it is easy to start a new version of this service, run down
the old one and switch over the new one during run-time”, and (iii) memory safety guarantee, i.e.,
“by looking at a recent post by both Google and Microsoft we found that around 70% of the security
violations are due to failures of memory safety. So by using a garbage-collected environment, we can
prevent those issues from occurring.” Going deeper into how the deployment process works, O5 first

creates the virtual machine, (i.e., emulating the virtual environment), then the OSGi infrastructure,

and finally it tests individual modules. The latter means that O5 does not test all the developed

modules together since it “deploy[s] individual bundles to a platform.”
For what concerns the verification of non-functional requirements, O5 performs security and

performance testing, even if they are not included in the pipeline. Specifically, for real-time systems

it is important to monitor the impact of each change on performance properties to be able to

identify, as soon as possible, the change introducing performance degradation, i.e., “we have various
performance tests that we run regularly to track our performance as the system evolves.”

HiL and simulators: Since O5 develops software for embedded entertainment in the automotive

domain, the HiL is only available for a final validation on the customer’s side: “then employ our
customer for the last mile”, so most of the work is done relying on virtual environments.

O6 (Aerospace)
Context: Similar to O1, O6 operates in the aerospace domain, and is mainly involved in the

development and refining of the routing algorithm for the Free Route Airspace (FRA). For what

concerns the programming language being adopted, O6 relies on conventional languages: “C and
C++ [are] used for the back-end.”

Pipeline status: O6 already has a CI/CD pipeline mainly for deployment and testing purposes,

that is under continuous improvements. Moreover, our interviewee mentions that the pipeline is

more an MLOps than a simple DevOps pipeline.
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Automated tasks: Among the phases being automated there are: (i) static code analysis for

identifying maintainability flows and spotting bugs as soon as they are introduced, (ii) unit testing,

(iii) integration testing, and (iv) deployment. Furthermore, the execution of non-functional testing

activities is mainly carried out manually and outside the pipeline, due to the high complexity of the

real-time operating system under development. Similarly to O1, it is required that the developed

code satisfies strict certification requirements that are mainly checked by relying on code coverage

tools. Differently from other organizations, O6 does not rely on nightly builds, meaning that also

time-intensive tasks are executed at each change, i.e., “even the slow builds are continuously built.”
O6 recommends developers to use private builds before pushing their changes on the stable release

branch, at least for what concerns the execution of unit testing. Finally, the pipeline provides

a monitoring mechanism for what concerns aspects of the real-time operating system such as

scheduling and memory that “gives us the possibility to collect feedback/evidence that may help us in
obtaining the certifications.”

HiL and simulators: O6 relies on both simulators and HiL, however it does “not have simulators
and HiL in the same pipeline mostly for certification issues.” Specifically, it is possible to rely on real

devices only when there is enough trustworthiness about the software in terms of correct behavior,

as well as the absence of crashes gained by relying on self-developed simulators.

O7 (Railways)
Context: O7 is involved in delivering software for railways, i.e., Train Control Management System

(TCMS), and similarly to what is reported for the aerospace domain, due to the safety integrity

level of the software under development, developers and testers must be different (i.e., “Testers
and Developers are in separate teams in presence of new functionality to be implemented both start
together to implement and write test cases.” )
Pipeline status: O7 already has a CI/CD pipeline in place for CPS development — “introduced

two years ago” — that, at the moment, is in a continuous improvement state since it does not

automatize the whole development process (i.e., “The deployment on the real train or on the hardware
test track is not automated at the moment even if we are working on making it automatic.” ) In terms of

programming language, the interviewee mentions the need of adapting the programming language

to the device on which the software has to be executed, however, they mainly rely on conventional

languages.

Based on the application domain, O7 adopts staged builds following the “green-build rule”. In the

first stage, the build process is executed on a virtual machine, i.e., “ [a] virtual train, software running
on a PC that should behave like it does on a real train”. Once a change occurs on a specific component

the related build process is enacted and, in presence of a green status, all the components are

deployed together so that it is possible to enable the execution using the virtual train (“the devices
are run in some kind of containers and we have frameworks building and connecting the whole set of
devices and components.” ). If the build process ends with a successful state, it is possible to move to

the next stage that relies on the hardware test track — i.e., “where we have the whole set of devices
and even some more that we do not have in the virtual train.” Finally, if the build process for the

second stage ends with a green status, it is possible to run the last stage relying on a real train.

Note that, each device/component has a proper CI/CD configuration.

Automated tasks: O7 uses the pipeline to automatically test basic functionality (i.e., “We test
specific train functionality such as whether we should activate the train in [a specific] mode” ), as well
as, the interaction between different components/devices (i.e., “we have a long sequence of events for
each test that involves different devices and components so we are mainly doing integration testing.” )
The test suites used in different stages of the build process may be different since “for some test
cases, we are not allowed to rely on the virtual environment while we must consider the hardware track
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or a real train.” At the moment, O7 has automated deployment within the pipeline only for the first

stage, i.e., relying on the virtual train (for which the overall build execution is “around one hour and
[a] half” ), while it is done manually for what concerns the other two stages: hardware test track

and a real train. Testing against non-functional requirements is also done manually, because of the

high variability and complexity of the environment.

Going deeper into how developers interact with the CI/CD pipeline, O7 enforces developers to

run private builds before pushing their changes on the main stable repository. The private builds

are aimed at executing the same test suite later executed on the CI/CD servers — “for the moment we
cannot configure the number and type of tests to be executed locally”. Furthermore, the “green-build

rule” is used for determining the development tasks: “in presence of a failure all developers are
stopped until the build becomes green again.”

HiL and simulators: O7 adopts both simulators and HiL in different stages of the build process,

with the use of HiL occurring only in the last stage of the pipeline.

O8 (Railways)
Context: The application domain of O8 is railways, and in particular the development of a specific

component used for transmitting data between on-board and ground applications. O8 uses C and

C++ (i.e., conventional programming languages), and it has strict constraints for what concerns

the production code that has to satisfy strict certification requirements, as well as the compliance

with the railway standards and specifications. The latter is mainly checked by relying on “a specific
complex tool that can be configured based on specifications and standards.”

Pipeline status: Due to the limited availability of human resources together with the complexity

and the safety integrity level of the application domain, O8 does not have a CI/CD pipeline in place

for CPS development and it has, in general, little automation in the development process.

Automated tasks: Only the adherence to standards and specifications is automated, while

functional “tests are written manually starting from requirements and system specification[s] but also
their execution requires a manual effort”. This is also the case for non-functional and integration

testing (i.e., “we have a set of testers in front of a screen who monitor and check for the presence of any
discrepancies about what is expected and what is instead observed while running the system.” ) Due to
the effort and time needed to manually verify the reliability of the software under test, functional

tests are executed at every change, while integration tests are only executed when the change

impacts the “interfaces with other modules/components.”
HiL and simulators: Due to the high cost of the hardware devices involved in this particular

application domain, O8 mainly relies on simulators that are self-developed (“we do not rely on third
party very expensive simulators” ). However, once per week, O8 performs a testing session with a

real “train running in a real environment with real traffic [and] possibly without people.”

O9 (Identification Technology)
Context: O9 is involved in “develop[ing] software relying on identification technologies such as
RFID [(Radio Frequency IDentification),] Bluetooth low energy or bar codes, other than mobile app

development for which there is a CI/CD pipeline used for testing and automated deployment on

the play stores. For what concerns the CPS development, O9 relies on conventional programming

languages such as C# and Java.

Pipeline status: The limited availability of human resources, together with a lack of culture

for setting a pipeline dealing with sensors and actuators, results in not having a CI/CD pipeline in

place for CPS development.

Automated tasks: The testing phases are almost fully automated. Specifically, there are “RFID-
readers connected to a network” on which it is possible to execute unit and integration testing
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activities automatically. For what concerns integration testing, it is important to remark that there

are cases requiring the manual intervention of the tester (i.e., “For instance, when we need to test
a transfer of tags between different antennas we cannot use automation” ), as well as cases where
it is required to interact with the hardware devices that cannot be simulated. Of course, in this

specific setting, it is not possible to guarantee the overall reproducibility of the results of the test,

however, “the reproducibility of the test in this context is not required.” Furthermore, O9 does not run

the whole test suite at each change. Instead, they manually select some test cases based on impact

analysis: “select what are the test cases that are impacted by the change that, consequently, need to be
executed”. Other than having unit and integration testing activities, O9 also executes, from time to

time, performance testing.

For what concerns the deployment of CPS-related software, O9 relies on Docker for creating

images that are manually deployed onto the servers.

Finally, the development process also features a monitoring component for the internal devel-

opment platform and customers’ devices, to notify about anomalies and errors, as soon as they

occur.

HiL and simulators: The development process adopted by O9 relies on both (self-developed)

simulators and HiL. Simulators are developed based on specific organization needs and use case

scenarios, implying that they are limited in their functionality.

O10 (Energy)
Context: O10 is involved in the development of prototypes and proof of concepts for the energy

domain. The development of prototypes rather than real products represents concrete facilitation,

since there may be less stringent constraints in terms of pipeline setting and evolution.

Pipeline status: What is mentioned above justifies the presence of a mature (i.e., introduced
in 2016) pipeline adopted within the organization for CPS development that uses conventional

programming languages, mostly Java and Python. The pipeline configuration is pretty stable

probably due to the development of prototyping solutions that do not need to be shipped to real

environments.

Automated tasks: Other than having a compilation phase, the CI/CD pipeline is aimed at

executing unit and integration tests (“Our pipeline is mostly for unit testing (80%) but there is
also some integration testing.” ), followed by a deployment phase where the packaged version of

the software is usually stored into an artifact repository as a docker image. Furthermore, safety

requirements, such as checking that a battery is not charged more than a certain rate, are specified

and checked through unit test cases that do not involve the real devices. Thanks to the need for

developing prototyping solutions, the pipeline accounts for static code analysis tools and linters that

are mainly used for checkingmaintainability issues only (i.e., “They are not used for checking out bugs,
but mostly for making sure that the code is easy to read for other colleagues and for maintainability
purposes.” ) Moving the attention on the triggering strategies, O10 does not rely on nightly builds. It

only uses incremental builds so that each build execution time does not overcome the 10 minutes

rule.

HiL and simulators: Looking at the execution environment, O10 does not need to run the

software on embedded devicesmeaning that it “tr[ies] to find devices having interfaces to communicate
with. So basically we run our software on a traditional machine and it just communicates with the
hardware. So, differently from other organizations, O10, other than simulating the hardware when

needed (i.e., “we simulate the battery for testing the charging protocol” ), mainly replaces it with

mock-ups (i.e., “it is very easy to mock a client just to see if our software sends the right commands or
does not use any register twice” ). Only when the real devices are available and it is safe to use them

for testing, O10 uses Docker images for checking the correct behavior over the real devices, as well.
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