

Delft University of Technology

Sensors, algorithms, and representations for efficient environment perception

Hehn, T.M.

DOI
10.4233/uuid:5b48167c-80b7-4b78-b2d9-59e192a7bc6f
Publication date
2022
Document Version
Final published version
Citation (APA)
Hehn, T. M. (2022). Sensors, algorithms, and representations for efficient environment perception.
[Dissertation (TU Delft), Delft University of Technology]. https://doi.org/10.4233/uuid:5b48167c-80b7-4b78-
b2d9-59e192a7bc6f

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:5b48167c-80b7-4b78-b2d9-59e192a7bc6f
https://doi.org/10.4233/uuid:5b48167c-80b7-4b78-b2d9-59e192a7bc6f
https://doi.org/10.4233/uuid:5b48167c-80b7-4b78-b2d9-59e192a7bc6f

Sensors, algorithms, and representations
for efficient environment perception

Sensors, algorithms, and representations
for efficient environment perception

Proefschrift

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magni�cus Prof. dr. ir. T.H.J.J. van der Hagen,
voorzitter van het College voor Promoties,

in het openbaar te verdedigen
op donderdag 3 November 2022 om 15:00 uur

door

Thomas Markus HEHN

Master of Science in Physics,
Heidelberg University, Duitsland,
geboren te Stuttgart, Duitsland.

Dit proefschrift is goedgekeurd door de

promotor: Prof. dr. Dariu M. Gavrila
copromotor: Dr. J.F.P. Kooij

Samenstelling promotiecommissie:

Rector Magni�cus, voorzitter
Prof. dr. D.M. Gavrila, Technische Universiteit Delft
Dr. J.F.P. Kooij, Technische Universiteit Delft

Independent members:
Prof. dr. T. Gevers, Universiteit van Amsterdam
Assist. Prof. dr. A. Valada, Universität Freiburg, Germany
Prof. dr. ir. M. Wisse, Technische Universiteit Delft
Prof. dr. R. Babuska, Technische Universiteit Delft
Dr. H. Caesar, Technische Universiteit Delft

Keywords: Autonomous Vehicles, Machine Learning, Perception, Representation

Printed by: Gildeprint

Style: Based on TU Delft House Style with modi�cations by Moritz Beller
https://github.com/Inventitech/
phd-thesis-template

The author set this thesis in LATEX using the Libertinus and Inconsolata fonts.

ISBN 978-94-6384-383-6

An electronic version of this dissertation is available at
http://repository.tudelft.nl/.

https://github.com/Inventitech/phd-thesis-template
https://github.com/Inventitech/phd-thesis-template
http://repository.tudelft.nl/

v

Contents

Summary ix

Samenvatting xi

1 Introduction 1
1.1 Thesis Outline and Contributions . 3
1.2 References . 5

2 Hearing What You Cannot See: Acoustic Detection Around Corners 9
2.1 Introduction . 10
2.2 Related work . 11
2.3 Approach . 13

2.3.1 Line-of-sight detection . 13
2.3.2 Non-line-of-sight acoustic detection 14
2.3.3 Acoustic perception research vehicle 15

2.4 Experiments . 18
2.4.1 Line-of-sight localization – qualitative results 18
2.4.2 Non-line-of-sight dataset and evaluation metrics 18
2.4.3 Training and impact of classi�er and features 20
2.4.4 Detection time before appearance 21
2.4.5 Impact of the moving ego-vehicle 23
2.4.6 Generalization across acoustic environments 24
2.4.7 Microphone array con�guration 25

2.5 Conclusions . 25
2.6 References . 25

3 End-to-end Learning of Decision Trees and Forests 31
3.1 Introduction . 32

3.1.1 Related work . 32
3.1.2 Contributions . 34

3.2 Methods . 35
3.2.1 Standard decision tree and notation 35
3.2.2 Probabilistic decision tree . 36
3.2.3 Expectation-Maximization . 37
3.2.4 Complex splits and spatial regularization. 38
3.2.5 Decision tree construction . 39
3.2.6 Relation to information gain and leaf entropies. 40
3.2.7 Decision forest . 41

vi Contents

3.3 Experiments . 41
3.3.1 Performance of oblique decision trees 42
3.3.2 Visual convergence of training and inference model 44
3.3.3 Interpretation of spatially regularized parameters 45
3.3.4 CNN split features . 46
3.3.5 Steepness annealing analysis . 47
3.3.6 Trade-o� between computational load and accuracy 48

3.4 Conclusions . 50
3.5 References . 50
3.6 Appendix . 55

4 Fast and Compact Image Segmentation using Instance Stixels 57
4.1 Introduction . 58
4.2 Related work . 59
4.3 Methods . 61

4.3.1 Stixels . 61
4.3.2 Instance Stixels. 63
4.3.3 Clustering stixels with instance information 64
4.3.4 Unary Regularization. 65

4.4 Implementation . 65
4.5 Experiments . 66

4.5.1 Dataset, metrics, and pre-processing 66
4.5.2 Training the CNN . 67
4.5.3 Hyperparameter optimization 68
4.5.4 Comparison of algorithmic variations 68

4.6 Discussion . 75
4.7 Conclusions . 76
4.8 References . 76

5 How do Cross-View and -Modal Alignment A�ect Contrastive Learning? 81
5.1 Introduction . 82
5.2 Related work . 83
5.3 Methods . 84

5.3.1 Pri3D: contrastive losses . 84
5.3.2 Pri3D: representation space separation 85

5.4 Experiments . 86
5.4.1 Setup. 86
5.4.2 Frozen downstream tasks . 87
5.4.3 Half-frozen downstream tasks 89
5.4.4 Full �netuning downstream tasks 90
5.4.5 Instance and object segmentation 90

5.5 Discussion . 91
5.6 Conclusions and future work. 92
5.7 References . 92
5.8 Appendix . 96

5.8.1 Relation to results presented in Pri3D 96

Contents vii

6 Conclusions and future work 99
6.1 Sensor e�ciency . 99
6.2 Algorithm e�ciency . 100
6.3 Representation e�ciency. 101
6.4 Outlook . 102
6.5 References . 103

Acknowledgments 105

Curriculum Vitæ 107

List of Publications 109

ix

Summary

Already today, consumer-grade cars are equipped with advanced driver assistance systems
that do not require any action from the drivers for a short period of time. Although these
systems are still limited and only reliable in certain situations, it shows the general trend:
cars will become more and more autonomous. The reasons why people and companies
are eagerly anticipating fully autonomous cars are manifold: self-driving vehicles could
provide mobility to people unable to drive themselves, they could reduce the need for
parking spaces in inner cities, they could decrease tra�c jams, and of course, they let
passengers spend their time on something else than actively driving. Self-driving vehicles
also have the potential to eliminate human error as a cause of tra�c accidents and thereby
increase tra�c safety. Thus, the presence of driver assistance systems and self-driving
vehicles in tra�c will inevitably increase, and it is crucial to make the technology as safe
as possible.

An essential building block to achieving safe autonomous driving is the e�cient percep-
tion and representation of the vehicle’s environment. The perception and representation
need to be as accurate as possible, but at the same time, as e�cient as possible, to increase
the time in which the vehicle can react to the evolving tra�c situation. This thesis discusses
various ways to increase the e�ciency of perception systems of autonomous vehicles by
showing: how a novel acoustic sensor detects tra�c before it becomes visible, how to
combine traditional machine learning algorithms with deep neural networks for faster
inference, how a compact representation for images of tra�c scenes can be enriched with
object instance information, and how di�erent modalities, such as images and point clouds,
contribute to deep representation learning.

To detect vehicles ahead of commonly used sensors in autonomous vehicles, this thesis
introduces a passive acoustic perception approach. This acoustic perception system can
detect approaching vehicles behind blind corners by sound before such vehicles enter in
line-of-sight. A research vehicle equipped with a roof-mounted microphone array is used
to collect data and serves as a demonstrator platform. The data shows that wall re�ections
provide information on the presence and direction of occluded approaching vehicles. In
test scenarios with a static ego-vehicle, a novel data-driven approach achieves an accuracy
of 0.92 on the hidden vehicle classi�cation task. Compared to a state-of-the-art visual
detector, Faster R-CNN, the acoustic system achieves the same accuracy more than one
second ahead, providing crucial reaction time for the situations studied in this work. While
the ego-vehicle is driving, acoustic detection shows encouraging results, still achieving
an accuracy of 0.84 within one environment type. Further, failure cases are studied across
environments to identify future research directions.

As an improvement of the processing speed of perception algorithms, this thesis
presents an approach to combining conventional decision trees with end-to-end learnable
neural networks. Conventional decision trees have a number of favorable properties,
including a small computational footprint, interpretability, and the ability to learn from

x Summary

little training data. However, they lack a key quality that has helped fuel the deep learning
revolution: that of being end-to-end trainable. Other works have addressed this de�cit, but
at the cost of losing a main attractive trait of decision trees: the fact that each sample is
routed along with a small subset of tree nodes only. This thesis presents an end-to-end
learning scheme for deterministic decision trees and decision forests. Thanks to a new
model and expectation-maximization training scheme, the trees are fully probabilistic at
train time, but after an annealing process become deterministic at test time. It is found
that the method performs on par or superior to standard learning algorithms for oblique
decision trees and forests, and requires fewer computations than its competitors.

A more compact high-level representation of the environment can streamline the
communication between software modules. Instance Stixels, presented in this thesis,
provide a compact spatial representation by grouping many pixels into superpixels and
assigning a position in 3D space. This provides subsequent planning and obstacle evasion
algorithms with a compact spatial layout of the scene. State-of-the-art stixel methods
fuse dense stereo disparity and semantic class information, e.g. from a Convolutional
Neural Network (CNN), into a compact representation of driveable space, obstacles, and
background. However, they do not explicitly di�erentiate instances within the same
semantic class. This thesis investigates several ways to augment single-frame stixels with
instance information, which can be extracted by a CNN from the RGB image input. As a
result, the Instance Stixels algorithm e�ciently computes stixels that account for boundaries
of individual objects and represents instances as grouped stixels that express connectivity.
The approach achieves strong segmentation performance and computational e�ciency
compared to combining the separate outputs of Semantic Stixels and a state-of-the-art
pixel-level CNN. The GPU implementation of the algorithm can process up to 28 frames
per second on average for 8 pixels wide stixels on images from the Cityscapes dataset at
1792x784 pixels.

When using multiple sensor modalities for perception, it is important to understand how
the data of the di�erent modalities relate in order to �nd e�cient representations for inter-
sensor communication. This thesis investigates a common approach in state-of-the-art
self-supervised representation learning that takes advantage of multi-view and multi-modal
data by aligning the feature representations across views and/or modalities. One chapter
of this thesis investigates how aligning representations a�ects the visual features obtained
from cross-view and cross-modal contrastive learning on images and point clouds. On �ve
real-world datasets and on �ve tasks, 108 models based on four pretraining variations are
trained and evaluated. The results show that cross-modal representation alignment discards
complementary visual information, such as color and texture, and instead emphasizes
redundant depth cues. The depth cues obtained from pretraining improve downstream
depth prediction performance. Also overall, cross-modal alignment leads to more robust
encoders than pretraining by cross-view alignment, especially on depth prediction, instance
segmentation, and object detection.

Finally, the last chapter summarizes how the individual chapters contributed to im-
proved e�ciency of environment perception, discusses how di�erent approaches relate
and a�ect each other, and proposes potential research directions.

xi

Samenvatting

Personenauto’s zijn nu al uitgerust met geavanceerde rijhulpsystemen die gedurende een
korte periode geen actie van de chau�eurs vereisen. Hoewel deze systemen nog beperkt en
alleen in bepaalde situaties betrouwbaar zijn, toont het een algemene trend: auto’s zullen
steeds autonomer worden. De redenen waarom industrie en de bredere samenleving uitkij-
ken naar volledig autonome auto’s zijn legio: zelfrijdende voertuigen kunnen mobiliteit
bieden aan mensen die niet zelf kunnen rijden, ze kunnen de behoefte aan parkeerplaat-
sen in binnensteden verminderen, ze kunnen de �les verminderen, en natuurlijk laten ze
passagiers hun tijd aan iets anders besteden dan actief rijden. Zelfrijdende voertuigen
hebben ook het potentieel om menselijke fouten als oorzaak van verkeersongevallen te
elimineren en daardoor de verkeersveiligheid te vergroten. Zo zal de aanwezigheid van
rijhulpsystemen en zelfrijdende voertuigen in het verkeer onvermijdelijk toenemen en is
het cruciaal om de technologie zo veilig mogelijk te maken.

Een essentiële bouwsteen voor veilig autonoom rijden is de e�ciënte perceptie en
representatie van de omgeving van het voertuig. De waarneming en weergave moeten zo
nauwkeurig mogelijk zijn, maar tegelijkertijd zo e�cient mogelijk, om de tijd te verlengen
waarin het voertuig kan reageren op de veranderende verkeerssituatie. Dit proefschrift be-
spreekt verschillende manieren om de e�ciëntie van waarnemingssystemen van autonome
voertuigen te vergroten door te laten zien: hoe een nieuwe akoestische sensor verkeer
detecteert voordat het zichtbaar wordt, hoe traditionele machine learning-algoritmen kun-
nen worden gecombineerd met diepe neurale netwerken voor snellere inferentie, hoe een
compacte weergave voor afbeeldingen van verkeers scènes kunnen worden verrijkt met
informatie over object instanties en hoe verschillende modaliteiten, zoals afbeeldingen en
puntenwolken, bijdragen aan het leren van diepe representaties.

Om voertuigen vroeger dan de meest gebruikte sensoren in autonome auto’s te detec-
teren, introduceert dit proefschrift een benadering van passieve akoestische waarneming.
Dit akoestische waarnemingssysteem kan naderende voertuigen achter verdekte hoeken
door geluid detecteren voordat deze voertuigen in het gezichtsveld komen. Een onder-
zoeksvoertuig uitgerust met op het dak gemonteerde microfoons wordt gebruikt om data
te verzamelen en dient als demonstratie platform. Uit de data blijkt dat muurre�ecties
informatie geven over de aanwezigheid en richting van verdekte naderende voertuigen. In
testscenario’s met een staande test-voertuig bereikt een nieuwe datagestuurde aanpak een
nauwkeurigheid van 0.92 op de verborgen voertuig classi�catietaak. Vergeleken met een
moderne visuele detector, Faster R-CNN, bereikt het akoestische systeem meer dan een
seconde voorsprong op dezelfde nauwkeurigheid, wat een cruciale reactietijd oplevert voor
de situaties die in dit werk worden bestudeerd. Terwijl het test-voertuig rijdt, laat akoesti-
sche detectie bemoedigende resultaten zien, waarbij nog steeds een nauwkeurigheid van
0,84 wordt behaald binnen één omgevingstype. Verder worden faalgevallen in verschillende
omgevingen bestudeerd om toekomstige onderzoeksrichtingen te identi�ceren.

xii Samenvatting

Als een verbetering van de verwerkingssnelheid van waarnemingsalgoritmen, presen-
teert dit proefschrift een benadering om conventionele beslissingsbomen te combineren
met end-to-end leerbare neurale netwerken. Conventionele beslisbomen hebben een aantal
gunstige eigenschappen, waaronder een kleine computationele voetafdruk, interpreteer-
baarheid en het vermogen om te leren van weinig trainingsdata. Ze missen echter een
belangrijke kwaliteit die heeft bijgedragen aan de diepe leerrevolutie: end-to-end trainbaar
zijn. Andere werken hebben dit tekort aangepakt, maar ten koste van het verlies van
een belangrijk aantrekkelijk kenmerk van beslissingsbomen: het feit dat elk observatie
alleen samen met een kleine groep van boomknooppunten wordt geleid. Dit proefschrift
presenteert een end-to-end leerschema voor deterministische beslisbomen en beslisbos-
sen. Dankzij een nieuw model en trainingsschema voor expectation-maximization zijn
de bomen volledig probabilistisch tijdens het trainen, maar na een uitgloeiproces worden
ze deterministisch tijdens het gebruik op test data. Het is gebleken dat de methode op
gelijke voet of superieur presteert aan standaard leeralgoritmen voor schuine beslisbomen
en bossen, en minder berekeningen vereist dan zijn concurrenten.

Een compactere weergave van de omgeving kan de communicatie tussen softwaremo-
dules stroomlijnen. Instance Stixels, gepresenteerd in dit proefschrift, bieden een compacte
ruimtelijke representatie door veel pixels te groeperen tot superpixels en door deze groepen
een positie toe te wijzen in de 3D-ruimte. Dit zorgt voor latere planning en algoritmen
voor het ontwijken van obstakels met een compacte ruimtelijke lay-out van de scène.
State-of-the-art stixel-methoden versmelten dichte stereo-disparity en semantische klasse-
informatie, bijvoorbeeld van een convolutioneel neuraal netwerk (CNN), tot een compacte
weergave van berijdbare ruimte, obstakels en achtergrond. Ze maken echter geen expliciet
onderscheid tussen instanties binnen dezelfde semantische klasse. Dit proefschrift onder-
zoekt verschillende manieren om single-frame stixels te vergroten met instantie-informatie,
die kan worden geëxtraheerd door een CNN uit de RGB-beeldinvoer. Als gevolg hiervan
berekent het Instance Stixels-algoritme e�ciënt stixels die rekening houden met de grenzen
van individuele objecten en vertegenwoordigt instances als gegroepeerde stixels die con-
nectiviteit uitdrukken. De aanpak bereikt sterke segmentatieprestaties en rekene�ciëntie
in vergelijking met het combineren van de afzonderlijke outputs van Semantic Stixels
en een ultramodern CNN op pixelniveau. De GPU-implementatie van het algoritme kan
gemiddeld tot 28 frames per seconde verwerken voor 8 pixel brede stixels op afbeeldingen
uit de Cityscapes-dataset van 1792x784 pixels.

Bij het gebruik van meerdere sensormodaliteiten voor perceptie, is het belangrijk om
te begrijpen hoe de gegevens van de verschillende modaliteiten zich verhouden om ef-
�ciënte representaties voor communicatie tussen sensoren te vinden. Dit proefschrift
onderzoekt een veelvoorkomende benadering in state-of-the-art zelf-gesuperviseerd leren
van representaties die gebruik maakt van multi-view en multi-modale data door de feature
representaties over views en/of modaliteiten uit te lijnen. Een hoofdstuk van dit proef-
schrift onderzoekt hoe het uitlijnen van representaties de visuele kenmerken beïnvloedt
die worden verkregen door cross-view en cross-modaal contrastief leren op afbeeldingen
en puntenwolken. Op vijf empirische datasets en op vijf taken worden 108 modellen op
basis van vier pretraining variaties getraind en geëvalueerd. De resultaten laten zien dat
cross-modale representatie-uitlijning complementaire visuele informatie, zoals kleur en
textuur, weggooit en in plaats daarvan de nadruk legt op overbodige diepte-aanwijzingen.

Samenvatting xiii

De diepte-aanwijzingen die zijn verkregen uit de pretraining, verbeteren de prestaties
van de downstream dieptevoorspelling. Ook leidt cross-modale uitlijning in het alge-
meen tot robuustere encoders dan pretraining door cross-view uitlijning, met name voor
dieptevoorspelling, instantiesegmentatie en objectdetectie.

Ten slotte vat het laatste hoofdstuk samen hoe de afzonderlijke hoofdstukken hebben
bijgedragen aan een grotere e�cientie van de omgevingswaarneming. Het wordt besproken
hoe verschillende benaderingen met elkaar in verband staan en elkaar beïnvloeden, en het
worden mogelijke onderzoeksrichtingen voorgesteld.

1

1

1
Introduction

Many car manufacturers sell vehicles that are equipped with advanced driver assistance
systems that allow the driver to hand over control for a short period of time [1]. According
to independent market analysts, the share of such vehicles is strongly increasing. As this
trend continues, new technology is being developed that increases the autonomy of vehicles.
The vehicles will be able to drive autonomously for longer times and in a larger variety of
scenarios than currently possible. Such autonomous vehicles have a variety of potential
bene�ts for users and tra�c that range from improved mobility for elderly and disabled
people, reduced amount of vehicles in inner cities, and of course, increased comfort for the
(former) drivers [2]. Self-driving vehicles also have the potential to eliminate human error
as a cause of tra�c accidents and thereby increase tra�c safety.

The World Health Organization (WHO) estimates that about 1.35 million people die each
year in tra�c-related accidents [3]. A report of the U.S. National Highway Tra�c Safety
Administration attributes the critical reason to the driver in about 94% of the 5470 crashes
that were studied [4]. The advancements in the �eld of self-driving vehicles raise the hope
that soon the risk of human error could be eliminated. Is it reasonable to assume that soon,
each year the lives of 1.27 million people will be saved thanks to autonomous vehicles?
No. First of all, the WHO also states that the death rate in low-income countries is three
times higher than in high-income countries [4]. These countries will likely pro�t last from
a potential increase in road safety due to autonomous vehicles. The tra�c composition
in low-income countries involves many two-wheelers and important infrastructure is
lacking [2]. Second, “critical reason” in the U.S. report means the last failure in a chain of
events leading up to a crash, but not the cause of the crash. Still, arguably there are crashes
that could have been prevented, e.g. the ones that are related to recognition errors, driving
too fast, or sleep. In [5], the authors conclude that automated vehicles may reduce accidents
by 48.07% in the U.S. and by 54.24% in India. In any case, over time, the automation of
vehicles on public roads will increase, and therefore, it is crucial to make the technology
involved as safe as possible and more reliable than human drivers.

The research presented in this thesis aims to improve an essential aspect of the safety
of autonomous driving: the perception and representation of the environment. Self-driving
vehicles require a detailed understanding of their environment in order to react and avoid

1

2 1 Introduction

Steer

Gas Brake

Sensory Input

Modular Pipeline

Path
Planning

Vehicle
Control

Scene
Parsing

Low-level
Perception

(a) Example from [6].

(b) Example from [7].

Figure 1.1: Two examples of typical modular processing approaches for autonomous vehicles. Sensors and percep-
tion algorithms, such as during scene parsing in (a) and object detection in (b), create an internal representation
of the environment. This representation is processed by subsequent modules, for instance, for path planning (a)
and situation assessment (b).

obstacles as well as to �nd their path towards their �nal destination. The perception of
the environment is done using a variety of sensors, where arguably cameras are the most
well-known. The sensor data needs to be processed by perception algorithms in order
to create an internal representation of the environment. Figure 1.1 shows an example of
a modular autonomous vehicle processing pipeline, where object detection algorithms
process the sensor output and convey the detections and tracks to subsequent modules
such as situation assessment and behavior prediction. This position, early on in a modular
processing pipeline, leads to its outstanding importance. Any inaccuracies or delays in this
stage may deteriorate the overall performance of the system.

The latency of the perception system is of high importance in the prevention of accidents.
Any delay in processing the data will reduce the distance the self-driving vehicle has
available to avoid a collision. The perception of the environment thus needs to be as
e�cient as possible, and more e�cient perception can be achieved in various ways. Sensor
e�ciency can be improved by capturing more cues from the environment that allow the
system to react earlier. This can range, for instance, from higher camera frame rates and
denser LiDAR point clouds, to even novel sensing techniques. The time for processing the
sensor measurements can be reduced by more e�cient algorithms. Any speed advantage that
is gained here will bene�t the entire system as many algorithms depend on the data from the
perception system. The interface to those subsequent algorithms is therefore a fundamental
link and requires an e�cient representation. Representations of the environment that
compactly store all relevant data in a format that is readily accessible to other algorithms
streamline the communication between the di�erent subsystems of a self-driving vehicle.
Other ways to improve the e�ciency of the perception system which are not discussed
in this thesis are, for example, faster processing hardware and collaborative perception
approaches via vehicle-to-vehicle communication.

1.1 Thesis Outline and Contributions

1

3

Environmental
state Sensors Algorithm Planning,

Control, ...
Representation

Chapter
2

Chapter
3

Chapter
5

Chapter
4

Figure 1.2: An outline of how the chapters in this thesis relate to the perception modules in autonomous driving.
Due to its sequential nature, improved e�ciency in any of the modules leads to overall e�ciency improvements.
This eventually leads to faster processing giving the vehicle more time to react.

1.1 Thesis Outline and Contributions
This thesis discusses e�ciency improvements for environment perception and represen-
tation in autonomous vehicles in three aspects: sensors, algorithms, and representation.
Figure 1.2 illustrates their role in environment perception and which chapter discusses
each topic. The sensors capture the environment and their low-level data is processed by
perception algorithms to create an internal, high-level representation of the scene that can
be handled by subsequent modules. In chapter 2, a novel sensor setup based on multiple
low-cost microphones demonstrates how the sound of approaching tra�c may be used
to detect visually occluded vehicles around corners in urban environments. Chapter 3
presents a novel perception algorithm that combines the inference e�ciency of decision
trees with the feature learning capabilities of deep learning. Instance Stixels, presented in
chapter 4, is also a novel algorithm that improves processing speed, but at the same time
computes a compact 3D representation of the environment. Chapter 5 discusses how visual
representations learned across views and sensing modalities di�er and investigates how this
a�ects the performance of visual representations of deep convolutional neural networks
on computer vision tasks. The overall conclusions and potential future research directions
are presented in chapter 6. The remainder of this chapter will provide an overview of
chapters 2-5.

Hearing What You Cannot See: Acoustic Detection Around Corners
Chapter 2 presents how to use multiple cheap vehicle-mounted microphones to capture
sound as an auxiliary sensing modality for early detection of approaching vehicles be-
hind blind corners in urban environments. Crucially, the data-driven pattern recognition
approach can successfully identify such situations from the acoustic re�ection patterns
on building walls and provide early warnings before conventional line-of-sight sensing
is feasible. While a vehicle should always exit narrow streets cautiously, early warnings
would nevertheless reduce the risk of a last-moment emergency brake. Speci�cally, the
contributions of this chapter are threefold:

1. It is demonstrated in real-world outdoor conditions that a vehicle-mounted micro-
phone array can detect the sound of approaching vehicles behind blind corners from
re�ections on nearby surfaces before line-of-sight detection is feasible.

2. A data-driven detection pipeline is introduced which e�ciently addresses this task
and outperforms model-driven acoustic signal processing.

3. A new audio-visual dataset in real-world urban environments is presented.

1

4 1 Introduction

Detecting occluded oncoming tra�c is a key advantage for intelligent vehicles, for which
passive acoustic sensing is still relatively under-explored. Unlike existing data-driven ap-
proaches, visual detectors cannot be used for positional labeling [8] or transfer learning [9],
since the targets are visually occluded. Instead, the task is posed as a multi-class classi�-
cation problem to identify if and from what corner a vehicle is approaching. Direction-
of-Arrival estimation provides robust features to classify sound re�ection patterns, even
without end-to-end feature learning and large amounts of data. The experiments investi-
gate the impact on accuracy and detection time for various conditions, such as di�erent
acoustic environments, driving versus static ego-vehicle, and compare to current visual
and acoustic baselines. To collect data, a front-facing microphone array was mounted on
a research vehicle, which additionally has a front-facing camera. This prototype setup
facilitates qualitative and quantitative experimentation of di�erent acoustic perception
tasks.

End-to-end Learning of Decision Trees and Forests
Chapter 3 introduces end-to-end learning for deterministic decision trees and forests.
Unlike related end-to-end approaches [10], the algorithm presented in this chapter obtains
trees with deterministic nodes at test time. This results in e�cient inference as each sample
is only routed along one unique path of only (log I) out of the I inner nodes in a tree.
To reduce variance, multiple trees can also be combined in a decision forest ensemble.
Furthermore, an end-to-end trainable tree can provide interpretable classi�ers on learned
visual features, similar to how decision trees are used in �nancial or medical expert systems
on handcrafted features. In this context, this thesis shows the bene�t of regularizing
the spatial derivatives of learned features when samples are images or image patches.
Di�erentiable probabilistic nodes at train time only enable end-to-end training of a decision
tree. This thesis introduces a new probabilistic split criterion that generalizes the long-
established information gain [11]. A key aspect of this tree formulation is the introduction
of a steepness parameter for the decision [12]. The proposed criterion is asymptotically
identical to the information gain in the limit of very steep non-linearities but allows to
better model class overlap in the vicinity of a split decision boundary. During training,
the probabilistic trees are optimized using the Expectation-Maximization algorithm [13].
Importantly, the steepness parameter is incrementally adjusted in an annealing scheme
to make decisions ever more deterministic, and bias the model towards crispness. The
proposed procedure also constructs the decision trees level-by-level, hence trees will not
grow branches any further than necessary. Compared to initialization with balanced trees,
[10] the proposed approach reduces the expected depth of the tree, which further improves
e�ciency. To summarize, the contributions of this chapter are:

1. An end-to-end learning scheme for deterministic decision trees is proposed that
optimizes probabilistic models while training to obtain deterministic trees for testing.

2. A steepness parameter and corresponding annealing scheme is introduced that
encourages steeper decisions, and this parameter is used to show that the criterion
is asymptotically identical to the established information gain.

3. It is shown how the end-to-end learned features can help interpretability of a model,
e.g. by incorporating spatial regularization.

1.2 References

1

5

Fast and Compact Image Segmentation using Instance Stixels
Chapter 4 presents Instance Stixels, an e�cient stixel-based representation for image
segmentation. Stixel algorithms divide an entire image into parallel rectangles of equal
width. Such a rectangular group of pixels is called a “stixel”. Instance Stixels, include
instance information into the stixels computation, which creates better stixels, and allows
grouping the stixels by instance IDs from a single stereo frame. The contributions of this
chapter are as follows:

1. A novel approach to include the instance information into stixels is proposed. This
approach is compared to two other state-of-the-art approaches. Speci�cally, it is
shown that adding the information into the stixel computation itself results in more
accurate instance representations than the alternatives, such as only using it to
cluster Semantic Stixels or alternatively assigning Semantic Stixels to instances using
pixel-based methods.

2. The trade-o� between computation speed and instance segmentation performance is
compared for these three variations to showcase the favorable properties of Instance
Stixels.

How do cross-view and -modal alignment affect contrastive learning?
Self-supervised training of neural networks on unlabelled data is quickly becoming a key
to training robust perception models, especially when limited training data is available.
Still, it remains currently unclear how di�erent self-supervised learning strategies on
multi-sensor data a�ect the resulting models. The goal of the work presented in chapter 5
is to understand the e�ects of cross-view and cross-modal representation alignment on
self-supervised contrastive learning in more detail. The question of how redundant and
complementary information in�uence the learned representations, and whether similar
improvements as observed for shape-biased over texture-biased networks [14] can be
observed as well, are investigated. The empirical study is based on Pri3D [15] which uses
both cross-view and cross-modal representation alignment for contrastive learning, as well
as their combination. The main contributions of this chapter are two-fold:

1. An assessment is presented on how cross-view and cross-modal representation
alignment a�ect the complementary and redundant information encoded in the
learned visual per-pixel representations.

2. An evaluation of the downstream transfer learning performance is conducted to
investigate the e�ects of representations that encode depth rather than texture, and
vice versa.

1.2 References
[1] Canalys Newsroom. Canalys: 8% of new cars in Europe sold with level 2

autonomy driving features. https://www.canalys.com/newsroom/
canalys-level-2-autonomy-vehicles-europe-q2-2019,
September 2019. Accessed on 18-03-2022.

https://www.canalys.com/newsroom/canalys-level-2-autonomy-vehicles-europe-q2-2019
https://www.canalys.com/newsroom/canalys-level-2-autonomy-vehicles-europe-q2-2019

1

6 1 Introduction

[2] Kareem Othman. Exploring the implications of autonomous vehicles: a comprehensive
review. Innovative Infrastructure Solutions, 7(2):1–32, 2022.

[3] World Health Organization. Global Status Report on Road Safety 2018. Nonserial
Publication. World Health Organization, 2019.

[4] S. Singh. Critical reasons for crashes investigated in the national motor vehicle crash
causation survey. In Tra�c Safety Facts Crash, Stats. Report No. DOT HS 812 115.
Washington, DC: National Highway Tra�c Safety Administration, February 2015.

[5] Ling Wang, Hao Zhong, Wanjing Ma, Mohamed Abdel-Aty, and Juneyoung Park. How
many crashes can connected vehicle and automated vehicle technologies prevent: A
meta-analysis. Accident Analysis & Prevention, 136:105299, 2020.

[6] Joel Janai, Fatma Güney, Aseem Behl, and Andreas Geiger. Computer vision for
autonomous vehicles: Problems, datasets and state of the art. Foundations and Trends®
in Computer Graphics and Vision, 12(1–3):1–308, 2020.

[7] Ekim Yurtsever, Jacob Lambert, Alexander Carballo, and Kazuya Takeda. A Survey of
Autonomous Driving: Common Practices and Emerging Technologies. IEEE Access,
8:58443–58469, 2020.

[8] Weipeng He, Petr Motlicek, and Jean-Marc Odobez. Deep neural networks for multiple
speaker detection and localization. In Proc. of the IEEE International Conference on
Robotics and Automation, pages 74–79. IEEE, 2018.

[9] Chuang Gan, Hang Zhao, Peihao Chen, David Cox, and Antonio Torralba. Self-
supervised moving vehicle tracking with stereo sound. In Proc. of the IEEE/CVF
International Conference on Computer Vision, 2019.

[10] P. Kontschieder, M. Fiterau, A. Criminisi, and S. Rota Bulò. Deep neural decision
forests. In Proc. of the IEEE/CVF International Conference on Computer Vision, 2015.

[11] J. R. Quinlan. Induction of decision trees. In Jude W. Shavlik and Thomas G. Dietterich,
editors, Readings in Machine Learning. Morgan Kaufmann, 1990. Originally published
in Machine Learning 1:81–106, 1986.

[12] A. Montillo, J. Tu, J. Shotton, J. Winn, J.E. Iglesias, D.N. Metaxas, and A. Criminisi.
Entanglement and di�erentiable information gain maximization. In Decision Forests
for Computer Vision and Medical Image Analysis, chapter 19, pages 273–293. Springer,
January 2013.

[13] Michael I. Jordan and Robert A. Jacobs. Hierarchical mixtures of experts and the em
algorithm. Neural Comput., 6(2):181–214, March 1994.

[14] R. Geirhos, P. Rubisch, C. Michaelis, M. Bethge, F. A. Wichmann, and W. Brendel.
ImageNet-trained CNNs are biased towards texture; increasing shape bias improves
accuracy and robustness. In International Conference on Learning Representations, May
2019.

1.2 References

1

7

[15] Ji Hou, Saining Xie, Benjamin Graham, Angela Dai, and Matthias Nießner. Pri3d:
Can 3d priors help 2d representation learning? In Proc. of the IEEE/CVF International
Conference on Computer Vision, pages 5693–5702, 2021.

1

8 1 Introduction

And now for something completely di�erent.

Monty Python

2

9

2
Hearing What You Cannot

See: Acoustic Vehicle
Detection Around Corners

This work proposes to use passive acoustic perception as an additional sensing modality for
intelligent vehicles. It is demonstrated that approaching vehicles behind blind corners can be
detected by sound before such vehicles enter in line-of-sight. On data collected using a research
vehicle equipped with a roof-mounted microphone array, it is shown that wall re�ections
provide information on the presence and direction of occluded approaching vehicles. A novel
method is presented to classify if and from what direction a vehicle is approaching before it is
visible, using as input Direction-of-Arrival features that can be e�ciently computed from the
streaming microphone array data. Since the local geometry around the ego-vehicle a�ects the
perceived patterns, several environment types are systematically studied, and generalization
across these environments is investigated. With a static ego-vehicle, an accuracy of 0.92
is achieved on the hidden vehicle classi�cation task. Compared to a state-of-the-art visual
detector, Faster R-CNN, the proposed pipeline achieves the same accuracy more than one
second ahead, providing crucial reaction time in the studied situations. While the ego-vehicle is
driving, acoustic detection still shows positive results by achieving an accuracy of 0.84 within
one environment type. Further, failure cases are studied across environments to identify future
research directions.

Parts of this chapter have been published as: Yannick Schulz, Avinash Kini Mattar, Thomas M. Hehn, and
Julian F.P. Kooij. “Hearing what you cannot see: Acoustic vehicle detection around corners”, IEEE Robotics
and Automation Letters, 6, 2, p. 2587-2594, 2021, Institute of Electrical and Electronic Engineers.

2

10 2 Hearing What You Cannot See: Acoustic Detection Around Corners

2.1 Introduction
Highly automated and self-driving vehicles currently rely on three complementary main
sensors to identify visible objects, namely camera, lidar, and radar. However, the capabili-
ties of these conventional sensors can be limited in urban environments when sight is ob-
structed by narrow streets, trees, parked vehicles, and other tra�c. Approaching road users
may therefore remain undetected by the main sensors, resulting in dangerous situations
and last-moment emergency maneuvers [1]. While future wireless vehicle-to-everything
communication (V2X) might mitigate this problem, creating a robust omnipresent com-
munication layer is still an open problem [2] and excludes road users without wireless
capabilities. Acoustic perception does not rely on line-of-sight and provides a wide range
of complementary and important cues on nearby tra�c: There are salient sounds with
speci�ed meanings, e.g. sirens, car horns, and reverse driving warning beeps of trucks, but
also inadvertent sounds from tire-road contact and engine use.

In this work, multiple cheap microphones are used to capture sound as an auxiliary
sensing modality for early detection of approaching vehicles behind blind corners in urban
environments. Crucially, it is shown that a data-driven pattern recognition approach
can successfully identify such situations from the acoustic re�ection patterns on building
walls and provide early warnings before conventional line-of-sight sensing is able to (see
Figure 2.1). While a vehicle should always exit narrow streets cautiously, early warnings
would reduce the risk of a last-moment emergency brake.

2.2 Related work

2

11

 Visual Visual
 ClassificationClassification

none

(a) line-of-sight sensing

 Acoustic Acoustic
 ClassificationClassification

left

RIGHT
front

none

(b) directional acoustic sensing

(c) sound localization with a vehicle-mounted microphone array detects the wall re�ection of an approaching
vehicle behind a corner before it appears

Figure 2.1: When an intelligent vehicle approaches a narrow urban intersection, (a) traditional line-of-sight
sensors cannot detect approaching tra�c due to occlusion, while (b) acoustic cues can provide early warnings.
(c) Real-time beamforming reveals re�ections of the acoustic signal on the walls, especially salient on the side
opposing the approaching vehicle. Learning to recognize these patterns from data enables detection before
line-of-sight.

2.2 Related work
The focus of this work lies on passive acoustic sensing in mobile robotics [3–5] to detect and
localize nearby sounds, which is distinct from active acoustic sensing using self-generated
sound signals, e.g. [6]. While mobile robotic platforms in outdoor environments may su�er
from vibrations and wind, various works have demonstrated the detection and localization
of salient sounds on moving drones [7] and wheeled platforms [8, 9].

Although acoustic cues are known to be crucial for tra�c awareness by pedestrians
and cyclists [10], only a few works have explored passive acoustic sensing as a sensor
for Intelligent Vehicles (IVs). [9, 11, 12] focus on detection and tracking in direct line-of-
sight. [13, 14] address detection behind corners from a static observer. [13] only shows
experiments without directional estimation. [14] tries to accurately model wave refractions,
but experiments in an arti�cial lab setup show limited success. Both [13, 14] rely on

2

12 2 Hearing What You Cannot See: Acoustic Detection Around Corners

strong modeling assumptions, ignoring that other informative patterns could be present
in the acoustic data. Acoustic tra�c perception is furthermore used for road-side tra�c
monitoring, e.g. to count vehicles and estimate tra�c density [15, 16]. While the increase
in Electric Vehicles (EVs) may reduce overall tra�c noise, [17] shows that at 20-30km/h the
noise levels for EV and internal combustion vehicles are already similar due to tire-road
contact. [18] �nds that at lower speeds the di�erence is only about 4-5 dB, though many
EVs also su�er from audible narrow peaks in the spectrum. As low-speed EVs can impact
the acoustic awareness of humans too [10], legal minimum sound requirements for EVs
are being proposed [19, 20].

Direction-of-Arrival estimation is a key task for sound source localization, and over the
past decades, many algorithms have been proposed [3, 21], such as the Steered-Response
Power Phase Transform (SRP-PHAT) [22] which is well-suited for reverberant environments
with possibly distant unknown sound sources. Still, in urban settings nearby walls, corners,
and surfaces distort sound signals through re�ections and di�raction [23]. Accounting for
such distortions has shown to improve localization [8, 24], but only in controlled indoor
environments where detailed knowledge of the surrounding geometry is available.

Recently, data-driven methods have shown promising results in challenging real-world
conditions for various acoustic tasks. For instance, learned sound models assist monaural
source separation [25] and source localization from direction-dependent attenuations by
�xed structures [26]. Increasingly, deep learning is used for audio classi�cation [27, 28],
and localization [29] of sources in line-of-sight, in which case visual detectors can replace
manual labeling [30, 31]. Analogous to this thesis, [32] presents the �rst deep learning
method for sensing around corners but with automotive radar. Thus, while the e�ect
of occlusions on sensor measurements is di�cult to model [14], data-driven approaches
appear to be a good alternative.

This thesis provides the following contributions: First, it is demonstrated in real-world
outdoor conditions that a vehicle-mounted microphone array can detect the sound of
approaching vehicles behind blind corners from re�ections on nearby surfaces before line-
of-sight detection is feasible. This is a key advantage for IVs, where passive acoustic sensing
is still relatively under-explored. The presented experiments investigate the impact on
accuracy and detection time for various conditions, such as di�erent acoustic environments,
driving versus static ego-vehicle, and compare to current visual and acoustic baselines.

Second, a data-driven detection pipeline to e�ciently addresses this task and show
that it outperforms model-driven acoustic signal processing. Unlike existing data-driven
approaches, visual detectors cannot be used for positional labeling [30] or transfer learn-
ing [31], since the targets are visually occluded. Instead, the task is cast as a multi-class
classi�cation problem to identify if and from what corner a vehicle is approaching. It is
demonstrated that Direction-of-Arrival estimation can provide robust features to classify
sound re�ection patterns, even without end-to-end feature learning and large amounts of
data.

Third, for the experiments, a new audio-visual dataset was collected in real-world
urban environments.1 To collect data, a front-facing microphone array was mounted on
1Code & data:
https://github.com/tudelft-iv/occluded_vehicle_acoustic_detection

https://github.com/tudelft-iv/occluded_vehicle_acoustic_detection

2.3 Approach

2

13

a research vehicle, which additionally has a front-facing camera. This prototype setup
facilitates qualitative and quantitative experimentation of di�erent acoustic perception
tasks.

2.3 Approach
Ideally, an ego-vehicle driving through an area with occluding structures is able to early
predict if and from where another vehicle is approaching, even if it is from behind a blind
corner as illustrated in Figure 2.1. Concretely, this work aims to distinguish three situations
as early as possible using ego-vehicle sensors only:

• an occluded vehicle approaches from behind a corner on the left, and only moves
into view last moment when the ego-vehicle is about to reach the junction,

• same, but vehicle approaches behind a right corner,

• no vehicle is approaching.

This work proposes to consider this task an online classi�cation problem. As the
ego-vehicle approaches a blind corner, the acoustic measurements made over short time
spans should be assigned to one in a set of four classes,  = {left, front, right,
none}, where left/right indicates a still occluded (i.e. not yet in direct line-of-sight)
approaching vehicle behind a corner on the left/right, front that the vehicle is already
in direct line-of-sight, and none that no vehicle is approaching.

In Section 2.3.1, two line-of-sight baseline approaches are considered for detecting
vehicles. Section 2.3.2 then elaborates on the proposed extension to acoustic non-line-of-
sight detection. Section 2.3.3 provides details of the vehicle’s novel acoustic sensor setup
used for data collection.

Figure 2.2: Overview of the proposed acoustic detection pipeline, see Section 2.3.2 for an explanation of the steps.

2.3.1 Line-of-sight detection
First, it is discussed how the task would be addressed with line-of-sight vehicle detection
using either conventional cameras, or using past work on acoustic vehicle detection.

Visual detection baseline Cameras are currently one of the de-facto choices for de-
tecting vehicles and other objects within line-of-sight. Data-driven Convolutional Neural
Networks have proven to be highly e�ective on images. However, visual detection can

2

14 2 Hearing What You Cannot See: Acoustic Detection Around Corners

only detect vehicles that are already (partially) visible, and thus only distinguishes between
front and none. To demonstrate this, Faster R-CNN [33] is used, a state-of-the-art
visual object detector, on the ego-vehicle’s front-facing camera as a visual baseline.

Acoustic detection baseline Next, an ego-vehicle equipped with an array of M micro-
phones is considered. As limited training data hinders learning features (unlike [30, 31]),
beamforming is used to estimate the Direction-of-Arrival (DoA) of tire and engine sounds
originating from the approaching vehicle. DoA estimation directly identi�es the presence
and direction of such sound sources and has been shown to work robustly in unoccluded
conditions [9, 11]. Since sounds can be heard around corners, and low frequencies di�ract
(“bend”) around corners [23], one might wonder: Does the DoA of the sound of an occluded
vehicle correctly identify from where the vehicle is approaching? To test this hypothesis
for the target real-world application, the second baseline follows [9, 11] and directly uses
the most salient DoA angle estimate.

Speci�cally, the implementation uses the Steered-Response Power-Phase Transform
(SRP-PHAT) [22] for DoA estimation. SRP-PHAT relates the spatial layout of sets of
microphone pairs and the temporal o�sets of the corresponding audio signals to their
relative distance to the sound source. To apply SRP-PHAT on M continuous synchronized
signals, only the most recent �t seconds are processed. On each signal, a Short-Time
Fourier Transform (STFT) is computed with a Hann windowing function, and a frequency
bandpass for the [fmin , fmax] Hz range. Using the generalized cross-correlation of the M
STFTs, SRP-PHAT computes the DoA energy r(�) for any given azimuth angle � around
the vehicle. Here � = −90◦/0◦/ + 90◦ indicates an angle toward the left/front/right of the
vehicle respectively. If the hypothesis holds that the overall salient sound direction �max =
argmax r(�) remains intact due to di�raction, one only needs to determine if �max is
beyond some su�cient threshold �th. The baseline thus assigns class left if �max < −�th,
front if −�th ≤ �max ≤ +�th, and right if �max > +�th. This baseline is evaluated on the
easier task of only separating these three classes, and ignoring the none class.

2.3.2 Non-line-of-sight acoustic detection
In contrast to line-of-sight detection, DoA estimation alone is unsuited for occluded vehicle
detection (and con�rm this in Section 2.4.3). Salient sounds produce sound wave re�ections
on surfaces, such as walls (see Figure 2.1c), thus the DoA does not indicate the actual location
of the source. Modeling the sound propagation [8] while driving through uncontrolled
outdoor environments is challenging, especially as accurate models of the local geometry
are missing. Therefore, a data-driven approach is employed, and the full energy distribution
from SRP-PHAT is treated as robust features for a classi�er that capture all re�ections.

An overview of the proposed processing pipeline is shown in Figure 2.2. M STFTs
are created, using a temporal window of �t seconds, Hann windowing function and
a frequency bandpass of [fmin , fmax] Hz. Notably, no noise �ltering or suppression is
applied. To capture temporal changes in the re�ection pattern, the STFTs are split along
the temporal dimension into L non-overlapping segments. For each segment, the DoA
energy is computed at multiple azimuth angles � in front of the vehicle. The azimuth
range [−90◦,+90◦] is divided into B equal bins �1,⋯ ,�B . From the original M signals, thus L
response vectors r l = [rl (�1),⋯ , rl (�B)]⊤ are obtained. Finally, these are concatenated to a

2.3 Approach

2

15

(L×B)-dimensional feature vector x = [r1,⋯ ,rL]⊤, for which a Support Vector Machine is
trained to predict . Note that increasing the temporal resolution by having more segments
L comes at the trade-o� of an increased �nal feature vector size and reduced DoA estimation
quality due to shorter time windows.

2.3.3 Acoustic perception research vehicle

A
B

C

Figure 2.3: Sensor setup of the test vehicle. A: Center of the 56 MEMS acoustic array. B: signal processing unit. C:
front camera behind windscreen. Inset: the diameter of a single MEMS microphone is only 12mm.

To collect real-world data and demonstrate non-line-of-sight detection, a custom mi-
crophone array was mounted on the roof rack of a research vehicle [34], a hybrid electric
Toyota Prius. The microphone array hardware consists of 56 ADMP441 MEMS microphones,
and supports data acquisition at 48 kHz sample rate, 24 bits resolution, and synchronous
sampling. It was bought from CAE Software & Systems GmbH with a metal frame. On this
0.8m×0.7m frame the microphones are distributed semi-randomly while the microphone
density remains homogeneous. The general purpose layout was designed by the company
through stochastic optimization to have a large variance in inter-microphone distances
and serve a wide range of acoustic imaging tasks. The vehicle is also equipped with a
front-facing camera for data collection and processing. The center of the microphone array
is about 1.78m above the ground, 0.54m above, and 0.50m behind the used front camera, see
Figure 2.3. As depicted in the Figure’s inset, the microphones themselves are only 12mm
wide. They cost about US$1 each.

A signal processing unit receives the analog microphone signals and sends the data over
Ethernet to a PC running the Robot Operating System (ROS). Using ROS, the synchronized
microphone signals are collected together with other vehicle sensor data. Processing is done
in python, using pyroomacoustics [21] for acoustic feature extraction, and scikit-learn [35]
for classi�er training.

This setup is not intended as a production prototype, but provides research bene�ts:
The 2D planar arrangement provides both horizontal and vertical high-resolution DoA
responses, which can be overlaid as 2D heatmaps [36] on the front camera image to visually

2

16 2 Hearing What You Cannot See: Acoustic Detection Around Corners

study the salient sources (Section 2.4.1). By testing subsets of microphones, it is possible to
assess the impact of the number of microphones and their relative placement (Section 2.4.7).
In the future, the array should only use a few microphones at various locations around the
vehicle.

2.3 Approach

2

17

(a) Stroller at a distance (b) Electric scooter

(c) Scooter overtaking (d) Car passing by

(e) Oncoming car

Figure 2.4: Qualitative examples of 2D Direction-of-Arrival estimation overlaid on the camera image (zoomed).
(a): Stroller wheels are picked up even at a distance. (b), (c): Both conventional and more quiet electric scooters
are detected. (d): The loudest sound of a passing vehicle is typically the road contact of the individual tires. (e):
Even when the ego-vehicle drives at ∼ 30 km/h, oncoming moving vehicles are still registered as salient sound
sources.

2

18 2 Hearing What You Cannot See: Acoustic Detection Around Corners

2.4 Experiments
To validate the method, a novel dataset is created using the acoustic research vehicle in
real-world urban environments. The quality of acoustic beamforming is demonstrated in
such conditions before turning to the main experiments.

2.4.1 Line-of-sight localization –qalitative results
As explained in Section 2.3.3, the heatmaps of the 2D DoA results can be overlaid with
the camera images. Figure 2.4 shows some interesting qualitative �ndings in real urban
conditions. The examples highlight that beamforming can indeed pick up various important
acoustic events for autonomous driving in line-of-sight, such as the presence of vehicles
and some vulnerable road users (e.g. strollers). Remarkably, even electric scooters and
oncoming tra�c while the ego-vehicle is driving are recognized as salient sound sources.
A key observation from Figure 2.1c is that sounds originating behind corners re�ect in
particular patterns on nearby walls. Overall, these results show the feasibility of acoustic
detection of (occluded) tra�c.

2.4.2 Non-line-of-sight dataset and evaluation metrics
The quantitative experiments are designed to separately control and study various factors
that could in�uence acoustic perception. Multiple recordings of the situations explained in
Section 2.3 are collected at �ve T-junction locations with blind corners in the inner city
of Delft. The locations are categorized into two types of walled acoustical environments,
namely types A and B (see Figure 2.5). At these locations, common background noise,
such as construction sites and other tra�c, was present at various volumes. For safety and
control, no recordings were made in the presence of other motorized tra�c on the roads at
the target junction.

left right

-300 30000

-900 900

front

(a) Type A: completely walled

-300 00

front

300

left right

-900 900

(b) Type B: walled exit

Figure 2.5: Schematics of considered environment types. The ego-vehicle approaches the junction from the
bottom. Another vehicle might approach behind the left or right blind corner. Dashed lines indicate the camera
FoV.

2.4 Experiments

2

19

The recordings can further be divided into Static data, made while is the ego-vehicle
in front of the junction but not moving, and more challenging Dynamic data where the
ego-vehicle reaches the junction at ∼15 km/h (see the supplementary video). Static data is
easily collected, and ensures that the main source of variance is the approaching vehicle’s
changing position.

For the static case, the ego-vehicle was positioned such that the building corners are
still visible in the camera and occlude the view onto the intersecting road (on average a
distance of ∼7-10m from the intersection). Di�erent types of passing vehicles were recorded,
although in most recordings the approaching vehicle was a Škoda Fabia 1.2 TSI (2010)
driven by one of the authors. For the Dynamic case, coordinated recordings with the
Škoda Fabia were conducted to ensure that encounters were relevant and executed in a
safe manner. Situations with left/right/none approaching vehicles were performed
in arbitrary order to prevent undesirable correlation of background noise to some class
labels. In ∼70% of the total Dynamic recordings and ∼19.5% of the total Static recordings,
the ego-vehicle’s noisy internal combustion engine was running to charge its battery.

ID left front right none Sum
SA1 / DA1 14 / 19 30 / 38 16 / 19 30 / 37 90/113
SA2 / DA2 22 / 7 41 / 15 19 / 8 49 / 13 131/ 43
SB1 / DB1 17 / 18 41 / 36 24 / 18 32 / 35 114/107
SB2 / DB2 28 / 10 55 / 22 27 / 12 43 / 22 153/ 66
SB3 / DB3 22 / 19 45 / 38 23 / 19 45 / 36 135/112
SAB / DAB 103/ 73 212/149 109/ 76 199/143 623/441

Table 2.1: Samples per subset. In the ID, S/D indicates Static/Dynamic ego-vehicle, A/B the environment type (see
�gure 2.5).

Sample extraction For each Static recording with an approaching target vehicle, the
time t0 is manually annotated as the moment when the approaching vehicle enters direct
line-of-sight. Since the quality of the t0 estimate is bounded by the ego-vehicle’s camera
frame rate (10 Hz), the last image before the incoming vehicle is visible serves as a con-
servative estimate of t0. Thus, there is no line-of-sight at t ≤ t0. At t > t0 the vehicle is
considered visible, even though it might only be a fraction of the body. For the Dynamic
data, this annotation is not feasible as the approaching car may be in direct line-of-sight,
yet outside the limited �eld-of-view of the front-facing camera as the ego-vehicle has
advanced onto the intersection. Thus, annotating t0 based on the camera images is not
representative of line-of-sight detection. To still compare the results across locations, the
time �0, the moment when the ego-vehicle is at the same position as in the corresponding
Static recordings, is manually annotated. All Dynamic recordings are aligned to that time
as it represents the moment where the ego-vehicle should make a classi�cation decision,
irrespective if an approaching vehicle is about to enter line-of-sight or still further away.

From the recordings, short �t = 1s audio samples are extracted. Let te , the end of the
time window [te −1s, te], denote a sample’s time stamp at which a prediction could be made.
For Static left and right recordings, samples with the corresponding class label are
extracted at te = t0. For Dynamic recordings, left and right samples are extracted at

2

20 2 Hearing What You Cannot See: Acoustic Detection Around Corners

te = �0 +0.5s. This ensures that during the 1s window the ego-vehicle is on average close
to its position in the Static recordings. In both types of recordings, front samples are
extracted 1.5s after the left/right samples, e.g. te = t0+1.5s. Class none samples were
from recordings with no approaching vehicles. Table 2.1 lists statistics of the extracted
samples at each recording location.

Data augmentation Table 2.1 shows that the data acquisition scheme produced imbal-
anced class ratios, with about half the samples for left, right compared to front,
none. The experiments therefore explore data augmentation. By exploiting the symmetry
of the angular DoA bins, augmentation will double the right and left class samples
by reversing the azimuth bin order in all r l , resulting in new features for the opposite label,
i.e. as if additional data was collected at mirrored locations. Augmentation is a training
strategy only, and thus not applied to test data to keep results comparable, and distinct for
left and right.

Metrics The overall accuracy and the per-class Jaccard index (a.k.a. Intersection-over-
Union) are reported, where the latter serves as a robust measure of one-vs-all performance.
First, for each class c the True Positives/Negatives (TPc/TNc), and False Positives/Negatives
(FPc/FNc) are computed, treating target class c as positive and the other three classes
jointly as negative. Given the total number of test samples N , the overall accuracy is then
(∑c∈ TPc)/N and the per-class Jaccard index is Jc = TPc/(TPc +FPc +FNc).

Run Accuracy Jleft Jfront Jright Jnone
* (reference) 0.92 0.79 0.89 0.87 0.83

* wo. data augment. 0.92 0.75 0.91 0.78 0.83
* w. �t = 0.5s 0.91 0.75 0.89 0.87 0.82

* w. L = 1 0.86 0.64 0.87 0.73 0.79
* w. L = 3 0.92 0.74 0.92 0.82 0.81
* w. L = 4 0.90 0.72 0.90 0.77 0.83

* w. SVM � = 0.1 0.91 0.78 0.89 0.81 0.82
* w. SVM � = 10 0.91 0.81 0.86 0.84 0.83
DoA-only [9, 11] 0.64 0.11 0.83 0.28 -

Faster R-CNN [37] 0.60 0.00 0.99 0.00 0.98

Table 2.2: Baseline comparison and hyperparameter study w.r.t. the reference con�guration: SVM � = 1, �t = 1,
L = 2, data augmentation. Results on Static data. * denotes the proposed pipeline.

2.4.3 Training and impact of classifier and features
First, the overall system performance and hyperparameters are evaluated on all Static data
from both type A and B locations (i.e. subset ID ‘SAB’) using 5-fold cross-validation. The
folds are �xed once for all experiments, with the training samples of each class equally
distributed among folds.

The frequency range is �xed to fmin = 50Hz, fmax = 1500Hz, and the number of azimuth
bins to B = 30 (Section 2.3.2). For e�ciency and robustness, a linear Support Vector

2.4 Experiments

2

21

-2 0 2

−900

00

900

te − t0 [s]

�
[◦
]

(a) DoA energy over time

-90°

-45°

0°

45°

90°
0.10.20.3

NLOS (t0)

LOS (t0 + 1.5s)

αmax αmax

r(�)

� [◦]

(b) DoA relative to ego-vehicle

Figure 2.6: DoA energy over time for the recording shown in Figure 2.1c. When the approaching vehicle is not in
line-of-sight (NLOS), e.g. at t0, the main peak is a re�ection on the wall (�max < −30◦) opposite of that vehicle.

Machine (SVM) is used with l2−regularization weighted by hyperparameter �. Other
hyperparameters to explore include the sample length �t ∈ {0.5s,1s}, the segment count
L ∈ {1,2,3,4}, and using/not using data augmentation.

The �nal choice and reference is the SVM with � = 1, �t = 1s, L = 2, and data augmenta-
tion. Table 2.2 shows the results for changing these parameter choices. The overall accuracy
for all these hyperparameters choices is mostly similar, though per-class performance does
di�er. The reference achieves top accuracy, while also performing well on both left and
right. The hyperparameters are kept for all following experiments.

The table also shows the results of the DoA-only baseline explained in Section 2.3.1
using �th = 50◦, which was found through a grid search in the range [0◦, 90◦]. As expected,
the DoA-only baseline [9, 11] shows weak performance for all metrics. While the sound
source is occluded, the most salient sound direction does not represent its origin, but its
re�ection on the opposite wall (see Figure 2.1). The temporal evolution of the full DoA
energy for a car approaching from the right is shown in Figure 2.6. When it is still
occluded at t0, there are multiple peaks and the most salient one is a re�ection on the
left (�max ≈ −40◦). Only once the car is in line-of-sight (t0 +1.5s) the main mode clearly
represents its true direction (�max ≈ +25◦). The left and right image in Figure 2.1c also show
such peaks at t0 and t0 +1.5s, respectively.

The bottom row of the table shows the visual baseline, a Faster R-CNN R50-C4 model
trained on the COCO dataset [37]. To avoid false positive detections, the score threshold
is set to 75% and additionally a bounding box height of 100 pixels is required to ignore
cars far away in the background, which were not of interest. Generally, this threshold is
already exceeded once the hood of the approaching car is visible. While performing well
on front and none, this visual baseline shows poor overall accuracy as it is physically
incapable of classifying left and right.

2.4.4 Detection time before appearance
Ultimately, the goal is to know whether the acoustic method can detect approaching
vehicles earlier than the state-of-the-art visual baseline. For this purpose, their online
performance is compared next.

2

22 2 Hearing What You Cannot See: Acoustic Detection Around Corners

The static recordings are divided into a �xed training (328 recordings) and test (83
recordings) split, strati�ed to adequately represent labels and locations. The training was
conducted as in Section 2.4.3 with left and right samples extracted at te = t0. The
visual baseline is evaluated on every camera frame (10 Hz). The detector is evaluated
on a sliding window of 1s across the 83 test recordings. To account for the transition
period when the car may still be partly occluded, front predictions by both methods are
accepted as correct starting at t = t0. For recordings of classes left and right, these
classes are accepted until t = t0 +1.5s, allowing for temporal overlap with front.

Figure 2.7 illustrates the accuracy on the test recordings for di�erent evaluation times
te . The overlap region is indicated by the gray area after te = t0 and its beginning thus
marks when a car enters the �eld of view. At te = t0, just before entering the view of the
camera, the approaching car can be detected with 0.94 accuracy by the proposed method.
This accuracy is achieved more than one second ahead of the visual baseline, showing that
acoustic detection gives the ego-vehicle additional reaction time. After 1.5s a decreasing
accuracy is reported since the leaving vehicle is not annotated and only front predictions
are considered true positives. The acoustic detector sometimes still predicts left, or
right once the car crossed over. The Faster R-CNN accuracy also decreases: after 2s the
car is often completely occluded again.

Figure 2.8 shows the per-class probabilities as a function of extraction time te on the
test set, separated by recording situations. The SVM class probabilities are obtained with
the method in [38]. The probabilities for left show that on average the model initially
predicts that no car is approaching. Towards t0, the none class becomes less likely and
the model increasingly favors the correct left class. A short time after t0, the prediction
�ips to the front class, and eventually switches to right as the car leaves line-of-sight.
Similar (mirrored) behavior is observed for vehicles approaching from the right. The
probabilities of left/right rise until the approaching vehicle is almost in line-of-sight,
which corresponds to the extraction time of the training samples. The none class is
constantly predicted as likeliest when no vehicle is approaching. Overall, the prediction
matches the events of the recorded situations remarkably well.

te − t0 [s]

Ac
cu

ra
cy

Figure 2.7: Accuracy over test time te of the acoustic approach and the visual baseline on 83 Static recordings.
Gray region indicates the other vehicle is half-occluded and two labels, front and either left or right, are
considered correct.

2.4 Experiments

2

23

−6 −4 −2 0 2
0.0

0.2

0.4

0.6

0.8

1.0

te − t0 [s]

p(
c|
x)

(a) left recordings

−6 −4 −2 0 2
0.0

0.2

0.4

0.6

0.8

1.0

te − t0 [s]
(b) right recordings

−6 −4 −2 0 2
0.0

0.2

0.4

0.6

0.8

1.0
front left none right

te − t0 [s]

p(
c|
x)

(c) none recordings

Figure 2.8: Mean and standard deviation of predicted class probabilities at di�erent times te on test set recordings of
the Static data (blue is front, green is left, red is right, and black is none). Each �gure shows recordings
of a di�erent situation. The approaching vehicle appears in view just after te − t0 = 0.

Subset Accuracy Jleft Jfront Jright Jnone
DAB 0.76 0.41 0.80 0.44 0.65
DA 0.84 0.66 0.85 0.64 0.72
DB 0.75 0.33 0.81 0.42 0.64

Table 2.3: Cross-validation results per environment on Dynamic data.

2.4.5 Impact of the moving ego-vehicle
Next, the classi�er is evaluated by cross-validation per environment subset, as well as on
the full Dynamic data. As for the Static data, 5-fold cross-validation is applied to each
subset, keeping the class distribution balanced across folds.

Table 2.3 lists the corresponding metrics for each subset. On the full Dynamic data
(DAB), the accuracy indicates decent performance, but the metrics for left and right
classes are much worse compared to the Static results in Table 2.2. Separating subsets DA
and DB reveals that the performance is highly dependent on the environment type. In
fact, even with limited training data and large data variance from a driving ego-vehicle,
decent classi�cation performance is obtained in type A environments, and it is noticeable
that low left and right performance mainly results from type B environments. It is
possible that the more con�ned type A environments re�ect more target sounds and are

2

24 2 Hearing What You Cannot See: Acoustic Detection Around Corners

−6 −4 −2 0 2
0.0

0.2

0.4

0.6

0.8

1.0

te − t0 [s]

p(
c|
x)

(a) left recordings

−6 −4 −2 0 2
0.0

0.2

0.4

0.6

0.8

1.0

te − t0 [s]
(b) right recordings

Figure 2.9: Mean and standard deviation of predicted class probabilities at di�erent times te on left and right
test set recordings of the Dynamic data. The ego-vehicle reached the location of training data when te −�0 = 0.5s.

better shielded from potential noise sources.

The temporal behavior of the method on Dynamic data is also analyzed. Unfortunately,
a fair comparison with a visual baseline is not possible: the ego-vehicle often reaches the
intersection early, and the approaching vehicle is within line-of-sight but still outside the
front-facing camera’s �eld of view (cf. �0 extraction in Section 2.4.2). Yet, the evolution of the
predicted probabilities can be compared to those on the Static data in Section 2.4.4. Figure
2.9 illustrates the average predicted probabilities over 59 Dynamic test set recordings from
all locations, after training on samples from the remaining 233 recordings. The classi�er on
average correctly predicts right samples (Figure 2.9b), between te = �0 to te = �0 +0.5s.
Of the left recordings at these times, many are falsely predicted as none, only few
are confused with right. Furthermore, the changing ego-perspective of the vehicle
results in alternating DoA-energy directions and thus class predictions, compared to the
Static results in Figure 2.8. This indicates that it might help to include the ego-vehicle’s
relative position as an additional feature, and obtain more varied training data to cover the
positional variations.

2.4.6 Generalization across acoustic environments

In the following, it is studied how the performance is a�ected when the classi�er is trained
on all samples from one environment type and evaluated on all samples of the other type.
In Table 2.4, combinations of training and test sets are listed. Compared to the results for
Static and Dynamic data (see Tables 2.2 and 2.3), the reported results in the table show
a general trend: If the classi�er is trained on one environment and tested on the other,
it performs worse than when samples of the same location are used. In particular, the
classi�er trained on SB and tested on SA is not able to correctly classify samples of left
and right while inverse training and testing perform much better. On the Dynamic data,
such pronounced e�ects are not visible, but overall the accuracy decreases compared to
the Static data. In summary, the re�ection patterns vary from one environment to another,
yet at some locations the patterns appear more distinct and robust than those at others.

2.5 Conclusions

2

25

Training Test Accuracy Jleft Jfront Jright Jnone
SB SA 0.66 0.03 0.66 0.03 0.62
SA SB 0.79 0.42 0.82 0.61 0.67
DB DA 0.53 0.16 0.70 0.25 0.16
DA DB 0.56 0.21 0.50 0.29 0.46

Table 2.4: Generalization across locations and environments.

2.4.7 Microphone array configuration
An array with 56 microphones enables evaluation of di�erent spatial con�gurations with
M < 56. For various subsets of M microphones, 100 out of (56M) possible microphone
con�gurations are randomly sampled, and cross-validated on the Static data. Interestingly,
the best con�guration with M = 7 already achieves similar accuracy as with M = 56. With
M = 2/3 the accuracy is already 0.82/0.89, but with worse performance on left and
right. The large variance between samples highlights the importance of a thorough
search of spatial con�gurations. Reducing M also leads to faster inference time, speci�cally
0.24/0.14/0.04s for M = 56/28/14 using an unoptimized implementation.

2.5 Conclusions
A vehicle-mounted microphone array can be used to acoustically detect approaching
vehicles behind blind corners from their wall re�ections. In the experimental setup, the
proposed method achieved an accuracy of 0.92 on the 4-class hidden car classi�cation task
for a static ego-vehicle, and up to 0.84 in some environments while driving. An approaching
vehicle was detected with the same accuracy as the visual baseline already more than one
second ahead, a crucial advantage in such critical situations.

While these initial �ndings are encouraging, the results have several limitations. The
experiments included only a few locations and a few di�erent oncoming vehicles, and while
the proposed method performed well in one environment, it had di�culties in the other,
and did not perform reliably in unseen test environments. To expand the applicability, more
representative data is needed to capture a broad variety of environments, vehicle positions,
and velocities, and the presence of multiple sound sources. Rather than generalizing across
environments, additional input from map data or other sensor measurements could help
to discriminate acoustic environments and to classify the re�ection patterns accordingly.
More data also enables end-to-end learning of low-level features, potentially capturing cues
that the DoA-based approach currently ignores (e.g. Doppler, sound volume), and perform
multi-source detection and classi�cation in one pass [30]. Ideally, a suitable self-supervised
learning scheme is developed [31], though a key challenge is that actual occluded sources
cannot immediately be visually detected.

2.6 References
[1] Christoph G Keller, Thao Dang, Hans Fritz, Armin Joos, Clemens Rabe, and Dariu M

Gavrila. Active pedestrian safety by automatic braking and evasive steering. IEEE
Transactions on Intelligent Transportation Systems, 12(4):1292–1304, 2011.

2

26 2 Hearing What You Cannot See: Acoustic Detection Around Corners

[2] Zachary MacHardy, Ashiq Khan, Kazuaki Obana, and Shigeru Iwashina. V2X access
technologies: Regulation, research, and remaining challenges. IEEE Communications
Surveys & Tutorials, 20(3):1858–1877, 2018.

[3] Sylvain Argentieri, Patrick Danes, and Philippe Souères. A survey on sound source
localization in robotics: From binaural to array processing methods. Computer Speech
& Language, 34(1):87–112, 2015.

[4] Caleb Rascon and Ivan Meza. Localization of sound sources in robotics: A review.
Robotics & Autonomous Systems, 96:184–210, 2017.

[5] Lin Wang and Andrea Cavallaro. Acoustic sensing from a multi-rotor drone. IEEE
Sensors Journal, 18(11):4570–4582, 2018.

[6] David B Lindell, Gordon Wetzstein, and Vladlen Koltun. Acoustic non-line-of-sight
imaging. In Proc. of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 6780–6789, 2019.

[7] Keita Okutani, Takami Yoshida, Keisuke Nakamura, and Kazuhiro Nakadai. Outdoor
auditory scene analysis using a moving microphone array embedded in a quadrocopter.
In IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 3288–3293.
IEEE, 2012.

[8] Inkyu An, Myungbae Son, Dinesh Manocha, and Sung-eui Yoon. Re�ection-aware
sound source localization. In Proc. of the IEEE International Conference on Robotics
and Automation, pages 66–73. IEEE, 2018.

[9] Yoonho Jang, Jaekwang Kim, and Jinhak Kim. The development of the vehicle
sound source localization system. In Asia-Paci�c Signal and Information Processing
Association Annual Summit and Conference, pages 1241–1244. IEEE, 2015.

[10] Agnieszka Stelling-Kończak, Marjan Hagenzieker, and Bert Van Wee. Tra�c sounds
and cycling safety: The use of electronic devices by cyclists and the quietness of
hybrid and electric cars. Transport Reviews, 35(4):422–444, 2015.

[11] Mitsunori Mizumachi, Atsunobu Kaminuma, Nobutaka Ono, and Shigeru Ando. Ro-
bust sensing of approaching vehicles relying on acoustic cues. Sensors, 14(6):9546–9561,
2014.

[12] Adarsh Venkata Padmanabhan, Hariram Ravichandran, et al. Acoustics based vehicle
environmental information. Technical report, SAE, 2014.

[13] Kensaku Asahi, Hideki Banno, Osami Yamamoto, Akira Ogawa, and Keiichi Yamada.
Development and evaluation of a scheme for detecting multiple approaching vehicles
through acoustic sensing. In IEEE Intelligent Vehicles Symposium, pages 119–123. IEEE,
2011.

[14] Victor Singh, Katherine E Knisely, et al. Non-line-of-sight sound source localization
using matched-�eld processing. Journal of the Acoustical Society of America, 131(1):292–
302, 2012.

2.6 References

2

27

[15] Takuya Toyoda, Nobutaka Ono, Shigeki Miyabe, Takeshi Yamada, and Shoji Makino.
Tra�c monitoring with ad-hoc microphone array. In International Workshop on
Acoustic Signal Enhancement, pages 318–322. IEEE, 2014.

[16] Shigemi Ishida, Jumpei Kajimura, Masato Uchino, Shigeaki Tagashira, and Akira
Fukuda. SAVeD: Acoustic vehicle detector with speed estimation capable of sequential
vehicle detection. In International Conference on Intelligent Transportation Systems,
pages 906–912. IEEE, 2018.

[17] Ulf Sandberg, Luc Goubert, and Piotr Mioduszewski. Are vehicles driven in electric
mode so quiet that they need acoustic warning signals. In International Congress on
Acoustics, 2010.

[18] Lykke M Iversen and Rasmus Stahlfest Holck Skov. Measurement of noise from
electrical vehicles and internal combustion engine vehicles under urban driving
conditions. Euronoise, 2015.

[19] Ryan Robart, Etienne Parizet, Jean-Christophe Chamard, et al. eVADER: A perceptual
approach to �nding minimum warning sound requirements for quiet cars. In AIA-
DAGA 2013 Conference on Acoustics, 2013.

[20] Sang Kwon Lee, Seung Min Lee, Taejin Shin, and Manug Han. Objective evaluation
of the sound quality of the warning sound of electric vehicles with a consideration of
the masking e�ect: Annoyance and detectability. International Journal of Automotive
Technology, 18(4):699–705, 2017.

[21] Robin Scheibler, Eric Bezzam, and Ivan Dokmanić. Pyroomacoustics: A python pack-
age for audio room simulation and array processing algorithms. In IEEE International
Conference on Acoustics, Speech and Signal Processing, pages 351–355. IEEE, 2018.

[22] Joseph Hector DiBiase. A high-accuracy, low-latency technique for talker localization
in reverberant environments using microphone arrays. Brown University Providence,
RI, 2000.

[23] Maarten Hornikx and Jens Forssén. Modelling of sound propagation to three-
dimensional urban courtyards using the extended Fourier pstd method. Applied
Acoustics, 72(9):665–676, 2011.

[24] Wen Zhang, Parasanga N Samarasinghe, Hanchi Chen, and Thushara D Abhayapala.
Surround by sound: A review of spatial audio recording and reproduction. Applied
Sciences, 7(5):532, 2017.

[25] Keiichi Osako, Yuki Mitsufuji, et al. Supervised monaural source separation based
on autoencoders. In IEEE International Conference on Acoustics, Speech and Signal
Processing, pages 11–15. IEEE, 2017.

[26] Ashutosh Saxena and Andrew Y Ng. Learning sound location from a single micro-
phone. In Proc. of the IEEE International Conference on Robotics and Automation, pages
1737–1742. IEEE, 2009.

2

28 2 Hearing What You Cannot See: Acoustic Detection Around Corners

[27] Justin Salamon and Juan Pablo Bello. Deep convolutional neural networks and data
augmentation for environmental sound classi�cation. IEEE Signal Processing Letters,
24(3):279–283, 2017.

[28] Abhinav Valada, Luciano Spinello, and Wolfram Burgard. Deep feature learning for
acoustics-based terrain classi�cation. In Robotics Research, pages 21–37. Springer,
2018.

[29] Nelson Yalta, Kazuhiro Nakadai, and Tetsuya Ogata. Sound source localization using
deep learning models. Journal of Robotics and Mechatronics, 29(1):37–48, 2017.

[30] Weipeng He, Petr Motlicek, and Jean-Marc Odobez. Deep neural networks for multiple
speaker detection and localization. In Proc. of the IEEE International Conference on
Robotics and Automation, pages 74–79. IEEE, 2018.

[31] Chuang Gan, Hang Zhao, Peihao Chen, David Cox, and Antonio Torralba. Self-
supervised moving vehicle tracking with stereo sound. In Proc. of the IEEE/CVF
International Conference on Computer Vision, 2019.

[32] Nicolas Scheiner, Florian Kraus, Fangyin Wei, et al. Seeing around street corners:
Non-line-of-sight detection and tracking in-the-wild using doppler radar. In Proc. of
the IEEE Conference on Computer Vision and Pattern Recognition, pages 2068–2077,
2020.

[33] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards
real-time object detection with region proposal networks. In Advances in Neural
Information Processing Systems, pages 91–99, 2015.

[34] L Ferranti, B Brito, E Pool, Y Zheng, et al. SafeVRU: A research platform for the
interaction of self-driving vehicles with vulnerable road users. In IEEE Intelligent
Vehicles Symposium, pages 1660–1666. IEEE, 2019.

[35] Fabian Pedregosa, Gaël Varoquaux, et al. Scikit-learn: Machine learning in python.
Journal of Machine Learning Research, 12(Oct):2825–2830, 2011.

[36] Ennes Sarradj and Gert Herold. A python framework for microphone array data
processing. Applied Acoustics, 116:50–58, 2017.

[37] Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen Lo, and Ross Girshick. De-
tectron2. https://github.com/facebookresearch/detectron2,
2019.

[38] Ting-Fan Wu, Chih-Jen Lin, and Ruby C Weng. Probability estimates for multi-class
classi�cation by pairwise coupling. Journal of Machine Learning Research, 5(Aug):975–
1005, 2004.

https://github.com/facebookresearch/detectron2

2.6 References

2

29

And now for something completely di�erent.

Monty Python

3

31

3
End-to-end Learning of

Decision Trees and Forests

Conventional decision trees have a number of favorable properties, including a small compu-
tational footprint, interpretability, and the ability to learn from little training data. However,
they lack a key quality that has helped fuel the deep learning revolution: being end-to-end
trainable. [1] have addressed this de�cit but at the cost of losing a main attractive trait of
decision trees: the fact that each sample is routed along a small subset of tree nodes only. An
end-to-end learning scheme for deterministic decision trees and decision forests is presented.
Thanks to a new model and expectation-maximization training scheme, the trees are fully
probabilistic at train time, but after an annealing process become deterministic at test time. In
experiments, the e�ect of annealing is explored visually and quantitatively, and it is found that
the method performs on par or superior to standard learning algorithms for oblique decision
trees and forests. Further, it is demonstrated on image datasets that the proposed approach can
learn more complex split functions than common oblique ones, and facilitates interpretability
through spatial regularization.

Parts of this chapter have been published as: Thomas M. Hehn, Julian F.P. Kooij, and Fred A. Hamprecht. “End-
to-end learning of decision trees and forests”, International Journal of Computer Vision, 128, 4, p. 997-1011, 2020,
Springer US.. Results in sections 3.3.1, 3.3.4, 3.3.5, and 3.3.6 have been updated after �xing a bug that had been
reported in the public code repository. The contributions and conclusions remain valid.

3

32 3 End-to-end Learning of Decision Trees and Forests

3.1 Introduction
Neural networks are currently the dominant classi�er in computer vision [2, 3], whereas
decision trees and decision forests have proven their worth when training data or computa-
tional resources are scarce [4, 5]. One can observe that both neural networks and decision
trees are composed of basic computational units, the perceptrons and nodes, respectively.
A crucial di�erence between the two is that in a standard neural network, all units are
evaluated for every input, while in a reasonably balanced decision tree with I inner split
nodes, only (log I) split nodes are visited. That is, in a decision tree, a sample is routed
along a single path from the root to a leaf, with the path conditioned on the sample’s
features. Various works are now exploring the relationship between both classi�cation
approaches [6, 7], such as the Deep Neural Decision Forests (DNDFs) [1]. Similar to deep
neural networks, DNDFs require evaluating all computational paths to all leaf nodes in a
tree for each test sample, which results in high accuracy, but incurs large computational
and memory costs especially as trees grow deeper.

This work proposes an orthogonal approach. The idea is to stick to traditional decision
trees and forests as inference models for their advantages, while improving learning
of such trees through end-to-end training with back-propagation, one of the hallmarks
of neural networks. It is e�ciency, induced by the sparsity of the sample-dependent
computational graph, that piques interest in decision trees. Further, decision trees provide
relative interpretability. End-to-end training allows optimizing all levels of a decision tree
jointly. Furthermore, features can now be jointly learned through linear nodes, but also
through more complex split functions such as small convolutional neural networks (CNNs).
This is a feature that has so far been missing in deterministic decision trees, which are
usually constructed greedily without subsequent tuning. A mechanism to remedy this
de�cit is proposed.

3.1.1 Related work
Random forests are ensembles of decision trees, and were introduced by [8]. In this section,
use cases for trees and forests, choices for split functions, di�erent optimization strategies,
and the connection to deep neural networks are reviewed.

Applications While neural networks have these days superseded all other approaches
in terms of achievable accuracy on many benchmarks [2, 3, 9, 10], state-of-the-art networks
are not easy to interpret, are fairly hungry for training data, often require weeks of GPU
training, and have a computational and memory footprint that limits their use on small
embedded devices. Decision trees and decision tree ensembles, such as random forests,
generally achieve lower accuracy on large datasets but are fundamentally more frugal.
They have shown their e�ectiveness in a variety of classi�cation tasks [4, 11] and also
found wide application in computer vision, e.g. [5, 12–16]. They are well suited for tasks
where computational resources are limited, e.g. real-time human pose estimation in the
Microsoft Kinect [13], or few and unbalanced training samples are available, e.g. during
online object tracking [15].

Decision trees are also found in expert systems since they are widely recognized as
interpretable models which divide a complex classi�cation task into several simpler ones.
For instance, [17–19] use their interpretability for diabetes research, and [20] interpret

3.1 Introduction

3

33

their outcome prediction of in vitro fertilization. Likewise, [21] explains the application of
decision trees in business analytics.

Split functions There have been several attempts to train decision trees with more
complex split functions. [22] have benchmarked oblique random forests on various binary
classi�cation problems. These oblique random forests used linear and non-linear classi�ers
at each split in the decision trees and thereby combined more than one feature at a time. [23]
have successfully approximated the information gain criterion using a sigmoid function and
a smoothness hyperparameter. Expanding these ideas, [24] have trained small convolutional
neural networks (CNNs) at each split in a decision tree to perform binary segmentation. [25]
also apply a greedy strategy to learn neural networks for each split node and hence learn
the structure of the tree. Notably, these approaches use gradient optimization techniques,
but are lacking joint optimization of an entire tree, i.e. end-to-end learning of the entire
model.

Optimization [26] have shown that the problem of �nding an optimal decision tree is
NP-complete. As a consequence, the common approach is to �nd axis-aligned splits by ex-
haustive search, and learn a decision tree with a greedy level-by-level training procedure as
proposed by [27]. In order to improve their performance, it is common practice to engineer
split features for a speci�c task [16, 28–30]. Evolutionary algorithms are another group of
optimization methods which can potentially escape local optima, but are computationally
expensive and heuristic, requiring to tune many parameters (cf. [4] for a survey).

[31] propose an algorithm for the optimization of an entire tree with a given structure.
They show a connection between optimizing oblique splits and structured prediction with
latent variables. As a result, they formulate a convex-concave upper bound on the tree’s
empirical loss. The same upper bound is used to �nd an initial tree structure in a greedy
algorithm. Their method is restricted to linear splits and relies on the kernel trick to
introduce higher-order split features. Alternating Decision Forests [32] instead include a
global loss when growing the trees, thereby optimizing the whole forest jointly.

Some works have explored gradient-based optimization of a full decision tree model
already. While [33] focused on a fuzzy approach of decision tree, [34] introduced hier-
archical mixtures of experts. In the latter model, the predictions of expert classi�ers are
weighted based on conditional path probabilities in a fully probabilistic tree.

[1] make use of gradient-based decision tree learning to learn a deep CNN and use it as
a feature extractor for an entire ensemble of decision trees. They use sigmoid functions to
model the probabilistic routes and employ a log-likelihood objective for training. However,
their inference model is unlike a standard tree as it stays fuzzy or probabilistic after training.
When predicting new samples, all leaves and paths need to be evaluated for every sample,
which subverts the computational bene�ts of trees. Furthermore, they consider only
balanced trees, so the number of evaluated split functions at test time grows exponentially
with increased tree depth.

Connections to deep neural networks Various works explore the connections be-
tween neural networks and traditional decision tree ensembles. [35, 36] cast decision tree
ensembles to neural networks, which enables gradient descent training. As long as the

3

34 3 End-to-end Learning of Decision Trees and Forests

structure of the trees is preserved, the optimized parameters of the neural network can also
be mapped back to the decision forest. Subsequently, [37] map stacked decision forests to
CNNs and found an approximate mapping back. [38] focus on using the learned predictions
of neural networks as a training target for probabilistic decision trees.

A related research direction is to learn conditional computations in deep neural net-
works. In [6, 39–42], several models of neural networks with separate, conditional data
�ows are discussed. Still, the structure of the resulting inference models is �xed a priori.

3.1.2 Contributions
This work extends a previous conference contribution [43] where end-to-end learning
for decision trees was introduced. Here, an extension to decision forests is added, which
is compared to state-of-the-art methods for training forests, and additional results on
interpretability and the e�ect of the steepness parameter are provided. Compared to
existing research, this work provides the following contributions:

• It is proposed to learn deterministic decision trees and forests in an end-to-end
fashion. Unlike related end-to-end approaches [1], trees with deterministic nodes
at test time are obtained. This results in e�cient inference as each sample is only
routed along one unique path of only (log I) out of the I inner nodes in a tree. To
reduce variance, multiple trees can also be combined in a decision forest ensemble.
Furthermore, an end-to-end trainable tree can provide interpretable classi�ers on
learned visual features, similar to how decision trees are used in �nancial or medical
expert systems on handcrafted features. In this context, it is shown the bene�t of
regularizing the spatial derivatives of learned features when samples are images or
image patches.

• To enable end-to-end training of a decision tree, di�erentiable probabilistic nodes
are used at train time only. A new probabilistic split criterion generalizes the long-
established information gain [44]. A key aspect of this new tree formulation is the
introduction of a steepness parameter for the decision [23]. The proposed criterion is
asymptotically identical to information gain in the limit of very steep non-linearities
but allows to better model class overlap in the vicinity of a split decision boundary.

• A matching optimization procedure is proposed. During training, the probabilistic
trees are optimized using the Expectation-Maximization algorithm [45]. Importantly,
the steepness parameter is incrementally adjusted in an annealing scheme to make
decisions ever more deterministic, and bias the model towards crispness. The pro-
posed procedure also constructs the decision trees level-by-level, hence trees will
not grow branches any further than necessary. Compared to initialization with
balanced trees, [1] the proposed approach reduces the expected depth of the tree,
which further improves e�ciency.

Section 3.2 formalizes the new optimization procedure and probabilistic decision tree
formulation. In section 3.3, the performance of the proposed method is compared to that of
related work on decision trees and decision forests. The bene�ts of the annealing scheme
are evaluated when training decision forests for a given number of epochs. The improved

3.2 Methods

3

35

interpretability by regularizing the spatial derivatives of learned features on images or
image patches is demonstrated, Further, it is shown that CNNs can be used as split features.
Finally, section 3.4 presents the conclusions and suggests future work.

3.2 Methods
Consider a classi�cation problem with input space  ⊂ ℝp and output space  = {1, ...,K}.
The training set is de�ned as {x1, ..., xN } =t ⊂ with corresponding classes {y1, ..., yN } =
t ⊂  .

A probabilistic decision tree model enables end-to-end learning. Nevertheless, the
proposed model remains deterministic at test time. To account for this discrepancy, a
steepness parameter is introduced to gradually enforce more deterministic splits during
training. This addition is further motivated by the connection of the learning objective to
the information gain criterion (see section 3.2.6).

3.2.1 Standard decision tree and notation
In binary decision trees (�gure 3.1c), split functions s ∶ ℝ→ [0,1] determine the path of a
sample through the tree, conditioned on that sample’s features. The split function controls
whether the splits are deterministic or probabilistic. For deterministic decision trees as
proposed in [27], the split function is a step function s(x) = Θ(x) with Θ(x) = 1 if x > 0 and
Θ(x) = 0 otherwise. The leaf node that is at the end of a path �nally provides the prediction
for an input sample.

Split nodes At each split node i ∈ {1, ..., I }, a function f� i ∶ ℝ
p →ℝ with parameters � i

computes a split feature from the input sample. This split feature is then the input for the
split function s. Split features of oblique splits are computed through linear combination
of the input sample x and the parameters, i.e. f� i (x) = (x

T , 1) ⋅ � i with � i ∈ ℝp+1. Similarly,
an axis-aligned split perpendicular to axis a is represented by an oblique split whose only
non-zero parameters are at index a and p +1. �� = (�1, ...,� I) denotes the collection of all
split parameters in the tree.

Leaf nodes Each leaf � ∈ {1, ...,L} stores the parameters of a categorical distribution over
classes k ∈ {1, ...,K} in a vector �� ∈ [0,1]K . These vectors are normalized such that the
probability of all classes in a leaf sum to ∑K

k=1(��)k = 1. The notation �� = (�1, ...,�L)
includes all leaf parameters in the tree.

Paths Each leaf is reached by precisely one unique set of split outcomes, called a path.
The probability that a sample x takes the path to a leaf � is de�ned as

�� (x; s,��) = ∏
r∈�

s(f�r (x)) ∏l∈�
(1− s(f� l (x))). (3.1)

Here, � ⊂ {1, ..., I } denotes the splits on the path which contain � in the right subtree.
Analogously, � ⊂ {1, ..., I } denotes splits which contain � in the left subtree. In �gure 3.1c
this means that B = {2} and B = {1,4}. Also note that in the following, the dependency
on s is omitted, except when a speci�c function s is considered.

3

36 3 End-to-end Learning of Decision Trees and Forests

x2

x1

�1

1

2

3

4

A

B C

D

E

(a) feature space

0

0.5

1

A

B

C

D

E

x1

x2

p(y = red | x)

(b) posterior probability

1

2

A 4

B C

1−
s(f �

1
(x)
)

3

D E

s(f�
1 (x))

(c) tree graph

Figure 3.1: Probabilistic oblique decision trees. a) A feature space with a binary classi�cation problem tessellated
by an example oblique decision tree. The oblique splits (1-4) partition the feature space into �ve di�erent
leaves (A-E). b) The predicted p(y = red ∣ x) (equation 3.2) of the oblique decision tree when a probabilistic split
(equation 3.3) is used. c) The corresponding tree diagram.

The prediction of the entire decision tree is given by multiplying the path probability
with the corresponding leaf prediction:

p(y|x;�) =
L
∑
�=1
(��)y �� (x;��). (3.2)

Here, � = (�� , ��) comprises all parameters in the tree. This representation of a decision
tree allows choosing between di�erent split features and di�erent split functions, by varying
the functions f and s, respectively.

3.2.2 Probabilistic decision tree
A de�ning characteristic of the proposed method is that the decision tree is probabilistic
during training, similar to [1]. Rather than sending a sample deterministically down the

3.2 Methods

3

37

right (or left) subtree depending on its features x , it is sent right with a probability

s(f (x)) = �(f (x)) =
1

1+ e−f (x)
. (3.3)

This corresponds to regarding each split in the tree as a Bernoulli decision with mean �(f (x)).
As a result, equation 3.2 is the expected value over the possible outcomes. Figure 3.1b
shows the prediction from equation 3.2 in the probabilistic case for a class y = “red” on the
classi�cation problem illustrated in �gure 3.1a.

To train the probabilistic decision trees, the empirical log-likelihood of the training
data is chosen as the maximization objective:

max
�
L(�;t ,t) = max

�

N
∑
n=1

logp(yn |xn; �). (3.4)

Importantly, while a probabilistic decision tree is used for training, a deterministic
decision tree is used for prediction on test samples. To better match the models used at
train and test time, a hyperparameter
 is introduced, which steers the steepness of the
split function by scaling the split feature [23]

s(f (x)) = �
 (f (x)) = �(
 f (x)). (3.5)

Note, for
 →∞ the model resembles a deterministic decision tree, since �∞(f (x)) = Θ(f (x)).
During training,
 is iteratively increased, akin to a temperature cooling schedule in
deterministic annealing [46].

3.2.3 Expectation-Maximization
To optimize the log-likelihood of equation 3.4, a gradient-based, EM-style optimization
strategy is proposed, which requires f and s to be di�erentiable with respect to the split
parameters � i . The derivation of the EM-algorithm for this model follows the spirit of [45].
Additional latent random variables are introduced zn,� , which indicate that leaf � generated
the class label of a given data point xn . Including these latent variables, the optimization
objective now becomes the complete data log-likelihood

L(�;t ,t ,t) =
N
∑
n=1

L
∑
�=1

zn,� log((��)yn�� (xn; ��)). (3.6)

E-Step In the Expectation-Step, the expected value of the complete-data log-likelihood
over the latent variables given the previous parameters �′ is computed

Q(�|�′) = Et ∣t ,t ;�′[L(�;t ,t ,t)]. (3.7)

3

38 3 End-to-end Learning of Decision Trees and Forests

For this purpose, it is necessary to compute the probability that zn,� = 1 for each training
sample n:

ℎn,� ∶= p(zn,� = 1 ∣ xn , yn; �′) (3.8)

=
p(yn ∣ zn,� = 1,xn; �′)p(zn,� = 1 ∣ xn; �′)

p(yn ∣ xn; �′)
(3.9)

=
(� ′�)yn�� (xn; �

′
�)

∑L
� ′=1(�

′
� ′)yn�� ′ (xn; �

′
�)
. (3.10)

Thus, the expectation value of the complete-data log-likelihood yields

Q(�|�′) =
N
∑
n=1

L
∑
�=1

ℎn,� log((��)yn�� (xn; ��)). (3.11)

M-Step In the Maximization-Step, the expectation value computed in the E-Step (equa-
tion 3.11) is maximized to �nd the updated parameters � ,

max
�

Q(�|�′). (3.12)

Due to the latent variables that were introduced, it is now possible to separate the parameter
dependencies in the logarithm into a sum. As a result, the leaf predictions and split
parameters are optimized separately.

The optimization of the leaf predictions including the normalization constraint can be
computed directly,

(��)k =
∑N
n=1[yn = k]ℎn,�
∑N
n=1ℎn,�

. (3.13)

Here, the Iverson bracket [yn = k] equals 1 if yn = k and 0 otherwise.
The optimization of the split parameters in the M-Step is performed using gradient-

based optimization. The separated objective for the split parameters without the leaf
predictions is

max
��

N
∑
n=1

L
∑
�=1

ℎn,� log�� (xn; ��). (3.14)

In practice the �rst-order gradient-based stochastic optimization Adam [47] is used to
optimize this objective.

In summary, each iteration of the algorithm requires evaluation of equations 3.10 and
3.13, as well as at least one update of the split parameters based on equation 3.14. This
iterative algorithm can be applied to a binary decision tree of any given structure.

3.2.4 Complex splits and spatial regularization
The proposed optimization procedure only requires the split features f to be di�erentiable
with respect to the split parameters. As a result, it is possible to implement more complex
splits than axis-aligned or oblique splits. For example, it is possible to use a small con-
volutional neural network (CNN) as split feature extractor for f and learn its parameters
(section 3.3.4).

3.2 Methods

3

39

Furthermore, the optimization objective can also include regularization constraints
on the parameters. This is useful to avoid over�tting and learn more robust patterns.
When the inputs are from images, spatial regularization also reveals more discernible
spatial structures in the learned parameters without sacri�cing accuracy (section 3.3.3). To
encourage the learning of coherent spatial patterns at each split, a spatial regularization
term [48] is added

−�
I
∑
i=1
�Ti M� i (3.15)

to the maximization objective of the split features of equation 3.14. Here, matrix M denotes
the Laplacian matrix when interpreting the image as a grid graph. For a single pixel,
corresponding to weight �i , the diagonal element Mii contains the number of neighboring
pixels. If pixels i and j are neighboring pixels, then Mij = Mji = −1. All remaining elements
in M are 0. This regularization term penalizes spatial �nite di�erences, encouraging similar
parameters for neighboring pixels. The hyperparameter � controls the regularization
strength, with higher � leading to stronger regularization.

3.2.5 Decision tree construction
The previous sections outlined how to �t a decision tree to training data, given a �xed tree
topology (parameter learning). Additionally to this deterministic decision tree Finetuning,
a Greedy algorithm constructs a tree by successively splitting nodes and optimizing them
on subsets of the training data.

A limit on the number of training epochs serves as a stopping criterion for training
of a single split. The size of the tree can be limited either by the maximum number of
leaf nodes or the depth of the tree. Furthermore, in cases with a very small subset of the
training data, it may happen that training of a split fails and all training samples are passed
to a single child of that node. For these cases a maximum number of attempts to �t a split
function is introduced. Step-by-step, the Greedy algorithm works as follows:

1. Initialize the decision tree with a single candidate node as the tree root.

2. Split the training data into subsets. Starting from the root node with the entire
training dataset, the data is successively decomposed using deterministic routing.
As a result, non-overlapping subsets are assigned to the candidate nodes.

3. For each candidate node:

(a) If the training data subset of the candidate node is pure or the maximum number
of attempts has been reached, skip steps 3b to 3d for this node and �x it as a
leaf node.

(b) Replace node with a new tree stump, i.e. one split node and two leaf nodes.
(c) Optimize only the tree stump using the Finetune algorithm (see section 3.2.3)

on the assigned training data subset for the speci�ed number of epochs.
(d) If training the stump failed, then try training a new stump by repeating from 3a.

4. Find leaf node candidates that may be split according to the speci�ed tree limits.

3

40 3 End-to-end Learning of Decision Trees and Forests

5. If candidate nodes are found, repeat from 2. Otherwise, stop, the decision tree
construction is �nished.

The main intent of this greedy algorithm is that trees are only grown further when
necessary and thereby reduce the number of computations and parameters in the model
(see section 3.3.6). The distribution of the training data in step 2 means that each node
only shares training data with its ancestors. In particular, this means that, at �rst, the root
split is trained on the entire training data. At some point the training data is pure, i.e. all
samples are of the same class, and this node can be �xed as a leaf node.

During the training of a tree stump, only one split node and two leaf nodes are optimized.
As a result, the log-likelihood objective (equation 3.4) then resembles an approximation of
the widely used information gain criterion [44, 49] (section 3.2.6).

After this greedy structure learning, the nodes in the entire resulting tree can be
�netuned jointly as described in section 3.2.3, this time with probabilistic routing of all
training data.

3.2.6 Relation to information gain and leaf entropies
In the following, it is shown that maximization of the log-likelihood of the probabilistic
decision tree model approximately minimizes the weighted entropies in the leaves. The
steeper the splits become, the better the approximation.

To establish this connection hyperparameter
 is used to control the steepness of the
probabilistic split function (equation 3.5). The function � (x) returns the index of the leaf
that sample x reaches when the path is evaluated deterministically

� (x) =
L
∑
�=1

� lim

→∞

�� (x;�
 , ��). (3.16)

This simpli�es the log-likelihood objective (equation 3.4) to

max
�

N
∑
n=1

log(�� (xn))yn (3.17)

because each sample reaches only one leaf. Let N� ,k be the number of training samples in
leaf � with class k and N� = ∑K

k=1N� ,k denote all training samples in leaf � . Since training
samples with the same class and in the same leaf contribute the same term, the equations
may be rearranged to

max
�

L
∑
�=1

K
∑
k=1

N� ,k log(��)k . (3.18)

With
 → ∞, the optimal leaf predictions are the same as in a standard, deterministic
decision tree, i.e. (��)k =

N� ,k
N� . Accordingly, the objective can be rewritten as

max
�

lim

→∞

L(�;t ,t) = min
�

L
∑
�=1

N�
N
H� . (3.19)

Here, H� = −∑K
k=1(��)k log(��)k denotes the entropy in leaf � .

3.3 Experiments

3

41

In conclusion, for
 →∞, maximizing the log-likelihood objective minimizes a weighted
sum of leaf entropies. For the special case of a single split with two leaves, this is the same as
maximizing the information gain. Consequently, the log-likelihood objective (equation 3.4)
can be regarded as a generalization of the information gain criterion [44] to an entire tree.

3.2.7 Decision forest
Following the ideas introduced by [8], decision trees can be combined into a decision
forest. Speci�cally, each decision tree is constructed with the Greedy algorithm on the full
dataset. Afterward, using the Finetune algorithm, each tree is optimized end-to-end. Note
that the result is a decision forest rather than a random forest, since each tree is trained
independently on all train data rather instead of on random subsets.

In order to reduce the correlation between the decision tree predictions, each split
function is only trained on a subset of the available features. For each split, this feature
subset is sampled from a uniform distribution or, in the case of 2D images, will consist of
connected 2D patches of the image.

Let � t denote all parameters of a single tree t out of T trees in the ensemble  of
learned trees. The �nal prediction of the decision forest for a single sample x is computed
as the mean prediction of the single trees (equation 3.2):

p(y|x;) =
1
T

∑
t∈

p(y|x;� t). (3.20)

3.3 Experiments
The experiments are conducted on data from various domains. For quantitative comparison
of the proposed end-to-end learned oblique decision trees (E2EDT), the performance is
evaluated on the multivariate but unstructured datasets used in [31] (section 3.3.1). In
order to understand the learning process of the probabilistic training and deterministic
inference model, the models are visually examined on an image segmentation dataset
(section 3.3.2). Next, it is shown that the proposed algorithm can learn meaningful spatial
features on MNIST, FashionMNIST, and ISBI, as has previously been demonstrated in neural
networks but not in decision trees (section 3.3.3). It is also demonstrated that a deterministic
decision tree with complex split nodes can be trained end-to-end, by using a small neural
network in each split node (section 3.3.4). Further, the e�ect of the steepness annealing
in an end-to-end learned decision forest is quantitatively evaluated (E2EDF, section 3.3.5),
and the model is compared to state-of-the-art decision forests (section 3.3.6) with respect
to the trade-o� between computational load and accuracy.

For gradient-based split parameter optimization, the Adam optimizer [47] with default
parameters (� = 0.001,�1 = 0.9,�2 = 0.999,� = 10−8) and a batch size of 1000 with shu�ed
batches is used. All data is normalized to zero mean and unit variance based on the training
data. Unless stated otherwise, this setup is used for all experiments. The source code of the
implementation using PyTorch [50] is available online1.

1Code is available at http://www.github.com/tomsal/endtoenddecisiontrees

http://www.github.com/tomsal/endtoenddecisiontrees

3

42 3 End-to-end Learning of Decision Trees and Forests

2 6 10 14 18
0.4

0.5

0.6

0.7

0.8

0.9

1.0

2 6 10 14 18
0.4

0.5

0.6

0.7

0.8

0.9

1.0

Finetuned E2EDT
Greedy E2EDT
Non-greedy
CO2
Axis-aligned
OC1
Random

Tree depth

Te
st

ac
cu

ra
cy

Tr
ai

ni
ng

ac
cu

ra
cy

(a) MNIST

2 6 10 14 18

0.6

0.7

0.8

0.9

1.0

2 6 10 14 18

0.6

0.7

0.8

0.9

1.0

Tree depth

(b) SensIT

2 6 10 14 18
0.5

0.6

0.7

0.8

0.9

1.0

2 6 10 14 18
0.5

0.6

0.7

0.8

0.9

1.0

Tree depth

(c) Connect4

2 6 10 14 18
0.4

0.5

0.6

0.7

0.8

0.9

1.0

2 6 10 14 18
0.4

0.5

0.6

0.7

0.8

0.9

1.0

Tree depth

(d) Protein

Figure 3.2: Accuracy on test and training sets of various optimization methods for deterministic oblique decision
trees. For the proposed approach, results with Greedy initialization only (solid, light red line) and after being
Finetuned (solid, dark red line) are shown. The results of the baseline algorithms (dashed lines) were reported in
[31], see text for more details. The maximum tree depth varies from 2 to 18 with stepsize 2.

3.3.1 Performance of obliqe decision trees
The performance of the proposed algorithm is compared to all results reported in [31] in
terms of accuracy. In order to provide a fair comparison, neither pruning, ensembles, nor
regularization are used.

Datasets [31] reports results on the following four datasets: MNIST [51], SensIT [52],
Connect4 [53] and Protein [54]. The multi-class classi�cation datasets are obtained from
the LIBSVM repository [55]. When a separate test set is not provided, the data is randomly
split into a training set with 80% of the data and use 20% for testing. Likewise, when no
validation set is provided, 20% of the training set is randomly extracted as validation set.

Compared algorithms The algorithms that are compared use a deterministic decision
tree for prediction, with either oblique or axis-aligned splits. The following baselines were
evaluated in [31]: Axis-aligned: conventional axis-aligned splits based on information
gain; OC1: oblique splits optimized with coordinate descent as proposed in [56]; Random:
selected the best of randomly generated oblique splits based on information gain; CO2:
greedy oblique tree algorithm based on structured learning [57]; Non-greedy: non-greedy
oblique decision tree algorithm based on structured learning [31].

3.3 Experiments

3

43

(a) input (b) probabilistic, 4 epochs (c) probabilistic, 8 epochs (d) probabilistic, 24 epochs

(e) groundtruth (f) deterministic w.r.t. (b) (g) deterministic w.r.t. (c) (h) deterministic w.r.t. (d)

Figure 3.3: Posterior probability (equation 3.2) after various epochs of learning a single oblique decision tree
on the ISBI binary segmentation dataset. (a) shows the input image and (e) the corresponding ground-truth
labels. (b)-(d) illustrate the posterior of the probabilistic tree as
 increases at various stages during training.
(f)-(h) illustrate the posterior of the deterministic equivalents at those stages after setting
 →∞. Except for (a),
darker means higher probability for class “membrane”. Note how discrepancies between the predictions of the
probabilistic tree and its deterministic counterpart disappear as steepness
 increases. The highlighted region is
discussed in the text.

The results of these algorithms are compared with two variants of the proposed method.
Here, Greedy E2EDT denotes a greedy initialization where each oblique split is computed
using the EM optimization. For each depth, the Finetune E2EDT algorithm is applied to the
tree obtained from the Greedy E2EDT algorithm at that depth. In the following, they are
referred to as Greedy and Finetune.

Hyperparameters and initialization The split steepness hyperparameter is set to

 = 1.0 initially and increased by Δ
 after each epoch. One epoch consists of the split
parameter �� updates of all training batches as well as the update of the leaf predictions
�� . A grid search over the number of training epochs in {20,35,50,65} and the steepness
increase Δ
 ∈ {1,0.1,0.01,0.001,0.0001} is conducted using a train/validation split.

The grid search results in the following combinations: Δ
 = 0.001 for 20 epochs on
MNIST, Δ
 = 0.001 for 65 epochs on SensIT, Δ
 = 0.001 for 50 epochs on Connect4, and
Δ
 = 0.001 for 20 epochs on Protein. The test data is only used to report the �nal performance
and all other hyperparameters are kept �xed. Initial split directions are sampled from the
unit sphere and the categorical leaf predictions are initialized uniformly.

Results Figure 3.2 shows the test and training statistical accuracy of the di�erent decision
tree learning algorithms. The accuracy of a classi�er is de�ned as the ratio of correctly

3

44 3 End-to-end Learning of Decision Trees and Forests

MNIST

FashionMNIST

ISBI

(a) Without spatial regularization (b) With spatial regularization

Figure 3.4: Visualizations of oblique split parameters learned with and without spatial regularization (section 3.2.4).
Each row shows a selection of parameters that were learned on a di�erent dataset, namely MNIST [51], Fashion-
MNIST [58], and ISBI [9]. Parameters trained with spatial regularization show visible structures and patterns,
whereas parameters learned without regularization appear noisy.

classi�ed samples in the respective set. It was evaluated for a single tree at various maximum
depths. The red solid lines show the result of the proposed algorithm, and the dashed lines
represent results reported by [31].

The proposed algorithms achieve higher test accuracy than previous work, especially
in extremely shallow trees. On the MNIST and Connect4 data sets, previous approaches are
outperformed for oblique decision trees at all depths. In particular, an oblique decision tree
of depth 4 is already su�cient to surpass all competitors.

On SensIT and Protein, the proposed approach performs better than or on par with
the Non-greedy approach proposed in [31]. Note that further hyperparameter tuning may
reduce over�tting, e.g. on the Protein dataset, and thus the results may improve.

In conclusion, the proposed (E2EDT) algorithm is able to learn more accurate determin-
istic oblique decision trees than the previous approaches.

3.3.2 Visual convergence of training and inference model
During training, the probabilistic training model s gradually steered towards a deterministic
model by increasing the steepness
 . Next, the di�erence between the probabilistic training
model and the deterministic inference model is visually examined. For this purpose, an
oblique decision tree is trained on a binary image segmentation task on the ISBI challenge
dataset [9]. This challenging image segmentation benchmark comprises serial section
Transmission Electron Microscopy images (�gure 3.3a) and binary annotations of neurons
and membranes (�gure 3.3e). For every pixel, a 9×9 window around the current pixel serves
as input features to an oblique decision tree. Consequently, the learned parameters at each
split node can be regarded as a spatial kernel. The tree is initialized as a balanced oblique
decision tree of depth 6 and the Finetune algorithm is used to optimize the entire tree with
the default steepness increase of Δ
 = 0.1 per epoch.

3.3 Experiments

3

45

0 2 4 6 8
0

1

0 2 4 6 8
0

1

0 2 4 6 8
0

1

0 2 4 6 8
0

1

0 2 4 6 8
0

1

0 2 4 6 8
0

1

0 2 4 6 8
0

1

0 2 4 6 8
0

1

Depth 0

Depth 1

Depth 3

Depth 2

0 T-shirt/top
1 Trouser
2 Pullover
3 Dress
4 Coat

5 Sandal
6 Shirt
7 Sneaker
8 Bag
9 Ankle boot

Figure 3.5: Visualization of an oblique decision tree learned on FashionMNIST [58] with spatial regularization.
The right branch of the root (dashed arrow) is hidden for clarity. The split parameters are visualized as in �gure 3.4.
Intuitively, the better the input image matches the parameter image, the more likely the sample will go to the
right child. If the input image better resembles the negative parameter image, the sample will go to the left. The
thickness of an arrow indicates the number of training samples following the path when the decision tree is
evaluated deterministically. Distributions at the leaves are visualized as bar plots. The x-axis denotes classes (see
legend in the top-left), and the y-axis corresponds to the class probability.

Results Figure 3.3a shows a sample image of the input and �gure 3.3e the corresponding
ground-truth labels. Figures 3.3b to 3.3d illustrate the posterior probability (equation 3.2)
predicted by the probabilistic training model at di�erent training stages. The posterior
probabilities of the corresponding inference models are shown below, in �gures 3.3f to
3.3h. The visualization of the prediction shows pixels more likely to be of class “membrane”
with darker color.

The gradual convergence of the probabilistic training model and the deterministic
inference model is well visible. After 4 epochs, the probabilistic model (�gure 3.3b) already
re�ects the structure of the segmentation problem. The corresponding deterministic model
is more fragmented and also exhibits stronger con�dence values, i.e. darker pixels. This
is especially clear to see in the highlighted red squares in �gure 3.3. The discrepancy
between the probabilistic and deterministic models is reduced after 8 epochs (�gures 3.3c
and 3.3g). However, the deterministic posterior estimate reveals high con�dence even
in misclassi�ed areas (higher contrast). This e�ect is dampened after 24 epochs. The
corresponding leaf probabilities now learned to estimate con�dence and thus show more
gray areas in di�cult regions. The di�erences between the probabilistic (�gure 3.3d) and
the deterministic (�gure 3.3h) predictions are hardly visible anymore.

3.3.3 Interpretation of spatially regularized parameters
Now, the e�ects of spatial regularization are investigated (section 3.2.4) on the parameters
of oblique decision trees learned with the proposed algorithm. Recall that regularization
penalizes di�erences in adjacent parameters. For this purpose, oblique decision trees are
trained on the MNIST digit dataset [51], the FashionMNIST fashion product dataset [58]
and the ISBI image segmentation dataset [9]. For MNIST and FashionMNIST, the training
images consist of 28×28 images. For the segmentation task on ISBI, a sliding window of
size 31×31 is used as input features for each pixel in the center of the window.

3

46 3 End-to-end Learning of Decision Trees and Forests

Results In �gure 3.4, selected parameters of the oblique splits at various depths with and
without regularization are visualized. The learned parameter vectors are reshaped to the
respective training image dimensions and linearly normalized to the full grayscale range.
In both cases, parameter vectors were selected that display interesting visible structures.

The parameters without regularization appear very noisy. In contrast, with regulariza-
tion, the algorithm learns smoother parameter patterns, without decreasing the accuracy
of the decision trees. The patterns learned on the MNIST show visible sigmoidal shapes
and even recognizable digits. On the FashionMNIST dataset, the regularized parameters
display the silhouettes of coats, pants, and sneakers. Likewise, the proposed algorithm is
able to learn the structures of membranes on the real-world biological electron microscopy
images from the ISBI dataset.

Figure 3.5 visualizes half of a learned tree for the FashionMNIST dataset. One can see
that at deeper splits, more distinctive features of various fashion products are tested. The
split parameters of the �rst split at depth 3 show bright trousers and its right child predicts
the class “trousers”. The same holds for the second split at depth 3, showing a bright
silhouette of a dress and its right child predicts “dress”. The parameters of the third split at
depth 3 reveal some kind of upper body clothes, but it is di�cult to determine the kind.
Yet, these parameters separate samples of class “pullover” and “shirt” (left child) from class
“coat” (right child). Such decision tree illustrations thus reveal important features that drive
the internal decisions made towards the �nal prediction. This provides a useful tool to
interpret the proposed model, akin to the use of decision trees in expert systems of other
domains [19, 21].

3.3.4 CNN split features
In the following, the e�ectiveness of CNNs as split features in a decision tree on MNIST
is investigated. At each split, a very simple CNN of the following architecture is trained:
Convolution 5×5 kernel @ 3 output channels → Max Pool 2×2 → ReLU → Convolution
5×5 @ 6 → Max Pool 2×2 → ReLU → Fully connected layer 96×50 → ReLU → Fully
connected layer 50×1. The �nal scalar output is the split feature, which is the input to the
split function.

Again, greedy training initializes the tree, however, the nodes are split in a best-
�rst manner, based on the highest information gain. As a result, the trees can be fairly
unbalanced despite impure leaves. At a maximum of 10 leaves training is stopped to
increase interpretability and e�ciency by having one expert leaf per class.

Results In this setting, a single decision tree achieves a test accuracy of 98.2%± 0.1%
deterministic evaluation of nodes. For comparison, a standard random forest ensemble
with 100 trees only reaches 96.79%±0.07%.

Such decision tree models provide interesting bene�ts in interpretability and e�ciency,
which are the main advantages of decision trees. When a sample was misclassi�ed it
is straightforward to �nd the split node that is responsible for the error. This o�ers
interpretability as well as the possibility to improve the overall model. Other methods,
such as OneVsOne or OneVsRest multi-class approaches, provide similar interpretability,
however at a much higher cost at test time. This is due to the fact that in a binary decision
tree with K leaves, i.e. a leaf for each class, it is su�cient to evaluate (logK) split nodes.

3.3 Experiments

3

47

In OneVsOne and OneVsAll it is necessary to evaluate K(K −1)/2 and K di�erent classi�ers
at test time, respectively.

3.3.5 Steepness annealing analysis
In section 3.2, the introduction and annealing of the steepness hyperparameter is motivated
based on two observations. Firstly, steeper decisions, although hindering end-to-end
learning, re�ect the �nal inference model more closely. Secondly, in the limit of steep
decisions, the learning objective approximates the information gain (see section 3.2.6),
which is well established for decision tree learning.

In this experiment, the e�ectiveness of annealing the steepness hyperparameter is
investigated. For this purpose, decision forest ensembles of oblique deterministic decision
trees are trained (see section 3.2.7). To study the impact on the performance, di�erent
annealing schemes for the steepness are used. The steepness is always initialized as

 = 1.0 and Δ
 > 0 denotes the enforced increase in steepness after each epoch. Thus,
Δ
 = 0 e�ectively ignores the hyperparameter as it will stay constant during training. This
comparison is performed for three di�erent settings of the number of epochs (15, 30, 45).
This means that during the Greedy tree construction each split is trained for exactly this
number of epochs. Afterward, each tree is optimized end-to-end based on the Finetune
algorithm for three times as many epochs as during the construction phase (e.g. 30 epochs
Greedy and 90 epochs Finetune training). This choice is motivated by validation experiments
that showed the importance of the Finetune algorithm in the decision forest and do not
a�ect the comparison of di�erent Δ
 .

Datasets The procedure is the same as described in section 5.1 of [1], and uses the same
datasets, number of features, and number of trees as they do. These datasets are Letter [59],
USPS [60], and MNIST [51]. The features are randomly chosen for each split separately.
For completeness, details on the dataset and speci�c settings are listed in table 3.2 in the
appendix.

Results Table 3.1 shows the accuracy of an oblique decision forest when trained with
di�erent steepness increase. It is important to note that Δ
 = 0 does not mean that the
steepness is �xed throughout training. The model may still learn to have steeper decisions
by increasing the L2-norm of the split parameters �� . After training for the same number
of epochs, a steepness increase of Δ
 = 0.1 per epoch consistently outperforms the trained
models without annealing Δ
 = 0.0 on the Letter and USPS datasets. On these two datasets,
the �nal deterministic model improves by a large margin when trained with steepness
increase. Interestingly, on MNIST, the decision forests without steepness increase perform
slightly better than the corresponding models with Δ
 = 0.01 when training for more
epochs. A possible interpretation is that larger datasets do not bene�t from this. Compared
to the other datasets and considering the simplicity of the task, MNIST can be considered a
large dataset. Conversely, further tuning of
 may show di�erent results. Generally, the
default steepness annealing choice of Δ
 = 0.1 per epoch performs well.

3

48 3 End-to-end Learning of Decision Trees and Forests

Dataset Δ
 15 Epochs 30 Epochs 45 Epochs
Letter 0.0 82.1 87.5 89.3
Letter 0.01 83.9 89.7 92.2
Letter 0.1 90.6 94.4 95.5
Letter 1.0 93.2 93.1 93.2
USPS 0.0 92.5 95.5 96.0
USPS 0.01 93.8 95.9 96.8
USPS 0.1 95.8 96.8 97.1
USPS 1.0 96.5 96.2 95.9
MNIST 0.0 98.0 98.2 98.2
MNIST 0.01 98.1 98.0 98.1
MNIST 0.1 97.9 97.8 97.7
MNIST 1.0 96.7 96.7 96.6

Table 3.1: Comparison of the validation accuracy of the proposed end-to-end learned deterministic decision
forests for di�erent values of the gradual steepness increase Δ
 on various datasets (see appendix, table 3.2). Best
results per dataset and number of training epochs are highlighted bold.

3.3.6 Trade-off between computational load and accuracy
Due to the conditional data �ow, deterministic decision forests only evaluate a fraction
of the entire model during prediction and thus require signi�cantly fewer computations
than a probabilistic forest model. Now, the trade-o� in computational load and accuracy of
the proposed end-to-end learned deterministic decision forests is compared to the state-
of-the-art probabilistic shallow Neural Decision Forests (sNDF) by [1]. For this purpose,
the decision forest (E2EDF) is evaluated on the same datasets which were used in their
evaluation (see section 3.3.5). Both models, E2EDF and sNDF, are based on oblique splits
and use the same maximum depth per tree and the same number of trees in a forest as the
sNDF.

Additionally, the results are compared to other deterministic tree ensemble methods:
the standard random forest (RF), boosted trees (BT) and alternating decision forests (ADF).
The corresponding results were reported by [32] and are always based on 100 trees in
the ensemble with a maximum depth of either 10, 15, or 25. Since their work only lists
ranges of explored parameter settings, the estimated computational load (i.e. number of
split evaluations) is based on the most favorable parameter settings.

Since BT, RF and ADF are in practice limited to linear split functions, the E2EDF models
are restricted to oblique splits as well in this comparison. To train the E2EDF models, the
default steepness increase of Δ
 = 0.1 per epoch is used. On USPS as well as Letter, the
models are trained for 45 epochs, whereas on MNIST, training is done only for 15 epochs
due to the larger amount of training data. Note that, as in section 3.3.5, the �nal tree is
Finetuned for three times as many epochs as during the Greedy training (e.g. for USPS: 45
epochs Greedy and 135 epochs Finetune). Training is done on the full training data, i.e.
including validation data, and evaluate on the provided test data. The reported accuracy is
averaged over three runs.

3.3 Experiments

3

49

101 102 103 104 105

Number of split evaluations

80

82

84

86

88

90

92

94

96

98

Ac
cu

ra
cy

 [%
]

T=1

T=3T=5 T=10

MNIST
sNDF
ADF
BT
RF
E2EDF

Letter
sNDF
ADF
BT
RF
E2EDF

USPS
sNDF
ADF
BT
RF
E2EDF

USPS
sNDF
ADF
BT
RF
E2EDF

Figure 3.6: Trade-o� between computational load and accuracy of oblique decision forest models. The computa-
tional load is represented by the number split function evaluations (x-axis, log scale) in the forest required for
a single sample at test time. For RF, BT and ADF, the split function evaluations are estimated in favor of those
methods. For the E2EDF models, the �gure shows results with the same number of trees as used by sNDF, and
additionally includes results with fewer trees in the forest, namely T ∈ {1,3,5,10}. Figure is best viewed in color.

Results The trade-o� in terms of computational load and accuracy of the di�erent
decision forest models is shown in �gure 3.6. Deterministic E2EDF achieves higher average
accuracy than RF and BT on all datasets and outperforms all other methods on MNIST.
Compared to ADF, the results of E2EDF are competitive, although relative performance
varies between datasets. A possible explanation is that the ADF results were obtained using
di�erent hyperparameters that allow more and deeper trees, which can lead to signi�cant
di�erences as shown in [32].

On Letter and USPS, sNDF achieves higher accuracy but at several orders of magnitude
higher computational cost as it lacks the conditional data �ow property. In fact, a single
tree in the sNDF requires a total of 1023 split evaluations, which is more than for the entire
forest models, namely up to 1000 evaluations on USPS. A complete overview of the number
split function evaluations per algorithm is given in table 3.3 in the appendix.

Figure 3.6 further presents the impact of using fewer decision trees in the forest model
by illustrating the performance of small ensembles (T ∈ {1,3,5,10}). On MNIST and USPS,
it is observed that even smaller E2EDF ensembles with only T = 10 trees already obtains
competitive accuracy.

Finally, note that due to the greedy initialization of trees, the actual number of splits
is less than the maximum depth would allow. The trained E2EDF trees only required
on average 755± 2 (Letter), 370± 5 (USPS) and 945± 1 (MNIST) split functions, while the
maximum number of split decisions for a tree of depth 10 is 210 −1 = 1023. Overall, having
fewer trees and fewer decisions in the forest reduces the required number of split evaluations
at test time, and thus enables even more e�cient inference.

3

50 3 End-to-end Learning of Decision Trees and Forests

3.4 Conclusions
E2EDT presents a new approach to train deterministic decision trees with gradient-based
optimization in an end-to-end manner. The approach uses a probabilistic tree formulation
during training to facilitate back-propagation and optimize all splits of a tree jointly.

It was found that by adjusting the steepness of the decision boundaries in an annealing
scheme, the method learns increasingly more crisp trees that capture uncertainty as distri-
butions at the leaf nodes, rather than as distributions over multiple paths. The resulting
optimized trees are therefore deterministic rather than probabilistic, and run e�ciently at
test time as only a single path through the tree is evaluated. This approach outperforms
previous training algorithms for oblique decision trees. In a forest ensemble, the proposed
method shows competitive or superior results to the state-of-the-art sNDF, even though the
trees only evaluate a fraction of the split functions at test time. Unlike ADF, the model is not
restricted to only using oblique split functions, thanks to gradient-based optimization. It is
shown that it is straightforward to include more complex split features, such as convolu-
tional neural networks, or to add spatial regularization constraints. Another demonstrated
bene�t is that the learned decision tree can also help interpret how the decision of a visual
classi�cation tasks is constructed from a sequence of simpler tests on visual features.

Future work can proceed in various directions. First, alternatives for the annealing
scheme could be explored, e.g. the changes in the steepness of tree splits might be adjusted
dynamically rather than in a �xed schedule. Second, so far each tree was optimized
independently, but potentially optimizing and re�ning the whole forest jointly could yield
further improvements, similar to ADF and sNDF.

Overall, the presented approach provides high �exibility and the potential for accurate
models that maintain interpretability and e�ciency due to the conditional data �ow.

3.5 References
[1] P. Kontschieder, M. Fiterau, A. Criminisi, and S. Rota Bulò. Deep neural decision

forests. In Proc. of the IEEE/CVF International Conference on Computer Vision, 2015.

[2] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,
Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C.
Berg, and Li Fei-Fei. ImageNet Large Scale Visual Recognition Challenge. International
Journal of Computer Vision, 115(3):211–252, 2015.

[3] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler,
Rodrigo Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The cityscapes dataset
for semantic urban scene understanding. In Proc. of the IEEE Conference on Computer
Vision and Pattern Recognition, 2016.

[4] Rodrigo Coelho Barros, Márcio Porto Basgalupp, Andre CPLF De Carvalho, and
Alex A Freitas. A survey of evolutionary algorithms for decision-tree induction. IEEE
Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews),
42(3):291–312, 2012.

[5] A. Criminisi and J. Shotton. Decision Forests for Computer Vision and Medical Image
Analysis. Springer, 2013.

3.5 References

3

51

[6] Y. Ioannou, D. Robertson, D. Zikic, P. Kontschieder, J. Shotton, M. Brown, and A. Cri-
minisi. Decision forests, convolutional networks and the models in-between. arXiv
preprint:1603.01250, 2016.

[7] Suhang Wang, Charu Aggarwal, and Huan Liu. Using a random forest to inspire a
neural network and improving on it. In Proceedings of the 2017 SIAM International
Conference on Data Mining, pages 1–9. SIAM, 2017.

[8] L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

[9] Albert Cardona, Stephan Saalfeld, Stephan Preibisch, Benjamin Schmid, Anchi Cheng,
Jim Pulokas, Pavel Tomancak, and Volker Hartenstein. An integrated micro- and
macroarchitectural analysis of the drosophila brain by computer-assisted serial section
electron microscopy. PLOS Biology, 8(10):1–17, 10 2010.

[10] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, Lubomir D. Bourdev, Ross B. Girshick,
James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and C. Lawrence Zitnick.
Microsoft COCO: common objects in context. arXiv preprint:1405.0312, 2014.

[11] M. Fernández-Delgado, E. Cernadas, S. Barro, and D. Amorim. Do we need hundreds
of classi�ers to solve real world classi�cation problems? Journal of Machine Learning
Research, 15:3133–3181, 2014.

[12] Paul Viola and Michael Jones. Rapid object detection using a boosted cascade of simple
features. In Proc. of the IEEE Conference on Computer Vision and Pattern Recognition,
page 511. IEEE, 2001.

[13] J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio, R. Moore, A. Kipman, and
A. Blake. Real-time human pose recognition in parts from single depth images. In Proc.
of the IEEE Conference on Computer Vision and Pattern Recognition, pages 1297–1304,
June 2011.

[14] Piotr Dollár, Ron Appel, Serge Belongie, and Pietro Perona. Fast feature pyramids
for object detection. IEEE Transactions on Pattern Analysis and Machine Intelligence,
36(8):1532–1545, 2014.

[15] Le Zhang, Jagannadan Varadarajan, Ponnuthurai Nagaratnam Suganthan, Narendra
Ahuja, and Pierre Moulin. Robust visual tracking using oblique random forests. In Proc.
of the IEEE Conference on Computer Vision and Pattern Recognition, pages 5589–5598.
IEEE, 2017.

[16] Marius Cordts, Timo Rehfeld, Markus Enzweiler, Uwe Franke, and Stefan Roth. Tree-
structured models for e�cient multi-cue scene labeling. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 39(7):1444–1454, 2017.

[17] Apilak Worachartcheewan, Chanin Nantasenamat, Chartchalerm Isarankura-Na-
Ayudhya, Phannee Pidetcha, and Virapong Prachayasittikul. Identi�cation of
metabolic syndrome using decision tree analysis. Diabetes Research and Clinical
Practice, 90(1):e15 – e18, 2010.

3

52 3 End-to-end Learning of Decision Trees and Forests

[18] Orit Pinhas-Hamiel, Uri Hamiel, Yuval Green�eld, Valentina Boyko, Chana Graph-
Barel, Marianna Rachmiel, Liat Lerner-Geva, and Brian Reichman. Detecting in-
tentional insulin omission for weight loss in girls with type 1 diabetes mellitus.
International Journal of Eating Disorders, 46(8):819–825, 2013.

[19] Guan-Mau Huang, Kai-Yao Huang, Tzong-Yi Lee, and Julia Tzu-Ya Weng. An inter-
pretable rule-based diagnostic classi�cation of diabetic nephropathy among type 2
diabetes patients. BMC Bioinformatics, 16(1):S5, Jan 2015.

[20] Ruey-Shiang Guh, Tsung-Chieh Jackson Wu, and Shao-Ping Weng. Integrating genetic
algorithm and decision tree learning for assistance in predicting in vitro fertilization
outcomes. Expert Systems with Applications, 38(4):4437 – 4449, 2011.

[21] Barry De Ville. Decision trees for business intelligence and data mining: Using SAS
enterprise miner. SAS Institute, 2006.

[22] B. H. Menze, B. M. Kelm, D. N. Splittho�, U. Koethe, and F. A. Hamprecht. On Oblique
Random Forests, pages 453–469. Springer, 2011.

[23] A. Montillo, J. Tu, J. Shotton, J. Winn, J.E. Iglesias, D.N. Metaxas, and A. Criminisi.
Entanglement and di�erentiable information gain maximization. In Decision Forests
for Computer Vision and Medical Image Analysis, chapter 19, pages 273–293. Springer,
January 2013.

[24] Dmitry Laptev and Joachim M Buhmann. Convolutional decision trees for feature
learning and segmentation. In German Conference on Pattern Recognition, pages
95–106. Springer, 2014.

[25] Samuel Rota Bulo and Peter Kontschieder. Neural decision forests for semantic image
labelling. In Proc. of the IEEE Conference on Computer Vision and Pattern Recognition,
June 2014.

[26] L. Hya�l and R. L. Rivest. Constructing optimal binary decision trees is NP-complete.
Information Processing Letters, 5(1):15 – 17, 1976.

[27] L. Breiman, J. Friedman, R. A. Olshen, and C. J. Stone. Classi�cation and regression
trees. Chapman & Hall/CRC, 1984.

[28] V. Lepetit, P. Lagger, and P. Fua. Randomized trees for real-time keypoint recognition.
In Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, volume 2,
pages 775–781 vol. 2, June 2005.

[29] J. Gall and V. Lempitsky. Class-speci�c hough forests for object detection. In Proc.
of the IEEE Conference on Computer Vision and Pattern Recognition, pages 1022–1029,
June 2009.

[30] Peter Kontschieder, Pushmeet Kohli, Jamie Shotton, and Antonio Criminisi. Geof:
Geodesic forests for learning coupled predictors. In Proc. of the IEEE Conference on
Computer Vision and Pattern Recognition, June 2013.

3.5 References

3

53

[31] M. Norouzi, M. D. Collins, M. Johnson, D. J. Fleet, and P. Kohli. E�cient non-greedy
optimization of decision trees. In Advances in Neural Information Processing Systems,
December 2015.

[32] S. Schulter, P. Wohlhart, C. Leistner, A. Sa�ari, P. M. Roth, and H. Bischof. Alternating
decision forests. In Proc. of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 508–515, June 2013.

[33] A. Suárez and J. F. Lutsko. Globally optimal fuzzy decision trees for classi�cation and
regression. IEEE Transactions on Pattern Analysis andMachine Intelligence, 21(12):1297–
1311, December 1999.

[34] M. I. Jordan. A statistical approach to decision tree modeling. In Proceedings of the
Seventh Annual Conference on Computational Learning Theory, COLT ’94, pages 13–20,
New York, NY, USA, 1994.

[35] I. K. Sethi. Entropy nets: from decision trees to neural networks. Proceedings of the
IEEE, 78(10):1605–1613, Oct 1990.

[36] J. Welbl. Casting random forests as arti�cial neural networks (and pro�ting from it).
In German Conference on Pattern Recognition, 2014.

[37] David Richmond, Dagmar Kainmueller, Michael Yang, Eugene Myers, and Carsten
Rother. Mapping auto-context decision forests to deep convnets for semantic seg-
mentation. In Edwin R. Hancock Richard C. Wilson and William A. P. Smith, editors,
Proceedings of the British Machine Vision Conference, pages 144.1–144.12. BMVA Press,
September 2016.

[38] Nicholas Frosst and Geo�rey Hinton. Distilling a neural network into a soft decision
tree. arXiv preprint:1711.09784, 2017.

[39] Tolga Bolukbasi, Joseph Wang, Ofer Dekel, and Venkatesh Saligrama. Adaptive neural
networks for fast test-time prediction. arXiv preprint:1702.07811, 2017.

[40] Mason McGill and Pietro Perona. Deciding how to decide: Dynamic routing in
arti�cial neural networks. In Doina Precup and Yee Whye Teh, editors, Proceedings
of the 34th International Conference on Machine Learning, volume 70 of Proceedings
of Machine Learning Research, pages 2363–2372, International Convention Centre,
Sydney, Australia, 06–11 Aug 2017. PMLR.

[41] Xin Wang, Fisher Yu, Zi-Yi Dou, Trevor Darrell, and Joseph E. Gonzalez. Skipnet:
Learning dynamic routing in convolutional networks. In European Conference on
Computer Vision, September 2018.

[42] Gao Huang, Danlu Chen, Tianhong Li, Felix Wu, Laurens van der Maaten, and Kilian
Weinberger. Multi-scale dense networks for resource e�cient image classi�cation. In
International Conference on Learning Representations, 2018.

[43] Thomas M Hehn and Fred A Hamprecht. End-to-end learning of deterministic decision
trees. In German Conference on Pattern Recognition, pages 612–627. Springer, 2018.

3

54 3 End-to-end Learning of Decision Trees and Forests

[44] J. R. Quinlan. Induction of decision trees. In Jude W. Shavlik and Thomas G. Dietterich,
editors, Readings in Machine Learning. Morgan Kaufmann, 1990. Originally published
in Machine Learning 1:81–106, 1986.

[45] Michael I. Jordan and Robert A. Jacobs. Hierarchical mixtures of experts and the em
algorithm. Neural Comput., 6(2):181–214, March 1994.

[46] Kenneth Rose, Eitan Gurewitz, and Geo�rey C. Fox. Statistical mechanics and phase
transitions in clustering. Phys. Rev. Lett., 65:945–948, Aug 1990.

[47] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. Inter-
national Conference on Learning Representations, 2015.

[48] Paul H. C. Eilers and Brian D. Marx. Flexible smoothing with B-splines and penalties.
Statistical Science, 11:89–121, 1996.

[49] J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 1993.

[50] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary
DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic
di�erentiation in pytorch. In NIPS-W, 2017.

[51] Y. LeCun, L. Bottou, Y. Bengio, and P. Ha�ner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, November 1998.

[52] Marco F Duarte and Yu Hen Hu. Vehicle classi�cation in distributed sensor networks.
Journal of Parallel and Distributed Computing, 64(7):826–838, 2004.

[53] Dheeru Dua and Casey Gra�. UCI machine learning repository, 2017.

[54] Jung-Ying Wang. Application of support vector machines in bioinformatics. Master’s
thesis, National Taiwan University, Department of Computer Science and Information
Engineering, 2002.

[55] R.-E. Fan and C.-J. Lin. Libsvm data: Classi�cation, regression and
multi-label. http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/
datasets/, 2011.

[56] K. V. S. Murthy. On Growing Better Decision Trees from Data. PhD thesis, The Johns
Hopkins University, 1996.

[57] M. Norouzi, M. D. Collins, D. J. Fleet, and P. Kohli. Co2 forest: Improved random
forest by continuous optimization of oblique splits. arXiv preprint:1506.06155, 2015.

[58] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset
for benchmarking machine learning algorithms. arXiv preprint:1708.07747, 2017.

[59] Peter W Frey and David J Slate. Letter recognition using holland-style adaptive
classi�ers. Machine learning, 6(2):161–182, 1991.

[60] Jonathan J. Hull. A database for handwritten text recognition research. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 16(5):550–554, 1994.

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

3.6 Appendix

3

55

3.6 Appendix
Table 3.2 lists the dataset speci�c parameters used in the experiments of sections 3.3.5 and
3.3.6. These parameters are the same as in [1].

Table 3.3 lists the number of the split function evaluations for the methods discussed
in section 3.3.6.

Dataset Letter USPS MNIST
Features 16 16×16 28×28
Classes 26 10 10
No. training samples 16000 7291 60000
No. test samples 4000 2007 10000
No. validation samples 3000 1500 10000
Features per split 8 10×10 15×15
Trees 70 100 80

Table 3.2: Properties of the datasets used in the decision forest experiments, respectively published by [51, 59, 60].
The lower part describes the processing of the data. The table also lists the size of the validation data that was
randomly taken from the training data. Features per split indicate the number of features that are randomly
sampled to �nd a split in a tree. In the case of 2D inputs, these random features are 2D patches located randomly
at di�erent positions of the input. The �nal row lists the number of trees in the forest on each dataset, which are
equal to the number of trees used in [1].

Letter USPS MNIST
sNDF (single tree) 1023 1023 1023
sNDF (forest) 71610 102300 81840
RF, BT, ADF (forest) ≤ 1000 ≤ 1000 ≤ 1000
E2EDF (single tree) ≤ 10 ≤ 10 ≤ 10
E2EDF (forest) ≤ 700 ≤ 1000 ≤ 800

Table 3.3: Comparison of the computational load of the models evaluated in the experiments. The table shows the
number of oblique splits that need to be evaluated in each model per prediction of a single sample. Probabilistic
trees in sNDF evaluate every split function in the tree and thus requires 2Dmax −1 dot products per sample and
tree. In deterministic trees (RF, BT, ADF, and E2EDF), the number of split function evaluations grows linearly
with increasing depth. Due to the tree construction, trees may not always reach the maximum depth. Here the
table reports the worst case, but assumes the most favorable maximum tree depth for RF, BT, and ADF.

3

56 3 End-to-end Learning of Decision Trees and Forests

And now for something completely di�erent.

Monty Python

4

57

4
Fast and Compact Image

Segmentation using Instance
Stixels

State-of-the-art stixel methods fuse dense stereo disparity and semantic class information,
e.g. from a Convolutional Neural Network (CNN), into a compact representation of driveable
space, obstacles, and background. However, they do not explicitly di�erentiate instances within
the same semantic class. Several ways are investigated to augment single-frame stixels with
instance information, which can be extracted by a CNN from the RGB image input. As a result,
the novel Instance Stixels method e�ciently computes stixels that account for boundaries of
individual objects, and represents instances as grouped stixels that express connectivity.

Experiments on the Cityscapes dataset demonstrate that including instance information into
the stixel computation itself, rather than as a post-processing step, increases the segmentation
performance (i.e. Intersection over Union and Average Precision). This holds especially for
overlapping objects of the same class. Furthermore, it is shown that the approach is superior in
terms of segmentation performance and computational e�ciency compared to combining the
separate outputs of Semantic Stixels and a state-of-the-art pixel-level CNN. Instance Stixels
achieve a processing throughput of 28 frames per second on average for 8 pixel wide stixels on
images from the Cityscapes dataset at 1792x784 pixels. The Instance Stixels software is made
freely available for non-commercial research purposes.

Parts of this chapter have been published as: Thomas M. Hehn, Julian F.P. Kooij, and Dariu M. Gavrila. “Fast and
Compact Image Segmentation using Instance Stixels”, IEEE Transactions on Intelligent Vehicles, 7, 1, p. 45-56,
2022, Institute of Electrical and Electronic Engineers.

4

58 4 Fast and Compact Image Segmentation using Instance Stixels

4.1 Introduction
Self-driving vehicles require a detailed understanding of their environment in order to
react and avoid obstacles as well as to �nd their path towards their �nal destination.
In particular, stereo vision sensors obtain pixel-wise 3D location information about the
surrounding, providing valuable spatial information on nearby free space and obstacles.
However, as the processing should be as fast as possible, it is essential to �nd a compact
and e�ciently computable representation of sensor measurements which is still capable
to provide adequate information about the environment [2, 3]. A common approach is to
create a dynamic occupancy grid for sensor fusion [4] and tracking [5], which provides a top-
down grid cell representation of occupied space surrounding the ego-vehicle. Still, directly
aggregating depth values into an occupancy grid alone would disregard the rich semantic
information from the intensity image, and the ability to exploit the local neighborhood to
�lter noise in the depth image.

A popular alternative in the intelligent vehicles domain is the “stixel” representa-
tion, which exploits the image structure to reduce disparity artifacts, and is computed
e�ciently [6]. By grouping pixels into rectangular, column-wise super-pixels based on
the disparity information, stixels reduce the complexity of the stereo information. Later,
class label information obtained from deep learning has been incorporated into the stixel
computation and representation, so-called Semantic Stixels [1]. Yet, obstacles are still just
a loose collection of upright “sticks” on an estimated ground plane, lacking object-level
information. For example, the car stixels in the middle row of �gure 4.1 do not indicate
where one car starts and its neighboring car ends.

This thesis introduces an object-level environment representation extracted from stereo
vision data based on stixels. The proposed method improves upon state-of-the-art stixel
methods [1, 7] that only consider semantic class information, by adding instance informa-
tion extracted with a convolutional neural networks (CNN) from the input RGB image.
This provides several bene�ts: First, the stixels boundaries around objects are improved
by fusing disparity, semantic, and instance information in the stixel computation. Second,
stixels belonging to an object are connected vertically and horizontally (see bottom image
of �gure 4.1) by clustering them based on semantic and instance information. Third, the
processing is more e�cient than computing Semantic Stixels [1] and per-pixel instance
labels separately.

4.2 Related work

4

59

Figure 4.1: Top: Input RGB image (corresponding disparity image not shown). Middle: Semantic Stixels [1] use a
semantic segmentation CNN to create a compact stixel representation which accounts for class boundaries (stixel
borders: white lines, arbitrary colors per class). Note that a single stixel sometimes covers multiple instances,
e.g. multiple cars. Bottom: The proposed Instance Stixels algorithm also accounts for instance boundaries using
additional information learned by a CNN and clusters stixels into coherent objects (arbitrary colors per instance).

4.2 Related work
The idea of stixels, regarding objects as sticks standing perpendicular on a ground plane, was
introduced by [6]. The stixel algorithm has found diverse applications in the autonomous
driving domain. Stixels were used as an integral part of the pipeline for the Bertha Benz
drive [8]. [9] develop a collision warning system using only stereo-based stixels and [10]
used stixels to detect small unknown objects, such as lost cargo. The original idea was
further extended in [11]to a multi-layer representation which used a probabilistic approach,
i.e. stixels do not need to be connected to the ground plane anymore. In the multi-layer
representation, stixels segment the entire image into rectangular super-pixels, classi�ed
as ground, object or sky. Additionally, a dynamic programming scheme was presented
for e�cient real-time computation of stixels. For even faster computation, this dynamic
programming scheme was then also implemented for the Graphical Processing Unit (GPU)
by [12]. In [13] stixels were compared with other super-pixel algorithms as basis for
multi-cue scene labeling.

The general stixel framework o�ers various possibilities for extensions and modi�-
cations. For instance, [14] compared the e�ects of di�erent methods for initial ground
manifold modeling. Driven by the requirements of autonomous driving, [15] applied a
Kalman �lter to track single stixels. Stixel tracking was then further improved by [16].
Yet, stixels are generally tracked independently and not as parts of an object. In order to
obtain object information [17–20] group the Dynamic Stixels based on shape cues and
graph cuts and thus rely on tracking Stixels over time. Stixels are also applied in semantic
scene segmentation with a more general classes than ground, object, and sky. For this
purpose, semantic information can be obtained by using object detectors for suitable classes
[21] or Random Decision Forest classi�ers [22] and then including that information in
the Stixel generation process. [1] extend this idea by incorporating the output of a Fully

4

60 4 Fast and Compact Image Segmentation using Instance Stixels

Convolutional Neural Network (FCN) in the probabilistic stixel framework. They named
their approach Semantic Stixels. Based on Semantic Stixels and focusing on non-�at road
scenarios, [7] generalize stixels to also model slanted surfaces, e.g. not strictly perpendicular
to the road anymore, including piece-wise linear road surfaces.

Meanwhile, many more deep neural network architectures have been proposed in
the computer vision literature to improve classi�cation and image segmentation tasks on
a per-pixel basis. For instance, Residual Neural Networks [23] facilitate the training of
deeper networks by learning residual functions. Dilated Residual Networks [24] (DRN)
improve on this work by maintaining a higher resolution throughout the fully connected
network, while working with the same receptive �eld. As a consequence, they are useful
for applications that require spatial reasoning such as object detection or, as in this case,
instance segmentation. In order to enforce consistency between semantic and instance
segmentation, recently the term panoptic segmentation was introduced in [25] and has
led to further improvement in the �eld [26]. Unfortunately, one cannot treat instance
segmentation as a classi�cation problem, as is done for semantic segmentation. The main
reason is that the number of instances varies per image, which prohibits a one-to-one
mapping of network output channels to instances. Instead of predicting instance labels
directly, [27] trains a CNN to map each pixels in an image onto a learned low-dimensional
space such that pixels from the same instance map close together. Object masks are then
obtained in post-processing by assigning pixels to cluster centers in this space. [28] instead
use supervised learning to map pixels to a speci�c target space, namely the 2D o�sets from
the given pixel towards its instance’s center, and then rely on clustering all pixels into
instances. The Box2Pix method [29] uses 2D center o�set predictions for instances, but
instead of clustering, they are associated with bounding boxes found through a bounding
box detection branch. In order to avoid an additional bounding box detection branch, [30]
learn a clustering bandwidth and con�dence per pixel and thereby speed up the grouping
of pixels to instances.

The objective in this thesis is to create e�cient stixel representations rather than pixel-
accurate instance segmentation in images, and to avoid the overhead of clustering all pixels
into instances before reducing them to a compact representation. Still, insights from the
work on per-pixel instance segmentation are adopted to improve stixel computation, deal
with the unknown number of instances in an image, and enable the clustering of stixels
into instances. Building upon a prior conference publication [31], the main contributions
are thus summarized as:

• This work presents Instance Stixels, a method to include instance information into
stixels computation, which creates better stixels, and allows grouping to instance
IDs from a single stereo frame.

• This work investigates three di�erent ways to include the instance information,
and show that adding the information into the stixel computation itself results in
more accurate in- stance representations than only using it to cluster Seman- tic
Stixels or alternatively assigning Semantic Stixels to instances using pixel-based
methods. Further, this work compares the trade-o� between computation speed
and instance segmentation performance for these three variations to showcase the
favorable properties of Instance Stixels.

4.3 Methods

4

61

• This work investigates the use of a novel regularizer for Instance Stixels which
replaces the former prior term in Stixels. This simpli�es the model and leads to
improved instance segmentation.

• The entire implementation of the optimized pipeline for Semantic Stixels and Instance
Stixels is provided as open- source to the scienti�c community for non-commercial
research purposes.

4.3 Methods
This section will �rst brie�y summarize the original disparity Stixel and Semantic Stixel
formulations in subsection 4.3.1. Subsection 4.3.2 then explains how to integrate the
instance information from a trained CNN into the stixel computation itself for improved
stixel segmentation. Finally, subsection 4.3.3 will discuss how the instance information can
be used to cluster stixels belonging to the same object.

The clustering step could be applied to any stixel computation method. This work
therefore considers two options:

• Clustering stixels from a standard Semantic Stixels method [1], such that instance
o�set information is only considered here at this �nal clustering step. This base-
line approach corresponds to the red arrow in Figure 4.2. In the experiments, this
combination is referred to as the Semantic Stixels + Instance method.

• Clustering based on the novel instance-aware stixels computation from section 4.3.2,
see the blue arrow in Figure 4.2. This novel combination is named Instance Stixels.

Conceptually, Instance Stixels are a natural extension to Semantic Stixels as they extend
disparity and semantic segmentation information with additional instance information to
compute a compact representation from a stereo image pair. These stixels also receive an
object id which groups them into instances.

4.3.1 Stixels
In the following, an outline of the derivation of the original Stixels and Semantic Stixels
framework is presented. For a more detailed derivation, see [32] and [1].

Disparity Stixels
Following the notation of [32], the full stixel segmentation of an image is denoted as
L = {Lu |0 ≤ u < W} with W being the total number of stixel columns in the image. Thus,
given a selected stixel widthw , it follows thatW = image width

w . The segmentation of column
u contains Lu = {sn |1 ≤ n ≤ Nu ≤ ℎ} contains at least one but at most height ℎ stixels sn . A
stixel sn = (vbn ,vtn , cn , fn(v)) is described by the bottom and top rows, respectively vbn and
vtn , that delimit the stixel. Additionally, a stixel is associated with a class cn ∈ {g,o, s} (i.e.
ground, object, sky) and a function fn which maps each row of the image to an estimated
disparity value.

The aim is to �nd the best stixel segmentation L∗ given a measurement (e.g. a disparity
image) D, i.e. it maximizes the posterior probability

L∗ = argmax
L

p(L|D). (4.1)

4

62 4 Fast and Compact Image Segmentation using Instance Stixels

2

CNN

Stixel
Computation

Instanc es
S

em
an tics

D
ep th

RGB image

Disparity image
Class probabilities

Clustering

Instance offsets

C

Figure 4.2: Instance stixel pipeline applied to an RGB and disparity input image pair obtained from a stereo camera.
The RGB image is processed by a Convolutional Neural Network (CNN) to predict o�sets to the instance centers
(HSV color coded) and per-pixel semantic class probabilities (visualized as color gradient). The class probabilities
are fused with the disparity input image in the Stixel computation to provide a super-pixel representation of
the tra�c scene, which uni�es Semantics, Depth and additionally Instance output (left images). In the baseline
algorithm (Semantic Stixels + Instance, dashed red arrow) the obtained stixels are clustered based on the instance
o�sets to assign stixels to instances (not shown). In contrast, the proposed algorithm (Instance Stixels, blue arrow)
fuses the instance o�set information with the other two channels in the Stixel Computation. Subsequently, stixels
are also clustered to form instances, but with improved adherence of stixels to instance boundaries (top right
image, arbitrary colors).

According to Bayes’ rule, this can be rewritten as

p(L|D) =
p(D|L)p(L)

p(D)
. (4.2)

Here, the normalization factor p(D), constant in L, can be discarded in the maximization
task. Since each column u ∈ {0, ...,W −1} of the image is treated independently, the MAP
objective can further be simpli�ed:

L∗ = argmax
L

W−1
∏
u=0

p(Du |Lu)p(Lu). (4.3)

Here, p(Du |Lu) denotes the column’s likelihood of the disparity data, and p(Lu) is a prior
term modeling the pairwise interaction of vertically adjacent stixels. This is explained in
more detail in [11].

Assuming all rows are equally likely to separate two stixels, the column likelihood term
can be written as the product of individual terms for Nu stixels, Lu = {s1, ..., sNu}. Since
only disparity values of the rows within each stixel contribute to its likelihood, those terms
can in turn be factorized over the rows vbn ≤ v ≤ vtn of each stixel n ∈ {1, ...,Nu}. Hence, the
�nal objective is [32]:

L∗ = argmax
L

W−1
∏
u=0

Nu
∏
n=1

vtn
∏
v=vbn

p(dv |sn ,v)p(Lu). (4.4)

Here the term p(dv |sn ,v) includes di�erent disparity models per geometric class. For
sky stixels this model is simple: fsky(v) = 0. The disparity of object stixels is assumed to
be normally distributed around the mean stixel disparity fobject,n(v) = 1

vtn+1−vbn
∑vtn
v′=vbn

dv .

4.3 Methods

4

63

Furthermore, ground stixels rely on a previous estimation of the ground plane parameters
� (the slope) and vhorizon (horizon estimate in the image), which can be obtained for
example from v-disparity [33]. The assumed disparity model for ground stixels fground(v) =
�(vhorizon −v) is then linear and the same for all columns. Further details can be found
in [12].

In practice, the MAP problem (equation 4.4) is written as an energy minimization
problem by turning the product over probabilities into a sum of negative log probabilities,
which is then solved e�ciently through Dynamic Programming (DP) [12, 32]. DP will
e�ciently minimize the energy function

E(Lu) =
Nu
∑
n=1

Ep(sn−1, sn) +Ed (sn) (4.5)

for many stixel hypotheses Lu = {s1, ..., sNu}, which consists of unary terms Ed (sn) and
pairwise energy terms Ep(sn−1, sn). Intuitively, the unary energy term Ed (sn) describes
the disparity deviation of the disparity models described above. The pairwise term for
n = 1 reads Ep(s0, s1) and is a special case since s0 is not de�ned. In all other cases, this
pairwise term only evaluates the plausibility of a given stixel segmentation. Note that this
in particular means that this pairwise term is independent of the disparity data. These
details are omitted here for simplicity [32].

Semantic Stixels
The Semantic Stixels method [1] introduced an additional semantic data term to associate
each stixel with one class label ln ∈ {1, ...,C}. Thus, Semantic Stixels are characterized by
sn = (vbn ,vtn , cn , fn(v), ln). First, a semantic segmentation CNN is trained on RGB images
with annotated per-pixel class labels. Then, when testing on a test image, the softmax
outputs �(p, l) for all semantic classes l of all pixels p are kept (note that in a standard
semantic segmentation task, only the class label of the strongest softmax output would be
kept). The unary data term Ed (sn) of the original disparity stixel computation is then re-
placed by Eu(sn) = Ed (sn)+!lEl (sn), thereby adding semantic information from the network
activations,

El (sn) = − ∑
p∈n

log�(p, ln). (4.6)

Here n are all pixels in stixel sn , and !l a weight factor.

4.3.2 Instance Stixels
Instance Stixels expand the idea of Semantic Stixels by additionally training a CNN to
output a 2D estimation of the position of the instance center for each pixel. This estimation
is predicted in image coordinates, as proposed in [28, 29]. More speci�cally, the CNN
predicts 2D o�sets
p ∈ ℝ2 (i.e. x and y direction) per pixel, which are relative to the pixel’s
location in the image. As a consequence, for all pixels p belonging to the same instance
j, adding their ground truth o�set
̂p to the pixel location (xp , yp) will result in the same
instance center location

�̂j =
̂p + (xp , yp). (4.7)
Such a network is referred to as the O�set CNN and an example of its output is visualized
in �gure 4.2. The ground truth instance centers are de�ned as the center of mass of the

4

64 4 Fast and Compact Image Segmentation using Instance Stixels

ground truth instance masks. Note that instances are commonly only considered for certain
semantic classes, e.g. cars, pedestrians, and bicycles. Let  ⊂ ℕ denote said set of instance
relevant classes. For all other classes, the target o�set is (0,0).

Instance Stixels incorporate the O�set CNN prediction into the stixel computation.
Let �p denote the instance center estimate obtained from the CNN for some pixel p, and
�̄n = ∑p∈n �p the mean over all pixels in an instance stixel sn = (vbn ,vtn , cn , fn(v), ln , �̄n).
The instance term is modeled depending on the center estimates of the pixels and the mean
instance center of the current stixel hypothesis sn:

Ei(sn) =

{
∑p∈n ||�p − �̄n ||

2
2, if ln ∈ 

∑p∈n ||�p − (xp , yp)||
2
2, otherwise.

(4.8)

In other words, for instance classes, the instance term favors stixels which combine pixels
that consistently point to the same instance center. For non-instance classes, i.e. ln ∉
, o�sets
p = �p − (xp , yp) deviating from zero contribute to the instance energy term.
Without this, classes with instance information would generally have higher energy and
thus be less likely than the non-instance classes.

With the instance energy term, the unary energy becomes

Eu(sn) = !dEd (sn) +!sEs(sn) +!iEi(sn). (4.9)

This also introduces weights !d and !i for the disparity and instance terms for more
control on the segmentation.

A useful side e�ect is that each instance stixel receives a mean estimate of its instance
center pixel coordinates, which will be used when clustering stixels into objects, discussed
in Section 4.3.3.

4.3.3 Clustering stixels with instance information
The following describes how the output from an O�set CNN can be used in a post-processing
step to cluster stixels. Note the favorable computational complexity of grouping a low
number of stixels rather than individual pixels as in conventional instance segmentation
tasks, e.g. 2000 stixels vs. 1.4M pixels.

First, the per-pixel o�sets from the O�set CNN are aggregated into a per-stixel o�set
estimate by averaging the CNN’s predictions over the pixels in the stixel (this is already
done for Instance Stixels, as noted in Section 4.3.2). Hence, each stixel is equipped with an
estimate of its instance center in 2D image coordinates, as well as a semantic class label.

Then, the estimated instance centers and semantic class prediction are used to group
stixels to form instances. Separately for each semantic class, estimated instance centers
are clustered. Note that this condition on the semantic class also quali�es Instance Stixels
for panoptic segmentation. The �nal clustering is done using the DBSCAN algorithm [34]
as it estimates the number of clusters (i.e. instances) and performs well when the data
has dense clusters. DBSCAN has only two parameters: the maximum distance between
neighboring data points " and the minimum size, as in cardinality,
 of the neighborhood of
a data point in order to consider this point a core point. Additionally, a size �lter parameter
is introduced which prevents stixels that are smaller (i.e. cover less rows) than � to be
considered a core point. This modi�cation prevents small stixels, which lie on the border

4.4 Implementation

4

65

of two instances, to merge those instances together. Nevertheless, they are assigned to one
of those adjacent instances during the clustering procedure.

4.3.4 Unary Regularization
The original Stixel MAP formulation considers a prior term p(Lu) (equation 4.4) which
models pairwise interactions of vertically adjacent stixels. The prior term contains detailed
models of the expected segmentation. For example, it models the probability of a ground
stixel to be found below a sky stixel and vice versa. In the end, the modeled probabilities
are usually estimated heuristically.

At the same time, this prior term acts as a regularizer. Without this regularization
e�ect, the resulting stixels tend to be very small simply to �t the data terms as well as
possible. In an extreme case with stixels of a width of 1 pixel, this would lead to stixels
of also height equal to 1 pixel, which means in the end that each stixel corresponds to a
single pixel. Consequently, the stixel segmentation would not be any more compact than
the pixel-wise representation.

This modeling of pairwise interactions is especially useful for disparity-based stixels,
since there more detailed semantic information is missing. Instance Stixels however do
extract semantic and instance information from the RGB images and thus this modeling
may be unnecessary. Therefore, this work proposes to replace this prior term by a simple
unary regularization term

Ep(sn) =
wR

vtn +1−vbn
(4.10)

which penalizes small stixels. The regularization constant wR is the only parameter that
needs to be determined and is comparable to the di�erent weighting factors of the data
terms.

4.4 Implementation
An open-source Instance Stixels implementation is published together with this work,
which has been optimized for computational performance on the Cityscapes dataset [35].
As input, it requires the RGB and disparity image of a scene and outputs a set of stixels
comprising information about 3D position, semantic class, and instance label. Note that in
general, Instance Stixels may also operate only on the RGB image without relying on an
disparity image and as a result, do not compute the depth of a stixel.

The �rst step in the Instance Stixel pipeline as depicted in �gure 4.2 is the CNN which
predicts for each pixel the probability of each semantic class and the 2D instance center
o�set vectors in pixels. On Cityscapes, this results in an output depth of 19+2 = 21 channels
in total. Any standard semantic segmentation network architecture could be used as the
basis for the Semantic Segmentation and O�set CNN by increasing the output depth by
2 channels and training those to predict instance o�set vectors. In the implementation,
Dilated Residual Networks [24] (DRN) are used as the underlying architecture due to
their favorable properties for these tasks, as discussed in Section 4.2. Furthermore, this
implementation exploits the fact that, unlike the general method presented in that paper,
stixels of a �xed width of 8 pixels are computed and thus removes the upsampling layers in
the DRN architecture. The implementation of the DRN is largely based on the PyTorch [36]

4

66 4 Fast and Compact Image Segmentation using Instance Stixels

code provided by the authors of [24]. In order to optimize CNN inference for e�ciency, the
implementation makes use of mixed precision capabilities of NVIDIA Volta GPUs using
the Apex utilities [37] without loss of accuracy.

The second step in the pipeline consists of the actual stixel computation. For this pur-
pose, the implementation extends the open-source disparity Stixel CUDA-implementation
introduced in [12]. Amongst other features, such as the computation of Semantic Stixels
according to [1] and handling of invalid disparity measurements, the extension comprises
the Instance Stixels presented here. Techniques to optimize for e�ciency, such as the use
of pre�x sums (aka. cumulative sums), have been adapted and reused from the original
implementation. [12] provides a detailed explanation of those ideas.

Lastly, the stixels are clustered based on the mean instance center estimate. To this
end, the GPU-based DBSCAN implementation of cuML [38] is utilized and customized to
include the size �lter � described in section 4.3.3.

In summary, all components are implemented on the GPU which reduces the e�ective
number of required host-device copy operations to two, namely copying the RGB and
disparity images to device memory and retrieving the resulting stixel segmentation from
device memory. The source code of the implementation is available online1.

4.5 Experiments
4.5.1 Dataset, metrics, and pre-processing
The computation of stixels require an RGB camera image and the corresponding disparity
image obtained from a stereo camera setup. The Cityscapes dataset [35] is used for the
experiments, as it consists of challenging tra�c scenarios. Further, it provides ground truth
annotations for semantic and instance segmentation. The performance on these two tasks
is evaluated using the standard Cityscapes metrics [35].

Semantic segmentation performance is measured by the Intersection-over-Union (IoU)
= TP

TP+FP+FN , where TP, FP, and FN denote the number of true positives, false positives,
and false negatives over all pixels in the dataset split. An instance mask is considered
correct if the overlap with its ground truth mask surpasses a speci�c threshold. The Average
Precision (AP) corresponds to an average over the precision for multiple thresholds. Average
Precision (AP50%) only considers an overlap of at least 50% as true positive. The metric also
allows to provide a con�dence score for each instance mask. All con�dence scores are set
to 1 for all compared algorithms.

The disparity images provided in the Cityscapes dataset exhibit noisy regions introduced
due to bad disparity measurements at the vertical image edges and the hood of the car.
Inaccurate disparity data may harm the performance of disparity-based Stixels. Although
Semantic Stixels are already more robust due to the second modality, such e�ects should
be suppressed. Therefore, all images are cropped symmetrically (top: 120px, bottom: 120px,
left: 128px, right: 128px) to ensure that the experiments are not in�uenced by disparity
errors. Following [1], the o�cial validation set serves as test set. Therefore, the o�cial
training set is split into a separate training subtrain and validation set subtrainval (validation
cities: Hanover, Krefeld, Stuttgart).

1Code available at https://github.com/tudelft-iv/instance-stixels

https://github.com/tudelft-iv/instance-stixels

4.5 Experiments

4

67

4.5.2 Training the CNN
The CNN takes an RGB image as input and predicts the semantic class probabilities and
two channels for the o�set vectors. Thus, it is a single CNN that provides the output of the
Semantic Segmentation and O�set CNN, which were discussed separately in section 4.3.
For training, a loss is constructed that allows us to steer the focus between consistency
and accuracy of the prediction. Here, this work considers a prediction consistent when
all pixels of a ground truth instance mask point towards the same 2D position, i.e. all
predictions for the instance center (equation 4.7) are the same. O�set accuracy is directly
measured by the deviation of each single pixel from the center of mass of the ground truth
instance mask. For the predicted o�sets, consistency is more important than accuracy. This
is best illustrated by an example: consider a single instance in an image and all predicted
o�sets of that instance do not point to the center of mass of the instance, but instead to a
di�erent single point. As a result, this prediction would be consistent, as all o�sets point to
the same point, and at the same inaccurate as that point does not match the ground truth
instance mask’s center of mass. Despite the fact that this single point is not the training
target, the clustering of this inaccurate, but consistent prediction would work perfectly
since all the pixels of the instance are mapped to a single point and thus form a distinct
cluster. This observation holds for both the instance-aware stixel computation and the
clustering. Nevertheless, enforcing a certain degree of accuracy avoids trivial solutions
such as all pixel o�sets in the image point to the same single point which would render
clustering impossible.

Let j ∈  denote all ground truth instance masks in an image, j all pixels of that mask
and B all background pixels which are not part of any instance mask. For all pixels p the
CNN predicts an o�set
p and using equation 4.7 the predicted center �p can be computed.
Further, �̄j = 1

|j | ∑p∈j �p denotes the corresponding mean of the predicted centers and �̂j
the center of mass of the ground truth instance mask. The proposed o�set loss

 = ∑
j∈ (

�a
|j |1

∑
p∈j

||�p − �̂j ||1 +
�c
|j |

∑
p∈j

(�p − �̄j)
2
)
+
�a
|B |

∑
p∈B

||
p ||1 (4.11)

thus comprises a consistency term based on �̄j , an accuracy term based on �̂j and a
background term. The weights �a and �c provide the means to �nd a favorable trade-o�
between those terms. The full loss  =O +S further includes a semantic loss S , namely
a 2D cross-entropy semantic segmentation loss, on the �rst 19 semantic output channels.

It is important to note that the output (not the input) of the CNN is downscaled by
a factor 8. The ground truth output is also downscaled by that factor for training. The
reason for this is that upscaling, unless nearest neighbor upscaling is used, introduces
interpolation errors that result in a smooth transition of the o�set vectors between two
instances. As a consequence, this would also result in an interpolation of the predicted
means of two neighboring instances at pixels close to the borders, which in the end yields
worse clustering results. To overcome this issue, this work uses nearest neighbor upscaling
when passing the predicted images to the Stixel algorithms. The loss of resolution is
compensated by the fact that the Stixels work at a resolution of width 8.

In practice, it was found that training the drn_d_38 architecture with �a = �c = 1e−4 and
the drn_d_22 architecture with �a = 1e −5 and �c = 1e −4 worked well. The loss function is

4

68 4 Fast and Compact Image Segmentation using Instance Stixels

0 5 10 15 20 25 30
Frames per second

11

12

13

14

15

16

AP
 [%

]

Pixelwise 38

IS 38

SS+I 38

IS 22

SS+I 22

SS 38+UPS

SS 22+UPS

(a) Instance performance vs. frames per second.

0 5 10 15 20 25 30
Frames per second

64

65

66

67

68

Io
U

[%
]

Pixelwise 38

IS 38

SS+I 38

IS 22
SS+I 22

SS 38+UPS

SS 22+UPS

(b) Semantic performance vs. frames per second.

Figure 4.3: Trade-o� between segmentation performance and processing speed. Each data point represents the
average performance of an algorithm on the Cityscapes validation set (all classes, cropped to 1792x784 pixels). The
colors indicate di�erent CNN architectures (drn_d_22 or drn_d_38), the symbols di�erentiate the base algorithm
to obtain the instances (triangle: Instance Stixels, square: Semantic Stixels + Instance, circle: Semantic Stixels +
UPSNet, cross: Pixelwise. If the symbol is �lled with color, the unary regularization term was used instead of the
pairwise energy term in the stixel computation (section 4.3.4).

optimized using the Adam optimization [39] (learning rate of 0.001, �1 = 0.9 and �2 = 0.999).
Further, zero mean and unit variance normalization based on the training data is applied
to the input data and use horizontal �ipping to augment the training data. The networks
were trained for 500 epochs and with a batch size of 20 images. From these 500 epochs, the
best-performing model for each architecture was chosen based on the semantic IoU on the
validation set.

4.5.3 Hyperparameter optimization
The stixel algorithms o�er several hyperparameters that require tuning: the weighting of
the data terms for the Stixel computation !d , !s and !i , as well as the DBSCAN parameters
�,
 and �. The stixel framework provides more parameters from which the stixel width is
set to 8 pixels throughout the experiments. The remaining parameters are set based on
recommendations from [32] and [12]. For the Pixelwise baseline only � and
 need to be
tuned. Additionally, in this baseline, the large number of data points requires the clustering
algorithm to process the data in batches which leads to non-deterministic results.

The parameter tuning is performed using Bayesian optimization [40] on the subtrainval
validation set for 100 iterations. The score is computed as Semantic IoU+1.5⋅Instance AP.
This work weighted Instance AP higher as this is the main focus. The optimization is
performed separately for each algorithm unless noted otherwise.

4.5.4 Comparison of algorithmic variations
To analyze the capabilities of the proposed method, four di�erent aspects of computing
stixels with instance information are varied.

1. Pixelwise: In this baseline setup, the pipeline as shown in �gure 4.2 is run entirely

4.5 Experiments

4

69

without stixels, by removing the Stixel Computation. The semantic class is determined
according to the largest class probabilities. During the clustering step, pixels of the
same semantic class are clustered based on their predicted instance centers.

2. SS+UPS: Represents the combination of state-of-the-art methods to augment stixels
with instance information. Based on a separate instance segmentation method, a
stixel is assigned to an instance by a majority vote of the pixel-level prediction. For
this purpose, this work utilizes the following state-of-the-art methods: a pretrained
instance segmentation method called UPSNet [26] and Semantic Stixels [1]. On
pixel-level, UPSNet achieves AP performance of 33.1% on the cropped validation set.

3. Semantic Stixels + Instance vs. Instance Stixels (SS+I vs. IS): Corresponds to setting
!i = 0, which resembles Semantic Stixels [1]), versus !i > 0 in the stixels computation
(see equation 4.9).

4. Pairwise vs. unary: Describes whether the stixel computation takes the pairwise
term into account or instead regularizes the height of a stixel based on the unary
regularization term as described in section 4.3.4.

5. drn_d_22 vs. drn_d_38: Denotes the di�erent base architectures of the Dilated
Residual Network [24] used to predict semantic probabilities and instance o�sets.
The architecture drn_d_38 is deeper and requires more memory.

Due to the fact that the subtrainval set overlaps with the training set of the UPSNet, the
subtrainval set cannot be used for hyperparameter tuning. Hence, the same weights are
used for the Semantic Stixels of SS+UPS as the corresponding SS+I.

Processing speed vs. Segmentation Performance
The following compares the di�erent stixel methods for instance segmentation regarding
the trade-o� of segmentation performance and processing speed. The main indicators for
segmentation performance are the instance AP and the semantic IoU as described in section
4.5.1. Processing speed is measured as the number of frames the pipeline can process per
second. Here, to compute the frames per second the processing time of the frames in
the validation set is averaged, which takes into account the processing time of all three
modules (CNN, Stixel Computation and Clustering, see �gure 4.2), but neglects data loading
and visualization. All frames are processed sequentially on an NVIDIA Titan V GPU.

Figure 4.3 illustrates the trade-o� between processing speed and instance as well as
semantic performance in a compact manner. Table 4.1 extends the �gure by providing
further segmentation metrics and also the complexity of the image representation as the
average number of stixels per frame on the o�cial Cityscapes validation set.

In terms of segmentation performance, the illustrations show that the choice of the
network architecture of the CNN, indicated by the color of the points, has the most
prominent e�ect (green: drn_d_38 and blue: drn_d_22). For both segmentation metrics,
even the best algorithm based on drn_d_22 performing worse than the worst stixel algorithm
based on drn_d_38. Within the same architecture, however, Instance Stixels (IS) generally
perform better than Semantic Stixels + Instance (SS+I) in terms of instance AP, but not
always in terms of semantic IoU. Further, for both algorithms (IS and SS+I), using the unary

4

70 4 Fast and Compact Image Segmentation using Instance Stixels

regularization term (�lled symbols) surpasses its pairwise counterpart (non-�lled symbols)
or at least remains on par. Interestingly, the CNN architecture choice also a�ects the
comparison in instance AP of Instance Stixels and Semantic Stixels + UPSNet (SS+UPS). For
drn_d_22, IS 22 with unary regularization achieves similar instance AP as SS+UPS 22. For
drn_d_38, SS+UPS obtains the worst instance AP of all stixel methods. The semantic IoU of
SS+UPS is limited by its SS+I counterpart by construction. Overall, Instance Stixels based on
the drn_d_38 architecture and using the unary regularization outperforms all other stixel-
based algorithms in both segmentation metrics. Only the Pixelwise algorithm surpasses
this performance in the semantic IoU, but not the instance AP. The same observations
generally also hold for the extended instance and semantic segmentation metrics AP50%
and the category IoU [35] as listed in table 4.1.

To a certain degree, segmentation performance comes at a trade-o� regarding process-
ing speed. Notably, the speed is mainly determined by the choice of the CNN as well. The
Pixelwise pipeline is by far the slowest algorithm for these tasks at only 0.5 frames per
second. Stixel methods based on drn_d_38 are favorable compared to methods relying on
UPSNet, but not as fast as methods based on drn_d_22. Among the same architecture, the
di�erences in processing speed are only minor and are listed in table 4.1. Additional analy-
sis showed that the processing speed is steady over all frames, regardless of the number
of instances or stixels in an image. The complexity of the segmentation, quanti�ed by
the average number of stixels per frame, varies between algorithms exhibiting no obvious
correlation. Among the Instance Stixels the highest average number stixels per frame is at
most 2673.

�alitative analysis
The consequences of the di�erent algorithm variations as described in section 4.5.4 are
depicted in �gure 4.4 when applied on a real tra�c scene image from the subtrainval set.
Figures 4.4a and 4.4b show the input data. Instance segmentation results in the left column
(4.4 (c),(e),(g) and (i)) based on the drn_d_22 architecture show in general more errors than
in the right column (4.4 (d),(f),(h) and (j)) which is based on the drn_d_38 architecture.
Especially �gures (g),(i) and (j) show several stixels which overlap two instances.

Figure 4.5 visualizes the full results (3D position, semantic and instance segmentation)
of Instance Stixels (drn_d_38, unary regularization) on three scenes (columns). Based on the
input RGB images (top row), the CNN predicts the o�set vectors (center rows). The o�set
vectors are visualized in HSV color space, where the hue indicates the direction and the
saturation indicates the magnitude of the o�sets. The fourth row shows the segmentation
of the scenes. The overlaid colors illustrate the semantic class per pixel, whereas the white
contours around objects mark the borders of instances. The bottom row shows top down
views of the scene based on the per stixel disparity information and location within the
input image. In these illustrations, the road and the sidewalk are illustrated as polygons.
Their boundaries are based on the ground plane estimation. Sky stixels are discarded and
non-instance stixels are drawn as circles. Their radius indicates the size of the respective
stixel in the image. Stixels of the same instance are connected by a line. Per column, only
the stixel that are closest to the ego-vehicle are connected. As a result of the instance
segmentation, outliers can also be �ltered. Speci�cally, stixels that are further than 3 meters
away from the mean top down position of the instance are not included. Also, the stixel

4.5 Experiments

4

71

artifacts of the Mercedes-Benz Star are removed from the top down view based on their
position in the image.

4

72 4 Fast and Compact Image Segmentation using Instance Stixels

(a) Input: Original image. (b) Input: Disparity image.

(c) Instance Stixels 22, unary regularization (ours). (d) Instance Stixels 38, unary regularization (ours).

(e) Instance Stixels 22 (ours). (f) Instance Stixels 38 (ours).

(g) Semantic Stixels + Instance 22, unary
regularization (baseline).

(h) Semantic Stixels + Instance 38, unary
regularization (baseline).

(i) Semantic Stixels + Instance 22 (baseline). (j) Semantic Stixels + Instance 38 (baseline).

Figure 4.4: Qualitative analysis of instance segmentation results from Semantic Stixels + Instance (baseline) and
Instance Stixels (proposed algorithm) using di�erent architectures as well as comparing the pairwise energy term
and the unary regularization. Figure (a) and (b): The input RGB and disparity image. Below, the left column
shows instance segmentation results obtained using the drn_d_22 architecture as the basis for the CNN. Likewise,
the right column Instances are indicated by arbitrary colors. White areas denote stixels that cannot be assigned
to speci�c instances, but their predicted semantic class is an instance class. Black areas indicate that the predicted
semantic class is not an instance class.

4.5 Experiments

4

73

(a) Input RGB image. (b) Input RGB image. (c) Input RGB image.

(d) Input disparity image. (e) Input disparity image. (f) Input disparity image.

(g) Intermediate o�set prediction. (h) Intermediate o�set prediction. (i) Intermediate o�set prediction.

(j) Instance Stixels, unary
regularization.

(k) Instance Stixels, unary
regularization.

(l) Instance Stixels, unary
regularization.

(m) Instance Stixels 38, unary
regularization.

(n) Instance Stixels 38, unary
regularization.

(o) Instance Stixels 38, unary
regularization.

Figure 4.5: Illustration of stixel segmentations including spatial top down view of the scene. Each column is a
separate scene, the top two rows show the corresponding inputs, the center row shows the o�sets predicted by
the CNN and the bottom two rows visualize the output of Instance Stixels (drn_d_38, unary regularization). In
the third row from the top, the overlaid color indicates the semantic class of a stixel, whereas the white contour
around objects indicates the segmented instances. The last row shows the top view of the scene. Instances
are visualized as lines, road and sidewalk stixels are plotted as polygons based on the obtained ground plane
estimation. Stixels of class sky are discarded in this illustration. All remaining stixels (e.g. buildings and poles) as
points and their radius indicates the stixels size.

4

74 4 Fast and Compact Image Segmentation using Instance Stixels

CN
N

Unary
regularization

A
P

[%]
A

P
50[%]

IoU
[%]

catIoU
[%]

FPS
Avg.num

ber
ofstixels

Pixelw
ise

drn_d_38
-

12.5±
0.3*

25.3±
0.7*

68.2
85.0

0.5
1404928**

SS+I
drn_d_22

-
11.3

25.4
64.1

80.2
27.5

2095
SS+I

drn_d_22
✔

11.3
25.7

64.6
81.8

28.2
1765

SS+I
drn_d_38

-
14.7

30.3
66.6

80.8
22.0

1270
SS+I

drn_d_38
✔

15.3
31.6

66.5
81.3

22.1
4795

SS+UPS
drn_d_22

-
12.7

28.5
64.1

80.2
5.3

2095
SS+UPS

drn_d_38
-

14.1
30.8

66.6
80.8

5.1
1270

IS
drn_d_22

-
11.8

26.3
63.8

79.9
27.7

1384
IS

drn_d_22
✔

12.6
26.8

64.3
81.1

28.1
2673

IS
drn_d_38

-
15.8

31.1
66.4

80.5
22.0

1421
IS

drn_d_38
✔

16.3
32.4

66.9
81.9

22.2
2278

Table
4.1:Perform

ance
ofthe

Pixelw
ise

baseline
and

di�erentvariationsofstixelalgorithm
sthatprovide

instance
segm

entation
(row

s)w
ith

respectto
variousm

etrics
(colum

ns).Resultsarecom
puted

on
theCityscapesvalidation

set(allclasses,cropped
to

1792x784
pixels).Bestresultsperm

etricarehighlighted
in

boldface.*Theresults
ofthe

Pixelw
ise

baseline
w

ere
averaged

overthree
runsand

are
reported

w
ith

the
corresponding

standard
deviation.A

llotheralgorithm
sare

consistentoverm
ultiple

runs.**The
resulting

segm
entation

isrepresented
as1792⋅784

=
1404928

pixels,since
no

stixelsare
involved

here.

4.6 Discussion

4

75

4.6 Discussion

Results presented in section 4.5.4 show that adding the instance term, that distinguishes
IS and SS+I, increases instance AP. Minor drawbacks in terms of semantic IoU may be
due to hyperparameter optimization which values instance AP more than semantic IoU.
Despite the increased instance AP, the segmentation for far away objects (e.g. the truck in
the left-hand part of �gure 4.4a) and tightly overlapping objects (e.g. pedestrians in the
left-hand part �gure 4.5a) remain challenging. Overall, the choice of the CNN appears
to be more important to the segmentation than the e�ect of the instance term. Notably,
using a state-of-the-art pixelwise instance segmentation CNN, such as UPSNet [26], and
combining it with Semantic Stixels falls behind signi�cantly in terms of processing speed.
UPSNet requires on average 0.15 seconds of processing time per frame which on its own
yields only 6.6 frames per second. Compared to the pixelwise UPSNet result, the instance
AP of SS + UPSNet has decreased by more than 50%. A drop in overall accuracy is likely,
since the stixels group pixels along prede�ned coarse column borders and thus inherently
decrease the granularity of the prediction. Further, SS do not consider the instance term
introduced for IS, thus stixels may overlap two di�erent instances. UPSNet cannot change
this afterward which leads to worse performance. Lastly, a pixelwise clustering approach
shows weak instance segmentation performance at a runtime of 0.5 FPS that is dominated
by the clustering algorithm su�ering from the large amount of points.

The bene�ts of a purely stixels-based instance segmentation method however is not
only observed in processing speed, but also in terms of segmentation complexity. Pixelwise
methods result in more than 1.4 million independent predictions. The Instance Stixels on
average require between 1384 and 2673 stixels per frame to describe the same amount of
pixels. This means Instance Stixels reduce the complexity of the representation by factors
between 525.6 - 1015.1.

Aside from image segmentation, Instance Stixels provide position estimates in 3D space.
As a result, top down views of a scene can be extracted, similar to a grid map. In contrast
to a grid map, the proposed representation is continuous and does not discretize 3D space.
In this top down representation, imperfect disparity measurements, become apparent, for
example in that the back of cars do not appear as straight lines. Further, it also shows the
inaccuracies of the ground plane and horizon estimation, which is here based on v-disparity
[33]. In the stixel model, stixels above the horizon cannot be classi�ed as ground. This
leads to artifacts as seen on the road behind the two cars in �gure 4.5j. As the ground
plane estimation is crude, the polygons of the road stixels overlap sometimes with stixels
of obstacles. Combining Instance Stixels with LiDAR measurements as shown in [41]
may improve both, the depth estimation and the ground plane estimation. As this is an
orthogonal approach, not related to instance segmentation, this work made use of the
object-based representation to �lter outliers in the depth measurements of a single object.

The rich information about both, the static and dynamic surroundings, contained in
Instance Stixels can bene�t subsequent utilization in an autonomous driving pipeline. For
example, Instance Stixels provide a rich and e�cient representation for path planning,
object tracking, and mapping.

4

76 4 Fast and Compact Image Segmentation using Instance Stixels

4.7 Conclusions
This thesis introduced Instance Stixels to improve stixel segmentation by considering
instance information from a CNN, and performing a subsequent stixel clustering step. The
experiments showed multiple bene�ts of including the instance information already in
the segmentation step, opposed to only clustering Semantic Stixels. First, quantitative
and qualitative analyses show that Instance Stixels adhere better to object boundaries.
Second, Instance Stixels provide more accurate instance segmentation than Semantic
Stixels augmented with instance information from a pixel-level instance segmentation
network. Third, Instance stixels still preserve the favorable stixel characteristics in terms
of compactness of the segmentation representation (on average less than 2673 stixels
per image) and computational e�ciency (up to 28 FPS at a resolution of 1792x784). In
future work, the integration of additional sensor modalities as shown in [41] and temporal
information to enforce consistency are potential research directions.

4.8 References
[1] Lukas Schneider, Marius Cordts, Timo Rehfeld, David Pfei�er, Markus Enzweiler, Uwe

Franke, Marc Pollefeys, and Stefan Roth. Semantic Stixels: Depth is not enough. In
IEEE Intelligent Vehicles Symposium, pages 110–117, 2016.

[2] Sayanan Sivaraman and Mohan Manubhai Trivedi. Looking at vehicles on the road:
A survey of vision-based vehicle detection, tracking, and behavior analysis. IEEE
Transactions on Intelligent Transportation Systems, 14(4):1773–1795, 2013.

[3] M. Braun, S. Krebs, F. Flohr, and D. M. Gavrila. Eurocity persons: A novel benchmark
for person detection in tra�c scenes. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 41(8):1844–1861, Aug 2019.

[4] Dominik Nuss, Ting Yuan, Gunther Krehl, Manuel Stübler, Stephan Reuter, and Klaus
Dietmayer. Fusion of laser and radar sensor data with a sequential monte carlo
bayesian occupancy �lter. In IEEE Intelligent Vehicles Symposium, pages 1074–1081,
2015.

[5] Radu Danescu, Florin Oniga, and Sergiu Nedevschi. Modeling and tracking the driving
environment with a particle-based occupancy grid. IEEE Transactions on Intelligent
Transportation Systems, 12(4):1331–1342, 2011.

[6] Hernán Badino, Uwe Franke, and David Pfei�er. The stixel world - a compact medium
level representation of the 3d-world. In 31st DAGM Symposium on Pattern Recognition,
pages 51–60, Berlin, Heidelberg, 2009. Springer-Verlag.

[7] Daniel Hernandez-Juarez, Lukas Schneider, Antonio Espinosa, David Vázquez, An-
tonio M. López, Uwe Franke, Marc Pollefeys, and Juan C. Moure. Slanted stixels:
Representing san francisco’s steepest streets. Proceedings of the British Machine Vision
Conference, 2018.

[8] J. Ziegler, P. Bender, M. Schreiber, H. Lategahn, T. Strauss, C. Stiller, ..., and E. Zeeb.
Making bertha drive - an autonomous journey on a historic route. IEEE Intelligent
Transportation Systems Magazine, 6(2):8–20, Summer 2014.

4.8 References

4

77

[9] Willem Sanberg, Gijs Dubbelman, and Peter de With. From stixels to asteroids: To-
wards a collision warning system using stereo vision. In IS&T International Symposium
on Electronic Imaging, 2019.

[10] Sebastian Ramos, Stefan Gehrig, Peter Pinggera, Uwe Franke, and Carsten Rother. De-
tecting unexpected obstacles for self-driving cars: Fusing deep learning and geometric
modeling. IEEE Intelligent Vehicles Symposium, pages 1025–1032, 2017.

[11] David Pfei�er and Uwe Franke. Towards a Global Optimal Multi-Layer Stixel Rep-
resentation of Dense 3D Data. Proceedings of the British Machine Vision Conference,
pages 51.1–51.12, 2011.

[12] Daniel Hernandez-Juarez, Antonio Espinosa, Juan C. Moure, David Vázquez, and
Antonio M. López. GPU-Accelerated real-Time stixel computation. IEEE Winter
Conference on Applications of Computer Vision, pages 1054–1062, 2017.

[13] Marius Cordts, Timo Rehfeld, Markus Enzweiler, Uwe Franke, and Stefan Roth. Tree-
structured models for e�cient multi-cue scene labeling. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 39(7):1444–1454, 2017.

[14] N. H. Saleem, H. Chien, M. Rezaei, and R. Klette. E�ects of ground manifold modeling
on the accuracy of stixel calculations. IEEE Transactions on Intelligent Transportation
Systems, 20(10):3675–3687, Oct 2019.

[15] D. Pfei�er and U. Franke. E�cient representation of tra�c scenes by means of dynamic
stixels. In IEEE Intelligent Vehicles Symposium, pages 217–224, June 2010.

[16] Bertan Günyel, Rodrigo Benenson, Radu Timofte, and Luc Van Gool. Stixels Motion
Estimation without Optical Flow Computation. In European Conference on Computer
Vision, pages 528–539, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[17] Friedrich Erbs, Alexander Barth, and Uwe Franke. Moving vehicle detection by optimal
segmentation of the dynamic stixel world. In IEEE Intelligent Vehicles Symposium,
pages 951–956, 2011.

[18] Friedrich Erbs, Beate Schwarz, and Uwe Franke. Stixmentation-probabilistic stixel
based tra�c scene labeling. In Proceedings of the British Machine Vision Conference,
pages 1–12, 2012.

[19] Friedrich Erbs, Beate Schwarz, and Uwe Franke. From stixels to objects - a conditional
random �eld based approach. In IEEE Intelligent Vehicles Symposium, pages 586–591,
2013.

[20] Friedrich Erbs, Andreas Witte, Timo Scharwächter, Rudolf Mester, and Uwe Franke.
Spider-based stixel object segmentation. In IEEE Intelligent Vehicles Symposium, pages
906–911, 2014.

[21] Marius Cordts, Lukas Schneider, Markus Enzweiler, Uwe Franke, and Stefan Roth.
Object-level priors for stixel generation. In German Conference on Pattern Recognition,
pages 172–183. Springer, 2014.

4

78 4 Fast and Compact Image Segmentation using Instance Stixels

[22] T. Scharwächter and U. Franke. Low-level fusion of color, texture and depth for robust
road scene understanding. In IEEE Intelligent Vehicles Symposium, pages 599–604,
June 2015.

[23] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proc. of the IEEE Conference on Computer Vision and Pattern
Recognition, June 2016.

[24] Fisher Yu, Vladlen Koltun, and Thomas Funkhouser. Dilated residual networks. In
Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2017.

[25] Alexander Kirillov, Kaiming He, Ross Girshick, Carsten Rother, and Piotr Dollar.
Panoptic segmentation. In Proc. of the IEEE Conference on Computer Vision and Pattern
Recognition, June 2019.

[26] Yuwen Xiong, Renjie Liao, Hengshuang Zhao, Rui Hu, Min Bai, Ersin Yumer, and
Raquel Urtasun. Upsnet: A uni�ed panoptic segmentation network. In Proc. of the
IEEE Conference on Computer Vision and Pattern Recognition, 2019.

[27] Bert De Brabandere, Davy Neven, and Luc Van Gool. Semantic instance segmentation
with a discriminative loss function. In Deep Learning for Robotic Vision, workshop at
CVPR 2017, pages 1–2. CVPR, 2017.

[28] Alex Kendall, Yarin Gal, and Roberto Cipolla. Multi-task learning using uncertainty
to weigh losses for scene geometry and semantics. In Proc. of the IEEE Conference on
Computer Vision and Pattern Recognition, 2018.

[29] Jonas Uhrig, E Rehder, B Fröhlich, U Franke, and Thomas Brox. Box2pix: Single-shot
instance segmentation by assigning pixels to object boxes. In IEEE Intelligent Vehicles
Symposium, 2018.

[30] Davy Neven, Bert De Brabandere, Marc Proesmans, and Luc Van Gool. Instance
segmentation by jointly optimizing spatial embeddings and clustering bandwidth. In
Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, June 2019.

[31] T. M. Hehn, J. F. P. Kooij, and D. M. Gavrila. Instance stixels: Segmenting and grouping
stixels into objects. In IEEE Intelligent Vehicles Symposium, pages 2542–2549, June
2019.

[32] David Pfei�er. The Stixel World. PhD thesis, Humboldt-Universität zu Berlin, 2012.

[33] R. Labayrade, D. Aubert, and J.-P. Tarel. Real time obstacle detection in stereovision
on non �at road geometry through v-disparity representation. In IEEE Intelligent
Vehicles Symposium, pages 646–651, 2002.

[34] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. A density-based
algorithm for discovering clusters in large spatial databases with noise. In Kdd,
volume 96, pages 226–231, 1996.

4.8 References

4

79

[35] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler,
Rodrigo Benenson, ..., and Bernt Schiele. The cityscapes dataset for semantic urban
scene understanding. In Proc. of the IEEE Conference on Computer Vision and Pattern
Recognition, 2016.

[36] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary
DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic
di�erentiation in pytorch. In NIPS-W, 2017.

[37] NVIDIA Corporation. Apex: A pytorch extension: Tools for easy mixed precision and
distributed training in pytorch, visited on: 2019-11-26.

[38] RAPIDS Development Team. RAPIDS: Collection of Libraries for End to End GPU Data
Science, 2018.

[39] Diederik P Kingma and Jimmy Lei Ba. Adam: A method for stochastic optimization.
In International Conference on Learning Representations, 2014.

[40] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization
of machine learning algorithms. In Advances in Neural Information Processing Systems,
pages 2951–2959, 2012.

[41] Florian Piewak, Peter Pinggera, Markus Enzweiler, David Pfei�er, and Marius Zöllner.
Improved semantic stixels via multimodal sensor fusion. In German Conference on
Pattern Recognition, pages 447–458. Springer, 2018.

4

80 4 Fast and Compact Image Segmentation using Instance Stixels

And now for something completely di�erent.

Monty Python

5

81

5
How do Cross-View and
Cross-Modal Alignment

Affect Representations in
Contrastive Learning?

Various state-of-the-art self-supervised visual representation learning approaches take
advantage of data from multiple sensors by aligning the feature representations across
views and/or modalities. This work investigates how aligning representations a�ects the
visual features obtained from cross-view and cross-modal contrastive learning on images
and point clouds.

On �ve real-world datasets and on �ve tasks, 108 models based on four pretraining
variations are trained and evaluated. The results show that cross-modal representation
alignment discards complementary visual information, such as color and texture, and
instead emphasizes redundant depth cues. The depth cues obtained from pretraining
improve downstream depth prediction performance. Also overall, cross-modal alignment
leads to more robust encoders than pretraining by cross-view alignment, especially on
depth prediction, instance segmentation, and object detection.

5

82 5 How do Cross-View and -Modal Alignment Affect Contrastive Learning?

5.1 Introduction
Pretraining of neural networks has been an established tool in computer vision for several
years [2]. It allows to successfully �netune neural networks on new tasks with fewer
iterations and less annotated data [3]. Commonly, models are initialized using weights
pretrained for image classi�cation on the ImageNet dataset [4], but recently, self-supervised
approaches that do not rely on manual annotations have outperformed ImageNet pretrain-
ing [5].

In the realm of self-supervised representation learning, contrastive learning [6] has
become a popular approach for visual representation learning. In contrastive learning, the
model learns to distinguish di�erent variations of the same instance (e.g. crops of a single
image) from all other instances. These variations can be created arti�cially or by using
natural data correspondences, such as images and text [7] or from multiple viewpoints [1, 8].

A common objective is to enforce similarity between features across views or sensing
modalities. This is called representation alignment [9]. While severe failure cases of such
representation alignment have been discussed [9, 10], the e�ects on the representation
itself were not studied, as of yet.

Figure 5.1 shows a conceptual illustration of the information available in 2D image
data and 3D point clouds in the ScanNet dataset [11]. Some information, such as about
depth and surfaces, is available in both modalities. Although this information may be
more detailed and more accurate in one modality than in the other, both modalities can
express such properties to a certain degree. In the context of sensor fusion, this is typically
called redundant information. Other information is exclusive to a modality, which is
called complementary information. 3D point clouds, for example, are generally color- and
textureless.

Intuitively, a representation which discards complementary information is less expres-
sive than one that includes redundant and complementary information. On the one hand,
discarding texture and color information, for example, leads to a less complete visual repre-
sentation. On the other hand, ImageNet pretrained models were found to be texture-biased
and by increasing their shape-bias the performance on tasks such as object detection could
be improved [12]. So what is the in�uence of complementary and redundant information
on the visual representation quality?

This work studies how complementary and redundant information a�ect visual repre-
sentation learning when exploiting cross-view and cross-modal representation alignment,
and how this relates to the performance of a �netuned model on a transfer learning
downstream task. For this purpose, Pri3D [1] is used, a method that uses 3D informa-
tion of a scene to enable cross-view and cross-modal representation alignment for visual
representations learning.

5.2 Related work

5

83

Visual (2D) Geometric (3D)

color

texture

depth

surfaces

(a) Intuition of complementary and redundant information

(b) ScanNet image* (c) ScanNet point cloud*

Figure 5.1: Redundant information is shared across modalities, while complementary information is exclusive to
a modality. This work shows that cross-modal visual representation learning predominantly encodes redundant
information of 2D and 3D data. *Images (b) and (c) were taken from [1].

5.2 Related work
Self-supervised representation learning has recently surpassed supervised pretraining on
ImageNet [5]. Various approaches have been explored to learn a global feature vector per
image, such as contrastive learning [5, 6] and methods that do not require negative samples
during training [13, 14]. Since many computer vision tasks require per-pixel features,
several works focused on learning dense representations [15, 16]. Inspired by this success
for visual representations, contrastive learning has also been applied to 3D point cloud
data [17–19].

Several approaches have explored cross-modal and cross-view visual representation
learning. While some propose a single model [20] for multiple modalities, this work
discusses training a vision-only model using cross-modal and cross-view input. To this
end, some have matched images and natural language to improve the learned visual
representation [7, 21], whereas others use 3D signals [1, 22, 23], or match representations
of di�erent views of a scene [1, 8].

While cross-modal feature spaces are a common technique [1, 19, 24–27], they can
introduce several caveats. Especially when dealing with partially incomplete or corrupted
data, representation alignment may hinder e�ective learning for multi-view clustering [9].
In domain adaptation, avoiding representation alignment across modalities has also proven
to be bene�cial to prevent discarding complementary sensor information [10]. In repre-
sentation learning, cross-modal training can even lead to an emphasis on a single strong
modality and potentially harm the overall performance [28].

The goal of this work is to understand the e�ects of cross-view and cross-modal
representation alignment on contrastive learning in more detail. Speci�cally, corrupted
or incomplete sensor data is not considered, but it is investigated how redundant and

5

84 5 How do Cross-View and -Modal Alignment Affect Contrastive Learning?

complementary information in�uence the learned representations, and whether similar
e�ects as observed for shape-biased vs texture-biased networks [12] can be observed.
This empirical study is based on Pri3D [1] as it uses both cross-view and cross-modal
representation alignment for contrastive learning, as well as their combination. As the
main contributions, this work:

1. assesses how cross-view and cross-modal representation alignment a�ect the com-
plementary and redundant information encoded in the learned visual per-pixel
representations,

2. evaluates the transfer learning performance in di�erent settings on various tasks
and datasets to investigate the robustness of cross-view and cross-modal alignment.

5.3 Methods
2D images and 3D point clouds have low-level redundant and complementary features,
as illustrated in �gure 5.1. Therefore, these modalities lend themselves to study cross-
view and cross-modal representation alignment. The presented analysis of alignment in
representation learning is based on Pri3D [1]. Pri3D uses 3D information for 2D visual
representation learning. It employs a self-supervised contrastive learning approach that
does not require any human annotation, but only RGB images and registered point clouds
that can be obtained, for example, from an RGB-D dataset. This section summarizes the
two contrastive losses of Pri3D and discusses how the feature spaces of the losses can be
separated.

5.3.1 Pri3D: contrastive losses
Pri3D �nds pairs of pixels and elements of a regular grid in 3D space, so-called voxels, for
contrastive learning. Pixels and voxels are matched by their distance in 3D space to de�ne
two losses. One loss requires pairs of pixels across views, whereas the other loss is based
on pairs of pixels and 3D points across modalities. Since Pri3D matches pixels and voxels
based on their 3D positions, it is relatively robust with respect to incomplete sensor data.

Cross-view contrastive loss (VIEW) This contrastive loss matches pixels across dif-
ferent views of the same scene. It requires two RGB-D images from the same scene and the
corresponding relative camera poses and calibration. Once two pixels from two di�erent
views A and B are within a 2 cm distance, they are considered a positive pair in the sense
of contrastive learning [6]. Only pixels that are part of a positive pair are used in this loss,
as the negative pairs are also constructed from these pixels. To form the negative pairs,
each pixel a of view A of a positive pair (a,b) is paired with all pixels k of view B which
are part of a positive pair but not k = b.

For each image x , an encoder-decoder style network f predicts a set feature vectors
f (x), and f a denotes the L2-normalized feature vector of a pixel a. Using the set of positive
pairs M , Pri3D employs a PointInfoNCE loss [18]

p = − ∑
(a,b)∈M

log
exp(f a ⋅ f b/�)

∑(⋅,k)∈M exp(f a ⋅ f k/�)
, (5.1)

5.3 Methods

5

85

RGB Points

2D backbone 3D backbone

VIEW loss GEO loss

(a) VIEW+GEO

RGB Points

2D backbone 3D backbone

VIEW loss GEO loss

linear
layer

(b) VIEW+GEO (lin)

RGB

2D backbone

Task Loss

Per-pixel MLP

Target

(c) downstream setup

Figure 5.2: During pretraining, the combination VIEW+GEO (a) optimizes the same features in the VIEW and
GEO loss, while the linear layer in VIEW+GEO (lin) (b) separates the feature spaces of the losses. The dashed
arrows indicate a second overlapping view. Only the 2D backbone performance is evaluated (c).

where � is a temperature hyperparameter. This cross-view loss is called the VIEW loss,
following the convention of Pri3D. Compared to other visual representation learning
approaches, VIEW does not rely on strong augmentations that may corrupt color informa-
tion [6].

Cross-modal contrastive loss (GEO) Unlike the VIEW loss, the pairs for the GEO loss
do not consist of two pixels from di�erent views, but instead of a pixel and a voxel. The
positive pairs are again pixels and voxels within 2 cm distance in 3D space. The negative
pairs are all other non-matching pixels and voxels pairs, similar to the VIEW loss.

The voxel is associated with a feature vector obtained from a dense 3D feature encoder.
This dense 3D feature encoder is jointly learned with the dense 2D feature encoder. The
loss function (equation (5.1)) remains the same with f a and f b now being feature vectors
from the 2D and 3D feature encoders, respectively. Thus, this cross-modal loss enforces
the features to be similar across the two modalities and is called the GEO loss, following
the convention of Pri3D.

5.3.2 Pri3D: representation space separation
In Pri3D [1], the GEO and the VIEW loss use the same visual feature vector for a single
pixel. Thus, the combination VIEW+GEO enforces mutual alignment of cross-view and
cross-modal representations. Interestingly, in the implementation published by the original
Pri3D authors[29], the feature spaces of both losses are separated by a linear layer preceding
the GEO loss (see �gure 5.2). Potentially, the original purpose of this layer was merely to
match the feature dimensions of the 2D and 3D backbone (e.g. for ResNet50 2D backbone
this layer projects 128 to 96 channels). Yet, this separation of feature spaces relaxes the
alignment of the cross-view with the cross-modal feature representation. The feature
vector of a pixel in the GEO loss is now computed by a linear function on the feature vector
of the same pixel in the VIEW loss, thus the two feature vectors are not the same anymore.
The cross-view and the cross-modal representations are not directly aligned. Since the

5

86 5 How do Cross-View and -Modal Alignment Affect Contrastive Learning?

e�ect of this linear layer was not described in the literature, both variants are included in
the experiments.

In the following, this variation is distinguished by adding (lin) to models that include
the linear layer that separates the feature representations. These and other di�erences to
the original Pri3D paper are described in more detail in the supplementary material.

5.4 Experiments
The experiments are setup to examine how cross-view and cross-modal representation
alignment in Pri3D in�uence the encoded complementary and redundant information
and how possible di�erences in the representations a�ect downstream transfer learning
performance.

5.4.1 Setup
The experiments consist of two main steps: the models are �rst pretrained based on the
variations of Pri3D (see section 5.3). Afterward, the pretrained models are used to initialize
training on downstream tasks and their performance is evaluated in a frozen (section 5.4.2),
a half-frozen (section 5.4.3), and a full �netuning (section 5.4.4) setting.

Pretraining
The implementation is mainly based on the published code of Pri3D, and thus, the same
pretraining protocol as presented in the paper [1] is follwed and an outline is given here.
The 2D backbone is always a UNet-style ResNet50, and a UNet-style sparse convolutional
serves as 3D backbone. As in [1], the 2D backbone is initialized using supervised ImageNet
pretraining before performing self-supervised pretraining on the ScanNet dataset [11].
The ScanNet dataset is a collection of RGB-D sequences of indoor scenes, captured with
a Kinect-like setup. On this dataset, the model is trained for 5 epochs using stochastic
gradient descent with a learning rate of 0.1 with polynomial decay of 0.9 and the batch
size is 64, unless explicitly mentioned otherwise. This corresponds to approximately 60k
iterations and 4 days of training time on 8 Nvidia V100 GPUs for pretraining a single model.
The temperature parameter in the losses (equation (5.1)) is set to 0.4.

Per-pixel downstream tasks
In sections 5.4.2 to 5.4.4 the per-pixel representations are evaluated on depth prediction,
image reconstruction, and semantic segmentation while parts of the pretrained network are
frozen. To decode the information from features extracted by the frozen pretrained network,
a non-linear per-pixel MLP is appended (see �gure 5.2c). This MLP is implemented as a
sequence of 1x1 convolutions: Conv1x1@128 → ReLU → BatchNorm → Conv1x1@128
→ ReLU → BatchNorm → Conv1x1@c (c = 3 for image reconstruction, c = 1 for depth
estimation, and c = #classes for semantic segmentation). The MLP is followed by a bilinear
�xed interpolation that upscales the output from 120×160 to 240×320, which is analogous
to the semantic segmentation downstream experiments of Pri3D [1] with the UNet architec-
ture. Note that the last convolutional layer is discarded from the pretrained model, which,
during pretraining, linearly projects the features to the space in which the contrastive loss
operates. It can be regarded as the head network which aims to solve the contrastive task.

5.4 Experiments

5

87

For image reconstruction and depth prediction, the models are trained using an L2
loss directly on the RGB input pixel values and depth ground truth values, respectively.
For semantic segmentation, the common cross-entropy loss is used to learn to predict
the semantic classes of each pixel. Other than that, the same training protocol as for the
semantic segmentation task in [1] is applied. The mean Intersection-over-Union (mIoU) is
the metric for the semantic segmentation quality. The datasets used for depth prediction
and image reconstruction are:

• ScanNet25kframes [11]: a subset of the ScanNet dataset annotated for speci�c tasks,
e.g. semantic segmentation, with given training/test/validation splits. The RGB input
images of all three splits are subsets of the ScanNet dataset used for pretraining.
ScanNet25kframes is on all downstream tasks and therefore it is not distinguish from
ScanNet explicitly.

• NYUv2 [30]: A dataset of 1449 RGBD images with semantic segmentation annotations,
capturing 464 indoor scenes.

For semantic segmentation, the follow additional datasets are used:

• KITTI [31]: The dataset of the KITTI semantic segmentation benchmark consists of
200 semantically annotated training as well as 200 test images (the validation set) of
road tra�c scenes.

• Cityscapes [32]: A dataset of 5000 semantically annotated frames of urban street
scenes in 50 di�erent cities.

Object-centered downstream tasks
To perform object detection and instance segmentation, the encoders of the pretrained
models are used to initialize a Mask RCNN model [33] of the Detectron2 library [34] in
section 5.4.5. Due to the downstream architecture, the decoders are discarded. In addition
to ScanNet25kframes and NYUv2, the models are evaluated on the 2017 version of the
COCO dataset [35] that contains more than 118k training and 5000 validation images. The
Average Precision (AP) metric is used on all datasets.

5.4.2 Frozen downstream tasks
The frozen downstream tasks, where all weights of the pretrained network are kept frozen,
are used to investigate how well the pretrained models capture color, depth, or semantic
information by predicting this information from the learned per-pixel representations.
These frozen downstream tasks show how the di�erent alignment strategies in Pri3D
in�uence the learned representations. For semantic segmentation, this frozen setup is
similar to the linear evaluation protocol commonly used to evaluate the quality of global
image features in visual representation learning [6]. In this linear evaluation protocol, the
performance of a linear classi�er on the global features is often regarded as a proxy metric
for the representation quality. The presented setup is used to evaluate whether a non-linear
MLP can provide a proxy metric for the representation quality.

The �rst four rows of table 5.1 show the best performance on the validation data during
the training process for each model variation and frozen downstream task.

5

88 5 How do Cross-View and -Modal Alignment Affect Contrastive Learning?

Depth pred.
- L2 loss

Image reconst.
- L2 loss

Semantic Segm.
mIoU

NYUv2 ScanNet NYUv2 ScanNet Cityscapes KITTI NYUv2 ScanNet

VIEW+GEO (lin)

VIEW+GEO

GEO

VIEW

-39.00

-36.63

-39.14

-46.68

-7.24

-7.40

-6.82

-9.59

-8.23

-8.01

-7.56

-8.19

-2.73

-2.68

-2.54

-2.71

49.91

50.51

50.97

51.29

29.78

29.26

29.75

30.11

51.19

50.34

52.08

51.61

60.55

60.72

59.86

59.44

20

0

20

Perform
ance change in %

Depth pred.**
- L2 loss

Image reconst.**
- L2 loss

Semantic Segm.**
mIoU

NYUv2 ScanNet NYUv2 ScanNet Cityscapes KITTI NYUv2 ScanNet

VIEW+GEO (lin)

VIEW+GEO

GEO

VIEW

-43.00

-43.34

-41.42

-47.27

-7.86

-8.09

-7.18

-10.62

-7.85

-8.01

-7.21

-7.94

-2.67

-2.63

-2.46

-2.63

42.43

42.22

43.50

41.79

24.53

23.75

28.49

25.69

47.59

46.55

47.71

47.03

58.12

58.01

58.37

57.34

20

0

20

Perform
ance change in %

Depth pred.
- L2 loss

Image reconst.
- L2 loss

Semantic Segm.
mIoU

NYUv2 ScanNet NYUv2 ScanNet Cityscapes KITTI NYUv2 ScanNet

VIEW+GEO (lin)

VIEW+GEO

GEO

VIEW

-108.48

-121.78

-120.89

-120.93

-25.73

-28.88

-26.75

-35.73

-91.07

-117.61

-120.69

-79.87

-89.58

-103.95

-106.73

-79.42

14.33

12.54

11.36

16.54

9.01

7.29

6.98

12.54

28.96

25.59

21.89

32.11

31.95

28.19

21.53

34.64

50

0

50

Perform
ance change in %

Fr
oz

en
H

al
f-f

ro
ze

n
Fu

ll
�n

et
un

in
g

Table 5.1: Validation performance on the three tasks and four datasets. Rows 1-4 show the frozen downstream
setting where the pretrained weights are �xed, in rows 5-8 the encoder of the UNet-style architecture is �xed,
and in the last four rows, the entire models are �netuned. To have a consistent notion that a greater value means
better performance, the negative L2-Loss is shown. Blue color indicates relative improvement with respect to the
cross-view model (VIEW).

Compared to the cross-view model (VIEW), all other models perform worse on frozen
image reconstruction and semantic segmentation. In contrast, the models that include the
cross-modal GEO loss perform better than the VIEW on ScanNet depth prediction, while
on NYUv2 this general trend is not visible. The VIEW+GEO (lin) model outperforms the
VIEW+GEO model on all three frozen downstream tasks by more than 10%.

Figures 5.3 and 5.4 show the qualitative reconstruction and depth prediction results.
In both cases, the ranking of the models on ScanNet is re�ected in the visual reconstruc-
tion quality. The VIEW model achieves the best visual reconstruction, followed by the
VIEW+GEO (lin), VIEW+GEO and GEO models. It is notable that the results di�er espe-
cially on �at texture-rich surfaces, for example in the �rst row where the GEO model does
recover the wallpaper. All model variations discard most of the color information. The
most detailed and smoothest depth estimation is obtained by the VIEW+GEO (lin) model.
The depth gradient along surfaces appears smooth whereas the depth estimation based on
VIEW+GEO and VIEW is speckled on �at surfaces.

In conclusion, the cross-view VIEW loss preserves more texture information while
the cross-modal GEO loss leads to a better depth representation. This observation is in
line with the ideas of complementary and redundant information discussed in �gure 5.1.
Interestingly, combining the two losses as VIEW+GEO and aligning the representations

5.4 Experiments

5

89

GEO VIEW+GEO VIEW+GEO(lin) VIEW Ground truth

Figure 5.3: Image reconstructions obtained from di�erent frozen representations. The rows correspond to di�erent
samples. The rightmost column is the ground truth data and also the input for the feature extractors. The other
columns use di�erent models to compute the features from which the images are reconstructed.

across views and modalities only achieves mediocre performance on all three downstream
tasks. Once alignment is lifted by the linear layer in VIEW+GEO (lin), all metrics improve,
showing that it allows the model to preserve more complementary information. Notably,
the depth prediction result is even better than for the GEO model, suggesting that even
with respect to the redundant information, this separation is bene�cial. The semantic
segmentation performance di�ers strongly between the model variations and bene�ts from
the cross-view loss and the linear layer in VIEW+GEO (lin) that lifts the direct alignment.

5.4.3 Half-frozen downstream tasks

By freezing only the encoder part of the UNet-style models, the following experiments
provide insight to which part of architecture discards the texture information. The experi-
mental setup, architecture, and datasets remain the same as for the frozen downstream
tasks in section 5.4.2, except that now also the decoder is �netuned together with the MLP
and only the encoder is �xed during �netuning.

The GEO model performs best across all tasks and datasets as seen in rows 5-8 of
table 5.1. The model excels on depth prediction, and interestingly, also outperforms the
VIEW model on image reconstruction. The combined models outperform VIEW on depth
prediction, but the other tasks show mixed results. The linear layer (lin) improves the
VIEW+GEO performance slightly.

Overall, the results are in stark contrast to the frozen downstream tasks. Given that the
GEO model outperforms the VIEW model, it seems that the decoder discards the texture
information in the frozen downstream tasks, and recovering the texture is possible by
�netuning. At the same time, the encoder of the GEO model extracts very robust features
across tasks and datasets.

5

90 5 How do Cross-View and -Modal Alignment Affect Contrastive Learning?

VIEW VIEW+GEO GEO VIEW+GEO(lin) Ground truth

Figure 5.4: Qualitative results on the frozen depth prediction task. Each row corresponds to one sample and the
rightmost column shows the ground truth depth data (saturated blue indicates invalid values). The other columns
use di�erent models to compute the frozen per-pixel features for depth prediction.

5.4.4 Full finetuning downstream tasks
To assess the practical value and generality of a visual representation, the models are
now fully �netuned and evaluated on the downstream tasks. In contrast to the frozen
downstream tasks, all weights in the model are �netuned during the downstream task
training.1 As the full model is �netuned, the per-pixel MLP is not needed anymore and is
omitted.

Rows 9-12 in table 5.1 show the full �netuning downstream performance. Models that
were trained including the GEO loss outperform the VIEW model on depth prediction.
Again, GEO is the best model for image reconstruction. On semantic segmentation, VIEW
performs best on Cityscapes and KITTI , but not on the other two datasets.

Also in this full �netuning setting, cross-modal alignment improves depth prediction
performance. For semantic segmentation, the results are generally mixed, but it is notable
that VIEW performs well on the two outdoor datasets. This may indicate that the cross-
modal models are biased towards spatial layouts of indoor scenes. Adding the feature space
separation (lin) to VIEW+GEO does not have a positive e�ect, but rather tends to decrease
the performance.

5.4.5 Instance and object segmentation
As discussed in [12], texture-biased networks are inferior to shape-biased networks for
object detection. To test whether this also holds for texture-biased compared to depth-
biased networks, the pretrained encoders are �netuned for object detection and instance
segmentation.

Table 5.2 shows that the cross-modal GEO model outperforms the VIEW model on 5 out
of 6 task and dataset combinations. The combined models VIEW+GEO and VIEW+GEO (lin)
models show mixed results, perform well on ScanNet, but not on COCO. On NYUv2,

1Note that the results deviate from the results presented in [1] since the proxy depth loss is discarded (see
supplementary material).

5.5 Discussion

5

91

COCO NYUv2 ScanNet
Instance
Segm.

AP

Object
Det.
AP

Instance
Segm.

AP

Object
Det.
AP

Instance
Segm.

AP

Object
Det.
AP

VIEW+GEO (lin)

VIEW+GEO

GEO

VIEW

35.92

36.04

36.48

36.13

39.63

39.80

40.31

39.99

14.78

15.62

15.41

15.11

18.46

19.94

19.24

18.98

19.22

19.14

19.15

19.00

26.82

27.00

26.51

26.68

5

0

5
Perform

ance change in %

Table 5.2: Comparison of instance segmentation and object detection performance of the four di�erent models
(rows). Blue color indicates relative improvement with respect to the cross-view model (VIEW).

their di�erence is most pronounced where the linear feature separation (lin) leads to the
worst performance among the four model variations while omitting it results in the best
performance.

Combining the losses in the VIEW+GEO and VIEW+GEO (lin) models seems to be
bene�cial within the pretraining dataset, but not when shifting domains. Overall, although
the performance di�erences are small, the GEO model appears to be more robust. This
supports the idea that texture-biased networks are not as robust for object-centered tasks
as the depth-biased GEO network.

5.5 Discussion
The comparison on the frozen downstream tasks reveals that cross-view and cross-modal
representation alignment in�uence the complementary and redundant information encoded
in the learned representations. While the VIEW model preserves the texture and the GEO
model preserves the depth, the combination VIEW+GEO does not result in the di�erent low-
level features complementing each other, but instead a fully shared feature space is obtained
where complementary information is lost and redundant details are less accentuated.
VIEW+GEO (lin) improves the combined model on all three frozen downstream tasks and
raises the question of whether this means that a generally better representation has been
found. The performance on the half-frozen and full �netuning downstream tasks, however,
contradict this apparent conclusion and it is even found that the GEO model performs
most robustly across tasks and datasets. This shows that reducing texture-biased networks
increases robustness is similar to �ndings in [12].

On semantic segmentation, the frozen downstream task shows a distinct ranking that
is persistent across datasets. These distinct performance di�erences were not observed
once the decoder is �netuned as well. A possible explanation could be that the texture-bias
is to a certain degree useful but also easy to recover and thus not important to learn during
pretraining. So although the strong di�erences on the frozen downstream tasks reveal
that the diverse representations either incorporate or discard complementary information,
the performance on the frozen tasks does not correlate with the �netuning downstream
performance.

The comparison of VIEW+GEO with VIEW andGEO indicates di�erent behavior on data
within the same domain and across domains. The VIEW+GEO model excels especially in

5

92 5 How do Cross-View and -Modal Alignment Affect Contrastive Learning?

object detection, instance segmentation, and semantic segmentation on the ScanNet dataset.
A similar e�ect of over�tting to the pretraining dataset is also re�ected in the learning rate
variations shown in the supplementary material. In a broader context, this could mean
that aligning cross-modal and cross-view representations may harm generalization across
datasets but could prove especially useful when exploiting unlabelled data within the same
domain for better performance on a small annotated subset. Still, further experiments are
needed to verify this hypothesis.

The presented empirical study comes with certain limitations. Although the results
are obtained on various datasets and tasks, the pretraining and �netuning results are
always subject to stochastic e�ects in the training processes. Further, this work focused
only on the most obvious modality-speci�c information such as color and depth. The
image reconstruction and depth prediction tasks only test some characteristics of the
learned representations while other characteristics may be more indicative with respect to
downstream �netuning performance. Still, the results show that the di�erent pretraining
strategies yield representations that encode di�erent information.

5.6 Conclusions and future work
Aligning feature representations across views and across modalities is a common approach
in self-supervised learning. Yet, the e�ects on the learned visual representations are often
not well understood. The quantitative results showed that, in contrast to cross-view
representation alignment, cross-modal representation alignment can lead to discarding
complementary information of the individual modalities. In the context of cross-modal
learning on images and point clouds, texture is considered complementary information of
the visual data and depth is redundant information. Pretraining by cross-modal alignment
was especially useful for tasks that require a notion of the spatial layout, such as depth
prediction, and also instance segmentation and object detection. This e�ect is similar
to the observations of previous work that shape-biased networks are more robust than
texture-biased networks. Thus, pretraining with emphasis on the redundant information
achieved the most robust performance when �netuning the visual backbone networks on
various downstream tasks and datasets.

Merging complementary information is a fundamental goal of sensor fusion and dis-
carding that information may harm the overall performance on such a task. While the
presented results have indicated that visual representations become more robust by re-
ducing the texture-bias through cross-modal alignment, future work should investigate
whether these results still hold for self-supervised approaches that fuse di�erent sensing
modalities.

5.7 References
[1] Ji Hou, Saining Xie, Benjamin Graham, Angela Dai, and Matthias Nießner. Pri3d:

Can 3d priors help 2d representation learning? In Proc. of the IEEE/CVF International
Conference on Computer Vision, pages 5693–5702, 2021.

[2] Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional
networks. In European Conference on Computer Vision, pages 818–833. Springer, 2014.

5.7 References

5

93

[3] Kaiming He, Ross Girshick, and Piotr Dollár. Rethinking ImageNet pre-training. In
Proc. of the IEEE/CVF International Conference on Computer Vision, pages 4918–4927,
2019.

[4] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,
Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C.
Berg, and Li Fei-Fei. ImageNet Large Scale Visual Recognition Challenge. International
Journal of Computer Vision, 115(3):211–252, 2015.

[5] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum
contrast for unsupervised visual representation learning. In Proc. of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 9729–9738, 2020.

[6] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geo�rey Hinton. A sim-
ple framework for contrastive learning of visual representations. In International
conference on machine learning, pages 1597–1607. PMLR, 2020.

[7] Xin Yuan, Zhe Lin, Jason Kuen, Jianming Zhang, Yilin Wang, Michael Maire, Ajinkya
Kale, and Baldo Faieta. Multimodal Contrastive Training for Visual Representation
Learning. In Proc. of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 6995–7004, 2021.

[8] Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive multiview coding. In
European Conference on Computer Vision, pages 776–794. Springer, 2020.

[9] Daniel Trosten, Sigurd Lokse, Robert Jenssen, and Michael Kamp�meyer. Recon-
sidering Representation Alignment for Multi-view Clustering. In Proc. of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 1255–1265, 2021.

[10] Maximilian Jaritz, Tuan-Hung Vu, Raoul de Charette, Emilie Wirbel, and Patrick Pérez.
xMUDA: Cross-modal unsupervised domain adaptation for 3d semantic segmentation.
In Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, pages
12605–12614, 2020.

[11] Angela Dai, Angel X Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser, and
Matthias Nießner. ScanNet: Richly-annotated 3d reconstructions of indoor scenes.
In Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, pages
5828–5839, 2017.

[12] R. Geirhos, P. Rubisch, C. Michaelis, M. Bethge, F. A. Wichmann, and W. Brendel.
ImageNet-trained CNNs are biased towards texture; increasing shape bias improves
accuracy and robustness. In International Conference on Learning Representations, May
2019.

[13] Xinlei Chen and Kaiming He. Exploring simple siamese representation learning.
In Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, pages
15750–15758, 2021.

5

94 5 How do Cross-View and -Modal Alignment Affect Contrastive Learning?

[14] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond,
Elena Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad
Gheshlaghi Azar, Bilal Piot, Koray Kavukcuoglu, Remi Munos, and Michal Valko.
Bootstrap your own latent-a new approach to self-supervised learning. Advances in
Neural Information Processing Systems, 33:21271–21284, 2020.

[15] Xinlong Wang, Rufeng Zhang, Chunhua Shen, Tao Kong, and Lei Li. Dense Contrastive
Learning for Self-Supervised Visual Pre-Training. In Proc. of the IEEE Conference on
Computer Vision and Pattern Recognition, 2021.

[16] Zhenda Xie, Yutong Lin, Zheng Zhang, Yue Cao, Stephen Lin, and Han Hu. Propagate
Yourself: Exploring Pixel-Level Consistency for Unsupervised Visual Representation
Learning. In Proc. of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 16684–16693, June 2021.

[17] Ji Hou, Benjamin Graham, Matthias Nießner, and Saining Xie. Exploring data-e�cient
3d scene understanding with contrastive scene contexts. In Proc. of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 15587–15597, 2021.

[18] Saining Xie, Jiatao Gu, Demi Guo, Charles R Qi, Leonidas Guibas, and Or Litany.
PointContrast: Unsupervised pre-training for 3d point cloud understanding. In
European Conference on Computer Vision, pages 574–591. Springer, 2020.

[19] Zaiwei Zhang, Rohit Girdhar, Armand Joulin, and Ishan Misra. Self-supervised
pretraining of 3d features on any point-cloud. arXiv preprint arXiv:2101.02691, 2021.

[20] Yunze Liu, Qingnan Fan, Shanghang Zhang, Hao Dong, Thomas Funkhouser, and
Li Yi. Contrastive multimodal fusion with TupleInfoNCE. In Proc. of the IEEE/CVF
International Conference on Computer Vision, pages 754–763, 2021.

[21] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini
Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learn-
ing transferable visual models from natural language supervision. arXiv preprint
arXiv:2103.00020, 2021.

[22] Zhenyu Li, Zehui Chen, Ang Li, Liangji Fang, Qinhong Jiang, Xianming Liu, Junjun
Jiang, Bolei Zhou, and Hang Zhao. SimIPU: Simple 2D Image and 3D Point Cloud
Unsupervised Pre-Training for Spatial-Aware Visual Representations. arXiv preprint
arXiv:2112.04680, 2022.

[23] Longlong Jing, Ling Zhang, and Yingli Tian. Self-supervised feature learning by
cross-modality and cross-view correspondences. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops, pages 1581–1891. IEEE, 2021.

[24] Nawid Sayed, Biagio Brattoli, and Björn Ommer. Cross and learn: Cross-modal self-
supervision. In German Conference on Pattern Recognition, pages 228–243. Springer,
2018.

5.8 Appendix

5

95

[25] Saurabh Gupta, Judy Ho�man, and Jitendra Malik. Cross modal distillation for
supervision transfer. In Proc. of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 2827–2836, 2016.

[26] Adrian Benton, Huda Khayrallah, Biman Gujral, Dee Ann Reisinger, Sheng Zhang,
and Raman Arora. Deep generalized canonical correlation analysis. arXiv preprint
arXiv:1702.02519, 2017.

[27] Michelle A. Lee, Matthew Tan, Yuke Zhu, and Jeannette Bohg. Detect, Reject, Correct:
Crossmodal Compensation of Corrupted Sensors. In Proc. of the IEEE International
Conference on Robotics and Automation, Xi’an, China, 2021.

[28] Yunze Liu, Li Yi, Shanghang Zhang, Qingnan Fan, Thomas Funkhouser, and Hao
Dong. P4Contrast: Contrastive Learning with Pairs of Point-Pixel Pairs for RGB-D
Scene Understanding. arXiv preprint arXiv:2012.13089, 2020.

[29] Ji Hou. Pri3d. https://github.com/Sekunde/Pri3D (commit 9086edd),
2021.

[30] Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob Fergus. Indoor segmenta-
tion and support inference from RGBD images. In European Conference on Computer
Vision, pages 746–760. Springer, 2012.

[31] Hassan Alhaija, Siva Mustikovela, Lars Mescheder, Andreas Geiger, and Carsten
Rother. Augmented Reality Meets Computer Vision: E�cient Data Generation for
Urban Driving Scenes. International Journal of Computer Vision, 2018.

[32] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler,
Rodrigo Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The Cityscapes
Dataset for Semantic Urban Scene Understanding. In Proc. of the IEEE Conference on
Computer Vision and Pattern Recognition, 2016.

[33] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask R-CNN. In Proc.
of the IEEE/CVF International Conference on Computer Vision, pages 2961–2969, 2017.

[34] Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen Lo, and Ross Girshick. De-
tectron2. https://github.com/facebookresearch/detectron2,
2019.

[35] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ra-
manan, Piotr Dollár, and C Lawrence Zitnick. Microsoft COCO: Common objects in
context. In European Conference on Computer Vision, pages 740–755. Springer, 2014.

[36] Junjie Hu, Mete Ozay, Yan Zhang, and Takayuki Okatani. Revisiting single image
depth estimation: Toward higher resolution maps with accurate object boundaries.
In IEEE Winter Conference on Applications of Computer Vision, pages 1043–1051, 2019.

https://github.com/Sekunde/Pri3D
https://github.com/facebookresearch/detectron2

5

96 5 How do Cross-View and -Modal Alignment Affect Contrastive Learning?

RGB Points

2D backbone 3D backbone

VIEW loss GEO loss

linear
layer

Depth loss

linear
layer

Figure 5.5: This graph shows how the depth proxy loss is included in the Pri3D model. The dashed arrow indicates
a second RGB view of the same scene that overlaps with the �rst view. Note that VIEW+GEO+d (lin) was evaluated
throughout the Pri3D paper.

5.8 Appendix
5.8.1 Relation to results presented in Pri3D
All models in Pri3D [1] were pretrained with a depth loss in addition to the VIEW and GEO
loss. This proxy depth loss follows the formulation presented in [36] and details are found
in the o�cial Pri3D implementation [29]. Note that this loss is also preceded by a linear per
pixel layer that reduces the backbone output channels to a single channel (see �gure 5.5).
In this work, this proxy loss is not included, because the goal was to focus on the e�ects
of cross-view and cross-modal representation alignment. table 5.3 show the results of the
Pri3D variations once the proxy depth loss is used. The relative performance change is
given with respect to the corresponding model without the depth loss, which is not listed
explicitly. While the depth loss does have positive e�ects on semantic segmentation of
ScanNet and NYUv2, it is not bene�cial on the object detection and instance segmentation
tasks on the same datasets. On the other datasets and tasks it leads to mixed results.

Further, some models in [1] were pretrained with a learning rate of 0.1 and others with
0.01. table 5.4 shows the e�ect of the learning rate change. Within the ScanNet dataset,
the higer learning rate outperforms the lower learning rate, and vice versa on the other
datasets. The pretraining learning rate thus seems to be a crucial factor that should be
taken into account when evaluating models within or across datasets.

5.8 Appendix

5

97

CO
CO

Ob
jec

t
De

t.
AP

CO
CO

In
sta

nc
e

Se
gm

.
AP

Ci
ty

Sc
ap

es
Se

m
an

tic
Se

gm
.

m
Io

U

KI
TT

I
Se

m
an

tic
Se

gm
.

m
Io

U

NY
Uv

2
Ob

jec
t

De
t.

AP

NY
Uv

2
In

sta
nc

e
Se

gm
.

AP

NY
Uv

2
Se

m
an

tic
Se

gm
.

m
Io

U

Sc
an

Ne
t

Ob
jec

t
De

t.
AP

Sc
an

Ne
t

In
sta

nc
e

Se
gm

.
AP

Sc
an

Ne
t

Se
m

an
tic

Se
gm

.
m

Io
U

VI
EW

+G
EO

+d
 (l

in
)

VI
EW

+G
EO

+d

VI
EW

+d

GE
O+

d
(li

n)

39
.7

9
(0

.4
%

)

39
.5

8
(-0

.5
%

)

40
.1

2
(0

.3
%

)

40
.1

0
(-1

.0
%

)

36
.0

2
(0

.3
%

)

35
.8

2
(-0

.6
%

)

36
.2

3
(0

.3
%

)

36
.2

8
(-0

.7
%

)

49
.3

9
(-1

.0
%

)

50
.3

8
(-0

.2
%

)

51
.7

5
(0

.9
%

)

50
.2

4
(-2

.8
%

)

30
.1

3
(1

.2
%

)

28
.8

0
(-1

.6
%

)

30
.2

8
(0

.5
%

)

30
.8

5
(-1

.8
%

)

18
.4

2
(-0

.2
%

)

18
.8

9
(-5

.2
%

)

18
.0

3
(-5

.0
%

)

17
.5

7
(-1

1.
8%

)

14
.3

4
(-3

.0
%

)

15
.1

7
(-2

.9
%

)

14
.3

3
(-5

.2
%

)

13
.8

4
(-1

2.
1%

)

51
.4

3
(0

.5
%

)

51
.4

0
(2

.1
%

)

53
.0

0
(2

.7
%

)

52
.4

6
(0

.9
%

)

26
.4

4
(-1

.4
%

)

26
.4

1
(-2

.2
%

)

26
.3

4
(-1

.2
%

)

26
.1

5
(-1

.8
%

)

19
.0

8
(-0

.7
%

)

19
.2

0
(0

.4
%

)

19
.0

5
(0

.2
%

)

18
.7

2
(-1

.2
%

)

61
.4

2
(1

.4
%

)

61
.3

2
(1

.0
%

)

61
.0

8
(2

.8
%

)

60
.6

1
(1

.0
%

)

10010

Performance change in %

Ta
bl

e
5.3

:C
om

pa
ris

on
of

pr
et

ra
in

in
g

w
ith

an
d

w
ith

ou
tt

he
de

pt
h

lo
ss

.T
he

ba
se

lin
e

fo
rt

he
pe

rfo
rm

an
ce

ch
an

ge
of

pe
rr

ow
is

th
e

sa
m

e
m

od
el

bu
tw

ith
ou

tt
he

de
pt

h
lo

ss
.

Th
e

ba
se

lin
e

pe
rfo

rm
an

ce
is

no
tl

ist
ed

ex
pl

ic
itl

y
he

re
.

5

98 5 How do Cross-View and -Modal Alignment Affect Contrastive Learning?

COCO
Cityscapes

KITTI
NYUv2

ScanNet
Instance
Segm

.
AP

Object
Det.
AP

Sem
antic

Segm
.

m
IoU

Sem
antic

Segm
.

m
IoU

Instance
Segm

.
AP

Object
Det.
AP

Sem
antic

Segm
.

m
IoU

Instance
Segm

.
AP

Object
Det.
AP

Sem
antic

Segm
.

m
IoU

VIEW
+GEO+d (lin, lr001)

VIEW
+GEO+d (lin)

3
6
.7

2

3
6
.0

2

4
0
.6

9

3
9
.7

9

5
3
.7

2

4
9
.3

9

3
0
.5

4

3
0
.1

3

1
5
.2

1

1
4
.3

4

1
9
.1

3

1
8
.4

2

5
4
.9

0

5
1
.4

3

1
8
.6

7

1
9
.0

8

2
5
.9

8

2
6
.4

4

5
9
.7

0

6
1
.4

2

5 0 5

Performance change in %

Table5.4:VIEW
+G

EO
+d

(lin)w
ith

learningrate0.1com
paredtolearningrate0.01.Therelativeperform

anceisshow
n

w
ith

respecttothebaselinem
odelVIEW

+G
EO

+d
(lin).

6

99

6
Conclusions and

future work

Self-driving vehicles and advanced driver assistance systems are becoming ubiquitous.
Therefore, it is crucial to make self-driving vehicles as safe as possible and aim for even
higher reliability than human drivers can provide. The research presented in this thesis con-
tributes toward this goal by increasing the e�ciency of an essential aspect of autonomous
driving: the vehicle’s perception of its environment. To make the environment perception
more e�cient, the research presented here improved sensor, algorithm, and representation
e�ciency.

6.1 Sensor efficiency
By capturing more cues of the environment, which may even be unrecognized by human
drivers, novel sensors can increase the e�ciency of environment perception. Vehicles
approaching behind blind corners can be acoustically detected from their wall re�ections
by a car-mounted microphone array, as demonstrated in chapter 2. The method achieved
an accuracy of 0.92 on the 4-class hidden car classi�cation task for a static ego-vehicle, and
up to 0.84 in some environments while driving. An approaching vehicle was detected with
the same accuracy as the visual baseline already more than one second ahead, a crucial
advantage in such critical situations.

While these initial �ndings are encouraging, the presented results have several limita-
tions. The experiments included only a few locations and di�erent oncoming vehicles, and
while the method performed well in one environment, it had di�culties in the other and
did not perform reliably in unseen test environments. To expand the applicability, more
representative data is needed to capture a broad variety of environments, vehicle positions,
and velocities, and the presence of multiple sound sources. Rather than generalizing across
environments, additional input from map data or other sensor measurements could help
to discriminate acoustic environments and to classify the re�ection patterns accordingly.
More data also enables end-to-end learning of low-level features, potentially capturing cues
the Direction-of-Arrival-based approach currently ignores (e.g. Doppler, sound volume),
and performing multi-source detection and classi�cation in one pass [1]. Ideally, a suitable

6

100 6 Conclusions and future work

self-supervised learning scheme is developed similar to [2], though a key challenge is that
actual occluded sources cannot immediately be visually detected.

This work on acoustic vehicle detection around corners shows how novel sensors
can help to extend the perception range in situations where conventional sensors are
lacking. Of course, microphones are not the only sensors that have the potential to achieve
this. Other e�orts, for example on thermal infrared cameras [3], support that it is worth
exploring novel sensing modalities. The microphone array setup, despite being inspired
by human experience in urban tra�c, has capabilities beyond the human audition. The
spatial layout of the microphone array o�ers a higher resolution than a binaural setup
and microphones can capture frequencies beyond the range of human ears. What is often
missing are algorithms to process the data and �nding the relevant use cases where novel
sensors can bring signi�cant safety bene�ts for self-driving vehicles. While industrial
product development focuses on tuning well-known sensors (e.g. camera, LiDAR, and radar),
it is a great opportunity for academic research to think “outside-the-box” and explore the
possibilities and applications of a novel or so far overlooked sensing techniques.

6.2 Algorithm efficiency
Processing of sensor data requires e�cient algorithms to minimize the latency between
capturing, understanding, and eventually reacting to the environment. Chapters 3 and 4
described how existing approaches can be extended for a favorable trade-o� of accuracy
and processing speed.

Chapter 3 presented a new approach to train deterministic decision trees with gradient-
based optimization in an end-to-end manner. The approach uses a probabilistic tree
formulation during training to facilitate back-propagation and optimize all splits of a tree
jointly. By adjusting the steepness of the decision boundaries in an annealing scheme, the
method learns increasingly more crisp trees that capture uncertainty as distributions at
the leaf nodes, rather than as distributions over multiple paths. The resulting optimized
trees are therefore deterministic rather than probabilistic, and run e�ciently at test time
as only a single path through the tree is evaluated. This approach outperforms previous
training algorithms for oblique decision trees. In a forest ensemble, the method shows
competitive or superior results to the state-of-the-art sNDF [4], even though the trees
only evaluate a fraction of the split functions at test time. Unlike the ADF method [5], the
presented method is not restricted to only using oblique split functions, thanks to gradient-
based optimization. It is straightforward to include more complex split features, such
as convolutional neural networks, or to add spatial regularization constraints. Another
demonstrated bene�t is that the learned decision tree can also help interpret how the
decision of a visual classi�cation task is constructed from a sequence of simpler tests on
visual features. Overall, the presented approach provides high �exibility and the potential
for accurate models that maintain interpretability and e�ciency due to the conditional
data �ow. In perception for autonomous vehicles, this e�ciency through conditional data
�ow could lead to specialized models that perform e�cient scene parsing, for example by
early exits, which avoid further computations once a model is certain of its prediction.

Chapter 4 introduced Instance Stixels to improve stixel segmentation by considering
instance information from a CNN, and performing a subsequent stixel clustering step.
The experiments showed multiple bene�ts of including the instance information already

6.3 Representation efficiency

6

101

in the segmentation step, as opposed to clustering Semantic Stixels. First, quantitative
and qualitative analysis shows that Instance Stixels adhere better to object boundaries.
Second, Instance Stixels provide more accurate instance segmentation than Semantic
Stixels augmented with instance information from a pixel-level instance segmentation
network. Third, Instance stixels still preserve the favorable stixel characteristics in terms
of compactness of the segmentation representation (on average less than 2673 stixels per
image) and computational e�ciency (up to 28 FPS at a resolution of 1792x784). Potential
future research directions are the integration of additional sensor modalities as shown in
[6] and temporal information to enforce consistency.

In the meantime, improvements in neural network architecture have led to pure deep
learning approaches that outperform Instance Stixels in terms of processing throughput
and potentially accuracy [7]. Furthermore, algorithmic improvements to achieve faster
processing speed often compete with hardware improvements that essentially speed up
implementations without any changes to the algorithms. Consequently, the bene�t of the
algorithmic improvements is often diminished. Yet, there are robotic applications that
require speci�c hardware that is cheaper and physically smaller than GPU-accelerated
desktop PCs. These cost and space bene�ts usually come at the expense of computational
power. In such cases, conditional computation models such as decision trees can o�er
low computational footprints by skipping irrelevant computations. These traits make
conditional models attractive for applications that require the models to run on less powerful
hardware, and hence conditional models will remain an ongoing topic of research.

6.3 Representation efficiency
Instance Stixels, presented in chapter 4, o�er a more compact and abstract representation
than the per-pixel data of a stereo camera. Instead of more than a million pixels in an
RGB-D image with each containing segmentation results, stixels compress this information
to only a few thousand stixels per image. As such, stixels can provide a more compact
interface to communicate the segmented scene to other algorithms than per-pixel data. Yet,
integration with a path planning algorithm for obstacle avoidance in a research vehicle
showed that the representation obtained from stixels is still often too �ne-grained for
planning and, due to its susceptibility to noise, needs additional �ltering. This shows
that the value of such a compressed representation is often determined by the subsequent
modules and their requirements. A 2D path planning algorithm, for example, rarely
bene�ts from height information, but often simply requires linear boundary constraints.
It is therefore imperative to think about representations from an application perspective:
what is the actual task at hand that needs to be solved, and does the representation ful�ll
the requirements of the subsequent processing steps? The original stixels have done this
superbly, as a simple way to detect cars on highways ahead of the ego-vehicle using only
disparity data. They enabled vehicles to prevent collisions with tra�c ahead, and have done
so in times when annotated data of tra�c scenes were limited and end-to-end learning
had not yet become the dominant approach to computer vision. In urban tra�c, however,
the scenarios are more complex than on highways [8], and meanwhile annotated data, as
well as more powerful hardware, have enabled new, more accurate, and more versatile
approaches. In conclusion, for intermediate representations such as stixels, it is important
to thoroughly evaluate their applicability and value in subsequent processing steps.

6

102 6 Conclusions and future work

The fusion of sensor data for a shared objective is a research problem that could bene�t
from intermediate representations. Advances in self-supervised learning have enabled
learning expressive representations from unlabeled multi-modal data. Such data can be
continuously collected by �eets of sensor-equipped vehicles which o�ers a large potential
for self-supervised learning. In self-supervised learning, aligning feature representations
across views and across modalities is a common approach. Yet, the e�ects on the learned
representations are often not well understood. The quantitative results in chapter 5 showed
that, in contrast to cross-view representation alignment, cross-modal representation align-
ment can lead to discarding complementary information of the individual modalities. In
the context of cross-modal learning on images and point clouds, the texture is considered
complementary information of the visual data and depth is redundant information. Pre-
training by cross-modal alignment was especially useful for tasks that require a notion
of the spatial layout, such as depth prediction, and also instance segmentation and object
detection. This e�ect is similar to the observations of previous work that shape-biased
networks are more robust than texture-biased networks. Thus, pretraining with emphasis
on the redundant information achieved the most robust performance when �netuning the
visual backbone networks on various downstream tasks and datasets.

Merging complementary information is a fundamental goal of sensor fusion and dis-
carding that information may harm the overall performance on such a task. While the
presented results have indicated that visual representations become more robust by re-
ducing the texture-bias through cross-modal alignment, future work should investigate
whether these results still hold for self-supervised approaches for sensor fusion.

6.4 Outlook
This thesis presented approaches to improve the e�ciency of environment perception in
self-driving vehicles. Improving the e�ciency of sensors, algorithms, and representations
all equally contribute to the overarching goal of faster perception that increases the time
in which a self-driving vehicle can react to dangerous situations.

Newer hardware that enables faster processing can, in some cases, render e�ciency
improvements of algorithms irrelevant. Therefore, computational speed improvements by
resorting to approximate solutions that harm the accuracy, such as stixels, may be useful for
a short time but will likely be outperformed in the long run. Likewise, vehicle-to-everything
(V2X) communication may also reduce the need for novel sensors. Communication with
other cars or infrastructure, for example, may alarm the ego-vehicle of oncoming visually
occluded tra�c. This, however, makes the ego-vehicle dependent on other devices, while
novel sensors contribute to the autonomy of self-driving vehicles. Research on novel
sensing modalities may bene�t from advances in e�cient representations of data. Once
correspondences of data of di�erent sensors are well established, their data may be exploited
to aid learning approaches on novel sensor data. For these reasons, multi-modal self-
supervised learning is currently gaining momentum and acoustic sensing for visually
occluded objects should be explored further in the future.

To improve the overall performance of self-driving vehicles, regardless whether e�-
ciency, accuracy, or almost any other aspect, it is necessary to pursue a holistic evaluation
approach for the full system, from perception all the way to control. This will be essential
to exploit the full potential of self-driving vehicles in the pursuit of increased road safety.

6.5 References

6

103

6.5 References
[1] Weipeng He, Petr Motlicek, and Jean-Marc Odobez. Deep neural networks for multiple

speaker detection and localization. In Proc. of the IEEE International Conference on
Robotics and Automation, pages 74–79. IEEE, 2018.

[2] Chuang Gan, Hang Zhao, Peihao Chen, David Cox, and Antonio Torralba. Self-
supervised moving vehicle tracking with stereo sound. In Proc. of the IEEE/CVF Inter-
national Conference on Computer Vision, 2019.

[3] Meng Ding, Wen-Hua Chen, and Yunfeng Cao. Thermal infrared single-pedestrian
tracking for advanced driver assistance system. IEEE Transactions on Intelligent Vehicles,
2022.

[4] P. Kontschieder, M. Fiterau, A. Criminisi, and S. Rota Bulò. Deep neural decision forests.
In Proc. of the IEEE/CVF International Conference on Computer Vision, 2015.

[5] S. Schulter, P. Wohlhart, C. Leistner, A. Sa�ari, P. M. Roth, and H. Bischof. Alternat-
ing decision forests. In Proc. of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 508–515, June 2013.

[6] Florian Piewak, Peter Pinggera, Markus Enzweiler, David Pfei�er, and Marius Zöllner.
Improved semantic stixels via multimodal sensor fusion. In German Conference on
Pattern Recognition, pages 447–458. Springer, 2018.

[7] Daniel Bolya, Chong Zhou, Fanyi Xiao, and Yong Jae Lee. Yolact: Real-time instance
segmentation. In Proc. of the IEEE/CVF International Conference on Computer Vision,
pages 9157–9166, 2019.

[8] Andras Pal�y, Ewoud Pool, Srimannarayana Baratam, Julian F. P. Kooij, and Dariu M.
Gavrila. Multi-class road user detection with 3+1d radar in the view-of-delft dataset.
IEEE Robotics and Automation Letters, 7(2):4961–4968, 2022.

6

105

Acknowledgments

First and foremost, I would like to express my gratitude to my promotor and advisor
Prof. dr. Dariu M. Gavrila. Without your support and critical feedback, this thesis would
not have become what it is today.

Further, I would like to thank my daily supervisor Dr. Julian F.P. Kooij. Your feedback
on paper drafts and ideas was invaluable and I admire your scienti�c curiosity that has led
to hours of discussions when I showed you results at the end of a day.

I further want to extend my sincere thanks to the committee members, Assist. Prof.
dr. Valada, Prof. dr. Gevers, Prof. dr. ir. Wisse, Prof. dr. Babuska, and Dr. Caesar for their
feedback and for joining me on the �nal part of this journey.

It was a great pleasure to work with all the members of the Intelligent Vehicles group at
the TU Delft that have made it easy for me to integrate from day one. I would like to thank
András Pál�y, Ewoud Pool, Joris Domhof, Zimin Xia, Hidde Boekema, Mubariz Za�ar, Jetze
Schuurmans, Christoph Rist, Markus Roth, and Sebastian Krebs for technical discussions
on papers, research ideas, devising lecture assignments and all the great fun! I had the
great pleasure to supervise the M.Sc. theses of Patrick van Laar, Sietse van Schouwenburg,
Yannick Schulz, and Avinash Mattar. Thank you for your trust, the fun, and all the lessons
I learned from you. Frank Everdij, Ronald Ensing, and Oscar de Groot have been great
colleagues and were invaluable for the great combined e�ort on our live obstacle evasion
demonstration in 2020. Of course, thank you Tugrul Irmak, Yanggu Zheng, and Jork Stapel
for being amazing o�ce mates with great o�-topic discussions, as well as Hanneke Hustinx,
Karin van Tongeren, Dr. Barys Shyrokau, and Prof. dr. Riender Happee for their support and
nice chats that always made me feel welcome. Thank you, Andras, Alberto, Zimin, Vishrut,
and Jetze, for proofreading this thesis and for your helpful feedback and suggestions.

I greatly appreciate the support of Prof. Dr. Fred Hamprecht and Dr. Gijs Dubbelman
for me personally and in our collaborations, for example on the i-CAVE project.

I am extremely grateful to my family, most importantly, my parents Katja and Roland,
and my siblings Alexandra and Andreas, for their unconditional trust, support, and advice
throughout my entire life which have always kept me grounded and made me feel safe.

Special thanks to Sabrina for her advice, encouragement, empathy, and patience during
all the times when I struggled, as well as the fun and joy during the good times. Of course,
I would also like to thank Dr. “Bobby” Bob for all the helpful pair-coding sessions that
made the COVID-19 lockdowns more pleasant.

Lots and lots of thanks to all my friends for all the great times we had, that were there
for me even when they haven’t heard from me in a while and helped me refresh my mind
whenever necessary.

Finally, I wish to extend my thanks to everyone else who supported me during my time
as a Ph.D. student and I would like to thank you, the reader, for reading my thesis.

Delft, October 2022

6

106 Acknowledgments

(a) “Let me see...” (b) “Seriously?!”

Figure 6.1: Dr. “Bobby” Bob clearly disagrees with my text highlighting.

107

Curriculum Vitæ

Thomas Markus Hehn

02/2018 – 01/2022 Ph.D. candidate, Intelligent Vehicles section, Cognitive Robotics
Department, 3mE faculty, Delft University of Technology, The
Netherlands.

08/2017 – 12/2017 Research assistant, Image Analysis and Learning, Heidelberg
Collaboratory for Image Processing (HCI), Heidelberg Univer-
sity, Germany.

2014/10 – 2017/07 Graduate studies in physics (Master of Science), Heidelberg
University, Germany.

2011/10 – 2014/10 Undergraduate studies in physics (Bachelor of Science), Heidel-
berg University, Germany.

2002/09 – 2011/06 Abitur, Gymnasium in der Glemsaue, Ditzingen, Germany.
1991/07/09 Date of birth in Stuttgart, Germany.

109

List of Publications

4. Yannick Schulz, Avinash Kini Mattar, Thomas M. Hehn, and Julian F.P. Kooij. “Hearing what
you cannot see: Acoustic vehicle detection around corners”, IEEE Robotics and Automation
Letters, 6, 2, p. 2587-2594, 2021, Institute of Electrical and Electronic Engineers.
Author contributions: Equal share of authorship between �rst three authors. Yannick Schulz
and Avinash Kini Mattar contributed to the data collection, prepared the data, implemented
the acoustic detection method, performed the majority of the experiments, and contributed to
writing. Thomas M. Hehn coordinated and contributed to the data collection, advised on the
data preparation, implemented the visual baseline, took the lead in writing and presentation,
and provided guidance and supervision. Julian F.P. Kooij devised the approach, contributed to
writing, provided guidance and supervision.

3. Thomas M. Hehn, Julian F.P. Kooij, and Dariu M. Gavrila. “Fast and Compact Image Segmen-
tation using Instance Stixels”, IEEE Transactions on Intelligent Vehicles, 7, 1, p. 45-56, 2022,
Institute of Electrical and Electronic Engineers.
Author contributions: Thomas M. Hehn devised the approach, implemented the GPU-optimized
algorithm, conducted the experiments, and took the lead in writing. Julian F.P. Kooij advised
on optimizing the algorithm, and provided guidance and supervision. Dariu M. Gavrila pro-
posed the direction, provided guidance and supervision.

2. Thomas M. Hehn, Julian F.P. Kooij, and Fred A. Hamprecht. “End-to-end learning of decision
trees and forests”, International Journal of Computer Vision, 128, 4, p. 997-1011, 2020, Springer
US.
Author contributions: Thomas M. Hehn devised the approach, implemented the GPU-optimized
algorithm, performed the experiments, and took the lead in writing. Julian F.P. Kooij con-
tributed to writing and provided guidance and supervision. Fred A. Hamprecht proposed the
direction and provided guidance and supervision.

1. Thomas M. Hehn, Julian F.P. Kooij, and Dariu M. Gavrila. “Instance stixels: Segmenting and
grouping stixels into objects”, IEEE Intelligent Vehicles Symposium (IV), p. 2542-2549, 2019,
Institute of Electrical and Electronic Engineers.
Author contributions: Thomas M. Hehn implemented the GPU algorithm, performed the exper-
iments, and took the lead in writing and presentation. Julian F.P. Kooij contributed to writing,
provided guidance and supervision. Dariu M. Gavrila provided guidance and supervision.

