
 
 

Delft University of Technology

Crop Water Productivity Mapping and Benchmarking Using Remote Sensing and Google
Earth Engine Cloud Computing

Ghorbanpour, Ali Karbalaye; Kisekka, Isaya; Afshar, Abbas; Hessels, Tim; Taraghi, Mahdi; Hessari,
Behzad; Tourian, Mohammad J.; Duan, Zheng
DOI
10.3390/rs14194934
Publication date
2022
Document Version
Final published version
Published in
Remote Sensing

Citation (APA)
Ghorbanpour, A. K., Kisekka, I., Afshar, A., Hessels, T., Taraghi, M., Hessari, B., Tourian, M. J., & Duan, Z.
(2022). Crop Water Productivity Mapping and Benchmarking Using Remote Sensing and Google Earth
Engine Cloud Computing. Remote Sensing, 14(19), Article 4934. https://doi.org/10.3390/rs14194934

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.3390/rs14194934
https://doi.org/10.3390/rs14194934


Citation: Ghorbanpour, A.K.;

Kisekka, I.; Afshar, A.; Hessels, T.;

Taraghi, M.; Hessari, B.; Tourian, M.J.;

Duan, Z. Crop Water Productivity

Mapping and Benchmarking Using

Remote Sensing and Google Earth

Engine Cloud Computing. Remote

Sens. 2022, 14, 4934. https://doi.org/

10.3390/rs14194934

Academic Editor: Aitazaz A. Farooque

Received: 16 August 2022

Accepted: 29 September 2022

Published: 2 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Crop Water Productivity Mapping and Benchmarking Using
Remote Sensing and Google Earth Engine Cloud Computing
Ali Karbalaye Ghorbanpour 1 , Isaya Kisekka 1,2,* , Abbas Afshar 3, Tim Hessels 4, Mahdi Taraghi 5,
Behzad Hessari 5, Mohammad J. Tourian 6 and Zheng Duan 7

1 Department of Biological and Agricultural Engineering, University of California Davis, Davis, CA 95616, USA
2 Department of Land, Air and Water Resources, University of California Davis, Davis, CA 95616, USA
3 School of Civil Engineering, Iran University of Science & Technology, Tehran 16846, Iran
4 Department of Water Management, Delft University of Technology, 2600 AA Delft, The Netherlands
5 Water Engineering Department, Urmia Lake Research Institute, Urmia University, Urmia 57179-44514, Iran
6 Institute of Geodesy, University of Stuttgart, Stuttgart 70174, Germany
7 Department of Physical Geography and Ecosystem Science, Lund University, S-22362 Lund, Sweden
* Correspondence: ikisekka@ucdavis.edu

Abstract: Scarce water resources present a major hindrance to ensuring food security. Crop water
productivity (WP), embraced as one of the Sustainable Development Goals (SDGs), is playing an
integral role in the performance-based evaluation of agricultural systems and securing sustainable
food production. This study aims at developing a cloud-based model within the Google Earth Engine
(GEE) based on Landsat -7 and -8 satellite imagery to facilitate WP mapping at regional scales (30-m
resolution) and analyzing the state of the water use efficiency and productivity of the agricultural
sector as a means of benchmarking its WP and defining local gaps and targets at spatiotemporal
scales. The model was tested in three major agricultural districts in the Lake Urmia Basin (LUB) with
respect to five crop types, including irrigated wheat, rainfed wheat, apples, grapes, alfalfa, and sugar
beets as the major grown crops. The actual evapotranspiration (ET) was estimated using geeSEBAL
based on the Surface Energy Balance Algorithm for Land (SEBAL) methodology, while for crop yield
estimations Monteith’s Light Use Efficiency model (LUE) was employed. The results indicate that
the WP in the LUB is below its optimum targets, revealing that there is a significant degree of work
necessary to ameliorate the WP in the LUB. The WP varies between 0.49–0.55 (kg/m3) for irrigated
wheat, 0.27–0.34 for rainfed wheat, 1.7–2.2 for apples, 1.2–1.7 for grapes, 5.5–6.2 for sugar beets, and
0.67–1.08 for alfalfa, which could be potentially increased up to 80%, 150%, 76%, 83%, 55%, and 48%,
respectively. The spatial variation of the WP and crop yield makes it feasible to detect the areas
with the best and poorest on-farm practices, thereby facilitating the better targeting of resources to
bridge the WP gap through water management practices. This study provides important insights into
the status and potential of WP with possible worldwide applications at both farm and government
levels for policymakers, practitioners, and growers to adopt effective policy guidelines and improve
on-farm practices.

Keywords: crop water productivity; remote sensing; Google Earth Engine; SEBAL; Landsat; Lake Urmia

1. Introduction

Consuming more than 70% of freshwater on a global scale [1], the agricultural sector
needs to increase food production by 60% and 110% in developed and developing countries
by 2050, respectively, to secure future food demands [2]. Over the last decades, due
to anthropogenic pressure and climate change, water resources have been on the wane,
pushing the earth’s sustainability to its limits [3,4]. With prolonged drought events and an
increasing demand for agricultural outputs, water scarcity and the availability of arable
lands are posing threats to food production. Therefore, increasing water use efficiency and
crop production per unit of consumed water, which is known as crop water productivity
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(referred to hereinafter as WP) (kg/m3), is the key strategy to ensure food security. The
United Nations (UN) perceives WP as one of the Sustainable Development Goals (SDGs),
which should be increased considerably by 2030 (SDGs2.3 and SDGs6.4). In most areas,
crop WP is far below its optimum level, implying that there must be significant potential to
improve WP [5,6].

WP is typically estimated using crop yield and evapotranspiration (ET). The crop yield
depends on factors such as soil fertility, disease control, and agricultural practices, whereas
ET varies with the rainfall pattern, soil moisture, irrigation and drainage systems, and
climatology. Therefore, on-farm practices play an integral role in improving WP. Hence,
mapping WP at the catchment scale is a prerequisite to spatially detecting areas with good
and poor on-farm management practices and evaluating the effectiveness of agricultural
management strategies [7]. While a wealth of knowledge on WP at a fine spatiotemporal
resolution is of paramount importance to understanding the water–food relationship,
monitoring water use efficiency, and following through with productivity goals, such
information is not available in most regions [6,8]. In addition, ground measurements, due
to the nature of spatial heterogeneity at the basin scale and routine difficulties in taking
measurements, are unable to capture spatial trends over large areas [9,10].

Remote sensing is becoming the most viable alternative for water productivity assess-
ments and estimating WP components with multiple temporal and spatial resolutions from
farm to continental scales on a pixel-by-pixel basis [11–15]. Remote-sensing-based estimates
of ET can be obtained from satellite multi-spectral measurements based on Surface Energy
Balance models, making them feasible for providing ET maps at different scales [16–18].
Among several surface energy balance models including Mapping Evapotranspiration
at High Resolution with Internalized Calibration (METRIC) [19], Atmosphere-Land Ex-
change Inverse (ALEXI) [20], Simplified Surface Energy Balance (SSEBop) [21], and the
Surface Energy Balance System (SEBS) [22], SEBAL (Surface Energy Balance Algorithm
for Land) [17,23] has been implemented successfully worldwide across different regions
and is recognized as one of the most suitable models for estimating ET without prior
knowledge of site-specific parameters such as the field conditions, practices, and crop
type [24–27]. Furthermore, the spatial variation of crop yield can be quantified from satel-
lite measurements with an acceptable accuracy at a high resolution based on the Light Use
Efficiency (LUE) concept [28–31]. Such remote-sensing-based applications allow for the
determination of water productivity gaps [32] independent of the site-specific conditions
and in situ measurements.

The Lake Urmia Basin (LUB), located in northwestern Iran, is an endorheic basin facing
environmental and socio-economic challenges due to the human-initiated pressure and
impact of climate extremes on water resources [33–36]. Designated as a UNESCO Biosphere
Reserve, Lake Urmia is on the verge of dying and with no maintenance, it will endanger the
unique ecosystem in the area [37–40]. The majority of studies blame anthropogenic factors,
in particular, a high agricultural water demand and the expansion of irrigated lands with
low efficiency, as the primary culprits for the desiccation of Lake Urmia [34,35,41]. Despite
the urgent call at the governmental level for ameliorating the detrimental impacts of the
current modes of agricultural water production and level of productivity, the preliminary
questions of (i) ‘where are we’, (ii) ‘what are the goals’, and (iii) ‘how to achieve them’ have
not yet fully answered given the technical limitations and complexities of the basin. The
paucity of irrigation, the current water use practices, and the demand for information
have proven considerable constraints, hindering the quantification of water productivity
and the tracking of the progress of on-farm practices in the basin [33]. The lack of such
guiding insights due to the unavailability of relevant data has limited the ability to set WP
targets, bridge the yield and productivity gaps, benchmark WP values, and report them to
decision-makers. In light of this, analyzing agricultural water use, production, and WP at a
high spatiotemporal resolution is of strategic importance to mitigating water scarcity and
informing policymakers to better understand the complexities associated with sustainable
water resources management.
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To benchmark WP, some recent studies have evaluated WP at global and local scales.
The first benchmarking assessment at a global level was published by Zwart and Basti-
aanssen [42] and Mekonnen and Hoekstra [43] with a 95% percentile and a 90% percentile,
respectively, based on the compiled WP values for individual crops. Zwart et al. [7] also
created global WP maps for rainfed and irrigated wheat as benchmarks for a productivity
analysis and performance-based comparison. In an interesting study, Bastiaanssen and
Steduto [6] introduced a Global Water Productivity Score (GWPS), which is a normalized
standard scale analogous to grading systems such as Richter (for earthquakes) or Beaufort
(for wind force) for scoring a given area’s WP against global WP values. Though such
studies are valuable for reflecting intrinsic agricultural productivity capacities at a global
level as well as elucidating planetary boundaries, on a local scale, they may not appear to
be that informative and, thus, conducive to local farmers, practitioners, and agricultural
departments’ adoption of the WP concept. To this end, regional-scale governance should be
fully aware of the WP margin, and the extent of the WP gap must be closed in the domains
under these governments’ respective jurisdictions to successfully put the WP concept into
practice [6,44].

To the best of our knowledge, this is the first study aiming at benchmarking the
WP of major crops in different agricultural sites of the LUB in detail to evaluate the
implemented water-saving policies and stipulate the productivity gap with respect to its
achievements. Our study attempts to provide insights into the aforementioned questions
on the actual status, realistic goals, and untapped potentials of the agricultural sector in the
LUB by utilizing Landsat -7 and -8 satellite imagery. Using the Google Earth Engine (GEE)
platform [45], an open-source model was developed to estimate ET and crop yield based
on the geeSEBAL [46] and LUE concept, respectively, at a high spatial resolution (30 m
resolution). This cloud-based approach could also be a practical way of overcoming data
collection challenges concerning data-scarce regions and providing WP maps on a global
scale in an independent manner. Moreover, we analyzed so-called “bright spots” or higher
WP boundaries as target WP values and, similarly, “hot spots” as lower boundaries where
improvements are required to help decision-makers understand the extent of improvements
as well as the locations of bad and good practices over the major agricultural districts.

2. Materials and Methods
2.1. Description of the Study Area

Geographically, the Lake Urmia Basin (LUB), with a total surface area of 52,000 km2,
is one of the major river basins located in the northwest of Iran between 35.6◦N–38.5◦N
latitude and 44.1◦E–47.8◦E longitude. The mean annual precipitation varies spatially from
200 mm up to 800 mm in the basin and the temperature from 3 ◦C to 12 ◦C (ranging
from −10 ◦C in December to 30 ◦C in August) [47], classifying LUB as a semi-arid region.
Agriculture plays a fundamental role in the economy and livelihoods of rural provinces
in LUB, while accounting for more than 90% of water resource consumption in the whole
basin. Owing to aggressive agricultural development accompanied by the overexploitation
of surface and groundwater resources across the LUB, the inflow from 14 rivers to the lake
has decreased by 56% and groundwater withdrawal jumped from 1200 MCM in 1984 to
2200 MCM in 2013 [48].

Figure 1 shows the location of LUB along with the position of three major agricultural
districts in the west of LUB (WLUB), south of LU (SLUB), and southwest of LUB (SWLUB).
These zones cover Urima, Miandoab, Naghadeh-Oshnavie, and Mahabad plains, which
have intensive cropping systems in LUB. The selected crops and their related cultivated
area for this study are recorded in Table 1 for 2019. In addition, the irrigated areas for wheat,
apples, grapes, alfalfa, and sugar beets for the entire basin are demonstrated in Figure 2.
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Established in 2013 with the aim of bringing together regional stakeholders, legislators,
and international cooperatives, the Urmia Lake Restoration National Committee (ULRNC)
initiated a set of prompt actions under the Lake Urmia Restoration Program (ULRP). One
of the major objectives of the developed roadmap, with the highest contribution to LU’s
restoration, was to “control and decrease agricultural water use by 40%” [48]. To this end,
a set of water conservation technologies were implemented to replace traditional irrigation
with more water-efficient systems such as pressurized, drip, and sprinkler irrigation, mostly
in SLUB and SWLUB, to enhance water use efficiency. Nevertheless, the impact of such
interventions on water use efficiency and WP is under question and needs to be assessed.
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2.2. Methodology
2.2.1. SEBAL and geeSEBAL Model Description

Following the SEBAL methodology, the degree of actual evapotranspiration originates
from latent heat flux (LE) as a residual of the surface energy balance (Equation (1)). geeSE-
BAL is a version of the SEBAL algorithm implemented within GEE by Laipelt et al. [46] in
JavaScript and Python environments. geeSEBAL makes it possible to apply the energy bal-
ance equation across the globe in an entirely independent manner with high-performance
computing. The calculation of the latent heat flux is as follows:

LE = Rn − H − G (1)

where H is instantaneous sensible heat flux (W/m2), Rn is net radiation (W/m2), and G is
the soil heat flux (W/m2). According to Bastiaanssen [49]:

Rn = (1− α) Rs ↓ +Rl ↓ −Rl ↑ −(1− ε0) Rl ↓ (2)

G = Ts,corr (0.0038 + 0.007α)
(

120130.98NDVI4
)
× Rn (3)

where Rs↓ is the incoming shortwave radiation, and Rl ↓ and Rl ↑ are incoming and
outgoing longwave radiation, respectively. α is surface albedo (−) estimated according
to [50] and ε0 is the surface thermal emissivity determined from vegetative indices such
as NDVI and leaf area index (LAI). Ts,corr is the adjusted land surface temperature (Ts) in
◦K based on the DEM map and the difference between extraterrestrial solar radiation on
sloped and flat terrains to account for changes in temperature due to common elevation
data and slope according to Jaafar and Ahmad [51].

H in SEBAL is calculated through an iterative procedure based on the bulk aerody-
namic resistance equation:

H =
ρCpdT

rah
(4)

where ρ is the air density (kg/m3), Cp is the specific heat of air at constant pressure (kg K),
rah is the aerodynamic resistance (s/m), and dT is the temperature difference between two
near-surface heights. Being the major assumption, dT is estimated as a linear function
according to Bastiaanssen et al. [17] (Equation (5)), where coefficients a and b are empirically
determined for extreme anchors for each image:

dT = a + b× Ts,corr (5)

In geeSEBAL, dT is calculated from anchor endmember pixels (cold and hot pixels)
corresponding to zero G and LE, respectively. In each iteration, an atmospheric stability
correction is applied to rah according to Bastiaanssen et al. [17] until reaching a stable value.
geeSEBAL utilizes an automated statistical algorithm similar to METRIC to identify cold
and hot endmembers [52]. In this vein, cold and hot populations (corresponding to well-
vegetated and sparsely vegetated areas) are generated from percentiles of NDVI and surface
temperature (Ts). The cold endmember is detected with the highest NDVI (5% percentile)
and the lowest Ts (20% percentile). Likewise, the hot endmember candidate is selected
from the lowest NDVI (10%) and the highest Ts (20%) percentiles. It should be noted that
these standard percentiles are suitable and recommended for semiarid regions [52].

Finally, the evaporative fraction (Λ) is calculated from Equation (6) and then daily
evapotranspiration (ET24h) with 30 m resolution is estimated as:

Λ =
LE

Rn− G
(6)
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ET24h =
ΛRn24h

λ
(7)

where Rn24h is the daily net radiation and λ is the latent heat of vaporization of water.

2.2.2. Crop Water Productivity Model

We developed the crop water productivity model within GEE using Python API. On
the basis of the Light Use Efficiency model, the biomass production (Bio) (kg/ha) model
first proposed by Monteith [53] is known to be a straightforward, non-data intensive, and
extensively used model [6,29,54,55]. According to this model:

Bio = 0.864× ε× APAR (8)

where APAR represents 24 h absorbed photosynthetically active radiation (W/m2) and ε
(gr/Mj) is the actual light use efficiency. APAR is approximated according to Bastiaanssen
and Ali [29]:

APAR = 0.48× f × S ↓ (9)

f = −0.161 + 1.257NDVI (10)

where S ↓ is incoming solar radiation and f is the fraction of 24 h Absorbed Photosyntheti-
cally Active Radiation. The LUE is estimated based on Jarvis–Stewart model [29,56]:

ε = εmax × g(T)× g(D)×Λ (11)

where maximum LUE (εmax) for C3 crop is 2.5 (g/MJ) and g(T), g(D), and Λ (evaporative
fraction) are scalars to account for heat stress, vapor pressure stress, and water stress,
respectively. Further details on these functions have been well documented by Bastiaanssen
and Ali [29] and Bastiaanssen et al. [57].

Bio can be converted to crop yield (Y) (kg/ha) using yield factor or harvest index (h)
and the accumulated Biomass on a seasonal basis, from the start of season (SOS) to the end
of season (EOS):

Y = h
EOS

∑
SOS

Bio (12)

h =
Ymean

Biomean
(13)

Biomean is the average biomass derived from Biomass map and Ymean is the average
yield for the specific crop based on the available observed records in the LUB.

Finally, WP may be computed by combining Equations (7) and (12):

WP =
Y

10 ∑EOS
SOS ET

(14)

The cropping season in LUB is mostly from April to October. Little rainfall occurs
during this period; consequently, there is a high demand for irrigation. Therefore, this study
mainly focuses on this period to evaluate agricultural water use and productivity. Monthly
and seasonal ET aggregation was performed using linear interpolation by daily reference
evapotranspiration (ET0) and ET24h. Then, the resulting interpolated ET24h accumulates
over the period of interest.

2.3. Remote Sensing and Meteorological Inputs

Most of the data for this study were obtained from GEE collection through Python
API. Atmospherically corrected land surface reflectance and brightness temperature image
collections (Tier1) were extracted from Landsat 7 ETM+ and 8 OLI/TIRS. A cloud cover
filter based on the CFMask algorithm [58] was applied to each image to detect clouds,
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cloud shadow, and snow/ice pixels. Since instantaneous meteorological data at the satellite
overpass were not available, ERA5 Land, a state-of-the-art global reanalysis dataset [59,60],
was used, collecting data at hourly rates. In addition, the Digital Elevation Model (DEM)
from SRTM was used. Table 2 summarizes the characteristics of the related data collections
for geeSEBAL in detail. In addition, daily reference ET (ET0) was calculated using in situ
meteorological data from available synoptic stations based on Hargreaves and Samani [61]
for the sake of simplicity. Figure 3 demonstrates the implemented workflow for estimating
WP within GEE.

Table 2. Data used in this study and their characteristics from GEE.

Product GEE ID Data Type/Bands Path/Row Resolution

LANDSAT 8
OLI/TIRS

LANDSAT/LC08/C01/
T1_SRLANDSAT/

LC08/C01/T1

Surface reflectance
Brightness

temperature

168/34
&

169/34
30 m

LANDSAT
7ETM+

LANDSAT/LE07/C01/
T1_SRLANDSAT/

LE07/C01/T1

Surface reflectance
Brightness

temperature

168/34
&

169/34
30 m

ERA-5 hourly ECMWF/ERA5_LAND/
HOURLY

Meteorological data
including air
temperature,

wind speed, solar
radiation

- 0.1◦

SRTM USGS/
SRTMGL1_003 Elevation - 30 m
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A detailed Land-Use Land-Cover (LULC) map with the spatial resolution of 8 m devel-
oped for the year 2019 (accessed on 30 September 2022 https://www.fao.org/iran/news/
detail-events/ru/c/1287598/) was used as the base map for analyzing the performance of
each crop. Agricultural data, including crop yield and planting and harvesting dates, and
meteorological data were collected from Ministry of Jahade-Agriculture and Ministry of
Energy, respectively. The growing season for the majority of the crops ranges from April
until October. However, the amount of precipitation in this period is very low, while the
temperature rises significantly. So, the focus of this study was on this cropping calendar.

https://www.fao.org/iran/news/detail-events/ru/c/1287598/
https://www.fao.org/iran/news/detail-events/ru/c/1287598/
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3. Results
3.1. Evaluation and Analysis of ET and Crop Water Use in the Study Area

No in situ measurements or active lysimetric data on ET were available in the study
area; thus, the SEBAL-based ET was compared to the reported values regarding crop
water requirements from the Iran National Water Document for five crop types in each
district. Since crop water use and water requirements may vary spatially due to the climate
variability across the basin, ET was compared at WLUB, SWLUB, and SLUB; see Figure 4,
which shows that SEBAL ET corresponds well with the reported values. Several studies
conducted in the LUB have reported the accuracy of satellite-based ET models such as
SEBAL and METRIC in a manner similar to this study [62–65].
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To better analyze the spatiotemporal dynamics of ET in the LUB, seasonal ET maps for
WLUB, SLUB, and SWLUB are plotted in Figure 5. The irrigated lands are distinguished
by green to blue shading while non-irrigated lands show the lowest ET (reddish pixels).
Monthly ET values for the selected crops at each agricultural site along with the ET0 and
precipitation are shown in Figure 6. Rainfed wheat has the lowest degree of ET as it receives
no extra supplemental water. Some light precipitation occurs in April and May. As it can
be seen, the ET of irrigated crops reaches its pinnacle during the summer (June–August) in
all districts since the ET0 increases and almost no rainfall occurs.
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According to the common terminology of blue and green water used by Falkenmark
and Rockström [66], the majority of the water consumed for irrigation during this period is
extracted from surface and groundwater resources, which are considered blue water. By
comparing the water used by each crop, it can be perceived that the degree of ET varies
slightly at different sites but at some points it touches the ET0 line. Being below the ET0
line implies that crops may undergo water stress during the growing season due to the
water shortage.
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Alfalfa, apples, and sugar beets show a higher water consumption rate compared to
wheat and grapes. Figure 7 shows the average degree of ET for each individual crop and
relevant locations. It is clear that the SWLUB has a higher ET compared to the WLUB and
SLUB. The level of evapotranspiration for rainfed wheat is roughly 300 mm but the ET
level for other irrigated crops ranges from 616 mm for wheat to 950 mm for apples.
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3.2. Comparing and Assessing Spatiotemporal Variations in WP

As stated earlier, the WP level should be used in a relative manner to evaluate agri-
cultural performance. The WP levels for the selected crops in each major agricultural
zone are estimated and compared to understand the productivity and performance of
the implemented irrigation systems. The average WP and yield values for each crop
through the cropping season are demonstrated in Figure 8. Apples and grapes in the WLUB
possess higher WP levels than the SWLUB and SLUB. Little variation in the rainfed and
irrigated wheat can be observed between the districts. The irrigated wheat in the SWLUB
with 0.55 kg/m3 and rainfed wheat with 0.34 kg/m3 have the highest WP levels. Alfalfa
and sugar beets are relatively more productive in the SLUB and SWLUB with 1.08 and
6.22 kg/m3 productivity levels, respectively. Ahmadzadeh et al. [67] also reports similar
WP values for apples, alfalfa, wheat, and sugar beets in the south of the LUB. According to
Ghorbanpour et al. [68], the WP values for wheat, apples, grapes, and sugar beets in the
west of the LUB are 0.4, 1.9, 1.5, and 5.1, respectively, which are identical to the estimated
WP values in this study. Nevertheless, the WP variation between the same crops is too
little to be perceptible. Considering that the SLUB and SWLUB have been equipped with
pressurized and drip irrigation for most parts, the impact was not significant enough to
reduce water use and increase water productivity distinctively. In other words, the WP and
water use efficiency, on average, seem similar in these regions. This lends tacit support to
the view that inefficient water consumption could lower WP.
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As an example, the spatial variation of the WP for certain crops is illustrated in Figure 9.
These maps are an example of locating so-called ‘bright spots’ and ‘hot spots’ spatially. The
bright spots are seen where the WP is above the average values, which is identified by blue
shading. Much lower WP values or fewer hot spots pertain to lands where poor farming
and water management practices can be easily detected. These maps prove that on-farm
practices could have a significant range of impacts on improving WP. Bright spots represent
superior management practices applied by farmers to maximize the ‘crop per drop’. Such
maps can help decision-makers and local farmers to discern the best agronomic practices
and thereby apply a similar approach to low-yielding areas to increase productivity.

Figure 9. Examples of spatial maps of WP in LUB: (a) WP for grapes in WLUB, (b) WP for apples in
WLUB, (c) WP for rainfed wheat in SWLUB, (d) WP for rainfed wheat in SLUB, (e) WP for irrigated
wheat in SLUB, and (f) WP for grapes in SLUB.

4. Discussion
4.1. WP–Yield Relationship and Implications for Sustainable Agricultural Management

The scatter plot of the WP plotted against the yield for irrigated wheat is shown in
Figure 10. Since the shape of the scatter plot was more or less similar to the other crops,
wheat was selected as the representative. Two lines were drawn to determine the lower and
higher boundaries for the WP. Interestingly, the lower boundary increases linearly with the
crop yield. The upper boundary follows a curved shape similar to a logarithmic behavior,
showing a steep change in less productive areas. A similar pattern has also been reported
by Bastiaanssen and Steduto [6] and Blatchford et al. [44]. This figure also reveals that
fields with a much higher crop yield exhibit a very low variation in WP compared to lower
WP zones. This could be attributed to the fact that farmers in these fields have excluded
the risk by investing in water-efficient and agronomic practices. This suggests that there
is ample potential to establish a higher WP in low-yielding and poorly performing fields,
provided that proper practices are implemented.
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Increasing WP can be achieved either by improving water use efficiency (reducing ET)
while retaining the same yield or by improving productivity (increasing crop yield) with
the same amount of consumed water. At the basin-scale with water as the first priority, the
former approach is more desirable for establishing methods to reduce water consumption
while maintaining food production as suggested by Blatchford et al. [44]. Depending on
the situation, ideal local goals could be set. If the goal aims to reduce ET, farmers should be
encouraged to move vertically from lower boundaries to upper boundaries with respect
to the WP–Yield scatterplot. In view of this, for the LUB, facing water scarcity, this option
is the most relevant for adopting a water-saving approach. However, farmers, especially
smallholders with unfavorable financial conditions, typically have a tendency to enact the
latter to prioritize yields rather than water consumption regardless of the environmental
consequences, as Pouladi et al. [69] perceive it. This may be one of the underlying reasons
why the SWLUB and SLUB do not show noticeable improvements over the WLUB despite
the application of water-saving irrigation systems. In addition, another important reason
for this failure is that farmers have little knowledge of farm-level management practices.
They simply do not have a clear mindset as to the maximum WP targets or how to achieve
them in the region.

4.2. WP Boundaries, Benchmarks, and Potentials in LUB

The WP mean and boundary values along with the coefficient of variation (CV) for
each crop are shown in Table 3. Since extreme values may represent outliers, the 5th and
99th percentiles were used as the minimum and maximum WP values. Table 3 provides a
clear overview of the WP status in the LUB. The average WP for irrigated wheat is 0.49,
0.51, and 0.55 for the WLUB, SLUB, and SWLUB, respectively. The SWLUB has a higher
WP and lower CV for irrigated wheat. The WP with respect to the 99th percentile for this
crop in the basin is 0.92, hinting that there is an 80% WP gap that needs to be bridged.
This could be accomplished by increasing either water use efficiency or productivity. The
CV for rainfed wheat is higher, which is expected, as the production of rainfed wheat is
inconsistent due to the climate variability across the basin. The SLUB has relatively the
highest WP (0.34) and WP at 99% (0.87) amongst the others while the WLUB and SWLUB
are similar. Therefore, the WP for rainfed wheat could potentially be improved up to 150%
(see Table 4). It is clear that rainfed wheat has the highest potential to be improved in the
whole basin. This is in agreement with the studies conducted by Rockström et al. [70] and
Faramarzi et al. [71] where they reported that low-yielding crops such as rainfed wheat
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may lead to a larger marginal return with better water management. Apples and grapes
perform better in the WLUB. The WP value for sugar beets in the SWLUB is higher but
Alfalfa in the SLUB is 60% more productive. Though some districts have higher WP values
compared to each other, the gap between the WP mean and WP at 99% is too large to
overlook. This proves that water use in the entire basin could be minimized enormously if
the best on-farm practices and policies are implemented. This could be achieved by moving
from the lower boundaries with respect to the WP–Yield scatterplot to the upper levels to
cope with water scarcity in the LUB. Chukalla et al. [72] and Bastiaanssen and Steduto [6]
show that this is possible.

Table 3. Overview of WP mean, its relevant boundaries, and coefficient of variation (CV) for the
selected crops in west of Lake Urmia (WLUB), South of Lake Urmia (SLUB), and southwest of Lake
Urmia (SWLUB).

Crop Type
WLUB SLUB SWLUB

WP
5%

WP
Mean

WP
99% CV WP

5%
WP

Mean
WP
99% CV WP

5%
WP

Mean
WP
99% CV

Irrigated wheat 0.25 0.49 0.88 0.3 0.27 0.51 0.92 0.3 0.32 0.55 0.91 0.25
Rainfed wheat 0.08 0.27 0.67 0.5 0.08 0.34 0.87 0.54 0.02 0.3 0.62 0.46

Apples 1.1 2.2 3.1 0.24 0.7 1.7 3 0.34 1.1 2 2.8 0.22
Grapes 0.9 1.7 2.7 0.26 0.56 1.2 2.2 0.37 0.68 1.3 2.2 0.28

Sugar beets 3.6 5.5 8 0.2 3.3 5.6 8.7 0.24 3.7 6.22 9.4 0.23
Alfalfa 0.4 0.67 0.93 0.22 0.55 1.08 1.6 0.25 0.45 0.73 1 0.2

Table 4. WP gap and possible improvements for the selected crops in West of Lake Urmia (WLUB),
South of Lake Urmia (SLUB), and Southwest of Lake Urmia (SWLUB).

Crop Type
% of Crop Water Productivity Gap

towards Optimization

WP WLUB WP SLUB WP SWLUB

Irrigated wheat 79 80 65
Rainfed wheat 148 150 100

Apples 40 76 40
Grapes 58 83 69

Sugar beets 45 55 51
Alfalfa 38 48 36

Table 4 shows the possible improvements of WP in each region if the WP moves
toward the WP 99% defined at the local scale. It is noteworthy that the SLUB will receive
major improvements in terms of WP compared to the WLUB and SWLUB. Few research
values are available for WP with which to benchmark the local WP for each crop in the LUB.
Zwart et al. [7] found that the global range of WP for wheat for the 5% and 95% percentiles
is 0.2–1.5 kg/m3 with an average of 0.86. Based on the global water productivity statistics
for wheat, the mean WP, WP 95%, and WP 5% are 0.98, 1.9, and 0.2, respectively [6]. It is
true that global WP values may not be practical at local scales but they show that there
are intrinsic capacities to stretch WP boundaries even further at local scales. As another
example, the crop water productivity of grapes in a semi-arid region of Brazil and California
was reported at 2.44 and 4.48 [73,74].

4.3. Distribution and Variability of WP and Crop Yield in LUB

The frequency distribution of the WP for wheat, grapes, and apples—as the most
important crops in the LUB—is presented in Figure 11. The shape of the distribution shows
an approximately similar to unimodal distribution for each crop with subtle differences. For
instance, concerning irrigated wheat, the mode is located around 0.5 WP for the WLUB and
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SLUB while it is more than 0.5 for the SWLUB, which can also be inferred from Table 3. By
examining the distribution of the WP for apples and grapes, it becomes apparent that a large
portion of farmlands has a relatively lower WP. The frequency distribution demonstrates
that apples and grapes display better performance in the WLUB as they skew towards a
higher range of WP values, which is in accordance with Table 3.
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Figure 11. Frequency distribution of WP for irrigated wheat, rainfed wheat, apples, and grapes in LUB.

To show the spatial variability of the yield, we constructed box-plots, which are shown
in Figure 12. For irrigated and rainfed wheat, the crop yield varies by up to 8 and 3 kg/ha,
respectively, with the SWLUB having a relatively higher yield. The apples and grapes in the
WLUB show higher variability but are also more productive than the SWLUB and SLUB. It
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can be seen that Alfalfa, as a water-intensive crop, exhibits a greater yield in the SLUB. It
can be argued that there is a considerable degree of work necessary to maximize the lower
yields towards the upper quantiles to sustain higher water productivity.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig. 12 

Figure 12. Spatial variation of crop yield at each agricultural site in LUB.

4.4. Opportunities and Caveats for Resurrecting an Endangered Ecosystem

As stated in the previous sections, reducing the water consumption of the agricultural
sector by 40% is one of the major objectives of the ULRP for reviving Lake Urmia. Danesh-
Yazdi and Ataie-Ashtiani [48] argue that the lack of data and information on the Lake
Urmia Basin is a major hurdle when it comes to developing effective restoration plans.
The studies conducted by Naboureh et al. [75] and Khazaei et al. [41] emphasize that the
impact of anthropogenic factors—mostly the expansion of agricultural areas with low
efficiency—on the Lake Urmia crisis are higher than the impact of the warming climate.
However, the implemented measures to increase water use efficiency do not stipulate
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any promising outcomes per se. All the evidence found in this study proves the point
that the LUB holds an abundant capacity for increasing crop water productivity through
optimum water management. Table 4 clearly indicates that water-efficient practices, even
if only amounting to half of the necessary effort to improve WP, could have possibly the
highest contribution to restoring Lake Urmia to its ecological levels. That being said, the
successful implementation of such measures should be carried out with caution due to
the socio-economic complexities and conditions at the basin scale. For instance, Pouladi
et al. [69] echoed that misconceptions and a lack of awareness towards environmental
issues and trust in authorities have caused farmers to minimally participate in restoration
programs and the implementation of policy actions. They concluded that ignoring such
socio-hydrological barriers could bring about conflicts among stakeholders and thwart
effective restoration efforts. Several studies advocate that water-saving activities in the
absence of controlled water allocations and a comprehensive monitoring system are likely
to be short-sighted, thereby shifting the behavioral responses of farmers towards their
expected farm incomes and crop patterns and, thus, possibly exacerbating the current
situation [76–78].

5. Conclusions

The main objective of this study was to address the current status of the WP in the Lake
Urmia Basin and develop a cloud-based model to facilitate an estimation and benchmark
of the region’s WP at a 30 m resolution. Three major agricultural lands in the LUB were
selected to test the model based on Landsat-7 and -8 satellite imagery. Five major crops at
each agricultural site were selected to evaluate the LUB’s WP, determine its boundaries,
and set pragmatic targets.

Our analysis showed that the water productivity in the LUB is far below its optimum
level. Although some parts of the LUB such as the SWLUB and SLUB are equipped
with modernized irrigation, they fail to show tangible improvements. In fact, the WLUB
performs better for crops such as grapes and apples compared to others in terms of the WP
assessment. This indicates that water-efficient interventions are not properly implemented
in the LUB. This is in part due to the fact that stakeholders and supporting cooperatives
are unable to set WP targets and track WP-related progress. On the other hand, local
farmers have little knowledge of the optimum agronomic practices, valuing yields rather
than reducing water use. In the context of the case study, reducing water use while
retaining yields could be the most practical way to deal with water stress in the LUB.
Farmers should also receive additional incentives and required training to adopt the best
water-efficient practices.

The WP boundaries in each district reveal that there is great potential to improve water
use efficiency and productivity. Wheat demonstrates the highest potential for improvement.
The status of WP in the LUB is even worse vis-à-vis the available global WP values,
indicating that a large WP gap needs to be closed. Moreover, mapping the WP values
enabled the detection of bright spots and hot spots as representatives of superior and poor
on-farm practices, respectively. Fields with a high WP could help decision-makers and
local growers diagnose the optimum practices and promulgate said practices to lands with
low performance.

Our paper presents a model within the GEE environment to map WP at regional
scales at a 30 m resolution using Landsat satellite images, thereby facilitating worldwide
applications. It is expected that such open-source and practical initiatives could provide
decision-makers with high-value information to monitor and enhance sustainable water
resource management in an integrated manner, especially in water-limited regions. The
gist of this study is the necessity of benchmarking WP and tracking progress towards its
achievement for evidence-informed planning to help policymakers and farming communi-
ties define baselines, set practical goals, and implement proper policies accordingly.
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