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ABSTRACT
Correlation length or scale of fluctuation (SOF) is often used as a primary parameter in defining the
spatial correlation characteristics of varying soil properties. However, geotechnical site
investigations are rather limited so that proper determination of correlation length is not always
possible. The concept of a worst-case correlation length thus has important implications in
reliability-based designs. In the case of insufficient information, the worst-case correlation
length can be used to conservatively estimate the reliability or probability of failure of
geotechnical structures. However, the definition of the worst-case correlation length in the
literature is not very clear and has been seen in some investigations to not exist. This paper, in
the context of bearing capacity of 3D spatially varying soils, investigates the worst-case
correlation length based on different definitions to clarify past findings. Further analyses
provide insight into practical applications, where the impact of site sampled data and realistic
uncertainties are considered. Using realistic values of the coefficient of variation, and taking
account of the distance at which site investigation is likely to occur from the loaded area, a
worst-case SOF is identified and found to be similar using all definitions.
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1. Introduction

Soil properties vary spatially. In order to quantitatively
characterise this spatial variability, a parameter is
defined to statistically describe their rate of change or
fluctuation in space. This so-called scale of fluctuation
(SOF) (Vanmarcke 1977, 1978) is mathematically
defined as the integrated area under the correlation
function (Vanmarcke 1983). In geostatistics, this scale
is more often referred to as the correlation length
(CL), which differs from the SOF by a factor of 2
(i.e. it is half the magnitude of the SOF).

The scale of fluctuation indicates that soil properties
at some point in space are only correlated to those
within this scale or length. A smaller value of the scale
means that soils at any spatial point are only correlated
with those within a small radius. For a larger value, this
means a correlated area with a larger radius around any
point. In cases where a large site investigation database
is available (which is perfectly possible although scarce),
statistical spatial analysis can be carried out to deter-
mine the scale of fluctuation (Fenton 1999; Jaksa,
Kaggwa, and Brooker 1999; Lundberg and Li 2015; De
Gast, Vardon, and Hicks 2021). However, in most
cases, site data are not sufficient to be able to carry

out such an analysis, due largely to the limited intensity
of geotechnical site investigations, which in turn is a
direct result of expenditure. In such cases, if a
reliability-based design is required, a range of possible
values may be assumed based on local experience and
as much information as one could get from other simi-
lar sites, until further improved information is available.
By doing this kind of parametric/sensitivity analysis,
one could possibly find a worst-case scale of fluctuation
where the probability of failure of the geotechnical
structure is a maximum. However, this maximum is
not always observable at some intermediate value of
the SOF as will be discussed later (together with the tra-
ditional factor of safety).

The concept of a worst-case SOF is attractive, since
this could be used conservatively in a preliminary
reliability-based design. The observation of a worst-
case SOF was reported as early as Baecher and Ingra
(1981), who looked at the differential settlement of a
flexible footing. Later, Fenton, Paice, and Griffiths
(1996) and Fenton and Griffiths (2002) found similar
behaviour when investigating the differential settlement
for two-footing problems, i.e. the mean absolute differ-
ential settlement has a maximum at some intermediate
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SOF. Interested readers are also referred to Christian
and Baecher (2003). The phenomenon has since been
reported for various geotechnical problems, such as
draw-down in free-surface flow, exit gradient in see-
page, bearing capacity, slope stability, basal heave stab-
ility and retaining wall stability, when considering soil
spatial variability (Fenton and Griffiths 1996, 2008;
Griffiths and Fenton 1998; Li, Hicks, and Nuttall 2015;
Ching, Phoon, and Sung 2017; Puła, Pieczyńska-
Kozłowska, and Chwała 2017; Li et al. 2017; Zhu,
Griffiths, and Fenton 2018; Cami et al. 2020; Vessia
et al. 2021).

There are generally two definitions for the so-called
worst-case SOF. One is based on the mean soil response
being on the most unsafe side, as in, e.g. Fenton and
Griffiths (2003) and Ching, Phoon, and Sung (2017),
and the other is based on the probability of failure
being a maximum, as in, e.g. Fenton, Griffiths, and Wil-
liams (2005), Griffiths, Fenton, and Ziemann (2008) and
Zhu, Griffiths, and Fenton (2018). For the latter
definition, the probability of failure is quite often seen
to be a maximum for an infinite SOF. In addition, the
critical SOF may or may not be the same under these
two definitions (as will be seen), since the factor of safety
in stability calculations and the variance of the soil
response also play important roles in calculating the
probability of failure. Moreover, some studies have
looked at the worst-case SOF behaviour from a theoreti-
cal point of view (e.g. Allahverdizadeh, Griffiths, and
Fenton 2015; Zhu, Griffiths, and Fenton 2018), i.e.
ignoring the practical ranges of coefficient of variation
of soil properties and/or failure probability levels of
structural performance, as well as direct use of samples
in the simulations, with the exception of limited studies
carried out in the context of load and resistance factor
design of geotechnical structures (Fenton et al. 2003;
Fenton, Griffiths, and Cavers 2005; Fenton, Zhang,
and Griffiths 2007; Fenton, Griffiths, and Zhang 2008).

This paper considers the ultimate limit state (i.e.
bearing capacity) of shallow foundations and is devoted
to the ambiguities caused by the two definitions of the
worst-case SOF and to demonstrating that they may
end up being the same value for practical purposes.
The question of observability of such values (i.e. under
what conditions they may be observed at some inter-
mediate value) is also discussed for the case of stability
of a square footing resting on a 3D spatially varying
soil. For the case when they are not so apparently obser-
vable (i.e. less pronounced) in practical terms, it is
investigated if an infinite SOF should be used in
reliability-based designs and how directly including
samples in the analysis should end up with a different
critical value of the SOF than infinity in practice.

2. Random finite element model

The worst-case SOF may be observed most easily in a
structured numerical investigation using a variety of
SOFs. The random finite element method (RFEM)
(Fenton and Griffiths 2008) is the most common form
of analysis and is therefore used here. The method
requires the use of a random field. In this paper, the
local average subdivision method is used (Fenton and
Vanmarcke 1990) to generate random fields, as it fully
accounts for spatial correlation and averaging. In
reliability assessments of footing stability, the method
involves generating multiple realisations of the spatial
variability of soil property values and carrying out a
finite element analysis (FEA) for each realisation to
assess the ultimate bearing capacity (qf ). In this paper,
parametric studies of square surface footings on weight-
less cohesive soils are carried out. The soil undrained
shear strength cu is assumed to be characterised by a log-
normally distributed random field, with other par-
ameters kept constant due to their values not
significantly affecting the ultimate bearing capacity (Li
et al. 2020). The correlation structure of ln cu is charac-
terised by a simple exponential correlation function:

rlncu t1, t2, t3( ) = exp −2 t3| |
ulncu

−
����������������������
2t1
ulncu

( )2

+ 2t2
ulncu

( )2
√⎛

⎝
⎞
⎠
(1)

where t1, t2, t3 are the components of the separation
distance vector t = x− x′ between two spatial points,
x and x′, and uln cu is the isotropic SOF (i.e. the same
in the vertical and two horizontal directions). For aniso-
tropic correlation, different values of the SOF (i.e. uvln cu
and uhln cu) should be used in the vertical (t3) and hori-
zontal (t1 and t2) directions.

Table 1 shows the input parameters for the Monte
Carlo (MC) simulation. The mean strength is taken as
mcu = 100 kPa. The coefficient of variation (COV,
vc = scu/mcu , where scu is the standard deviation of
the undrained shear strength) is chosen based on the
recommended range of 0.1–0.5 for clays (Phoon and
Kulhawy 1999; Hicks and Samy 2002), although some
exceptionally high values are also considered. Seven
cases corresponding to different values of the SOF,
uln cu , have been investigated; each case involves the gen-
eration of N = 600 realisations of the shear strength

Table 1. Input parameters used in this study.
Parameter Value Units

mcu 100 kPa
vc 0.1, 0.2, 0.5, 1.0, 2.0 –
uln cu 0.1, 0.5, 1.0, 2.0, 4.0, 8.0, 50 m
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random field and subsequent nonlinear finite element
analysis of the bearing capacity (Smith and Griffiths
2005; Li et al. 2020). The soil behaviour is modelled
by a Tresca model. The three input material parameters
for a Tresca soil are the Young’s modulus E, Poisson’s
ratio ν and undrained shear strength cu. In this study,
cu is treated as a random field while E and ν are kept
constant (i.e. E = 100, 000 kN/m2 and n = 0.3), since
earlier deterministic evaluations showed that the defor-
mation parameters do not significantly affect the ulti-
mate bearing capacity (Li et al. 2020, 2021). To aid
numerical stability and efficiency in the undrained
analysis, a Poisson’s ratio of 0.3 was used instead of
0.5, which would be expected for undrained cases (Li
et al. 2021). Random fields of E and/or ν may also be
generated and used, cross-correlated to cu. However,
this was not included due to primarily the low impact,
and secondly the increased complexity of the analysis,
without sufficient supporting data for the use of corre-
lations or different scales of fluctuations. The paper
aims to clarify the worst-case SOF in its simplest form
at the ultimate limit state of a square footing, avoiding
complicating the matter with possible various combi-
nations of SOFs for different parameters.

Figure 1 shows the 3D finite element (FE) mesh dis-
cretisation used in the following analyses. The footing
width considered is B = 1.0 m. The boundary conditions
are a fixed base and rollers on the two (front and back)
x–z and two (left and right) y–z faces preventing displa-
cement perpendicular to the faces. The rough footing
conditions are simulated by restraining the horizontal
displacements (i.e. in the x and y directions) of the
nodes representing the footing. The mesh comprises
3200 14-node hexahedral elements (20× 20× 8).
Each element has dimensions of 0.25× 0.25× 0.25 m.
Thus, the problem domain has a size of 5× 5× 2 m.
This mesh density yields a deterministic bearing

capacity factor of N ′
c = 7.389, whereas a finer mesh

with 40× 40× 16 elements gives N ′
c = 6.517, which is

a closer bearing capacity factor to the empirical value
of 1.2× 5.7 (Meyerhof 1951). An efficient procedure
was used to obtain a series of bearing capacity values
qf that are effectively equivalent to analysing the same
problem with a finer mesh (Li et al. 2020); that is, nor-
malising the ensemble of qf values (from an MC simu-
lation) with respect to the deterministic value calculated
using the coarse mesh, and then scaling the normalised
values by the deterministic value calculated using the
finer mesh. In this way, the finite element analysis of
the finer mesh problem needs only be run once for
the deterministic case. In the following, qf from each
realisation is nondimensionalised with respect to the
mean undrained shear strength mcu , to give a stochastic
bearing capacity factorMc = qf /mcu . The normalisation
and scaling procedure has been verified based on
N = 100 MC realisations for COV = 0.2 (Li et al.
2020) and COV = 0.5 (Li et al. 2021), i.e. by comparing
the ensemble ofMc values from the finer mesh (0.125 m)
with the ensemble of Mc values from the coarse mesh
(0.25 m) scaled by 6.517/7.389. This is shown in Figure
2, where the results cluster closely around the 1:1 line,
indicating the effectiveness of the procedure.

In the RFEM analysis, the generated random field
cell values are mapped onto the finite element mesh
at the Gauss point level so as to adequately represent
the spatial variability (Spencer 2007; Huang and
Griffiths 2015; Tabarroki and Ching 2019) (each
finite element has 2× 2× 2 integration points). Figure
3 shows a typical realisation of ln cu with uln cu = 2.0 m.
For the case of u = 0.1 m, the mesh size may not be
small enough to take proper account of the spatial
variability (and thereby to generate a more realistic
failure surface) in the finite element analysis. A general
rule of thumb would be that the ratio of random cell
size to the SOF should be in the range of 0.1–0.25,
depending the tolerance criterion (see Spencer 2007;
Huang and Griffiths 2015; Tabarroki and Ching
2019). In the RFEM simulation, mapping the random
cell values to the Gaussian point level in the finite
elements ensures the final failure mechanism being
modelled more appropriately through a more realistic
representation of the soil spatial variability. Also,
although a 0.25 m mesh size is used, it has been proven
in Figure 2 that the results can be scaled to the results
based on a mesh size of 0.125 m (this partly solves the
finite element discretisation error). Through mapping
onto the Gaussian points within each element, this
means an equivalent random cell size of 0.0625
m is used, which is roughly half of the smallest SOF
used.

Figure 1. Deformed finite element mesh (5× 5× 2 m) for a
square footing (deformation enlarged by a factor of 3 and foot-
ing width B = 1.0 m).
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3. Worst-case scale of fluctuation

Figure 4 shows the simulated mean Mc as a function of
SOF, for all COV values considered, together with the
corresponding lower and upper bounds as the SOF
becomes infinitely small and large. It is seen that they
all show a (local) minimum value at an intermediate
SOF. Li et al. (2021) showed that for smaller SOFs
approaching zero, the mean Mc approaches the value

based on the median (i.e. mcu/
�������
1+ v2c

√
, a function of

COV), and for larger SOFs, on the other hand, the
mean Mc values all approach the value based on the
mean. A local maximum is also observed, which can
be explained by a theoretical evaluation and the weakest
link behaviour in the RFEM simulation (Li et al. 2021).
So, according to the first definition of a worst-case SOF
(i.e. based on the mean soil response), there are some

Figure 3. Soil spatial variability for a typical realisation (soil
domain 5× 5× 2 m and uln cu = 2 m).

Figure 4. mMc
versus uln cu (lower and upper bounds based on

median and mean indicated as lines without markers): (a)
COV = 0.1, 0.2, 0.5; (b) COV = 1.0, 2.0.

Figure 2. Mc based on the coarse mesh versus Mc based on the
fine mesh for uln cu = 2.0 m (N = 100): (a) COV = 0.2; (b)
COV = 0.5.
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critical SOFs that lead to a (local) minimum mean
response, compared to the mean-based upper bounds
when uln cu becomes infinity. Note that the current
investigation increases the MC number to N = 600 in
order to improve the estimation accuracy, compared
to the previous N = 200 in an earlier study (Li et al.
2021). For instance the standard error for the mean esti-
mation of mMc

= 6.40 is sMc/
���
N

√ = 0.12 when
COV = 0.5 and uln cu = 50 m, which is the case where
more realisations are appropriate due to the influence
of increasing sMc for an increasingly larger SOF, as
compared to cases involving smaller SOFs and COVs.
This level of accuracy is believed to be reasonably
good for all SOFs considered, given the computational
cost of a 3D non-linear plastic finite element analysis.
In addition, Chwała (2019) observed a similar worst-
case SOF for the special case of a square footing,
although a different approach based on spatial averaging
and kinematic failure mechanisms was used. In the case
of rectangular footings, the square footing width in the
current investigation may be considered as an equival-
ence with regard to the footing area.

The second definition of a worst-case SOF is based
on the maximum value of the probability of failure
(pf ), which may be defined as

pf = P qf ≤
qdf
F

[ ]
= P

qf
mcu

≤ N ′
c

F

[ ]
= P Mc ≤ N ′

c

F

[ ]

= P lnMc ≤ ln
N′

c

F

[ ]
= F

ln
N ′

c

F
− mlnMc

slnMc

⎛
⎜⎝

⎞
⎟⎠

(2)

where qdf = mcuN
′
c, N ′

c is the deterministic bearing
capacity factor (which is 6.517 in this case), F is a
given factor of safety and Φ is the standard normal
cumulative distribution function. The Monte Carlo
simulation to compute pf consists of the steps shown
in Figure 5.

As seen above, pf is directly related to the two
moments of the logarithm of Mc, so it would be infor-
mative to know how the mean of lnMc changes as a
function of SOF. Figure 6 shows these plots for various
values of COV. Again, there are minimum mean lnMc

values for intermediate SOFs. However, a close inspec-
tion of these critical SOFs indicates that they have differ-
ent values to those found in Figure 4. The critical values
(i.e. based on the mean response mlnMc

or mMc
) from

Figures 4 and 6 are listed in Table 2. It is seen that
they are different for COVs in the range from 1.0 to 2.0.

Since the variance of lnMc also plays a role in the
probability calculation, the simulated probability of fail-
ure is also investigated and is shown in Figure 7 as a
function of SOF for different factors of safety F and
two COVs. The worst-case SOF values based on pf for
smaller and larger F values are also listed in Table 2
for comparison (for all COVs considered).

First of all, it is seen that the critical SOF that
makes mlnMc

a minimum is not the same as the critical
SOF at which mMc

reaches a (local) minimum, for
high values of COV. The critical SOFs where pf is
maximised for smaller F are seen to be approximately
equal to the critical SOF values based on mlnMc

. While
the reason for the latter observation may be obvious,
i.e. due to mlnMc

being directly used in the probability
equation, the reason for the former observation may
not be as obvious. The reason why the former obser-
vation might be the case can be explained by the log-
normal transformation equations for the two
moments of lnMc and Mc, i.e.

s2
lnMc

= ln 1+ s2
Mc

m2
Mc

( )
(3a)

mlnMc
= lnmMc

− (1/2)s2
lnMc

(3b)

since Mc can be closely approximated by a log-normal
distribution (as qf can be closely approximated by a
log-normal distribution due to the assumption that cu
follows a log-normal distribution). A look at Equation

Figure 5. Flowchart for calculating pf in Equation (2).
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(3) shows that when evaluatingmlnMc
, the variance ofMc,

s2
Mc
, also comes into play. That is, the mean, mlnMc

, is
reduced more by the variance at a higher value of SOF,
for higher COVs (compare Figure 6 with Figure 4), so
that a larger critical SOF based on mlnMc

may be observed
(see also Puła and Griffiths 2021 for the dependency on
the coefficient of variation of Mc).

Based on these observations, two things need to be
stressed: firstly, the critical SOF may be different in

the original space (i.e. lognormally distributed Mc)
from that in the logarithmic space (i.e. normally distrib-
uted lnMc); secondly, the critical SOF may be better
defined based on the probability of failure as the ulti-
mate goal is probability-based design (i.e. the critical
SOF based on the mean logarithmic response should
be used). Having said that, the COV values may not
be as high as 1.0–2.0 in practice due to some level of
site sampling often being available in any design. This
availability of site data would in most cases reduce the
statistical uncertainties associated with limited infor-
mation, thereby to some extent separating the true
COV due to spatial variability from the total COV
that includes statistical uncertainties (Phoon and Kul-
hawy 1999). The use of the higher COVs in this paper
is for those cases where information is limited and
insufficient. So, in practice, the two critical SOFs based
on mean responses (mlnMc

and mMc
) and the critical

Table 2. Critical uln cu (in metres) from RFEM simulations
(B = 1.0 m).

COV
Based on
mlnMc

Based on
mMc

Based on pf
(smaller F )

Based on pf
(larger F )

0.1 2 1–2 – ≥50
0.2 2 1–2 2–4 ≥50
0.5 2 1–2 2–4 ≥50
1.0 4 1 2–4 ≥50
2.0 4 1 2–4 ≥50

Figure 7. Simulated probabilities versus SOF for different F (rela-
tive to deterministic qf ) and COV: (a) COV = 0.5; (b) COV = 1.0.

Figure 6. mlnMc
versus uln cu : (a) COV = 0.1, 0.2, 0.5; (b)

COV = 1.0, 2.0.
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SOF based on pf (for smaller F) would not be that differ-
ent for COV values typically ranged from 0.1 to 0.5.

Another issue arises when one looks at the maximum
pf (for smaller F) for the critical (intermediate) SOFs in
Figure 7; they are all roughly in the range of
pf = 40−60%. This seems to make the idea of a critical
SOF less valuable, as the target probability of failure is
often around 5% or less depending on the importance
of different structures constructed on the soil (or
nearby), and a relatively high factor of safety is required
to satisfy this target probability. For example, a factor of
safety of F = 1.2, 1.4 or 2.0 (or larger) may be required
for COV = 0.1, 0.2 and 0.5, respectively. However,
there are no peaks at some intermediate SOF values
for the probability curves for these higher F values
(the larger the SOF, the greater pf , with similar trends
having been observed in Puła and Chwała (2018) for
bearing capacity and Li, Hicks, and Nuttall (2015) and
Zhu, Griffiths, and Fenton (2018) for slope stability).
That is, the critical SOF may be larger than that
observed for smaller F values where a peak is observed
at some intermediate SOF value (see Table 2). This
implies that in practice, a higher SOF (than the critical
SOF observed for smaller F) may need to be conserva-
tively assumed in order for pf to be within the target
level of around 5% (i.e. for higher F), thus also implying
a random variable approach assuming an infinite SOF
could have been sufficient (Griffiths and Fenton 2004).

The above is true (i.e. the single random variable
approach would have been sufficient) without directly
using any samples from a site. With consideration of
sampling, for high SOFs, the conditional random field
would have a very small variance and a mean very
close to the input mean. The resultant pf for practically
high F values would then be effectively zero. Note that,
on the other hand, when the SOF is small, the random
field simulation satisfies the ergodicity condition, i.e.
the statistics from one random field can represent the
population statistics. In contrast, when the SOF is
large in unconditional random field simulations, the
mean from one field can not represent the population
mean, neither can the variance from one field represent
the population variance. So, for small SOFs, uncondi-
tional and conditional simulations do not make much
difference, but for large SOFs they do. Hence, in prac-
tice, conditional approaches (Fenton, Griffiths, andWil-
liams 2005; Li, Hicks, and Vardon 2016) should always
be used where possible. In this case, one would still find
a critical (intermediate) SOF where the pf is largest and
within the practical target levels (i.e. generally those
lines shown in Figure 7 would have a dramatic draw-
down for SOFs at the higher end, making pf a maximum
at some intermediate SOF and around the target level of,

say, 5% for higher F). One will generally find that this
critical SOF is related to the structure dimensions, e.g.
footing width B = 1.0 m in this case, and is not exces-
sively different from those values observed based on
the above unconditional simulations (for smaller F).
To investigate this, an analysis with a conditional
approach similar to Fenton, Griffiths, and Williams
(2005) has been undertaken.

The “true” or actual (random) bearing capacity, qf ,
is assumed in this study to be closely approximated
by the reaction load computed in the finite element
analysis of each soil realisation. The predicted bearing
capacity, qsf , depends on an estimate of the effective soil
properties based on samples taken in the subsurface
around the footing. In this paper, the effective soil
property �c is estimated using only a single “virtual
sample” sounding taken at a distance r from the centre
of the square footing and the sample consists of the
random cells down from the soil surface (see Figure
8). Specifically, virtual sampling means that the esti-
mated soil properties �c are obtained from each random
field realisation as the geometric average of the random
cell values from the vertical soil column such that
qsf = �c× N ′

c. It is assumed that the geometric average
estimation is better than the arithmetic average esti-
mation, in accordance with the findings in Li et al.
(2021). The Monte Carlo simulation for a particular
input combination of COV and SOF proceeds in the
following steps:

Figure 8. Plan view of the soil domain showing the position of a
vertical sample relative to the square footing; the vertical sample
consists of n = 16 random cells, as shown to the right of each
realisation.
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1 generate a random field of the undrained shear
strength cu using LAS;

2 map the random local average cells to the integration
points within the finite elements;

3 take a virtual sample (such as a CPT sounding) con-
sisting of n random cells along a vertical line at some
plan view distance r away from the footing (Figure 8),
and compute the effective undrained shear strength
�ci = exp ( 1n

∑n
j=1 ln cj) and qsfi = �ci × N ′

c;
4 run a finite element analysis to compute the actual

bearing capacity q fi of this particular realisation of
the spatially varying cu field;

5 repeat the above steps N = 600 times and count the
number of realisations that result in q fi ≤

qsfi
F .

The procedure differs from those for calculating pf in
Equation (2) in that step (3) is added and qf is compared

to
qdf
F in step (5). Figure 9 demonstrates this difference in

the form of a flowchart with bold text.
In practice, the above can be interpreted as follows:

consider the design regulations, which should be appli-
cable to footing designs on similar sites across a region.
The sites are similar in that each has the same coefficient
of variation of soil properties and the same spatial cor-
relation structure dictated by the same correlation func-
tion parametrised by the same SOF. The similar sites
involve different realisations of the undrained shear

strength field, thus they will each have a different esti-
mate �c obtained by sampling, and thereby a different
predicted qsf .

The failure probabilities

pf = P qf ≤
qsf
F

[ ]
(4)

as a function of SOF for various values of F and distance
r are plotted in Figure 10 for COV = 0.5 and Figure 11
for COV = 1.0. (Note that, in a Monte Carlo simulation,
pf = nf /N, where nf is the number of realisations hav-
ing a smaller simulated qf than the predicted qsf factored
by F, i.e. qf ≤

qsf
F .) It is seen that, when considering

samples, the probability of failure does indeed drop for
higher SOF values due to the information provided in
the samples (cf. Figure 7 for COV = 0.5 and 1.0). A
close look at Figures 10 and 11 indicates that the
worst-case SOFs are around the same as those based
on the unconditional pf for smaller F (Figure 7),
although the peak in the latter is not as apparent. How-
ever, the analysis here at least serves to demonstrate that
the “worst-case” SOFs based on an unconditional pf for
smaller F are still useful (they are more or less the same
as those based on pf when taking account of samples).
However, whenever it is possible, the conditional
approach is preferable. It is also noted that as r starts
to increase (i.e. samples moving away from the footing),
the probability of failure gets higher for the same factor
of safety, which is as expected due to the samples being
increasingly less correlated to the soil properties directly
below the footing. Note also that for a target pf of around
5%, the corresponding standard error of the estimation
is about

���������������
pf (1− pf )/N

√ = 0.9% for N = 600. Admit-
tedly this error is not particularly small, but it certainly
has improved over the earlier study using N = 200. In
design simulations, however, a larger number should
preferably be used. In this study, the required factor of
safety to achieve this level of safety would need to be lar-
ger than 1.6 and 1.9 (for COV = 0.5 and 1.0, respect-
ively), depending on the site variability and the
intensity of site sampling. A factor of safety of 3.1 may
be required if a single vertical sample should be taken
from a location at the largest distance away from the foot-
ing for a relatively highly variable soil.

4. Conclusions

This paper presents some recent observations on the
worst-case SOF in the context of 3D square footing
stability.

These observations and their implications are listed
as follows:

Figure 9. Flowchart for calculating pf in Equation (4) (the differ-
ence to Figure 5 is shown in bold).
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Figure 10. Simulated probabilities versus SOF for different F
(relative to qsf ) and CPT sampling location, COV = 0.5 (B = 1.0
m): (a) r/B = 0; (b) r/B = ��

2
√ × 0.5; (c) r/B = ��

2
√ × 1.5.

Figure 11. Simulated probabilities versus SOF for different F
(relative to qsf ) and CPT sampling location, COV = 1.0 (B = 1.0
m): (a) r/B = 0; (b) r/B = ��

2
√ × 0.5; (c) r/B = ��

2
√ × 1.5.
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(1) The critical SOF is different if it is calculated using
the mean response or the log mean response –
although at expected values of COV (i.e. 0.1-0.5)
they are practically the same.

(2) The critical SOF when determined by the prob-
ability of failure without using samples is usually
infinite, except when the probability of failure is
large, which is not usually the practical case.

(3) The critical SOF is strongly affected by on-site data,
which strongly reduces the probability of failure for
large SOFs. This leads to a critical SOF being
defined at some intermediate value.

(4) With practical values of COV and using on-site
data, the critical SOF is between 1 and 4 times the
foundation width. Moreover, the data show that
at this worst case the stability is reasonably invariant
to changes in the SOF; therefore utilising 2 times the
footing breadth seems reasonable.

It should be noted that the above observations are
based on the assumption of an isotropic correlation
structure of soil strength. Soils are generally anisotropi-
cally correlated with larger correlation lengths in the
horizontal directions. In such cases, due to the vertical
SOF being more easily obtained, by fixing the vertical
SOF at some certain value the above observations are
still believed to be applicable for the horizontal SOF.
However, some additional study is necessary to establish
the relationship between the worst-case horizontal SOF
and the square footing breadth (and for rectangular foot-
ings, its relationship to the footing width and length).

Notation
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