

Delft University of Technology

Generalized Models of Sequential Decision-Making under Uncertainty

Neustroev, G.

DOI
10.4233/uuid:cdca9bf1-3e6b-4bfc-9d9d-b5acdd3f900d
Publication date
2022
Document Version
Final published version
Citation (APA)
Neustroev, G. (2022). Generalized Models of Sequential Decision-Making under Uncertainty. [Dissertation
(TU Delft), Delft University of Technology]. https://doi.org/10.4233/uuid:cdca9bf1-3e6b-4bfc-9d9d-
b5acdd3f900d

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:cdca9bf1-3e6b-4bfc-9d9d-b5acdd3f900d
https://doi.org/10.4233/uuid:cdca9bf1-3e6b-4bfc-9d9d-b5acdd3f900d
https://doi.org/10.4233/uuid:cdca9bf1-3e6b-4bfc-9d9d-b5acdd3f900d

Generalized Models
of Sequential
Decision-Making
under Uncertainty

Grigory Neustroev

G
eneralized

M
odels

ofSequentialD
ecision-M

aking
underU

ncertainty
G

rigory
N

eustroev

9 789463 666244

U I T N O D I G I N G

voor het bijwonen van
de openbare verdeidiging

van het proefschrift

Generalized Models
of Sequential

Decision-Making
under Uncertainty

door Grigory Neustroev

op maandag
 december 222

om 1: uur

in de Senaatszaal
op de tweede verdieping

van het Aula Congrescentrum
van de Technische
Universiteit Delft

Mekelweg 5, Delft

Na afloop van de promotie
bent u van harte uitgenodigd

voor de receptie

Grigory Neustroev
g.neustroev@tudelft.nl

Paranimfen

Tim Baarslag
t.baarslag@cwi.nl

Thiago Dias Simão
thiago.simao@ru.nl

1

Generalized Models of Sequential
Decision-Making under Uncertainty

Generalized Models of Sequential
Decision-Making under Uncertainty

D Dissertation d

for the purpose of obtaining the degree of doctor
at Delft University of Technology

by the authority of the Rector Magnificus
prof. dr. ir. T. H. J. J. van der H����,
Chair of the Board for Doctorates

to be defended publicly on
Monday � December ����

at �� : �� o’clock

by

Grigory N��������

mathematical economist
in mathematical methods in economics,

Udmurt State University, the Russian Federation

born in Ustinov, the Union of Soviet Socialist Republics

This dissertation has been approved by the promotors.

Composition of the doctoral committee:

Rector Magnificus chairperson
Prof. dr. M. M. de W����� Delft University of Technology, promotor
Dr. ir. R. A. V����������� Delft University of Technology, copromotor

Independent members:
Prof. dr. ir. K. I. A����� Delft University of Technology

Prof. dr. A. N��� Vrije Universiteit Brussel, Belgium
Dr. H. C. van H��� University of Amsterdam, the Netherlands

Dr. M. K������ DeepMind, France
Dr. M. T. J. S���� Delft University of Technology

Prof. dr. ir. B. H. K. D� S������� Delft University of Technology, reserve member

This research was financed by the Dutch Research Council (Nederlandse Organisatie
voor Wetenschappelijk Onderzoek, ���).

Keywords: sequential decision-making under uncertainty, optimization, Markov
decision processes, planning, linear programming, duality, reinforcement
learning, optimistic learning

Printed by: ������� printing
Cover: a color-adjusted photograph of petrol on water by Sofia N���������

Icons by: Zlatko N���������� via PixelBuddha

© G. N�������� ���� ���� ���-��-����-���-�

An electronic version of this dissertation is available at https://repository.tudelft.nl/ .

https://pixelbuddha.net
https://repository.tudelft.nl/

in loving memory of

Capitalina

Contents

Nomenclature xi

Summary xxi

Samenvatting xxv

Автореферат xxix

� Introduction �
�.� The Decision-Making Problem �
�.� Planning & Reinforcement Learning �
�.� Examples . �

�.�.� Frozen Lake . �
�.�.� Inventory Management. �
�.�.� Active Wake Control �

�.� Existing Research . �
�.�.� Planning with Markov Decision Processes. . . . �
�.�.� Reinforcement Learning ��
�.�.� Knowledge Gaps ��

�.� Content of This Thesis ��
�.�.� Research Questions. ��
�.�.� Contributions of This Thesis ��

� A Mathematical Model of Decision-Making ��
�.� Markov Decision Processes. ��

�.�.� Sequentiality ��
�.�.� Uncertainty . ��
�.�.� Optimal Behavior ��

�.� The Existence of Optimal Policies ��
�.�.� Limitations of the Optimality Criterion ��
�.�.� Models with Uniformly Bounded Rewards ��

vii

�.� Finding Optimal Policies ��
�.�.� State Value Functions. ��
�.�.� The Bellman Operators. ��
�.�.� Occupancy Measure ��
�.�.� Linear-Programming Formulation ��

�.� Countably-Infinite Problems ��
�.�.� Ill-Defined Values ��
�.�.� Infinitely-Many Permitted Actions ��
�.�.� Unbounded Rewards ��
�.�.� Linear-Programming Formulation ��
�.�.� Inventory Management (Revisited) ��

�.� Conclusion . ��

� The Infinite-Horizon Non-Stationary Model ��
�.� Introduction . ��

�.�.� Truncations and Solution Horizons ��
�.�.� Previous Work ��

�.� Model Assumptions ��
�.� The Dual Formulation ��

�.�.� Problem Truncation ��
�.� A Stopping Rule. ��

�.�.� Truncations with Variable Salvage Vector ��
�.�.� Unbounded Rewards ��
�.�.� The Algorithm ��

�.� Experiments . ��
�.� Conclusion . ��

� The Countably-Infinite Model ��
�.� Introduction . ��

�.�.� Previous Work ��
�.� Model Assumptions ��
�.� A Motivating Example ��
�.� Policy Evaluation . ��

�.�.� Truncated Bellman Operator ��
�.�.� Fixed Point of the Truncated Operator ��
�.�.� Additional Notation. ��
�.�.� Truncation Errors. ��

�.� Policy improvement. ���
�.�.� Pivoting and advantages ���
�.�.� Advantage Approximation ���

viii

�.� The Algorithm . ���
�.� Proofs . ���

�.�.� Theorem �.� ���
�.�.� Theorem �.� ���
�.�.� Theorem �.� ���
�.�.� Theorem �.� ���

�.� Experiments . ���
�.� Conclusion . ���

� Generalized Optimistic Q-Learning ���
�.� Introduction . ���
�.� Preliminaries . ���

�.�.� Non-Stationary Episodic ���s. ���
�.�.� Reinforcement Learning ���

�.� Optimism in Q-Learning ���
�.�.� Representation of Optimism ���
�.�.� Generalized Optimistic Q-Learning ���
�.�.� The Total Regret Bound ���

�.� Proof of Theorem �.� ���
�.�.� Properties of the Learning Rate ���
�.�.� Bounds on Q-Value Differences ���
�.�.� Properties of the Total Regret ���

�.� Designing a New Optimistic Algorithm ���
�.� Experiments . ���

�.�.� Equipment Replacement ���
�.�.� Frozen Lake . ���

�.� Conclusion . ���

� Reinforcement Learning for Active Wake Control ���
�.� Introduction . ���
�.� Preliminaries . ���

�.�.� Steady-State Wind Models ���
�.�.� Deep Reinforcement Learning ���
�.�.� �� for Active Wake Control ���

�.� Active Wake Control as a �� Problem ���
�.�.� State Space . ���
�.�.� Action Space ���
�.�.� Rewards . ���
�.�.� Transitions . ���
�.�.� Gym Implementation ���

ix

�.� Experiments . ���
�.�.� Action Representations ���
�.�.� Noisy Observations ���

�.� Conclusion . ���

� Discussion ���
�.� Answers to the Research Questions ���
�.� Societal Implications ���
�.� Future Research Directions ���

�.�.� Theoretical and Algorithmic Extensions ���
�.�.� Future Prospects ���

References ���

Acknowledgements ���

Curriculum Vitæ ���

List of Publications ���

Appendices ���

� Miscellaneous Proofs ���
�.� Proofs of Time Augmentation Equivalence ���
�.� Proof that Flow Conservation Induces Policies ���
�.� Proof of Feasible Region Embedding ���
�.� Proofs for Inventory Management Problem ���

� Active Wake Control Implementation Details ���

x

Nomenclature

Abbreviations and acronyms

a.e. almost everywhere, p. ��
�� artificial intelligence
��� application programming interface
a.s. almost surely, p. ��
������ approximate salvage-based policy iteration with re-

peated elimination (of actions), p. ��
cf. compare to; from Latin conferatur
��� central processing unit
dales Dutch Atmospheric Large-Eddy Simulation framework,

p. ���
���� deep deterministic policy gradient, p. ��
floris Flow Redirection and Induction in Steady-State wake

modeling framework, p. ���
���� Gaussian-processes reinforcement learning, p. ���
��� graphics processing unit
grasp ���-Resident Atmospheric Simulation Platform, p. ���
���� Hollandse Kust Noord (site B) dataset, p. ���
ibid. same source; from Latin ibīdem for in the same place
��� large eddy simulation, p. ���
��� Markov decision process, p. ��
����� multi-stage iterated solution horizon algorithm, p. ��
���� optimistic pessimistically-initialized �-learning, p. ��
��� proximal policy optimization, p. ��
p.w. pointwise
�� reinforcement learning, p. �
��� soft actor-critic, p. ��
sowfa Simulator for On/Off-Shore Wind Farm Applications,

p. ���
��� twin delayed deep deterministic policy gradient, p. ��
���� trust region policy optimization, p. ��
��� upper confidence bound, p. ��
���-� ��� �-learning with Bernstein-style bonus, p. ��

xi

���-�+ ���-� with generalized learning rate, p. ���
���-� ��� �-learning with Hoeffding-style bonus, p. ��
∞-��� infinite-horizon ��� �-learning, p. ��

Marginalia

Y main text continues◃ formula explanation

Font faces

FLORIS, numpy, StarCraft II, … softwareThese font faces are
used to distinguish
objects of different
classes, with a few

exceptions of
well-established

notation. E.g., the
spaces of absolutely
Lebesgue-integrable

measurable functions
are denoted as L�(⋅)

and not 𝕃�(⋅).

E,Pr, supp, … common mathematical operators
A,a,B, b,C, c, … variables, constants, and functions𝒜, ℬ, 𝒞, … operators (functions that act on functions)
A,B,C, … matrices
a,b, c, … vectors𝔄, 𝔅, ℭ, … tuples (ordered collections)𝔸, 𝔹, ℂ, … sets (unordered collections), including spaces𝒜,ℬ,𝒞, … metasets (sets of sets) and distributions

Latin letters

A realized action, p. ��
A swept area of the rotor, p. ���
A(⋅) action coordinate map, p. ��When surrounded by

delimiters such as
brackets, an argument
position is denoted by

an interpunct (⋅);
otherwise, a dashed

square ⬚ is used.

a possible action, p. ��
a action vector, p. ��𝔸 action space, p. ��
Ap(⋅) action permissibility function, p. ��
ax(⋅) axial induction, p. ���
B total effect of the bonuses, p. ���
b(⋅) confidence bonus, p. ���
b reward bonus function, p. ��
b bonus vector, p. ��𝔹 arbitrary subsetℬ(⋅) Borel σ-algebra, p. ��𝒞⬚ constraint operator, p. ��
c vector of product prices, p. ��
CG expected revenue when the inventory is infinite, p. ��
CH maximum cost of holding an order, p. ��
CO maximum cost of placing an order and holding it, p. ��

xii

D rotor diameter, p. ���
D total demand for a given product, p. ��
d expected demand for a given product, p. ��
d metric, p. ��
d demand vector, p. ��𝔻 deterministic stationary policies, ℿDS, p. ��
dom ⬚ domain
E total effect of the estimation error, p. ���
E[⋅] expected value, p. ��
e(⋅) truncation error function, p. ��
e truncation error vector, p. ��
eη(⋅ , ⋅) absolute advantage error, p. ���𝔽 random event in the sample space Ω, p. ��ℱ σ-algebra of events, p. ��
g(⋅) expected sales, p. ��
G(⋅ , ⋅) expected revenue, p. ��
H episode length, p. ���
h time step in episodic ���s, p. ���
H(⋅ , ⋅) holding cost, p. ��
h vector of advantage bounds, p. ��
h vector of holding costs, p. ��𝔥 history, p. ��𝔥(⋅) history map, p. ��ℍ time space of an episode, p. ���
H(r)

n n-th generalized harmonic number of order r, p. ���ℐ⬚ the identity operator, p. ��
I identity matrix𝕀⬚ indicator of an event
J(⋅) gain, p. ��
jα the vector indicating the candidate optimal initial con-

trol, p. ��
JD dual solution, p. ��
JP primal solution, p. ��
K number of episodes, p. ���
k episode number, p. ���
K auxiliary matrix, p. ���𝕂 space of episodes, p. ���ℒ⬚ Bellman operator, p. ��
L auxiliary matrix, p. ���
lim inf ⬚ limit inferior
Lp(⋅) space Lp(⋅ , #) under the counting measure #, p. ��

xiii

Lp(⋅ , ⋅) space of measurable functions with finite p-norm ‖ ⋅ ‖p,
p. ��

Lw(⋅) space of functions with finite weighted supremum norm,
p. ��

L∞(⋅) space of uniformly bounded measurable functions, p. ��
M maximum shipment size, p. ��
m measure of a unit of a given product, p. ��
M wind speed, p. ���ℳ⬚ maximization operator, p. ��
m vector of unit measurements, p. ��
m mean of a multivariate process, p. ���𝔐 Markov decision process, p. ��
N reward-clipping bound, p. ��
n number of products, p. ��
n number of turbines in a wind farm, p. ���𝒩⬚ extension operator, p. ��
N extension matrix, p. ��ℕ� non-negative integers, {�} ∪ ℕℕ natural numbers𝒩(⋅ , ⋅) normal distribution, p. ���
O(⋅) ordering cost, p. ��𝒪(⋅) ���-� of the Bachmann–Landau notationℴ(⋅) small-o of the Bachmann–Landau notation
of fixed ordering cost, p. ��
ov vector of variable ordering costs, p. ��
P power output, p. ���
P(⋅) probability measure, p. ��
p(⋅ | ⋅) transition kernel (under a given policy), p. ��
p(⋅ | ⋅ , ⋅) transition kernel, p. ��𝒫(⋅) Poisson distribution, p. ���
pd(⋅) probability mass of the total demand, p. ��
pf probability to follow, p. ��
pp power exponent, p. ���
Pr[⋅] probability of an event
ps probability to slip, p. ��𝒫s,a⬚ pivoting operator, p. ���
q(⋅ , ⋅) �-value function, p. ���𝒬⬚ the value-producing operator, p. ��
Q value-producing matrix, p. ��
qd(⋅) probability that demand reaches a given level, p. ��
R received reward, p. ��

xiv

R regret of an episode, p. ���
R total regret of learning, p. ���
r(⋅) expected reward (under a given policy), p. ��
r(⋅ , ⋅) expected reward, p. ��
r(⋅ , ⋅ , ⋅) deterministic reward function, p. ��
r(⋅ | ⋅ , ⋅ , ⋅) reward kernel, p. ��ℛ⬚ operator for the expected transitional change, p. ���
R matrix form of the operator ℛ, p. ���
r reward vector, p. ��ℝ real numbersℝ̄ extended real line, ℝ ∪ {−∞,+∞}ℝ+ non-negative real numbers
S realized state, p. ��
S(⋅) state coordinate map, p. ��
s possible state, p. ��
S diffusion matrix, p. ���
s state vector, p. ��𝕊 state space, p. ��
sgn ⬚ signum
supp ⬚ support, p. ��
T time horizon, p. ��
T truncation horizon, p. ��
t decision epoch, time step, p. ��𝒯⬚ transition operator, p. ��
T transition matrix, p. ��𝕋 time space, p. ��
u(⋅) bonus for optimism, p. ���
u(⋅) salvage function, p. ��
u(⋅) value-bounding function, p. ��
U(⋅ , ⋅ , ⋅) update of �-learning, p. ���
u salvage vector, p. ��
u vector of stock and order, p. ��𝕌 salvage space, p. ��𝒰d(⋅ , ⋅) discrete uniform distribution, p. ���
v(⋅) dual variable, p. ��
v(⋅) value, p. ��
v vector of dual variables, value vector, p. ��
w absolute reward bound, p. ��
w(⋅) weight function, p. ��
W multivariate Wiener process, p. ���
w vector of weights, p. ��

xv

Wk(⋅) k-th branch of the Lambert �-function, p. ��
X size of the admissible control space, p. ���
x admissible control pair x = (s,a), p. ��𝕏 admissible control space, p. ��𝕏𝔹 admissible control space restricted to states from a

subspace 𝔹, p. ���
Y(⋅) auxiliary function, p. ���
y arbitrary element𝒴⬚ arbitrary operator
y arbitrary vector𝕐 arbitrary set
z(⋅) state occupancy, p. ��
z(⋅) primal variable, p. ��
z(⋅ , ⋅) occupancy measure, p. ��
z(⋅ , ⋅) visitation, occupancy function, p. ��𝒵⬚ policy-producing operator, p. ��
z vector of primal variables, occupancy vector, p. ��

Greek letters

α(⋅) initial state distribution, p. ��
α(⋅ , ⋅) learning rate, p. ���
α vector of initial distribution probabilities, p. ��
β(⋅) cumulative confidence bonus, p. ���
β static wind direction, p. ���
γ turbine yaw, p. ���
γ discounting factor, p. ��
Δ relative reward decrease per degradation level, p. ��
δ arbitrary small probability for ���-bounds, p. ���
δ⬚,⬚ Kronecker delta, p. ��
Δh auxiliary constant, p. ���
Δt time increment, p. ���
ε Gaussian noise, p. ���
ε exploration rate, p. ���
ζ(⋅) asymptotic of the squared learning rate, p. ���
η(⋅ , ⋅) asymptotic of the residual learning rate, p. ���
η(⋅ , ⋅) advantage, reduced cost, p. ��
η advantage vector, p. ��
θ drift coefficient, p. ���
ϑ(⋅) total cumulative bonus, p. ���
θ(⋅) bonus scaling function, p. ���

xvi

Θ drift matrix, p. ���
ι logarithmic term of the regret, p. ���
κ one-stage expansion coefficient, p. ��
� Lipschitz constant of an operator, p. ��
λ intensity of a Poisson distribution 𝒫(⋅), p. ���
λ multi-stage contraction coefficient, p. ��
λ intensity vector, p. ���
μ value magnitude, p. ��
μ(⋅) measure, p. ��
μ(⋅ , ⋅ , ⋅) magnitude function, p. ���
ν contraction horizon, p. ��
ξ auxiliary constant, p. ���
π policy, p. ��
π(⋅) deterministic decision rule, p. ��
π(⋅ | ⋅) stochastic decision rule, p. ��ℿ all (randomized history-dependent) policies, ℿRH, p. ��ℿD⬚ deterministic policies, p. ��ℿ⬚H history-dependent policies, p. ��ℿ⬚M Markovian policies, p. ��ℿR⬚ randomized policies, p. ��ℿ⬚S stationary policies, p. ��
ρ(⋅) auxiliary function, p. ���
ρ air density, p. ���
ρ starting reward, p. ��
σ standard deviation, p. ���
σ spectral radius, p. ��
Σ covariance matrix, p. ���
τ turbulence intensity, p. ���
ϕ wind direction, p. ���
Φ growth matrix, p. ��
ψ auxiliary constant, p. ���
ψ deterioration probability, p. ��
Ψ(⋅) auxiliary function, p. ���
Ψ(⋅) utility, p. ��
ω exponent coefficient of the learning rate, p. ���
ω angular velocity, p. ���
ω sample path, p. ��
Ω sample space, p. ��

xvii

Superscripts and diacritics⬚̄ optimistically augmented, p. ���⬚̆ augmented, p. ��⬚̌ absorbing-state-augmented, p. ��⬚̇ binary version of a variable, p. ��⬚̂ empirical, that is, observation-based, p. ���⬚̃ time-augmented, p. ��⬚𝔹 restricted to the subspace 𝔹, p. ��⬚∁ complement, p. ��⬚ j j-step, p. ��⬚⊤ transpose⬚𝕌 with salvage space 𝕌, p. ���⬚+ positive part, p. ��⬚− negative part, p. ��⬚′, ⬚″ another element (usually state or action)

Subscripts⬚H with episode length H , p. ���⬚h at time step h in an episodic ���, p. ���⬚i of i-th product, p. ��⬚K lasting for K episodes, p. ���⬚P with respect to probability measure P, p. ��⬚r rotated, p. ���⬚T with truncation horizon T , p. ��⬚T with horizon T , p. ��⬚t at time step t, p. ��⬚u with salvage vector u, p. ��⬚π under policy π, p. ��⬚+ upper bound, p. ��⬚− lower bound, p. ��⬚∞ infinite-horizon, p. ��⬚∞ limiting (for monotone-increasing sequences), p. ��⬚∗ adjoint (for operators), p. ��⬚∗ dual (for spaces), p. ��⬚⭑ optimal, p. ��⬚↑ asymptotically dominant, p. ���

xviii

Numbers and other symbols

߿ zero vector∅ empty set
ࠀ unit vector
�⬚ power set, p. ��ℵ� the cardinality of ℕ⟨ ⋅ , ⋅ ⟩ bilinear form (for functions), p. ��⟨ ⋅ , ⋅ ⟩ dot product (for vectors), ⟨x, y⟩ = x⊤y⟨ ⋅ , ⋅ ⟩⬚ inner product of functions, p. ��⌈ ⋅ ⌉ the ceiling function⌊ ⋅ ⌋ the floor function‖ ⋅ ‖ norm‖ ⋅ ‖p p-norm, p. ��‖ ⋅ ‖p→q operator norm of an operator acting from a p-normed

space into a q-normed one, p. ��‖ ⋅ ‖w w-weighted supremum norm, p. ��‖ ⋅ ‖∞ supremum norm, p. ��⬚ p.w.⟶ ⬚ converges p.w. (pointwise) to⬚ ≜ ⬚ is defined as⬚ ⊙ ⬚ Hadamard (elementwise) multiplication⬚ ⊘ ⬚ Hadamard (elementwise) division⬚ ⊔ ⬚ disjoint union⬚ ∼ ⬚ is distributed as⋄ absorbing state, p. ��
#(⋅ , ⋅) realized visitation function, p. ���
#(⋅) counting measure, p. ��△⬚ probability simplex, p. ��△⬚ set of probability measures, p. ��

xix

Summary

S��������� ��������-������ under uncertainty is an
important branch of artificial intelligence research with a
plethora of real-life applications. In this thesis, we generalize

two fundamental properties of the decision-making process. First,
we show that the theory on planning methods for finite spaces can
be extended to infinite but countable spaces. Second, we propose
a unified model of reinforcement learning algorithms that employ
the principle of optimism in the face of uncertainty. This model
is used to explain why these methods are efficient. We use the
developed theory to design novel algorithms. Depending on the
user’s needs, these algorithms can either automate the decision-
making process completely, or provide advice in decision-support
systems.

We start with presenting the basic concepts from the theory of Chapter �, p. �.
decision-making and discuss the two approaches to it: planning
and reinforcement learning. We look at a few typical sequential
decision-making problems of increasing difficulty. In particular, we
present a game that involves grid navigation and the problems
of warehouse management and wind farm operation. Next, we
survey the state-of-the-art methods for solving such problems.

Based on this analysis, we identify the following research oppor-
tunities. In planning, models with non-stationary and countably-
infinite data remain relatively untreated because they are equiv-
alent to infinitely-dimensional optimization problems, which are
notoriously difficult to solve even approximately. In reinforcement
learning, optimistic approaches lead to computational efficiency,
yet the theory of optimism remains undeveloped. Moreover, while
reinforcement learning shines at playing games, such as chess,
shōgi, Go, and StarCraft II, its practical applications remain few.

Next, we overview a mathematical framework of sequential Chapter �, p. ��.
decision-making under uncertainty known as the Markov decision
process. We explain how the goal of the decision-maker can be
expressed as an optimization problem and present two approaches
to achieving this goal. The first—more common—approach assigns
so-called values to different actions. The other approach uses

xxi

so-called occupancies that tell how often the agent should choose
the actions instead of evaluating how good these actions are. In
fact, the two approaches are known to be dual to each other. While
this duality is well studied in the finite case, the infinite case is
less explored. To address this knowledge gap, we present a new
dual formulation for countable problems, both finite and infinite.

Afterwards, we use the dual formulation to design a new plan-Chapter �, p. ��.
ning algorithm for infinite-horizon problems with non-stationary
data. These problems are essentially infinite-dimensional optimiza-
tion problems and as such are impossible to solve exactly using
the standard approaches. We show that they can be solved by
changing what is defined as optimal behavior: instead of seeking
universally optimal policies, we consider initial-decision-optimal
ones. Instead of planning all of the actions beforehand, these poli-
cies can be used to plan given the currently observed data. When
the next decision is required, the process can be repeated in the
same manner, leading to an optimal decision-making strategy. Our
approach uses the occupancy-value duality to rule out suboptimal
actions based on so-called truncations: finite-time approximations
of the infinite-horizon decision-making problem.

We extend the truncation approach to a more general settingChapter �, p. ��.
of decision-making problems with countably-infinite state spaces.
Instead of time-based truncations, we consider state-based ones.
This allows us to limit the amount of data required to make the
decisions and to design an algorithm for a class of problems that
are otherwise unsolvable to optimality. This approach belongs to
a family of methods called policy iteration: starting from an initial
policy, it constructs a series of improvements in the decisions
while ruling out choices that are provably suboptimal.

After that, we turn to reinforcement learning. For a longChapter �, p. ���.
time, the only provably efficient reinforcement-learning methods
were model-based ones; recently, a family of model-free optimistic
methods emerged, each of them accompanied by an analysis of
how sample-efficient the method is. We, too, study optimistic
reinforcement learning, but in contrast to the existing research,
we seek to understand not how efficient it is, but why it is efficient.
Our analysis results in a formula that explains the three factors
that cause regret—the efficiency loss—in optimistic reinforcement
learning: the problem size, the measure of exploration, and the
estimation error caused by the mismatch between the realized
transitions and their true distribution. It can be applied to all

xxii

of the existing algorithms as well as new ones. We design one
such new algorithm and show how our theoretical framework can
facilitate the proof of its efficiency.

Finally, we consider a high-impact real-world sequential decision- Chapter �, p. ���.
making problem known as active wake control. Wind turbines
can negatively impact each other with their wakes. These wake-
induced losses can be reduced by changing the turbine orienta-
tions. Unfortunately, the optimal control strategy is non-trivial.
To address this, existing approaches use simplified wake models
in combination with numerical optimization methods; instead we
propose to use model-free reinforcement learning. As a first step
towards this goal, we present a wind farm simulator that is suitable
for reinforcement learning and better reflects the realities of wind
farm operation than other existing tools. Using this simulator, we
show that previous research used a suboptimal action representa-
tion in this problem; we identify two alternatives, both of which
improve the learning efficiency. Additionally, we demonstrate that
reinforcement learning is robust to errors in the observations,
providing further evidence that it is a fitting approach to active
wake control.

Our contributions advance the state of the art in the theory of Chapter �, p. ���.
sequential decision-making under uncertainty and its applications.
These advances hint at unexplored connections between countably-
infinite planning and optimistic learning, which may lead to even
more efficient algorithms for sequential decision-making under
uncertainty in the future.

xxiii

Samenvatting

S���������� �������������� onder onzekerheid is een
belangrijke tak van onderzoek in het veld van kunstmatige
intelligentie met een breed scala aan toepassingen. In dit

proefschrift generaliseren we twee fundamentele eigenschappen
van algoritmische methoden voor dit type besluitvormingsproble-
men. Ten eerste laten we zien dat de theorie over planningsme-
thoden voor eindige ruimten kan worden uitgebreid tot oneindige
maar aftelbare ruimten. Ten tweede introduceren we een uniform
model voor algoritmen voor reinforcement learning die het prin-
cipe van optimisme in het licht van onzekerheid gebruiken. Dit
model wordt gebruikt om te verklaren waarom deze methoden
efficiënt zijn. We gebruiken de ontwikkelde theorie om nieuwe
algoritmen te ontwerpen. Afhankelijk van de behoeften van de
gebruiker kunnen deze algoritmen ofwel het besluitvormingspro-
ces volledig automatiseren, ofwel advies geven als onderdeel van
beslissingsondersteunende systemen.

We beginnen met het presenteren van de basisconcepten uit Hoofdstuk �, p. �.
de theorie van sequentiële besluitvorming en bespreken de twee
benaderingen ervan: planning en reinforcement learning. We
bekijken enkele typische sequentiële besluitvormingsproblemen
van toenemende moeilijkheidsgraad. In het bijzonder presenteren
we een spel over verplaatsingen over een rooster en de problemen
van magazijn- en windparkbeheer. Vervolgens bekijken we de
state-of-the-art methoden om dergelijke problemen op te lossen.

Op basis van deze analyse identificeren we een aantal on-
derzoeksmogelijkheden. Bij planning blijven modellen met niet-
stationaire en aftelbaar oneindige gegevens tot nu toe relatief on-
behandeld, omdat ze gelijkwaardig zijn aan oneindig-dimensionale
optimalisatieproblemen, die notoir moeilijk op te lossen zijn, zelfs
bij benadering. Bij reinforcement learning leiden optimistische
benaderingen tot steekproef-efficiëntie, maar de theorie van opti-
misme bleef onderontwikkeld. Bovendien, hoewel reinforcement
learning uitblinkt in het spelen van spellen, zoals schaken, shōgi,
Go en StarCraft II, bleven de praktische toepassingen ervan beperkt.

Vervolgens bekijken we een veel gebruikt wiskundig raamwerk Hoofdstuk �, p. ��.

xxv

van sequentiële besluitvorming onder onzekerheid, bekend als
het Markov-beslissingsproces. We leggen uit hoe het doel van de
beslisser kan worden uitgedrukt als een optimalisatieprobleem en
presenteren de twee benaderingen om dit doel te bereiken. De
eerste—meer gebruikelijke—benadering kent zogenaamde waarden
toe aan verschillende acties. De andere benadering maakt gebruik
van zogenaamde bezettingen die aangeven hoe vaak de agent de
acties moet kiezen in plaats van te evalueren hoe goed deze acties
zijn. In feite is bekend dat de twee technieken duaal aan elkaar
zijn. Hoewel deze dualiteit goed is bestudeerd in het eindige geval,
is het oneindige geval minder onderzocht. Om deze kennislacune
aan te pakken, presenteren we een nieuwe duale formulering voor
aftelbare problemen, zowel eindig als oneindig.

Daarna gebruiken we de duale formulering om een nieuw plan-Hoofdstuk �, p. ��.
ningsalgoritme te ontwerpen voor oneindige-horizonproblemen
met niet-stationaire gegevens. Deze problemen zijn in wezen
oneindig-dimensionale optimalisatieproblemen en zijn als zodanig
onmogelijk exact op te lossen met de standaardbenaderingen. We
laten zien dat ze kunnen worden opgelost door het veranderen van
wat wordt gedefinieerd als optimaal gedrag: in plaats van te zoeken
naar een universeel optimale policy, beschouwen we de initiële-
beslissing-optimale policy. In plaats van alle acties van tevoren te
plannen, kan deze policy worden gebruikt om te plannen op basis
van de tot dan toe beschikbare gegevens. Wanneer de volgende
beslissing nodig is, kan het proces op dezelfde manier worden her-
haald, wat leidt tot een optimale besluitvormingsstrategie. Onze
aanpak maakt gebruik van de dualiteit tussen bezettingen en waar-
den om suboptimale acties uit te sluiten op basis van zogenaamde
truncaties: eindige-tijd benaderingen van het oneindige-horizon
besluitvormingsprobleem.

We breiden de truncatiebenadering uit tot een meer algemeneHoofdstuk �, p. ��.
setting van besluitvormingsproblemen met aftelbaar oneindige
toestandsruimten. In plaats van op tijd gebaseerde truncaties,
beschouwen we op toestand gebaseerde truncaties. Dit stelt ons
in staat om de hoeveelheid gegevens te beperken die nodig is
om de beslissingen te nemen en om een algoritme te ontwerpen
voor een klasse van problemen die anders niet optimaal zouden
kunnen worden opgelost. Deze benadering behoort tot een groep
methoden die policy iteration worden genoemd: uitgaande van een
initiële policy, bouwt het een reeks verbeteringen in de beslissingen
op, terwijl keuzes worden uitgesloten die aantoonbaar slecht zijn.

xxvi

Daarna gaan we over op reinforcement learning. Lange tijd wa- Hoofdstuk �, p. ���.
ren de enige aantoonbaar efficiënte methoden voor reinforcement
learning modelgebaseerd; onlangs is een familie van modelvrije
optimistische methoden ontstaan, elk vergezeld van een analyse
van hoe steekproefefficiënt de methode is. Ook wij bestuderen
optimistische methoden, maar in tegenstelling tot het bestaande
onderzoek proberen we niet slechts te begrijpen hoe efficiënt een
methode is, maar bovendien waarom het efficiënt is. Onze analyse
resulteert in een formule die de drie factoren verklaart die het
efficiëntieverlies veroorzaken: de probleemomvang, de mate van
verkenning en de schattingsfout (het verschil tussen de geschatte
en de werkelijke verdelingen). Deze theorie geldt niet alleen voor
alle bestaande algoritmen, maar ook voor nieuwe. We ontwerpen
zo’n nieuw algoritme en laten zien hoe ons theoretisch raamwerk
het bewijs van de efficiëntie ervan kan vergemakkelijken.

Tenslotte beschouwen we een real-world sequentieel besluit- Hoofdstuk �, p. ���.
vormingsprobleem met grote impact dat bekend staat als het actief
regelen van windparken. Windturbines kunnen elkaar negatief
beïnvloeden met hun zog-effecten. De verliezen veroorzaakt door
deze zog-effecten kunnen worden verminderd door de oriëntatie
van de turbines iets te veranderen. Helaas is de optimale controle-
strategie niet triviaal. Om dit aan te pakken, gebruiken bestaande
benaderingen vereenvoudigde zogmodellen in combinatie met nu-
merieke optimalisatiemethoden; in plaats daarvan stellen we voor
om modelvrije reinforcement learning te gebruiken. Als eerste
stap op weg naar dit doel presenteren we een windparksimulator
die geschikt is voor reinforcement learning en die de complexiteit
van windparken beter representeert dan andere bestaande tools.
Met behulp van deze simulator laten we zien dat eerder onderzoek
een suboptimale actierepresentatie voor dit probleem gebruikte;
we onderscheiden twee alternatieven, die beide het leerrendement
verbeteren. Bovendien laten we zien dat reinforcement learning
robuust is tegen fouten in de waarnemingen, wat verder bewijs
levert dat het een passende benadering is voor het actief regelen
van windparken.

Onze bijdragen bevorderen de stand van de techniek in de Hoofdstuk �, p. ���.
theorie van sequentiële besluitvorming onder onzekerheid en de
toepassingen ervan. Deze vorderingen duiden op nog onontgon-
nen verbanden tussen de twee fundamentele bijdragen in dit
proefschrift; in de toekomst kan dit leiden tot nog efficiëntere
plannings- en leeralgoritmen.

xxvii

Автореферат

П��������������� принятие решений в условиях
неопределённости — важная область в исследованиях
искусственного интеллекта со множеством практиче-

ских приложений. В данной диссертации обобщён ряд фун-
даментальных свойств данных процессов принятия решений.
Во-первых, теория планирования в конечных дискретных сре-
дах перенесена на случай счётных пространств. Во-вторых,
для обучения с подкреплением на основе принципа оптимиз-
ма перед лицом неизвестности предложена единая модель,
объясняющая вычислительную эффективность такого подхо-
да. Разработанная нами теория положена в основу нескольких
инновационных алгоритмов, которые могут быть использова-
ны для поддержки процессов принятия решений либо для их
полной автоматизации.

В начале диссертации представлены основные концепции Глава �, с. �.
теории принятия решений и обсуждаются два подхода к нему:
планирование и обучение с подкреплением. Здесь же рас-
сматриваются несколько типичных задач последовательного
принятия решений возрастающей сложности: игра, представ-
ляющая собой навигацию на сетке, а также проблемы управле-
ния складом и парком ветрогенераторов, а также описывается
ряд современных методов решения задач подобных данным.

Основываясь на данном анализе, обозначены следующие
направления исследований: разработка методов планирова-
ния в задачах с нестационарными и счётными средами, по-
скольку такие задачи подразумевают бесконечномерную опти-
мизацию и трудноразрешимы даже приближённо, и как след-
ствие остаются малоизученными; исследование оптимизма в
задачах обучения с подкреплением, так как теория оптимизма
практически отсутствует, несмотря на то, что известно, что
оптимистичные подходы обладают доказуемой вычислитель-
ной эффективностью; поиск путей практического применения
обучения с подкреплением, блестяще проявляющего себя в
таких играх, как шахматы, сёги, го и StarCraft II, но при этом по
прежнему не имеющего серьёзных практических приложений.

xxix

Далее рассмотрена математическая модель последователь-Глава �, с. ��.
ного принятия решений в условиях неопределённости, извест-
ная как марковский процесс принятия решений. Показано, как
цель лица, принимающего решения, может быть выражена в
виде задачи оптимизации, а также представлены два подхода
к достижению этой цели. Первый подход присваивает так на-
зываемую ценность (value) различным действиям и является
более распространённым. Второй подход использует понятие
пребывания (occupancy), которое определяет не то, насколько
хороши те или иные действия, а то, как часто лицо, принима-
ющее решения, должно делать выбор в их пользу. Известно,
что данные подходы математически двойственны друг другу,
но в то время как данная двойственность хорошо исследована
в случае конечномерных пространств, счётный случай изучен
гораздо менее. Чтобы восполнить данный пробел в знаниях,
представлена новая двойственная формулировка, которая мо-
жет быть использована в задачах как с конечным, так и со
счётным количеством переменных.

Данная двойственная формулировка использована для раз-Глава �, с. ��.
работки нового алгоритма планирования в задачах с беско-
нечным временным горизонтом и нестационарными данными.
Такие задачи по своему существу являются задачами беско-
нечномерной оптимизации, и поэтому их решение с использо-
ванием стандартных подходов представляется невозможным.
Показано, что их решение возможно при изменении понятия
оптимального поведения с поиска универсально-оптимального
плана на поиск плана оптимального только в первоначальном
решении. Вместо того, чтобы заранее планировать все возмож-
ные действия, такой план можно использовать для принятия
решения на основе наблюдаемых данных; в дальнейшем же
процесс может быть повторён, когда потребуется следующее
решение; данный подход ведёт к оптимальному принятию ре-
шений. Для исключения субоптимальных действий в предло-
женном алгоритме используется двойственность пребываний
и ценностей в так называемых усечениях, то есть ограничен-
ных во времени приближениях задачи принятия решений с
бесконечным временным горизонтом.

Подход, основанный на усечениях, в дальнейшем расширенГлава �, с. ��.
на обобщённую постановку задачи принятия решений со счёт-
ными пространствами состояний. В основу данного подхода
положены усечения, основанные на состоянии среды, а не

xxx

на времени, что позволило ограничить количество необходи-
мых данных и разработать алгоритм принятия решений для
класса задач, являющихся оптимально неразрешимыми иначе.
Данный подход относится к семейству методов итерации по
планам: начиная с некоторого плана, он последовательно улуч-
шает решения, исключая варианты являющиеся доказуемо
неоптимальными.

В следующей части диссертации рассмотрено обучение с Глава �, с. ���.
подкреплением. Долгое время единственными доказуемо эф-
фективными методами обучения с подкреплением были так
называемые модельные методы; недавно же было предложено
семейство безмодельных методов, основанных на принципе
оптимизма, при этом для каждого конкретного алгоритма его
вычислительная эффективность доказана математически. В
данной работе также изучена эффективность оптимистиче-
ского обучения с подкреплением, но, в отличие от предыдущих
исследований, его целью является понять не насколько, а по-
чему такое обучение эффективно. В результате проведённого
анализа представлена формула объясняющая три фактора
снижения эффективности в оптимистическом обучении с под-
креплением: размер пространства управлений, необходимость
исследования состояний системы и возможных действий, а
также ошибка оценки, вызванная несоответствием между ис-
тинными вероятностями переходов и реализацией переходов
в цепи Маркова в процессе принятия решений. Представлен-
ный анализ применим не только ко всем существующим, но
и к новым алгоритмам. На его основе разработан один такой
алгоритм и показано, как представленная теория облегчает
доказательство его эффективности.

Наконец, рассмотрена важная практическая задача по- Глава �, с. ���.
следовательного принятия решений, известная как активное
управление турбулентным следом. Ветряные турбины способ-
ны негативно влиять друг на друга, создавая зоны повышен-
ной турбулентности в процессе извлечения энергии из ветра.
Потери, вызванные турбулентностью, можно уменьшить, по-
вернув турбину и тем самым отклонив её турбулентный след.
К сожалению, оптимальная стратегия управления нетриви-
альна, и существующие способы её нахождения используют
упрощённые модели турбулентного следа в сочетании с мето-
дами численной оптимизации; вместо этого нами предложе-
но использовать безмодельное обучение с подкреплением. В

xxxi

качестве первого шага к достижению данной цели представ-
лен симулятор ветряной электростанции, подходящий для
обучения с подкреплением и отражающий реалии эксплуа-
тации парков ветрогенераторов. Используя этот симулятор,
показано, что предыдущие исследования основывались на
неоптимальном представлении действий в данной задаче, а
также сформулированы два альтернативных подхода, каждый
из которых повышает эффективность обучения. Кроме того,
продемонстрировано, что обучение с подкреплением является
более устойчивым к ошибкам в наблюдаемых данных, что
дополнительно указывает на его потенциал к решению задачи
активного управления турбулентным следом.

Данное исследование продвигает как современную теориюГлава �, с. ���.
последовательного принятия решений в условиях неопреде-
лённости, так и её приложения. Наш вклад обозначает неис-
следованные связи между планированием в счётных простран-
ствах и оптимистическим обучением с подкреплением, что
может привести к ещё более эффективным алгоритмам пла-
нирования и обучения в будущем.

xxxii

1
Introduction

Man is born as a freak of nature, being
within nature and yet transcending it.
He has to find principles of action and
decision-making which replace the prin-
ciples of instincts.

— Erich Seligmann Fromm,
The Revolution of Hope

�.� The
Decision-Making
Problem

T��� ������� introduces the topic and contributions of
this thesis in layman’s terms. We begin with a description
of the class of decision-making problems that we study.

Then we describe the two approaches to solving these problems:
planning and reinforcement learning. Next, we look at a few
examples of such problems, from a very simple frozen lake game
to a complex active wake control problem. Then, we discuss the
existing approaches and their limitations. Finally, we formulate
the research questions that are answered in this thesis.

1. 1 T H E D E C I S I O N � M A K I N G P R O B L E M

This thesis presents novel algorithms for solving the problems of

���������� ��������-������ ����� �����������

[Puterman, ����]. What kind of problems are these precisely? To
explain it, let us separately examine the three parts of the term
above: “decision-making,” “sequential,” and “under uncertainty.”

First, we study decision-making: we consider an agent who An agent can be
a person, a robot, or
a piece of software.

has to make a choice based on some data. The data observed by
the agent is called a state. Based on this observation, the agent
chooses one of the actions available to them. The agent knows the
possible states and actions available at each state; in other words,
the agent knows the environment they operate in. Nevertheless,
this information is not enough to make informed decisions: the
agent needs to know how good—or bad—each choice is. To signal
this, the environment gives the agent a reward. The interaction
between the agent and the environment is illustrated by Figure �.�.

environment

rewardstate action

agent

Figure �.�: The
decision-making
process.

Next, we consider sequential problems, that is, problems that
require decisions to be made repeatedly over time. Each interac-
tion between the agent and the environment is known as a decision
epoch. After a decision epoch takes place, the environment transi-
tions to a new state, which the agent immediately observes, and a
new decision epoch starts. This chain of interactions continues
either for a predetermined number of decision epochs, known as
the horizon of the problem, or indefinitely. In the latter case, we
say that the problem has an infinite horizon.

Finally, the problems we consider may involve uncertainty of
different kinds. The decision rules that the agent uses to determine
their actions can be stochastic. For example, the agent is allowed
to flip a coin and choose an action based on the result. The

�

rewards can be randomized as well. But the most important type
of uncertainty governs the state transitions: the next state can
also be random. The only condition that we will impose is that
the transitions must be history-independent: the state of the nextWhy do we need history

independence?
When the environment
is history-independent,

so are the agent’s
optimal decisions.
This substantially

simplifies the problem.

epoch must depend on the current state and action only, and not
on the previous ones. While this condition may seem restrictive
at first, history-dependence can often be addressed by carefully
reformulating the problem. Often, the state can be redefined to
include all of the data that governs the transitions, including the
data from the previous decision epochs.

1. 2 P L AN N I N G & R E I N F O R C E M E N T L E A RN I N G

The methods for solving problems of sequential decision-making
under uncertainty fall under two broad categories: planning and
reinforcement learning (often referred to as ��).

sequential
decision-
making

planning ��

model-
free

model-
based

Planning methods assume that the environment is a so-called
glass box, a system whose internal structure can be seen. The

Glass boxes are often
called white boxes

to oppose them
to black ones.

agent knows the environment’s decision rules: how the next state
and the reward are chosen for each of the possible actions. Even
when the environment’s behavior is random, the agent still knows
the probabilities of different outcomes and can calculate the ex-
pected immediate outcome of each action.

When the agent has no access to the environment model, it
is a black box problem. In this case, reinforcement learning can
be used instead of planning [Sutton and Barto, ����]. The term
reinforcement comes from behavioral psychology and means a
stimulus used to produce a desired response. For example, puppiesBehaviorists further

distinguish
reinforcement

from punishment.
The latter is meant

to discourage
an unwanted behavior
instead of promoting

a desired one.
In machine learning,

there is no distinction
between reinforcement

and punishment.

are given treats after correctly performing a command such as “sit,”
“stay,” or “heel” when they are trained. This treat is meant to induce
a desired behavior and is called positive reinforcement. Similarly,
negative reinforcement teaches to avoid undesirable outcomes.
Sunburns are an example of negative reinforcement: to prevent
them, we learn to apply sunscreen before going out. Employing
the ideas from the behavioral science, reinforcement learning is a
machine learning technique based on rewards. In reinforcement
learning, the agent does not know the outcomes of their actions
beforehand, but learns from rewards, either positive, or negative.

Reinforcement learning methods can be further divided into
two subcategories. In model-based methods, the agent learns the
model of the environment. For example, the agent can infer that

�

�.� Examples

the action of not using sunscreen sometimes leads to sunburns.
In model-free methods, the agent foregoes such a model: they
simply know that applying sunscreen is good, but they do not
care to reason why. While model-based reinforcement learning
algorithms often perform better, they can be computationally
intensive when the environment is complex and the causality is
non-trivial. In extreme cases, model-based reinforcement learning
can be rendered inapplicable.

In this thesis, we study both approaches to decision-making.
We use planning methods for glass-box decision-making, and
reinforcement learning for black-box problems. In the latter case,
we focus entirely on model-free reinforcement learning, as it is
applicable to a broader range of problems.

1. 3 E X A M P L E S

Now that we outlined the class of problems that we are interested
in and the types of methods that can be used to solve them, let
us consider a few examples.

We start with a simple problem known as frozen lake. It is a
stylized example which has only a few states and actions, and is
easy to solve for humans, making it a good illustration for various
concepts from the theory of sequential decision-making.

The second example is a more practical problem of inventory
management in a warehouse. This problem is interesting to us
because it breaks some common assumptions used in sequential
decision-making. As a result, most of the existing solution methods
cannot be applied to this problem directly.

Finally, we consider a problem of active wake control in wind
farms. This is an example of a complex problem where the environ-
ment behavior is hard to model. This makes planning particularly
difficult, as it requires full knowledge of the system’s dynamics.
On the other hand, model-free reinforcement learning does not
require such knowledge, making it a good fit for this problem.

�.�.� Frozen Lake

Frozen lake is a game that appears in Open�� Gym [Brockman
et al., ����], a collection of benchmark problems for reinforcement
learning. It is described as follows.

�

� Introduction

“ Winter is here. You and your friends were tossing around a frisbee
at the park when you made a wild throw that left the frisbee out
in the middle of the lake. The water is mostly frozen, but there
are a few holes where the ice has melted. If you step into one of
those holes, you’ll fall into the freezing water. At this time, there’s
an international frisbee shortage, so it’s absolutely imperative that
you navigate across the lake and retrieve the disc. However, the
ice is slippery, so you won’t always move in the direction you
intend. ”

Y One of the default versions of this game is shown in Figure �.�.
The agent starts in the initial state �� and the goal is to reach the
frisbee state �� without falling into any of the holes, for example,
�� or ��. The actions of the agent are movements along either ofThis is a so-called

grid world problem.
Pac-Man is a more

complex example that
can be considered

a grid world.

the two axes. For example, from the starting position �� the agent
can go to �� or ��. Although the description mentions that the
lake is slippery, this default version is not and the agent always
moves in the intended direction. In the slippery version, agent
sometimes moves to a different state than they intended.

Figure �.�:
FrozenLakeࠅ×ࠅ-v0.
The solid line and

the dashed lines show
some of the optimal

and suboptimal paths
respectively.

A�
B�

C�
D�

E�
F�

G�
H�

In this problem, a unit reward is given to the agent upon
reaching �� from either �� or ��, and there is no reward for any
of the remaining movements. Any sequence of actions results in
a path on the lake surface. Some of them never reach the frisbee,
giving no reward. Some reach it, but take longer than necessary.
An optimal plan should provide the agent with a path that leads
to the frisbee as fast as possible.

�.�.� Inventory Management

Single-product inventory management motivated development of
several algorithms for sequential decision-making under uncer-
tainty [Veinott and Wagner, ����; Tijms, ����; Lee et al., ����]. It
is defined by Puterman [����, Section �.�] as follows.

�

https://gym.openai.com/envs/FrozenLake8x8-v0/

�.� Examples

“ Each month, the manager of a warehouse determines current
inventory of a single product. Based on this information, he
decides whether or not to order additional stock from a supplier.
In doing so, he is faced with a tradeoff between the costs associated
with keeping inventory and the lost sales or penalties associated
with being unable to satisfy customer demand for the product.
The manager’s objective is to maximize some measure of profit
over the decision-making horizon. Demand for the product is
random with a known probability distribution. ”

Y In this thesis, we consider a generalization of this problem that
includes multiple products. In this case, the state includes current
stock on hand for each of the products. Having observed the E.g., in a two-product

model [�
�] is a state with

one unit of the first
product.

If the order weight
cannot exceed five
tonnes, and the
products weight three
and two tonnes per unit
respectively, possible
orders are [�

�], [�
�], [�

�],[�
�], [�

�].

current inventory at the beginning of the month, the warehouse
manager places an order. The order tells how much of each
product needs to be shipped to the warehouse. The shipment size
is restricted by some measurement, such as the volume of a truck,
or the maximum weight of the load. The action space includes all
of the combinations of products with the total measurement not
exceeding the allowed maximum.

During the month, customers place orders for the product, and

If the state is [�
�] and

the action is [�
�], the

next state can be any of
the shaded circles,
depending on the
demands. E.g., if the
demand vector is [�

�],
the next state will be[�
�] + [�

�] − [�
�] = [�

�];
this transition is
represented by an arrow.
The next state cannot be
beyond the dashed line.

the product is shipped to them, if it is still in stock. The total
demand and the order for each product lead to a transition to a
new state in the next month.

The sales revenue and the inventory costs are proportional to
the demand and the total inventory including the newly ordered
units, respectively. The ordering costs are usually assumed to
consist of a fixed cost for placing the order, and a variable part
depending on the number of units of each product that was ordered.
The price of the product, the inventory holding cost per unit and
ordering costs for different possible orders are all known to the
manager. Based on them, the manager can calculate their reward
as the sales revenue less holding and ordering costs.

⋮ ⋮ ⋮ ⋮

⋯
⋯
⋯
⋯⋱

�

�

�

�

�

�

�

�

first product

se
co

nd
pr

od
uc

t

A simple decision rule for a single-product model is to wait
until the inventory drops below some minimum fill and then to
re-stock to a given inventory size called the target stock. In fact,
this decision is known to be optimal in the single-product case
[Veinott, ����], including an extended model with two suppliers
[E. J. Fox et al., ����]. A multi-product problem can be approached
by considering each product in the same way independently from
the other products, but we do not know if this approach is optimal.
Human managers use this or similar decision rules. At the same

�

� Introduction

time, algorithms for sequential decision-making can be used to
automate the order placement, saving time to the warehouse man-
ager and potentially cutting the costs of ordering and inventory
holding.

�.�.� Active Wake Control

Our final example is a complex control problem of great practical
interest that arises in wind farm operation.

When a wind turbine extracts energy from the wind, it creates
a wake area behind its rotor [Vermeer et al., ����]. The wind in
this area has reduced velocity and increased turbulence. If another
turbine is positioned in the wake, both of these factors impact
its power output. In large wind farms, these wake-induced losses
can be substantial. For example, a study of an off-shore wind
farm in Denmark shows a ��% energy loss due to wake effects
[Barthelmie et al., ����]. Another study conducted in Alberta,
Canada reports a similar loss of �%–��% [Howland et al., ����].
Under certain atmospheric conditions, turbine wakes can extend
so far that they even affect other wind farms [Lundquist et al.,
����]. As the number of wind farms around the world and their
average size continue to grow [Jacobson and Delucchi, ����], so
do their wake-induced losses. Consequently, active wake control
is important to efficient wind farm operation.

Early studies of wake effects mitigation focused on per-turbine

yaw

tower

nacelle

blade

rotor

Figure �.�: Turbine
nomenclature.

control of either pitch [Steinbuch et al., ����; Schepers and van
der Pijl, ����; Madjidian and Rantzer, ����] or generator torque
[Johnson, ����]. Later, joint farm-level control of turbines has
been demonstrated to be an efficient strategy [Gebraad et al., ����;
Howland et al., ����]. This is done via active control of the turbine
yaws (that is, the horizontal-plane rotations, see Figure �.�). When
a turbine is yawed relative to the incoming wind, it has lower
power output but the wake center shifts [Wagenaar et al., ����].
This wake deflection can be used to improve the power output of
down-wind turbines, increasing the total power production.

Figure �.�: Overhead
view of two wind

turbines without (left)
and with (right)

yaw-based wake control.
Darker areas have

slower wind. Default yaws Optimized yaws

wind direction

�.�� MW + �.�� MW = �.�� MW �.�� MW + �.�� MW = �.�� MW

�

�.� Existing
Research

Figure �.� shows an example of wake effects in a two-turbine
wind farm and the benefit of yaw-based active wake control. If
wake effects were nonexistent, both turbines would have produced
�.�� MW for a total of �.�� MW. Because of the wake of the
upwind (left) turbine, the downwind turbine produces only �.�� MW
instead. Yawing of the upwind turbine by approximately ��°
counterclockwise reduces its power output by �.� MW, but the
wake deflection allows the downwind turbine to produce �.�� MW
more, increasing the overall power output by �.�� MW or �%.

The optimal wake control strategy primarily depends on the
turbine locations relative to each other. At the same time, it is also
affected by various atmospheric conditions, such as wind speed
and direction, and air temperature. These conditions change over
time. The optimal active wake control strategy should account for
such changes in the data by repeatedly adjusting the wind farm
yaws throughout the day.

In this problem, the wind farm operator is the decision-making
agent. The agent’s actions are the yawings of the turbines. These
actions are chosen based on the current yaw angles of the tur-
bines and the atmospheric measurements available to the agent.
Therefore, the collection of these data forms the state of the prob-
lem. The state changes over time. While the yaw changes are
deterministic, the atmospheric conditions change stochastically,
adding uncertainty that the agent should account for.

1. 4 E X I ST I N G R E S E A R C H

�.�.� Planning with Markov Decision Processes

There are multiple ways of modeling sequential decision-making,
but the most commonly employed model is the Markov decision
process. The theory of Markov decision processes traces back to
Bellman [����]. The work of Puterman [����] is one of the most
comprehensive compendia of this field of research.

Various definitions of an optimal behavior in Markov decision
processes can be found in the literature. These are called optimal-
ity criteria. Most works—including this thesis—use the discounted
expected total reward criterion, which dates back to the works of See (�.�), p. �� for a

formal definition of this
criterion.

Howard [����] and Blackwell [����]. The expected total reward
[Ornstein, ����; van der Wal, ����] and the expected average re-
ward [Denardo and B. L. Fox, ����; Dynkin and Yushkevich, ����;

�

� Introduction

Ashok et al., ����] criteria are widely employed as well; however,
these are outside of the scope of this thesis.

In general, even when an optimality criterion is given, a Markov
decision process is not necessarily a well-posed problem, in the
sense that the optimal solution may be unattainable or even non-
existent. To guarantee that the problem has an optimal solution,For examples of

ill-posed Markov
decision processes, see

Section �.�.�, p. ��.

additional assumptions are made about the actions, states, rewards,
and transitions. These assumptions lead to various subclasses of
Markov decision processes that require different algorithms to be
solved.

Finite-horizon problems with finite state and action spaces

These problems form the simplest class of Markov decision pro-
cesses. They can be either stationary, when the problem data
do not change over time, or non-stationary otherwise. In both
cases, these problems can be solved using dynamic programming
[Bellman, ����; Bellman and Dreyfus, ����].

Stationary infinite-horizon problems with finite
state and action spaces

These problems always have optimal solutions [Puterman, ����],
which can be found using various methods that fall under three
main categories.

• Value iteration [Blackwell, ����; Balaji et al., ����] methods com-
pute the so-called value function. For each state, this function
shows the best possible expected total reward that the agent can
collect starting from that state. When the values of all states are
known, the agent can compute state-action values that show how
good each action is for each state. The optimal behavior is then
to take an action with the highest value in each state.

• Policy iteration methods [Howard, ����; Scherrer, ����], produce
a sequence of improving policies, until no improvement can bepolicies prescribe which

action should be taken
in each state

made. The last returned policy is an optimal one, since it cannot
be improved further.

• Linear programming methods [d’Epenoux, ����; Malek et al., ����]
use an alternative approach to find the value function. The values
can be found as a solution to an optimization problem based on
the data of a Markov decision processes. The solution of the
resulting problem yields the value function. Alternatively, the dual
linear program can be used to find the optimal policy directly.

��

�.� Existing
Research

Stationary problems with countably-infinite state and action
spaces

For these problems, the same theory apples: both the value func-
tions and optimal policies exist, and they correspond to the so-
lutions of the linear programming formulation of the problem.
Unfortunately, the infinite number of states renders each of the
methods useless. For example, the linear program contains in-
finitely many variables and constraints. Instead, these problems
have to be approached with different techniques.

• State-space truncation methods [B. L. Fox, ����; White, ����; White,
����] approximate the countably-infinite state space with a finite
one, and use the resulting solution as an approximate solution to
the original problem. The approximate problem is solved using
either value iteration [White, ����; Cavazos-Cadena, ����] or policy
iteration [Lee et al., ����], sometimes in combination with the
linear-programming approach.

• Structured models [White, ����] analytically identify the structure
of the value function or the policy, and use this structure to reduce
the problem to a finite one.

Non-stationary infinite-horizon problems with finite
state and action spaces

These problems can be reformulated as stationary infinite-horizon
���s with a countably-infinite state space and a finite action
space. Therefore, the methods described earlier can be used for
these problems, for example, as done by Ghate and R. L. Smith
[����].

Truncation methods offer an alternative approach [Bès and
Lasserre, ����; Bès and Sethi, ����; Hopp, ����; Cheevaprawatdom-
rong, Schochetman, et al., ����]. These methods seek a solution
horizon, that is, a finite time horizon such that the optimal initial
decision is guaranteed to be the same between the truncation and
the full problem. While the policy prescribed by such methods is
not guaranteed to be optimal in the future, it can be used to make
an immediate decision.

Problems with continuous state and action spaces

Like in the countably-infinite state-action space, the existence of
the value functions and optimal policies can be established in this
case under some additional assumptions [Shreve and Bertsekas,
����; Puterman, ����], but the resulting equations are generally

��

� Introduction

not computationally feasible.
A common remedy is to restrict the continuous functions to a

class of functions defined by a finite set of parameters, such that
the optimization can be performed over these parameters instead
of the original functions. This idea is used in fitted value iteration
[Szepesvári and Munos, ����; Munos and Szepesvári, ����] and
fitted policy iteration [Antos et al., ����]. Similar approximations
for the linear programming approach exist as well [Hauskrecht
and Kveton, ����; Hauskrecht and Kveton, ����].

�.�.� Reinforcement Learning

The history of reinforcement learning based on ���s begins with
the work of Watkins [����], who introduced the idea of learning the
state-action value function from interactions with the environment,
instead of computing it based on the underlying ���. Since
then, reinforcement learning has become the dominant paradigm
for learning in black-box sequential decision-making problems.
For a comprehensive introduction to the theory of reinforcement
learning and state-of-the-art algorithms, the reader is referred to
Sutton and Barto [����].

Just like the planning methods for ���s, reinforcement learn-
ing algorithms depend on the structure of the underlying problem,
and can be divided into two broad categories: tabular methods
and deep reinforcement learning.

Tabular methods and optimism

These methods are used in problems with finite state and action
spaces. They estimate the so-called state-action value function
—also known as the �-value function—that can be represented by
a table of values.

The seminal algorithm, �-learning [Watkins, ����], starts with
arbitrary assigned values, and adjusts them based on the observed
interactions with the environment in a manner that guarantees
convergence to the optimal value function. The idea is further
developed in the algorithms called temporal-difference (��) learn-
ing[Tesauro, ����; Sutton and Barto, ����] and ����� [Rummery����� stands for

state-action-reward-
state-action learning

and Niranjan, ����; Singh et al., ����].
Research of tabular reinforcement learning primarily focuses

on improvement of the learning efficiency. Various techniques
include variance reduction methods [Devraj and Meyn, ����],
posterior sampling [Osband and Van Roy, ����; Agrawal and Jia,

��

�.� Existing
Research

����], randomized value functions [Osband, Roy, et al., ����], and
optimistic learning [Szita and Lőrincz, ����]. The latter methods
use the principle of optimism in the face of uncertainty [ibid.], which
postulates that a learning agent should assume that its actions
lead to the best realistically possible outcomes. In practice, this
principle is implemented in two ways:

• optimistic initialization—unencountered state-action pairs are as-
sumed to have the best outcomes [Sutton and Barto, ����, Chapter
�.�], and

• action selection based on upper confidence bounds (���s)—each
previously encountered state-action pair is assumed to yield the
best statistically plausible reward [ibid., Chapter �.�].

Optimistic �-learning methods are of special interest, as they
are provably efficient [Jin et al., ����]. They include upper confi-
dence bound �-learning that comes in two forms: with Hoeffding-
style bonus (���-�) [ibid.], and with Bernstein-style bonus (���-
�) [ibid.], infinite-horizon ��� (∞-���) �-learning [Y. Wang et
al., ����], optimistic pessimistically-initialized �-learning (����)
[Rashid et al., ����], and ����-based methods in the context of
problems with limited adaptivity [Bai et al., ����].

Deep reinforcement learning

Recently, artificial intelligence achieved outstanding performance
in various games, such as chess, shōgi, and Go [Silver, A. Huang, Shōgi (将棋) is a board

game also known as
Japanese chess.

Go (圍棋) is the oldest
board game in the world
that is still played today.

et al., ����; Silver, Hubert, et al., ����; Schrittwieser et al., ����],
as well as StarCraft II [Vinyals et al., ����] and various Atari arcade

StarCraft II is one of the
most popular real-time
strategy video games.

games [Silver, Hubert, et al., ����; Schrittwieser et al., ����; Kap-

Atari games include
Breakout, Ms. Pac-Man,
Qbert and other popular
arcade titles.

turowski et al., ����], in some cases going as far as winning against
some the best players in the world. In all cases, this breakthrough
can be attributed to deep reinforcement learning.

Deep reinforcement learning uses deep neural networks to
represent the policy or the �-value function. It is most effective in
problems with high dimensional state space [François-Lavet et al.,
����], for example, learning from visual perceptual inputs made
up of thousands of pixels [Mnih, Kavukcuoglu, Silver, Rusu, et al.,
����].

State-of-the-art deep �� methods include among others trust
region policy optimization (����) [Schulman, Levine, et al., ����],
proximal policy optimization (���) [Schulman, Wolski, et al., ����],
deep deterministic policy gradient (����) [Lillicrap et al., ����],
twin delayed deep deterministic policy gradient (���) [Fujimoto

��

� Introduction

et al., ����], soft actor-critic (���) [Haarnoja et al., ����], distri-
butional reinforcement learning [Bellemare et al., ����], as well as
myriads of their modifications and extensions. These algorithms
are included in various reinforcement learning software packages
and libraries [Achiam, ����; Moritz et al., ����; Raffin et al., ����;
S. Huang et al., ����] leading to their wide adoption in practice.

�.�.� Knowledge Gaps

While the body of research in sequential decision-making un-
der uncertainty is vast and seemingly evergrowing, it is not all-
encompassing.

In planning, most of the research focuses on stationary prob-
lems with a finite state-action space, and non-stationary infinite-
horizon problems remain relatively unexplored due to their infini-
tely-dimensional nature. Moreover, the theoretical results obtained
for stationary problems cannot always be applied to non-stationary
ones. At the same time, knowledge transfer in the opposite di-
rection is always possible: stationary problems are a special case
of non-stationary ones when all of the data at different time
steps coincide. Can we develop more efficient algorithms for non-
stationary ���s, and use the new insights to solve the simpler
problems more efficiently as well?

Similarly, the theory of planning in countably-infinite problems
can be transferred to finite stationary and non-stationary problems,
but not vice versa. Is it possible to extend the existing approaches
for non-stationary problems to the more general case of countably-
infinite ones?

In tabular reinforcement learning, the principle of optimism
leads to efficient algorithms. While each particular optimistic
algorithm design is proven to be efficient, why does optimism
lead to such efficiency remains unclear. Instead of analyzing the
efficiency of individual algorithms, can we obtain deeper insights
into the efficiency of reinforcement learning by studying optimism
more generally?

Deep reinforcement learning shows tremendous successes in
playing video games and board games, but real-life applications
remain limited. We have already mentioned one such application:
active wake control. By using �� algorithms for active wake control,
can we obtain new insights that can be used in solving this and
other real-world problems more efficiently?

��

�.� Content of This
Thesis

1. 5 C O N T E N T O F T H I S T H E S I S

Having identified some gaps in the theory of sequential decision-
making under uncertainty, we formulate the raison d’être of this
thesis. Our research goal is

�� ������ ��� �������� ��� ������� �����
���������� �� ������������ ��� �������� ������
��� ������������ �� ���������� ��������-������

����� �����������.

�.�.� Research Questions

In pursuing the goal, we formulate the following research questions
based on the discussed open challenges.

Question �

How can we find optimal decisions in non-stationary infinite-
horizon problems with unbounded rewards?

Question �

How can we find optimal decisions in problems with countably-
infinite environments?

Question �

Is optimistic learning efficient in non-stationary problems; if so,
how can this efficiency be explained?

Question �

How can reinforcement learning be applied to efficiently solve
real-world problems such as active wake control?

�.�.� Contributions of This Thesis

We address the research questions by designing several novel algo-
rithms for sequential decision-making under uncertainty, including
two planning algorithms and a reinforcement learning one, and
by developing a novel �� environment for active wake control.

First, we address the first question of optimal planning in the
non-stationary infinite-horizon problems. We propose an algorithm
based on the linear program formulation of the problem, and show
that it can identify the exact optimal initial decision, given that it
is unique, in a more general setting than the existing algorithms
[Neustroev, de Weerdt, and Verzijlbergh, ����].

��

� Introduction

Second, we answer the second research question by extending
the theory of non-stationary ���s to countably-infinite ones. We
design an algorithm that does policy iteration in these problems
and can be applied even when the state space is multidimensional.
We apply the algorithm to solve the inventory management prob-
lem.

Next, we consider a general model of optimism in tabular
reinforcement learning to answer the third question. Using our
model, we prove the efficiency of optimistic reinforcement learning
in terms of regret, and identify the three factors that produce the
regret: the problem size, the optimistic overestimation, and the
estimation error. We also show how this novel theory of optimism
can be used to facilitate design of new �� algorithms [Neustroev
and de Weerdt, ����].

Finally, we develop an �� environment for active wake control
in wind farms to investigate the fourth research question. We show
how the problem formulation affects the efficiency of �� methods,
and find that reinforcement learning is capable of outperforming
the state-of-the-art control method when there is noise in the data
observed by the agent [Neustroev, Andringa, et al., ����a].

��

2
A Mathematical Model

of Decision-Making

It is really true . . . that life must be
understood backwards. But . . . it must
be lived forwards.

— Søren Aabye Kierkegaard,
Journalen JJ · 167

Translated by P. E. T. Jorgensen

T��� ������� describes a mathematical model of sequen- In this chapter, known
results are presented as
propositions
accompanied with
references to the
literature. Two new
results are presented in
Theorems �.�� and �.��
(see pp. �� and ��).
Because statements
similar to both of these
can be found in the
literature, the
differences with
previously established
results are explained
thereafter. This chapter
contains a few minor
novel results as well;
these are presented as
lemmas followed by
formal proofs.

tial decision-making under uncertainty. This model, known
as the Markov decision process, formalizes the concepts

introduced in the previous chapter. Under certain conditions,
policies—sequences of decisions—can be numerically evaluated. In
this case, an optimal policy can be found by using either the state
value function or the occupancy measure; these two approaches
are dual to each other. When the admissible control space is finite,
these should be well known to readers familiar with the theory of
Markov decision processes. In contrast, some of the properties
used in the finite case no longer hold when the environment is
countably-infinite. This leads to a different treatment of such
problems, resulting in a new dual formulation presented in this
chapter. Finally, a look at the multi-product inventory management
problem illustrates how the new theory can be applied.

2 . 1 M A R KO V D E C I S I O N P R O C E S S E S

There exist multiple ways of modeling problems of sequential
decision-making under uncertainty. For example, they can be
written as optimization problems or using graphical models like
the one shown in Figure �.�. We formalize the decision-making
process as a Markov decision process (���). It is one of the Andrey M�����

(����–����) studied
memoryless stochastic
processes. The
dynamics of these
processes depend on the
present state and none
of the past states. The
adjectives Markov and
Markovian are used to
describe such processes.

most popular models that provides a mathematical formalism for
a plethora of planning and �� algorithms.

Definition �.� | Markov decision process
A T -horizon ��� 𝔐T ≜ (T , 𝕊, 𝔸,Ap,α, p, r) is a tuple of:

• a time horizon T ;
• a set 𝕊 of possible states;
• a set 𝔸 of possible actions;
• a permissibility function Ap;
• an initial state distribution α;
• a transition kernel p that governs the state transitions;
• a reward kernel r that provides the agent’s rewards.

Y This definition is incomplete; it tells us the components of an
���, but does not define them properly yet. We now define each
of these elements, the relations between them, and some other
related concepts. We divide the definitions into three parts. First,
we describe the sequence of decisions by both the environment

��

� A Mathematical
Model of Decision-

Making

and the agent in the model: when do these decisions occur and
what information are they based on. Then, we add the uncertainty:
the randomness caused by the decisions of the environment and
possibly of the agent. And finally, we describe the optimality
criterion: what exactly does it mean for the agent to act optimally
in the decision-making problem given by an ���.

�.�.� Sequentiality

We start with the sequence of the decisions. To describe the
outcomes of a decision-making process, we first need to define
the concepts of a decision epoch, state, action, and reward.

Decision epochs and horizon

The decision-making happens between a starting point in time
t = � and some final point, know as the horizon T , excluding the
latter. It can also continue ad infinitum, in which case we write
T = ∞. In general, the decisions may be taken

• continuously through time,
• at random times, when the decision-maker’s attention is required,
• at specified (usually uniformly spaced) times.

time

S�

A�

R�

S�

A�

⋯

RT−�

ST−�

AT−�

RT

ST

Choices by:
environment
agent

state action reward

Figure �.�: Graphical
model of the problem.
Each block represents
a time step and contains
one decision
by the agent. Within a
time step, lower nodes
occur later.

Markov decision processes model the latter case only, therefore,
it is the only case we consider. Without loss of generality, we let
each decision epoch last one unit of time, t ∈ 𝕋 ≜ {�, �,… ,T − �},
where � ≤ T ≤ ∞ and 𝕋 denotes the time space of the problem. In
this case we call each decision epoch a time step.

Figure �.� presents the probabilistic graphical model of a se-
quential decision-making process. Nodes show decisions made by
the environment and the agent. The lower the node is, the later
in time its decision is made, including within each time step. The
arrows show causal connections, that is, what information is each
of the decisions based on.

We use capital letters St , At , and Rt to denote the states, actions,
and rewards during each time step t. The ��� starts in some
initial state S� chosen by the environment, possibly at random.
The agent observes this state and chooses their initial action A�.
This choice can be randomized as well. Next, the environment
chooses a new state S�, based on the initial state S� and action A�,
and a reward R�, based on both states and the action. The process
continues until the final time step t = T , where no action is taken.
The state ST is observed and the reward RT is received.

��

�.� Markov
Decision
Processes

The environment is assumed to be Markovian. This property
means that each non-initial state St , t > � depends on the previous
state St−� and action At−� only, and similarly with the rewards.
Strictly speaking, the actions of the agent are allowed to depend
on all of the information observed so far. For example, action A�
in Figure �.� is chosen based on everything that happened before
it, and should have incoming arrows not just from the current
state S�, but from the initial state S�, action A�, and the reward R�
of time step � as well. However, if the environment is Markovian,
then the agent’s decisions can be based on the current state only
and remain optimal. For clarity of presentation, Figure �.� omits
all of the causal links that do not affect the decision optimality.

Even though the rewards are allowed to be random, in many
problems they are deterministic and thus are not chosen by the
environment directly. Moreover, rewards may depend on the
current state-action pair (St ,At) only and not the transition to
the next state St+�. These two assumptions lead to a new, simpler
model shown in Figure �.�.

In fact, any ��� has an equivalent ��� with deterministic
rewards independent of the transitions [Puterman, ����, p. ��].
In planning, when all of the information on the environment is

S�

A�

R�

S�

A�

R�

⋯
ST−�

AT−�

RT−�

ST

not a choice

Figure �.�: Graphical
model of an ��� with
deterministic rewards.

available, this simplified reformulation is often readily available.
In ��, this is not always the case, but a similar assumption is often
made for simplicity. We, too, use the model of Figure �.�, unless
otherwise stated.

State space

The states s that the agent observes come from the state space 𝕊.
We consider discrete state spaces, either finite, 𝕊 = {s�, s�, … , s|𝕊|−�},
or countably-infinite, 𝕊 = {s�, s�, … }, unless stated otherwise.

A notable example of a continuous state space is a closed
interval 𝕊 = [s−, s+] and, more generally, a multi-dimensional box.
In this thesis, the active wake control problem is the only example
with such states. In this problem the states are vectors of the
observed atmospheric conditions and turbine yaw angles, each
within a predefined interval.

Note that we use small letters s to denote all of the possible
states within the state space 𝕊 and capital letters S to denote the
actual states observed while making the decisions, as described in
the previous section. For example, in FrozenLakeࠅ×ࠅ-v0, the states
s�–s�� are the squares ��–��; they are numbered left-to-right

��

https://gym.openai.com/envs/FrozenLake8x8-v0/

then top-to-bottom as shown in Figure �.�. The starting state S�
is the square ��, S� = s�. The next state S� depends on the initial
decision A� made by the agent: if the agent goes right to �� then
S� = s�, and if they go down to ��, then S� = s�.

A

�

B

�

C

�

D

�

E

�

F

�

G

�

H

�

��

��

��

��

��

��

�

�

��

��

��

��

��

��

�

�

��

��

��

��

��

��

��

�

��

��

��

��

��

��

��

�

��

��

��

��

��

��

��

�

��

��

��

��

��

��

��

�

��

��

��

��

��

��

��

�

��

��

��

��

��

��

��

�

Figure �.�: State space
of FrozenLakeࠅ×ࠅ-v0.

Action space and action permission function

Similarly to the states, the actions a chosen by the agent belong
to some action space 𝔸. When the state space is discrete, we
consider finite discrete actions spaces only, 𝔸 = {a�,a�, … ,a|𝔸|−�}.

While the action space 𝔸 describes all of the possible actions,
the choices available to the agent may differ for different states.
The set of actions Ap(s) permitted at a state s is given by the
action permission multifunction Ap ∶ 𝕊 → �𝔸, where �𝔸 is theWhen the action space𝔸 is discrete, the action

permission function Ap
can return any

combination of actions.
The continuous case is

more restrictive, but we
omit the differences.

power set of the action space 𝔸, that is, the set of all of its subsets.
When the agent finds themself in a state s where no actions are
permitted, Ap(s) = ∅, the decision-making process terminates
early. When the permissibility function is not explicitly mentioned,
we assume that all actions are permitted, Ap(s) = 𝔸.

In the frozen lake example, there are four actions corresponding
to the directions that the agent can move in:

𝔸 = {a�,a�,a�,a�} = {←,↓,→, ↑}.
At the same time, some tiles are located along the edges of the lake,
and not all actions are available in them. Additionally, stepping
on either a hole or the frisbee tile terminates the decision-making
process. In FrozenLakeࠅ×ࠅ-v0, we can set Ap(s�) = {↓,→}, Ap(s��) =𝔸, and Ap(s��) = ∅, as shown in Figure �.�, and similarly for every
other state.

��

��

�

�

��

��

�

�

��

��

��

�

��

∅��
�

←
↓

→
↑

↓
→←

A B C D

�

�

�

�

��

��

�

�

��

��

�

�

��

��

��

�

��

��

��

�

←
↓

→
↑

↓
→←

↑

←
↓

→
↑

A B C D

�

�

�

�

Figure �.�: Examples
of permitted actions in
FrozenLakeࠅ×ࠅ-v0.
Top: only some actions
are permitted.
Bottom: all actions are
permitted, but some of
them (lighter arrows) do
not change the state.

It is often assumed that all of the actions are permitted in
each state, that is, Ap(s) = 𝔸 for all states s ∈ 𝕊, with a possible
exception of terminal states, where Ap(s) = ∅. There are different
ways to ensure that this assumption does not lead to a loss of
generality. In FrozenLakeࠅ×ࠅ-v0 this is done by adjusting the
transitions: when the agent attempts to walk off the grid, they
stay in the same state and receive no reward. Other approaches
are to assign a reward of −∞ to forbidden actions, or to replace
forbidden actions with duplicates of permitted ones. The latter
method does not work when there are states with no permitted
actions, however, like the hole states of the frozen lake problem.

��

https://gym.openai.com/envs/FrozenLake8x8-v0/
https://gym.openai.com/envs/FrozenLake8x8-v0/
https://gym.openai.com/envs/FrozenLake8x8-v0/
https://gym.openai.com/envs/FrozenLake8x8-v0/

�.� Markov
Decision
Processes

Admissible control space

Each time step t is characterized by a state-action pair (St ,At)
showing the decisions made by the environment and the agent
respectively. Because of the limited permissibility, not all state-
action pairs (s,a), s ∈ 𝕊,a ∈ 𝔸 can occur during the decision-
making process. It is useful to distinguish the permitted pairs
from the rest. To do so, we introduce the following space.

Definition �.� | admissible control space
The admissible control space 𝕏 ⊆ 𝕊 × 𝔸 is the space of all state-
action pairs (s,a) such that the action a ∈ 𝔸 is permitted in the
state s ∈ 𝕊: 𝕏 ≜ {x = (s,a) ∣ s ∈ 𝕊 and a ∈ Ap(s)}.

Y When all actions are permitted in all states, the admissible control
space 𝕏 coincides with the product space 𝕊 × 𝔸, but in general it
is allowed to be a subset thereof.

Reward space

Each reward is a real number, either positive or negative. The
reward signal is a form of reinforcement: higher rewards corre-
spond to better choices by the agent. The reward space can be
simply the real line ℝ or an interval [r−, r+]. In the latter case the For further explanation

why uniformly bounded
rewards are important,
see Condition �.�, p. ��.

rewards are called uniformly bounded. Frozen lake is an example of
a problem with uniformly bounded rewards. There is a unit reward
for collecting the frisbee and no reward in all other situations.
Setting r− = � and r+ = � allows us to uniformly bound the rewards.
by the unit interval [�, �].
Definition of the sample space

One of the fundamental concepts in probability theory is a sample
space Ω, that is, a space of all possible outcomes. Since we assume For example, when we

model a coin toss the
sample space is
Ω = {h, t}, and when two
coins are tossed, it is
Ω = {hh,ht, th, tt}.

that the decisions of the environment and agent are random, we
need to define the sample space. We now define the sample space
of ���s with discrete state and action spaces and deterministic
rewards, as this is the case we consider most often in this thesis.

At each time step t the agent observes all of the choices made
so far by both the environment and the agent themself. These
choices include the previous states Sτ and actions Aτ , τ < t, and
the current state St . A sequence of such choices is called a history𝔥t ∈ Ωt of the decision-making process at time step t:𝔥t = (S�,A�,S�,A�, … ,St−�,At−�,St).

��

� A Mathematical
Model of Decision-

Making

Each history 𝔥t belongs to a space Ωt defined recursively as

Ω� ≜ 𝕊 and Ωt+� ≜ Ωt × 𝔸 × 𝕊 for any t ≥ �.

When the horizon T is finite, the sample space of the decision-
making process is ΩT . Each element ω ∈ ΩT is a sample path

ω = (S�,A�,S�,A�, … ,ST−�,AT−�,ST),
and it shows the observed outcome at the end of the experiment,

as presented in Figure �.�. It contains all of the states St and actions
At encountered by the agent in each of the decision epochs t ∈ 𝕋.
Additionally, it contains the final state ST , which is observed by
the agent, but no decision is made at time T . We can think of ω
as the final history 𝔥T .

With a slight abuse of notation, we define the coordinateE.g., when
ω = (s�,a�, s�),

S�(ω) = s�, A�(ω) = a�,
and S�(ω) = s�.

maps St ∶ ΩT → 𝕊 for all t ≤ T , and At ∶ ΩT → 𝔸 for all t < T .
Intuitively, these coordinate maps show what happened along any
given sample path ω at any time step t. Similarly, we define the
history map 𝔥t ∶ ΩT → Ωt .

For infinite-horizon problems there is no final state and no final
history. Nevertheless, in this case the infinite-horizon event space
Ω∞ can be defined as an infinite cartesian product

Ω∞ ≜ 𝕊 × 𝔸 × 𝕊 × 𝔸 × 𝕊 × ⋯ =
∞
∏
i=�

(𝕊 × 𝔸).
Each decision-making process still follows one of these paths, but
the agent is never able to observe which one.

When the rewards are random, the reward space is incorporated
into the sample space in a similar way by following the model of
Figure �.�: ΩT = 𝕊 × 𝔸 × 𝕊 × ℝ × 𝔸 × ⋯. However, this sample
space ΩT is no longer discrete, complicating further presentation.
The discrete nature of the sample space ΩT is one of the reasons
why we assume that the rewards are deterministic.

Having defined the sample space ΩT for each horizon T ≤ ∞,E.g., when flipping two
coins the outcomes are

Ω = {hh,ht, th, tt}.
The event {ht} means

“�st coin landed
heads-up, and �nd

tails-up.” If the coins are
distinguishable, this
event belongs to ℱ,

otherwise not.

we equip it with a σ-algebra ℱT representing all of the events
in our experiments. For example, an event “the decision-making
process started in state s�” is given by a set {ω ∣ S�(ω) = s�} ∈ ℱ.
Intuitively, a σ-algebra is required to show how much information
is available to the agent by showing which outcomes the agent is
able to distinguish from each other.

The Borel σ-algebra ℬ(ΩT) is often used, which coincides with
the power set of the sample space ℱT = ℬ(ΩT) = �ΩT in the

��

discrete case. This means that any subset 𝔽 ⊆ ΩT of sample Named after
Émile B����
(����–����), a Borel
subset is a subset that
can be formed from
open subsets by set
differences, countable
unions, and countable
intersections. They are
an important concept
in measure theory,
because measures—
including probabilities—
are well-defined
on Borel sets.

paths is a valid event 𝔽 ∈ ℱT . In the continuous case, a different
construction called the product σ-algebra is used instead.

Definition �.� | measurable space
The pair (𝕐,ℱ) of a sample space and a σ-algebra on it is called
a measurable space.

Y The measurable space (ΩT ,ℱT) represents all of the outcomes of
the decision-making process, and shows which of these outcomes
are distinguishable by the observer, in our case, the agent.

�.�.� Uncertainty

In epistemology, there are two kinds of uncertainty:

• aleatoric uncertainty that comes from the stochastic nature of From Latin aleator for
dice thrower.the decision-making process: it is impossible to perfectly predict

which of the sample paths ω ∈ ΩT the process will follow;
• epistemic uncertainty that comes from the lack of knowledge about From Greek επιστήμη

for knowledge.the environment.

In the previous section, we defined the space ΩT of possible
outcomes of the decision-making process, known as sample paths.
Some of these outcomes are more likely than others, depending on
the choices done by the environment and—sometimes—the agent.
As these choices can be done at random, the decision-making
process has aleatoric uncertainty.

In planning, we assume that stochasticity is the only source of
uncertainty. Therefore, we deal with aleatoric uncertainty only;
knowing the ��� 𝔐T , it is possible to tell the likelihood of events𝔽 ∈ ℱT and base the decisions on this information. There are
planning problems with epistemic uncertainty as well, for example,
partially-observable ���s; these models are outside of the scope
of this thesis.

In reinforcement learning, the transition and reward kernels
are not known to the agent. Therefore, epistemic uncertainty is
always present.

In this section, we focus on the aleatoric uncertainty of the
decision-making process. We start with the definition of probability.
Then we define the transition and reward operators, and construct
a probability measure on the measurable space (ΩT ,ℱT) of sample
paths.

��

� A Mathematical
Model of Decision-

Making

Measure, probability, and random variables

In general, measures such as length and volume show how big
different parts 𝔽 ∈ ℱ of the space Ω are for a given measurable
space (Ω,ℱ). Formally, measures are defined as follows.

Definition �.� | measure
Given a measurable space (Ω,ℱ), a function μ ∶ ℱ → ℝ̄ is called
a measure if:

• it is non-negative, that is, for any 𝔽 ∈ ℱ, μ(𝔽) ≥ �;
• the empty set has a null measure, μ(∅) = �;
• it is σ-additive, that is, for any collection (𝔽i)∞

i=� of pair-wise
disjoint sets 𝔽i ∈ ℱ, the total measure of their union is equal to
the sum of measures of the individual sets 𝔽i :

μ(∞⨆
i=�

𝔽i) =
∞
∑
i=�

μ(𝔽i).
Additionally, if the total measure is finite, μ(Ω) < ∞, then a measure
μ is called finite.

Definition �.� | measure space
A measurable space (Ω,ℱ) equipped with a measure μ is called a
measure space (Ω,ℱ,μ).
Definition �.� | almost everywhere (a.e.)
Given a measurable space (Ω,ℱ), a property holds almost ev-Think of it this way: if

something is true μ-a.e.,
then the elements for

which it false may still
exist, but they are so
few that they can be

neglected.

erywhere with respect to a measure μ (μ-a.e.), if it holds for all
elements of Ω\ 𝔽 for some set 𝔽 ∈ ℱ of zero measure, μ(𝔽) = �.

Y Probability P is a particular type of measure that shows how likely
different events 𝔽 ∈ ℱ are, with “larger” events being more likely
and the total probability P(Ω) being equal to �. In this thesis, we
mostly work with probabilities but other measures—such as the
occupancy measure—are used as well occasionally.

Definition �.� | probability
A finite measure P is called a probability measure if the total
measure is equal to one, P(Ω) = �. The measure space (Ω,ℱ,P) is
called a probability space. Properties that hold P-a.e. are said to
hold almost surely (a.s.).

Y For a discrete sample space Ω, a probability measure can be defined
by assigning a probability P to each sample ω ∈ Ω. Then for any

��

event 𝔽 ∈ ℱ we define P(𝔽) as Strictly speaking, the
probability measure
P(𝔽) is defined for
events 𝔽 ∈ ℱ, not
sample paths ω ∈ Ω. We
should write P({ω}), but
with a slight abuse of
notation, we use P(ω)
instead.

P(𝔽) ≜ ∑
ω∈𝔽P(ω), where P ∶ Ω → [�, �] satisfies ∑

ω∈Ω
P(ω) = �.

Given a probability space (Ω,ℱ,P), we can define random vari-
ables and their expected values. Intuitively, a random variable
assigns some number to each sample ω ∈ Ω, and expected value
shows the average value of a random variable, weighted by prob-
ability. An immediate reward Rt at time step t is an example of
a random variable on the space ΩT of sample paths. Random
variables and expected values are formally defined as follows.

Definition �.� | discrete random variable
A discrete random variable X ∶ Ω → ℝ is a function that maps
each sample ω ∈ Ω from a discrete sample space Ω to a numeric
value X(ω) ∈ ℝ.

Definition �.� | expected value
Given a discrete probability space (Ω,ℱ,P), |Ω| ≤ ∞, the expected
value with respect to the probability measure P of a discrete
random variable X ∶ Ω → ℝ is defined as

EP[X] ≜ ∫
Ω

X dP = ∑
ω∈Ω

X(ω) ⋅ P(ω).
Remark �.�
Expected value is not necessarily well-defined when the sample
space has infinitely many elements.

Y When the sample space is not finite, the sum in Definition �.� A famous example of an
infinite series ill-defined
in this sense is the
alternating harmonic
series ((−�)n−�/n)∞

n=�.
For it,
� − �

� + �
� − �

� + ⋯ = ln �,
but if we follow every
two positive elements
with a negative one,
�+ �

� − �
� + �

� + �
� − �

� +⋯ =
�
� ln �. The summation
order changes the result.

contains infinitely many elements. Such sums are not always
well-defined, as they depend on the summation order, and the
sample space is not necessarily a totally ordered space. In general,
expected value is well-defined only if at least one of EP[X+] and
EP[X−] is finite, where

X+(ω) ≜ max{X(ω), �} and X−(ω) ≜ max{−X(ω), �}.
The four possible cases are summarized in Table �.�. When the
expected value is well-defined, it is equal to the difference be-
tween EP[X+] and EP[X−], EP[X] ≜ EP[X+] − EP[X−]. When
both EP[X+] and EP[X−] are infinite, the expected value is ill-
defined. This special case is often neglected because it does not
arise as often as the other three cases. For example, if the sample
space Ω is finite, only the first case may occur. In infinite-horizon
problems the distinction becomes important.

��

Given an ���, each decision-making process defines a unique
probability measure Pπ that depends on the decision strategy of
the agent, known as a policy π. This probability also depends on

E[X+]
E[X−] a ∞

b a − b +∞
∞ −∞ ill

Table �.�: Definition of
the expected value.
The constants a and b
are some non-negative
finite values.

the stochasticity in the environment, which is defined via the initial
state distribution α and the transition pt and reward rt kernels.
We continue with the definitions of these four objects. Then we
use them to define the probability measure Pπ .

Initial state distribution

Every sample path ω starts with an initial state S�(ω) ∈ 𝕊 deter-
α comes from Greek

αρχικός for initial. It is
also the initial letter of

the Greek alphabet.

When 𝕐 is a finite set
of size n, △𝕐 is

homeomorphic to the
n-dimensional

probability simplex △n,
i.e., the set of vectors

with non-negative
coordinates summing

into one.

��

�

�

�

��△� △� △�

mined by the environment. It is drawn randomly from the initial
state distribution α ∈ △𝕊. △𝕊 denotes the set of all probability
measures on the measurable space (𝕊,ℬ(𝕊)). When 𝕊 is dis-
crete, the initial distribution is given by probabilities to start in
each state s ∈ 𝕊, also denoted by α(s) = Pr[S� = s].

In FrozenLakeࠅ×ࠅ-v0, the agent always starts in the same state
��. Therefore, the initial state distribution is very simple:

α(s) =
⎧{⎨{⎩�, if s is the starting tile,
�, otherwise.

Transition kernel

After an action At is chosen in a state St at a time step t, the envi-
ronment transitions to a new state St+� according to a distribution
given by a transition kernel pt :

St+� ∼ pt(⋅ | St ,At) for all t ∈ 𝕋,St ∈ 𝕊, and At ∈ Ap(St).
When states and actions are discrete, the transition kernel

produces a probability mass function pt ∶ 𝕏 × 𝕊 → [�, �]. Each
pt(s′ | s,a) shows the probability to transition from a state s ∈ 𝕊
to a state s′ ∈ 𝕊 when taking an action a ∈ Ap(s) at time step t:

pt(s′ | s,a) = Pr[St+� = s′ | St = s and At = a].
←

↓

→

↑

����

��

��

��

pf

ps = �−pf
�

Probabilities:

Figure �.�: Transition
probabilities in
FrozenLakeࠅ×ࠅ-v0.

When the transitions are stationary, we write p(s′ | s,a), under-
standing that pt = p for all decision epochs t ∈ 𝕋.

Let us consider FrozenLakeࠅ×ࠅ-v0 again. When an action is
permitted, the agent attempts to move in the direction indicated
by this action. Unfortunately for them, the environment is slippery,
and the desired state change happens only with some probability
pf to follow the desired direction. Otherwise, the agent slips and
performs the movement in one of the two adjacent directions with

��

https://gym.openai.com/envs/FrozenLake8x8-v0/
https://gym.openai.com/envs/FrozenLake8x8-v0/
https://gym.openai.com/envs/FrozenLake8x8-v0/

�.� Markov
Decision
Processes

equal probabilities ps, as shown in Figure �.�. In FrozenLakeࠅ×ࠅ-
v0 the probabilities to follow and slip are equal, pf = ps = �/�.
It is also possible to set pf = �, in which case the environment
becomes deterministic and the desired action is always followed.
We consider a more general case with arbitrary probability to
follow pf.

For example, if pf = �.� and the agent attempts to take the
action a� = ← to move left in state s�� = ��, they will move to the
left to the state s�� = ��, down to the state s�� = ��, or up to the
state s� = �� with probabilities �.�, �.�, and �.� respectively. At
the edge and corner states, some of the transitions may lead to a
non-existent states; in this case, the state does not change. For
example, in the starting state s� = �� if the agent takes the action
a� = ←, they either stay in the same state with probability pf + ps
by attempting to either follow the desired action or to slip up, or
they slip down with probability ps.

The exact form of the transition probability function is some-
what complicated, so we do not present it here. Instead, transition
probabilities can be computed and stored in a table, an excerpt
from which can be seen in Table �.�.

s a s′ p(s′ | s,a)
�� ← �� pf + ps

�� ps
↓ �� ps

�� ps
�� pf

→ �� ps
�� pf
�� ps

↑ �� pf + ps
�� ps

. .
�� ← �� ps

�� pf
�� ps

↓ �� ps
�� pf
�� ps

→ �� ps
�� ps
�� pf

↑ �� pf
�� ps
�� ps

Table �.�: Some of the
non-zero transition
probabilities in
FrozenLakeࠅ×ࠅ-v0.

Reward kernel

Similarly to the transition kernel, when the rewards are stochastic,
we define the reward kernels rt+�. A reward Rt+� received by the
agent after performing an action At in a state St during a decision
epoch t and transitioning to a state St+� is distributed according
to rt+�(⋅ | St ,At ,St+�), that is, Rt+� ∼ rt+�(⋅ | St ,At ,St+�).

When the rewards are deterministic, they can be given by a
function Rt+� = rt+�(St ,At ,St+�). Moreover, for any possible state-
action pair (s,a) ∈ 𝕏 the distribution of a reward Rt+� depends
on the transition distribution p(⋅ | s,a) only, because it is the only
thing that affects the next state s′ ∼ pt(⋅ | s,a). Therefore, we can
use expected rewards rt ∶ 𝕏 → ℝ at time step t defined as

rt(s,a) = E[rt+�(s,a, s′) ∣ s′ ∼ pt(⋅ | s,a)]
= ∑

s′∈𝕊rt+�(s,a, s′) ⋅ pt(s′ | s,a). ▹ the �nd equality can be
used for a discrete state
space 𝕊 only

(�.�)

By replacing the rewards rt+�(s,a, s′) with the expected rewards
rt(s,a), we obtain an equivalent ��� of Figure �.�. Intuitively, we
can do this because the expected reward rt(s,a) contains all of
the information needed to make a decision at time t. This new
��� is equivalent to a decision-making model with deterministic

��

https://gym.openai.com/envs/FrozenLake8x8-v0/
https://gym.openai.com/envs/FrozenLake8x8-v0/
https://gym.openai.com/envs/FrozenLake8x8-v0/

� A Mathematical
Model of Decision-

Making

rewards received in the same epoch when the actions are chosen,
which is presented in Figure �.�. This justifies the simplified model,
especially in planning, when the transition kernel pt is known and
the expected rewards can be computed.

In FrozenLakeࠅ×ࠅ-v0, the agent receives a unit reward when
they reach the frisbee and no reward otherwise:

r(s,a, s′) =
⎧{⎨{⎩�, if s′ is the frisbee tile,
�, otherwise.

Using equation (�.�), the expected rewards r(s,a) can be computed
from the rewards r(s,a, s′); they are presented in Table �.�.

Decision rules and policies

All of the information available to the agent during a decision
epoch t is contained in a history 𝔥t . Based on this information,
the agent chooses which action At ∈ 𝔸 to perform. This choice is
called a decision rule πt .

s a r(s,a)
�� ↓ ps

→ pf
↑ ps

�� ← ps
↓ pf
→ ps

Table �.�: Non-zero
expected rewards
in FrozenLakeࠅ×ࠅ-v0.

Definition �.�� | decision rule
A (history-dependent) decision rule πt ∶ Ωt → △𝔸 at time step t is
a function that maps every history 𝔥t ∶ ΩT → Ωt to a distribution
over actions such that At ∼ πt(⋅ ∣ 𝔥t(ω)) for any time step t ∈ 𝕋.

Y When there are forbidden actions, the support suppπt of a decision
rule πt must be contained in the permitted actions,The support supp f of

a function f ∶ 𝕐 → ℝ is
a set of all points where

it is non-zero, i.e.,
supp f ≜ {y ∣ f (y) ≠ �}.

suppπt(⋅ ∣ 𝔥t(ω)) ⊆ Ap(St(ω)).

In general, a decision rule πt of time step t ∈ 𝕋 depends on
the full history 𝔥t ∈ Ωt , but it does not need to depend on all of
the data therein. For example, a decision rule may depend on the
current state St(ω) and decision epoch t only, in which case it is
called Markovian.

Additionally, we distinguish between randomized and determin-
istic decision rules. A randomized decision rule is a probability
distribution over actions, πt ∶ Ωt → △𝔸. A deterministic decision
rule always chooses the same action, also denoted by πt ∶ Ωt → 𝔸.

In the discrete case, randomized decision rules can be defined
via probabilities to choose each action a ∈ 𝔸 for each state s ∈ 𝕊
during a decision epoch t ∈ 𝕋. These probabilities are denoted
by πt(a | s), to signify the dependence of the action choice by
the agent on the observed state. With a slight abuse of notation,

��

https://gym.openai.com/envs/FrozenLake8x8-v0/
https://gym.openai.com/envs/FrozenLake8x8-v0/

�.� Markov
Decision
Processes

deterministic decision rules are similarly denoted by πt(s) ∈ Ap(s).
In this case, for any action a,

πt(a | s) =
⎧{⎨{⎩�, if πt(s) = a,
�, otherwise.

A combination of all of the decision rules fully defines the
agent’s behavior and is known as a policy.

Definition �.�� | policy
The sequence π = (πt)t∈𝕋 of all decision rules is called a policy.

Y Policies containing only Markovian decision rules are also called
Markovian, otherwise we call them history-dependent. Further-
more, if decision rules of a Markovian policy do not depend on
the time step, such a policy is called stationary. We denote the
spaces of all history-dependent, Markovian and stationary policies
by ℿ⬚H, ℿ⬚M and ℿ⬚S respectively. Policies containing only
deterministic decision rules are also called deterministic, otherwise
they are called randomized. We denote the spaces of such policies
by ℿD⬚ and ℿR⬚ respectively. The hierarchy of all policy spaces
is presented in Figure �.�. The most general class of policies is ran-

ℿ = ℿRH

ℿRM ℿDH

ℿRS ℿDM

𝔻 = ℿDS

Figure �.�: Hasse
diagram for inclusion
of policy spaces (𝕐 → 𝕐′
means 𝕐 ⊆ 𝕐′).

domized history-dependent policies ℿ ≜ ℿRH, while deterministic
stationary policies form the smallest class 𝔻 ≜ ℿDS.

When a policy is given, it defines the way that actions a are cho-
sen in the probability kernel pt(s′ | s,a) and the expected reward
r(s,a). Therefore, it defines the expected rewards and transition
probabilities as follows.

Definition �.�� | expected rewards under a policy
The expected rewards rπ,t ∶ 𝕊 → ℝ at time step t under a policy
π ∈ ℿ are functions given by

rπ,t(s) ≜ ∑
a∈Ap(s)πt(a | s) ⋅ rt(s,a).

Definition �.�� | transition probabilities under a policy
The probabilities to reach state s′ at time step t + j by following
policy π starting in state s at time step t are called the j-step
transition probabilities pj

π,t(s′ | s) and can be computed as

p�
π,t(s′ | s) ≜ δs,s′ ,

p�
π,t(s′ | s) ≜ ∑

a∈Ap(s)πt(a | s) ⋅ pt(s′ | s,a), (�.�)

pj+�
π,t (s″ | s) ≜ ∑

s′∈𝕊pj
π,t(s′ | s) ⋅ p�

t+j,π(s″ | s′). (�.�)

��

� A Mathematical
Model of Decision-

Making

Y For one-step transitions, we write simply pπ,t(s′ | s). Similarly, in
stationary ���s we omit the time step and write rπ , pπ and pj

π .

Policy-induced probability measure

The initial state distribution α and transition kernel pt repre-
sent the random choices by the environment. Similarly, the
policy πt provides the random choices made by the agent. Us-
ing these, we can assign a probability Pπ to each sample path
ω = (S�,A�,S�,A�,S�,… ,AT−�,ST) ∈ ΩT as follows:

Pπ(ω) ≜ α(S�) ⋅ π�(A� | 𝔥�) ⋅ p�(S� | S�,A�)⋅ π�(A� | 𝔥�) ⋅ p�(S� | S�,A�)⋅ ⋯⋅ πT−�(AT−� | 𝔥T−�) ⋅ pT−�(ST | ST−�,AT−�). (�.�)

The fact that the function Pπ is indeed a probability measure is
due to the following proposition.

Proposition �.� 2 Ionescu-Tulcea extension theorem
For both finite and infinite-horizon sample spaces ΩT ,T ≤ ∞, theOriginally proven by

Ionescu-Tulcea [����] in
a more general setting.

function Pπ given by (�.�) exists uniquely and is a probability
measure on the measurable space (ΩT ,ℱT).

Y This probability measure Pπ defines the aleatoric uncertainty of
any particular instance of the decision-making process: given the
behavior of the environment and agent, it tells how likely each
sample path is. It also allows to compare rewards collected by
following different policies via their expected values, and can be
used to reason about how good any given policy is.

Using this probability measure, for any random variable X ∶
ΩT → ℝ its expected value on the probability space (ΩT ,ℱT ,Pπ)
is denoted by Eπ[X] and can be computed as:

Eπ[X] ≜ EPπ
[X] = ∑

ω∈ΩT

X(ω) ⋅ Pπ(ω).
Often random variables depend not on the full sample path ω,

but on a particular time step t. For example, this happens when
the random variable X is the expected immediate reward,

X(St(ω),At(ω)) = rt(St(ω),At(ω)).

In this case, the expected value can be evaluated using a simpler
formula.

��

Proposition �.� 2 simplified expected value formula
If the random variable X depends not on the full sample path ω, See Section �.�.� of

Puterman [ibid.], where
this formula is given in
terms of conditional
expectations.

but on a single state-action pair (St ,At) only, its expected value
can be computed as

Ap is the action
permission function, see
p. ��.

Eπ[X(St ,At)] = ∑(s�,a�,…,st)∈Ωt

(P(𝔥t = (s�,a�,… , st)) ⋅ ∑
at∈Ap(st)πt(at | st) ⋅ X(st ,at))

= ∑
s∈𝕊α(s) ⋅ ∑

s′∈𝕊pt
π,�(s′ | s) ⋅ ∑

a′∈Ap(s′)πt(a′ | s′) ⋅ X(s′,a′).
�.�.� Optimal Behavior

We have defined the probabilistic model of the agent’s behavior
given by a policy. In this section, we show how different policies
can be compared to each other. This allows us to define an optimal
policy, that is, a policy such that no better policy exists.

Policy evaluation

For each sample path ω of the decision-making process, we can
define some random variable Ψ ∶ ΩT → ℝ that is called the
utility [ibid.]. It measures how good any given outcome ω of the
decision-making process is. The commonly used utilities are:

• the (undiscounted) total reward

Ψ(ω) = ∑
t∈𝕋 rt(St(ω),At(ω));

• the γ-discounted total reward

Ψ(ω) = ∑
t∈𝕋 γt ⋅ rt(St(ω),At(ω)), where � ≤ γ < �; and

• the average reward

Ψ(ω) =
⎧{⎨{⎩

�
T ⋅ ∑T−�

t=� rt(St(ω),At(ω)) if T < ∞,
limN→∞

�
N ⋅ ∑N−�

t=� rt(St(ω),At(ω)), otherwise.

Although all of these utilities are studied in the literature, the
γ-discounted total reward is the most common. In this thesis, we
will consider this utility only.

Having defined utilities, we can use them to evaluate policies,
that is, to quantify how good—or bad—each given policy is. In
the previous section, we showed that policies π ∈ ℿ induce
probability measures Pπ on the measurable space (ΩT ,ℱT). Given
this measures, we evaluate policies as follows.

��

� A Mathematical
Model of Decision-

Making

Definition �.�� | policy gain
The policy gain function J ∶ ℿ → ℝ is equal to the expected utility
Ψ on the probability space (ΩT ,ℱT ,Pπ), that is

J(π) ≜ Eπ[Ψ] for any π ∈ ℿ.

Y In particular, in the expected γ-discounted total reward case,

J(π) = Eπ[∑
t∈𝕋 γt ⋅ rt(St ,At)]. (�.�)

Using Proposition �.� and Definition �.��, the gain can be
alternatively written as

J(π) = Eπ[∑
t∈𝕋 γt ⋅ rt(St ,At)] = ∑

ω∈ΩT
∑

t∈𝕋 γt ⋅ rt(St(ω),At(ω)) ⋅ Pπ(ω)
= ∑

t∈𝕋 γt ⋅ ∑
ω∈ΩT

rt(St(ω),At(ω)) ⋅ Pπ(ω) = ∑
t∈𝕋γt ⋅ Eπ[rt(St ,At)]first change of the

summation order
◃

= ∑
t∈𝕋γt ⋅ ∑

s∈𝕊α(s) ⋅ ∑
s′∈𝕊pt

π,�(s′ | s) ⋅ rπ,t(s′)
= ∑

s∈𝕊α(s) ⋅ ∑
t∈𝕋γt ⋅ ∑

s′∈𝕊pt
π,�(s′ | s) ⋅ rπ,t(s′).second change of the

summation order
◃ (�.�)

It is important to note that the derivation of (�.�) involves two
changes of summation order. These are only possible under one
of the two conditions given by the following proposition.

Proposition �.� 2 Fubini–Tonelli theorem for sums
For a measurable function f ∶ 𝕐 × 𝕐′ → ℝ, if one of the sumsAdopted from

propositions � and � of
Lee et al. [����]. ∑(y,y′)∈𝕐×𝕐′∣ f (y, y′)∣, ∑

y∈𝕐 ∑
y′∈𝕐′∣ f (y, y′)∣, and ∑

y′∈𝕐′ ∑
y∈𝕐∣ f (y, y′)∣

is finite, then the function f is absolutely-summable. Moreover, if f
is either absolutely-summable or non-negative, then

∑(y,y′)∈𝕐×𝕐′f (y, y′) = ∑
y∈𝕐 ∑

y′∈𝕐′ f (y, y′) = ∑
y′∈𝕐′ ∑

y∈𝕐 f (y, y′).
Y Proposition �.� holds for a wide range of models. In particular,

it holds when the admissible control space 𝕏 is finite. In more
complex settings, this may not be true. To guarantee that (�.�)
holds, we introduce the notion of well-defined gain.

Definition �.�� | well-defined gain
The gain J(π) of a policy π ∈ ℿ is well-defined, if the sum in
(�.�) is absolutely summable or if the rewards are non-negative
rt(s,a) ≥ � for all time steps t ∈ 𝕋 and admissible state-action
pairs (s,a) ∈ 𝕏.

��

�.� Markov
Decision
Processes

Y By calculating the gain J(π) of a policy π ∈ ℿ we can tell how well
it is expected to perform, but only when the gain is well-defined.
Assuming all of the gains are well-defined, the best policies can
be found by optimizing their gains.

Policy optimization

The problem is still missing an optimality criterion, that is, a
definition of an optimal policy π⭑ that the agent aims to find.
Because each policy π has a defined gain J(π), an optimal policy
π⭑ is simply a policy that achieves the highest possible gain J⭑:

J(π⭑) = J⭑ ≜ sup
π∈ℿ J(π).

Therefore, the agent’s goal is to act according to a policy π⭑ Note that it is possible
that multiple policies
achieve the maximum
gain J⭑. It is not
necessary to find all of
the optimal policies,
knowing just one of
these policies is
sufficient.

that is a solution of the following optimization problem:

find π⭑ ∈ argmax
π∈ℿ J(π), (�.�)

where J(π) = Eπ[∑
t∈𝕋 γt ⋅ rt(St ,At)].

Definition �.�� | optimal policy
A solution π⭑ ∈ ℿ to the optimization problem (�.�) is called an
optimal policy.

Y This definition is different from what is commonly considered to
be an optimal policy and what we call a universally optimal policy.

Definition �.�� | universally optimal policy
A policy π⭑ ∈ ℿ is called a universally optimal policy if it is an Altman [����] calls

these policies uniformly
optimal.

optimal policy for any initial state distribution α.

Y Uniform optimality is a stronger notion in a sense that any uni-
versally optimal policy is always optimal by definition. While it
is not immediately obvious that such policies would exist, this is
true due to the following proposition.

Proposition �.� 2 existence of universally optimal policies
A policy π⭑ ∈ ℿ is universally optimal if and only if it is optimal Adopted from Lemma �

of Lee et al. [����].for some initial state distribution α with full support, suppα = 𝕊.

Y Proposition �.� allows to find a universally optimal policy by
replacing the initial state distribution α with an arbitrary chosen
one α′, given that it has full support, that is, α′(s) > � for all
states s ∈ 𝕊. Because the resulting policy is invariant to changes
in the initial state distribution, it provides an optimal action for

��

each state. Thus, universally optimal policies can be considered
as more desirable than the optimal ones, and most of the research
focuses on the class of universally optimal policies.

A

�

B

�

C

�

D

�

E

�

F

�

G

�

H

�→ → → → → → ↓ ↓

→ → → → → → ↓ ↓

↓ ↓ ↓ → → ↓ ↓

→ → → → ↓ → ↓

↑ ↑ ↑ → ↓ → ↓

↑ → → ↓ ↓

↓ → ↑ ↓ ↓

→ → ↑ → → →

A

�

B

�

C

�

D

�

E

�

F

�

G

�

H

�→ → → → → → ↓ ↓

↓ ← ← ← ↑ → ↓ ←

↓ ↓ ↑ ↑ ↓ ↓ ↑

↓ ↑ ↑ ← ← → ↓

→ → ↑ ↑ ← ↑ ↓

↓ → ↑ ↓ ↓

→ → ↑ ↓ ↓

↑ → ↑ ↑ ← →

Figure �.�: Examples of
a universally optimal
(top) and optimal
(bottom) policies in a
non-slippery frozen lake
problem.

Nevertheless, when the initial state distribution is known and
has a small support, it may not be necessary to find optimal cations
for all of the states. For example, consider the policies presented
in Figure �.�. The second policy prescribes clearly suboptimal
actions to some of the states; for example, if the agent ever finds
themself in ��, they will be stuck in an infinite loop, and starting
in �� leads to a hole. At the same time, this quality of the policy
is irrelevant: the agent always starts in ��, and the policy always
leads to optimal decisions from there.

The distinction between optimal and universally optimal poli-
cies is especially relevant in problems with large—for example,
countably-infinite—state spaces. In these problems finding an
optimal action for each state may be computationally intractable;
therefore, we keep the distinction between optimal policies and
universally optimal ones.

2 . 2 T H E E X I ST E N C E O F O P T I M A L P O L I C I E S

In the previous section, we formalized the decision-making problem
and defined the optimal behavior as following a policy with the
highest gain. But how can we guarantee that such a policy exists?
And if it does, which of the policy classes does it belong to? In
this section, we answer this questions.

�.�.� Limitations of the Optimality Criterion

The definition of an optimal policy π⭑ as a solution of (�.�) has
limitations. In particular, it is not immediately obvious that:

• the gains J(π) of policies π ∈ ℿ are well-defined;
• the gains J(π) are finite;
• the maximum in (�.�) is attained.

These cases are illustrated by the following examples.

Example �.� | an ��� with ill-defined gains
Consider an infinite-horizon γ-discounted ��� 𝔐∞ with one state𝕊 = {s} and one action Ap(s) = 𝔸 = {a}. The only policy π isAs there is only one

state, α(s) = � and
p(s | s,a) = �.

to choose action a at every time step t, πt = a. Therefore, it
should be the optimal policy π⭑ = π. Let the rewards be equal to

��

rt(s,a) = −�/γt . The gain J(π) for the only existing policy is This is the so-called
Grandi’s series which is
known to be divergent.J(π) =

∞
∑
t=�

γt ⋅ (− �
γt) =

∞
∑
t=�

(−�)t = � − � + � − � + ⋯ .

Indeed, both partial sums J+(π) and J−(π) are infinite,

J+(π) = � + � + � + ⋯ = ∞ and J−(π) = � + � + � + ⋯ = ∞,

and therefore J(π) is ill-defined as per Remark �.�. As a result, the See p. ��.
definition of an optimal policy π⭑ cannot be used.

Example �.� | an ��� with infinite values of all policies
Consider a γ-discounted ��� 𝔐T with one state 𝕊 = {s} and two
actions Ap(s) = 𝔸 = {a�,a�}. The rewards are rt(s,a�) = γ−t and
rt(s,a�) = �γ−t . In the finite-horizon case, the worst policy π− is
to choose a� at all time steps, and the best policy π+ is to choose
a� instead, while all other policies π have their gains in the range

J(π−) = � + � + ⋯⏟⏟⏟⏟⏟
T times

= T ≤ J(π) ≤ J(π+) = � + � + ⋯⏟⏟⏟⏟⏟
T times

= �T .

In the infinite horizon case however, both bounds are well-defined
but infinite, J(π−) = J(π+) = ∞, and therefore all of the policies
have the same well-defined gain. At the same time, intuitively π+
is still better than any other policy, because at any finite horizon
it yields the largest total reward.

Example �.� | an ��� without an optimal policy
Consider an infinite-horizon γ-discounted ��� 𝔐∞ with one state𝕊 = {s} and countably-infinite number of actions Ap(s) = 𝔸 = ℕ.
Let the rewards be equal to r(s,a) = � − a−�. The rewards are
non-negative and thus the gain J(π) is well-defined for any policy
π ∈ ℿ by Proposition �.�. Moreover, the rewards are bounded by
� < r(s,a) < �, and the gain J(π) is finite:

Ψ(ω) =
∞
∑
t=�

γt ⋅ r(St(ω),At(ω)) <
∞
∑
t=�

γt ⋅ � = �
�−γ < ∞, and

J(π) = ∑
ω∈Ω∞

Ψ(ω) ⋅ Pπ(ω) < �
�−γ ⋅ ∑

ω∈Ω∞

Pπ(ω) = �
�−γ ⋅ Pπ(Ω∞) = �

�−γ , ▹ Pπ(Ω∞) = � by definition

and therefore the supremum J⭑ exists finitely. At the same time, an
optimal policy does not exist. Indeed, for any policy π, let us pick
an arbitrary decision rule πt(s) = a and change it to a + �. This
increases the gain of the policy, as r(s,a + �) > r(s,a). Therefore,
for any policy there exists a different policy with a greater gain,
and the maximum is never attained in (�.�).

��

� A Mathematical
Model of Decision-

Making

Y These examples show that the decision-making problem can be ill-
posed. It this case, optimal policies are undefined or non-existent,
or—in the case of Example �.�—all of the policies are considered
optimal. It is thus necessary to be able to ensure that the decision-
making problem is well-posed in the first place.

�.�.� Models with Uniformly Bounded Rewards

Let us address the issues discussed in the previous section. The
gain J(π) is well-defined when all of the rewards are either non-
negative or non-positive, as per Remark �.�. But even in this case,See p. ��.
it is possible that all of the policies have infinite gains and no
comparison can be made between them. The following condition
is one of the ways to ensure that both Eπ[Ψ+] and Eπ[Ψ−] areΨ±(ω) =

max{±Ψ(ω), �}. finite and therefore so is the gain J(π) for any policy π ∈ ℿ.

Condition �.� | uniform absolute reward bound
For all time steps t ∈ 𝕋, states s ∈ 𝕊, and actions a ∈ Ap(s), the
reward function is absolutely bounded by a constant w ∈ ℝ:

∣rt(s,a)∣ ≤ w.

Y Indeed, in this case

∣Ψ(ω)∣ ≤ ∑
t∈𝕋 γt ⋅ ∣rt(St(ω),At(ω))∣ ≤ ∑

t∈𝕋 γt ⋅ w ≤ w
�−γ < ∞, andby the triangle

inequality|a + b + ⋯| ≤ |a| + |b| + ⋯
◃

∣J(π)∣ ≤ ∑
ω∈ΩT

∣Ψ(ω)∣ ⋅ Pπ(ω) ≤ w
�−γ ⋅ ∑

ω∈ΩT

Pπ(ω) = w
�−γ ⋅ Pπ(ΩT) = w

�−γ .

Therefore, Condition �.� and Proposition �.� guarantee that the
gain J(π) of any policy π ∈ ℿ is well-defined and finite.

Sometimes, a different condition is used instead.

Condition �.� | uniform reward bounds
For all time steps t ∈ 𝕋, states s ∈ 𝕊, and actions a ∈ Ap(s), the
reward function is bounded by constants r−, r+ ∈ ℝ:

r− ≤ rt(s,a) ≤ r+.

Y The two conditions imply each other and therefore are equivalent.
Indeed, one can use r± = ±w given an absolute bound w, and
conversely, w = max{−r−, r+} given two bounds r±. Depending on
the problem, either one or the other can be used.

Even if Condition �.� holds, the maximum in (�.�) may still be
unattainable as illustrated by Example �.�. To address this issue,
we additionally impose the following condition on an ���.

��

�.� The Existence
of Optimal
Policies

Condition �.� | action-space semicontinuity
Let the actions of an ��� satisfy the following three statements:

• the set of permitted actions Ap(s) is compact for each state s ∈ 𝕊;
• the reward function rt(s, ⋅) is upper semicontinuous for each state

s ∈ 𝕊 and time step t ∈ 𝕋;
• the transition function pt(s′ | s, ⋅) is lower semicontinuous for each

pair of states s, s′ ∈ 𝕊 and time step t ∈ 𝕋. In particular,
Condition �.� holds if
the set of permitted
actions Ap(s) is finite
for each state s ∈ 𝕊.

Y Under these conditions, there exists an optimal policy in both
finite and infinite-horizon ���s as stated by the following two
propositions.

Proposition �.� 2 optimality in finite-horizon ���s
Let Conditions �.� and �.� hold for a finite-horizon Markov decision Adopted from

Proposition �.�.� of
Puterman [����].

process 𝔐T with a countable state space, |𝕊| ≤ ∞. Then there
exists a deterministic Markovian policy π ∈ ℿDM that is optimal.

Proposition �.� 2 optimality in stationary infinite-horizon ���s
Let Conditions �.� and �.� hold for a stationary infinite-horizon Adopted from

Theorem �.�.�� of
Puterman [ibid.].

Markov decision process 𝔐∞ with a countable state space, |𝕊| ≤ ∞.
Then there exists a deterministic stationary policy π ∈ 𝔻 that is
optimal.

Y These propositions provide valuable insight into the nature of the
decision-making problems. Not only do they tell us that optimal
policies exist, but in both cases we know the class that they belong
to: deterministic Markov and deterministic stationary policies for
finite-horizon and infinite-horizon stationary problems respectively.
Both of these statements allow us to narrow down the search space
of the optimization problem (�.�) when searching for an optimal
policy. See Figure �.�, p. ��.

Propositions �.� and �.� do not directly cover infinite-horizon
non-stationary problems. However, these problems can be reduced
to stationary problems as follows.

Definition �.�� | time-augmented ���
Given a non-stationary ��� 𝔐T ,T ≤ ∞, the time-augmented
stationary ��� 𝔐̃T is produced by augmenting the state space𝕊 with the time space 𝕋. The new state space 𝕊̃ is the cartesian

�

�

�

⋯
⋯
⋯

�

�

�

�

�

�

t

s

𝕊 𝕊̃ = 𝕊 × 𝕋
product 𝕊̃ ≜ 𝕊 × 𝕋. The initial state distributions ̃α, transition
probabilities ̃p, and rewards ̃r of the new ��� for all states ̃s = (s, t)
and ̃s′ = (s′, t′) are equal to δij ≜ ⎧{⎨{⎩�, if i = j,

�, otherwise.̃α(̃s) ≜ δt,� ⋅ α(s), (�.�)

��

� A Mathematical
Model of Decision-

Making

̃p(̃s′ | ̃s,a) ≜ δt+�,t′ ⋅ pt(s′ | s,a), (�.�)̃r(̃s′ | ̃s,a) ≜ δt+�,t′ ⋅ rt+�(s′ | s,a), and (�.��)̃r(̃s,a) ≜ rt(s,a). (�.��)

Y From this definition, it is easy to see that if the original discrete
non-stationary ��� is finite-horizon with a finite state space 𝕊, the
new stationary problem also has a finite state space 𝕊̃, otherwise
it is a countably-infinite ���. It is not immediately clear that
policies of the original problem correspond to policies of its time-
augmented version and vice versa. This fact is established by the
following lemma.

Lemma �.� 2 stationary reformulation equivalence
All policies of a non-stationary ��� 𝔐T ,T ≤ ∞ can be repre-
sented in time-augmented version 𝔐̃T by policies of the same gain,
assuming that the gain is well-defined.

Y The proof of Lemma �.� is presented in Section �.�. Because of
this equivalence, we can focus on stationary ���s only. When
necessary, we can translate their properties back to non-stationary
���s via (�.�), (�.�), and (�.��).

For example, using the definition of the new state space 𝕊̃, we
see that every deterministic (or randomized) Markovian policy π
of the original non-stationary ��� corresponds to a deterministic
(respectively, randomized) stationary policy ̃πof the augmented
problem: πt(s) = ̃π(s, t) and πt(a | s) = ̃π(a | s, t). Therefore, the
following statement follows from Proposition �.�.

stationary

T yes no

< ∞ ℿDM ℿDM
= ∞ 𝔻 ℿDM

Table �.�: Smallest
policy class containing
an optimal policy.𝔻 and ℿDM are the
classed of deterministic
stationary and
deterministic Markovian
policies, see
Definition �.��, p. ��.

Corollary �.� 2 optimality in non-stationary ∞-horizon ���s
Let Conditions �.� and �.� hold for a non-stationary infinite-horizon
Markov decision process 𝔐∞ with a countable state space, |𝕊| ≤ ∞.
Then there exists a deterministic Markovian policy π ∈ ℿDM that
is optimal.

Y The results of Propositions �.� and �.� and Corollary �.� are
summarized in Table �.�. The search space in the decision-making
problem (�.�) can be reduced from all policies ℿ to deterministic
Markovian ones ℿDM ⊆ ℿ for any type of problem.

2 . 3 F I N D I N G O P T I M A L P O L I C I E S

In the previous section, we established that an optimal determin-
istic Markovian policy always exists in discrete ���s with either

��

�.� Finding
Optimal Policies

finite or countably-infinite admissible control spaces. Unfortu-
nately, we still do not know how to find such a policy. In this
section, we show how it can be done by computing either value
functions or occupancies.

�.�.� State Value Functions

A common approach to policy evaluation and optimization involves
computing the so-called policy values vπ and optimal values v⭑.
They are defined as follows.

Definition �.�� | value under a policy
For each state s ∈ 𝕊, the value function vπ,t ∶ 𝕊 → ℝ̄ under a policy
π ∈ ℿ shows the expected γ-discounted total reward collected
when starting in that state at time step t ∈ 𝕋 and following the
policy π from then on:

vπ,t(s) ≜ T
∑
τ=t

γτ−t ⋅ ∑
s′∈𝕊pt−τ

π,τ (s′ | s) ⋅ rπ,τ(s′).
Y Using the state value function vπ,t(s), we can write (�.�) as

J(π) = ∑
s∈𝕊α(s) ⋅ vπ,�(s). (�.��)

Thus, policy evaluation can be done via the policy value func-
tion. In the finite-horizon case, the policy value function can be
computed recursively as

vπ,T(s) = � and vπ,t(s) = rπ,t(s) + γ ⋅ ∑
s′∈𝕊pπ,t(s′ | s) ⋅ vπ,t+�(s′).

In the infinite-horizon stationary case, the state values of stationary
policies are subject to the following recurrence

vπ(s) = rπ(s) + γ ⋅ ∑
s′∈𝕊pπ(s′ | s) ⋅ vπ(s′). (�.��)

Notably, the state values do not depend on the time step t anymore.
This is not the case in the finite-horizon case, because the problem
is time-homogenous: for each time step t the process continues
for the same number of time steps, infinitely many.

Similarly to policy values for policy evaluation, optimal values
can be used for policy optimization.

Definition �.�� | optimal value
The optimal value function v⭑,t ∶ 𝕊 → ℝ̄ shows the highest possible
expected γ-discounted total reward collected when starting in a
state s ∈ 𝕊 at time step t ∈ 𝕋, v⭑,t(s) ≜ supπ∈ℿ vπ,t(s).

��

� A Mathematical
Model of Decision-

Making

Y If the values are maximized, the optimal policy gain is achieved:

J⭑ = ∑
s∈𝕊α(s) ⋅ v⭑,�(s).

Similarly to the state values vπ under a policy π, we can find the
optimal state value function v⭑ as

v⭑,T(s) = �, and

v⭑,t(s) = max
a∈Ap(s){rt(s,a) + γ ⋅ ∑

s′∈𝕊pt(s′ | s,a) ⋅ v⭑,t+�(s′)}. (�.��)

In the stationary infinite-horizon case this reduces to

v⭑(s) = max
a∈Ap(s){r(s,a) + γ ⋅ ∑

s′∈𝕊p(s′ | s,a) ⋅ v⭑(s′)}. (�.��)

Both equations assume that the number of permitted actions is
always finite, ∣Ap(s)∣ < ∞ for any s ∈ 𝕊. This allows the supremum
in Definition �.�� to be achieved; therefore, it can be replaced with
the maximum. The actions that achieve the maximums in (�.��)
and (�.��) are the optimal actions.

�.�.� The Bellman Operators

While the recurrences (�.��) and (�.��) hold in the infinite-horizon
case, they cannot be used to compute the value functions directly.
Instead, iterative schemes presented in this section can be used.

The right-hand sides of (�.��) and (�.��) can be presented using
the Bellman operator ℒπ of a policy π and the optimal Bellman
operator ℒ⭑. These operators are defined as follows.

Definition �.�� | policy Bellman operator
For any Markov randomized policy π ∈ ℿRM and function y ∶ 𝕊 →Richard B������

(����–����) introduced
dynamic programming

as a way to solve
optimal control

problems.

𝕐𝕐′ ≜ {f | f ∶ 𝕐′ → 𝕐}
is the space of all

functions from a space𝕐′ to another space 𝕐.

ℝ̄, the Bellman operator ℒπ ∶ ℝ̄𝕊 → ℝ̄𝕊 is defined as[ℒπy](s) ≜ rπ(s) + γ ⋅ ∑
s′∈𝕊pπ(s′ | s) ⋅ y(s′). (�.��)

Y We can write (�.��) more compactly by introducing the transition
operator 𝒯π ∶ ℝ̄𝕊 → ℝ̄𝕊 under a policy π:[𝒯πy](s) ≜ ∑

s′∈𝕊pπ(s′ | s) ⋅ y(s′) for any y ∶ 𝕏 → ℝ̄.

Since rπ is also a function in ℝ̄𝕊, ℒπy = rπ + γ ⋅ 𝒯πy.Equality of functions is
understood pointwise,

that is, it holds for any
value of the argument

s ∈ 𝕊.

Definition �.�� | optimal Bellman operator
The optimal Bellman operator ℒ⭑ ∶ ℝ̄𝕊 → ℝ̄𝕊 is[ℒ⭑y](s) ≜ max

a∈Ap(s){r(s,a) + γ ⋅ ∑
s′∈𝕊p(s′ | s,a) ⋅ y(s′)}. (�.��)

��

�.� Finding
Optimal Policies

Y To make the notation succinct, we introduce the maximizationℳ ∶ ℝ̄𝕏 → ℝ̄𝕊 and transition 𝒯∶ ℝ̄𝕊 → ℝ̄𝕏 operators:

[ℳy](s) ≜ max
a∈Ap(s) y(s,a), (�.��)

[𝒯y′](s,a) ≜ ∑
s′∈𝕊p(s′ | s,a) ⋅ y′(s′) (�.��)

for any functions y ∶ 𝕏 → ℝ̄ and y′ ∶ 𝕊 → ℝ̄. Using these
operators, we can write equation (�.��) as

ℒ⭑y = ℳ(r + γ ⋅ 𝒯y). (�.��)

The value function vπ of any randomized Markov policy π
and the optimal value function v⭑ are the fixed points the pol-
icy Bellman operator ℒπ and the optimal Bellman operator ℒ⭑
respectively. So far, we have implicitly assumed that vπ exists
uniquely. The existence and uniqueness of the value functions vπ
and v⭑ can be proven using the Banach fixed-point theorem.

Definition �.�� | fixed point
An element y ∈ 𝕐 of a space 𝕐 is called a fixed point of an
operator 𝒴 ∶ 𝕐 → 𝕐, if 𝒴y = y.

Definition �.�� | contraction & Lipschitz constant
Consider a metric space (𝕐,d). An operator 𝒴 ∶ 𝕐 → 𝕐 is called Rudolf L��������

(����–����) proposed
this property for
constants κ ≥ � as a
stronger notion of
continuity of functions.

a contraction in the space 𝕐 with respect to the metric d if there
exists a constant � ≤ κ < � called the Lipschitz constant of 𝒴, such
that d(𝒴y − ℒy′) ≤ κ ⋅ d(y − y) for any y, y′ ∈ 𝕐.

Definition �.�� | complete metric space
A metric space (𝕐,d) is complete if every Cauchy sequence (y)∞

i=� Baron Augustin-Louis
C����� (����–����)
introduced into calculus
the infinitesimals, i.e.,
arbitrary small numbers.

has a limit in the space 𝕐. A sequence is called Cauchy if its
elements become arbitrary close to each other, that is, for any
constant ε > � there exists a constant k > � such that d(yi , yj) < ε
for all i, j > k .

Proposition �.� 2 Banach fixed-point theorem
If 𝕐 is a complete metric space, then every contraction 𝒴 ∶ 𝕐 → 𝕐 Originally proven by

Banach [����].

Stefan B�����
(����–����), the founder
of modern functional
analysis, studied these
spaces extensively.

has a unique fixed point y ∈ 𝕐. Moreover, this fixed point y can be
found as

y = limn→∞ 𝒴ny′ for any y′ ∈ 𝕐.

Definition �.�� | Banach space
A normed space (𝕐, ‖ ⋅ ‖) is called a Banach space if it is complete
with respect to the ‖ ⋅ ‖-induced metric d(y, y′) ≜ ‖y − y′‖.

��

� A Mathematical
Model of Decision-

Making

Remark �.�
A fortiori, Proposition �.� holds for Banach spaces.

Y In general, the space ℝ̄𝕊 of real-valued and infinite-valued func-
tions on 𝕊 is not a Banach space and therefore the Bellman
operator ℒπ is not a contraction mapping on it. It does, however,
become a contraction if we restrict the space of allowed value
functions to a Banach space, usually, an Lp-space.

Definition �.�� | Lp-space
Given a measure space (𝕐,ℱ,μ), the Lp-space Lp(𝕐,μ) is theE.g., L� is the space of

all absolutely-summable
functions, and L∞ is the

space of all absolutely
bounded functions.

Using Lp-spaces,
Condition �.� can be

written as rt ∈ L∞(𝕏).

space of real-valued measurable functions f ∶ 𝕐 → ℝ on 𝕐 with
finite p-norm defined as

‖ f ‖p ≜ (∫𝕐∣ f (y)∣p dμ)�/p
.

For countable measure spaces (𝕐,ℬ(𝕐), #), |𝕐| ≤ ℵ� with the
counting measure #, we write Lp(𝕐) ≜ Lp(𝕐, #). In this case,

The counting measure #
returns the number of

elements in a subset𝔽 ∈ ℱ: #(𝔽) = |𝔽|;
integration with respect

to # becomes
summation.

‖ f ‖p = (∑
y∈𝕐∣ f (y)∣p)�/p

, if � ≤ p < ∞, and ‖ f ‖∞ = sup
y∈𝕐∣ f (y)∣.

Uniformly bounded rewards

Consider the space L∞(𝕊) of uniformly bounded functions on the
state space 𝕊. Under Condition �.�, the reward rπ under policy
π has a finite supremum-norm, ‖rπ‖∞ ≤ w. Therefore, the state
value function vπ of any policy π has a finite supremum-norm:

‖vπ‖∞ ≤ ∑
t∈𝕋 γt‖rπ‖∞ = �−γT

�−γ ⋅ w, therefore vπ ∈ L∞(𝕊).
Moreover, the following proposition holds.

Proposition �.�� 2 Bellman operators are contractions
Under Condition �.�, Bellman operators ℒπ and ℒ⭑ are contrac-Adopted from

Proposition �.�.�
of Puterman, ����.

tions in the space L∞(𝕊) of uniformly bounded functions.

Y This proposition and the fixed-point theorem prove that the state
value function vπ for any policy π and the optimal state value
function v⭑, given by (�.��) and (�.��), exist uniquely in the space
of uniformly bounded functions L∞(𝕊). Moreover, the fixed-point
theorem provides a way to compute the values vπ and v⭑ iteratively.
This computation scheme is known as value iteration.

��

�.� Finding
Optimal Policies

�.�.� Occupancy Measure

The main difficulty in evaluating policies comes from the fact that
gains J(π) are defined as expected values Eπ[⋅] on the proba-
bility space (ΩT ,ℱT ,Pπ). In general, both the time space 𝕋 and
the sample space ΩT can be countably-infinite. Therefore, gains
expand into double countably-infinite sums: See (�.�), p. ��.

J(π) = ∑
ω∈ΩT

∑
t∈𝕋 γt ⋅ r(St(ω),At(ω)) ⋅ Pπ(ω).

To circumvent this limitation, the probability space (ΩT ,ℱ,P)
of the problem can be converted to a different measure space(𝕊 × 𝔸,ℬ(𝕊 × 𝔸), zπ). If the state-action space 𝕊 × 𝔸 is finite,
this substantially simplifies the optimization problem. The new
measure zπ is defined as follows.

Definition �.�� | occupancy measure
The (γ-discounted) occupancy zπ ∶ 𝕊 × 𝔸 → ℝ+ of a policy π ∈ ℿ Adapted from

Definition � of Laroche
et al. [ibid.].

is the expected γ-discounted number of visits of state-action pairs,
that is, for any measurable sets 𝕊′ ∈ ℬ(𝕊) and 𝔸′ ∈ ℬ(𝔸)

zπ(𝕊′, 𝔸′) = Eπ[∑
t∈𝕋 γt ⋅ 𝕀{St∈𝕊′} ⋅ 𝕀{At∈𝔸′}]. (�.��)

Y In general, the occupancy measure is not a probability measure,
but it is still finite, so it can be thought of as “scaled probability”
that sums into something other than one. This fact is due to the
following lemma.

Lemma �.�� 2 finiteness of occupancy measure
In a γ-discounted ��� 𝔐T ,T ≤ ∞, any policy π ∈ ℿ induces a
finite occupancy zπ measure.

Proof. Because any state St belongs to the state space, 𝕀{St∈𝕊} = �;
similarly, 𝕀{At∈𝔸} = �. Therefore, (�.��) becomes

zπ(𝕊, 𝔸) = Eπ[∑
t∈𝕋 γt] = Eπ[�−γT

�−γ] = �−γT

�−γ . ���

Y In problems with discrete state-action spaces, the occupancy mea-
sure can be defined per state-action pair. This results in the
so-called visitation function. With a slight abuse of notation, we
denote the visitation function zπ and refer to it as the occupancy.

Definition �.�� | visitation (occupancy function)
In a γ-discounted ��� 𝔐T ,T ≤ ∞ with a discrete state-action

��

� A Mathematical
Model of Decision-

Making

space 𝕊 × 𝔸, the (γ-discounted) visitation or occupancy function
zπ of a policy π ∈ ℿ is defined as

zπ(s,a) = Eπ[∑
t∈𝕋 γt ⋅ δSt ,s ⋅ δAt ,a].

Remark �.�
If a state-action pair (s,a) is not permitted, (s,a) ∉ 𝕏, δSt ,s ⋅ δAt ,a
is always equal to zero, and therefore zπ(s,a) = �.

Y Having defined the occupancy measure, we state that the gain J(π)
of any policy π ∈ ℿ can be computed in terms of the occupancy
measure zπ that it induces. This is a well known result formalized
by the following proposition.

Proposition �.�� 2 equivalence
If J(π) is well-defined, then J(π) = ∫𝕊×𝔸 r(s,a) ⋅ zπ(ds,da).Adopted from Lemma �

of Laroche et al. [����].
Y For discrete state-action spaces, we can write

Note that both the
switch to double

summation and the
change of summation

order from 𝔸 to Ap(s)
followed by 𝔸 \Ap(s)

require J(π) to be
well-defined.

J(π) = ∑(s,a)∈𝕊×𝔸r(s,a) ⋅ zπ(s,a) = ∑
s∈𝕊 ∑

a∈𝔸 r(s,a) ⋅ zπ(s,a)
= ∑

s∈𝕊(∑
a∈Ap(s) r(s,a) ⋅ zπ(s,a) + ∑

a∈𝔸 \Ap(s)r(s,a) ⋅ zπ(s,a))
= ∑

s∈𝕊 ∑
a∈Ap(s) r(s,a) ⋅ zπ(s,a).

When the occupancy measure zπ of a policy π is known, we
can use Proposition �.�� to compute the gain J(π). Unfortunately,
we still do not know how to find the occupancy measure for a
given policy. This can be done by solving the following system of
equations known as the flow-conservation recurrence.

Definition �.�� | flow-conserving measure
A measure μ on the measurable space (𝕊×𝔸,ℬ(𝕊×𝔸)) is calledAlternatively, this is

known as the
conservation of mass.

flow-conserving for a γ-discounted infinite-horizon ��� 𝔐∞ if

μ(ds′, 𝔸) = α(ds′) + γ ⋅ ∫𝕊×𝔸 μ(ds,da) ⋅ p(ds′ | s,a).
In particular, if the state-action space 𝕊 × 𝔸 is discrete,Proposition � of Laroche

et al. [ibid.] claims this
result if occupancy

measures are σ-finite
(including simply finite),

which is true by
Lemma �.��.

∑
a′∈𝔸μ(s′,a′) = α(s′) + γ ⋅ ∑

s∈𝕊 ∑
a∈𝔸 μ(s,a) ⋅ p(s′ | s,a).

Proposition �.�� 2 conservation of flow
In a γ-discounted infinite-horizon ��� 𝔐∞, any policy π ∈ ℿ has
a flow-conserving occupancy measure zπ .

��

�.� Finding
Optimal Policies

Remark �.�
By Remark �.�, if the admissible control space 𝕏 is finite, then

∑
a′∈Ap(s′)zπ(s′,a′) = α(s′) + γ ⋅ ∑

s∈𝕊 ∑
a∈Ap(s) zπ(s,a) ⋅ p(s′ | s,a)

and zπ(s, 𝔸′) = � for any 𝔸′ ∈ 𝔸 \Ap(s).
Y Conversely, given an occupancy measure, it can be transformed

into a policy as follows.

Definition �.�� | state occupancy
Given an occupancy measure z(⋅ , ⋅), the state occupancy z(⋅) ∶𝕊 → ℝ+ is the expected γ-discounted number of visits of states:

z(s) ≜ ∫𝔸 z(s,da) = ∑
a∈𝔸z(s,a). (�.��)

Definition �.�� | occupancy-induced policy
Given a stationary infinite-horizon ��� 𝔐∞ with a discrete ad- In the continuous case,

a similar definition
exists but it involves a
Radon–Nikodym
derivative.

missible control space 𝕏 and an occupancy measure z(⋅ , ⋅), the
occupancy-induced policy πz ∈ ℿRS is a stationary policy produced
by the following operator:

πz(a | s) = [𝒵z](a | s) ≜ ⎧{⎨{⎩
z(s,a)
z(s) , if z(s) ≠ �,

arbitrary, otherwise.
(�.��)

Y These definitions assume that the function z is known to be an
occupancy measure of some policy. In fact, this requirement is
not necessary and any function f induces a policy 𝒵f , but the
resulting policy will have an occupancy that is equal to the original
function only in the case established by the following theorem.

Theorem �.�� 2 flow conservation induces policies
Given a stationary infinite-horizon ��� 𝔐∞ with a discrete admissi-
ble control space 𝕏, consider an absolutely-summable non-negative
function f ∈ L�(𝕏), f ≥ �. If the function f is a flow-conserving oc-
cupancy function, then the occupancy function of the policy πf = 𝒵f
induced by the function f is equal to f , zπf = f , and therefore the
function f is an occupancy function.

Y Results similar to Theorem �.�� have been established before for
the special case when the initial state distribution α covers all
states, suppα = 𝕊. For example, this setting was considered by
Puterman [����, Theorem �.�.�] and Lee et al. [����, Section �].
Intuitively, when some of the states are excluded from the initial

��

� A Mathematical
Model of Decision-

Making

distribution, the same result should hold. However, the existing
proof of Puterman [����] involves multiplication by α(s), which
is guaranteed to be non-zero by the assumption suppα = 𝕊. We
do not impose such restriction on the initial state distribution α.
Therefore, Theorem �.�� needs to be proven in a different way;
the proof is presented in Appendix �.�.

Finally, because every absolutely bounded non-negative flow-
conserving function induces a policy and vice versa, the following
result follows.

Corollary �.�� 2 decision rules matter almost everywhere only
Given a stationary infinite-horizon ��� 𝔐∞ with a discrete ad-This result holds for

continuous problems as
well, see Theorem �

of Laroche et al., ����.

missible control space 𝕏, let π ∈ ℿRS be a stationary policy that
induces an occupancy zπ . The policy induced by the occupancy zπ
and the original policy π coincide zπ(⋅)-a.e.

For zπ(⋅)-a.e., see
Definition �.�.

Y This corollary tells us that policies only need to be defined almost
everywhere. Intuitively, this means that if an optimal policy does
not lead to some states, it is irrelevant what the policy does in those
states. Thus, optimal policies—unlike uniformly-optimal ones—areSee Figure �.�, p. ��.
allowed to not “care” about some of states, as long as those states
are not visited. This justifies our choice of the optimality criterion
as opposed to the more commonly used uniform optimality.

�.�.� Linear-Programming Formulation

The results of the previous section allow us to rewrite the policy
optimization problem (�.�) as a linear program. In particular, the
following formulation follows immediately from Theorem �.��.

Corollary �.�� 2 linear programming formulation
Consider a γ-discounted stationary infinite-horizon ��� 𝔐∞. Let
function z⭑ ∶ 𝕏 → ℝ be a solution of the following linear program:

max
z ∈ L�(𝕏) ∑(s,a)∈𝕏 r(s,a) ⋅ z(s,a)

s.t.

∑
a′∈Ap(s′)z(s′,a′) − γ ⋅ ∑(s,a)∈𝕏z(s,a) ⋅ p(s′ | s,a) = α(s′) for all s′ ∈ 𝕊,

y ≥ �,

where L�(𝕏) is the space of absolutely summable measurable func-
tions on 𝕏. Then πz⭑ = 𝒵z⭑ is an optimal policy.See (�.��), p. ��.

Y To simplify further presentation, let us equip the spaces ℝ𝕏
��

�.� Finding
Optimal Policies

and ℝ𝕊 of real-valued functions with inner products ⟨ ⋅ , ⋅ ⟩𝕏 and⟨ ⋅ , ⋅ ⟩𝕊 given by

⟨z, z′⟩𝕏 = ∑(s,a)∈𝕏 z(s,a) ⋅ z′(s,a) and ⟨y, y′⟩𝕊 = ∑
s∈𝕊 y(s) ⋅ y′(s)

for all functions z, z′ ∈ ℝ𝕏 and y, y′ ∈ ℝ𝕊. The objective of the
linear program can be written as ⟨r, z⟩𝕏.

Next, recall the transition operator 𝒯of (�.��) and define the
extension operator 𝒩∶ ℝ̄𝕊 → ℝ̄𝕏 as

[𝒩y](s,a) ≜ y(s) (�.��)

for any function y ∈ ℝ𝕊. While these operators do not appear in
the linear program directly, their adjoints 𝒯∗ and 𝒩∗ do.

Definition �.�� | adjoint operator
Given an operator 𝒴 ∶ 𝕐 → 𝕐′ between complete metric spaces𝕐 and 𝕐′ equipped with inner products ⟨ ⋅ , ⋅ ⟩𝕐 and ⟨ ⋅ , ⋅ ⟩𝕐′ re-
spectively, its adjoint is an operator 𝒴∗ ∶ 𝕐′ → 𝕐 such that

⟨𝒴y, y′⟩𝕐′ = ⟨y, 𝒴∗y′⟩𝕐.

Y Using the definition, the adjoint operators 𝒯∗ and 𝒩∗ are

[𝒯∗y](s′) ≜ ∑(s,a)∈𝕏p(s′ | s,a) ⋅ y(s,a) and [𝒩∗y](s′) ≜ ∑
a′∈Ap(s′)y(s′,a′).

Thus, the linear program of Corrolary �.�� can be written as

JP = max
z ∈ L�(𝕏) ⟨r, z⟩𝕏 (�)

s.t. 𝒩∗z − γ ⋅ 𝒯∗z = α,
y ≥ �.

The problem is in the so-called standard form and therefore it has
the following well-known dual [Puterman, ����, Section �.�.�]:

JD = min
v ∈ L∞(𝕊) ⟨α, v⟩𝕊 (�)

s.t. 𝒩v − γ ⋅ 𝒯v ≥ r. (�.�)

Absolute summability of the dual variables v guarantees that the
dual objective is well-defined for any initial state distribution α.

The dual problem has an interesting property: any feasible
dual variable v is an upper bound on the optimal value v⭑ given by
(�.��), v ≥ v⭑ [ibid., Theorem �.�.� a]. Since the optimal value v⭑

��

itself satisfies the constraint (�.�), it can be found as the solution
to the dual problem (�) [Puterman, ����, Section �.�].

By Proposition �.�� and Corollary �.��, J⭑ = JP. When the ad-See pp. ��, ��.
missible control space is finite, |𝕏| < ∞, the number of constraints
and decision variables are both finite. In this case, the two prob-
lems are known to be strongly dual, that is, JP = JD. Therefore, the
decision-making problem can be solved via either the primal or
the dual program, justifying the value-based approach.

2 . 4 C O U N TA B LY- I N F I N I T E P R O B L E M S

When the admissible control space 𝕏 is finite and the problem
has a finite horizon, the results established in the previous section
hold trivially. Indeed, the reward bounds of Condition �.� exist:

r− = min
t∈𝕋 min(s,a)∈𝕏 rt(s,a) and r+ = max

t∈𝕋 max(s,a)∈𝕏 rt(s,a),
because finite-set extrema always exist. The same is true for the
stationary infinite-horizon case:

r− = min(s,a)∈𝕏 rt(s,a) and r+ = max(s,a)∈𝕏 rt(s,a).
The case of countably-infinite ���s—including non-stationary

infinite-horizon ���s—is fundamentally different. For example,
if the reward r depends linearly on the state s ∈ ℕ, r(s,a) =
c ⋅ s + f (a), then either r− or r+ does not exist, depending on
whether c is negative or positive. In particular, this is true for the
inventory management problem of Section �.�.�, as the holding
costs are proportionate to the stock at hand of the product. In
this section, we discuss this and other problems that arise in
countably-infinite ���s, as well as some of the ways they can be
addressed.

�.�.� Ill-Defined Values

Under the expected γ-discounted total reward criterion, the goal
of the agent is to maximize the expected value J(π) = Eπ[Ψ] of
(�.�). By Remark �.�, it does not have to be well-defined. Similarly,
the reformulation of the problem in terms of value functions vπ
and v⭑ requires the Fubini–Tonelli theorem to hold, as it involvesSee Proposition (�.�),

p. ��. changing the summation index set from the sample space ΩT in
(�.�) to the state 𝕊 and time 𝕋 spaces in (�.�) and Definition �.��.

��

�.� Countably-
Infinite Problems

Why does this problem not arise in the finite case? To answer
this question, let us inspect the value recurrence (�.��):

vπ(s) = rπ(s) + γ ⋅ ∑
s′∈𝕊pπ(s′ | s) ⋅ vπ(s′).

It involves a sum over a finite state set 𝕊. As long as all of the
values are finite, it is absolutely summable. Thus it can be re-
arranged into (�.��), which is also absolutely summable by the same
logic. Because at least one of the rearrangements of summation
in the gains J(π) is absolutely summable, it is well-defined, and
all of these summation rearrangements are possible due to the
Fubini–Tonelli theorem.

When the state space 𝕊 is countably-infinite, the same is not
true anymore. Even when all of the values are finite, the value
recurrence does not have to be absolutely summable. Thus, abso-
lute summability of various sums should be carefully considered
every time the summation order changes are introduced.

�.�.� Infinitely-Many Permitted Actions

Why do we study problems in which the state space 𝕊 can be
infinite, but the action space 𝔸 is always finite? On the surface,
both lead to countably-infinite admissible control spaces 𝕏 = 𝕊×𝔸,
and the distinction may seem unnecessary.

The problem arises when for some state s ∈ 𝕊 there are
infinitely-many permitted actions Ap(s), the action space is no
longer compact and Condition �.� cannot be used to establish
existence of optimal policies.

Moreover, the maximum in (�.��) may not be achieved. Ex- See p. ��.
ample �.� shows such behavior. When the maximum in (�.��) is
replaced with supremum, the policies are no longer guaranteed to
achieve the optimal values v⭑. In this case, a notion of ε-optimal
policies is introduced. Such policies have values vπ that differ
from the optimal value function by no more than ε, ‖vπ −v⭑‖∞ < ε
for some ε > �, but the existence of such policies still needs to be
established based on the particular form of the action space.

For these reasons, we choose to study problems with finite
action spaces only and impose the following condition on the
action space, which is a stronger version of Condition �.�.

Condition �.� | finiteness of permitted actions
For every state s ∈ 𝕊, the set of permitted actions Ap(s) is finite.

��

� A Mathematical
Model of Decision-

Making

�.�.� Unbounded Rewards

If either the lower r− or the upper reward bound r+ does not
exist, we cannot establish that Bellman operators ℒπ and ℒ⭑ are
contractions in the space of bounded functions L∞(𝕊).

In order to establish existence of optimal policies, alternative
conditions on the rewards and transition probabilities are required.
For example, we can assume that there exist variable reward
bounds that are allowed to grow infinitely.

Condition �.� | existence of variable reward bounds
For all states s ∈ 𝕊, actions a ∈ Ap(s), and deterministic MarkovCompare to

Assumptions ��–�� of
Lee et al. [����].

policies π ∈ ℿDM there exist:

• a positive weight function w ∶ 𝕊 → ℝ such that infs∈𝕊 w(s) > �
and the rewards are absolutely bounded by w:

|r| ≤ 𝒩w, that is ∣r(s,a)∣ ≤ w(s); (�.��)

• a one-stage expansion coefficient κ > � such that one-stage γ-
discounted transitions expand w at most by a factor of κ:Inequality of functions

is understood pointwise,
i.e., f ≤ g means that

f (y) ≤ g(y) for any
y ∈ dom f = domg.

γ ⋅ 𝒯πw ≤ κ ⋅ w or equivalently γ ⋅ 𝒯w ≤ κ ⋅ 𝒩w; (�.��)

• a contraction horizon ν ∈ ℕ and a ν-stage contraction coefficient
� ≤ λ < �, such that ν-stage transitions and discounting contract
w at least by a factor of λ:

γν ⋅ 𝒯ν
π w ≤ λ ⋅ w or γν ⋅ (𝒯𝒩∗)ν−�𝒯w ≤ λ ⋅ 𝒩w. (�.��)

Y If this condition holds, the values vπ(s) of any Markov policy are
well-defined, because they can be bounded as follows.

Proposition �.�� 2 variable value bounds
Under Condition �.�, the values vπ of any policy π ∈ ℿRS areAdopted from

Proposition � of Lee
et al. [ibid.].

bounded by

|vπ | ≤ μ ⋅ w, where (�.��)

μ ≜ ⎧{⎨{⎩
ν

�−λ , κ = �,
�

�−λ ⋅ �−κν

�−κ , otherwise.
(�.��)

Remark �.�
Even though Proposition �.�� assumes that the policy is stationary,
π ∈ ℿRS, it holds for all policies π ∈ ℿ as well, as noted by
Puterman [����, p. ���].

��

�.� Countably-
Infinite Problems

Y If the function w grows ad infinitum, vπ does not belong to L∞(𝕊)
and Banach fixed-point theorem cannot be applied.

In some cases, an unbounded problem can be transformed into
a bounded one. For example, we can transform the problem as
follows. Let 𝕊̌ ≜ 𝕊 ∪ {⋄} and define

̌r(s,a) ≜ ⎧{⎨{⎩w−�(s) ⋅ r(s,a), s ∈ 𝕊,
�, s = ⋄,

̌p(s′ | s,a) ≜
⎧{{{{{⎨{{{{{⎩

p(s′ | s,a) ⋅ w(s′)
κ ⋅ w(s) , s ∈ 𝕊, s′ ∈ 𝕊,

� − ∑
s″∈𝕊p(s″ | s,a) = ⋄,

�, s = ⋄, s′ ∈ 𝕊,
�, s = s′ = ⋄,

(�.��)

̌γ ≜ γκ.

The newly added state ⋄ is called the absorbing state, because
once it is reached the environment remains therein.

Equation (�.��) guarantees that the probabilities in the trans-
formed problem are less than one, and the absorbing state � is
added so that they add up to one. The new problem is absolutely
bounded, ‖r‖∞ ≤ �, and it is easy to check that its solution is equiv-
alent to the solution of the original problem. Unfortunately, this
method is only applicable if κ < γ−�, otherwise the new discounting
factor ̌γ is larger than one.

If this problem transformation is not possible, we can define
a different Banach space to which the value functions vπ belong.
We do so by using an alternative norm ‖ ⋅ ‖w.

Definition �.�� | weighted supremum norm
The w-weighted supremum norm ‖ ⋅ ‖w of a function v ∶ 𝕊 → ℝ̄ is
a norm given by

‖v‖w ≜ sup
s∈𝕊 w−�(s) ⋅ ∣v(s)∣. (�.��)

Remark �.�
Equations (�.��) and (�.��) imply each other:

∣vπ ∣ ≤ μ ⋅ w ⇔ ‖vπ‖w ≤ μ.

Y Indeed,

‖vπ‖w = sup
s∈𝕊 w−�(s) ⋅ ∣vπ(s)∣ ≤ μ ⋅ sup

s∈𝕊 w−�(s) ⋅ w(s) = μ

��

� A Mathematical
Model of Decision-

Making

and vice versa, for any state s ∈ 𝕊
∣vπ(s)∣ = w(s) ⋅ w−�(s) ⋅ ∣vπ(s)∣ ≤ w(s) ⋅ sup

s′∈𝕊 w−�(s′) ⋅ ∣vπ(s′)∣
= w(s) ⋅ ‖vπ‖w ≤ μ ⋅ w(s).

In general, for any function u and constant c,

‖u‖w ≤ c ⇔ ∣u(s)∣ ≤ ‖u‖w ⋅w(s) ≤ c ⋅w(s) for all s ∈ 𝕊. (�.��)

Definition �.�� | multi-step contraction
Consider a metric space (𝕐,d). An operator 𝒴 ∶ 𝕐 → 𝕐 is called
a ν-step contraction in the space 𝕐 with respect to the metric d if
there exists a constant � ≤ k < �, such that for any y, y′ ∈ 𝕐

d(𝒴νy − 𝒴νy′) ≤ k ⋅ d(y − y′).
Proposition �.�� 2 fixed points of multi-step contractions
A multi-step contraction 𝒴 ∶ 𝕐 → 𝕐 in a Banach space (𝕐, ‖ ⋅ ‖)Adopted from Theorem

�.��.� of Puterman
[����].

has a unique fixed point if its Lipschitz constant is finite.

Proposition �.�� 2 Bellman operators are ν-step contractions
Let (Lw(𝕊), ‖ ⋅ ‖w) be the Banach space of all real-valued functionsAdopted from

Proposition �.��.�
of Puterman [ibid.].

with finite w-weighted supremum norm ‖ ⋅ ‖w. If Condition �.� holds
for the weight function w, then the Bellman operators ℒπ and ℒ⭑
are ν-step contractions in the space Lw(𝕊). Moreover, their fixed
points vπ and v⭑ exist uniquely in Lw(𝕊).

Y These propositions explain why Condition �.� is used. It contains
the necessary conditions for existence and uniqueness of vπ and
v⭑ in the space Lw(𝕊). Proposition �.�� establishes that the values
belong to the space Lw(𝕊), (�.��) guarantees that the Lipschitz
constants of the Bellman operators are finite, and (�.��) implies
that the Bellman operators are ν-step contractions.

Therefore, in countably-infinite ���s value functions exist
under Condition �.�. As a result, Proposition �.� can be replaced
with the following stronger version applicable even when the
rewards are unbounded.

Proposition �.�� 2 optimality in stationary infinite-horizon ���s
with unbounded rewards
Let Conditions �.� (or �.�) and �.� hold for a stationary infinite-Adopted from Theorem

�.��.� of Puterman
[ibid.].

horizon Markov decision process 𝔐∞ with an infinitly-countable
state space, |𝕊| = ∞. Then there exists a deterministic stationary
policy π ∈ 𝔻 that is optimal.

��

�.� Countably-
Infinite Problems

�.�.� Linear-Programming Formulation

We established the primal linear program from the definition
of the occupancy measure. Since the occupancies are defined
without utilizing the rewards, they do not require the uniform
boundedness assumption in order to exist. Thus, the case of
unbounded rewards admits the same primal formulation (�). The For (�), see p. ��.
resulting linear program is countably infinite, and duality requires
additional considerations.

First, the domains of z and r need to be ⟨ ⋅ , ⋅ ⟩𝕏-dual; similarly,
the domains of v and α must be ⟨ ⋅ , ⋅ ⟩𝕊-dual [Hernández-Lerma
and Lasserre, ����, Section ��.�.�]. This duality is defined as
follows.

Definition �.�� | bilinear form
A function ⟨ ⋅ , ⋅ ⟩ is called a bilinear form on 𝕐 × 𝕐′ if

• the mapping ⟨ ⋅ , y′⟩ is linear on 𝕐 for every y′ ∈ 𝕐′ and
• the mapping ⟨y, ⋅ ⟩ is linear on 𝕐′ for every y ∈ 𝕐.

Definition �.�� | dual spaces
Consider a tuple (𝕐, 𝕐′, ⟨ ⋅ , ⋅ ⟩) of spaces 𝕐 and 𝕐′ equipped with
a bilinear form ⟨ ⋅ , ⋅ ⟩ on 𝕐 × 𝕐′. The pair of spaces (𝕐, 𝕐′) is
called ⟨ ⋅ , ⋅ ⟩-dual or simply dual, if the bilinear form separates
them, that is,

• for all y ≠ � in 𝕐 there exist y′ ∈ 𝕐′ such that ⟨y, y′⟩ ≠ � and
• for all y′ ≠ � in 𝕐′ there exist y ∈ 𝕐 such that ⟨y, y′⟩ ≠ �.

In the uniformly bounded case, the domain of the reward When the bilinear form⟨ ⋅ , ⋅ ⟩ is the inner
product on ℝ𝕐, the
spaces Lp(𝕐,μ) and
Lq(𝕐,μ) are dual if p
and q are Hölder
conjugates, i.e.,
�/p + �/q = �. When
p = ∞ and q = � this is
not generally true, but it
is true for the counting
measure.

function r is the space L∞(𝕏) of absolutely bounded functions,
and its dual is the space of absolutely summable functions L�(𝕏),
which is indeed the domain of the primal variable z. Similarly, the
domains of the initial state distribution α and the dual variable v
are L�(𝕊) and L∞(𝕊), and they are dual as well.

In the unbounded case, however, the domains of the reward
function r and the dual variable v are different. By Condition �.�
and Proposition �.�� they are

L𝒩w(𝕏) ≜ {y ∈ ℝ𝕏 ∣ ‖y‖𝒩w < ∞} and
Lw(𝕊) ≜ {y′ ∈ ℝ𝕊 ∣ ‖y′‖w < ∞}, with duals

L𝒩w∗ (𝕏) ≜ {y ∈ ℝ𝕏 ∣ ⟨y, 𝒩w⟩𝕏 < ∞} and
Lw∗(𝕊) ≜ {y′ ∈ ℝ𝕊 ∣ ⟨y′,w⟩𝕊 < ∞}

��

[Hernández-Lerma and Lasserre, ����, p. ���]. Therefore, the
primal variables z and the initial state distribution α should belong
to the spaces L𝒩w∗ (𝕏) and Lw∗(𝕊) instead of L�(𝕏) and L�(𝕊)
respectively.

The space L𝒩w∗ (𝕏) is a subset of L�(𝕏), L𝒩w∗ (𝕏) ⊆ L�(𝕏),The reverse does not
have to be true.
Consider 𝕊 = ℕ,𝔸 = {a�}, and

y(s,a) = �/s�. Because‖y‖� = π� < ∞,
v ∈ L�(𝕏). For

w(s) = � + s, ⟨y, 𝒩w⟩𝕏
diverges and

v ∉ L𝒩w∗ (𝕏). In general,
L�(𝕏) and L𝒩w∗ (𝕏) do

not coincide.

because

⟨y, 𝒩w⟩𝕏 = ∑(s,a)∈𝕏∣y(s,a)∣ ⋅ w(s) ≥ ∑(s,a)∈𝕏∣y(s,a)∣ ⋅ inf
s′∈𝕊 w(s′) ≥ ‖y‖� ⋅ w�

and therefore finiteness of ⟨y, 𝒩w⟩𝕏 implies that ‖y‖� is also
finite. The same argument applies mutatis mutandis to show that

Mutatis mutandis means
“once the necessary
changes have been

made.”

Lw∗(𝕊) ⊆ L�(𝕊).
In general, the initial state distribution α is not guaranteed

to belong to the space Lw∗(𝕊). Therefore, the following condition
needs to be imposed.

Condition �.� | finiteness of w-weighted initial distribution
The initial state distribution α satisfies ⟨α,w⟩𝕊 < ∞.

Condition �.� is also
used by Lee et al. [����].

Y Since z is a decision variable in the optimization problem, we can
assert that z ∈ Lw∗(𝕊). in the definition of the primal program. At
the same time, by Theorem �.��, z ∈ L�(𝕏). Is it possible that by
restricting the search space to L𝒩w∗ (𝕏) we exclude some of the
feasible occupancy measures? The following lemma alleviates this
concern.

Lemma �.�� 2 feasible region embedding
Under Conditions �.�, �.�, and �.�, the feasible region of the primal
program (�) is a subset of the space L𝒩w∗ (𝕏) of functions withFor (�), see p. ��.
finite w-weighted supremum norm ‖ ⋅ ‖w.

Y The proof is presented in Appendix �.�.
Next, duality requires the operator 𝒞∗ ≜ 𝒩∗ −γ ⋅𝒯∗ describing

the constraints to be weakly continuous [Hernández-Lerma and
Lasserre, ����, p. ���], that is, the adjoint operator 𝒞 must map
Lw(𝕊) to L𝒩w(𝕏). In our case, this means that ‖v‖w < ∞ should
imply ‖𝒩v − γ ⋅ 𝒯v‖𝒩w < ∞.

This holds trivially from the triangle inequality and (�.��).See p. ��.

Unlike the finite case, countably-infinite linear programs do
not have to be even weakly dual (JP ≤ JD) in general [Romeijn, R. L.
Smith, and Bean, ����; Ghate and R. L. Smith, ����]. Interestingly,
if strong duality cannot be established, this implies that the dual

��

�.� Countably-
Infinite Problems

approach that involves the value functions may not return an
optimal policy. Fortunately, for this pair of programs strong duality
holds as per the following theorem.

Theorem �.�� 2 duality in countably-infinite ���s
Consider a stationary ��� 𝔐T with countably-infinite state space𝕊 such that Condition �.� holds (that is, the admissible control
space 𝕏 is finite).

If the rewards can be uniformly bounded, that is, if Condition �.�
holds, the ��� 𝔐T can be solved via a dual pair of linear programs
(�) and (�). For (�) and (�), see p. ��.

If the rewards are unbounded but Conditions �.� and �.� hold,
it is equivalent to the following pair of dual countably-infinite linear
programs.

JP = max
z ∈ L𝒩w∗ (𝕏) ⟨r, z⟩𝕏 (��-�)

s.t. 𝒩∗z − γ ⋅ 𝒯∗z = α,
y ≥ �.

JD = min
v ∈ Lw(𝕊) ⟨α, v⟩𝕊 (��-�)

s.t. 𝒩v − γ ⋅ 𝒯v ≥ r.

In both cases, the problems are strongly dual, that is, J⭑ = JP = JD.

Proof. The dual linear-programming formulation and strong dual-
ity are proven by Lee et al. [����] under Conditions �.�, �.�, and �.�
for absolutely summable primal variable z ∈ L�(𝕏) and an initial
distribution α with full support, suppα = 𝕊.

By Lemma �.��, the domain change for the primal variable
does not affect its solution and does not affect strong duality.

Lee et al. [ibid.] consider universally optimal policies only. Full
support of the initial distribution α ensures that occupancies of
policies 𝒵z induced by the primal variable z have full support
as well. By Corollary �.�� this guarantees universal optimality.
When universal optimality requirement is relaxed, the same proof
applies ceteris paribus. Ceteris paribus means

“all other things
unchanged.”

The special case of uniformly bounded rewards follows trivially
from the unbounded one by letting the weight function w be
constant. It is also proven by Ghate [����]. ���

Y The proof shows that Theorem �.�� closely resembles Theorems �
and � of Lee et al. [����] but does not assume full support of

��

� A Mathematical
Model of Decision-

Making

the initial distribution α. Other similar formulations can be found
in the literature. Most authors do not impose Condition �.� and
seek universally-optimal policies. Hernández-Lerma and Lasserre
[����] show that in this case weak duality holds under minor
additional assumptions. Altman [����, Chapters � and �] imposes a
different condition on the value function and considers constraint
���s. Ghate and R. L. Smith [����] consider non-stationary
problems which are a subclass of countably-infinite ���s as per
Lemma �.�. Ghate [����] proves strong duality for uniformly
bounded problems.

Theorem �.�� differs from all of these enough to be considered
on its own; it can be used to find optimal policies instead of
universally optimal ones, and constraints the domain of the primal
variable z to a smaller space L𝒩w∗ (𝕏).
�.�.� Inventory Management (Revisited)

To illustrate how the theory presented in this chapter can be used
in practice, let us revisit the multi-product inventory management
problem of Section �.�.�. In this problem, a warehouse managerSee p. �.
needs to make decisions about placing orders for a selection of
products based on the current stock at hand.

Problem definition

Let us assume that there are n different products in the inventory
management problem of Section �.�.�. In this case, the state space
is 𝕊 ≜ ℕn

� and each state s = [s�, s�, … , sn−�]⊤ is a vector of length
n with elements si corresponding to the inventory of each product.

Having observed the inventory at the beginning of the month,
the warehouse manager places an order telling how much of each
product needs to be shipped to the warehouse. The shipment size
is restricted by some measurement M , for example, the volume of
a truck, or maximum weight. The action space 𝔸 ⊆ ℕn

� includes
all of the combinations of products with the total measurement
adding up to M . Assuming that a unit of the i-th product has a
measure of mi , the action space is given byThe inner product ⟨x, y⟩

is defined as ∑n−�
i=� xi ⋅ yi .

It is also equivalent to
the matrix product x⊤y. 𝔸 ≜ {a = [a�,a�, … ,an−�] ∈ ℕn

� ∣ ⟨m,a⟩ ≤ M}. (�.��)

All actions are permitted, Ap(s) = 𝔸 for all s ∈ 𝕊.
The total demand Di for each product i during the month t

is a random variable with the probability mass function pd,i(x).
Additionally, we let qd,i(x) denote the probability that the demand

��

�.� Countably-
Infinite Problems

for the product i is at least x,

pd,i(x) ≜ Pr[Di = x] and qd,i(x) ≜ Pr[Di ≥ x] =
∞
∑
y=x

pd,i(y).
We assume that the expected demand for each product is finite,

di = E[Di] =
∞
∑
j=�

j ⋅ pd,i(j) < ∞.

Knowing the initial inventory St,i , the demand Dt,i and the
ordered amount At,i of each product, we can compute the inventory
at the beginning of the next decision epoch St+�,i as

St+�,i = max{�,St,i + At,i − Dt,i}.
From this, the marginal probabilities pi(s′

i | si ,ai) of having an
inventory of si units of the product i at the beginning of the
month, ordering ai units more and having s′

i units at the end of
the month are equal to

pi(s′
i | si ,ai) =

⎧{{⎨{{⎩
�, if s′

i > si + ai ,
pd,i(si + ai − s′

i), if si + ai ≥ s′
i > �,

qd,i(si + ai), otherwise (s′
i = �). (�.��)

We assume that the demands Di are independent from each other. When the demands for
each product are
interdependent, the
transition probabilities
p(s′ | s,a) need to be
explicitly defined.

In this case, we can compute the joint transition probabilities from
the marginals as

p(s′|s,a) ≜ n−�
∏
i=�

pd,i(s′
i | si ,ai). (�.��)

Finally, we need to define the rewards of the problem. For any
state-action pair (s,a) the expected immediate reward r(s,a) is
given by

r(s,a) ≜ G(s,a) − H(s,a) − O(a), (�.��)

where G ∶ 𝕊 × 𝔸 → ℝ+ is the expected revenue (in other words,
gain), H ∶ 𝕊 × 𝔸 → ℝ+ is the holding cost, and O ∶ 𝔸 → ℝ+ is
the ordering cost.

The expected revenue depends on the prices of the products c
and the expected sales g(u) when the stock including the order is
equal to u = s + a units:

g(ui) ≜ ui−�

∑
j=�

j ⋅ pd,i(j) + ui ⋅ qd,i(ui) and G(s,a) ≜ ⟨c,g(s + a)⟩,
��

� A Mathematical
Model of Decision-

Making

where the expected sales function g(s+ a) is applied elementwise.
The holding cost H also depends on the number of units in

stock s + a and is equal to

H(s,a) ≜ ⟨h, s + a⟩, (�.��)

where h is a vector of holding costs per unit of each product.
Finally, the ordering cost O includes a fixed component of that

has to be paid if an order is placed, and a variable component
with ordering costs per unit given by a vector ov:

O(a) ≜ ⎧{⎨{⎩of + ⟨ov,a⟩, if any ai > �,
�, otherwise.

(�.��)

Finally, the initial state distribution α is known to the decision-
maker. Thus, the multi-product inventory management problem
is fully defined by a tuple

(n,M ,m, pd, c,h,ov,of,α)
that defines an ��� 𝔐∞ via 𝕊 = ℕn

�, (�.��), (�.��), and (�.��).

Reward bounds

The multi-product inventory management problem is interesting
to us because of the following property.

Lemma �.�� 2 unbounded rewards in inventory management
If at least one holding cost hi is positive, there exists no uniform
reward bound in the multi-product inventory management problem:

sup(s,a)∈𝕏∣r(s,a)∣ = ∞.

Y The proof of this lemma is presented in Appendix �.�. The fact
that no uniform bound on the rewards exists means that the opti-
mal values no longer belong to the space of uniformly bounded
functions L∞(𝕊) and Proposition �.�� cannot be used to establish
existence and uniqueness of a solution to the problem. Neverthe-
less, a weight function w of Condition �.� still exists.

Lemma �.�� 2 weight function in inventory management
In the multi-product inventory management problem, let CG , CO, and
CH denote the expected revenue when the inventory is infinite, the
maximum cost of placing an order and holding it, and the maximum
cost of holding an order.

CG ≜⟨c,d⟩ for all (s,a) ∈ 𝕏, (�.��)

��

�.� Conclusion

CO ≜of + M ⋅ max
�≤i<n

hi + ov,i
mi

, (�.��)

CH ≜M ⋅ max
�≤i<n

hi
mi

. (�.��)

If the expected demands d are finite, then Condition �.� is satisfied
with the weight function w, the one-stage expansion coefficient κ,
the contraction horizon ν and the ν-stage contraction coefficient λ
given by

w(s) ≜ ⟨h, s⟩ + w�, κ ≜ γ ⋅ (� + C),
ν ≜ ⎧{⎨{⎩

�, if κ < �,⌊W−�(C−�γ�/C ln γ)
ln γ − �

C ⌋ + �, if κ ≥ �,
λ ≜ γν ⋅ (� + Cν),

where w� = max{CG,CO}, C ≜ CH/w�, and Wk is the k-th branch
of the Lambert �-function.

The Lambert �-function
Wk(z) is a multifunction
that gives the solutions
of Wk(z) ⋅ eWk(z) = z,
with each branch k
yielding a different
solution. It cannot be
expressed in terms of
elementary functions.
Nevertheless, it can be
evaluated numerically
and is available in most
scientific programming
packages, such as scipy.

Y The proof of Lemma �.�� can be found in Appendix �.�. Note that
the values of w, κ, ν, and λ do not take into account the transition
probabilities and can be used for any demand distribution. When
the exact form of the probability transition function is known, it
may be possible to find smaller values.

The existence of a weight function w allows us to establish
strong duality in the multi-product inventory management problem
by Theorem �.��.

2 . 5 C O N C LU S I O N

While strong duality is an important theoretical property, nei-
ther of the dual countably-infinite problems can be solved di-
rectly. In order to be solved, problems with countably-infinite
state spaces require development of specialized algorithms. In the
following two chapters we present such algorithms: one for non-
stationary infinite-horizon problems, and another for the problems
with countably-infinite state spaces.

��

3
The Infinite-Horizon

Non-Stationary Model

Let not the future trouble you; for you
will come to it, if come you must, bearing
with you the same reason which you are
using now to meet the present.

— Marcus Aurelius Antoninus,
Meditations VII · 8

Translated by A. S. L. Farquharson

I� ���� �������, we consider the problem of decision-making This chapter is based on
the article published in
the Proceedings of the
Twenty-Ninth
International Conference
on Automated Planning
and Scheduling
[Neustroev, de Weerdt,
and Verzijlbergh, ����].

Some changes were
made to the text
compared to the
published version. First,
the notation was
updated to be consistent
with the rest of the
thesis. Second, the
preliminary results were
moved to Chapter �.
Third, the theoretical
results were given more
rigorous proofs using
the results of Chapter �.
Finally, some of the text
was edited to improve
readability after the
other changes. Major
changes are discussed in
the margin notes.

in infinite-horizon non-stationary Markov environments. This
problem is notoriously difficult due to its infinite dimensional-

ity. At the same time, only the optimality of the initial action is
of importance to the decision-maker: once it has been identified,
the procedure can be repeated to generate a plan of arbitrary
length. The optimal initial action can be identified by finding a
time horizon so long that data beyond it has no effect on the initial
decision. This horizon is known as a solution horizon and can be
discovered by considering a series of truncations of the problem
until a stopping rule guaranteeing initial decision optimality is
satisfied. This chapter presents such a stopping rule for problems
with unbounded rewards. Given a candidate policy, the rule uses
a mathematical program that searches for other possibly optimal
policies with different initial actions. If no better initial action can
be found, the candidate action is deemed optimal.

3 . 1 I N T R O D U CT I O N

While infinite-horizon stationary discounted ���s are the most
commonly employed models of sequential decision-making un-
der uncertainty, they rely on a crucial but sometimes unrealistic
assumption: the data of the problem must remain constant. In
order to incorporate possible temporal changes of the data in
the decision-making model, non-stationary (sometimes also called
non-homogeneous) ��� must be considered.

In this chapter, we study infinite-horizon discounted non-sta-
tionary ���s with finite admissible control spaces. Corollary �.�
establishes that for such ���s there exists an optimal policy that
is deterministic and Markovian but not necessarily stationary. This
means that optimal decision rules may differ between time steps.
Because there are infinitely many time steps, infinite-horizon non-
stationary ���s are infinitely-dimensional optimization problems
by their nature. This means that standard solution methods (for
example, value iteration and policy iteration) require an infinite
number of calculations.

�.�.� Truncations and Solution Horizons

To overcome the innate computational hurdle of infinite-dimension-
ality, a non-stationary ��� can be approximated by a finite-time

��

��� known as a truncation. Ghate [����] provides a broad surveySee Definition �.�, p. ��.
of such methods.

A typical approach is to use a rolling-horizon procedure [Sethi
and Sorger, ����]. At each time step the original infinite-horizon
problem is truncated to a chosen time horizon, known as a study
horizon, the truncation is solved, and the first decision is made
based on this solution. The process is then repeated whenever
another decision has to be made. While this approach is com-
putationally feasible, it can lead to sub-optimal decisions, as the
truncation discards some of the data. Thus, it is important to
identify a study horizon that is guaranteed to give the same initial
decision as the infinite-horizon problem. If such a horizon exists,
it is known as a solution horizon [Bès and Sethi, ����].

Due to unpredictability of future data and reduced computation
time for smaller truncations, the decision-maker is often interested
in a solution horizon that is as short as possible. The standard
procedure for discovering such a horizon is to construct a series
of longer and longer truncations until a certain condition is met.
This condition, called a stopping rule, must guarantee that the last
considered study horizon is a solution horizon.

Several stopping rules have been proposed in the literature
[Hopp et al., ����; Bès and Lasserre, ����; Hernández-Lerma and
Lasserre, ����; Cheevaprawatdomrong, Schochetman, et al., ����].
Most of them assume that the rewards are uniformly bounded,
and explicitly use these bounds. While uniform bounds are easy to
work with, they can be very loose, providing inaccurate estimatesE.g., consider a problem

where most of the
rewards are not

exceeding �, except for a
single state with rewards

bounded by ���.
Uniform bound of ��� is
too loose for most of the

rewards.

of the data in the future states of the model. Moreover, for some
problems the boundedness assumption may not hold at all.

Therefore, our goal is to develop a method applicable to non-
stationary problems with unbounded rewards. In this chapter,
we propose a new stopping rule for infinite-horizon discounted
non-stationary ���s with unbounded rewards. Our rule searches
for alternative optimal initial decisions among the feasible problem
truncations; if no such decision exists, the initial decision is deemed
optimal, and the current horizon is a solution horizon. We show
how the stopping rule can be implemented and demonstrate that
it is able to find shorter solution horizons than existing methods.

�.�.� Previous Work

Chand et al. [����] provided an exhaustive review of literature on
horizon methods. It shows that the majority of research in this

��

area focuses on deterministic problems: of more than two hundred
papers reviewed, less than a third used stochastic models. Stochastic models

include—but are not
limited to—���s.

The most common approach is to exploit the cost (or re-
ward) properties of a particular problem, both in deterministic and
stochastic cases. Two most commonly used properties are con-
vexity [R. L. Smith and Zhang, ����; Cheevaprawatdomrong and A function f ∶ ℝn → ℝ

is convex if
f (a ⋅ x + (� − a) ⋅ y) ≤
a ⋅ f (x) + (� − a) ⋅ f (y)
for any vectors x, y, and
constant � ≤ a ≤ �.

R. L. Smith, ����] and supermodularity [Nair, ����; Cheevaprawat-

A function f ∶ ℝn → ℝ
is supermodular if
f (x∨ y) + f (x∧ y) ≥
f (x) + f (y) for all
vectors x, and y;∨ and ∧ stand for
componentwise maxima
and minima respectively.

domrong, Schochetman, et al., ����]. For example, Nair [����]
considered an investment problem under technological change.
The proposed method assumes that future technologies will gener-
ate higher revenues than the current ones. While this assumption
is not restrictive in the particular setting, such monotonically
improving environment may not exist for other problems.

In the context of ���s, Bès and Lasserre [����] proposed a
rolling-horizon procedure and a stopping rule based on the reward
differences. Their stopping rule is elegantly simple: an initial
decision is deemed optimal if it outperforms all other possible
decisions by a given threshold. This threshold is chosen so as to
guarantee that no matter what policy is employed after the solution
horizon, the difference is outweighed by the initial decision. This
method was later extended to the case of ���s with Borel state
spaces [Hernández-Lerma and Lasserre, ����].

Ergodic properties of the underlying Markov chains may be Ergodic means related
to the recurrence of
states. It comes from
Greek έργο for work and
οδός for way.

used as a source of solution horizons as well. For example, Hopp
[����] suggested the following stopping rule. For a given study
horizon, approximate all of the future discounted rewards with
some constants, known as salvage values. If for all feasible salvage
values the resulting problems result in the same optimal initial de-
cision, that decision must be optimal to the original infinite-horizon
problem as well. Feasibility of the salvage values is established
by bounding their spans using an ergodicity coefficient for dis-
counting. The resulting space of possible salvage values forms
a polyhedron, and linear programming can be used to solve the
resulting problem [Bean et al., ����].

Another linear-programming based method for solving non-
stationary ���s was proposed by Ghate and R. L. Smith [����].
Even though their method addresses a slightly different problem
and thus does not involve stopping rules, it provides useful insights
on the linear-programming formulations of non-stationary ���s. A span ‖ ⋅ ‖◊ is a

seminorm given by‖ f ‖◊ ≜ sup f − inf f .
Virtually all of the stopping rules require uniform bounds on the

rewards (or their spans); the unbounded case remains relatively

��

� The
Infinite-Horizon
Non-Stationary

Model

untreated. Cheevaprawatdomrong, Schochetman, et al. [����]
provided a possible remedy, but necessarily introduced a different
set of assumptions. To address this gap, we propose a modification
of Hopp’s stopping rule based on the results of Puterman [����]
and Lee et al. [����] for countable-state ���s. We implement it
using a modification of the linear programming method of Bean
et al. [����]. This modification is based on varying bounds instead
of the uniform ones, resulting in better and faster approximations.

3 . 2 M O D E L A S S U M P T I O N S

The results of this chapter rely on the following four assumptions.In the published text,
these assumptions were
mentioned throughout
different sections. We

collect them together to
highlight the class of

problems that is
considered in this

chapter.

Assumption �.� | weight function is known
A weight function w ∶ 𝕊 × 𝕋 → ℝ+ of Condition �.� is given to
the agent along with its parameters κ, λ, and ν.

Assumption �.� | finiteness of the admissible control space
The admissible control space 𝕏 is finite, |𝕏| < ∞.

Assumption �.� | initial state is known
The initial state sα ∈ 𝕊 is observed by the agent, that is,

α(s) = δs,sα
for all states s ∈ 𝕊 and a given state sα ∈ 𝕊.

Assumption �.� | optimal initial decision rule is unique
All optimal policies π⭑ ∈ ℿDM have the same initial decision rule
a⭑,α, π⭑,�(a | s) = δa,a⭑,α

for all (s,a) ∈ 𝕏.

Y Assumption �.� is required for an optimal policy to be well-defined.
Assumption �.� guarantees that the only infinite dimension of the
problem is time and is useful because it makes the problem data
that appears up to any decision epoch is guaranteed to be finite.
Assumption �.� holds in practice because the agent makes the
initial decision after the initial state is observed; moreover, thisSee Figure �.�, p. ��.
assumption implies that Condition �.� holds independent of the
weight function w. Finally, Assumption �.� is required so that theCondition �.� becomes

w(sα) < ∞. optimal initial decision exists uniquely. It is the most restrictive of
the assumptions that cannot be checked a priori, but it holds for
may problems nevertheless.

��

�.� The Dual
Formulation

3 . 3 T H E D UA L F O R M U L AT I O N

Using Definition �.�� and Lemma �.�, a non-stationary ��� 𝔐∞
can be converted to a problem with a countably-infinite state space𝕊̃ = 𝕊 × 𝕋. Assumptions �.� and �.� guarantee that the conditions
of Theorem �.�� hold. Thus, under these assumptions the problem𝔐∞ is equivalent to a pair of strongly dual programs (��-�) and
(��-�). When translated from the countably-infinite formulation For (��-�) and (��-�),

see p. ��.back to the non-stationary formulation, these programs become

The original
presentation used
arbitrary constants
βt > � instead of αt
[Neustroev, de Weerdt,
and Verzijlbergh, ����].
This is because we
considered
uniformly-optimal
policies only. By
Theorem �.�� this is not
necessary. Therefore, we
opt for the simpler
version of the linear
program; this change
does not affect any of
the results and makes
the presentation more
consistent throughout
the thesis.

max
z ∈ L𝒩w∗ (𝕏̃) ∞

∑
t=�

⟨rt , zt⟩𝕏
s.t. 𝒩∗z� = α�,𝒩∗zt+� − γ ⋅ 𝒯t,∗zt = αt+� for all t ∈ ℕ�,

zt ≥ � for all t ∈ ℕ�.

min
v ∈ Lw(𝕊̃) ∞

∑
t=�

⟨αt , vt⟩𝕊
s.t. 𝒩vt − γ ⋅ 𝒯tvt+� ≥ rt for all t ∈ ℕ�.

Here αt(s) ≜ ̃α(s, t) is the initial augmented-state distribution.
These programs can be simplified as follows.
First, because the decision-making process always starts at

time step zero, it is easy to see that α� = α and αt = � for any
t ∈ ℕ. Moreover, under Assumption �.�, only one element of α� is
non-zero, and the dual objective function becomes simply z�(sα).

Next, under Assumption �.� each of the functions rt , zt , α,, vt ,
and wt belongs to a space of measurable functions with a finite
domain 𝕏 or 𝕊 equipped with the counting measure #. These
spaces are homeomorphic to vector spaces of dimensions |𝕏| and|𝕊|; additionally, the bilinear forms ⟨ ⋅ , ⋅ ⟩𝕐, 𝕐 ∈ {𝕊, 𝕏} coincide
with the dot products. Therefore, we can replace these functions
with vectors Total orders on the

spaces 𝕊 and 𝕏 are
required to know how
the indexing within
vectors is done. For
finite sets, this can be
done arbitrarily.

rt ≜ [rt(s,a)](s,a)∈𝕏, zt ≜ [zt(s,a)](s,a)∈𝕏,
α ≜ [α(s)]s∈𝕊, vt ≜ [vt(s)]s∈𝕊, wt ≜ [wt(s)]s∈𝕊

after equipping the state space 𝕊 and the admissible control space𝕏 with some total orders. The operators 𝒯t and 𝒩 are linear
and therefore in the vector reformulation they can be written as|𝕏| × |𝕊| matrices

Tt = [pt(s′ | s,a)](s,a)∈𝕏, s′∈𝕊 and N = [δs,s′](s,a)∈𝕏, s′∈𝕊.

��

By definition, the adjoints of linear operators with respect to dot
products are simply transposed matrices T⊤

t and N⊤.
Finally, the domains L𝒩w∗ (𝕏̃) and Lw(𝕊̃) of the primal and dualIn the original

presentation, the
domains were still

expressed in terms of
the functions z and v

instead of the vectors zt
and vt . The new

presentation is more
rigorous.

variables z and v need to be expressed in terms of the vectors zt
and vt . They can be written as the following additional constraints:

a⊘ b stands for the
Hadamard (i.e.,

elementwise) quotient of
vectors a and b.

∞
∑
t=�

w⊤
t N⊤zt < ∞ and sup

t∈ℕ�

‖vt ⊘wt‖∞ < ∞. (�.�)

Therefore, the problem can be equivalently written as:

max
zt ∈ ℝ|𝕏|

∞
∑
t=�

r⊤t zt (��-�)

s.t. N⊤z� = α,
N⊤zt+� − γ ⋅ T⊤

t zt = ߿ for all t ∈ ℕ�,
zt ≥ ߿ for all t ∈ ℕ�,

∞
∑
t=�

w⊤
t N⊤zt < ∞;

min
vt ∈ ℝ|𝕊| α⊤v� = v�(sα) (��-�)

s.t. Nvt − γ ⋅ Ttvt+� ≥ rt for all t ∈ ℕ�, (��-�.�)
sup
t∈ℕ�

‖vt ⊘wt‖∞ < ∞. (��-�.�)

By Theorem �.��, the dual programs (��-�) and (��-�) exhibit
strong duality. Moreover, the following properties hold.

Proposition �.� 2 existence of an optimal Markovian policy
There exists a feasible solution to (��-�) such that for all t ∈ ℕ�Adopted from Theorems

� and � of Lee et al.
[����].

and s ∈ 𝕊 there exists exactly one a for which zt(s,a) > � and
zt(s,a′) = � for all a′ ≠ a. The Markovian policy π that uses these
actions is an optimal policy.

Definition �.� | advantages
The inverse slack in (��-�.�) is called the reduced cost [ibid.] orThe slack of an

inequality is the
difference between its

sides.

advantage of state-action pair (s,a) at time t. We denote it as
ηt(s,a). Vectorized advantages ηt can be expressed as

ηt ≜ rt − Nvt + γ ⋅ Ttvt+�. (�.�)

Y Advantage ηt(s,a) of an action a represents the benefit of taking
action a over the optimal action and is always non-positive for
any feasible solution of the dual problem. Moreover, there exists
a useful lower bound, as shown by the following lemma.

�.� The Dual
Formulation

Lemma �.� 2 advantage bounds
For any feasible combination of dual variables vt , the advantages
given by (�.�) are bounded by

−ht ≤ ηt ≤ ,߿ where ht ≜ (� + μ + γκμ) ⋅ Nwt .

Proof. The upper bound follows from the constraints (��-�.�).
The lower bound is derived using equations (�.��), (�.��), and
(�.��), and (�.�):

ηt = rt − Nvt + γ ⋅ Ttvt+�

≥ −Nwt − μ ⋅ Nwt − γκμ ⋅ Nwt = −ht . ���

Proposition �.� 2 complementary slackness
If zt and vt , t ∈ ℕ� are solutions of the programs (��-�) and Adopted from Theorems

�, � and � of Lee et al.
[ibid.].

a⊙ b stands for the
Hadamard (that is,
elementwise) product of
vectors a and b.

(��-�), then the complementary slackness holds:

zt(s,a) ⊙ ηt(s,a) = ,߿ for all t ∈ ℕ�.

�.�.� Problem Truncation

The countably-infinite linear-programming formulation is useful
for analyzing mathematical properties of non-stationary problems.
At the same time, it cannot be solved directly, because that requires
infinite computations. For example, consider the dual program
(��-�). To find v� one needs to know v�, which in turn requires
v�, and so on ad infinitum. On the other hand, if at least one of
the future value vectors vT+� is known, all of the previous values
vT , vT−�, … , v� can be computed in finite time.

This observation provides one of the ways to address the
infinite dimensionality that is used for problems with uniformly
bounded rewards. If the future values vT+� are replaced with a
vector u, the problem becomes finite. Even if the approximation
u is bad, the Bellman operator ℒπ is a contraction in bounded
problems, which means that each time it is applied to find a
preceding value vector, the resulting values get closer to the fixed
point, that is, the true values. When the horizon T is sufficiently
large, the initial values of the approximation will be close to those
of the original problem. This observation leads to the following
program.

Definition �.� | truncation and salvage vector
A T-truncation of the problem (��-�) with salvage vector u is the

��

� The
Infinite-Horizon
Non-Stationary

Model

following linear program:

minv�,… , vT
α⊤v� = v�(sα) (��-�-���)

s.t. Nvt − γ ⋅ Tvt+� ≥ rt � ≤ t < T ,
NvT − γ ⋅ Tu ≥ rT .

Remark �.�
The constraint ��-�.� is no longer required because it holds
trivially when the time domain is finite.

Y The definition of truncation involves only one salvage vector u.
However, if we choose to consider truncations of different lengths,
we may want to use different salvage vectors ut at different time
steps t. To address this, instead of a single salvage vector u, we
introduce a salvage function u. If u ∈ Lw(𝕊) the solutions of
these truncations will be feasible solutions of the original problem
(��-�).

Given such a function u, we obtain a series of truncations with
different salvage vectors uT+� ≜ [uT+�(s)]s∈𝕊 at different study
horizons T .

To analyze the truncations, we use a new Bellman operator.

Definition �.� | (u,T)-truncated Bellman operators
The (u,T)-truncated Bellman operator ℒπ,u,T ∶ ℝ̄𝕊 → ℝ̄𝕊 un-
der policy π and the (u,T)-truncated optimal Bellman operatorℒ⭑,u,T ∶ ℝ̄𝕊 → ℝ̄𝕊 are given by:

[ℒπ,u,Tvt](s) ≜ ⎧{{⎨{{⎩
rπ,t(s) + γ ⋅ [𝒯π,tvt+�](s), t < T ,
rπ,t(s) + γ ⋅ [𝒯π,tut+�](s), t = T ,
ut(s), t > T .ℒ⭑,u,Tv ≜ sup

π∈𝔻 ℒπ,u,Tv.

Y For any salvage function u ∈ Lw(𝕊), both operators are multi-
stage contractions, therefore, they have unique fixed points by
Proposition �.��. We denote these points as vπ,u,T and v⭑,u,T , and
their vectors of their values at time t as vπ,u,T ,t and v⭑,u,T ,t . By
properly choosing a salvage function u, we can obtain convergent
upper or lower bounds on v⭑,t using the following proposition.

Proposition �.� 2 optimal value bounds
If there exist functions u− and u+ in Lw(𝕊) such that ℒπ,u,Tu− ≥ u−Adopted from

Corollary �.��.��
of Puterman [����]

and ℒπ,u,Tu+ ≤ u+ for all π ∈ 𝔻, then

v⭑,u−,T ,t ≤ v⭑,u−,T+�,t ≤ v⭑,t ≤ v⭑,u+,T+�,t ≤ v⭑,u+,T ,t .

��

�.� A Stopping
Rule

Definition �.� | value-bounding functions and approximations
Functions u− and u+ of Proposition �.� are called lower and upper
value-bounding functions; the values v⭑,u−,T ,t and v⭑,u+,T ,t are called
lower and upper value approximations respectively.

Y Any function u+ of Proposition �.� provides an upper bound on op-
timal value function v⭑, and thus the operator ℒπ,u,T can be used
in linear formulation for the approximated problem (��-�-���)
the same way as ℒπ is used in the original problem (��-�). The
optimal values v⭑,u,T ,t are equal to ut if t > T . The constraints
beyond the horizon T will become vt −ut ≥ �, and can be discarded
resulting in a truncation with salvage vector u = uT+�.

3 . 4 A STO P P I N G RU L E

Section �.� shows that non-stationary ���s can be represented
by countably-infinite linear programs. Even though these repre-
sentations cannot be solved with finite computations, they can
be approximated by truncations. As an approximation, a trunca-
tion may result in a solution with an immediate decision π� that
is different from the optimal immediate decision of the original
non-stationary ���. Therefore, we are interested in a method
that allows us to check optimality of this decision without solving
the countably-infinite linear program. In this section we design
such a method for non-stationary ���s with unbounded rewards.

We start by presenting a problem formulation with variable
salvage vector. This formulation was introduced by Hopp [����]
for the uniformly bounded case. We demonstrate how it can
be solved using a linear program of Bean et al. [����]. Then
we extend the results to non-stationary ���s with unbounded
rewards by introducing different salvage spaces based on bounding
functions instead of uniform bounds. Finally, we present a new
algorithm for discovery of optimal solution horizons that employs
our stopping rule and exploits the fact that the Bellman operator
of the unbounded problem is a multi-stage contraction.

�.�.� Truncations with Variable Salvage Vector

Assume that for a given study horizon T and salvage function u
we have solved a truncation and found the optimal initial action
π⭑,u,T ,�(sα). We want to check if this action is equal to the optimal
initial action π⭑,�(sα) = a⭑,α of the original problem.

��

� The
Infinite-Horizon
Non-Stationary

Model

Suppose that we know that values v⭑,T+� belong to some sets𝕌T+� ⊆ ℝ|𝕊|. For example, if the values are non-negative and
bounded from above by a constant w, 𝕌t can be |𝕊|-dimensional
cubes: 𝕌t = {v ∣ ߿ ≤ v ≤ w ⋅ .{ࠀ If all of the salvage vectors
v ∈ 𝕌 of a given subspace 𝕌 ⊆ ℝ|𝕊| result in T-truncations with
the same optimal initial decision and optimal values v⭑,T+� also
belong to that set, then the original problem has the same optimal
initial decision π⭑,� as the truncation. The following proposition
formalizes this observation.

Proposition �.� 2 generalized Hopp’s stopping rule
Study horizon T is a solution horizon if the initial optimal actionGeneralization of

Theorem �c of Hopp
[����].

is the same for all u ∈ 𝕌T+�, where the sequence (𝕌t)t∈ℕ�
of

subspaces 𝕌t ⊆ ℝ|𝕊| is chosen so that v⭑,t ∈ 𝕌t .

Y Proposition �.� was used in Hopp’s stopping rule [Hopp, ����] for
constant sequence 𝕌t = 𝕌 based on the uniform bounds of the
value vector spans. Given this stopping rule, solution horizons can
be discovered by starting with a study horizon T = �, checking
the stopping rule, and incrementing T until the stopping rule is
satisfied. However, in order for the rule to be of any practical use,
we need to guarantee that this solution horizon discovery method
terminates in finite time.

The salvage subspaces (𝕌t)t∈ℕ�
must be chosen so that the

stopping rule is able to find a solution horizon. This condition
can be satisfied due to the following lemma. If 𝕌 ⊆ Lw(𝕊), where𝕌 is the set of all salvage functions u providing salvage vectors
ut ∈ 𝕌t , then the stopping rule terminates due to the following
lemma.

Lemma �.� 2 existence of solution horizons
Under Assumptions �.�–�.�, there exists a finite horizon T⭑ suchGeneralized Lasserre

and Bès [����]. that for any salvage function u ∈ Lw(𝕊) all T-truncations with
T ≥ T⭑ have the same optimal initial decision.

Proof. This lemma is proposed by Lasserre and Bès [����] for
zero salvage function u = � and uniformly bounded rewards.
Both conditions are only required to guarantee that the objective
functions of the linear programs are well-defined, and the proof
holds mutatis mutandis under Assumption �.� for u ∈ Lw(𝕊). The
only crucial assumptions are that the action space 𝔸 is finite, the
initial state is known and the optimal initial action is unique. ���

��

Y Moreover, we need to ensure that the condition of the stopping
rule can be checked in finite time. When 𝕌t are polytopes, it can Polytopes can be

expressed by sets of
linear constraints.

be done by solving a mixed integer linear program of Bean et al.
[����] as follows.

First, we find a candidate optimal initial decision rule aα =
π⭑,u,T ,�(sα) by solving the truncation (��-�-���) for an arbitrary
u ∈ 𝕌T+�. Then we allow the salvage vector v to vary within 𝕌T+�
and seek a decision rule π⭑v,T ,�(sα) ≠ aα by solving the following
program:

min
v, vt , żt

η� = j⊤α (r� − Nv� − γ ⋅ T�v�) (��-��)

s.t.−ht ⊙ −ࠀ) żt) ≤ rt − Nvt + γ ⋅ Ttvt+� ≤ ,߿ � ≤ t < T ,−hT ⊙ −ࠀ) żT) ≤ rT − NvT + γ ⋅ Tu ≤ ,߿
N⊤ ̇zT = ,ࠀ
j⊤α ż� = �,
vt ∈ 𝕌t , � ≤ t ≤ T ,
u ∈ 𝕌T+�,
żt ∈ {�, �}|𝕏|, � ≤ t ≤ T ,

where jα ≜ [δ(s,a),(sα,aα)](s,a)∈𝕏 is a vector of length |𝕏|, with
all elements equal to zero except for the element corresponding
to the state-action pair (sα,aα), which is equal to one, so that
η� = η�(sα,aα) is the advantage of the candidate optimal action
aα; constants ht are defined in Lemma �.�.

Program (��-��) is derived as follows. By Proposition �.�, if
an optimal decision rule a⭑,α ≠ aα exists for some salvage vector
u, the reduced cost η� ≜ η�(sα,aα) in the original program ��-�
will be negative. We can check if η� can be made less than zero by
minimizing it for all feasible values of v and variables of the primal-
dual program pair (��-�)–(��-�). By Propositions �.� and �.�,
only the sign of zt is important: if zt(s,a) > �, then ηt(s,a) = �,
and if zt(s,a) = �, ηt(s,a) < �. Thus, we can replace zt(s,a)
with binary variables ̇zt(s,a) ≜ sgn zt(s,a). The integer variableṡzt(s,a) ensure that the found solution is a feasible solution to the
dual program that corresponds to a deterministic policy.

The constraints of the program serve the following purposes.
The expressions rt − Nvt + γTtvt+� in the first two constraints are
equal to the advantages ηt . Whenever ̇zt(s,a) = �, the corre-
sponding constraint becomes tight and ensures that ηt(s,a) = �.

��

� The
Infinite-Horizon
Non-Stationary

Model

When ̇zt(s,a) = �, the left-hand side of the corresponding con-
straint becomes equal to −ht(s,a), and ηt(s,a) > −ht(s,a) always
holds as per Lemma �.�. Constraint N⊤żT = ࠀ is equivalent to
∑a∈Ap(s) ̇zt(s,a) = � for all s ∈ 𝕊. It ensures that Proposition �.�
holds.

Next, j⊤α ż� = � forces the program to search for policies with
π⭑,v,T ,�(sα) ≠ aα. This constraint makes the program infeasible if
no actions other than aα are available for sα, Ap(sα) = {aα}. In
this case aα is also optimal as the only possible action.

We add constraints vt ∈ 𝕌t to the formulation of Bean et al.
[����], because we assume that the optimal value vector v⭑,t is
known to belong to the space 𝕌t . These new constraints help
with speeding up computations by reducing the search space for
variables vt . For an appropriate choice of the spaces 𝕌t , they can
also guarantee that the constraint ��-�.� holds.

We exclude constraints vt ≥ ߿ from the formulation of Bean
et al. [ibid.], as this assumption does not hold in our case. The
non-negativity assumption was used to show that η� is zero only
when aα is optimal, but Proposition �.� already guarantees this.

Finally, we would like to note that it is not strictly necessary to
solve the optimization problem: if at any iteration the solver finds
a feasible solution with negative value of the objective function, it
can proceed to the next study horizon.

In order to implement the program (��-��) the salvage spaces𝕌t need to be polytopes (that is, we should be able to express
them using sets of linear constraints). In the next subsection we
provide such subspaces under Assumption �.�.

�.�.� Unbounded Rewards

To implement the program (��-��) we need to be able to construct
the salvage subspaces 𝕌t so that:

• they can be expressed via linear constraints,
• they contain the optimal values v⭑,t ∈ 𝕌t , and
• vt ∈ 𝕌t implies that (�.�) holds.

If the value bounding functions u+ and u− of Definition �.�
exist and are known, we can consider a sequence of spaces

(𝕌t)t∈ℕ�
, 𝕌t ⊆ ℝ|𝕊| where 𝕌t = {v ∣ u−,t ≤ v ≤ u+,t}. (�.�)

These spaces 𝕌t are indeed defined by linear constraints. By
Proposition �.�, they contain the optimal values v⭑,t ∈ 𝕌t . Finally,

��

�.� A Stopping
Rule

since u− and u+ belong to the space Lw(𝕊), so does v by the
squeeze theorem. As the truncation horizon T increases, the
ranges of possible optimal initial values shrink monotonically by
Proposition �.�, until eventually all of the truncations begin to
agree in the optimal initial decision as per Proposition �.�.

Unfortunately, existence of such functions is guaranteed only
in the uniformly bounded case. Unless additional information can
be exploited to obtain such bounding functions, the only bounds
on v⭑,t are provided by (�.��) and the only salvage spaces that we
can use are 𝕌t = {v ∣ −μ ⋅wt ≤ v ≤ μ ⋅wt}.
These bounds are no longer value bounding functions in the sense
of Proposition �.�, because the conditions ℒπ,u,Tu− ≥ u− andℒπ,u,Tu+ ≤ u+ are not guaranteed to hold. While a series of
truncations with salvage spaces (𝕌t)t∈ℕ�

will provide an opti-
mal solution eventually, the convergence is no longer monotone,
and larger truncations may no longer tighten the constraints in
(��-��). This is undesirable, as it may lead to unnecessary ap-
proximations that are worse than already considered ones.

Nonetheless, the functions ±μ ⋅ w are the only information
about the problem available under Assumption �.�, so we want to
establish similar convergence properties for them. To do so, we
show the following property of the Bellman operator ℒπ .

Lemma �.� 2 monotonicity of the multi-stage Bellman operator
For all π ∈ 𝔻, functions u± = ±μ ⋅ w satisfy ℒν

πu− ≥ u− andℒν
πu+ ≤ u+.

Proof. We prove the statement for u+; the proof for u− is identical.
By applying ℒπ to the function u+ consecutively ν times, we
obtain

[ℒν
πu+]t(s) =

ν−�
∑
i=�

γi ⋅ [𝒯i
π,trπ]t+i(s) + γνμ ⋅ [𝒯ν

π,tw]t+ν(s).
Note that μ = ∑ν−�

i=� κi + λμ by rearranging the terms in (�.��).
Then for all t ∈ ℕ�, by recalling (�.��) and (�.��),

[ℒν
πu+]t(s) ≤

ν−�
∑
i=�

κi ⋅ wt(s) + λμ ⋅ wt(s)
= μ ⋅ wt(s) = u+,t(s). ���

Y Proposition �.� uses the operators ℒπ to show that one-stage
increments in study horizons lead to monotone convergence. In

��

� The
Infinite-Horizon
Non-Stationary

Model

the unbounded case, Lemma �.� shows that similar properties hold
if instead of looking only one stage ahead, the decision-maker
chooses ν-stage increments in study horizons, as the Bellman
operator ℒπ is now a ν-stage contraction instead of a contrac-
tion. This is a crucial property leveraged by our algorithm; it
ensures that the space of possible initial values decreases with
each iteration, and the algorithm converges monotonically.

�.�.� The Algorithm

Summarizing the aforementioned results, we present �����: theIn Russian, Миша
(Misha) is a a diminutive

form of the name
Михаил (Michael). It

also means a little bear;
the mascot of the ����

Olympic Games being a
famous example.

multi-stage iterated solution-horizon algorithm. of Figure �.�. It is
guaranteed to terminate in a finite number of steps if the optimal
policy is unique. Moreover, when better value bounding functions
are known, they can be used instead of ±μ ⋅ w to provide smaller
salvage subspaces 𝕌t , resulting in faster convergence.

Figure �.�:
�����—multi-step-

iterated solution-horizon
algorithm.

Data: an non-stationary ��� with a bounding function w.
Result: an optimal initial action a⭑,α and a solution

horizon T⭑.
� Let u+ ← μ ⋅ w and u− ← −μ ⋅ w;
� for N ← �, �,… do
� T ← N ⋅ ν − �;
� find a candidate optimal initial action aα by. solving

(��-�-���) with any salvage vector u ∈ 𝕌T+�;
� solve (��-��) with the spaces 𝕌t given by (�.�);
� if (��-��) is infeasible or η� = � then
� a⭑,α ← aα;
� T⭑ ← T ;
� break

�� for n ← �,… , ν − � do
�� T ← T⭑ − n;
�� solve (��-��) with 𝕌t given by (�.�);
�� if (��-��) is feasible and η� < � then
�� T⭑ ← T + �;
�� return a⭑,α and T⭑;
�� break

Y The algorithm searches for a solution horizon by doing ν-stage
increments in study horizons. For each of these horizons it checks
if all of the feasible truncations agree in the initial optimal decision.
Once a solution horizon has been identified, the algorithm returns
back in time, up to the previous considered study horizon. It does

��

�.� Experiments

so in order to identify possible shorter solution horizons.

3 . 5 E X P E R I M E N TS

To demonstrate the performance of our stopping rule, we imple-
mented Algorithm �.� for the following problem, known as an
equipment replacement problem of Bean et al., ����.

Consider a piece of equipment subject to deterioration. The
state space 𝕊 = {�,… , |𝕊| − �} represents the state of its decay,
with � being “new.” At each time step, the agent chooses between
two actions: “replace” (action �) and “keep” (action �).

Transition probabilities of the problem are given by

pt(s′ | s, �) =
⎧{⎨{⎩�, s′ = �,
�, otherwise;

pt(s′ | s, �) =

⎧{{{{⎨{{{{⎩
� − ψ, s′ = s < S,
ψ, s′ = s + �, s′ < S,
�, s′ = s = S,
�, otherwise,

where ψ is the deterioration probability. If the equipment is re-
placed, the state always changes to � (that is, “new”). Otherwise, it
either deteriorates to the next state (if there is one) with probability
ψ, or remains the same state with probability � − ψ.

In the first experiment we used the following rewards:

rt(s, �) = ρ ⋅ (−�.�Nmin{t/T ,�} + (|𝕊| − s + �)/Δ);
rt(s, �) = ρ ⋅ (Nmin{t/T ,�} − s/Δ).

Figure �.� outlines the general reward structure. When the
equipment is kept, it generates revenue which depends on the

Figure �.�: Rewards
in the equipment
replacement problem

r

ρ

N ⋅ ρ

−�/� ⋅ N ⋅ ρ

T
t

rt(�, �)
rt(�, �)
rt(�, �)
…
rt(|𝕊| − �, �)
rt(|𝕊| − �, �)

…
ρ − ρ/Δ

−�/� ⋅ ρ
−�/� ⋅ ρ + ρ/Δ

��

� The
Infinite-Horizon
Non-Stationary

Model

state of deterioration and grows over time. If the equipment is new,
the initial revenue r�(�, �) is equal to ρ and it grows exponentially
(for example, due to inflation). For each stage of deterioration the
revenue decreases by ρ/Δ. When the equipment is replaced, it
generates no revenue, and a replacement cost needs to be paid.
The costs behave similarly to revenues, and the worse is the state
of the equipment, the larger are the costs. We limit the data at
time step T , when it becomes equal to N ⋅ρ to add uniform bounds
so that the method of Hopp [����] can be applied as well for
comparison.

Function wt = ρ ⋅ Nmin{t/T ,�} satisfies Condition �.� with κ =
γ ⋅ N �/T . Assuming T > − logγ N , λ = κ and ν = �, so functions
±μ ⋅ wt can be used as bounds for the state values. These are
loose bounds, as they don’t use any additional information. The
following functions can be used as tighter bounding functions:

u+,t =
∞
∑
τ=�

γτ ⋅ max(s,a)∈𝕏 rt+τ(s,a) =
∞
∑
τ=�

γτ ⋅ rt+τ(�, �),
u−,t =

∞
∑
τ=�

γτ ⋅ min(s,a)∈𝕏 rt+τ(s,a) = − �
� ⋅ u+,t .

These tighter bounds are easy to compute and result in smaller
search spaces 𝕌t , making the problem easier to solve. In practice,
for a truly non-stationary problem such closed-form bounds will
not be available, therefore they can be seen as a bound of what
can be achieved without exploiting any additional information on
the exact reward structure.

Stationarity of the rewards after the capping horizon T allowed
us to find the exact solution of the problem. We started at time
horizon T and solved the problem using value iteration, then used
dynamic programming to obtain the initial optimal decision.

We compared our stopping rule for both choices of the bound-
ing functions to Hopp’s rule. We ran the experiments for different
combinations of parameters. For all of them, both stopping rules
identified the optimal initial action correctly but discovered dif-
ferent solution horizons. In almost all of the experiments, our
stopping rule was able to find a significantly shorter solution hori-
zon. The default values are listed in Table �.�. These values were
used in all of the experiments, unless stated otherwise.

sα �
S ��
N ��
T ����
γ �.��
Δ ��
ψ �.�
ρ �

Table �.�: Values of the
hyperparameters.

Figure �.� shows how the solution horizons and run times scale
with respect to the number of states |𝕊|. Both algorithms need to
look further into the future as the problem size grows, however,
our stopping rule identifies significantly shorter solution horizons.

��

Shorter horizons mean that less mixed-integer programs need to
be solved, which substantially reduces the run-time.

Figure �.�: Performance
with respect to the state
space size |𝕊|.

Hopp Loose bounds Tight bounds

� × ��−�

� × ���

� × ���

� �� �� �� �� ��

Ti
m

e,
s

(lo
g)

�

��

��

� �� �� �� �� ��

H
or

iz
on

Figure �.� presents the effect of the model uncertainty ψ on
the algorithm. The largest difference in performance is exhibited
when ψ = �.�, that is, when the system’s entropy is the largest.

Figure �.�: Performance
with respect to the
deterioration rate ψ .

Hopp Loose bounds Tight bounds

�.�
�.�

��.�

� �/� �/� �/� �

Ti
m

e,
s

�

��

��

� �/� �/� �/� �

H
or

iz
on

In the second experiment, we set |𝕊| = � and used the same
transition matrices but different rewards. We randomly generated
the initial rewards ra,� from the following sets

r�,� ∈ [−�.�N , �)|𝕊|, r�,� ∈ [�,N)|𝕊|.
��

� The
Infinite-Horizon
Non-Stationary

Model

Subsequent rewards were given by ra,t+� = Φara,t = Φt
ara,�, where

Φa are tri-diagonal matrices with non-zero elements drawn from
uniform distribution on [−�, �), and then scaled so that spectral
radii σa of Φa were less than one. The latter condition was added to
ensure that the problem has a bounding function w. These spectral
radii are similar to discounting factors for matrices, because they
indicate the rate of growth of the matrix power series; therefore
for problems with σ = max{σ�,σ�} ≥ � the values vt may not be
well-defined.

The rewards of this problem are bounded by the function

wt(s) = N ⋅ wt , where wt ≜ max{‖Φt
�‖∞→∞, ‖Φt

�‖∞→∞}.
with the following coefficients:‖𝒴‖p→q is the norm of

the operator𝒴 ∶ 𝕐 → 𝕐′, that is, the
smallest constant that

satisfies‖𝒴y‖q ≤ ‖𝒴‖p→q ⋅ ‖y‖p
for any y ∈ 𝕐.

For matrices, ‖ ⋅ ‖∞→∞ is
equal to the maximum

of the absolute row
sums.

ν = min
j∈ℕ�

{j ∣ γj ⋅ ‖Φj
�‖∞→∞ < � ∧ γj ⋅ ‖Φj

�‖∞→∞ < �},
κ = γ ⋅ w�, λ = γν ⋅ wν.

Existence of ν is guaranteed by the following property of spec-
tral radii: σa = limt→∞‖Φt

a‖�/t
∞→∞. As a result, for any σ < � the

operator norm ‖Φt
a‖∞→∞ becomes less than one eventually.

When κ < �, the problem can be transformed into a bounded
problem by using (�.��). In this case we are able to solve the
problem using Hopp’s stopping rule as well. In this experiment the
data was truly non-stationary, and it was impossible to compute
value functions exactly. When Hopp’s stoping rule was able to
find a solution horizon, we knew that the action it identified was
indeed optimal and used it as a benchmark for �����.

The results are presented in Figure �.�. In all of the experiments
our method was able to identify the optimal initial action. In these
cases ����� always returned the same horizon as Hopp’s stoping
rule. This can be explained by the fact that the methods are
similar: after the transformation is applied to the problem the
salvage spaces 𝕌t become identical at all time steps, just like in
the case of Hopp’s stoping rule.

Nevertheless, ����� runs faster, as, on the one hand, it does
not require the data transformation, and on the other hand, it uses
large steps ν when searching for the solution horizon, reducing the
number of iterations by a factor of ν. Moreover, it is applicable to a
wider range of problems; for example, Hopp’s stopping rule cannot
be used in problems with a large spectral radius, as illustrated by
Figure �.�.

��

Figure �.�: Performance
with respect to the
spectral radius σ.

�.��

�.��

�.��

���.��

�/�� �/� �/� �/� �

Ti
m

e,
s

(lo
g)

Hopp
Unbounded

3 . 6 C O N C LU S I O N

Infinite-horizon non-stationary Markov decision processes cannot
be solved using traditional methods because they seek universally
optimal policies. Finding such a policy would require infinite
computations, because the optimality needs to be established for
each of the infinitely many state-time pairs.

At the same time, the decision-maker may not be interested
in optimality of all of the decision rules at all. Often, the decision
involves only a single state: the one that is observed right now
and requires immediate action. By seeking initial-decision optimal
policies instead of the universally optimal ones, we can overcome
the curse of infinite dimensionality of the decision-making problem.
Once an optimal initial decision was identified, the same procedure
can be used to find an optimal action for the next decision epoch. See the epigraph to this

chapter.We propose one such algorithm for finding optimal initial de-
cision rules. This algorithm uses a stopping rule to discover a
solution horizon: a time horizon removed so far into the future,
that the data beyond it does not affect the decision that needs to
be made right now. The rule is applicable to problems with un-
bounded rewards and does not require any additional assumptions
on the reward structure, such as convexity of rewards, making it
applicable to a broad class of problems.

An experimental study shows that our stopping rule was able
to find better solution horizons and did it faster even when the
rewards can be uniformly bounded.

Future research directions include an extension to problems
with countably-infinite base state spaces, as the problem is already
countably-infinite in the time domain. Additionally, the rate of
convergence may be improved by considering span-based bounds
in combination with weighted-supremum ones.

��

4
The Countably-Infinite

Model

I am incapable of conceiving infinity,
and yet I do not accept finity.

— Simone de Beauvoir,
The Coming of Age

Translated by P. O’Brian

�.� IntroductionT�� �������� ������� presented an algorithm for non-
stationary infinite-horizon ��� that is based on a refor-
mulation of the original problem as a countably-infinite

stationary one. This a much broader class of decision processes
that remains almost unexplored due to computational hurdles
associated with countably-infinite optimization. In this chapter,
we further develop the theory of truncations in countably-infinite
���s, and design an algorithm for such problems. Like �����
—the algorithm of Chapter �—it is applicable to problems with
unbounded rewards; unlike it, the new algorithm belongs to the
family of policy iteration methods. It performs sequential policy-
improving updates while eliminating provably suboptimal actions;
this procedure continues until unique optimal decision rules are
obtained for each state in the support of the initial distribution.
This allows the decision-maker to plan ahead of time and be
prepared for different possible states of the environment at the
moment when the decision needs to be made.

4 . 1 I N T R O D U CT I O N

In the previous chapter, we considered non-stationary ���s and
showed that they can be written as countably-infinite stationary
���s. Similarly to the non-stationary case, solution methods for
such decision-making processes employ approximations known as
truncations. A truncation contains only a finite subspace of states,
and policy optimization is performed over these; for the remaining
states, the policy is set arbitrarily. This approach is used in most
of the existing methods for countably-infinite ���s [Lasserre and
Bès, ����; Cavazos-Cadena, ����; Hopp et al., ����; Hopp, ����;
Bean et al., ����; Lee et al., ����].

Once a truncation is solved, the quality of the resulting ap-
proximate solution can be evaluated. If the approximation needs
improvement, a larger truncation is considered, and the process
repeats until a sufficiently good truncation is found. While the
basic idea of this scheme sounds simple, the infinite-dimensional
nature of the underlying problem presents unique challenges. For For a more detailed

explanation, the reader
is referred to the works
of Ghate [����] and Lee
et al. [����].

example, Proposition �.� presented in Chapter � tells us that even
something as simple as a change of summation order may not be
possible and requires careful consideration.

Because of the underlying challenges, research in countably-
infinite ���s remains limited and relies on some additional as-

��

sumptions about the underlying problem.
First, uniformly boundedness of rewards may be assumed to

guarantee existence of optimal policies. Unfortunately, this con-
dition does not hold for some countably-infinite ���s, including
the inventory management problem of Sections �.�.� and �.�.�.See Lemma �.��, p. �.��.

Next, a desirable property of a solution method is monotonic
improvement of the policy it produces [Lee et al., ����]: each
iteration should result in a policy that strictly improves the previous
one. In problems with unbounded rewards, an increase in the
truncation size no longer guarantees that the resulting solution
is better than the previously found one. This happens because
the Bellman operator is no longer a contraction, and additional
data may result in a solution that is further from the optimum.����� uses multi-step

truncation enlargements
to guarantee

improvements; this is
possible because of the
the special state-space

structure in
non-stationary

problems, where the
time dimension is not

recurrent.

It is therefore desirable to have methods that are monotonically
improving the solution.

Finally, many of the existing truncation-based methods assume
—mostly implicitly—that the state space is totally ordered and lower
bounded. For example, non-negative integer numbers 𝕊 = ℕ�
satisfy these conditions. This assumption produces a natural
truncation improvement scheme: whenever the current truncation
is not sufficiently good, add the smallest missing state to it. For
example, Lee et al. [ibid.] use this approach. A similar scheme is
used in the previous chapter for non-stationary ���, but instead
of adding one state at a time, we added sets of all states reachable
within the contraction horizon. In practice, the state space canThe contraction horizon

is defined in
Condition �.�, p. ��.

have a more complex structure. For example, in the multi-product
inventory management problem, the states are multi-dimensional
vectors. This calls for truncation enlargement schemes that do
not rely on a total order, but still improve the approximation.

To summarize, our goal is to design an iterative truncation-
based solution scheme for countably-infinite ���s that:

• is applicable to problems with unbounded rewards;
• monotonically improves the baseline policy;
• does not require the state space to be totally ordered.

In this chapter, we present such an algorithm. We name it ��-
����—approximate salvage-based policy iteration with repeated
elimination (of actions). It combines the ideas of Chapter � and
Lee et al. [ibid.] and uses the duality of occupancies and values in
countably-infinite ���s and the theory of contractions in Banach
spaces.

Like the previously discussed �����, ������ is based on aSee Figure �.�, p. ��.

��

search of salvage function that may result in better initial deci- The salvage function
approximates the value
function outside of the
truncation.

sions. In the case of non-stationary ���s this problem is a linear
program with salvage vectors as the optimization variables. In
the countably-infinite case, this approach leads to programs with
countably many variables and thus it is rendered useless. Instead,
������ utilizes an analytical solution to this linear program, which
is computable under some additional conditions.

Like the simplex method of Lee et al. [ibid.], ������ is a policy-
iterating algorithm that utilizes approximate advantages to reason
about optimality of actions. While the method of Lee et al. [ibid.]
uses zero salvages only, ������ reasons about all of the possible
salvages simultaneously, which allows us to introduce a rule for
action elimination: if an action is suboptimal for all possible
salvages, this includes the case when the salvage coincides with
the true value function; as a result, the action does not need to
be considered anymore.

�.�.� Previous Work

Solution methods for countably-infinite ���s with unbounded
rewards can be traced back to the works of Harrison [����], Lipp-
man [����], and Wessels [����]. Each of these papers considered
a different set of assumptions on rewards and transition proba-
bilities. These sets of assumptions are referred to as settings by
Lee et al. [����]. White [����] proposed a generalization of the
three settings, which in turn was even further generalized by the
setting of Cavazos-Cadena [����].

Unfortunately, the setting of Cavazos-Cadena [ibid.] utilizes a
value bounding function which cannot be computed finitely [Lee The value bounding

function is denoted by𝔅 by Cavazos-Cadena
[ibid.].

et al., ����]. Due to this observation, the setting of White [����],
as presented in Puterman [����, Section �.��], remains the most
commonly employed one.

For this setting, which was formally introduced as Condition �.�, See p. ��.
Lee et al. [����] proposed a simplex-based algorithm mentioned
earlier. Starting with an arbitrary policy, their algorithm evaluates
it approximately. Then, it estimates how much each alternative
action can improve the current policy. If an improvement in the
approximate value is large enough, it is guaranteed to improve
the true values as well, and the policy is updated. Otherwise,
the truncation is expanded and the policy is re-evaluated. Thus,
this method can be seen as an extension of the policy iteration
algorithm to the countably-infinite ��� case.

��

� The Countably-
Infinite Model

To the extent of our knowledge, the method of Lee et al. [����]
is the only method applicable to countably-infinite ���s in general,
but other method exists for problems with special structures. For
example, Ghate and R. L. Smith [����] considers non-stationary
���s with uniformly bounded rewards and proves that strong
duality holds in this case.

In addition to these algorithmic approaches to countably-
infinite ���s, some authors study theoretical aspects of such
problems. For example, Puterman [����, Section �.��] employs the
idea of multi-stage contractions to show that the value function
exists uniquely under Condition �.� even though the Bellman op-
erator is no longer a contraction; Hernández-Lerma and Lasserre
[����] provide conditions for duality of occupancies and values in
countably-infinite ���s.

4 . 2 M O D E L A S S U M P T I O N S

Similarly to non-stationary problems of Chapter �, a set of as-
sumptions is required to establish existence of optimal policies
in countably-infinite ���s. The first two assumptions guarantee
that the problem is well-posed.

Assumption �.� | weight function exists
A weight function w ∶ 𝕊 → ℝ+ of Condition �.� exists but doesCf. Assumption �.�,

p. ��. not have to be known to the agent.

Assumption �.� | finiteness of actions
For any state s ∈ 𝕊, the set of permitted actions Ap(s) is finite,∣Ap(s)∣ < ∞.

Y In Chapter � we required that the initial state is observed by the
agent and the decision is made based on this observation. While
this allows the agent to act optimally by re-planning every time
a decision needs to be made, there may not be enough time to
plan in such a reactive way. Instead, if the initial state distribution
is known, the agent can plan proactively by finding an optimal
decision for each of the possible states. The following assumption
guarantees that this is possible.

Assumption �.� | finite support of initial state distribution
The initial state distribution α has a finite support, |suppα| < ∞.Cf. Assumption �.�,

p. ��.
Y Conditions �.�, �.� and �.� hold under Assumptions �.�, �.�, and

��

�.� Model
Assumptions

�.� respectively. Together, they ensure that Theorem �.�� (the
duality theorem) holds.

When the weight function w exists, the value functions are
absolutely bounded by μ ⋅ w. In Chapter � these bounds were
used to design the salvage spaces, that is, the spaces of potential
future values. Sometimes, tighter bounds may exist and be easier
to identify. For example, if the rewards are positive, the lower
bound of zero is trivial and tighter than μ cotw. Therefore, we
assume that some bounds are available to the agent that may not
be related to the weight function w.

Assumption �.� | value bounds exist in Lw(𝕊)
The agent knows the value-bounding functions u± such that u− ≤
vπ ≤ u+ for any stationary deterministic policy π ∈ 𝔻. Moreover,
these functions are assumed to have finite w-weighted supremum
norms, u± ∈ Lw(𝕊).

Y Assumption u± ∈ Lw(𝕊) is required so that the possible value
functions are restricted to the space Lw(𝕊) of functions with finite
w-weighted supremum norm, which is required for the duality to
hold.

The following assumption introduces the necessary properties
for initial optimal decisions to be identifiable starting with one the
truncations. It requires two additional definitions.

Definition �.� | monotone-increasing sequence
A sequence (𝕐k)∞

k=� of subsets 𝕐k ∈ 𝕐 is called monotone increas-
ing if each element is a superset of the previous one:

𝕐� ⊂ 𝕐� ⊂ ⋯ ⊂ 𝕐k−� ⊂ 𝕐k ⊂ 𝕐k+� ⊂ ⋯ .

Definition �.� | limiting set
The limiting set 𝕐∞ of a monotone-increasing sequence (𝕐k)∞

k=�
is defined as 𝕐∞ = lim

k→∞
𝕐k ≜ ∞⋃

i=�
𝕐i .

Assumption �.� | properties of the salvage spaces
There exists a monotone-increasing sequence (𝕊k)∞

k=� of finite
subspaces of the state space, 𝕊k ∈ 𝕊, such that its limiting set 𝕊∞
is a superset of the the initial distribution support, suppα ⊆ 𝕊∞.
Additionally, for any stationary deterministic policy π ∈ 𝔻 For a subset 𝔹 ⊆ 𝕐 of a

universe 𝕐, 𝔹∁ denotes
its complement,𝔹∁ ≜ 𝕐 \ 𝔹.

lim
k→∞

sup
s∈𝕊∞

(∑
s′∈𝕊∁

k

pπ(s′ | s) ⋅ w(s′)) = �. (�.�)

��

� The Countably-
Infinite Model

Y The last part of this assumption requires that the truncations
increase in such a manner that the probabilities to transition
outside of the truncation decrease faster than the weight function
w grows there.

Finally, the following assumption guarantees that the optimal
initial decisions are unique and therefore identifiable as optimal
by our algorithm.

Assumption �.� | optimal initial decision rules are unique
All optimal policies π⭑ ∈ 𝔻 have the same decision rules a⭑,α(s)
in the support of the initial distribution, π⭑(a | s) = δa,a⭑,α(s) for all
s ∈ suppα and a ∈ Ap(s).
4 . 3 A M OT I VAT I N G E X A M P L E

We now re-examine the multi-product inventory management
problem of Sections �.�.� and �.�.�.

In Section �.�.�, we established that no uniform reward bound
exists in this problem, as stated by Lemma �.��. At the same
time, the weight function w exists by Lemma �.��, and therefore
Assumption �.� holds. Assumption �.� holds as well because the
order size is limited. Assumption �.� can be checked easily when
the initial distribution is known.

Assumption �.� holds due to the following lemma.

Lemma �.� 2 value bounds in inventory management
In the multi-product inventory management problem, for any policy
π ∈ ℿ the value vπ(s) of each state s ∈ 𝕊 is bounded by the
functions u± ∈ Lw(𝕊):

−μ ⋅ w(s) ≤ u−(s) ≤ vπ(s) ≤ u+(s) ≤ μ ⋅ w(s),
where u−(s) ≜ − �

� − γ ⋅ ⟨h, s⟩ − CO − γ ⋅ (CO − CH)(� − γ)� (�.�)

and u+(s) ≜ CG
� − γ . (�.�)

The constants CG , CO, and CH are defined in Lemma �.��.

Y The proof of Lemma �.� is presented in Appendix �.�.
Next, Assumption �.� requires us to construct a sequence of

finite truncation sets. Let 𝕊� = suppα. It is finite by Assump-
tion �.�. For any 𝕊k , define the next truncation set 𝕊k+� as the set

��

�.� Policy
Evaluation

of all states in 𝕊k as well as all states reachable from 𝕊k in one
step:

𝕊k+� ≜ 𝕊k ∪ {s′ ∈ 𝕊 ∣ p(s′ | s,a) > � for some a ∈ Ap(s)}. (�.�)

In this case, the limiting set coincides with the state space 𝕊∞ = 𝕊.
For any state s ∈ 𝕊 the complement 𝕊∁

k becomes unreachable
starting with some N , and the sum in (�.�) becomes equal to zero
for any k ≥ N , therefore, (�.�) holds.

Assumption �.� is the only assumption that is cannot be guar-
anteed to hold without further analysis.

The inventory management problem belongs to a class of
problems with limited state reachability: for any state s ∈ 𝕊, only
finitely many other states can be reached in the next time step.

Countably-infinite reformulations of non-stationary ���s used
in Chapter � have the same property: the resulting augmented
state space 𝕊̃ is indeed countably infinite, but for any augmented
state ̃s = (s, t), s ∈ 𝕊, only the augmented states of the next time
step ̃s′ = (s′, t + �), s′ ∈ 𝕊 are reachable.

Similarly to the inventory management problem, the iterative
procedure given by (�.�) can be used for any limited-reachability
problem to produce a monotone-increasing sequence of truncation
spaces starting with 𝕊� = suppα.

4 . 4 P O L I C Y E VA LUAT I O N

To design an algorithm for countably-infinite ���s, let us first The presentation of this
section relies heavily on
the theory of
contraction in Banach
spaces. For a reminder
of the notation and
properties of
contractions, see
Section �.�.�, p. ��.

consider the task of evaluating a given policy π. This is necessary
to ensure that we can evaluate policies and guarantee that policy
iteration improves them.

In finite-dimensional problems, policy evaluation can be done
by finding the fixed point vπ of the Bellman operator ℒπ . In the
countably-infinite case, this cannot be done. A common approach
is to consider a finitely computable approximation to the Bellman
operator ℒπ to obtain approximate values. In this section, we
present one such operator, and show that it can be used to create
a series of approximations converging to vπ pointwise within a
given subspace.

��

� The Countably-
Infinite Model

�.�.� Truncated Bellman Operator

In the previous chapter, we considered an approximation called
a (u,T)-truncation. In this approximation, the evaluation is done
up to time T , and is approximated with a function u called the
salvage afterwards. Essentially, the truncation horizon T separated
the time-augmented state space 𝕊̃ = { ̃s = (s, t) ∣ s ∈ 𝕊, t ∈ 𝕋}
into two subspaces. We can use the same approach in countably-
infinite spaces by defining a finite subspace 𝔹 ⊆ 𝕊 in which the
evaluation takes place. We call the resulting approximation a(u, 𝔹)-truncation.

Definition �.� | (u, 𝔹)-truncated Bellman operator
For a given function u ∶ 𝕊 → ℝ and a finite subspace of statesCompare to

Definition �.�, p. ��.

When 𝕊 = ℕ� and𝔹 = {�, �,… ,N} such an
approximation is known

as an N-state
approximation to vπ

[Puterman, ����]. Even
though each

countably-infinite space
is denumerable in this

way, we want to develop
an algorithm that does

not rely on such a
denumeration.

𝔹 ⊆ 𝕊, |𝔹| < ∞, a (u, 𝔹)-truncated Bellman operator ℒ𝔹
π,u ∶ ℝ𝕊 →ℝ𝕊 of a policy π is an operator given by

[ℒ𝔹
π,uv](s) ≜ ⎧{{{⎨{{{⎩

rπ(s) + γ ⋅ ∑
s′∈𝕊pπ(s′ | s) ⋅ (v(s′) ⋅ 𝕀{s′∈𝔹}

+ u(s′) ⋅ 𝕀{s′∉𝔹}), if s ∈ 𝔹,
u(s), otherwise.

We call u a salvage function and 𝔹 a truncation set of a (u, 𝔹)-
truncation, and the resulting ��� a (u, 𝔹)-truncation of the origi-
nal problem.

Y By first summing over the states s′ in the subspace 𝔹 and then
over the rest of the states, we can rewrite the (u, 𝔹)-truncated
Bellman operator ℒ𝔹

π,u as

[ℒ𝔹
π,uv](s) ≜

⎧{{{⎨{{{⎩
rπ(s) + γ ⋅ ∑

s′∈𝔹pπ(s′ | s) ⋅ v(s′)
+ γ ⋅ ∑

s′∈𝔹∁pπ(s′ | s) ⋅ u(s′), if s ∈ 𝔹,

u(s), otherwise;

(�.�)

however, this involves a change of summation order and therefore
requires either absolutely summability or non-negativity of the
sum by the Fubini–Tonelli theorem. We use absolutely summabilitySee Proposition �.�,

p. ��. and therefore require that the following condition holds.

Condition �.� | salvage has a finite weighted supremum norm
The salvage function u has a finite w-weighted supremum norm,
u ∈ Lw(𝕊).
��

�.� Policy
Evaluation

Remark �.�
Under Condition �.�, the sum ∑s′∈𝔹 pπ(s′ | s) ⋅ u(s′) can be split
into sums over disjoint sets 𝔹i (finite or infinite) for any subset 𝔹:

∑
s′∈𝔹 pπ(s′ | s) ⋅ u(s′) =

n
∑
i=�

∑
s′∈𝔹i

pπ(s′ | s) ⋅ u(s′),
where ⨆n

i=� 𝔹i = 𝔹, and 𝔹 ⊆ 𝕊.

Y Indeed, under Condition �.�, the sum ∑s′∈𝕊 pπ(s′ | s) ⋅ u(s′) is ab-
solutely summable, because

∑
s′∈𝕊∣pπ(s′ | s) ⋅ u(s′)∣ ≤ ∑

s′∈𝕊 pπ(s′ | s) ⋅ ∣u(s′)∣ ▹ pπ(s′ | s) ≥ �

≤ ∑
s′∈𝕊 pπ(s′ | s) ⋅ w(s′) ⋅ ‖u‖w ▹ by Remark �.�

≤ κ‖u‖w ⋅ w(s) < ∞. ▹ by (�.��)

By the Fubini–Tonelli theorem, if an infinite sum is absolutely
summable, so is any of its sub-sums, and the summation order
can be chosen arbitrary.

We can rearrange the terms in (�.�) even further by combining
all of the summands that do not depend on the value function
v.To do this, we define the following auxiliary functions.

Definition �.� | (u, 𝔹)-truncated reward bonus
The (u, 𝔹)-truncated reward bonus b𝔹

π,u under policy π is a function
given by

b𝔹
π,u(s) ≜ γ ⋅ ∑

s′∈𝔹∁pπ(s′ | s) ⋅ u(s′). (�.�)

Definition �.� | untruncated reward bonus
The untruncated reward bonus b𝔹

π under policy π is given by

b𝔹
π (s) ≜ γ ⋅ ∑

s′∈𝔹∁pπ(s′ | s) ⋅ vπ(s′). (�.�)

Definition �.� | bonus-augmented reward
The b𝔹

π,u-augmented reward is a function given by

r𝔹
π,u(s) ≜ rπ(s) + b𝔹

π,u(s).
Y Using this notation, the (u, 𝔹)-truncated Bellman operator ℒ𝔹

π,u
can be written as

[ℒ𝔹
π,uv](s) = r𝔹

π,u(s)+γ ⋅∑
s′∈𝔹pπ(s′ | s)⋅v(s′), for each s ∈ 𝔹. (�.�)

It is now equivalent to a Bellman operator of an ��� 𝔐̆ with a
finite state space 𝕊̆ ≜ 𝔹 and rewards ̆rπ(s) ≜ r𝔹

π,u(s).
��

� The Countably-
Infinite Model

Unlike this smaller, finite-state problem 𝔐̆, we can still transi-
tion outside of the subspace 𝔹 in the original countably-infinite
��� 𝔐. It is thus important to distinguish between transitions
within the subspace 𝔹, and those that can lead outside of it. The
probability pj,𝔹

π (s′ | s) to transition from some state s ∈ 𝔹 to an-
other state s′ ∈ 𝔹 in j steps when following policy π and never
leaving the subspace 𝔹 can be computed as

p�,𝔹
π (s′ | s) ≜ p�

π(s′ | s) = δs,s′ ,
pj,𝔹

π (s″ | s) ≜ ∑
s′∈𝔹pπ(s″ | s′) ⋅ pj−�,𝔹

π (s′ | s).
�.�.� Fixed Point of the Truncated Bellman Operator

While the resulting truncated Bellman operator ℒ𝔹
π,u can be used

as an approximation to the exact Bellman operator ℒπ , it is not
immediately obvious that this new operator has a fixed point,
like ℒπ does, nor that this fixed point is unique. The following
theorem shows, that this is indeed true.

Theorem �.� 2 fixed point of the truncated Bellman operator
Under Condition �.�, the (u, 𝔹)-truncated Bellman operator ℒ𝔹

π,u
has a unique fixed point v𝔹

π,u ∈ Lw(𝕊) for any stationary policy
π ∈ 𝔻, salvage function u ∈ Lw(𝕊), and truncation set 𝔹 ⊂ 𝕊.

Y The proof of this theorem is presented in Section �.�.�.See p. ���.

�.�.� Additional Notation

In order to simplify further presentation, let us introduce the
following notation.

First, let ℐ ∶ ℝ̄𝕊 → ℝ̄𝕊 denote the identity operator[ℐy](s) = y(s) for all s ∈ 𝕊.

When the argument y is restricted to the space Lw(𝕊), ℐy ∈ Lw(𝕊)
trivially.

Using this operator, we can write vπ = rπ + γ ⋅ 𝒯πvπ as rπ =(ℐ − γ ⋅ 𝒯π)vπ , or vπ = (ℐ − γ ⋅ 𝒯π)−�rπ . It is useful to have a
notation for this inverse operator.

Definition �.� | value-producing operator
The value-producing operator 𝒬π ∶ ℝ̄𝕊 → ℝ̄𝕊 is the inverse ofℐ − γ ⋅ 𝒯π : 𝒬π ≜ (ℐ − γ ⋅ 𝒯π)−� =

∞
∑
i=�

(γ ⋅ 𝒯π)i .

��

�.� Policy
Evaluation

Lemma �.� 2 the operator 𝒬π maps Lw(𝕊) to itself
The value-producing operator 𝒬π maps the space Lw(𝕊) of func-
tions with finite w-weighted supremum norm to itself.

Proof. Proposition �.�� states that ‖𝒬πrπ‖w ≤ μ < ∞ for the reward
function rπ ∈ Lw(𝕊). The same argument holds for any function
y ∈ Lw(𝕊), showing that ‖𝒬πy‖w is finite. ���

Y Next, because we restrict the evaluation to a finite subset 𝔹, we
can use the following vector notation. For any subsets 𝔹 ⊆ 𝕊 and𝔹′ ⊆ 𝕊, let y𝔹 and T𝔹→𝔹′

π denote a vector of all elements of a
function restricted to the subspace 𝔹 and a transition matrix from𝔹 to 𝔹′:

y𝔹 ≜ [y(s)]s∈𝔹 where y ∈ {rπ , vπ ,u,w, etc.},
T𝔹→𝔹′

π ≜ [pπ(s′ | s)]s∈𝔹,s′∈𝔹′ .
When the transition operator given by a matrix T𝔹→𝔹

π acts from
a subset 𝔹 to itself, we write simply T𝔹

π , and similarly for other
linear operators.

As a consequence of Theorem �.�, the (u, 𝔹)-truncated value
function v𝔹

π,u exists and is unique. Moreover, v𝔹
π,u(s) = u(s) for

all s ∈ 𝔹∁ (we can write this as (v𝔹
π,u)𝔹∁ = u𝔹∁). For s ∈ 𝔹, we

write the vector (v𝔹
π,u)𝔹 of (u, 𝔹)-truncated values v𝔹

π,u(s) simply
as v𝔹

π,u. It can be found as follows:

v𝔹
π,u = r𝔹π + b𝔹

π,u + γ ⋅ T𝔹
π v𝔹

π,u. (�.�)

By moving the second summand to the left-hand side and multi-
plying both sides by (I𝔹 − γ ⋅ T𝔹

π)−� we obtain the following exact
formula for the (u, 𝔹)-truncated values:

v𝔹
π,u = Q𝔹

π (r𝔹π + b𝔹
π,u) = Q𝔹

π r𝔹π,u, where (�.��)
Q𝔹

π ≜ (I𝔹 − γ ⋅ T𝔹
π)−�. (�.��)

This is possible because the spectral radius of matrix γ ⋅ T𝔹
π is less

than one. Therefore the matrix Q𝔹
π exists and is finite [Puterman, The spectral radius of

the transition matrix T𝔹
π

is equal to one, because
it is a stochastic matrix.

����, Corollary C.�]. Assuming that the bonus vector b𝔹
γ,π is known,

the (u, 𝔹)-truncated values v𝔹
π,u on the truncation set 𝔹 can be

computed in finite time.
As a result, (�.��) is a more compact form of

v𝔹
π,u(s) =

⎧{⎨{⎩∑∞
i=� γi ⋅ ∑s′∈𝔹 pi,𝔹

π (s′ | s) ⋅ r𝔹
π,u(s′), s ∈ 𝔹,

u(s), s ∈ 𝔹∁,

��

� The Countably-
Infinite Model

following the notation of Theorem �.�. It can also be derived from
(�.��) directly by using v𝔹

π,u = ℒ𝔹
π,uv𝔹

π,u. In the remainder of this
chapter we will use vector notation in this way. We would like to
stress that all of the results can be derived element-wise as well, so
vector notation is just a shorthand used for clarity of presentation.

Remark �.�
In vector-matrix form, Remark �.� can be expressed as

T𝔹→𝔹′
π u𝔹′ =

n
∑
i=�

T𝔹i→𝔹′
π u𝔹′ where

∞⨆
i=�

𝔹i = 𝔹.

Y Similarly, given a finite set of functions ui ∈ Lw(𝕊), � ≤ i ≤ n < ∞,
we can see that u = ∑n

i=� ui belongs to Lw(𝕊) as well, and therefore

T𝔹→𝔹′
π y𝔹′ =

n
∑
i=�

T𝔹→𝔹′
π y𝔹′

i . (�.��)

In particular, T𝔹→𝔹′
π (y𝔹′

� ± u𝔹′
�) = T𝔹→𝔹′

π y𝔹′
� ± T𝔹→𝔹′

π y𝔹′
� .

Under Condition �.�, rewards rπ , values vπ , salvages u and
truncated values v𝔹

π,u all belong to Lw(𝕊). Remark �.� tell us that
multiplication of T𝔹→𝔹′

π by either r𝔹′
π , v𝔹′

π , u𝔹′ , or v𝔹′
π,u can be block-

partitioned and is left-distributive. This observation will be used
in the following proofs without being explicitly mentioned.

�.�.� Truncation Errors

As (u, 𝔹)-truncation is an approximation, the truncated values
v𝔹

π,u differ from the true values v𝔹
π . In this section, we examine the

difference between these two values. We begin with the following
definition.

Definition �.� | truncation error
Given a (u, 𝔹)-truncation, its error e𝔹

π,u under a policy π ∈ 𝔻 is
the difference between the true values v𝔹

π and the approximated
values v𝔹

π,u:
e𝔹
π,u(s) ≜ v𝔹

π,u(s) − v𝔹
π (s). (�.��)

Theorem �.� 2 truncation error
If Condition �.� holds, within the truncation set 𝔹, the values v𝔹

π,u
of a (u, 𝔹)-truncation differ from the exact values v𝔹

π by

e𝔹
π,u = Q𝔹

π (b𝔹
π,u − b𝔹

π) (�.��)

for any truncation set 𝔹 ⊆ 𝕊 and salvage function u ∈ Lw(𝕊). The
matrix Q𝔹

π is defined by (�.��).

��

�.� Policy
Evaluation

Moreover, for any choice of salvage functions u± ∈ Lw(𝕊) such
that u− ≤ vπ ≤ u+, the exact values vπ are bounded by

v𝔹
π,u− ≤ vπ ≤ v𝔹

π,u+
.

Proof. Values v𝔹
π can be written as

v𝔹
π = r𝔹π + γ ⋅ T𝔹→𝕊

π vπ = r𝔹π + γ ⋅ T𝔹
π v𝔹

π + b𝔹
π . ▹ by (�.�)

The error e𝔹
π,u is then equal to

e𝔹
π,u = r𝔹π + γ ⋅ T𝔹

π v𝔹
π,u + b𝔹

π,u − r𝔹π − γ ⋅ T𝔹
π v𝔹

π − b𝔹
π ▹ by (�.�) and (�.��)

= γ ⋅ T𝔹
π (v𝔹

π,u − v𝔹
π) + (b𝔹

π,u − b𝔹
π) ▹ reordering, see (�.��)

= γ ⋅ T𝔹
π e𝔹

π,u + (b𝔹
π,u − b𝔹

π). ▹ again by (�.��)

By moving the first summand to the left-hand side and multiplying
both sides by Q𝔹

π we obtain (�.��).
If u ≥ vπ , then u𝔹∁ − v𝔹∁

π ≥ � and consequently (e𝔹
π,u)𝔹∁ ≥ �

(as (v𝔹
π,u)𝔹∁ = u𝔹∁ by definition). At the same time, by comparing

Definitions �.� and �.�, b𝔹
π,u ≥ b𝔹

π trivially. Therefore, e𝔹
π,u ≥ � as

a product of a non-negative matrix and a non-negative vector.
Thus u+ ≥ vπ implies v𝔹

π,u+
≥ vπ . The case of u− follows mutatis

mutandis. ���

Corollary �.� 2 truncated values are monotone in salvages
For any two salvage functions u′,u″ ∈ Lw(𝕊), if u′ ≥ u″, then
v𝔹

π,u′ ≥ v𝔹
π,u″ .

Proof. We write v𝔹
π,u′ − v𝔹

π,u″ = (v𝔹
π,u′ − v𝔹

π) − (v𝔹
π,u″ − v𝔹

π) and use
Theorem �.� to obtain

v𝔹
π,u′ − v𝔹

π,u″ = Q𝔹
π (b𝔹

π,u′ − b𝔹
π,u″).

By definition of the truncated bonus function, it is a linear combi-
nation of values of the salvage function with positive coefficients.
Therefore, if u′ ≥ u″, then b𝔹

π,u′ ≥ b𝔹
π,u″ and v𝔹

π,u′(s) ≥ v𝔹
π,u″(s) if

s ∈ 𝔹. For s ∈ 𝔹∁, v𝔹
π,u′(s) − v𝔹

π,u″(s) = u′(s) − u″(s) ≥ �; as a
result, v𝔹

π,u′(s) ≥ v𝔹
π,u″(s) for any s ∈ 𝕊. ���

Y Theorem �.� allows us to estimate how good an approximation
provided by (u, 𝔹)-truncation is. Moreover, as the salvage u pro-
vides an estimate of values over the complement 𝔹∁, we can say
that if u ≤ vπ (or u ≥ vπ) it “underestimates” (or “overestimates”)
vπ . By Corollary �.�, so do all the truncation values v𝔹

π,u. Therefore,
we can obtain bounds on possible ranges of true values vπ .

��

� The Countably-
Infinite Model

When bounds from a truncation set 𝔹 are too loose to reason
about optimality of the policy, we want to be able to improve
them by choosing a different truncation set 𝔹. We also want the
approximations obtained this way to converge to the true values
vπ . The following theorem shows that it is possible, but requires
an additional condition on the weight function.

Condition �.� | vanishing effect of the weight function
There exists a monotone-increasing sequence (𝕊k)∞

k=� of states
such that for any stationary deterministic policy π ∈ 𝔻

lim
k→∞

sup
s∈𝕊∞

(∑
s′∈𝕊∁

k

pπ(s′ | s) ⋅ w(s′)) = �.

Theorem �.� 2 convergence of the truncated values
Under Conditions �.� and �.�, the sequence of absolute errors(e𝕊kπ,u(s))∞

k=� of (u, 𝕊k)-truncations converges to zero for any sal-
vage function u ∈ Lw(𝕊), stationary deterministic policy π ∈ 𝔻,
and state s ∈ 𝕊∞ in the limiting set of the monotone-increasing
sequence (𝕊k)∞

k=�. As a result, the sequence of (u, 𝕊k)-truncated
values (v𝕊kπ,u(s))∞

k=� converges to the exact values vπ over 𝕊∞:

lim
k→∞

vu,𝕊kπ (s) = vπ(s) for all s ∈ 𝕊∞.

Y The proof of Theorem �.� is presented in Section �.�.�.See p. ���

Theorem �.� generalizes
Lemma � of Lee et al.
[����], where 𝕊 = ℕ,𝔹k = {�, �,… , k}, and

u = �.

Theorem �.� establishes that in countably-infinite ���s policy
evaluation can be done approximately by considering a truncation
and that the approximation quality improves as the truncation
size grows.

4 . 5 P O L I C Y I M P R O V E M E N T

In the previous section, we showed that policies can be evaluated
arbitrary close in the limiting set of the truncation sequence.
We now design a policy improvement procedure that uses such
evaluations to optimize the decisions prescribed by a policy.

�.�.� Pivoting and advantages

We begin with a procedure known as policy pivoting. It can be
used to create a new policy by changing a single decision.

���

�.� Policy
improvement

Definition �.� | policy pivoting
Given a policy π ∈ 𝔻, and a pivot pair (s,a) ∈ 𝕏, pivoting of the
policy π at the state-action pair (s,a) is a procedure of obtaining
a new policy π′ ∈ 𝔻 that is identical to the policy π everywhere
except for the state s, where it uses the action a instead of π(s).
In other words, the new policy is produced by the pivoting operator𝒫s,a ∶ 𝔻 → 𝔻 (that is, π′ = 𝒫s,aπ) defined as

[𝒫s,aπ](s′) ≜ ⎧{⎨{⎩a, if s′ = s,
π(s′), otherwise.

Y Whether a pivoting improves or worsens the policy, can be estab-
lished by computing advantages of different actions.

Definition �.�� | advantage over policy
Advantage ηπ(s,a) of an action a over a policy π for state s is In this notation, the

advantages η(s,a) of
Definition �.� (p. ��) are
equal to advantages
over an optimal policy
π⭑: η(s,a) = ηπ⭑(s,a).

defined as

ηπ(s,a) ≜ r(s,a) + γ ⋅ ∑
s′∈𝕊p(s′ | s,a) ⋅ vπ(s′) − vπ(s)

= r(s,a) + γ ⋅ ∑
s′∈𝕊 \ {s}p(s′ | s,a) ⋅ vπ(s′)

− (� − γ ⋅ p(s | s,a)) ⋅ vπ(s). (�.��)

Y Any policy π induces occupancies zπ that are feasible to the
primal program ��-�. Advantages represent negative slacks of the
complementary dual solution vπ to the dual program ��-�. They For a reminder of the

dual formulation of the
problem, see
Theorem �.��, p. ��.

can be used in both policy improvement and action elimination as
follows.

Lemma �.� 2 salvage effect on policy pivots
Given a policy π ∈ 𝔻 and a pivot pair (s,a), let π′ denote the new
policy after pivoting π at (s,a), π′ = 𝒫s,aπ.

• If ηπ(s,a) < �, then vπ′(s′) ≤ vπ(s′) for all states s′ ∈ 𝕊 and
vπ′(s) < vπ(s), so the pivoting worsens the policy π.

• If ηπ(s,a) > �, then vπ′(s′) ≥ vπ(s′) for all states s′ ∈ 𝕊 and
vπ′(s) > vπ(s), so the pivoting improves the policy π.

• If ηπ(s″,a″) ≤ � for all state-action pairs (s″,a″) ∈ 𝕏, then the
policy π cannot be improved and is optimal.

Proof. The values vπ′ of the policy π′ are equal to Also see the proof of
Lee et al. [ibid.,
Proposition �].vπ′ = rπ′ + γ ⋅ 𝒯π′vπ′ = rπ′ + γ ⋅ 𝒯π′(vπ′ − vπ) + γ ⋅ 𝒯π′vπ − vπ + vπ .

���

� The Countably-
Infinite Model

Therefore,

(ℐ + γ ⋅ 𝒯π′)(vπ′ − vπ) = rπ′ + γ ⋅ 𝒯π′vπ − vπ , and
vπ′ − vπ = 𝒬π′(rπ′ + γ ⋅ 𝒯π′vπ − vπ).

The function f = rπ′ + γ ⋅ 𝒯π′vπ − vπ is equal to zero everywhere
except for f (s), which is equal to ηπ(s,a).

If ηπ(s,a) > �, then for any function y

[𝒬π′y](s) =
∞
∑
i=�

γi ⋅ [𝒯i
π′y](s) = y(s) +

∞
∑
i=�

γi ⋅ [𝒯i
π′y](s) ≥ y(s),

and therefore vπ′ − vπ ≥ rπ′ + γ ⋅ 𝒯π′vπ − vπ ≥ � and vπ′(s) −
vπ(s) ≥ ηπ(s,a) > �. Similarly, if ηπ(s,a) < � then vπ′ − vπ ≤ � and
vπ′(s) − vπ(s) < �.

The last statement follows trivially from the complementarySee Definition � of Lee
et al. [����] for details. slackness conditions. ���

Y Lemma �.� serves as a basis for both policy improvement and
action elimination steps if the exact advantages are known. Unfor-
tunately, just like in the case of values, they cannot be evaluated
finitely and we have to rely on approximations.

�.�.� Advantage Approximation

We now introduce the approximate advantages and show that
they approach the exact advantages ηπ(s,a) as the truncation set
grows. We call such approximations upper and a lower (𝕌, 𝔹)-
approximate advantages η𝕌,𝔹

π,± (s,a), and show that they converge
to the exact advantage ηπ(s,a) from above and below respectively.

Definition �.�� | (u, 𝔹)-approximate advantage
For any salvage function u ∈ Lw(𝕊) and truncation set 𝔹 ⊂ 𝕊,
the (u, 𝔹)-approximate advantage of action a over policy π for
state s is a function η𝔹

π,u ∶ 𝕏 → ℝ defined as

η𝔹
π,u ≜ r + γ ⋅ 𝒯v𝔹

π,u − v𝔹
π,u. (�.��)

Definition �.�� | upper and lower (𝕌, 𝔹)-approximate advantages
Given a subspace of functions 𝕌 ⊂ Lw(𝕊) called a salvage space
and a subspace of states 𝔹 ⊂ 𝕊, the upper and lower (𝕌, 𝔹)-
approximate advantages η𝕌,𝔹

π,+ (s,a) and η𝕌,𝔹
π,− (s,a) of action a ∈

Ap(s) over policy π ∈ 𝔻 for state s ∈ 𝕊 are defined as

η𝕌,𝔹
π,+ (s,a) ≜ max

u∈𝕌 η𝔹
π,u(s,a), η𝕌,𝔹

π,− (s,a) ≜ min
u∈𝕌 η𝔹

π,u(s,a). (�.��)

���

�.� Policy
improvement

Y The upper and lower (𝕌, 𝔹)-approximate advantages may be
ill-defined, because the attainability of the extrema in (�.��) de-
pends on the salvage space 𝕌. For now, let us assume that the
approximate advantages η𝕌,𝔹

π,± (s,a) are indeed well-defined. We
will establish this fact later for a particular choice of the salvage
space 𝕌.

Theorem �.� 2 convergence of the approximate advantages
Under Conditions �.� and �.�, if the upper and lower (𝕌, 𝕊k)-
approximate advantages η𝕌,𝕊k

π,± (s,a) are well-defined, then for any
stationary deterministic policy π ∈ 𝔻, state s ∈ 𝕊∞ in the limiting
set of the monotone-increasing sequence (𝕊k)∞

k=�, and permitted
action a ∈ Ap(s), they converge to the true advantages ηπ(s,a)
from above and below respectively:

η𝕌,𝕊kπ,− (s,a) ↑ ηπ(s,a) and η𝕌,𝕊k
π,+ (s,a) ↓ ηπ(s,a).

Y The proof of this theorem is presented in Section �.�.�.
Even if we assume that the extrema in (�.��) are attained, it is

still not immediately clear how these optimization problems can be
solved, because the (u, 𝔹)-approximate advantage function η𝔹

π,u of
�.�� is expressed in terms of the truncated value function v𝔹

π,u. To
address this challenge, we now show the approximate advantage
η𝔹

π,u can be written as a function of the salvage u.
First, we rewrite the approximate advantage function η𝔹

π,u as

η𝔹
π,u(s,a) = r(s,a) + γ ⋅ ∑

s′∈𝕊p(s′ | s,a) ⋅ v𝔹
π,u(s′) − v𝔹

π,u(s)
= r(s,a) + b𝔹

π,u(s)
+ (γ ⋅ ∑

s′∈𝔹p(s′ | s,a) ⋅ v𝔹
π,u(s′) − v𝔹

π,u(s))
= r(s,a) + [𝒩b𝔹

π,u](s,a) + [ℛ𝔹v𝔹
π,u](s,a), ▹ 𝒩 is the extension

operator that changes
the argument of a
function from s to (s,a),
see (�.��).

(�.��)

where the operator ℛ𝔹 ∶ ℝ̄𝕏 → ℝ̄𝕊 shows how much a function y
is expected to change after a one-step transition into the subspace𝔹; it is defined as

[ℛ𝔹y](s,a) ≜ γ ⋅ ∑
s′∈𝔹p(s′ | s,a) ⋅ y(s′) − y(s).

Since our goal is to evaluate the advantages for some states s ∈ 𝔹,
we can assemble them into a vector that includes these states
only. To do so, we define the set 𝕏𝔹 ⊆ 𝕏 of admissible controls
in the subset 𝔹 ⊆ 𝕊 of states as

𝕏𝔹 ≜ {(s,a) ∈ 𝕏 ∣ s ∈ 𝔹},
���

� The Countably-
Infinite Model

and write the operators ℛ𝔹 and 𝒩as |𝕏𝔹| × |𝔹| matrices

R𝕏𝔹→𝔹 ≜ [γ ⋅ p(s′ | s,a) − δs,s′](s,a)∈𝕏𝔹,s′∈𝔹, (�.��)

N𝕏𝔹→𝔹 ≜ [δs,s′](s,a)∈𝕏𝔹,s′∈𝔹. (�.��)

Finally, using this notation, the (u, 𝔹)-approximate advantages
η𝔹

π,u(s,a) for (s,a) ∈ 𝕏𝔹 can be written in matrix form as

η𝕏𝔹π,u ≜ (η𝔹
π,u)𝕏𝔹 = r𝕏𝔹 + N𝕏𝔹→𝔹b𝔹

π,u + R𝕏𝔹→𝔹v𝔹
π,uby (�.��) ◃

= r𝕏𝔹 + N𝕏𝔹→𝔹b𝔹
π,u + R𝕏𝔹→𝔹Q𝔹

π (r𝔹π + b𝔹
π,u)by (�.��) ◃

= r𝕏𝔹 + R𝕏𝔹→𝔹Q𝔹
π r𝔹π + (N𝕏𝔹→𝔹 + R𝕏𝔹→𝔹Q𝔹

π)b𝔹
π,u

= r̆𝕏𝔹π + L𝕏𝔹→𝔹
π b𝔹

π,u, (�.��)

where the augmented reward vector r̆𝕏𝔹π and the auxiliary matrices
L𝕏𝔹→𝔹

π and K𝕏𝔹→𝔹
π are defined as follows:

̆r𝕏𝔹π ≜ r𝕏𝔹 + K𝕏𝔹→𝔹
π r𝔹π , (�.��)

L𝕏𝔹→𝔹
π ≜ N𝕏𝔹→𝔹 + K𝕏𝔹→𝔹

π , and (�.��)

K𝕏𝔹→𝔹
π ≜ R𝕏𝔹→𝔹Q𝔹

π . (�.��)

The (u, 𝔹)-approximate advantages η𝔹
π,u(s,a) of (�.��) are ex-Note that all of these

matrices and vectors are
finite-dimensional,

justifying the various
changes of the

operations order in
(�.��).

pressed in a way that does not require to compute the values
vπ of the policy π ∈ 𝔻. Instead, they depend on the salvage
function u directly via the (u, 𝔹)-truncated bonus function b𝔹

π,u of
Definition �.�. The bonus function is an affine transformation of
the salvage function u presented in (�.�), and therefore the bonus
is linear in the salvage and the objective function of (�.��) is linear.

To ensure that the optimization problems (�.��) are linear, weIn finite dimensions, the
space 𝕌± is compact,
because it is bounded

and complete; therefore,
by the extreme-value

theorem Aliprantis and
Border [����,

Theorem �.��], the
extrema are attained. In

the countably-infinite
case, boundedness and

closeness are not
sufficient to establish

compactness.

consider the following salvage space, which can be expressed with
linear constraints.

Definition �.�� | (u−,u+)-bounded salvage space
Given salvage functions u± ∈ Lw(𝕊) such that u− ≤ u+, the(u−,u+)-bounded salvage space 𝕌± ⊂ Lw(𝕊) is the set of all
functions in Lw(𝕊) bounded by u− and u+ from below and above,
that is, 𝕌± ≜ {u ∈ Lw(𝕊) ∣ u− ≤ u ≤ u+}. (�.��)

Y Combining the results of this section, we solve the problems (�.��)
and show that the approximate advantages η𝕌±,𝔹

π,± (s,a) are well-
defined and can be computed as follows.

���

�.� Policy
improvement

Theorem �.� 2 the approximate advantage formula
The upper and lower (𝕌±, 𝔹)-approximate advantages η𝕌±,𝔹

π,± (s,a)
of Definition �.�� are well-defined and equal to

η𝕌±,𝔹
π,± (s,a) = ̆r𝕏𝔹π (s,a) + γ ⋅ ∑

s′∈𝔹∁ ̆p+(s′ | s,a) ⋅ u±(s′)
− γ ⋅ ∑

s′∈𝔹∁ ̆p−(s′ | s,a) ⋅ u∓(s′), (�.��)

for each stationary policy π ∈ 𝔻, bounding functions u± ∈ Lw(𝕊),
truncation set 𝔹 ⊂ 𝕊, state s ∈ 𝔹, and action a ∈ Ap(s). The
space 𝕌± and the augmented reward ̆r𝕏𝔹π are defined by (�.��) and
(�.��); the function ̆p is given by

̆p(s″ | s,a) ≜ ∑
s′∈𝔹lπ(s′ | s,a) ⋅ pπ(s″ | s′), (�.��)

where lπ(s′ | s,a) are the elements of the matrix L𝕏𝔹→𝔹
π of (�.��):

L𝕏𝔹→𝔹
π = [lπ(s′ | s,a)](s,a)∈𝕏𝔹,s′∈𝔹.

Y The proof of this theorem is presented in Section �.�.�. y+ and y− denote the
positive and negative
parts of a function y:
y+ = max{y, �} and
y− = max{−y, �}.

Strictly speaking, the coefficients ̆p(s″ | s,a) of Theorem �.�
are not transition probabilities. However, we denote these quasi-

The negative values in̆p(s″ | s,a) arise because
the elements of the
matrix R𝕏𝔹→𝔹 can be
negative, see (�.��).

probabilities as ̆p(s″ | s,a) because the formula (�.��) bears resem-
blance to the truncated Bellman operator equation (�.�)

For the truncated
Bellman operator,
see p. ��.

The quasi-probabilities ̆p(s″ | s,a) of (�.��) are not necessar-
ily computable finitely, as they involve an infinite sum over the
completion 𝔹∁. Therefore, we impose an additional assumption
to ensure that they are computable.

Assumption �.� | computability of the quasi-probabilities
For the monotone-increasing sequence (𝕊k)∞

k=� of Condition �.�,
the sums in (�.��) are computable in finite time.

Y In particular, Assumption �.� holds in problems with limited reach-
ability because there are only finitely many reachable states in
the complement 𝕊∁

k of any truncation set 𝕊k . Depending on the
particular form of transition kernel and the bounding functions
u±, these sum may be computable in other problems as well. For
example, in problems with non-negative rewards, a zero lower
bound u− = � means that the second sum in (�.��) is equal to
zero.

Summarizing the results of this section, we now present the
policy improvement and action elimination rules.

���

� The Countably-
Infinite Model

Corollary �.�� 2 policy improvement and action elimination
Given a monotone-increasing sequence (𝕊k)∞

k=� of Condition �.�,
and bounding functions u± ∈ Lw(𝕊) such that u− ≤ vπ ≤ u+,
consider a stationary deterministic policy π ∈ 𝔻.

• If for some state s ∈ 𝕊k and action a ∈ Ap(s) the upper approxi-
mate advantage η𝕌±,𝕊k

π,+ (s,a) is negative, then pivoting the policy π
at (s,a) worsens it.

• If for some state s ∈ 𝕊k and action a ∈ Ap(s) the lower approxi-
mate advantage η𝕌±,𝕊kπ,− (s,a) is positive, then pivoting the policy π
at (s,a) improves it.

• Moreover, if the policy π is not optimal, there exist k ∈ ℕ�, such that
for some s ∈ 𝕊k and a ∈ Ap(s) the lower approximate advantage
η𝕌±,𝕊kπ,− (s,a) is positive.

Proof. Corollary �.�� is a direct consequence of Lemma �.� and
Theorem �.�. ���

Y Corollary �.�� serves as the basis for policy improvement and
action elimination steps. If η𝕌,𝔹k

π,+ (s,a) < �, then action a is worse
than π(s) for state s and can be eliminated. If η𝕌,𝔹kπ,− (s,a) > �,
then π(s) should be changed to a; this is policy improvement. The
last statement of the lemma guarantees that an improvement can
always be found in this way as long as the policy π is not optimal
(i.e., as long as it can be improved).

4 . 6 T H E A L G O R I T H M

We now introduce our algorithm ������—approximate salvage-
based policy iteration with repeated elimination of actions.

The idea behind ������ is simple: starting with an arbitrary
policy, the algorithm improves it until no better policy can be
found for any state in the support of the initial distribution. In
order to do so, it computes the policy values (policy evaluation),
then finds the upper and lower advantages of alternative actions.

If the lower advantage approximation is positive, then so is the
true advantage, and pivoting the policy on the given state-action
pair increases its values (improvement).

If for some state-action pair the upper advantage approxima-
tion is negative, so is the advantage itself, and this action cannot
be optimal for the given state (action elimination). The algorithm

���

�.� The Algorithm

Figure �.�:
������—approximate
salvage-based policy
iteration with repeated
elimination (of actions).

Data: a countably-infinite ��� 𝔐∞,
a monotone-increasing sequence of salvage spaces(𝕊k)∞

k=�, and value bounding functions u±
Result: initial-distribution optimal policy π

� initialize the iteration counter i ← �;
� initialize the truncation counter k ← �;
� initialize the policy π� ∈ 𝔻 arbitrarily;
� initialize the feasible control set 𝕎 ← 𝕏𝕊�

;
� repeat
� loop
� foreach (s,a) ∈ 𝕎 do ▹ approximation� compute the upper and lower approximate

advantages η𝕌±,𝕊k
πi ,± (s,a) given by (�.��);

� if η𝕌,𝔹k
πi ,+ (s,a) < � then ▹ repeated elimination�� eliminate the pair (s,a), 𝕎 ← 𝕎 \ {(s,a)};

�� pick (s,a) ∈ argmax(s′,a′)∈𝕎{η𝕌±,𝔹kπi ,− (s′,a′)};
�� if η𝕌±,𝔹kπi ,− (s,a) > � then ▹ policy iteration�� pivot the policy πi+� ← 𝒫s,aπi ;
�� break;
�� else
�� enlarge the truncation set k ← k + �;
�� add new state-action pairs to the feasible

control set 𝕎 ← 𝕎 ∪ 𝕏𝕊k
;

�� i ← i + �;
�� until 𝕎 has one action for every state s ∈ suppα;

���

� The Countably-
Infinite Model

terminates when all of the alternative actions are eliminated for
the initial states.

Under Assumption �.�, the initial states have unique optimal
actions. Since all other actions are suboptimal, their advantages
are negative. Because upper advantages converge to the true
advantages, they eventually become negative and the alternative
actions are eliminated.

Note that if Assumption �.� does not hold, ������ can still be
used for policy improvement. However, a different terminal condi-
tion should be used in this case, such as a time-based constraint.

4 . 7 P R O O F S

In this section, we present the proofs of several theorems from
the previous sections. For the reader’s convenience, we restate
these theorems before proving them.

�.�.� Proof of Theorem 4.2

Theorem �.� 2 fixed point of the truncated Bellman operator
Under Condition �.�, the (u, 𝔹)-truncated Bellman operator ℒ𝔹

π,u
has a unique fixed point v𝔹

π,u ∈ Lw(𝕊) for any stationary policy
π ∈ 𝔻, salvage function u ∈ Lw(𝕊), and truncation set 𝔹 ⊂ 𝕊.

Proof. By Proposition �.��, we need to show that the (u, 𝔹)-See p. ��.
truncated Bellman operator ℒ𝔹

π,u is indeed a ν-stage contraction,
and that it has a finite Lipschitz constant.

To prove the first statement, we show that the operator ℒ𝔹
π,u

maps the space Lw(𝕊) to itself, that is, ℒ𝔹
π,uv ∈ Lw(𝕊) for any

v ∈ Lw(𝕊), and that

∥(ℒ𝔹
π,u)νv′ − (ℒ𝔹

π,u)νv″∥w < ‖v′ − v″‖w

for any v′, v″ ∈ Lw(𝕊). Then, we find the Lipschitz constant of
the truncated Bellman operator ℒ𝔹

π,u and verify that it is finite,
concluding the proof.

Outside of the truncation set 𝔹, when s ∈ 𝔹∁,

∣ℒ𝔹
π,uv(s)∣ = ∣u(s)∣ ≤ ‖u‖w ⋅ w(s).by definition and (�.��),

see p. ��
◃

For any state s ∈ 𝔹 in the truncation set 𝔹,

∣ℒ𝔹
π,uv(s)∣ = ∣rπ(s) + γ ⋅ ∑

s′∈𝔹pπ(s′ | s) ⋅ v(s′)by definition ◃
���

+ γ ⋅ ∑
s′∈𝔹∁pπ(s′ | s) ⋅ u(s′)∣

≤ ∣rπ(s)∣ + γ ⋅ ∑
s′∈𝔹pπ(s′ | s) ⋅ ∣v(s′)∣ ▹ using the triangle

inequality
+ γ ⋅ ∑

s′∈𝔹∁pπ(s′ | s) ⋅ ∣u(s′)∣
≤ w(s) + max{‖v‖w, ‖u‖w} ⋅ γ ⋅ ∑

s′∈𝕊pπ(s′ | s) ⋅ w(s′) ▹ by (�.��) and (�.��)

≤ (� + κ ⋅ max{‖v‖w, ‖u‖w}) ⋅ w(s). ▹ by (�.��)

Therefore, it follows from (�.��) that

‖ℒ𝔹
π,uv‖w ≤ max{� + κ ⋅ max{‖v‖w, ‖u‖w}, ‖u‖w} < ∞.

which proves that ℒ𝔹
π,uv ∈ Lw(𝕊) for any v ∈ Lw(𝕊). By induction,(ℒ𝔹

π,u)nv ∈ Lw(𝕊) for any n ∈ ℕ.
Next, we show that the operator ℒ𝔹

π,u is a ν-stage contraction
mapping on Lw(𝕊). Note that

p j,𝔹
π (s′ | s) ≤ p j

π(s′ | s) for any j ≥ � and s, s′ ∈ 𝔹, (�.��)

because the former is the probability to transition from a state s
to a state s′ in j steps while never leaving the subspace 𝔹, and
the latter allows stepping out of the subspace 𝔹 and returning.

By chain-substituting (ℒ𝔹
π,u)νv = ℒ𝔹

π,u((ℒ𝔹
π,u)ν−�v), from (�.�)

we obtain

[(ℒ𝔹
π,u)νv](s) =

⎧{{{⎨{{{⎩

ν−�
∑
j=�

γj ⋅ ∑
s′∈𝔹pj,𝔹

π (s′ | s) ⋅ r𝔹
π,u(s′)

+γν ⋅ ∑
s′∈𝔹pν,𝔹

π (s′ | s) ⋅ v(s′), if s ∈ 𝔹,

u(s), otherwise.
(�.��)

Let v′ and v″ be two functions in Lw(𝕊). Then (ℒ𝔹
π,u)νv′(s) −(ℒ𝔹

π,u)νv″(s) = u(s)−u(s) = � for any s ∈ 𝔹∁. Note that the first
summand in the first case of (�.��) does not depend on v. Thus,
for all states s ∈ 𝔹

∣(ℒ𝔹
π,u)νv′(s) − (ℒ𝔹

π,u)νv″(s)∣
= γν ⋅ ∑

s′∈𝔹pν,𝔹
π (s′ | s) ⋅ ∣v′(s′) − v″(s′)∣ ▹ by(�.��)

≤ γν ⋅ ∑
s′∈𝔹pν

π(s′ | s) ⋅ ∣v′(s′) − v″(s′)∣ ▹ by (�.��)

≤ γν ⋅ ∑
s′∈𝕊pν

π(s′ | s) ⋅ ∣v′(s′) − v″(s′)∣ ▹ by adding positive
summands over 𝔹∁

≤ γν ⋅ ∑
s′∈𝕊pν

π(s′ | s) ⋅ w(s′) ⋅ ‖v′ − v″‖w ▹ by (�.��), see p. ��

���

≤ λ‖v′ − v″‖w ⋅ w(s).by (�.��), see p. �� ◃
Therefore, by applying (�.��) we obtain

∥(ℒ𝔹
π,u)νv′ − (ℒ𝔹

π,u)νv″∥w ≤ λ‖v′ − v″‖w. (�.��)

Because λ < � by its definition, the (u, 𝔹)-truncated Bellman
operator ℒ𝔹

π,u is a ν-stage contraction with respect to the w-
weighted norm ‖ ⋅ ‖w.

Following the same steps that we used to derive (�.��) but withℒ𝔹
π,u instead of (ℒ𝔹

π,u)ν, we can show that

‖ℒ𝔹
π,uv′ − ℒ𝔹

π,uv″‖w ≤ κ‖v′ − v″‖w,

where κ is the one-stage expansion coefficient defined by (�.��).
Therefore the Lipschitz constant of ℒ𝔹

π,u is equal to the coefficient
κ, which is finite by its definition. ���

�.�.� Proof of Theorem 4.6

Theorem �.� 2 convergence of the truncated values
Under Conditions �.� and �.�, the sequence of absolute errors(e𝕊kπ,u(s))∞

k=� of (u, 𝕊k)-truncations converges to zero for any sal-
vage function u ∈ Lw(𝕊), stationary deterministic policy π ∈ 𝔻,
and state s ∈ 𝕊∞ in the limiting set of the monotone-increasing
sequence (𝕊k)∞

k=�. As a result, the sequence of (u, 𝕊k)-truncated
values (v𝕊kπ,u(s))∞

k=� converges to the exact values vπ over 𝕊∞:

lim
k→∞

vu,𝕊kπ (s) = vπ(s) for all s ∈ 𝕊∞.

Proof. Note that w� = infs∈𝕊 w(s) is positive by definition of the
weight function w. Then for any s ∈ 𝔹 ⊆ 𝕐 ⊆ 𝕊
∣e𝔹

π,u(s)∣ =
∞
∑
i=�

∑
s′∈𝔹 γi ⋅ pi

π(s′ | s) ⋅ ∑
s″∈𝔹∁γ ⋅ pπ(s″ | s′) ⋅ ∣u(s″) − vπ(s″)∣

≤
∞
∑
i=�

∑
s′∈𝕐 γi ⋅ pi

π(s′ | s) ⋅ ∑
s″∈𝔹∁γ ⋅ pπ(s″ | s′) ⋅ ∣u(s″) − vπ(s″)∣by adding positive

summands over 𝕐 \ 𝔹 ◃
≤

∞
∑
i=�

∑
s′∈𝕐 γi ⋅ pi

π(s′ | s) ⋅ ∑
s″∈𝔹∁γ ⋅ pπ(s″ | s′) ⋅ w(s″)by (�.��), see p. �� ◃

⋅ ‖u − vπ‖w

≤
∞
∑
i=�

∑
s′∈𝕐 γi ⋅ pi

π(s′ | s) ⋅ ∑
s″∈𝔹∁γ ⋅ pπ(s″ | s′) ⋅ w(s″)by the triangle

inequality
◃

⋅ (‖u‖w + ‖vπ‖w)
≤ μ ⋅ w(s) ⋅ sup

s′∈𝕐(w(s′)−� ⋅ ∑
s″∈𝔹∁γ ⋅ pπ(s″ | s′) ⋅ w(s″)by (�.��), see p. �� ◃

���

⋅ (μ + ‖u‖w))
≤ cu ⋅ w(s) ⋅ sup

s′∈𝕐(∑
s″∈𝔹∁ pπ(s″ | s′) ⋅ w(s″)), ▹ combining the constants

into cu

(�.��)

where cu is a finite constant for any s ∈ 𝕊 given by

cu ≜ γμw� ⋅ (μ + ‖u‖w). (�.��)

Because the state space is discrete, any state s ∈ suppα will
belong to all 𝕊n,n ≥ N starting with some index N . Then for any
s ∈ 𝕊∞

lim
i→∞

∣e𝕊iπ,u(s)∣ = lim
k→∞

∣e𝕊N+kπ,u (s)∣
≤ cu ⋅ w(s) ⋅ lim

k→∞
sup

s′∈𝕊∞

(∑
s″∈𝕊∁

N+k

pπ(s″ | s′)w(s″)) = �.

Therefore, limi→∞ v𝕊iπ,u(s) = vπ(s) for any s ∈ 𝕊∞. ���

�.�.� Proof of Theorem 4.8

Theorem �.� states that the (𝕌, 𝔹)-approximate advantage func-
tions η𝕌,𝔹

π,± converge to the true advantage function ηπ . To prove
it, we first consider an auxiliary approximation, to which we refer
as the (u′,u″, 𝔹)-approximate advantage function η𝔹

π,u′,u″ .

Definition �.�� | (u′,u″, 𝔹)-approximate advantage
For any functions u′,u″ ∈ Lw(𝕊) and truncation set 𝔹 ⊂ 𝕊, a(u′,u″, 𝔹)-approximate advantage of action a over policy π for
state s is defined as

η𝔹
π,u′,u″(s,a) ≜ r(s,a) + γ ⋅ ∑

s′∈𝕊 \ {s}p(s′ | s,a) ⋅ v𝔹
π,u′(s′)

− (� − γ ⋅ p(s | s,a)) ⋅ v𝔹
π,u″(s). (�.��)

Y As the (u′, 𝔹)-truncated value function v𝔹
π,u′ belongs to Lw(𝕊)

by Theorem �.�, the (u′,u″, 𝔹)-approximate advantage function
η𝔹

π,u′,u″ is well-defined and belongs to Lw(𝕊) as well.
Next, we proof the following bounds on the exact advantage

function ηπ(s,a).
Lemma �.��
For any truncation set 𝔹 ⊂ 𝕊 and salvage functions u± ∈ Lw(𝕊)
such that u− ≤ vπ ≤ u+, the advantages ηπ(s,a) are bounded by

η𝔹
π,u−,u+

(s,a) ≤ ηπ(s,a) ≤ η𝔹
π,u+,u−(s,a).

���

Proof. By definition of ηπ(s,a) and η𝔹
π,u−,u+

(s,a),
ηπ(s,a) − η𝔹

π,u−,u+
(s,a) = γ ⋅ ∑

s′∈𝕊 \ {s}p(s′ | s,a) ⋅ (−e𝔹
π,u−(s′))by (�.��), (�.��) and

(�.��)
◃

+ (� − γ ⋅ p(s | s,a)) ⋅ e𝔹
π,u+

(s). (�.��)

Note that (�.��) involves a change of summation order, which is
possible because the errors are absolutely bounded by (�.��) and
the sum in (�.��) is finite by (�.��).

For any probability p(s | s,a) the multiplier � − γ ⋅ p(s | s,a) is
positive. By Theorem �.�, the differences vπ(s′) − v𝔹

π,u−(s′) and
e𝔹
π,u+

(s) = v𝔹
π,u+

(s) − vπ(s) are non-negative. Therefore, the right-
had side is non-negative, and η𝔹

π,u−,u+
(s,a) ≤ ηπ(s,a). The proof

for η𝔹
π,u+,u−(s,a) holds mutatis mutandis. ���

Y Similarly to the approximate values, approximate advantages con-
verge to the exact advantages as the truncation set 𝔹 grows and
approaches the state space 𝕊. More formally, this statement can
be formulated as follows.

Lemma �.��
Given a function w of Condition �.� and a monotone-increasing
sequence (𝕊k)∞

k=�, the sequence (η𝕊k
π,u′,u″(s,a))∞

k=� of (u′,u″, 𝕊k)-
approximate advantages converges to the exact advantage ηπ(s,a)
for any salvage functions u′,u″ ∈ Lw(𝕊), stationary deterministic
policy π ∈ 𝔻, and state s in the limiting set of the sequence, s ∈ 𝕊∞,
and permitted action a ∈ Ap(s).
Proof. Similarly to the proof of Theorem �.�, we observe that
every state s ∈ 𝕊∞ will belong to all 𝕊n,n ≥ N starting with
some index N . Then for any s ∈ 𝕊∞ the difference eη(s,a) ≜∣ηπ(s,a) − η𝕊N+k

π,u′,u″(s,a)∣ is bounded by

eη(s,a) ≤ γ ⋅ ∑
s′∈𝕊 \ {s}p(s′ | s,a) ⋅ ∣e𝕊N+k

π,u′ (s′)∣by (�.��) and the
triangle inequality

◃
+ (� − γ ⋅ p(s | s,a)) ⋅ ∣e𝕊N+k

π,u″ (s)∣
≤ γ ⋅ ∑

s′∈𝕊 \ {s}p(s′ | s,a) ⋅ ∣e𝕊N+k
π,u′ (s′)∣ + ∣e𝕊N+k

π,u″ (s)∣� − γ ⋅ p(s | s,a) ≤ � ◃
≤ γcu′ ⋅ ∑

s‴∈𝕊 \ {s}p(s‴ | s,a) ⋅ w(s‴)by (�.��) ◃
⋅ sup

s′∈𝕊∞

(∑
s″∈𝕊∁

N+k

pπ(s″ | s′) ⋅ w(s″))
+ cu″ ⋅ w(s) ⋅ sup

s′∈𝕊∞

(∑
s″∈𝕊∁

N+k

pπ(s″ | s′) ⋅ w(s″))
���

≤ cu′,u″ ⋅ w(s) ⋅ sup
s′∈𝕊∞

(∑
s″∈𝕊∁

N+k

pπ(s″ | s′)w(s″)), ▹ by (�.��), see p. ��

where the constant cu′,u″ is defined as

cu′,u″ ≜ κcu′ + cu″
and the constants cu are given by (�.��). The multiplier cu′,u″ ⋅w(s)
is a finite constant for any s; thus, under Condition �.�,

lim
i→∞

η𝔹i
π,u′,u″(s,a) = ηπ(s,a) for any (s,a) ∈ 𝕏𝕊∞

. ���

Y Finally, we show how the approximate advantages η𝔹
π,u′,u″(s,a)

can be used to bound the upper and lower (𝕌, 𝔹)-approximate
advantages η𝕌,𝔹

π,± (s,a).
Lemma �.��
For any salvage space 𝕌 ⊆ 𝕌± such that vπ ∈ 𝕌, the upper and
lower (𝕌, 𝔹)-approximate advantages η𝕌,𝔹

π,± (s,a) are bounded by

η𝔹
π,u−,u+

(s,a) ≤ η𝕌,𝔹
π,− (s,a) ≤ ηπ(s,a) ≤ η𝕌,𝔹

π,+ (s,a) ≤ η𝔹
π,u+,u−(s,a).

Proof. The fact that η𝔹
π,u−,u+

(s,a) ≤ ηπ(s,a) ≤ η𝔹
π,u+,u−(s,a) follows

from Lemma �.��. Consider the lower approximate advantage
η𝕌,𝔹

π,− (s,a). By (�.��) and (�.��), η𝔹
π,u−,u+

(s,a) ≤ η𝕌,𝔹
π,− (s,a). Simi-

larly, η𝕌,𝔹
π,− (s,a) ≤ ηπ(s,a) follows immediately from (�.��) and the

fact that vπ ∈ 𝕌 by the definition of 𝕌. The case of the upper(𝕌, 𝔹)-approximate advantage η𝕌,𝔹
π,+ (s,a) holds mutatis mutan-

dis. ���

Y We are now ready to prove Theorem �.�.

Theorem �.� 2 convergence of the approximate advantages
Under Conditions �.� and �.�, if the upper and lower (𝕌, 𝕊k)-
approximate advantages η𝕌,𝕊k

π,± (s,a) are well-defined, then for any
stationary deterministic policy π ∈ 𝔻, state s ∈ 𝕊∞ in the limiting
set of the monotone-increasing sequence (𝕊k)∞

k=�, and permitted
action a ∈ Ap(s), they converge to the true advantages ηπ(s,a)
from above and below respectively:

η𝕌,𝕊kπ,− (s,a) ↑ ηπ(s,a) and η𝕌,𝕊k
π,+ (s,a) ↓ ηπ(s,a).

Proof. By Lemma �.��, the lower approximate advantage η𝕌,𝔹
π,− (s,a)

is bounded from below by η𝔹
π,u−,u+

(s,a) and from above by ηπ(s,a).
By Lemma �.��, the lower bound converges to the upper bound
for every state s ∈ 𝕊∞ in the limiting set; by the squeeze theorem

���

� The Countably-
Infinite Model

so does the lower approximate advantage η𝕌,𝔹
π,− (s,a), and the

convergence is strictly from below. The same argument applies to
η𝕌,𝔹

π,+ (s,a) mutatis mutandis. ���

�.�.� Proof of Theorem 4.9

To prove Theorem �.�, we need to find analytical solutions to
the optimization problems �.��. We do so by employing their
dual formulations. Unlike finite linear programs, neither weak nor
strong duality is guaranteed to hold in countably-infinite linear
programs, so we introduce the following lemma, which provides
sufficient conditions for strong duality in this case.

Lemma �.�� 2 staircase programs are strongly dual
Consider the following countably-infinite linear program, known asSee Romeijn and

R. L. Smith [����,
Theorem �.�].

a lower-staircase countably-infinite linear program, and its upper-
staircase dual:

JP(y) = miny
∞
∑
i=�

c⊤
i yi (��-�)

s.t. Ai,i−�yi−� + Ai,iyi ≥ bi ,
yi ≥ ,߿
y ∈ 𝕐

and JD(x) = maxx
∞
∑
i=�

b⊤
i xi (��-�)

s.t. A⊤
i,ixi + A⊤

i+�,ixi+� ≤ ci ,
xi ≥ ,߿
x ∈ 𝕏,

where 𝕐 and 𝕏 are the sets of all possible values of optimization
variables yi and xi , i ∈ ℕ for which the objective function is well-
defined and finite.

If for all x ∈ 𝕏 and y ∈ 𝕐
lim inf

k→∞
x⊤

k+�Ak+�,kyk ≥ �, (�.��)

then for any pair x′ ∈ 𝕏 and y′ ∈ 𝕐 the following two statements
are equivalent:

• x′ is primal-feasible, y′ is dual-feasible, and they satisfy the com-
plementary slackness

(Ai,i−�y′
i−� + Ai,iy′

i − bi)⊤x′
i = � and

���

�.� Proofs

(ci − A⊤
i,ix′

i − A⊤
i+�,ix′

i+�)⊤y′
i = � for all i ∈ ℕ,

and the transversality condition

lim inf
k→∞

(x′
k+�)⊤Ak+�,ky′

k = �;

• x′ and y′ are optimal solutions of the primal and dual programs
respectively, and the programs are strongly dual, that is, JP(y) =
JD(x).
Theorem �.� 2 the approximate advantage formula
The upper and lower (𝕌±, 𝔹)-approximate advantages η𝕌±,𝔹

π,± (s,a)
of Definition �.�� are well-defined and equal to

η𝕌±,𝔹
π,± (s,a) = ̆r𝕏𝔹π (s,a) + γ ⋅ ∑

s′∈𝔹∁ ̆p+(s′ | s,a) ⋅ u±(s′)
− γ ⋅ ∑

s′∈𝔹∁ ̆p−(s′ | s,a) ⋅ u∓(s′), (�.��)

for each stationary policy π ∈ 𝔻, bounding functions u± ∈ Lw(𝕊),
truncation set 𝔹 ⊂ 𝕊, state s ∈ 𝔹, and action a ∈ Ap(s). The
space 𝕌± and the augmented reward ̆r𝕏𝔹π are defined by (�.��) and
(�.��); the function ̆p is given by

̆p(s″ | s,a) ≜ ∑
s′∈𝔹lπ(s′ | s,a) ⋅ pπ(s″ | s′), (�.��)

where lπ(s′ | s,a) are the elements of the matrix L𝕏𝔹→𝔹
π of (�.��):

L𝕏𝔹→𝔹
π = [lπ(s′ | s,a)](s,a)∈𝕏𝔹,s′∈𝔹.

Proof. We prove the theorem for the lower (𝕌±, 𝔹)-approximate
advantage η𝕌±,𝔹

π,− (s,a) only. The proof for the upper (𝕌±, 𝔹)-
approximate advantage η𝕌±,𝔹

π,+ (s,a) follows mutatis mutandis.
First, by (�.��) and (�.��) the optimization problem (�.��) that

defines η𝕌±,𝔹
π,− (s,a) becomes

min
u ∈ Lw(𝕊) ̆r𝕏𝔹π (s,a) + ∑

s′∈𝔹lπ(s′ | s,a) ⋅ γ ⋅ ∑
s″∈𝔹∁pπ(s″ | s′) ⋅ u(s″)

s.t. u− ≤ u ≤ u+.

The augmented reward ̆r𝕏𝔹π (s,a) is independent of the optimiza-
tion variable u and can be removed from the program without
affecting the solution. We can also move the discounting factor
outside of the summation and remove it as a positive constant.

The inner infinite sum is absolutely summable

∑
s″∈𝔹∁pπ(s″ | s′) ⋅ ∣u(s″)∣ ≤ ∑

s″∈𝕊pπ(s″ | s′) ⋅ ∣u(s″)∣
���

≤ ∑
s″∈𝕊pπ(s″ | s′) ⋅ w(s″) ⋅ ∥u∥wby (�.��), see p. �� ◃

≤ κ∥u∥w ⋅ w(s′) < ∞.by (�.��), see p. �� ◃ (�.��)

Because L𝕏𝔹→𝔹
π is a finite-dimensional matrix with finite elements

by its definition, (�.��), the outer sum is a finite sum of absolutely
summable sums, and therefore it is absolutely summable as well.

Next, we exchange the summation order to write the objective
function as

∑
s′∈𝔹 lπ(s′ | s,a) ⋅ ∑

s″∈𝔹∁pπ(s″ | s′) ⋅ u(s″)
= ∑

s″∈𝔹∁(∑
s′∈𝔹 lπ(s′ | s,a) ⋅ pπ(s″ | s′) ⋅ u(s″))

= ∑
s″∈𝔹∁ ̆p(s″ | s,a) ⋅ u(s″).by (�.��) ◃ (�.��)

The optimization problem (�.��) is then equivalent to

η𝕌±,𝔹
π,− (s,a)− ̆r𝕏𝔹π (s,a)

γ = min
u ∈ Lw(𝕊) ∑

s′∈𝔹∁ ̆p(s′ | s,a) ⋅ u(s′)
s.t. u− ≤ u ≤ u+.

After the change of variable to y ≜ u − u−, the optimization
problem becomes

JP(y) = min
y ∈ Lw(𝕊) ∑

s′∈𝔹∁ ̆p(s′ | s,a) ⋅ y(s′) (�)

s.t. −y ≥ u− − u+,
y ≥ �.

with its objective function equal to

JP(y) = η𝕌±,𝔹
π,− (s,a) − ̆r𝕏𝔹π (s,a)

γ − ∑
s′∈𝔹∁ ̆p(s′ | s,a) ⋅ u−(s′),

and therefore

η𝕌±,𝔹
π,− (s,a) = ̆r𝕏𝔹π (s,a) + γ ⋅ (JP + ∑

s′∈𝔹∁ ̆p(s′ | s,a) ⋅ u−(s′)). (�.��)

Again, there is a change of summation order but it is possible
because absolute summability can be established by applying the
same argument used in (�.��) to the lower bound u− instead of
the function u.

Note that yf given by

yf(s′) ≜ ⎧{⎨{⎩�, ̆p(s′ | s,a) ≥ �,
u+(s′) − u−(s′), otherwise

���

�.� Proofs

is feasible to the primal problem (that is, it satisfies both con-
straints).

The dual program is

JD(y) = max
x ∈ L𝒩w∗ (𝕏) ∑

s′∈𝔹∁(u−(s′) − u+(s′)) ⋅ x(s′) (�)

s.t. −x ≤ ̆p(⋅ | s,a),
x ≥ �.

The function xf(s′) ≜ ̆p−(s′ | s,a) is feasible to the dual program.
The complementary slackness conditions for the primal-dual

pair are

(−y(s′) − u−(s′) + u+(s′)) ⋅ x(s′) = � and(̆p(s′ | s,a) + x(s′)) ⋅ y(s′) = �;

they are satisfied by xf(s′) and yf(s′).
Indeed, if ̆p(s′ | s,a) ≥ �, then yf(s′) = � and xf(s′) = �, so the

second multipliers in the complementary slackness conditions are
equal to zero. Otherwise yf(s′) = u+(s′) − u−(s′) and xf(s′) =− ̆p(s′ | s,a), and the first multipliers are equal to zero.

If there are only finitely many optimization variables in the
objective function (that is, |𝔹∁| < ∞), then the programs (�) and
(�) are strongly dual. Otherwise we need to additionally establish
that the transversality condition of Lemma �.�� holds.

Assuming that the complement 𝔹∁ of the truncation set 𝔹 is
countably infinite, there exists a bijection f ∶ 𝔹∁ → ℕ. Let

yi ≜ y(f −�(i)), Ai,i−� = �, bi = u−(f −�(i)) − u+(f −�(i)),
xi ≜ x(f −�(i)), Ai,i = −�, ci = ̆p(f −�(i) ∣ s,a).

Using the new variables, the programs (�) and (�) are exactly in
the lower-staircase form (��-�) and upper-staircase form (��-�).
Because all of the off-diagonal matrices Ai,i−� are equal to zero,
both the transversality condition and (�.��) are satisfied. Therefore,
yf and xf are optimal and the strong duality holds by Lemma �.��.

Strong duality means that

JP(yf) = JD(xf) = ∑
s′∈𝔹∁ ̆p−(s′ | s,a) ⋅ (u−(s′) − u+(s′)).

Substitution of this objective value into (�.��) yields

η𝕌±,𝔹
π,− (s,a) = ̆r𝕏𝔹π (s,a) + γ ⋅ (∑

s′∈𝔹∁ ̆p−(s′ | s,a) ⋅ (u−(s′) − u+(s′))
���

� The Countably-
Infinite Model

+ ∑
s′∈𝔹∁ ̆p(s′ | s,a) ⋅ u−(s′))

= ̆r𝕏𝔹π (s,a) − γ ⋅ ∑
s′∈𝔹∁ ̆p−(s′ | s,a) ⋅ u+(s′)

+ γ ⋅ ∑
s′∈𝔹∁(̆p−(s′ | s,a) + ̆p(s′ | s,a)) ⋅ u−(s′)

= ̆r𝕏𝔹π (s,a) + γ ⋅ ∑
s′∈𝔹∁ ̆p+(s′ | s,a) ⋅ u−(s′)y−+y = max{−y, �}+y =

max{−y + y, � + y} =
max{�, y} = y+

◃
− γ ⋅ ∑

s′∈𝔹∁ ̆p−(s′ | s,a) ⋅ u+(s′).
Once again, the derivation involves a change of summation order
that is possible by the argument used in the derivation of (�.��).

���

4 . 8 E X P E R I M E N TS

To illustrate the performance of ������, we applied it to thirty
randomly generated two-product inventory management problems
of Sections �.�.� and �.�.�.

low high

M � ��
m � �
λ � ��
c �� ��
h � �
ov � �
of � ��

Table �.�: Bounds of the
parameters of the
problem. See
Section �.�.�, p. �� for
details.

For all of the problems, the discounting rate was set to γ = �.��.
The initial states were distributed uniformly between all possible
with up to nine units of each product, that is,

α(s) = �.�� if ‖s‖∞ ≤ � and � otherwise.

This way, each problem has ��� states for which the algorithm
needs to identify the optimal actions. The demands pd,i for the
products were Poisson-distributed, pd,i ∼ 𝒫(λi), with randomly
chosen intensities λi ∼ 𝒰d(λi,−,λi,+). The intensities and other
remaining parameters were drawn uniformly from the intervals
presented in Table �.�.

In all problems, the initial policy provided to ������ prescribed
the same action in all states, namely:

a = (a�,a�), where ai = ⌊min{λi , M
�mi

}⌋.

This way, the agent tries to match the expected demands that
are equal to the intensities λ. At the same time, because the
data is generated at random, this initial action may not satisfy
the maximum-shipment-measurement constraint ⟨m,a⟩ ≤ M . To
ensure that this constraint holds, the actions were capped at(M/�m�,M/�m�).

In all of the experiments, ������ produced sequences of
improving policies, as shown in Figure �.�. Because the true values

���

are not computable finitely, the data presented in Figure �.� is only
approximate. We evaluated the policies by computing their gains
J(π) as follows. For each problem, we used a series of zero-salvage See Definition �.��, p. ��
truncations to compute approximate values until the difference
between two successive approximations was less than �.�%. We
then employed the largest truncation obtained this way for policy
evaluation after each pivot.

All of the instances terminated within approximately ��� pivots,
which is equal to the number of the initial states. Intuitively, this
happens because to be initial-decision optimal, the policy at least
needs to change to optimal states in all of the ��� states in the
support of the initial distribution. In some cases, the initial policy
already prescribed optimal actions for some of those states and
fewer pivots happened. In other cases, pivoting of only the initial
actions only was not sufficient and more pivots took place.

Figure �.�: Policies
produced by ������
improve monotonically
with each pivot. Each
line represents one of
the thirty problem
instances. The
horizontal axis shows
the number of
performed pivots.

�

�

�

� �� ��� ��� ���
iteration (number of pivots)

va
lu

e,
×���

In addition to policy improvement via pivoting, ������ per-
forms action elimination. Figure �.� shows the jumpy nature of
the elimination process: when the truncation is enlarged, the ap-
proximate advantages used in the elimination procedure improve,
allowing ������ to eliminate a bulk of suboptimal actions at once.

4 . 9 C O N C LU S I O N

In this chapter, we considered ���s with countably-infinite state
spaces. Because convergence in infinite-dimensional spaces is
non-trivial, we proposed a set of assumptions to guarantee that
further results hold. Then we illustrated how these assumptions
can be checked in the inventory management problem.

���

Figure �.�: Action
elimination by ������.

Each line represents one
of the thirty problem

instances. The
horizontal axis shows

the number of
performed pivots. Note
the logarithmic scale of

the vertical axis.

��

���

����

�����

� �� ��� ��� ���
iteration (number of pivots)

el
im

in
at

ed
ac

tio
ns

(n
or

m
al

iz
ed

)

We then demonstrated how approximate policy evaluation can
be done in countably-infinite ���s by augmenting the reward
with a bonus function representing the unevaluated states outside
of the truncation.

Next, we showed how this approximate evaluation procedure
can be used in policy improvement. Based on the duality of policy
values and policy-induced occupancies, we established that the
advantages—negative dual slacks—can be used to identified policy-
improving pivots. Since in countably-infinite problems the true
advantages cannot be evaluated exactly, we proposed a method
of evaluating salvage bounds and showed how these bounds can
be used in both policy improvement and action elimination.

Using these theoretical development, we designed an algorithm
called ������ for solving countably-infinite ���s via a series of
increasing truncations. Our previous truncation-based algorithm
����� prescribes the actions reactively, after the state is observed
but before the action needs to be taken. ������ is able to identify
optimal actions in the support of the initial distribution and can be
used to plan proactively, before the actual initial state is observed.
Like �����, it is applicable to problems with unbounded rewards
and produces strictly improving policies.

Even though the traditional approach of finding a universally
optimal policy is computationally intractable in countably-infinite
���s, ������ can be used for provably optimal decision-making:
once the action prescribed by ������ is taken, the procedure
can be repeated for the distribution of the next state, leading to
optimal behavior.

���

5
Generalized Optimistic

Q-Learning

Optimism is essential to achievement
and it is also the foundation of courage
and true progress.

— Nicholas Murray Butler,
Commencement Addresses,

The Responsibility of Youth

R������������ ��������, like any on-line learning me- This chapter is based on
the article published in
the Proceedings of the
Nineteenth International
Conference on
Autonomous Agents and
Multiagent Systems
[Neustroev and
de Weerdt, ����].

Minor changes were
made to the text to
improve readability.

thod, inevitably faces the exploration-exploitation dilemma.
When a learning algorithm requires as few data samples

as possible, it is called sample efficient. The design of sample-
efficient algorithms is an important area of research. Interestingly,
all currently known provably efficient model-free �� algorithms
utilize the same well-known principle of optimism in the face
of uncertainty. We unite these existing algorithms into a single
general model-free optimistic �� framework. Using the proposed
framework, we study sample-efficiency of optimistic reinforcement
learning in terms of regret, that is, the value loss in the learning
process. We show how this facilitates the design of new opti-
mistic model-free �� algorithms by simplifying the analysis of
their efficiency. Finally, we propose one such new algorithm and
demonstrate its performance in an experimental study.

5 . 1 I N T R O D U CT I O N

Reinforcement learning [Sutton and Barto, ����] is a popular
framework for sequential decision-making problems in an un-
known environment, applicable to a wide range of problems. In
general, �� methods fall into two categories: model-based and
model-free. Model-based approaches build an approximate model
of the environment and use it to reason about optimality of actions.
Model-free approaches, in contrast, estimate optimality of actions
directly. To find the best possible course of actions, reinforcement
learning requires many repeated trials, which is effective but costly.
Therefore, one of the important challenges in reinforcement learn-
ing is the design of sample-efficient algorithms, that is, algorithms
utilizing as much information from each interaction as possible.
Sample efficiency of model-based reinforcement learning has been
studied extensively, and several methods were proven to be sample
efficient [Azar, Osband, et al., ����; Kakade et al., ����].

Even though most �� breakthroughs—from seminal �-learning
[Watkins, ����] to state-of-the-art deep �-networks [Mnih, Kavuk-
cuoglu, Silver, Graves, et al., ����; Hessel et al., ����]—are of the
model-free paradigm, theory on sample efficiency of model-free
reinforcement learning remains limited. Only recently some dis-
persed results have appeared for a few model-free methods. For
proper understanding of the potential of model-free reinforcement
learning, and thus of the design of optimal �� algorithms, we need

���

� Generalized
Optimistic

Q-Learning

to identify the relation between the efficiency of these methods
and various components of their design.

The first provably efficient model-free �� algorithm was in-
troduced by Jin et al. [����]. It is called upper confidence bound
�-learning and comes in two forms: ���-� and ���-�. Its con-
ception sparked interest in sample complexity of model-free re-
inforcement learning; as a result, several similar methods have
been proposed, namely, ∞-���, ���� �-learning [Y. Wang et al.,
����; Rashid et al., ����]. All of these methods attribute their
success to the use of the same learning rate proposed by Jin et al.
[����]. Another factor that allows these (both model-based and
model-free) algorithms to achieve sample efficiency is their use of
optimism in the face of uncertainty [Szita and Lőrincz, ����]. We
aim to better understand how optimism affects the efficiency of
reinforcement learning.

The main contribution of this chapter is a generalized theory
on optimistic �-learning which unifies the existing algorithms.
In the context of model-based methods, there already exists a
generalization known as optimistic initial model [ibid.]. Instead,
we focus on model-free methods because they have better space
complexity and can be adapted to deep learning, which is arguably
the most promising direction of future work.

We also perform a generalized theoretical analysis of sample
efficiency. In order to establish efficiency of an algorithm, two
related techniques are used. Some authors provide ���-bounds on
the time required to achieve near-optimal performance [Strehl, Li,
Wiewiora, et al., ����; Strehl, Li, and Littman, ����; Kakade et al.,
����; Y. Wang et al., ����]. We employ another approach and��� stands for probably

approximately correct,
and means that an

equation holds with high
probability and low

absolute error, both of
which can be chosen a

priori in an arbitrary
way.

establish efficiency by showing that the regret of the algorithm—
the total loss of reward incurred while learning—grows sub-linearly
with respect to the number of interactions [Jin et al., ����; Bai
et al., ����; Rashid et al., ����]. The two approaches are similar;
in fact, it is known that one implies the other, and vice versa [Jin
et al., ����; Osband and Van Roy, ����].

To summarize, in this work, we study the effects of optimism on
the regret of model-free �� algorithms. We start with examining
the existing sample-efficient �-learning methods and identifying
their common features. Then we propose a generalized model of
optimistic �-learning, which encompasses these methods. Next, we
perform a theoretical regret analysis and derive a regret bound for
the generalized model, which allows us to identify the sources of

���

�.� Preliminaries

regret. We show how these general results can be used to facilitate
the design of new optimistic model-free algorithms by proposing
one such algorithm, and evaluate its performance experimentally.

5 . 2 P R E L I M I N A R I E S

This section introduces the underlying model and our notation.

�.�.� Non-Stationary Episodic Markov Decision Processes

We use episodic non-stationary Markov decision process (non-
stationary ���) as an underlying model because the total regret
is a well-defined value in episodic learning [Y. Wang et al., ����]
but is not as clearly defined in other settings. An episodic non-
stationary ��� is defined as a tuple

𝔐H ,K ≜ (H ,K , 𝕊, 𝔸,Ap,h, ph, rh).
In this setting, the agent interacts with the environment for K
episodes, each consisting of H time steps for the total number
of T ≜ HK interactions. We denote the sets of all episodes and
steps of each episode as 𝕂 ≜ {�,… ,K} and ℍ ≜ {�,… ,H}. At
each time step h, an agent observes the state of the environment
sh ∈ 𝕊 and chooses one of the available actions ah ∈ Ap,h(sh) ⊆ 𝔸.
The environment transitions to a new state sh+� with probability
ph(sh+� | xh); the agent observes this transition and receives a
reward rh(xh). We use xh ≜ (sh,ah) for state-action pairs and

𝕏h ≜ {(s,a) ∣ s ∈ 𝕊 and a ∈ Ap,h(s)}
for the admissible control space in time step h.

Given the state s at time step h, the value vπ,h(s) of a policy
π ∈ ℿ that can be found using the Bellman policy equations:

vπ,h(s) = qπ,h(s,πh(s)), vπ,H+�(s) = �, (�.�)
qπ,h(x) = [rh + γ ⋅ 𝒯hvπ,h+�](x),[𝒯hy](x) ≜ ∑

s′∈𝕊 ph(s′ | x) ⋅ y(s′) for all y ∶ 𝕊 → ℝ̄. (�.�)

The agent needs to learn an optimal policy, that is, a policy π⭑
with the highest possible values

vπ⭑,h(s) = v⭑,h(s) ≜ max
π∈ℿ vπ,h(s).

���

� Generalized
Optimistic

Q-Learning

The optimal values v⭑,h(s) satisfy the Bellman optimality equations

v⭑,h(s) = [ℳhq⭑,h](s), v⭑,H+�(s) = �,

(�.�)

q⭑,h(x) = [rh + γ ⋅ 𝒯hv⭑,h+�](x), (�.�)
where [ℳhy](s) ≜ max

a∈Ap,h(s)y(s,a) for all y ∶ 𝕏h → ℝ̄.

In each episode k , the agent follows some policy πk . When these
policies are suboptimal, they cause a loss of the total γ-discounted
reward, known as the regret.

Definition �.� | total regret
The (expected) total regret R of such agent in an episodic non-
stationary ��� 𝔐H ,K is defined as

R ≜ K
∑
k=�

Rk =
K
∑
k=�

(v⭑,�(s�,k) − vπk ,�(s�,k)).

Y Finally, in this chapter we assume that the rewards and values
are bounded, but the bounds may vary between steps, that is,
rh(x) ∈ [r−,h, r+,h] and vπ,h(x) ∈ [v−,h, v+,h] for all x ∈ 𝕏 and π.
For simplicity, we use deterministic rewards; however, our results
can be extended to randomized rewards. We denote the reward
bounds of the whole episode as r±(H), that is, r−(H) ≤ minh∈ℍ r−,h
and r+(H) ≥ maxh∈ℍ r+,h. We denote the reward span of a step as
rΔ,h ≜ r+,h −r−,h, and of an episode as rΔ(H) ≜ r+(H)−r−(H). We
define the value bounds v±,H and spans vΔ,h and vΔ(H) similarly.

�.�.� Reinforcement Learning

In reinforcement learning, the transition and reward functions
of an ��� are not known, so the Bellman optimality equation
(�.�) cannot be applied directly. Instead, the optimal �-values are
learned through interactions with the environment. The initial
�-values qh,�(x) are chosen arbitrarily, and at each episode k + �
they are gradually updated from the previous �-values qh,k(x). In
�-learning [Watkins, ����], the update rule is:

qh,k+�(x) =
⎧{⎨{⎩(� − αt) ⋅ qh,k(x) + αt ⋅ Uh,k(x, sh+�), if x = xh,k+�,
qh,k(x), otherwise;

(�.�)
we call the term Uh,k(x, s) the update.

���

�.� Preliminaries

Definition �.�
The update Uh,k(x, s) of �-learning is a function defined as

Uh,k(x, s) ≜ rh(x) + γ ⋅ [ℳh+�qh+�,k](s).
Y To easier relate these values to the optimal �-values q⭑,h(x), we

define the following operator.

Definition �.�
The empirical transition operator 𝒯̂h,k for each k ∈ 𝕂 and h ∈ ℍ:[𝒯̂h,ky](x) ≜ y(sh+�,k) if h < H , and [𝒯̂H ,ky](x) ≜ �. (�.�)

Y Using this operator, the update term can be written similarly to
the Bellman equations (�.�) and (�.�):

Uh,k(x, sh+�,k) ≜ [rh + γ ⋅ 𝒯̂h,kvh+�,k](x) with
vh,k(sh,k) ≜ [ℳhqh,k](sh,k).

Definition �.� | learning rate
The function αt in (�.�) is called the learning rate.

Y We use t as a shorthand for the realized visitation function #h,k(x),
which gives the number of times the state-action pair x has been
visited in time step h of the first k episodes.

The learning rate is used to balance the newly acquired informa-
tion Uh,k(x, s) with the old experiences qh,k(x). For an appropriate
choice of the learning rate, the sequence (qh,k(x))∞

k=� converges to
q⭑,h(x) with probability one, if the state-action space 𝕏 is finite|𝕏| < ∞ and the rewards function r is uniformly bounded [Jaakkola
et al., ����].

In particular, the conditions on the learning rate are:
∞
∑
t=�

αt(x) = ∞ and
∞
∑
t=�

α�
t (x) < ∞ for all x ∈ 𝕏. (�.�)

The first condition ensures that the updates remain large enough
to affect �-values, while the second condition guarantees that
the variance of the resulting iterative stochastic process remains
bounded (i.e., that it converges).

Using the notation of Jin et al. [����], we introduce the following
values.

Definition �.� | cumulative learning rates
Given a learning rate α, the cumulative learning rates are given by

αt,� =
t
∏
j=�

(� − αj), and αt,i = αi ⋅ t
∏

j=i+�
(� − αj). (�.�)

���

� Generalized
Optimistic

Q-Learning

Y For t = �, we define αt,� ≜ � and ∑t
i=� αt,i ≜ �. If a state-action

pair x = (s,a) was previously visited in time step h of episodes
k�, … , kt < k , then by the update equation (�.�) on ki we can write

qh,k(x) = αt,� ⋅ qh,�(x) +
t
∑
i=�

αt,i ⋅ Uh,ki
(x, sh+�,ki

). (�.�)

5 . 3 O P T I M I S M I N Q � L E A RN I N G

This section presents our main contribution. We start with an
overview of optimism in model-free �� methods. Then we propose
a generalized framework of optimistic reinforcement learning.
Next, we formulate the conditions under which the total regret
of optimistic �-learning can be bounded and present an intuitive
interpretation of the bound.

�.�.� Representation of Optimism

As briefly mentioned in Section �.�, the principle of optimism in
the face of uncertainty is usually applied in two ways: optimistic
initialization, and use of ���s in action selection. We looked at
���-� [Jin et al., ����], ���-� [ibid.], ∞-��� [Y. Wang et al.,
����], and ���� [Rashid et al., ����] to see how they incorporate
these two aspects of optimism.

For initialization, all of the methods use qh,�(x) = v+(H) = v+
except for ����. The latter uses qh,�(x) = v−, but additionally
augments �-values with a bonus for optimism u(t), depending on
the visitation counter t. These augmented �-values

̄qh(x) ≜ qh(x) + u(t)
overestimate the true �-values (i.e., they are optimistic) and are
used for action selection. The particular choice of this bonus is
u(t) = C/(t+�)M , where C ≥ vΔ and M is a sufficiently large number.
It ensures that the augmented �-values ̄qh,�(x) of unvisited state-
action pairs are optimistic:

̄qh,�(x) = qh,�(x) + u(t) ≥ v− + vΔ/�M = v+.

If t > �, however, the bonus for optimism becomes close to zero
as limM→∞ C/(t + �)M = � and the effect of the augmentation
vanishes fast. This bonus for optimism is motivated by deep
learning models, where it is hard to ensure optimistic initialization,

���

�.� Optimism in
Q-Learning

but an addition of an extra summand is easier to implement [ibid.].
As deep learning represents an interesting area of study, we choose
to keep the bonus for optimism in our model and allow arbitrary
initialization. We allow this bonus for optimism uh(t) to differ
with time step h, and therefore define the augmented �-values as
follows.

Definition �.� | augmented �-values
The augmented �-values and augmented values are equal to

̄qh(x) ≜ qh(x) + uh(t), ̄vh(s) ≜ min{v+,h, [ℳh ̄qh](s)}. (�.��)

Y For exploration, all of the models store ��� �-values and explore
greedily based on them. Compared to regular �-learning, these
�-values include an additional term that we call the confidence
bonus.

Definition �.� | confidence bonus
The confidence bonus b(t) is a ���-based term added to the
updates,

Uh,k(x, s) ≜ rh(x) + γ ⋅ [ℳh+�qh+�,k](s) + b(t).
Y The goal of this bonus is to ensure that the learned �-values qh,k(x)

are the ���-estimates of the optimal �-values q⭑,h(x). The exact
form of the bonus depends on which concentration inequalities
are used in the method’s design. These concentration inequalities
provide probabilistic bounds on the total regret, and the bonuses
are carefully crafted to ensure that the resulting bounds hold with
high probability � − δ. Instead of designing bonuses to guarantee
the probability that regret bound holds, we do the reverse, that
is, we allow arbitrary bonuses bh(t), and see how they affect the
probability δ.

Additionally, we introduce the following two auxiliary functions.

Definition �.� | cumulative confidence bonus
The cumulative confidence bonus βh(t) is given by

βh(t) ≜ t
∑
i=�

αt,ibh(i).
Definition �.� | total cumulative bonus
The total cumulative bonus ϑh(t) is equal to

ϑh(t) ≜ βh(t) + uh(t).
���

Figure �.�: Generalized
optimistic �-learning

Data: episodic non-stationary ��� 𝔐H ,K , initial �-values
qh,�, bonuses uh(t) and βh(t), learning rate αt , and
exploration rate ε.

� Initialize �-table qh(x) ← qh,� and visitation counter
#h(x) ← � for all h ∈ ℍ, x ∈ 𝕏h;

� for episode k ← �,… ,K do
� observe initial state s�;
� for step h ← �,… ,H do
� take action ah ← Greedyε(̄qh, sh), wherēqh(x) ≜ qh(x) + uh(t);
� receive reward rh, observe next state sh+�, and let

xh = (sh,ah) denote the current state-action pair;
� increment visitation counter t = #h(xh) by �;
� compute confidence bonus

bh(t) ← α−�
t ⋅ βh(t) + (� − α−�

t) ⋅ βh(t − �);
� compute update

Uh(xh, sh+�) ← rh(xh) + bh(t) + γ ⋅ ̄vh+�(sh+�), wherēvh(s) ≜ min{v+,h, [ℳh ̄qh](s)} update �-table
qh(xh) ← (� − αt) ⋅ qh(xh) + αt ⋅ Uh(xh, sh+�, t);

Y The total cumulative bonus ϑh(t) represents all of the optimistic
bias of an algorithm and which plays an important role in our
analysis.

Summarizing the aforementioned, a generalization of the ���-
based methods should include two kind of bonuses: a bonus for
optimism uh(t) and a confidence bonus bh(t) (or its cumulative
form βh(t)), and use the augmented �-values ̄qh(x).
�.�.� Generalized Optimistic Q-Learning

Following the discussion of Section �.�.�, the existing sample-
efficient optimistic �-learning methods differ with respect to three
hyperparameters: initial �-values qh,�, bonus for optimism uh(t),
and cumulative confidence bonus βh(t). We unify these methods
into a single algorithm, which we name Generalized optimistic
�-learning. It is presented in Figure �.�. Table �.� summarizes how
the existing methods fit into this framework.

Algorithm �.� has two extra hyperparameters, a learning rate
αt and an exploration rate ε. It is shown in [Jin et al., ����] that the
learning rate αt = (H+�)/(H+t) offers significant improvements in
performance compared to previously considered rates αt = t−� and
t−ω, where �.� < ω ≤ � is a constant. Therefore, it is possible that

���

�.� Optimism in
Q-Learning

other learning rates may offer similar, or even better improvements.
We want generalized optimistic �-learning to be as general

as (reasonably) possible, so we include the exploration rate ε as
a parameter. This allows us to represent several other methods
in our framework as well, as shown at the top of Table �.�. In
our theoretical study, however, we assume greedy action selection,
that is, ε = �, as is the case for all variants of ���, and we leave
the analysis of regret for ε > � as an interesting future direction.

Following the discussion of Section �.�.�, we would like to point
out that the update equation (�.�) of Algorithm �.� uses a slightly
different update term (see step �) by adding a bonus term uh(t):

Uh,k(x, s) ≜ rh(x) + bh(#h,k(x)) + γ ⋅ ̄vh+�,k(s), where (�.��)̄vh+�,k(s) ≜ min{v+,h+�, [ℳh+� ̄qh+�,k](s)} and (�.��)̄qh,k(x) ≜ qh,k(x) + uh(#h,k(x)). (�.��)

New optimistic model-free �� algorithms can be expressed
by Algorithm �.� with different hyperparameter combinations.
Below we present a novel algorithm, which is designed using this
framework.

Example �.� | ���-� with generalized learning rate, ���-�+

���-�+ follows the flow of Algorithm �.� with the hyperparameters
presented in the last row of Table �.�. In particular, ���-�+ utilizes
a new learning rate

αt ≜ λH + �
λH + tω , where λ ≥ � and �

� < ω ≤ �. (�.��)

The learning rate of ���-�+ generalizes the previously used
learning rates, complies with the learning rate conditions (�.�),
and is motivated by two observations. Firstly, for the discounted
problems the learning rate t−ω outperforms �/t, and the best
performance is achieved for ω ≈ �.� [Even-Dar, Mannor, et al.,
����; Azar, Munos, et al., ����]. Secondly, switching from αt = �/t
to (H +�)/(H + t) allowed Jin et al. [����] to bound the regret blow-
up with respect to H and achieve efficiency. We would like to note
that our generalized framework does not rely on this particular
learning rate, instead, this example serves as an illustration.

Y The generality of our framework complicates the theoretical anal-
ysis of Algorithm �.�. To achieve interesting, interpretable results,
we need to impose at least some conditions on the hyperparame-
ters of the model. None of the conditions we use are particularly

���

� Generalized
Optimistic

Q-Learning

�-learning
variant

q
h,�

α
t

ε
u

h (t)
β

h (t)
regret

regular
[W

atkins,����;
Even-D

ar,M
annor,

etal.,����]

any
t −

ω
ε

�
�

Ω
H

,X (T)
optim

istic
[Even-D

ar
and

M
ansour,����]

v+ /α
T

,�
t −

ω
ε

�
�

?

speedy
[Azar,M

unos,etal.,
����]

any
t −

�
ε

�
∑

ti=� 𝒯
i (Q

i −
Q

i−
�)

𝒪
H

,X (T
�/�)

���-�
[Jin

etal.,����]
v+

H
+�

H
+t

�
�

c� H⋅∑
ti=� α

i √
H

ιi
𝒪(H

�√
TX)

���-�
[Jin

etal.,����]
v+

H
+�

H
+t

�
�

�� m
in{ c� ⋅(√

H(W
t +H)ι
t

+ √
H

�X
t

ι) ,
c� √

H
�ιt }

𝒪(H √
H

TX)
∞

-���
[Y.W

ang
etal.,����]

v+
H

+�
H

+t
�

�
c�

�−
γ ⋅∑

ti=� α
i √

H
ιi

𝒪
H (√

TX)
�

���
[Rashid

etal.,����]
v−

H
+�

H
+t

�
C

(t+�) M
c� H⋅∑

ti=� α
i √

H
ιi

𝒪(H
�√

TX)
���-�

+
this

chapter
v+,h

λH
+�

λH
+t ω

�
�

cγvΔ,h+� √ (λH
+�)ι

λH
+t ω

𝒪(μ √
H

ω−
�T

�−
ωX

ω)

Table �.�: Different
�-learning algorithms as

generalized optimistic
�-learning. Below the

line are provably
efficient methods.

���

�.� Optimism in
Q-Learning

restrictive, and they—sometimes trivially—hold for all of the exist-
ing optimistic methods, albeit without being explicitly mentioned.
At the same time, these conditions encompass a broader class of
models, including the aforementioned ���-�+.

Conditions on the learning rate

We start with conditions on the learning rate αt . By inspection of
various proofs involving the learning rates presented in Table �.�,
we identified that their successful application can be attributed to
the following condition.

Condition �.� | initial learning rate is one
The learning rate satisfies α� = �.

Y Intuitively, Condition �.� means that when a state-action pair is
visited for the first time, the update equation becomes

qk = (� − α�) ⋅ q� + α� ⋅ U = U ,

and the initial value q� becomes “forgotten”, being replaced by
a ���-based update U . Thus, under a condition α� = � the
initialization affects the optimistic view of unencountered state-
action pairs only.

Iterative approximation of optimal �-values via (�.�) leads to
a scaling factor of ∑t

i=� αt,i . As the learning process is stochastic,
we want to ensure that its variance remains bounded similarly to
(�.�). Moreover, as ��� depends on this variance, we need to be
able to quantify it in order to compare the bonus terms we use
to the actual confidence bounds. This observation leads us to the
following condition.

Condition �.� | asymptotic of squared α
There exists a function � ≤ ζ(t) ≤ � such that

t
∑
i=�

(αt,i)� ≤ ζ�(t).
Y Next, to quantify the total regret, we need to be able to express

its propagation from one time step to another; we see from Corol-
lary �.�� that the total regret inflates by a factor of γ ⋅ η(H ,K)
with each step, where η(H ,K) satisfies the following condition.

Condition �.� | asymptotic of residual α
There exists a function η(H ,K) ≥ � such that

K
∑
n=t

αt,n ≤ η(H ,K).
���

Y Knowing the learning rate, it is possible to express η analytically.
For example, Jin et al. [����] show that ∑∞

n=t αt,n ≤ � + �/H = η(H)
in their analysis, which implies Condition �.�. However, without
any assumptions on the form of the learning rate, we have to fall
back to η as a generalized term.We omit the arguments

of η and other functions
introduced later for

brevity of notation, if it
does not lead to

ambiguity.

Function η serves as a “scaling factor” for the total regret, but
there are other scale parameters, for example, the discounting
factor, the lower r−,h and the upper r+,h reward functions affect
the total regret scale as well. We want to be able to quantify their
effect and combine all of the scale parameters together as follows.

Condition �.� | asymptotic of the values
Let v↑,h denote the asymptotically dominant term between the
upper value function v+,h and the value span vΔ,h, that is,

v↑,h ≜ ⎧{⎨{⎩vΔ,h if v+,h = 𝒪(vΔ,h),
v+,h otherwise,

and similarly for the reward bound r↑(H) and the value bound
v↑(H). Then there exists a function μ(H ,K , γ) such that

H
∑
h=�

(γη)h−�v↑,h = 𝒪(μ(H ,K , γ)). (�.��)

Y We call the function μ of Condition �.� the magnitude function,
because it quantifies the asymptotic behavior of the total regret
blowup in all H time steps. Intuitively, regret of each time step
is at most vΔ = 𝒪(v↑), which means that the total regret grows
at most at a rate of ∑H

h=�(γη)h−�v↑,h as H grows. The magnitude
function quantifies this rate.

All of the existing ���-based methods utilize the same learning
rate αt = (H +�)/(H + t) as showed in Table �.�. It is easy to check
that this learning rate satisfies Conditions �.�–�.�. In particular,
ζ(t) = �H/t and η(H) = �+�/H are proposed by Jin et al. [ibid.] and
used by other authors [Jin et al., ����; Y. Wang et al., ����; Rashid
et al., ����]. Due to the fact that (� + �/H) < e, the magnitude
function equal to μ(H) = V↑ = H is used.

Conditions on the bonuses

All of the remaining conditions are rather intuitive. The first
one addresses the initialization and was already discussed in Sec-
tion �.�.�. We require that the initial values are not too high or
too low, and that the augmented initial values ̄qh,� used in action
selection are optimistic.

���

�.� Optimism in
Q-Learning

Condition �.� | initial values are optimistic
The initial values qh,� belong to intervals [v−,h, v+,h], and the bonus
for optimism uh(t) is such that qh,� + uh(�) ≥ v+,h.

Y Finally, we present two conditions (�.� and �.�) on the bonuses.

Condition �.� | bonuses decrease with visitations
The total bonus function is non-negative and non-increasing in t,
ϑh(t) ≥ ϑh(t + �) ≥ � for all t ∈ ℕ.

Y As t represents the number of visitations of a state-action pair, we
want the bonus to decrease as it grows, that is, as we collect more
samples and build higher confidence. Non-negativity ensures that
the bonuses are optimistic.

Condition �.� | asymptotic of the bonuses
There exists a bonus scaling function θ(t) such that

t
∑
n=�

ϑh(n) = 𝒪(v↑,h ⋅ θ(t)).

Y This condition is used to quantify the effect of the total bonus ϑh(t)
on the regret by a function θ(t), similarly to how the magnitude
function μ quantifies the other effects.

The existing methods satisfy Conditions �.� and �.� trivially.
Condition �.� depends on the particular bonus design, and also
holds for all of the methods. For example, ���-� and ���� both
use θ(t) = √Htι as the bonus scaling function, although implicitly.

�.�.� The Total Regret Bound

Finally, we are ready to give a high-probability bound on the total
regret, which is our main theoretical contribution. The total regret
is bounded by the sum of three different terms, each amplified by
the magnitude function μ of Condition �.�. These terms are:

• the size of the admissible control space

X ≜ |𝕏|,
• the total effect of the bonuses

B ≜ X ⋅ θ(K /X),
which depends on the bonus scaling function of Condition �.�, and

���

� Generalized
Optimistic

Q-Learning

• the total effect of the estimation error

E ≜ c√Kι,

where
ι ≜ ln(TX/δ)

is the logarithmic term.

The state-action space size X represents the effect of the optimistic
initialization, as the number of initial values is proportionate to X .
The bonus effect B relates to optimistic action selection.

The third factor E is caused by replacing the unknown tran-
sition operator (�.�) with its empirical counterpart (�.�). The
constant c depends on how much uncertainty there is in the tran-
sitions, and is formally introduced later. An important property
is that for deterministic problems c = �, and the estimation term
disappears. The probability δ used in the estimation error term E
depends on our confidence in the total regret bound, that is, the
bound holds with probability at least � − �δ. It depends on the
choice of the cumulative confidence bonus βh(t) as follows:

δ =
⎧{{⎨{{⎩
�KX ⋅ ∑

h∈ℍexp(− �
�(βh(t)

γcvΔ,h+� ⋅ ζ(t))�), if c > �,

�, if c = �,
(�.��)

The following theorem formalizes these results.

Theorem �.� 2 total regret in optimistic �-learning
Let Conditions �.�–�.� hold. Then for some constant � ≤ c ≤ �, with
probability at least � − �δ the total regret of generalized optimistic
�-learning with no exploration (i.e., when ε = �) is bounded by

R(𝔐H ,K ,α,ϑ) = 𝒪(μ ⋅ (X + B + E)), (�.��)

Y If there are no random transitions in the non-stationary ���, the
learning process becomes fully deterministic as well (we assume
no random exploration). This leads us to the following corollary.

Corollary �.� 2 total regret in deterministic ���s
If the transitions of the underlying non-stationary ��� 𝔐H ,K are
deterministic, the total effect of the estimation error is equal to zero,
E = �. Moreover, the bound of Theorem �.� holds with probability
one.

���

�.� Proof of
Theorem 5.1

5 . 4 P R O O F O F T H E O R E M 5 . 1

We prove Theorem �.� by using a recurrent decomposition of the
regret of a time step h in terms of the next time step h + �. We
bound the regret of each time step using the differences between
augmented �-values ̄qh(x) of generalized optimistic �-learning
and the optimal �-values q⭑,h(x). To derive these bounds, we
employ some properties of the learning rate.

�.�.� Properties of the Learning Rate

We prove two lemmas, both relying on Condition �.� only.

Lemma �.� 2 learning rate sums into one
If α� = �, then

• αt,� = � and ∑t
i=� αt,i = � for t ≥ �;

• ∑t
i=� αt,i = � for any t ≥ �.

Proof. By definition, αt,� = (� − α�) ⋅ ∏t
j=�(� − αj) = �.

We prove that ∑t
i=� αt,i = � by induction. For t = �, ∑t

i=� αt,i =
α� = �. Assume that ∑t

i=� αt,i = �. Then using the definition of αt,i ,

t+�
∑
i=�

αt+�,i =
t
∑
i=�

αi
t+�
∏

j=i+�
(� − αj) + αt+�

= (t
∑
i=�

αi ⋅ t
∏

j=i+�
(� − αj)) ⋅ (� − αt+�) + αt+�

where the expression in the first brackets is equal to ∑t
i=� αt,i = �

by the induction hypothesis, and therefore ∑t+�
i=� αt+�,i = �.

The second statement follows trivially from the first for t ≥ �
and from the definition of αt,i for t = �. ���

Y Lemma �.� allows us to write

q⭑,h(x) =
t
∑
i=�

αt,i ⋅ q⭑,h(x)
similarly to the decomposition (�.�) of qh,k(x) in order to relate
them to each other.

We also prove the following relation between the confidence
bonus b(t) and the cumulative confidence bonus β(t), justifying
our choice of the bonus in step � of Algorithm �.�.

���

� Generalized
Optimistic

Q-Learning

Lemma �.� 2 sums of bonuses
If for some function β(t)

b(t) ≜ α−�
t ⋅ β(t) + (� − α−�

t) ⋅ β(t − �)
and either α� = � or β(�) = �, then ∑t

i=� αt,i ⋅ b(i) = β(t).
Proof. By induction. For t = �, ∑�

i=� αi
� ⋅ b(i) = α� ⋅ b(�) = β(�) +(α� − �) ⋅ β(�) = β(�). Assume ∑t

i=� αt,i ⋅ b(i) = β(t) for some t.
Then

t+�
∑
i=�

αt+�,i ⋅ b(i) =
t
∑
i=�

αt+�,i ⋅ b(i) + αt+� ⋅ b(t + �)
= (� − αt+�) ⋅ β(t) + αt+� ⋅ b(t + �)
= (� − αt+�) ⋅ β(t) + β(t + �)

+ αt+� ⋅ (� − α−�
t+�) ⋅ β(t)

= β(t + �). ���

�.�.� Bounds on Q-Value Differences

First, we show that the augmented �-values ̄qh(x) are related to
the augmented values ̄vh+�(s) of previous episodes as follows.

Lemma �.� 2 recursion on ̄q
For any step h ∈ ℍ, state-action pair x = (s,a) ∈ 𝕏h and episodeThis is a generalization

of Lemma �.� of Jin et al.
[����].

k ∈ 𝕂, let t ≜ #h,k(x) and suppose that for state s action a was
previously taken in time step h of episodes k�, … , kt < k . Then under
Condition �.�

[̄qh,k − q⭑,h](x) = αt,�[qh,� − q⭑,h](x)
+

t
∑
i=�

αt,i(γ ⋅ [̄vh+�,ki
− v⭑,h+�](sh+�,ki

)
+ γ ⋅ [(𝒯̂h,ki

− 𝒯h)v⭑,h+�](x)) + ϑh(t). (�.��)

Proof sketch. Similarly to the proof of Lemma �.� of Jin et al. [ibid.],
we use (�.��) and (�.�) to express ̄qh,k(x) in terms of the initial
values qh,�. Then we apply Lemma �.� and the Bellman optimality
equation (�.�) to do a similar decomposition for q⭑,h(x). ���

Y Next, we introduce the parameter c that quantifies the differ-
ence between the empirical transition operator (�.�) and the true
transition operator (�.�), both of which appear in (�.��).

���

�.� Proof of
Theorem 5.1

Proposition �.� 2 estimation error bounds
Let y(x) ∶ 𝕏h+� → [a, b]. There exists a constant � ≤ c ≤ � such
that

c(a − b) ≤ [(𝒯̂h,k − 𝒯h)y](x) ≤ c(b − a).
Remark �.�
Note that while the case c = � holds trivially for any problem, a
smaller constant possibly exists. For example, if the transitions of
an non-stationary ��� 𝔐H ,K are not random, operators 𝒯̂h,k and𝒯h coincide and c = � provides a sharper bound.

Y Using Proposition �.� and Lemma �.�, we bound the difference
between the augmented �-values ̄qh,k(x) and the optimal �-values
q⭑,h(x). The bound consists of four summands, three of which
correspond to the three factors of the total regret discussed in
Section �.�.�. The fourth term, γΔhζ(t), disappears from the regret
bound because it is asymptotically dominated by the total bonus
ϑh(t).
Lemma �.� 2 bound on ̄qk − q⭑
Let Conditions �.�, �.�, �.�, and �.� hold. Given constants δh > � This is a generalization

of Lemma � of Rashid
et al. [ibid.].

such that βh(t) ≥ γΔh ⋅ ζ(t), where

Δh ≜ cvΔ,h+� ⋅ √� ln �
δh

,

and c is a constant from Proposition �.�, the following holds with
probability at least � − δ, where δ ≜ KX ⋅ ∑h∈ℍ δh:

� ≤ [̄qh,k − q⭑,h](x) ≤ αt,� ⋅ (qh,� − v−,h)
+ γ ⋅ t

∑
i=�

αt,i ⋅ [̄vh+�,ki
− v⭑,h+�](sh+�,ki

)
+ ϑh(t) + γΔh ⋅ ζ(t). (�.��)

Proof sketch. Let

Yt,i(x) ≜ αt,i ⋅ [(𝒯̂h,ki
− 𝒯h)v⭑,h+�](x).

Note that ∣Yt,i(x)∣ ≤ αt,icvΔ,h+�. Follow the argument of the proof
of Lemma �.� of Jin et al. [����], we apply the Azuma–Hoeffding
inequality [McDiarmid, ����, Theorem �.��] to see that with prob-
ability at least � − δ

∣ t
∑
i=�

Yt,i(x)∣ ≤ √� ⋅ t
∑
i=�

(αi
τcvΔ,h+�)� ln �

δh
≤ Δh ⋅ ζ(t), (�.��)

���

� Generalized
Optimistic

Q-Learning

for all x ∈ 𝕏, h ∈ ℍ, and k ∈ 𝕂. The right-hand side of
inequality (�.��) follows from Lemma �.� and the fact that q⭑,h(x) ≥
v−,h. The left-hand side proof follows the existing proof of Rashid
et al. [����] using (�.��). ���

Y A direct consequence of Lemma �.� is that for an arbitrary cho-
sen bonus function we can lower-bound the probability that in-
equalities (�.��) hold (note that sometimes the bound can be zero
though).

Corollary �.� 2 ���-bounds under Proposition �.�
Under Conditions �.�, �.�, �.�, and �.�, for an arbitrary chosen
cumulative confidence bonus function βh(t), inequalities (�.��) hold
with probability at least � − δ, where δ is given by (�.��) for c
introduced in Proposition �.�.

Proof. The special case c = � trivially follows from Condition �.�
and Lemma �.�. Otherwise δ can be obtained by solving for δh
the following equation:

βh(t) = cγvΔ,h+� ⋅ ζ(t) ⋅ √� ln �
δh

. ���

�.�.� Properties of the Total Regret

We are now ready to provide an upper bound on total regret of
generalized optimistic �-learning using the results of the previ-
ous sections. We start by introducing the following proposition,
generalizing the arguments used in the literature [Jin et al., ����;
Rashid et al., ����].

Proposition �.� 2 recursion on total regret bound
Denote

ψh,k ≜ [̄vh,k − vπk ,h](sh,k) and

ξh,k ≜ [(𝒯̂h,k − 𝒯h)(̄vh+�,k − v⭑,h+�)](xh,k).
Let Conditions �.�–�.�, �.� and �.� hold. Using notation of Lemma �.�,
the following two statements hold with probapility at least � − δ:

• the total regret R is upper-bounded by R ≤ ∑K
k=� ψk

� .
• for any h ∈ ℍ and k ∈ 𝕂, ψh,k is upper-bounded by

ψh,k ≤ γηψh+�,k + Ψh,k(t), where (�.��)
Ψh,k(t) ≜ αt,�(qh,� − v−,h) + ϑh(t) + γ(Δhζ(t) + ξh,k). (�.��)

���

�.� Proof of
Theorem 5.1

Y Next, applying the bounds (�.��) iteratively on h = �, �,… ,H + �
and noticing that ψk

H+� = � by (�.�) and (�.�), we bound R.

Corollary �.�� 2 recursive regret bound
Under Conditions �.�–�.�, �.� and �.� with probability at least � − δ
the total regret is upper-bounded by

R ≤
K
∑
k=�

H
∑
h=�

(γη)h−� ⋅ Ψh,k(t), (�.��)

where δ and Ψh,k(t) are given by (�.��) and (�.��).

Y Finally, we are ready to prove Theorem �.�.

Proof of Theorem �.�. We study the right-hand side of inequality
(�.��) by rewriting it as

R(K) ≤ ρK(αt,�(qh,� − q−,h)) + ρK(ϑh(t))
+ γ ⋅ ρK(Δh ⋅ ζ(t)) + γ ⋅ ρK(ξh,k),

where
ρK(gh,k(t)) ≜ H

∑
h=�

(γη)h−�
K
∑
k=�

gh,k(t).
For the first element ρK(αt,�(qh,� − q−,h)), by changing the

summation order and using the fact that qh,� −q−,h ≤ vΔ,h we write

ρK(αt,�(qh,� − q−,h)) ≤
K
∑
k=�

H
∑
h=�

(γη)h−�αt,�vΔ,h.

In this sum αt,� = 𝕀{t=�} by Lemma �.� and α�,� = �. In this sum,𝕀{#h,k(xh,k)=�} ≠ � means that x has never been visited in step h be-
fore episode k , and the number of such state-action pairs is 𝒪(X)
independent of K and H; therefore, we have 𝒪(X) summands(γη)h−�vΔ,h, and each of them is 𝒪(μ), so ρK(αt,�vΔ,h) = 𝒪(μX).

For ρK(ξh,k) we use the fact that {ξh,k}k∈𝕂 is a martingale
difference sequence [Jin et al., ����, proof of Theorem �]. Note
that

v−,h+� ≤ v⭑,h+�(x) ≤ ̄vh+�,k(x) ≤ v+,h+�,

therefore [̄vh+�,k − v⭑,h+�](x) ∈ [�, vΔ,h+�].
Using these bounds, Proposition �.�, an argument similar to the
proof of Lemma �.�, and Azuma–Hoeffding inequality, we see that
with probability at least � − δ,

∣ K
∑
k=�

ξh,k ∣ ≤ √�
K
∑
k=�

(cv+,h+�)� ⋅ ln �HX
δ = 𝒪(cv+,h+� ⋅ √K ln HX

δ),

���

� Generalized
Optimistic

Q-Learning

for all h ∈ ℍ and x ∈ 𝕏. Note that ln(HX)/δ = 𝒪(ι), therefore

ρK(ξh,k) = 𝒪(c
H
∑
h=�

(γη)h−�v+,h+� ⋅ √Kι) = 𝒪(cμ√Kι) = 𝒪(μE).

Finally, for the last two terms we notice that ϑh(t) ≥ γΔhζ(t) ≥
� and thus ϑh(t) is the asymptotically dominant term, that is,
Δhζ(t) = 𝒪(ϑh(t)). We write

ρK(ϑh(t)) =
H
∑
h=�

(γη)h−� ⋅ K
∑
k=�

ϑh(#h,k(xh,k)).

First, we consider the inner sum

Σϑ
h ≜ K

∑
k=�

ϑh(#h,k(xh,k)).

Instead of summing in order of episodes k ∈ 𝕂, we can sum the
total bonuses ϑh(#h,k(xh,k)) separately for each state-action pair
x ∈ 𝕏h first, and add all visitations n = �,… , #K

h (x) of x in all
episodes. This yields

Σϑ
h = ∑

x∈𝕏h

#K
h (x)
∑
n=�

ϑh(n) where ∑
x∈𝕏h

#K
h (x) = K .

Because ϑh(t) is decreasing in t by Condition �.�, Σϑ
h is maximized

when as many state-action pairs x are visited, which happens
when #K

h (x) = K /X for all x ∈ 𝕏:

Σϑ
h ≤ ∑

x∈𝕏
K /X

∑
n=�

ϑh(n) = X ⋅ K /X

∑
n=�

ϑh(n) = 𝒪(v↑,hX ⋅ θ(K /X)),

where θ(t) is defined in Condition �.�. Thus, ρK(ϑh(t)) = 𝒪(μB).
Adding the three factors together, the bound (�.��) holds with

probability at least � − �δ. ���

5 . 5 D E S I G N I N G A N E W O P T I M I ST I C
A L G O R I T H M

In this section, we apply Theorem �.� to prove efficiency of ���-�+

presented in Example �.�. We show how the proposed generalized
learning rate (�.��) satisfies the required condition, and how the
bonus design is based on it. We only consider the case λ > �, as
inclusion of H is required to achieve sub-linear regret [Jin et al.,
����], but similar analysis can be performed for λ = �, yielding
worse bounds.

���

�.� Designing a
New Optimistic
Algorithm

Conditions on the Learning Rate

First, we want to ensure that the generalized learning rate (�.��)
satisfies the Conditions �.�–�.�. Condition �.� holds trivially. We
now show that so do the other ones.

Proposition �.�� 2 auxiliary property of the exponent ω
tω + j ≥ (t + j)ω for any t ∈ ℕ� and j ∈ ℕ�.

Lemma �.�� 2 Condition �.� holds for ���-�+

For the generalized learning rate given by (�.��), Condition �.� holds
with

ζ(t) = √ λH + �
λH + tω .

Proof. Notice that

t
∑
i=�

(αt,i)� ≤ max
i∈{�,�,…t} αt,i ⋅ t

∑
i=�

αt,i ,

which by Lemma �.� is equal to maxi∈{�,�,…t} αt,i . By definition,

αt,i = λH + �
λH + iω ⋅ ((i + �)ω − �

λH + (i + �)ω ⋅ (i + �)ω − �
λH + (i + �)ω ⋯ tω − �

λH + tω)
= λH + �

λH + tω ⋅ ((i+�)ω−�
λH+iω ⋅ (i + �)ω − �

λH + (i + �)ω ⋯ tω − �
λH + (t − �)ω).

By Proposition �.�� for j = � each fraction in the brackets is less
than �, so

αt,i ≤ λH + �
λH + tω ≜ ζ�(t). ���

Proposition �.�� 2 an auxiliary inequality
For any m ≥ k , See [Jin et al., ����,

Equation �.�].
m
k = � +

∞
∑
i=�

i
∏
j=�

m − k + j − �
m + j .

Lemma �.�� 2 Condition �.� holds for ���-�+

For the learning rate given by (�.��), Condition �.� holds with
η(H) = � + (λH)−� if λ > �.

Proof. By Proposition �.�� with m = λH + tω and k = λH ,

k
∑
n=t

αn,t ≤
∞
∑
n=t

αn,t = αt ⋅ (� +
∞
∑
i=�

i
∏
j=�

(� − αt+j))
≤ λH + �

λH + tω ⋅ (� +
∞
∑
i=�

i
∏
j=�

tω + j − �
λH + tω + j)

���

� Generalized
Optimistic

Q-Learning

= λH + �
λH + tω ⋅ λH + tω

λH = � + �
λH ,

where the second inequality holds by Proposition �.��, because

� − αt+j = (t + j)ω − �
λH + (t + j)ω ≤ tω + j − �

λH + tω + j . ���

Lemma �.�� 2 Condition �.� holds for ���-�+

For the generalized learning rate Condition �.� holds with

μ(H , v↑, γ) = Hv↑

if γ = � and v↑/(� − γ) otherwise.

Y We omit the proof of Lemma �.��. It is straightforward as the sum
in the definition (�.��) can easily be computed directly.

Conditions on the Bonuses

Lemmas �.� and �.�� explain our choice of the bonuses, namely,

βh(t) ≜ cγvΔ,h+�√� ⋅ λH + �
λH + tω ⋅ ln �TX

δ and uh(t) = � (�.��)

for the constant c of Proposition �.�. By Corollary �.�, Lemma �.�
holds with probability at least � − δ for this cumulative bonus for
any δ. Conditions �.� and �.� both hold trivially.

Lemma �.�� 2 Condition �.� holds for ���-�+

For the bonuses given by (�.��), Condition �.� holds with

θ(t) = √Ht�−ωι.

Proof. Note that
t
∑
n=�

(λH + nω)−�/� ≤
t
∑
n=�

n−ω/� = H(ω/�)
t ,

where H(r)
n denotes the generalized harmonic number of n of order

r. By Euler–Maclaurin sum [Abramowitz, ����, formula �.�.��],
for a given r ≠ �, H(r)

n = ζ(r) + (� − r)−�n�−r + ℴ(n�−r) = 𝒪(n�−r).
Thus

t
∑
n=�

βh(n) = 𝒪(√Hι ⋅ t
∑
n=�

�√λH + nω
) = 𝒪(√Hι ⋅ t�−ω/�). ���

Regret Bound

Combining the aforementioned results, we prove the efficiency of
���-�+.

���

�.� Experiments

Theorem �.�� 2 ���-�+ is efficient in terms of regret
For any δ > � with probability at least � − δ the total regret of
���-�+ with λ > � is bounded by 𝒪(μ√Hω−�T�−ωXωι), where the
magnitude μ is given by Lemma �.��.

Proof. Using θ = √Ht�−ωι, we write the sum in Theorem �.� as

X + B + E = X + √Hω−�T�−ωXωι + c√Kι.

The last term is trivially dominated by the second one, so it can
be omitted. Now we show that the first term is also dominated in
the total regret bound.

Assume T ≤ √H�+ωT�−ωXωι. The total regret is bounded by

K
∑
k=�

ψk
� ≤ v+K ≤ v+T/H = 𝒪(v↑√Hω−�T�−ωXωι),

which is dominated by the second term multiplied by μ. The
opposite assumption implies that T > H�+�/ωXι�/ω, and

√HωT�−ωXωι > √Hω(H�+�/ωXι�/ω)�−ωXωι ≥ √H�X� > HX .

In either case μ√Hω−�T�−ωXωι is the dominant term. ���

5 . 6 E X P E R I M E N TS

To illustrate the performance of ���-�+, we consider two prob-
lems, one stochastic and one deterministic. The latter is less
interesting in the context of reinforcement learning, but allows us
to alleviate the regret caused by the estimation error, highlighting
the effect of optimism.

�.�.� Equipment Replacement

We start with a classical problem known as the automobile replace-
ment problem [Howard, ����]. This problem is based on real data
and is considered as a benchmark by different authors [Puterman,
����; Even-Dar, Mannor, et al., ����; Bellman and Dreyfus, ����].
In the replacement problem, the agent operates an automobile,
which can be in one of the forty states, from brand new one to ten
years old, quantified quarterly. At the beginning of each quarter,
the agent chooses to either keep the automobile, or to replace it
with a different one, which can be in any of the forty available

���

states. The detailed description of the problemcan be found in
the original paper by Howard [����].

We consider a two-year plan, and K = �� ��� episodes, eachTwo years correspond to
H = � steps. starting with state sα = �. Therefore, the problem size is equal to

This state sα means that
the car is brand new.

HX = �� ���, and the total duration of the learning is T = � × ���

time steps. We assume no discounting γ = �, and use the same
values δ = c = ��−� for ���-based algorithms. As a baseline, we
use regular �-learning optimistically initialized with qh,�(x) = v+
with an exponentially decaying exploration rate ε = �.����k−� and
the same learning rate αt = (H +�)/(H + t) as ���-�. For ���-�+

we use ω = �.� and λ = � as the learning rate parameters.
The experiment was repeated fifty times. The results are

presented in Figure �.�.

Figure �.�: Replacement
problem. ���-�+ offers

a ��% total regret
improvement over

�-learning and ��% over
���-�. The horizontal

line at the top
represents the optimal
value v⭑, the vertical

bars show
��%-confidence intervals
on mean estimates, and

the ribbons show the
interquartile range. Data

is smoothed using a
moving average with a
bandwidth of �.�� ⋅ K .

−�.��

�.��

�.�� �.�� �.��
episode k (×���)

ep
iso

de
va

lu
e

V
(×���

�$
)

���-�+

���-�

�

This experiment shows that the total regret of �-learning,
equal to the area between the line and the optimal line above
it, is ���� ± � thousand dollars on average. While the plot lines
may seem close to each other, ���-� was able to achieve a regret
of ���� ± � thousands, showing a ��% reduction over the naïve
approach. Finally, ���-�+ incurred a regret of ��� ± � thousand
dollars, enjoying a reduction of ��% compared to �-learning and
��% when compared to ���-�. Interestingly, ���-�+ has only
a slightly higher variance, which we expect to increase as the
exponent ω approaches �.� (with ω = �.� preventing convergence
by violating conditions (�.�)).

�.�.� Frozen Lake

Our second experiment is the FrozenLakeࠅ×ࠅ-v0 problem [Brock-
man et al., ����]. The agent navigates a grid world searching for a
goal state. The world has holes, stepping into one terminates the
current episode. All states give no rewards, except for the goal
with a unit reward. We consider K = ��� episodes of up to H = ��
time steps. The problem size is HX = �� × �� × � = ����, and the

���

https://gym.openai.com/envs/FrozenLake8x8-v0/

�.� Conclusion

total duration of the learning is T = �.� × ��� time steps. Because
this problem is simpler, we can use a faster decaying exploration
rate ε = �.��k−� for �-learning. For ���-� and ���-�+ we use
zero constant c as per Remark �.�. The rest of the parameters
remain the same.

The results are presented in Figure �.�. Interestingly, ���-�
suffered from the largest regret of ����, while �-learning and
���-�+ achieved the regret of approximately ���� and ����
respectively. ���-�+ offers a ��% improvement over ���-�. As
mentioned earlier, this problem has no stochasticity in transitions,
and thus the last term of the regret is zero. Moreover, all algorithms
use the same initialization, therefore, the only reasons for the
performance difference is the choice of the learning rate and the
optimism representation.

Figure �.�: Frozen lake.
���-�+ offers a ��%
total regret
improvement over
���-�.

�

�

� � � ��
episode k (×���)

ep
iso

de
va

lu
e

V

���-�+

���-�

�

5 . 7 C O N C LU S I O N

This chapter presents generalized optimistic �-learning, a novel
framework for optimistic model-free reinforcement learning that
incorporates many existing methods, such as �-learning, ���-�,
and ����. We showed that under some mild conditions the total
regret of optimistic model-free methods is driven by three distinct
terms multiplied by the magnitude of the problem:

• the size of the state-action space,
• the total effect of the bonuses, and
• the total effect of the estimation error.

To the extent of our knowledge, this is the first study of ��
performance that does not rely on a particular form of the learn-
ing rate. This high level of abstraction facilitates transfer of
our results to new algorithms within the generalized optimistic
�-learning framework. As an example, we present one such algo-
rithm, ���-�+, prove its efficiency in terms of regret, and illustrate

���

� Generalized
Optimistic

Q-Learning

its performance in experiments. Our analysis shows that the regret
is driven by the bonuses and the learning rate, therefore, their
choice is a promising direction for the design of more efficient
optimistic �� algorithms.

Future work includes further relaxations of the conditions
used, and extensions of generalized optimistic �-learning to other
settings such as infinite-horizon non-episodic learning, deep re-
inforcement learning, and models with continuous state and/or
action space. The algorithm ���-�+ can be extended to the con-
tinuous setting as well. One of the possible ways to do this is to
employ deep �-networks and pseudo-visitation counters similarly
to [Rashid et al., ����].

���

6
Reinforcement Learning
for Active Wake Control

For the things we have to learn before we
can do them, we learn by doing them.

— Aristotle, The Nicomachean
Ethics II · 1

Translated by W. D. Ross

W��� ����� suffer from so-called wake effects: when This chapter is based on
the article published in
the Proceedings of the
Twenty-First
International Conference
on Autonomous Agents
and Multiagent Systems
[Neustroev, Andringa,
et al., ����a].

Minor changes were
made to the text
compared to the
published version: some
of the preliminary
results were moved to
Chapter � and minor
text edits were made to
improve readability.

turbines are located in the wind shadows of other tur-
bines, their power output is substantially reduced. These

losses can be partially mitigated via actively changing the yaw
from the individually optimal direction. Most existing wake con-
trol techniques have two major limitations: they use simplified
wake models to optimize the control strategy, and they assume
that the atmospheric conditions remain stable. In this chapter,
we address these limitations by applying reinforcement learning.
Reinforcement learning forgoes the wake model entirely and learns
an optimal control strategy based on the observed atmospheric
conditions and a reward signal, in this case the power output of
the farm. It also accounts for random transitions in the obser-
vations, such as turbulent fluctuations in the wind. To evaluate
the benefits of reinforcement learning for active wake control, we
implement a simulator based on the state-of-the-art floris model
in the Gym format, making it readily available to the �� community.
Next, we propose three different state-action representations of
the active wake control problem and investigate their effect on
the performance of ��-based wake control. Finally, we compare
reinforcement learning to a state-of-the-art wake control strategy
based on floris and show that reinforcement learning is less
sensitive to changes in unobservable data.

6 . 1 I N T R O D U CT I O N

In this chapter, we investigate the benefits of using reinforcement
learning for active wake control in dynamic atmospheric conditions.
To do so, we implement a dynamic wind farm simulator. Our The active wake control

problem is described in
Section �.�.�, p. �.

simulator uses floris for each stable state, and supports arbitrary
transition models between such states, defined by the user. Its
design is driven by real-life wind farm operation: it supports
varying angular velocities of the turbines and imitates installations
not seen in other studies, such as meteorological masts and nacelle-
mounted lidar systems. A detailed list of differences with the Lidar stands for light

detection and ranging. It
is sometimes spelled as
“�i���.”

existing work on reinforcement learning for active wake control
is given in Table �.�. We implement our simulator in the Gym
format [Brockman et al., ����], which is the industry standard for
representing �� problems, so as to facilitate future research in
active wake control from the �� community.

Additionally, we discuss two alternative representations of

���

� Reinforcement
Learning

for Active Wake
Control

the control actions in this problem, not used in other studies.
We compare the performances of state-of-the-art reinforcement
learning algorithms for each representation. Our experiments show
that action encoding has a significant impact on the performance
of reinforcement learning methods, with one of the alternatives
being preferable.

Finally, we demonstrate the benefits of reinforcement learning
compared to model-based optimization. Having no explicit model,
it is more robust to changes in unobserved data and to observation
noise, which is especially important for real-life applications.

6 . 2 P R E L I M I N A R I E S

We begin with providing background information both on state-
of-the-art model-based active wake control and on the principles
of reinforcement learning itself.

�.�.� Steady-State Wind Models

Flow Redirection and Induction in Steady-State (floris) wake
modeling framework [����, ����] includes many of the state-of-
the-art steady-state wake models, and various tools for analysis
and optimization of wind farm layout and operation. It is fully
open-source, computationally cheap, and implemented in Python,
a popular language among �� researchers. floris is maintained,
updated, studied and put into practice by a large community. It
was originally based on works by Jensen [����] and Jiménez et al.
[����], but it is being improved frequently, in particular by adding
newly developed wake models. For a more detailed overview of
floris, the reader is referred to the work by Annoni et al. [����].

Various studies highlight applicability of floris. For example,
Gebraad et al. [����] apply floris-based control strategy in a
high-fidelity computational fluid dynamics simulator. Wind tunnel
tests were performed by Schreiber et al. [����]. A field trial on a
commercial offshore wind farm is presented by Fleming, Annoni,
et al. [����]. These and other applications allow us to consider
floris as the state of the art in both wake modeling and model-
based active wake control.

floris offers various analytical models to compute the wakes,
but it does not explicitly model rapidly changing conditions due to
turbulence and other small-scale atmospheric phenomena. Higher

���

�.� Preliminaries
Ve

rs
tr

ae
te

n
et

al
.

St
an

fe
le

ta
l.

D
on

g
et

al
.

[�
��

�]
[�

��
�]

[�
��

�]
th

is
ch

ap
te

r
sim

ul
at

or
so

ftw
ar

e
fl
or

is
fl
or

is
so
w
fa

fl
or

is
O

pe
n�

�G
ym

��
�

ye
s

no
no

ye
s

el
em

en
ts

wi
nd

&
tu

rb
in

es
wi

nd
&

tu
rb

in
es

wi
nd

&
tu

rb
in

es
wi

nd
,t

ur
bi

ne
s,

�
�

st
at

e
sp

ac
e

co
nt

in
uo

us
di

sc
re

te
co

nt
in

uo
us

co
nt

in
uo

us
pe

r-
tu

rb
in

e
ob

se
rv

.
ya

w
&

po
we

r
ya

w
ya

w
&

wi
nd

sp
ee

d
ya

w
&

lid
ar

m
ea

su
re

m
.

pe
r-

m
as

to
bs

er
v.

—
—

—
at

m
.m

ea
su

re
m

en
ts

fa
rm

-w
id

e
ob

se
rv

.
—

—
—

at
m

.m
ea

su
re

m
en

ts
at

m
.m

ea
su

re
m

en
ts

wi
nd

sp
ee

d
wi

nd
sp

ee
d

&
di

r.
—

m
ul

tip
le

,s
ee

Ta
bl

e
�.

�
m

ea
su

re
m

.s
ou

rc
es

tu
rb

in
es

tu
rb

in
es

—
tu

rb
in

es
,�

�
,e

xt
er

n.
pa

rt
ia

lo
bs

er
va

bi
lit

y
no

ye
s

ye
s

ye
s

no
isy

ob
se

rv
at

io
ns

no
ye

s
no

ye
s

ac
tio

n
sp

ac
e

di
sc

re
te

,{−�
,�

,�
}n d

isc
re

te
,{−�

,�
}n

co
nt

in
uo

us
,[−�

,�
]n c

on
tin

uo
us

,[−�
,�

]n
re

pr
es

en
ta

tio
n

ya
w-

ba
se

d
ya

w-
ba

se
d

ya
w-

ba
se

d
ya

w
&

�
m

or
e

re
wa

rd
ba

se
d

on
po

we
r

de
fic

it
po

we
r

in
cr

ea
se

av
er

ag
e

po
we

r
to

ta
lp

ow
er

tr
an

sit
io

n
tim

e-
va

ry
in

g
da

ta
—

��
,w

in
d

sp
ee

d
in

te
rn

al
sim

ul
.d

at
a

m
ul

tip
le

,s
ee

Ta
bl

e
�.

�
st

oc
ha

st
ic

m
od

el
—

Ga
us

sia
n

no
ise

—
m

ul
tip

le
le

ar
ni

ng
al

go
rit

hm
��

��
�-

le
ar

ni
ng

��
��

��
�,

��
�

is
de

ep
?

no
no

ye
s

ye
s

Table �.�: Comparison of
the existing studies of
reinforcement learning
for active wake control.
�� and �� stand for
turbulence intensity and
meteorological masts
respectively.

���

� Reinforcement
Learning

for Active Wake
Control

fidelity tools based on computational fluid dynamics such as large
eddy simulation (���) can be used for this. Examples of ��� in-
clude Simulator for On/Off-Shore Wind Farm Applications (sowfa)
[Fleming, Gebraad, et al., ����], Dutch Atmospheric Large-Eddy Sim-
ulation (dales) [Heus et al., ����], and ���-Resident Atmospheric
Simulation Platform (grasp) [Gilbert et al., ����].

Unfortunately, ��� require substantial computational power.
To apply their learning method, Dong et al. [����] performed ��
simulations, each of which took approximately �� hours on ���
��� cores for a total of ��� ��� core-hours. Each simulation con-
sisted of just ���� seconds of simulated time. This computational
power is far beyond the reach of an average researcher. Moreover,
not all of the ��� models are open source, further limiting their
applicability. As a result, steady-state computationally efficient
simulators like floris are more commonly used. Interestingly,
even though ��� are dynamic, optimization is often done per a
steady incoming wind direction [Gebraad et al., ����; Dong et al.,
����], which is another argument for using steady-state simulator
such as floris as a simpler alternative to ���.

It is important to distinguish floris the simulator and florisFigure �.� on p. � shows
a simulation in floris

with the default
parameters and two

turbines positioned at a
distance of six rotor

diameters (� ⋅ D).

the controller. A simulation in floris is based on turbine specifi-
cations, such as the amount of power they produce at different
wind speeds, turbine locations in the wind farm, and a set of
atmospheric conditions presented in Table �.�.

These atmospheric conditions are used together with one of
the wake models to predict steady-state wake locations and the
wind flow throughout the farm. Based on this information, the
total power output of the farm is represented as a function of the
yaws [Rott et al., ����]. This function is then maximized by an
optimizer to improve the yaws.

floris considers atmospheric conditions as steady, therefore
an atmosphere in floris can be represented by a vector of num-

Table �.�: Atmospheric
conditions in floris

measurement default value description
wind speed � m/s

direction ���° from north clockwise
shear �.�� s−� change of speed with height
veer �°/m change of direction with height

turbulence intensity �.�� coefficient of variation of wind speed
air density �.��� kg/m³ the default is at ��� ��� Pa and �� °C

���

�.� Preliminaries

bers, like the second column of Table �.�. Since atmospheric condi-
tions change over time, one of the possible ways to use floris for
control in a dynamic system is to use long-time averages. Another
approach is to reinitialize it each time new conditions are observed,
using either historical data or a simulated multivariate stochastic
process.

�.�.� Deep Reinforcement Learning

Among the various �� algorithms, we are interested in so-called For an overview of ��
methods, see
Section �.�.�, p. ��.

actor-critic methods. They use deep neural networks to concur-
rently learn a policy that prescribes actions to take in each state,
and state-action values that tell how good the actions chosen by
the policy are. The neural network that

produces a policy is
called the actor, because
it prescribes how to act.
The neural network that
produces the values is
called the critic because
it tells how good the
outputs of the actor are.

Actor-critic approach is
similar to the dual
formulation of ���s.
where the primal
program (��-�) (p. ��)
produces a policy and
the dual program (��-�)
evaluates the states.

���� updates both the actor and the critic using gradient de-
scent. Its successor ��� adds a few tricks to stabilize the learning
process. Namely, it uses two critics (hence twin learning) and up-
dates the policy less frequently than ���� (delayed). Additionally
it slightly perturbs the actions to avoid a phenomenon known as
catastrophic forgetting which may happen in deep neural networks
when they stop receiving novel inputs.

��� uses similar tricks, but has a non-deterministic policy with
entropy regularization. The entropy coefficient controls how much
exploration the policy does, and is usually automatically tuned,
making ��� more adaptive. Since its conception, this algorithm
has been one of the best performing deep-�� methods.

�.�.� Reinforcement Learning for Active Wake Control

Table �.� provides an overview of �� methods applied to active
wake control problems.

The works of Verstraeten et al. [����] and Stanfel et al. [����]
both use discrete actions with ±� standing for counterclockwise
and clockwise rotations at a fixed angular velocity. Instead of
directly using the power output of the wind farm as the reward sig-
nal, both use some form of reward shaping to construct a different
reward signal. Both of these methods use non-deep reinforcement
learning. Both methods use steady-state simulations, with learning
done separately per wind speed and direction. The optimal action
is chosen based on current yaws. Therefore, in both cases transi-
tions between different atmospheric conditions are not modelled,
but transitions between yaws are taken into account.

���

� Reinforcement
Learning

for Active Wake
Control

Instead of neural networks, Verstraeten et al. [����] use Gauss-
ian-processes reinforcement learning (����) for �-value approxi-
mation. This is paired with knowledge transfer between similarly
positioned turbines to learn the optimal control strategy. This
is the only article that uses multi-agent reinforcement learning,
showing its high efficiency. Stanfel et al. [����] use simple �-
learning, but combine it with domain knowledge. For example,
they apply Gaussian blur to the state-action value function, so
that similar states do not have vastly different values.

Research on deep reinforcement learning for active wake con-
trol in non-stationary environments remains limited. To the extent
of our knowledge, the only such application of deep reinforcement
learning was by Dong et al. [����]. They use an offline version of
���� to learn from examples generated in a high-fidelity (���)
simulator, and then use the simulator to evaluate the resulting
policy. Even though the wind speed is steady, ��� accounts for
fluctuations in the atmosphere caused by turbulence, creating
stochastic transitions. As mentioned above, this required substan-
tial computational power, but the results are sufficiently promising
to further explore the use of deep reinforcement learning for
wake control. To do so, in this chapter we analyze alternative
action representations, two different deep-�� algorithms, and the
performance with respect to changes in unobserved data and to
observation noise.

6 . 3 A CT I V E WA K E C O N T R O L A S
A R E I N F O R C E M E N T L E A RN I N G P R O B L E M

To be able to apply �� algorithms to the active wake control prob-
lem, we need to define it in terms of time steps, states, actions,
rewards and one-step transitions. While this has been done in
previous studies, the resulting formulations are usually highly
abstract and do not reflect the realities of wind farm operation.
For example, atmospheric measurements are captured directly at
the turbine locations, or are assumed to be uniform across the
wind farm. In practice, various measurement tools positioned
throughout the farm can be used to provide atmospheric informa-
tion, such as free-standing meteorological masts or lidar systems.
We aim for a more realistic problem formulation that reflects this.

As mentioned earlier, we treat each time step as having a
steady-state atmospheric conditions. At the end of a time step,

���

�.� Active Wake
Control as
a Reinforcement
Learning Problem

the atmospheric conditions change and the control chosen by
the agent is executed, causing a transition to a new state, which
is again assumed to be steady. This process is repeated for a
predefined number of steps T . In our definition of the problem,
we allow arbitrary chosen (but equal) time intervals Δt between
observations and control events, typically a few seconds.

�.�.� State Space

In reinforcement learning, states describe the current environment
as observed by the agent and contain all the information used by
the agent to choose an action. At any single point of time, the
wind farm can be assumed steady and thus can be represented by
a floris simulation. Nevertheless, not all of the simulation data
is observable by the agent. It is thus important to consider what
kind of information is available to the wind farm controller and
include only this information in the state description.

First, we assume that the current yaws γi of all of the tur-
bines are known, otherwise controlling them may prove difficult.
Additionally, a floris simulation allows to measure atmospheric
conditions presented in Table �.�, and the control strategy may
depend on these.

In the current implementation of floris, wind speed, direction,
and turbulence intensity vary across the wind farm and therefore
should be measured at specific points in space. In a real-world
wind farm such measurements come from meteorological masts or
from sensors on the turbines. For example, these can be nacelle-
mounted lidar systems. They are installed behind the turbine rotor
and can measure the wind in front of it at a distance of ��–���
meters [M. Smith et al., ����; Bot, ����].

In contrast, wind shear, veer, and atmospheric density remain
constant across the wind farm and can be defined for the wind
farm as a whole. In real-life systems, this type of measurement
exists as well. For example, some data may come from an external
source, such as a meteorological forecast.

When creating a simulation, the user can specify:

• the positions of meteorological masts and the measurements col-
lected there;

• which of the turbines are equipped with lidars and what is mea-
sured by these lidars;

• a list of per-farm measurements from an external data source.

���

Figure �.�: Action
representations. The
blue arrow shows the

wind direction (coming
from ���°). The white

arrow indicates the
turbine orientation

(���°). The blue sector
(top) shows the desired

yaw range (±��° from
the wind), and the

purple sector (bottom)
shows the reachable
yaws for an angular

velocity of ��°/step. The
overlap shows the

reachable yaws, which
are the same in all cases.

�°

��°

���°

���°

�°

��°

���°

���°

�°

��°

���°

���°

Yaw-based Absolute Wind-based

�

−�

�

�/�

� ±�

−�/��

�/�

−�/�

�/�

�

−�

�

�/�

At runtime, the simulator registers the data according to this
specification, arranges them into a numeric state vector s ∈ ℝk

and returns this vector to the user. For example, if a simulation
includes three turbines that register their yaws γi , i ∈ {�, �, �} and
two masts that register the wind speed M and direction ϕ at their
locations, the state is s = [γ�, γ�, γ�,M�,ϕ�,M�,ϕ�]⊤ ∈ ℝ�.

It is common to normalize states in reinforcement learning. We
define ranges of possible values for each measurement and include
an option to rescale each observation to an interval between zero
and one.

Finally, to account for imperfections in the measuring equip-
ment (including yaw measurements), we allow state vector per-
turbations by a zero-mean Gaussian noise. This noise is indepen-
dently drawn at each time step with a scale parameter defined
by the user for each of the observed variables from a given list.
The normalized observations are then clamped between zero and
one. If the observations are not normalized, the noise is rescaled
accordingly for each observed measurement.

�.�.� Action Space

Each action a = [a�,a�, … ,an−�]⊤ ∈ [−�, �]n is a vector of length
n, where n is the number of turbines. Each coordinate ai encodes
a yaw change of the i-th turbine. In floris, when a turbine is
rotated counterclockwise relative to the incoming wind, its yaw is
positive, otherwise it is negative. We use the same convention.

The way that the yaw of the i-th turbine changes based on
the coordinate ai can be different. We consider three possible
interpretations of actions, visualized in Figure �.�.

Yaw-based action representation

The action tells how much the turbine yaw should change with
respect to the current position. Zero action means that the tur-

�.� Active Wake
Control as
a Reinforcement
Learning Problem

bine should remain still, and ±� correspond to maximum possible
rotations, that is ±ω+ degrees from the current position, where
ω+ is the maximum angular velocity of the turbine in degrees
per time step. This is the representation used in the previous
research on reinforcement learning for active wake control. In this
representation, if the current yaw angle of the i-th turbine is γi ,
the new yaw γ′

i will be γ′
i = γi + ai ⋅ ω+.

Absolute angle representation

The action tells what the optimal yaw should be relative to some
static direction. For example, the most prevalent wind direction
can be used. In Figure �.� it is west. In this case, �.� corresponds
to south, ‒� and +� to east, and ‒�.� to north. If this desired new
yaw is outside of the operational zone of the turbine, it will turn
as far towards it as it can, either clockwise or counterclockwise,
depending on which direction is closer. For example, if the static
direction β is ���° as in Figure �.�, the next step yaw will be
γ′

i = β − ai ⋅ ���°.

Wind-based action representation

The action is represented as the optimal yaw relative to the current
wind direction ϕ measured at the turbine’s location. The actions of
±� correspond to the maximum (desired) yaw relative to the wind.
The new yaw is computed as γ′

i = ϕ + �
�(ai + �) ⋅ (γ+ − γ−) + γ−.

Y After the new yaw angles γ′
i are calculated, they are adjusted to

satisfy two constraints.
First, turbines cannot rotate faster than their maximum angular

velocity ω+. This constraint is based on physical limitations and
should always be satisfied. In Figure �.�, the possible yaws in
the next time step are shown in purple. If the agent selects the
new yaw γ′

i to be outside of the interval [γi − ω+, γi + ω+], it is
clipped to fit inside this interval. For example, if in the absolute
representation the agent chooses any action ai smaller than − �/��,
it will result in the same new turbine orientation of ���°.

Second, the turbine’s yaw relative to the wind should not be
too large. This is because its power output is proportional to the
cosine of the yaw, and drops fast as it turns away from the wind.
To ensure a reasonable operational range, we define minimum
γ− and and maximum γ+ yaws. This constraint is shown in blue
in Figure �.�. If the turbine is within the desired yaw limits and
attempts to leave them, it will stop. The new yaw is clipped to

���

� Reinforcement
Learning

for Active Wake
Control

satisfy this constraint. In rare cases the turbine may end up
outside of the desired yaw range, for example due to a sudden
change in the wind direction. In the notation of Figure �.�, this
will result in blue and purple sectors not overlapping. In this case,
the turbine should attempt to return as fast as possible to the
operational yaw range (the blue sector), but may stay outside of it
temporarily. No matter which action is chosen by the agent, the
turbine will perform the same rotation: the one that minimizes
the angle with the wind direction.

After these constraints are applied, the range of the possible
next-step yaws is the same between the three representations. For
example, in Figure �.�, the new yaw can only be between ���° and
���°. The only thing that differs between the three representations
is how the new yaws are computed based on the action vector.

�.�.� Rewards

At each time step, floris simulator calculates the total power
output P of the wind farm in watts, which is the sum P = ∑n

i=� Pi
of power outputs Pi of the individual turbines,

Pi = �
�ρ ⋅ Ai ⋅ M�

i ⋅ �axi(Mi) ⋅ (� − axi(Mi))� ⋅ η ⋅ cospp γi .

Here ρ is the air density and Mi is the wind speed at the turbine,
both of which are atmospheric conditions that may be included
into the state vector and γi is the yaw of the i-th turbine, which
depends on the i-th coordinate of the action vector. This equationFor a more detailed

description of the
remaining parameters

and the function
axi(Mi), called the axial
induction factor, see the
paper by Gebraad et al.

[����].

shows that the reward is dependent both on the state and the
action in a non-linear manner.

�.�.� Transitions

When the environment transitions to a new steady state, two
things change in the floris simulator. First, the yaws are adjusted
according to the action chosen by the agent.

Next, the atmospheric conditions change, resulting in changes
in both the wind flow in the simulation, and in the atmospheric
measurements registered at the next time step. The most obvious
approach is to find a dataset of atmospheric conditions at the
desired granularity and use it to generate transitions.

To create a simple yet realistic wind simulation, we looked at
a publicly available dataset from the Hollandse Kust Noord (site
B) (����) wind farm zone in the Netherlands [���, ����]. This

���

Table �.�: Estimated
parameters of the wind
process. Empty cells
correspond to zeros.
τ, M , and ϕr stand for
turbulence intensity,
wind speed, and relative
wind direction
respectively.

parameter
data log τ logM ϕr

mean −�.� × ��� �.� × ���

drift log τ �.� × ��−� �.� × ��−� −�.� × ��−�

logM −�.� × ��−� �.� × ��−� �.� × ��−�

ϕr �.� × ��−� −�.� × ��−� −�.� × ��−�

diffusion log τ �.� × ��−� −�.� × ��−� −�.� × ��−�

logM �.� × ��−� �.� × ��−�

ϕr �.� × ��−�

dataset was chosen because it includes all atmospheric parameters
used by floris. Furthermore, it is a practically relevant case, as
active wake control will be investigated for the wind farm at this
location [Crosswind, ����].

The data is measured at ten-minute intervals, which is typical
for such datasets. Unfortunately, this means that it cannot be
used directly in turbine control experiments, as control is typically
more frequent. To address this issue, we fit a continuous-time
stochastic process to the data. This allows us to use one time step
for estimation and a different one for simulation.

We use the multivariate Ornstein–Uhlenbeck process [Vati-
wutipong and Phewchean, ����]. It is a mean-reverting process,
meaning that its parameters tend to return to long-term aver-
age values, for example, single prevalent direction or mean wind
speed. Moreover, many commonly used stochastic processes can
be seen as particular cases of the multivariate Ornstein–Uhlenbeck
process [Meucci, ����]. For these reasons, Ornstein–Uhlenbeck
processes are used in wind modeling [Arenas-López and Badaoui,
����; Obukhov et al., ����]. Additionally, by increasing the mean-
reversion coefficient of wind direction, we can force it to stay
stable, emulating a popular experimental setup with a wind tunnel.

Formally, the multivariate Ornstein–Uhlenbeck process is de-
fined by the following stochastic differential equation

dy = Θ(m− y) dt + SdWt .

In simpler terms, this process can be described as follows. m is a
vector of mean values to which the process tends to revert. Θ is
the drift matrix. It determines the speed of reversion to the means
m. Wt is a multivariate Wiener process that adds random noise. S
is the diffusion matrix that determines the noise covariance matrix

���

� Reinforcement
Learning

for Active Wake
Control

Σ = SS⊤. A procedure described by Meucci [����] can be used to
estimate the parameters of this process. When the parameters
are known, a simulation procedure for arbitrary chosen time steps
is provided by Vatiwutipong and Phewchean [����].

We then estimated a process for three atmospheric measure-
ments: turbulence intensity τ, wind speed M , and wind direction ϕ.
Because turbulence intensity and wind speed cannot be negative,
we applied a logarithmic transformation. For the wind direction,
we applied a rotation so that the mean mϕr

of the rotated process
ϕr is equal to zero. This transformation means that the wind
direction is measured relative to some prevalent direction, which
becomes easier to set in the simulation. Figure �.� shows the wind
data used in estimation and three simulated paths.

Figure �.�: Sample paths
of the simulated

atmospheric conditions.
Black line shows

historical data used in
estimation.

�

��

��

sp
ee

d

−��

�

��

di
re

ct
io

n

�.��
�.��

Apr �� Apr �� Apr ��

��

After the data transformation, we fitted a multivariate Ornstein–
Uhlenbeck process for y = [log τ, logM ,ϕr]⊤. The estimation pro-
cedure requires data points at equal time intervals. To achieve
this, we cropped the ���� dataset to the first missing entry. The
resulting wind parameters are presented in Table �.�. For wind
shear and veer, we used mean values in the dataset, �.���� s−�

and −�.���°/m respectively.

�.�.� Gym Implementation

Open�� Gym [Brockman et al., ����] is an open-source Python
library of benchmark problems for reinforcement learning. Each
problem in Gym is represented by an environment which provides
a unified ��� for �� algorithms to communicate with, making
it the the field standard for �� problems. For this reason, we
implement our simulator as a Gym environment to make it eas-

���

�.� Experiments

ier for other �� researchers to use [Neustroev, Andringa, et al.,
����b]. This environment supports all of the elements of state
and action representation mentioned in this section, as well as
an arbitrary transition function. We provide four basic variants
of the transition model, but users can define their own, more
sophisticated transition models, for example, using time-varying
multivariate Ornstein–Uhlenbeck processes, or entirely different
stochastic models of the wind. If the wind process is not specified,
the environment uses steady wind from floris.

For the multivariate Ornstein–Uhlenbeck process, the user can
provide a list of kmeasurement names, whether the logarithmic
transformation needs to be taken for each of the measurements,
the mean vector of length k , and two k × k matrices of drift
and diffusion. For the wind direction, we additionally use the
principal wind direction relative to which it has been measured.
After the direction data is generated, it is rotated by that angle.
This direction is ���° by default, meaning that the wind comes
primarily from the west. This is a common practice in wake control
experiments.

6 . 4 E X P E R I M E N TS

Using our Gym environment, we performed two experiments where
we compare reinforcement learning to two control strategies. The
baseline strategy is to ignore the wake effects, turning the turbines
to face the incoming wind. The second strategy is given by the
floris optimizer. It optimizes the yaws numerically based on
the wind flow model in the simulation. In contrast, reinforcement
learning needs no such model.

�.�.� Action Representations

In this experiment, we test the effect of action representation on
the performance of two state-of-the-art �� algorithms: ��� and
���. We omit ���� even though it is used by Dong et al., ����
because ��� is its direct successor. The hyperparameters used for
each method are available in Appendix �. We use a setup where
one meteorological mast and three turbines are positioned in a
line. This single-line layout is commonly used in evaluation of
wake control strategies in a wind tunnel, as it represents the worst
possible scenario because of the many wake interactions.

���

� Reinforcement
Learning

for Active Wake
Control

We use a multivariate Ornstein–Uhlenbeck process to simulate
the wind as described in Section �.�.�, but with a single adjustment:
we increase the mean-reversion rate of wind direction by changing
the drift coefficient of the wind θϕr,ϕr

from −�.� × ��−� to ��−�. This
forces wind direction to stay within ���° ± �° but still change with
time. Other parameters remained as listed in Table �.�. The
dependencies of turbulence intensity and wind speed on the wind
direction are unchanged.

The state space is a vector of length five that includes the yaw
angles and two measurements from the meteorological mast: wind
speed and direction. While turbulence intensity changes over time,
it is not observed by the wind farm operator. For floris, we used
turbulence intensity of �.�� and wind veer and shear presented in
Table �.�. We allowed the turbines to turn at the maximum angular
velocity of �°/sec. Further, we used the parameters from the ����
� MW reference turbines. These and other floris parameters are
taken from the default multi-zone wake model.

For each �� method, we trained ten agents on different random
seeds. To evaluate the performance of the learned policies, we
separated training from evaluation as follows. For training, we
simulated a week of wind farm operation with time intervals of
ten seconds. The evaluation of the momentarily learned policy of
each agent is done every twelve hours of simulated time (that is,
fourteen times) in five randomly generated environments. Each
such evaluation lasts for eight hours of simulated time (���� steps),
during which the total reward is compared against two benchmark
strategies: a baseline in which each turbine faces the incoming
wind, and a model-based control strategy offered by floris .

Because different evaluation environments contain different
atmospheric conditions, the total power output of these benchmark
strategies changes across environments. To compare, we normalize
the results so that in each evaluation the total reward of the
baseline policy is equal to zero, and of floris to one. In this
experiment, floris has access to the exact simulation model sans
turbulence intensity, justifying how we use it to indicate a ���%
performance.

The rescaled results are presented in Figure �.�. While the
yaw-based representation may seem to be the most intuitive one,
it performs poorly. Because either positive or negative actions are
chosen too often, it often fluctuates between the extreme yaws,
leading to a drift in the turbine yaw.

���

�.� �.� �.� �.� �.� �.� �.�

�.� �.� �.� �.� �.� �.� �.�

�.� �.� �.� �.� �.� �.� �.�

�.� �.� �.� �.� �.� �.� �.�

�.� �.� �.� �.� �.� �.� �.�

�.�
�.� �.� �.� �.� �.� �.�

yaw-based absolute wind-based

���
���

baseline = �

floris = �

baseline = �

floris = �

time

no
rm

al
iz

ed
re

wa
rd

Figure �.�:
floris-normalized
reward of �� agents for
different action
representations over
one month of simulated
time for ��� (top) and
��� (bottom). Thin and
thick lines represent
individual evaluations
and means respectively.

To better understand this effect, consider a situation where the
wind is steady. In the other two representations, the optimal action
is the same for any current yaw. In the yaw-based representation,
however, this is not the case, and if the same action is performed
at all time steps, the turbine keeps turning either clockwise or
counterclockwise until it reaches the end of the desired yaw sector.
Therefore different actions need to be learned for different states.
Assuming that learning constant values is easier for a deep neural
network, other representations will lead to better performance.

The wind-based representation is the best performing one. To
understand why, consider the baseline strategy of always facing the
wind. For any down-wind turbine this is the optimal strategy. In
the wind-based representation, this strategy is yaw-independent,
making it easy to learn. In other representations, the optimal
action depends on the incoming wind direction. These results
show how the performance of �� methods depends on action
representation in the active wake control problem.

Of the two �� agents, ��� performs better than ���, and learns
almost a perfect strategy in the given timeframe. Interestingly,
��� sometimes outperforms floris. This is possible because of
the interactions between wind speed, direction and turbulence
intensity. While the latter is not observed, its changes can be
derived (up to a noise parameter) from other wind data. We
speculate that in some of the experiments ��� performed so well
because it was able to find a better turbulence representation than
the average turbulence intensity known to floris.

���

Table �.�: Performance
improvement in percent
over the baseline in the

noisy observations
benchmark. For ���,

the final learned
strategy is used.

floris ���
noise, σ mean ��% conf. int. mean ��% conf. int.

�.�� �.�� �.�� — ��.�� �.�� �.�� — �.��
�.�� �.�� �.�� — �.�� �.�� �.�� — ��.��
�.�� �.�� �.�� — �.�� �.�� �.�� — ��.��
�.�� �.�� �.�� — �.�� �.�� �.�� — �.��

�.�.� Noisy Observations

Of the two benchmarks in the previous experiment, ��� outper-
formed ���, but floris offered a better control strategy most
of the time. This is because it has a perfect model of the en-
vironment, which is not true in practical applications. In this
experiment, we compare reinforcement learning to floris in the
presence of imperfect observations.

To illustrate the capabilities of our simulation environment, we
slightly adjust the experimental setup of the previous section. First,
we remove the mast. Instead, we use per-turbine measurements
of wind speed and direction, and a farm-wide measurement of
turbulence intensity for both floris-based controller and ���.
Next, we move the second and third turbines by �/� ⋅ D south and
north respectively. This makes the problem harder, as it no longer
has two symmetric solutions. Finally, in this experiment the time
step is one second instead of ten for a more realistic control.

To generate faulty observations, we use four different levels of
noise: σ ∈ {�.��,�.��,�.��,�.��}, that is, after the observations are
normalized between zero and one, we perturb them with a Gaussian
noise ε ∼ 𝒩(�,σ). Only the wind measurements (speed, direction,
turbulence intensity) are perturbed, and the yaws are unchanged.
We train five agents for one day of simulated time (�� ��� steps).
The evaluations are performed every two hours of simulated time
(���� steps) and last for thirty minutes of simulated time (����
steps). Each evaluation uses five different environments.

The results of this experiment are presented in Figure �.� and
Table �.�. floris-based optimization struggles to outperform the
baseline strategy as the noise scale grows, dropping from �.�%
improvement over the baseline to just �.�%. While ��� also suffers
from the noise in the observations, its performance improvement
is between �.�% and �.�%, giving a statistically significant improve-
ment over floris-based control in noisy environments.

���

σ = �.�� σ = �.�� σ = �.�� σ = �.��

�� �� �� �� �� �� �� ��
training time (hours of simulated time)

pe
rf

or
m

an
ce

Figure �.�: Rewards in
the noisy observations
benchmark. The gray
line (bottom) is the
baseline method, the
purple horizontal line is
floris, and the blue
lines show the learning
progress of ���.

6 . 5 C O N C LU S I O N

Active wake control is a promising real-life application of reinforce-
ment learning. On the one hand, this problem can be very difficult
to solve. Its states are only partially observable, the observations
are noisy, and the state-action space can be extremely large for
large wind farms. On the other hand, emerging research in this
domain indicates that the �� community is well equipped to solve
this problem, potentially saving millions of dollars in energy losses
due to wake effects.

To facilitate future research in this direction, we have presented
a new simulator for this problem. It is based on the state-of-the-art
steady-state atmospheric simulator called floris. Our simulator
includes many aspects of the problem not seen in the �� research
of active wake control before, such as decoupling of measurement
devices from turbines and changes in wind conditions. Our simu-
lator is implemented as an Open�� Gym environment, is easy to
use off the shelf, and is completely open source.

While previous �� approaches for this wake control all use the
same action encoding, we identified two possible alternatives. We
then experimentally showed that the choice of such an encoding
has a great impact on the performance of learning methods. Inter-
estingly, the most common one—yaw-based—performed the worst
in our experiments. Soft actor-critic, while a golden standard in
�� research, has never been applied to active wake control before,
and we demonstrated that it shows better performance than ���.

Finally, we showed that in the presence of imperfect observa-
tions, a deep-�� agent is capable of learning a better strategy than
the state-of-the-art model-based one.

Deep reinforcement learning for active wake control holds great
promise for further refinement: first, floris is steady state, which
means it optimizes yaws only for the particular time the state

���

� Reinforcement
Learning

for Active Wake
Control

was measured. �� methods have techniques to predict the next
state and would therefore pick an action that is best suited for
the duration until the next course of action can be taken. Second,
where floris has a fixed set of parameters, �� techniques can
easily be augmented with other potentially relevant data picked up
by sensors. Especially deep-�� techniques deem to be promising
when data gets highly-dimensional. Third, we expect deep-��
techniques to outperform model-based optimal control such as
floris in terms of computational efficiency, which is especially
relevant for big windfarms.

Besides further exploring potential benefits of reinforcement
learning, also some more technical questions remain. Is there an
even better action encoding system? Or a different state represen-
tation? Are there alternative reward shaping methods? While we
investigated some state-of-the-art deep-�� methods, sophisticated
alternatives exist. Rainbow Hessel et al., ���� combines aspects of
many existing �� algorithms. Distributional reinforcement learning
Bellemare et al., ���� provides an alternative learning paradigm
by using distributions instead of deterministic state-action values.

Practical implementation of active wake control methods comes
with challenges as well. The wind farm operator needs to maximize
power production, but also to minimize structural loads on the
turbines. This can be done via safe reinforcement learning [García
and Fernández, ����] or multi-objective reinforcement learning
[Liu et al., ����]. Another problem is scalability; perhaps multi-
agent reinforcement learning [Hernandez-Leal et al., ����] can
learn to perform active wake control in large-scale wind farms.
Finally, reinforcement learning requires exploration, which will
inevitably cost money to the wind farm owner. This can be ad-
dressed by using offline reinforcement learning [Levine et al., ����;
Agarwal et al., ����] and learning from the past data, or by using
more sample-efficient methods, such as optimistic reinforcement
learning [Ciosek et al., ����; Neustroev and de Weerdt, ����]. Fi-
nally, the evaluation of the performance of reinforcement learning
vs. model-based wind farm control in more realistic atmospheric
environments as present in field tests and atmospheric ��� models
remains an open topic.

We hope that this work sparks interest of the �� community
in this problem, and that our results will make it easier for other
researchers to develop new methods for active wake control.

���

7
Discussion

What I propose, therefore, is very simple:
it is nothing more than to think what we
are doing.

— Hannah Arendt,
The Human Condition

�.� Answers to
the Research
Questions

S��������� ��������-������ under uncertainty is one
of the key research areas in artificial intelligence. It stud-
ies the ways for the agent to operate under uncertain or

incomplete information. We began with a goal

�� ������ ��� �������� ��� ������� �����
���������� �� ������������ ��� �������� ������
��� ������������ �� ���������� ��������-������

����� �����������.

We now conclude with a discussion of how this goal was achieved.
First, we re-examine the research questions. Next, we address the
implications of our findings for society. Finally, we discuss possible
future research directions.

7. 1 AN S W E R S TO T H E R E S E A R C H Q U E ST I O N S

We begin with a retrospection of the research questions posed in
the introduction and explain how they were addressed.

Research question �

First, we asked ourselves,

��� ��� �� ���� ������� ���������
�� ���-���������� ��������-������� ��������

���� ��������� �������?

To answer this question, we surveyed the existing research. We
found that when the agent is able to identify an optimal initial
decision, a so-called rolling-horizon procedure can be employed to
act optimally. We then examined solution horizon methods that
seek initial-decision optimal policies and found that they require
the rewards of the problem to be uniformly bounded, including
the methods based on linear programming. At the same time,
we saw that under the universal optimality criterion, the dual
linear-programming approach is applicable in the unbounded case
as well.

Because universal optimality implies initial-decision optimality,
we combined these approaches to design a novel solution-horizon
algorithm of Chapter �. Moreover, in our algorithm we were able
to forego the universal optimality entirely, showing that a weaker
notion of occupancy-based optimality is sufficient to establish
initial-solution optimality. While the resulting problem is still
infinitely-dimensional, it can be approximated by a finite problem

���

� Discussion

that stops at a certain horizon. This approximation is known as a
truncation. By using the multi-stage contraction properties of the
new formulation, we showed that the truncation-based approach
can be made monotonically convergent when using multi-step
horizon increments instead of the previously used single-step
ones.

The algorithm we proposed is applicable to non-stationary
problems with unbounded rewards, providing an answer to this
research question. As a result, it can be used to find optimal
initial decisions in problems where this was not possible before.
Additionally, even in problems with bounded rewards it is able to
outperform the original solution-horizon method by better utilizing
the knowledge of the reward function.

Research question �

The answer to the first question involved a reformulation of the
non-stationary problem as a countably-infinite one. This gave rise
to the following question:

��� ��� �� ���� ������� ��������� �� ��������
���� ���������-�������� ������������?

We answered this research question in Chapter � by generaliz-
ing the theory and method of Chapter �. We showed that the
truncation-based approach can be extended to countably-infinite
problems with unbounded rewards in general. Then we designed
a different algorithm that performs policy iteration in these prob-
lems to eliminate provably suboptimal actions. Additionally, the
proposed algorithm can be applied even when the state space is
multidimensional. One of such problems is the inventory man-
agement problem with countably-infinite state space. We showed
how our approach can be used to solve this problem.

Additionally, some of the existing methods for planning andE.g., in FrozenLakeࠅ×ࠅ-v0
with the discounting

factor of �.�� the
uniform reward bound

of one leads to the
upper value bound of
��� = � + �.�� + �.��² +
�.��³ + ⋯. In practice,

the state values are
never greater than one,

and for some of the
states—the holes—they

are equal to zero.

learning rely on the uniform reward bounds which exist trivially
in the finite case. These bounds can be incorporated in the algo-
rithms—often implicitly—to reason about possible outcomes of the
future actions. Countably-infinite problems lead to unbounded
rewards; therefore, we must forego this uniform bound in the
reasoning. Instead, we use a concept of a weight function. This
function makes the information on the future states more real-
istic, in the uniformly bonded case, it can be used to accelerate
convergence of the decision-making algorithms. In general, the
weighted-supremum approach leads to better performance by in-

���

https://gym.openai.com/envs/FrozenLake8x8-v0/

�.� Answers to
the Research
Questions

corporating more information into the decision-making process.
Therefore, it should be employed in favor of the uniformly bounded
assumption.

Research question �

Next, we focused our attention on reinforcement learning. We
saw that the existing research shows that optimistic �-learning is
provably efficient in stationary problems and asked ourselves,

�� ���������� �������� ��������� �� ���-����������
��������; �� ��, ��� ��� ���� ����������

�� ���������?

To answer this question, we considered non-stationary episodic
Markov decision processes. We showed that they can be analyzed
the same way that stationary models can. Then we proved sample-
efficiency of optimistic �-learning in terms of the asymptotic
behavior of the total regret it generates, providing a positive
answer to the first part of the research question.

The second part of the research question is addressed by the
novel regret analysis of Chapter �. It is fundamentally different
from previous results in this field; while other studies present
concrete formulae for regret as a function of time and space
dimensions of the problem, we derived a first-of-its-kind high-level
result on sample-efficiency of optimistic �-learning. Instead of
showing how the regret behaves asymptotically, we explain why
it behaves in this way. Additionally, unlike any of the previous
results, our analysis does not depend on any particular learning
rate function, generalizing some results previously known only for
specific learning rates.

Our regret bound provides new insights into the nature of
optimistic reinforcement learning. For example, one of the identi-
fied regret sources is the estimation error: an �� agent estimates
the true transitions and expected rewards of the underlying ���
from the observed ones. In model-based methods, this estimation
happens explicitly and is therefore hard to overlook. In model-free
learning, however, the estimation occurs implicitly. Our result
shows that this is detrimental to applications with no aleatoric See Corollary �.�, p. ���.
uncertainty. In this case, the estimation element of learning can
and should be removed, leading to both faster convergence and
fewer computations. The distinction between stochastic and de- See Section �.�.�, p. ���.
terministic environments should be more commonly adopted in
algorithm design; its inclusion is not arduous and leads to more

���

� Discussion

efficient algorithms.
Finally, we showed how the theoretical result of Chapter � can

be used to facilitate design of new optimistic �� methods. We
gave an example of one such method, ���-�+. We proved its
efficiency and demonstrated that it is capable of outperforming
���-�, supplementing the theoretical findings of Chapter � with
more practical results.

Research question �

Our final research question was

��� ��� ������������� �������� �� ������� ��
����������� ����� ����-����� �������� ���� ��

������ ���� �������?

To answer it, we surveyed the existing body of research on rein-
forcement learning for active wake control. We found that it is
rather scarce, but most of the proposed solutions use wind farm
simulations in lieu of field studies. This is especially important
given the trial-and-error nature of reinforcement learning. At the
same time, we saw that the existing simulations are far detached
from the reality of a wind farm operation. To provide a rem-
edy for this problem, we designed a simulation toolbox for active
wake control based on the state-of-the-art floris framework. Our
simulator is highly configurable and easy to employ.

Unlike wind farm models previously used in �� research, we
included a way to add additional data sources such as nacelle-
mounted sensors and external information providers. The mea-
surement data in our problem is aggregated into a state space
vector, which can be given as an input to an �� method including
off-the-shelf solutions.

All of the previous research in �� for active wake control used
the same action description based on the maximum angular ve-
locity of the turbines. We considered two alternative ways to
encode the actions in this problem: as a desired angle from either
a fixed direction—for example, north—or from the wind direction.
In the experimental evaluation, we found that the proposed action
representations can lead to improved performance of �� algo-
rithms; therefore, future research should consider using one of
these action encodings for more efficient reinforcement learning.See Section �.�.�, p. ���.

Additionally, to illustrate the potential of reinforcement learning
compared to other state-of-the-art control methods, we investi-
gated the impact of information noise on the learning process

���

in active wake control. Our findings revealed that reinforcement
learning can be more robust to distorted inputs than model-based
control methods. This property is especially useful in real-world See Section �.�.�, p. ���.
applications, as sensor readings rarely provide perfect information.

7. 2 S O C I E TA L I M P L I C AT I O N S

The first part of this thesis focuses on planning in countably-
infinite Markov decision processes. The reader may wonder what
is the goal of studying these models. After all, is not infinity but a
mathematical abstraction?

For example, let us consider the inventory management prob-
lem of Section �.�.�. The reason why the sample space of this See Section �.�.�, p. �.
problem is infinite is twofold: on the one hand, stock at hand
can be unlimited, on the other, the decision-making continues ad
infinitum. Of course, there is no infinite storage space in reality,
nor is the agent expected to operate a warehouse eternally.

While countably-infinite problems present a unique mathemat-
ical challenge, there is a practical implication as well. When a
hyperparameter of the problem is known to be finite, this infor-
mation is often embedded in the solution methods. The same is
simply not possible for infinite values, and different methods need
to be developed without such hyperparameters. As a result, these
new methods can be applied to finitely-countable problems where
the aforementioned hyperparameters are unknown.

Businesses and governments alike make many of their decisions
by choosing an arbitrary planning horizon. In the European Union,
for example, investment in research and innovation is currently
planned for ����–���� [��, ����], and the climate policy is laid
down until ���� [��, ����]. When choosing planning horizons
like these, the solution-horizon approach of Chapter � can be used
to reason whether the selected horizon is chosen appropriately.

Similarly, when non-temporal parts of the state space are in-
finite, we can think of them as either unknown or irrelevant to
the solution. In the inventory management example, the maxi-
mum warehouse capacity is always limited. At the same time the
manager of a warehouse is probably not interested in filling the
whole storage space with just pens or staplers. Traditional meth-
ods based on Markov decision processes require a complete state
space specification, including many irrelevant warehouse states
like these. In Chapter �, we propose to increase the considered

���

� Discussion

state of the problem—the stock in this case—incrementally, until
its sufficiently large for the decision to be made. Like in the time
horizon case, this approach does not require the truncation to be
chosen by a human a priori.

The regret analysis of Chapter � provides a new viewpoint on
the efficiency analysis of reinforcement learning. It can be used inSee Theorem �.�, p. ���.
the design of future algorithms, resulting in faster, more sample-
efficient training, which is crucial for applications of reinforcement
learning to many real-life problems.

One of such problems is active wake control in wind farms.
Wake effects account for substantial losses in energy production,
and wake control strategies can be used to boost the efficiency of
wind farms. More efficient energy production in wind farms can
facilitate their adoption, aiding the transition from fossil-based
fuel to renewable energy sources. This is especially important in
achieving the United Nations resolution to limit the rise in global
temperatures by ���� to �.� °C above pre-industrial levels [��,
����]; a strenuous undertaking that requires the share of solar
and wind power to increase to ��% of the total power generation
capacity [�����, ����, Chapter �].

7. 3 F U T U R E R E S E A R C H D I R E CT I O N S

The work presented in this thesis answers some questions about
the nature of sequential decision-making; at the same time, it
presents new challenges and opens opportunities for future re-
search. In this section, we discuss the potential future research
directions. We group them into two categories: possible extensions
and speculative future prospects.

�.�.� Theoretical and Algorithmic Extensions

In this section, we discuss some of the more straightforward
research directions. Most of these are possible extensions of the
theory and methodology presented in this thesis.

Span-based salvage spaces

The proposed planning methods for non-stationary and continu-
ous ���s search for possible value approximations in the dual
problems that can lead to alternative solutions to the primal prob-
lems. The search is performed within what we call salvage spaces.

���

�.� Future
Research
Directions

Naturally, the smaller the salvage space is, the better its points
approximate the true optimal values of the problem.

In this thesis, we defined the salvage spaces in terms of absolute
bounds only. However, these spaces can be made smaller by
introducing additional span-based constraints. In fact, in the case
of uniformly bounded rewards, this was done by Bean et al. [����].
In the unbounded case, however, such a result is not available.
Similarly to weighted-supremum norms that we use, Scherrer Consider the following

geometric illustration. In
the value space, the
optimal actions above
and below the thick line
are a� and a�. The true
optimal values (⭑)
result in a� being
optimal, but they are
not known to the agent.
If the agent knows that
the value norm is
absolutely bounded by c,
the search space is a
square and both actions
may be optimal.

⭑
−c

c

−c

c

a ⭑= a �

a ⭑= a �

If the agent knows that
the value span (the
absolute difference) is
also bounded by c, the
search space becomes
smaller and a� can be
guaranteed to be
optimal without
knowing the exact
optimal values.

⭑
−c

c

−c

c

a ⭑= a �

a ⭑= a �

[����] introduced weighted spans. With some additional analysis,
these can be used to extend the method of Bean et al. [����] to
problems with unbounded rewards and to improve the algorithms
of Chapters � and �.

Continuous (Borel) models

Many of the reinforcement learning problems have continuous
elements in their sample spaces. For example, in the active wake
control problem, both the states and the actions can be continuous.

The theory of ���s with Borel spaces—both continuous and
discrete—is well established [Hernández-Lerma and Lasserre, ����].
While value- and policy-based methods can be applied to such
problems [Yu and Bertsekas, ����], including problems with un-
bounded rewards [Hernández-Lerma and Muñoz de Ozak, ����],
the dual linear-programming becomes impossible.

At a glance, this may look as an unsolvable challenge, but
other notions of duality can be used where linear programming
fails. For example, a recent study by Nachum and Dai [����]
provides a connection between Fenchel–Rockafellar duality and
reinforcement learning, and Laroche et al. [����] extends the
theory of occupancy measures in Borel spaces.

By combining these results with the theory presented in this
thesis, it should be possible to extend the proposed methods for
planning and reinforcement learning to continuous ���s, making
them applicable to a larger class of problems.

Sample-efficient reinforcement learning for active wake
control

In this thesis, we studied optimistic �� algorithm. It is very eager
in its exploration: after all, an optimistic agent always assumes
that unencountered states hold a great promise. This property
makes it not suitable for field studies where the cost of failure can
be high. At the same time, if exploration can be done at little to
no cost—for example, in simulations—optimistic learning becomes

���

� Discussion

especially promising due to its provable efficiency.
In this thesis, we presented a simulator for the active wake

control problem. And yet we did not use it in combination with
optimistic reinforcement learning.

The main reason for this is that active wake control is a contin-
uous problem. While it can be solved via discretization, algorithms
tailored to such problems—such as ��� considered in Chapter �—
tend to perform better.

Another reason is the so-called curse of dimensionality. Op-
timistic learning keeps track of state-action visitations. In our
attempts to apply optimistic �-learning to active wake control,
we saw that the visitation function becomes hard to approximate
as the number of the problem’s dimensions grow. For example,
a simple approach is to divide a state space into bins and count
visitations within those bins. if the state space is ten-dimensional,
even � bins per dimension lead to almost ten million bins overall.
As a result, most of them contain zeros, making the agent explore
unnecessarily aggressively. We considered other approximations
as well [H. Tang et al., ����; Simão and Spaan, ����], but none of
them yielded satisfactory results.

Of course, one of the possible research directions is to explore
even more pseudo-visitation approaches [B. Tang, ����; Martin
et al., ����]. Alternatively, if a Borel model of optimism is designed
in the context of the previous section, if can be applied to active
wake control as well.

�.�.� Future Prospects

The research directions presented in this section are more long-
term. They do not yet have an immediately obvious way to address
them and pose more significant scientific challenges.

From sufficient to necessary conditions

The weight function is a key component of the planning methods in
countably-infinite domains. We use the properties of this function
to establish existence of policy values via multi-stage contractive
properties of the Bellman operators. At the same time, weight
functions with different properties are sometimes used to achieve
similar results [Cavazos-Cadena, ����; Altman, ����]. Thus, the
conditions we impose on the problems are sufficient, but not
necessary.

The necessary conditions for duality in countably-infinite ���s

���

�.� Future
Research
Directions

are still not known. Their discovery can be an important theoretical
contribution that can shed light on the nature of such ���s.

Similarly, our analysis of optimism in �-learning relies on a
few sufficient conditions on the learning rate and the problem’s
data. Necessary conditions for sample efficiency of �-learning are
not known; their discovery will be a significant contribution to the
field of reinforcement learning.

Connections between truncations and optimism

There are possible connections between the notions of truncations
and optimism. In the analysis of Chapter �, we added a bonus term
to the rewards to represent the uncertainty of the states we are not
yet taking into account directly. In optimistic �-learning, we add a
bonus to the reward function as well. This bonus is based on the
number of visitations of a particular state-action pair; it represents
our uncertainty about the state-action pair and decreases as the
algorithm continues to encounter that state-action pair. Perhaps,
there exists a deeper link between the two approaches that can
be explored to better understand the nature of both of them.

Connections between duality and actor-critic methods

The dual linear-programming approach utilizes two problems. One
of them—the one that we call primal—is based on occupancies and
its solution provides the agent with a policy. The other problem
—the dual—seeks the optimal state values.

In actor-critic reinforcement learning, two neural networks work
in tandem. The actor estimates the policy. The critic estimates
the values under the actor’s policy. Both use gradient descent to
improve their estimates.

The actor and the critic resemble the primal and the dual
programs. Moreover, their alternating learning is similar to the
primal-dual gradient descent method [Du and Hu, ����]. Further
exploration of this idea can advance the theory of actor-critic
reinforcement learning.

2 2 2

In conclusion, the results presented in this thesis advance both the
theory of sequential decision-making under uncertainty and its
potential for real-world applications, paving the path for further
development of efficient algorithms for planning and learning.

���

References

Abramowitz, Milton. “Elementary Analytical Methods”. In: Hand- A
book of Mathematical Functions with Formulas, Graphs, and
Mathematical Tables. Ed. by Milton Abramowitz and Irene
A. Stegun. ��th ed. National Bureau of Standards Applied
Mathematics Series ��. Washington, D. C., ���: U. S. Gov-
ernment Printing Office, Dec. ����. Chap. �, pp. �–��. ���:
http://www.worldcat.org/oclc/ࠀ߽ࠆࠁࠁࠃࠂ߿.

Achiam, Joshua S. Spinning Up in Deep Reinforcement Learning.
https://github.com/openai/spinningup. ����.

Agarwal, Rishabh, Dale Schuurmans, and Mohammad Norouzi. “An
Optimistic Perspective on Offline Reinforcement Learning”.
In: International Conference on Machine Learning. ����.
����, pp. ���–���. ��� ��: .ࠆࠁࠆࠁ߿ࠂࠀ.ࠅࠀࠆࠁ߿ࠂࠀ/ࠂࠂࠂࠂ.߽߾

Agrawal, Shipra and Randy Jia. “Optimistic Posterior Sampling
for Reinforcement Learning: Worst-Case Regret Bounds”. In:
Advances in Neural Information Processing Systems ��. Ed.
by Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna
M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman
Garnett. Long Beach, California, ���: Curran Associates,
Inc., ����, pp. ����–����. ����: ���-�-���-�����-�.

Aliprantis, Charalambos D. and Kim C. Border. Infinite Dimensional
Analysis: A Hitchhiker’s Guide. �rd ed. Heidelberg, Germany:
Springer Berlin, ����. xxii, ��� pp. ����: ���-�-���-�����-�.
���: .ࠆ-ࠄࠅࠂࠆ߿-߽ࠁࠂ-ࠀ/ࠄ߽߽߾.߽߾

Altman, Eitan. Constrained Markov Decision Processes: Stochastic
Modeling. New York, ���: Routledge, ����. ��� pp. ����:
�������������. ���: .ࠀ߿߿߽ࠁ߾ࠂ߾ࠀ߾ࠅࠄࠆ/߾߽߿߾.߽߾

Annoni, Jennifer, Paul A. Fleming, Andrew K. Scholbrock, J. Road-
man, S. Dana, C. Adcock, F. Porte-Agel, S. Raach, F. Haizmann,
and D. Schlipf. “Analysis of control-oriented wake modeling
tools using lidar field results”. In: Wind Energy Science �.�
(����), pp. ���–���. ���: .ࠅ߾߽߿-ࠆ߾ࠅ-ࠀ-wes/ࠁࠆ߾ࠂ.߽߾

���

http://www.worldcat.org/oclc/25644903
https://github.com/openai/spinningup
https://dl.acm.org/doi/10.5555/3524938.3524949
https://doi.org/10.1007/3-540-29587-9
https://doi.org/10.1201/9781315140223
https://doi.org/10.5194/wes-3-819-2018

Antos, András, Csaba Szepesvári, and Rémi Munos. “Value-Iteration
Based Fitted Policy Iteration: Learning with a Single Trajec-
tory”. In: ���� ���� International Symposium on Approx-
imate Dynamic Programming and Reinforcement Learning.
����. ����, pp. ���–���. ���: .ࠄ߽߿ࠅࠃࠀ.ࠄ߽߽߿.ADPRL/ࠆ߽߾߾.߽߾

Arenas-López, J. Pablo and Mohamed Badaoui. “The Ornstein–
Uhlenbeck process for estimating wind power under a mem-
oryless transformation”. In: Energy ��� (����), pp. �–��.
����: ����-����. ���: .߿ࠁࠅࠅ߾߾.߽߿߽߿.j.energy/ࠃ߾߽߾.߽߾

Ashok, Pranav, Krishnendu Chatterjee, Przemysław Daca, Jan
Křetínský, and Tobias Meggendorfer. “Value iteration for
long-run average reward in Markov decision processes”.
In: International Conference on Computer Aided Verification.
Springer. ����, pp. ���–���.

Azar, Mohammad G., Rémi Munos, Mohammad Ghavamzadeh, and
Hilbert J. Kappen. “Speedy Q-learning”. In: Advances in Neu-
ral Information Processing Systems ��. Ed. by J. Shawe-Taylor,
R. S. Zemel, P. L. Bartlett, F. Pereira, and K. Q. Weinberger.
Red Hook, New York, ���: Curran Associates, Inc., ����,
pp. ����–����.

Azar, Mohammad G., Ian Osband, and Rémi Munos. “Minimax
regret bounds for reinforcement learning”. In: Proceedings
of the ��th International Conference on Machine Learning.
Ed. by D. Precup and Y. W. Teh. Vol. ��. ����’��. Sydney,
���, Australia: ����.org, Aug. ����, pp. ���–���.

Bai, Yu, Tengyang Xie, Nan Jiang, and Yu-Xiang Wang. “ProvablyB
efficient Q-learning with low switching cost”. In: Advances in
Neural Information Processing Systems ��. Ed. by H. Wallach,
H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, Edward J. Fox,
and R. Garnett. Red Hook, New York, ���: Curran Associates,
Inc., ����, pp. ����–����.

Balaji, Nikhil, Stefan Kiefer, Petr Novotný, Guillermo A. Pérez, and
Mahsa Shirmohammadi. “On the Complexity of Value Itera-
tion”. In: arXiv preprint arXiv:����.����� (����).

Banach, Stefan. “Sur les opérations dans les ensembles abstraits et
leur application aux équations intégrales”. In: Fundamenta
Mathematicæ �.� (����), pp. ���–���. ���: -߾-ࠀ-fm/ࠁࠃ߽ࠁ.߽߾
.߾ࠅ߾-ࠀࠀ߾

���

https://doi.org/10.1109/ADPRL.2007.368207
https://doi.org/10.1016/j.energy.2020.118842
https://doi.org/10.4064/fm-3-1-133-181
https://doi.org/10.4064/fm-3-1-133-181

Barthelmie, R., S. Frandsen, K. Hansen, Jan G. Schepers, K. Rados,
W. Schlez, A. Neubert, L. Jensen, and S. Neckelmann. “Mod-
elling the impact of wakes on power output at Nysted and
Horns Rev”. In: European Wind Energy Conference. Vol. �.
WindEurope, ����, pp. �–��.

Bean, James C., Wallace J. Hopp, and Izak Duenyas. “A Stopping
Rule for Forecast Horizons in Nonhomogeneous Markov
Decision Processes”. In: Operations Research ��.� (����),
pp. ����–����. ����: �������X, ��������.

Bellemare, Marc G., Will Dabney, and Rémi Munos. “A Distributional
Perspective on Reinforcement Learning”. In: Proceedings of
Machine Learning Research �� (Aug. ����). Ed. by Doina
Precup and Yee Whye Teh, pp. ���–���. ���: https : //
proceedings.mlr.press/v߽ࠄ/bellemareࠄ߾a.html.

Bellman, Richard E. “The Theory of Dynamic Programming”. In:
Bulletin of the American Mathematical Society ��.� (����),
pp. ���–���.

Bellman, Richard E. and Stuart E. Dreyfus. Applied Dynamic Pro-
gramming. Princeton Legacy Library. Princeton, New Jersey,
���: Princeton University Press, ����. Chap. �. ��� pp. ����:
�������������.

Bès, Christian and Jean B. Lasserre. “An on-line procedure in
discounted infinite-horizon stochastic optimal control”. In:
Journal of Optimization Theory and Applications ��.� (����),
pp. ��–��.

Bès, Christian and Suresh P. Sethi. “Concepts of Forecast and De-
cision Horizons: Applications to Dynamic Stochastic Opti-
mization Problems”. In: Mathematics of Operations Research
��.� (����), pp. ���–���. ����: �������X, ��������.

Blackwell, David. “Discounted Dynamic Programming”. In: The
Annals of Mathematical Statistics ��.� (����), pp. ���–���.

Bot, Edwin T. G. Flow Analysis with Nacelle-Mounted �i���. Tech.
rep. ���-�–��-���. ���, ����. ���: https://publications.
tno.nl/publication/ࠂࠆࠀࠆ߿ࠃࠁࠀ/v߾ࠀࠆoD/e߾ࠁ߽ࠃ߾.pdf.

Brockman, Greg, Vicki Cheung, Ludwig Pettersson, Jonas Schneider,
John Schulman, Jie Tang, and Wojciech Zaremba. Open��
Gym. ����. arXiv: ߽ࠁࠂ߾߽.ࠃ߽ࠃ߾ [cs.LG].

���

https://proceedings.mlr.press/v70/bellemare17a.html
https://proceedings.mlr.press/v70/bellemare17a.html
https://publications.tno.nl/publication/34629395/v931oD/e16041.pdf
https://publications.tno.nl/publication/34629395/v931oD/e16041.pdf
https://arxiv.org/abs/1606.01540

Cavazos-Cadena, Rolando. “Finite-state approximations for denu-C
merable state discounted markov decision processes”. In:
Applied Mathematics & Optimization ��.� (Apr. ����), pp. �–
��. ����: ����-����. ���: .ࠂ߿߿߿ࠁࠁ߾BF߽/ࠄ߽߽߾.߽߾

Chand, Suresh, Vernon N. Hsu, and Suresh P. Sethi. “Forecast,
Solution, and Rolling Horizons in Operations Management
Problems: A Classified Bibliography”. In: Manufacturing &
Service Operations Management �.� (����), pp. ��–��.

Cheevaprawatdomrong, Torpong, Irwin E. Schochetman, Robert L.
Smith, and Alfredo Garcia. “Solution and Forecast Horizons
for Infinite-Horizon Nonhomogeneous Markov Decision Pro-
cesses”. In: Mathematics of Operations Research ��.� (����),
pp. ��–��.

Cheevaprawatdomrong, Torpong and Robert L. Smith. “Infinite
horizon production scheduling in time-varying systems un-
der stochastic demand”. In: Operations Research ��.� (����),
pp. ���–���.

Ciosek, Kamil, Quan Vuong, Robert Loftin, and Katja Hofmann.
“Better Exploration with Optimistic Actor-Critic”. In: arXiv
preprint arXiv:����.����� (����).

Corless, Robert M., Gaston H. Gonnet, David E. G. Hare, David J.
Jeffrey, and Donald E. Knuth. “On the Lambert W Func-
tion”. In: Advances in Computational mathematics �.� (����),
pp. ���–���.

Crosswind. Crosswind Innovations. https://www.crosswindhkn.nl/
innovations. Accessed: ����-��-��. ����.

Denardo, Eric V. and Bennett L. Fox. “Multichain Markov RenewalD
Programs”. In: ���� Journal on Applied Mathematics ��.�
(����), pp. ���–���.

Devraj, Adithya M. and Sean Meyn. “Zap Q-learning”. In: Advances
in Neural Information Processing Systems ��. Ed. by I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-
wanathan, and R. Garnett. Red Hook, New York, ���: Curran
Associates, Inc., ����, pp. ����–����.

Dong, Hongyang, Jincheng Zhang, and Xiaowei Zhao. “Intelligent
wind farm control via deep reinforcement learning and high-
fidelity simulations”. In: Applied Energy ��� (����), p. ������.
����: ����-����. ���: .ࠅ߿ࠆࠃ߾߾.߾߿߽߿.j.apenergy/ࠃ߾߽߾.߽߾

���

https://doi.org/10.1007/BF01442225
https://www.crosswindhkn.nl/innovations
https://www.crosswindhkn.nl/innovations
https://doi.org/10.1016/j.apenergy.2021.116928

Du, Simon S. and Wei Hu. “Linear convergence of the primal-dual
gradient method for convex-concave saddle point problems
without strong convexity”. In: The ��nd International Con-
ference on Artificial Intelligence and Statistics. ����. ����,
pp. ���–���.

Dynkin, Evgeniy Borisovich and Alexander Adolphovich Yushke-
vich. Controlled Markov Processes. Vol. ���. Springer, ����.

d’Epenoux, F. “A Probabilistic Production and Inventory Prob- E
lem”. In: Management Science ��.� (����), pp. ��–���. ����:
��������, ��������. ���: .ࠅࠆ.߾.߽߾.mnsc/ࠄࠅ߿߾.߽߾

European Union. “Decision (��) ����/��� of the European Parlia-
ment and of the Council of � April ���� on a General Union
Environment Action Programme to ����”. In: Official Journal
of the European Union L ���, �� (Apr. ����), pp. ��–��. ����:
����-����.

——— “Regulation (��) ����/��� of the European Parliament and
of the Council of �� April ���� establishing Horizon Europe
– the Framework Programme for Research and Innovation,
laying down its rules for participation and dissemination,
and repealing Regulations (��) No ����/���� and (��) No
����/���� (Text with ��� relevance)”. In: Official Journal of
the European Union L ���, �� (May ����), pp. �–��. ����:
����-����.

Even-Dar, Eyal, Shie Mannor, and Yishay Mansour. “Action elimi-
nation and stopping conditions for the multi-armed bandit
and reinforcement learning problems”. In: Journal of Ma-
chine Learning Research � (Dec. ����), pp. ����–����. ����:
����-����.

Even-Dar, Eyal and Yishay Mansour. “Convergence of Optimistic
and Incremental Q-Learning”. In: Advances in Neural In-
formation Processing Systems ��. Ed. by T. G. Dietterich,
S. Becker, and Z. Ghahramani. Cambridge, Massachusetts,
���: The MIT Press, ����, pp. ����–����.

Fleming, Paul A., Jennifer Annoni, Jigar J. Shah, Linpeng Wang, F
Shreyas Ananthan, Zhijun Zhang, Kyle Hutchings, Peng
Wang, Weiguo Chen, and Lin Chen. “Field Test of Wake
Steering at an Offshore Wind Farm”. In: Wind Energy Science
�.� (����), pp. ���–���. ���: .ࠄ߾߽߿-ࠆ߿߿-߿-wes/ࠁࠆ߾ࠂ.߽߾

���

https://doi.org/10.1287/mnsc.10.1.98
https://doi.org/10.5194/wes-2-229-2017

Fleming, Paul A., Pieter M. O. Gebraad, Jan-Willem van Winger-
den, Sang Lee, Matt Churchfield, Andrew K. Scholbrock,
John Michalakes, Kathryn Johnson, and Pat Moriarty. sowfa
Super-Controller: A High-Fidelity Tool for Evaluating Wind
Plant Control Approaches. Tech. rep. Golden, Colorado, ���:
National Renewable Energy Lab. (����), ����.

Fox, Bennett L. “Finite-state approximations to denumerable-state
dynamic programs”. In: Journal of Mathematical Analysis
and Applications ��.� (����), pp. ���–���. ����: ����-���X.
���: .ࠂ-ࠃ߽߾߽ࠆ(߾ࠄ)Xࠄࠁ߿-߿߿߽߽/ࠃ߾߽߾.߽߾

Fox, Edward J., Richard Metters, and John Semple. “Optimal In-
ventory Policy with Two Suppliers”. In: Operations Research
��.� (����), pp. ���–���. ���: .ࠆ߿߿߽.߽ࠂ߽߾.opre/ࠄࠅ߿߾.߽߾

François-Lavet, Vincent, Peter Henderson, Riashat Islam, Marc
G. Bellemare, and Joelle Pineau. “An Introduction to Deep
Reinforcement Learning”. In: Foundations and Trends in
Machine Learning ��.�–� (����), pp. ���–���. ����: ����-
����. ���: .߾ࠄ߽߽߽߽߽߽߿߿/߾ࠃࠂ߾.߽߾

Fujimoto, Scott, Herke van Hoof, and David Meger. “Addressing
Function Approximation Error in Actor-Critic Methods”. In:
CoRR abs/����.����� (����), pp. ����–����. arXiv: ߿߽ࠅ߾ .
.ࠄࠄࠁࠆ߽ ���: http://arxiv.org/abs/ࠄࠄࠁࠆ߽.߿߽ࠅ߾.

García, Javier and Fernando Fernández. “A comprehensive surveyG
on safe reinforcement learning”. In: Journal of Machine
Learning Research ��.� (����), pp. ����–����.

Gebraad, Pieter M. O., Floris W. Teeuwisse, J. W. Wingerden, Paul A.
Fleming, Shalom D. Ruben, Jason R. Marden, and Lucy Y. Pao.
“Wind plant power optimization through yaw control using
a parametric model for wake effects—A CFD simulation
study”. In: Wind Energy �� (Dec. ����), pp. ��–���. ���:
.߿߿ࠅ߾.we/߿߽߽߾.߽߾

Ghate, Archis. “Circumventing the Slater Conundrum in Countably
Infinite Linear Programs”. In: European Journal of Opera-
tional Research ���.� (����), pp. ���–���. ����: ����-����.
���: .ࠃ߿߽.ࠁ߽.ࠂ߾߽߿.j.ejor/ࠃ߾߽߾.߽߾

——— “Infinite Horizon Problems”. In: Wiley Encyclopedia of Opera-
tions Research and Management Science (����).

���

https://doi.org/10.1016/0022-247X(71)90106-5
https://doi.org/10.1287/opre.1050.0229
https://doi.org/10.1561/2200000071
https://arxiv.org/abs/1802.09477
https://arxiv.org/abs/1802.09477
http://arxiv.org/abs/1802.09477
https://doi.org/10.1002/we.1822
https://doi.org/10.1016/j.ejor.2015.04.026

Ghate, Archis and Robert L. Smith. “A Linear Programming Ap-
proach to Nonstationary Infinite-Horizon Markov Decision
Processes”. In: Operations Research ��.� (����), pp. ���–���.

Gilbert, Ciaran, Jakob Messner, Pierre Pinson, Pierre-Julien Trombe,
Remco Verzijlbergh, Pim Dorp, and Harmen Jonker. “Statis-
tical post‐processing of turbulence‐resolving weather fore-
casts for offshore wind power forecasting”. In: Wind Energy
�� (Apr. ����). ���: .ࠃࠂࠁ߿.we/߿߽߽߾.߽߾

Haarnoja, Tuomas, Aurick Zhou, Pieter Abbeel, and Sergey Levine. H
“Soft Actor-Critic: Off-Policy Maximum Entropy Deep Re-
inforcement Learning with a Stochastic Actor”. In: CoRR
abs/����.����� (����). arXiv: .߽ࠆ߿߾߽.߾߽ࠅ߾ ���: http://arxiv.
org/abs/߽ࠆ߿߾߽.߾߽ࠅ߾.

Harrison, J. Michael. “Discrete dynamic programming with un-
bounded rewards”. In: The Annals of Mathematical Statistics
��.� (����), pp. ���–���.

Hauskrecht, Milos and Branislav Kveton. “Approximate Linear
Programming for Solving Hybrid Factored ���s.” In: AI & M.
����.

——— “Linear program approximations for factored continuous-
state Markov decision processes”. In: Advances in Neural
Information Processing Systems �� (����).

Hernandez-Leal, Pablo, Bilal Kartal, and Matthew E Taylor. “A sur-
vey and critique of multiagent deep reinforcement learning”.
In: Autonomous Agents and Multi-Agent Systems ��.� (����),
pp. ���–���.

Hernández-Lerma, Onésimo and Jean B. Lasserre. “A forecast hori-
zon and a stopping rule for general Markov decision pro-
cesses”. In: Journal of Mathematical Analysis and Applica-
tions ���.� (June ����), pp. ���–���. ����: �������X. ���:
.ࠅ-ࠆࠃ߽߽ࠆ(ࠅࠅ)Xࠄࠁ߿-߿߿߽߽/ࠃ߾߽߾.߽߾

——— Discrete-Time Markov Control Processes: Basic Optimality
Criteria. Vol. ��. Springer Science & Business Media, ����.

——— “The Linear Programming Approach”. In: Handbook of
Markov Decision Processes: Methods and Applications. Ed.
by Eugene A. Feinberg and Adam Shwartz. �st ed. Vol. ��.
International Series in Operations Research & Management
Science (����). New York, ���: Springer, ����. Chap. ��,

���

https://doi.org/10.1002/we.2456
https://arxiv.org/abs/1801.01290
http://arxiv.org/abs/1801.01290
http://arxiv.org/abs/1801.01290
https://doi.org/10.1016/0022-247X(88)90069-8

pp. ���–���. ����: ���-�-����-����-�. ���: -߾-ࠅࠄࠆ/ࠄ߽߽߾.߽߾
.߿-ࠂ߽ࠅ߽-ࠂ߾ࠃࠁ

Hernández-Lerma, Onésimo and Myriam Muñoz de Ozak. “Discrete-
Time Markov Control Processes with Discounted Un-
bounded Costs: Optimality Criteria”. In: Kybernetika ��.�
(����), pp. ���–���.

Hessel, Matteo, Joseph Modayil, Hado van Hasselt, Tom Schaul,
Georg Ostrovski, Will Dabney, Dan Horgan, Bilal Piot, Mo-
hammad G. Azar, and David Silver. “Rainbow: combining
improvements in deep reinforcement learning”. In: The ��nd

���� Conference on Artificial Intelligence. New Orleans,
Louisiana, ���: ���� Press, Feb. ����, pp. ����–����.

Heus, T., C. C. van Heerwaarden, H. J. J. Jonker, A. Pier Siebesma, S.
Axelsen, et al. “Formulation of the Dutch Atmospheric Large-
Eddy Simulation (dales) and Overview of Its Applications”.
In: Geoscientific Model Development �.� (����), pp. ���–���.
���: .߽߾߽߿-ࠂ߾ࠁ-ࠀ-gmd/ࠁࠆ߾ࠂ.߽߾

Hopp, Wallace J. “Identifying Forecast Horizons in Nonhomoge-
neous Markov Decision Processes”. In: Operations Research
��.� (����), pp. ���–���.

Hopp, Wallace J., James C. Bean, and Robert L. Smith. “A New
Optimality Criterion for Nonhomogeneous Markov Decision
Processes”. In: Operations Research ��.� (Dec. ����), pp. ���–
���.

Howard, Ronald A. Dynamic Programming and Markov Processes.
New York, ���: Technology Press of the Massachusetts
Institute of Technology and Wiley, ����. ��� pp. ����: ���-
����������.

Howland, Michael F., Sanjiva K. Lele, and John O. Dabiri. “Wind farm
power optimization through wake steering”. In: Proceedings
of the National Academy of Sciences ���.�� (����), pp. �����–
�����. ����: ����-����. ���: .ࠃ߾߾߽ࠅࠃࠀ߽ࠆ߾.pnas/ࠀࠄ߽߾.߽߾

Huang, Shengyi, Rousslan Dossa, and Chang Ye. Cleanrl: High-
Quality Single-File Implementation of Deep Reinforcement
Learning Algorithms. https://github.com/vwxyzjn/cleanrl/.
����.

���

https://doi.org/10.1007/978-1-4615-0805-2
https://doi.org/10.1007/978-1-4615-0805-2
https://doi.org/10.5194/gmd-3-415-2010
https://doi.org/10.1073/pnas.1903680116
https://github.com/vwxyzjn/cleanrl/

International Renewable Energy Agency (�����). World Energy I
Transitions Outlook: �.� °C pathway. Report. Abu Dhabi,
����. ��� pp. ���: https://www.irena.org/publications/
.߿߿߽߿-Mar/World-Energy-Transitions-Outlook/߿߿߽߿

Ionescu-Tulcea, Cassius T. “Mesures dans les espaces produits”. In:
Atti della Accademia nazionale dei Lincei. Rendiconti. Classe
di scienze fisiche, matematiche e naturali. �.� (����), pp. ���–
���.

Jaakkola, Tommi, Michael I. Jordan, and Satinder P. Singh. “Con- J
vergence of Stochastic Iterative Dynamic Programming Al-
gorithms”. In: Advances in Neural Information Processing
Systems �. Ed. by J. D. Cowan, Gerald Tesauro, and J. Alspec-
tor. Burlington, Massachusetts, ���: Morgan–Kaufmann,
����, pp. ���–���.

Jacobson, Mark Z. and Mark A. Delucchi. “A Path to Sustainable
Energy by ����”. In: Scientific American ���.� (����), pp. ��–
��. ����: ��������, ��������.

Jensen, Niels O. A note on wind generator interaction. ����.

Jiménez, Ángel, Antonio Crespo, and Emilio Migoya. “Application
of a LES technique to characterize the wake deflection of a
wind turbine in yaw”. In: Wind Energy ��.� (����), pp. ���–
���. ���: .߽ࠅࠀ.we/߿߽߽߾.߽߾

Jin, Chi, Zeyuan Allen-Zhu, Sebastien Bubeck, and Michael I. Jordan.
“Is Q-Learning Provably Efficient?” In: Advances in Neural
Information Processing Systems ��. Ed. by S. Bengio, H.
Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and
R. Garnett. Red Hook, New York, ���: Curran Associates,
Inc., ����, pp. ����–����.

Johnson, Kathryn E. Adaptive Torque Control of Variable Speed
Wind Turbines. Tech. rep. Golden, Colorado, ���: National
Renewable Energy Lab. (����), ����.

Kakade, Sham, Mengdi Wang, and Lin F. Yang. Variance Reduction K
Methods for Sublinear Reinforcement Learning. ����. arXiv:
ࠁࠅ߾ࠆ߽.߿߽ࠅ߾ [cs.AI].

Kapturowski, Steven, Georg Ostrovski, John Quan, Remi Munos, and
Will Dabney. “Recurrent Experience Replay in Distributed
Reinforcement Learning”. In: International conference on
learning representations. ����.

���

https://www.irena.org/publications/2022/Mar/World-Energy-Transitions-Outlook-2022
https://www.irena.org/publications/2022/Mar/World-Energy-Transitions-Outlook-2022
https://doi.org/10.1002/we.380
https://arxiv.org/abs/1802.09184

Laroche, Romain, Remi Tachet des Combes, and Jacob Buckman.L
Non-Markovian Policies Occupancy Measures. ����. ���:
.߽ࠂࠆࠀ߾.ࠂ߽߿߿.arXiv/߽ࠂࠂࠅࠁ.߽߾

Lasserre, Jean B. and Christian Bès. “Infinite horizon nonstationary
stochastic optimal control problem: A planning horizon
result”. In: ���� Transactions on Automatic Control ��.�
(Sept. ����), pp. ���–���. ����: ����-����. ���: /ࠆ߽߾߾.߽߾
TAC.߾ࠄࠃࠀ߽߾߾.ࠁࠅࠆ߾.

Lee, Ilbin, Marina A. Epelman, H. Edwin Romeijn, and Robert L.
Smith. “Simplex Algorithm for Countable-State Discounted
Markov Decision Processes”. In: Operations Research ��.�
(����), pp. ����–����.

Levine, Sergey, Aviral Kumar, George Tucker, and Justin Fu. “Offline
reinforcement learning: Tutorial, review, and perspectives on
open problems”. In: arXiv preprint arXiv:����.����� (����).

Lillicrap, Timothy P., Jonathan J. Hunt, Alexander Pritzel, Nicolas
Heess, Tom Erez, Yuval Tassa, David Silver, and Daan Wier-
stra. “Continuous control with deep reinforcement learning”.
In: arXiv preprint arXiv:����.����� (����).

Lippman, Steven A. “On Dynamic Programming with Unbounded
Rewards”. In: Management Science ��.�� (����), pp. ����–
����.

Liu, Chunming, Xin Xu, and Dewen Hu. “Multiobjective reinforce-
ment learning: A comprehensive overview”. In: ���� Trans-
actions on Systems, Man, and Cybernetics: Systems ��.�
(����), pp. ���–���.

Lundquist, Julie K., Katharine K. DuVivier, Daniel Kaffine, and
Jessica M. Tomaszewski. “Costs and consequences of wind
turbine wake effects arising from uncoordinated wind energy
development”. In: Nature Energy �.� (Jan. ����), pp. ��–��.
���: .߿-߾ࠅ߿߽-ࠅ߾߽-߽ࠃࠂ߾ࠁs/ࠅࠀ߽߾.߽߾

Madjidian, Daria and Anders Rantzer. “A Stationary Turbine In-M
teraction Model for Control of Wind Farms”. In: ���� Pro-
ceedings Volumes ��.� (����). ��th ���� World Congress,
pp. ����–����. ����: ����-����. ���: -ࠃ-ࠅ߿ࠅ߽߾߾߽߿/߿ࠅ߾ࠀ.߽߾
IT-ࠄࠃ߿߽߽.߿߽߽߾.

���

https://doi.org/10.48550/arXiv.2205.13950
https://doi.org/10.1109/TAC.1984.1103671
https://doi.org/10.1109/TAC.1984.1103671
https://doi.org/10.1038/s41560-018-0281-2
https://doi.org/10.3182/20110828-6-IT-1002.00267
https://doi.org/10.3182/20110828-6-IT-1002.00267

Malek, Alan, Yasin Abbasi-Yadkori, and Peter Bartlett. “Linear pro-
gramming for large-scale Markov decision problems”. In:
International Conference on Machine Learning. ����. ����,
pp. ���–���.

Martin, Jarryd, Suraj Narayanan Sasikumar, Tom Everitt, and Mar-
cus Hutter. “Count-based exploration in feature space for
reinforcement learning”. In: arXiv preprint arXiv:����.�����
(����).

McDiarmid, Colin. “Concentration”. In: Probabilistic Methods for
Algorithmic Discrete Mathematics. Algorithms and Combina-
torics. Ed. by M. Habib, C. McDiarmid, J. Ramirez-Alfonsin,
and B. Reed. Vol. ��. Berlin, Heidelberg, Germany: Springer,
����, pp. ���–���.

Meucci, Attilio. “Review of Statistical Arbitrage, Cointegration,
and Multivariate Ornstein–Uhlenbeck”. In: ���� Electronic
Journal (May ����), p. ��. ���: .ࠂ߽ࠆࠁ߽ࠁ߾.ssrn/ࠆࠀ߾߿.߽߾

——— Risk and Asset Allocation. Vol. �. New York: Springer, ����.

Mnih, Volodymyr, Koray Kavukcuoglu, David Silver, Alex Graves,
Ioannis Antonoglou, Daan Wierstra, and Martin Riedmiller.
Playing Atari with Deep Reinforcement Learning. ����. arXiv:
߿߽ࠃࠂ.߿߾ࠀ߾ [cs.LG].

Mnih, Volodymyr, Koray Kavukcuoglu, David Silver, Andrei Rusu,
Joel Veness, et al. “Human-level control through deep rein-
forcement learning”. In: Nature ��� (Feb. ����), pp. ���–��.
���: .ࠃࠀ߿ࠁ߾nature/ࠅࠀ߽߾.߽߾

Moritz, Philipp, Robert Nishihara, Stephanie Wang, Alexey Tu-
manov, Richard Liaw, Eric Liang, Melih Elibol, Zongheng
Yang, William Paul, Michael I. Jordan, et al. “Ray: A Dis-
tributed Framework for Emerging �� Applications”. In: ��th

������ Symposium on Operating Systems Design and Im-
plementation (���� ��). ������ association, ����, pp. ���–
���.

Munos, Rémi and Csaba Szepesvári. “Finite-Time Bounds for Fitted
Value Iteration.” In: Journal of Machine Learning Research
�.� (����).

Nachum, Ofir and Bo Dai. Reinforcement Learning via Fenchel– N
Rockafellar Duality. ����. ���: .ࠃࠃࠅ߾߽.߾߽߽߿.ARXIV/߽ࠂࠂࠅࠁ.߽߾

���

https://doi.org/10.2139/ssrn.1404905
https://arxiv.org/abs/1312.5602
https://doi.org/10.1038/nature14236
https://doi.org/10.48550/ARXIV.2001.01866

Nair, Suresh K. “Modeling Strategic Investment Decisions Under
Sequential Technological Change”. In: Management Science
��.� (Feb. ����), pp. ���–���. ����: ����-����. ���: /ࠄࠅ߿߾.߽߾
mnsc.߿ࠅ߿.߿.߾ࠁ.

National Renewable Energy Lab. (����). floris. Version �.�. https:
//github.com/NREL/floris. Golden, Colorado, ���, ����.

Neustroev, Grigory, Sytze P. E. Andringa, Remco A. Verzijlbergh,
and Mathijs M. de Weerdt. “Deep Reinforcement Learn-
ing for Active Wake Control”. In: Proceedings of the ��st

International Conference on Autonomous Agents and Multi-
agent Systems. Ed. by Piotr Faliszewski, Viviana Mascardi,
Catherine Pelachaud, and Matthew E. Taylor. Auckland,
New Zealand, virtual event: International Foundation for
Autonomous Agents and Multiagent Systems, May ����,
pp. ���–���.

——— The Wind Farm Gym. https://github.com/AlgTUDelft/wind-
farm-env. ����. ���: .ࠄࠂ߿ࠄ߽߾ࠆ߾/߾߿߾ࠁ.߽߾

Neustroev, Grigory and Mathijs M. de Weerdt. “Action Elimina-
tion in Countably-Infinite Markov Decision Processes”. To
appear; based on Chapter � of this thesis. Manuscript in
progress. ����.

——— “Generalized Optimistic Q-Learning with Provable Efficiency”.
In: Proceedings of the ��th International Conference on Au-
tonomous Agents and Multiagent Systems. Ed. by Bo An,
Neil Yorke-Smith, Amal El Fallah Seghrouchni, and Gita
Sukthankar. Auckland, New Zealand, virtual event: Interna-
tional Foundation for Autonomous Agents and Multiagent
Systems, May ����, pp. ���–���.

Neustroev, Grigory, Mathijs M. de Weerdt, and Remco A. Verzijl-
bergh. “Discovery of Optimal Solution Horizons in Non-
Stationary Markov Decision Processes with Unbounded Re-
wards”. In: Proceedings of the ��th International Conference
on Automated Planning and Scheduling. Ed. by J. Benton, Nir
Lipovetzky, Eva Onaindia, David E. Smith, and Siddharth Sri-
vastava. Vol. ��. �. Berkeley, California, ���: ��� Publishing
Services, July ����, pp. ���–���.

���

https://doi.org/10.1287/mnsc.41.2.282
https://doi.org/10.1287/mnsc.41.2.282
https://github.com/NREL/floris
https://github.com/NREL/floris
https://github.com/AlgTUDelft/wind-farm-env
https://github.com/AlgTUDelft/wind-farm-env
https://doi.org/10.4121/19107257

Obukhov, Sergey, Emad M. Ahmed, Denis Y. Davydov, Talal Al- O
harbi, Ahmed Ibrahim, and Ziad M. Ali. “Modeling Wind
Speed Based on Fractional Ornstein–Uhlenbeck Process”.
In: Energies ��.���� (����), pp. �–��. ����: ����-����. ���:
.߾ࠃࠂࠂࠄ߾ࠁ߾en/߽ࠆࠀࠀ.߽߾

Ornstein, Donald. “On the existence of stationary optimal strate-
gies”. In: Proceedings of the American Mathematical Society
��.� (����), pp. ���–���.

Osband, Ian, Benjamin Van Roy, Daniel J. Russo, and Zheng Wen.
“Deep Exploration via Randomized Value Functions”. In:
Journal of Machine Learning Research ��.��� (����). Ed. by
P. Auer, pp. �–��.

Osband, Ian and Benjamin Van Roy. “Why is Posterior Sampling
Better than Optimism for Reinforcement Learning?” In: Pro-
ceedings of the ��th International Conference on Machine
Learning. Ed. by D. Precup and Y. W. Teh. Vol. ��. ����’��.
Sydney, ���, Australia: ����.org, Aug. ����, pp. ����–����.

Puterman, Martin L. Markov Decision Processes: Discrete Stochas- P
tic Dynamic Programming. Wiley Series in Probability and
Statistics. Hoboken, New Jersey, ���: John Wiley & Sons,
Inc., ����. xvii, ��� pp. ����: ����������.

Raffin, Antonin, Ashley Hill, Maximilian Ernestus, Adam Gleave, R
Anssi Kanervisto, and Noah Dormann. Stable Baselines 3.
https://github.com/DLR-RM/stable-baselinesࠀ. ����.

Rashid, Tabish, Bei Peng, Wendelin Böhmer, and Shimon Whiteson.
“Optimistic Exploration Even with a Pessimistic Initialisa-
tion”. In: International Conference on Learning Representa-
tions. Addis Ababa, Ethiopia: OpenReview.net, Apr. ����.
���: https://openreview.net/forum?id=r߾xGPࠃVYwH.

Rijksdienst voor Ondernemend Nederland (���). Hollandse Kust
Noord (Site B) Dataset (����). https://offshorewind.rvo.
nl/file/view/ࠆ߿߿߽ࠁ߽ࠂࠂ/Processed+data+HKNB. Accessed:
����-��-��. Ministry of Economic Affairs and Climate Policy
of the Netherlands, Aug. ����.

Romeijn, H. Edwin and Robert L. Smith. “Shadow Prices in Infinite-
Dimensional Linear Programming”. In: Mathematics of Op-
erations Research ��.� (����), pp. ���–���. ���: /ࠄࠅ߿߾.߽߾
moor.ࠆࠀ߿.߾.ࠀ߿.

���

https://doi.org/10.3390/en14175561
https://github.com/DLR-RM/stable-baselines3
https://openreview.net/forum?id=r1xGP6VYwH
https://offshorewind.rvo.nl/file/view/55040229/Processed+data+HKNB
https://offshorewind.rvo.nl/file/view/55040229/Processed+data+HKNB
https://doi.org/10.1287/moor.23.1.239
https://doi.org/10.1287/moor.23.1.239

Romeijn, H. Edwin, Robert L. Smith, and James C. Bean. “Duality in
Infinite Dimensional Linear Programming”. In: Mathematical
Programming ��.� (����), pp. ��–��. ����: ����-����. ���:
.ࠂࠆࠃࠂࠅࠂ߾BF߽/ࠄ߽߽߾.߽߾

Rott, A., B. Doekemeijer, J. K. Seifert, Jan-Willem van Wingerden,
and M. Kühn. “Robust active wake control in consideration of
wind direction variability and uncertainty”. In: Wind Energy
Science �.� (����), pp. ���–���. ���: .ࠅ߾߽߿-ࠆࠃࠅ-ࠀ-wes/ࠁࠆ߾ࠂ.߽߾

Rummery, Gavin A. and Mahesan Niranjan. On-Line Q-Learning
Using Connectionist Systems. Vol. ��. Citeseer, ����.

Schepers, Jan G. and Sander P. van der Pijl. “Improved Modelling ofS
Wake Aerodynamics and Assessment of New Farm Control
Strategies”. In: Journal of Physics: Conference Series �� (July
����), p. ������. ���: .ࠆࠀ߽߿߾߽/߾/ࠂࠄ/ࠃࠆࠂࠃ-߿ࠁࠄ߾/ࠅࠅ߽߾.߽߾

Scherrer, Bruno. “Improved and generalized upper bounds on
the complexity of policy iteration”. In: Advances in Neural
Information Processing Systems �� (����).

——— Performance Bounds for Lambda Policy Iteration and Appli-
cation to the Game of Tetris. ����. ���: .߾߾ࠄ߽.ARXIV/߽ࠂࠂࠅࠁ.߽߾
.ࠁࠆࠃ߽

Schreiber, Johannes, Emmanouil M. Nanos, Filippo Campagnolo,
and Carlo L. Bottasso. “Verification and Calibration of a
Reduced Order Wind Farm Model by Wind Tunnel Experi-
ments”. In: Journal of Physics: Conference Series ��� (May
����), p. ������. ���: .߾ࠁ߽߿߾߽/߾/ࠁࠂࠅ/ࠃࠆࠂࠃ-߿ࠁࠄ߾/ࠅࠅ߽߾.߽߾

Schrittwieser, Julian, Ioannis Antonoglou, Thomas Hubert, Karen
Simonyan, Laurent Sifre, et al. “Mastering Atari, Go, Chess
and Shogi by Planning with a Learned Model”. In: Nature
���.���� (����), pp. ���–���. ����: ����-����. ���: .߽߾
.ࠁ-߾ࠂ߽ࠀ߽-߽߿߽-ࠃࠅࠂ߾ࠁs/ࠅࠀ߽߾

Schulman, John, Sergey Levine, Pieter Abbeel, Michael Jordan,
and Philipp Moritz. “Trust region policy optimization”. In:
International conference on machine learning. ����. ����,
pp. ����–����.

Schulman, John, Filip Wolski, Prafulla Dhariwal, Alec Radford, and
Oleg Klimov. “Proximal policy optimization algorithms”. In:
arXiv preprint arXiv:����.����� (����).

���

https://doi.org/10.1007/BF01585695
https://doi.org/10.5194/wes-3-869-2018
https://doi.org/10.1088/1742-6596/75/1/012039
https://doi.org/10.48550/ARXIV.0711.0694
https://doi.org/10.48550/ARXIV.0711.0694
https://doi.org/10.1088/1742-6596/854/1/012041
https://doi.org/10.1038/s41586-020-03051-4
https://doi.org/10.1038/s41586-020-03051-4

Sethi, Suresh P. and Gerhard Sorger. “A theory of rolling horizon
decision making”. In: Annals of Operations Research ��.�
(Dec. ����), pp. ���–���. ����: ����-����.

Shreve, Steven E. and Dimitri P. Bertsekas. “Dynamic program-
ming in Borel spaces”. In: Dynamic programming and its
applications. Elsevier, ����, pp. ���–���.

Silver, David, Aja Huang, Christopher Maddison, Arthur Guez,
Laurent Sifre, et al. “Mastering the Game of Go with Deep
Neural Networks and Tree Search”. In: Nature ��� (Jan.
����), pp. ���–���. ���: .߾ࠃࠆࠃ߾nature/ࠅࠀ߽߾.߽߾

Silver, David, Thomas Hubert, Julian Schrittwieser, Ioannis
Antonoglou, Matthew Lai, et al. Mastering Chess and Shogi
by Self-Play with a General Reinforcement Learning Algo-
rithm. ����. ���: .ࠂ߾ࠅ߾߽.߿߾ࠄ߾.ARXIV/߽ࠂࠂࠅࠁ.߽߾

Simão, Thiago D. and Matthijs T. J. Spaan. “Safe policy improvement
with baseline bootstrapping in factored environments”. In:
Proceedings of the ���� Conference on Artificial Intelligence.
Vol. ��. ��. ����, pp. ����–����.

Singh, Satinder, Tommi Jaakkola, Michael L. Littman, and Csaba
Szepesvári. “Convergence results for single-step on-policy
reinforcement-learning algorithms”. In: Machine learning
��.� (����), pp. ���–���.

Smith, Matt, Michael Harris, John Medley, and Chris Slinger. “Ne-
cessity is the Mother of Invention: Nacelle-mounted Lidar
for Measurement of Turbine Performance”. In: Energy Pro-
cedia �� (����), pp. ��–��. ����: ����-����. ���: .j/ࠃ߾߽߾.߽߾
egypro.߾߾߿.ࠄ߽.ࠁ߾߽߿.

Smith, Robert L. and Rachel Q. Zhang. “Infinite Horizon Production
Planning in Time-Varying Systems with Convex Production
and Inventory Costs”. In: Management Science ��.� (����),
pp. ����–����. ���: .ࠀ߾ࠀ߾.ࠆ.ࠁࠁ.mnsc/ࠄࠅ߿߾.߽߾

Stanfel, P., K. Johnson, C. J. Bay, and J. King. “Proof-of-concept of
a reinforcement learning framework for wind farm energy
capture maximization in time-varying wind”. In: Journal of
Renewable and Sustainable Energy ��.� (����), p. ������.
���: .߾ࠆ߽ࠀࠁ߽߽.ࠂ/ࠀࠃ߽߾.߽߾

���

https://doi.org/10.1038/nature16961
https://doi.org/10.48550/ARXIV.1712.01815
https://doi.org/10.1016/j.egypro.2014.07.211
https://doi.org/10.1016/j.egypro.2014.07.211
https://doi.org/10.1287/mnsc.44.9.1313
https://doi.org/10.1063/5.0043091

Steinbuch, M., W. W. de Boer, O. H. Bosgra, S. A. W. M. Peters,
and J. Ploeg. “Optimal control of wind power plants”. In:
Journal of Wind Engineering and Industrial Aerodynamics
��.� (����), pp. ���–���. ����: ����-����. ���: -ࠄࠃ߾߽/ࠃ߾߽߾.߽߾
.ࠃ-ࠆࠀ߽߽ࠆ(ࠅࠅ)ࠂ߽߾ࠃ

Strehl, Alexander L., Lihong Li, and Michael L. Littman. “Reinforce-
ment Learning in Finite ���s: ��� Analysis”. In: Journal
of Machine Learning Research �� (Dec. ����). Ed. by S.
Mahadevan, pp. ����–����. ����: ����-����.

Strehl, Alexander L., Lihong Li, Eric Wiewiora, John Langford, and
Michael L. Littman. “��� Model-Free Reinforcement Learn-
ing”. In: Proceedings of the ��rd International Conference on
Machine Learning. ����’��. Pittsburgh, PA, ���: Associ-
ation for Computing Machinery, ����, pp. ���–���. ����:
����������.

Sutton, Richard S. and Andrew G. Barto. Reinforcement Learning:
An Introduction. �nd ed. Cambridge, Massachusetts, ���:
The ��� Press, ����. xxii, ��� pp. ����: �������������.
���: http://incompleteideas.net/book/the-book-߿nd.html.

Szepesvári, Csaba and Rémi Munos. “Finite time bounds for sam-
pling based fitted value iteration”. In: Proceedings of the
��nd international conference on Machine learning. ����,
pp. ���–���.

Szita, István and András Lőrincz. “The many faces of optimism: a
unifying approach”. In: Proceedings of the ��th International
Conference on Machine Learning. ����’��. Helsinki, Finland:
Association for Computing Machinery, ����, pp. ����–����.
����: �������������.

Tang, Boxin. “Orthogonal array-based Latin hypercubes”. In: Jour-T
nal of the American statistical association ��.��� (����),
pp. ����–����.

Tang, Haoran, Rein Houthooft, Davis Foote, Adam Stooke, Xi Chen,
Yan Duan, John Schulman, Filip DeTurck, and Pieter Abbeel.
“# exploration: A study of count-based exploration for deep
reinforcement learning”. In: Advances in neural information
processing systems �� (����).

Tesauro, Gerald. “Temporal difference learning and ��-Gammon”.
In: Communications of the ��� ��.� (����), pp. ��–��. ����:
����-����. ���: .ࠀࠁࠀࠀ߽߿.߽ࠀࠀࠀ߽߿/ࠂࠁ߾߾.߽߾

���

https://doi.org/10.1016/0167-6105(88)90039-6
https://doi.org/10.1016/0167-6105(88)90039-6
http://incompleteideas.net/book/the-book-2nd.html
https://doi.org/10.1145/203330.203343

Tijms, Henk C. Analysis of (s,S) Inventory Models. Tech. rep.
Mathematisch Centrum Amsterdam, ����.

United Nations. Paris Agreement. Treaty No. �����-�-d. U
�.�.��.����.��������-�����.�.d of �� February ���� (Open-
ing for signature) and �.�.��.����.��������-�����.�.d of
�� March ���� (Issuance of Certified True Copies). Dec. ����.
���: https://treaties.un.org/pages/ViewDetails.aspx?src=
TREATY&mtdsg_no=XXVII-ࠄ-d&chapter=ࠄ߿.

Vatiwutipong, Pat and Nattakorn Phewchean. “Alternative Way V
to Derive the Distribution of the Multivariate Ornstein–
Uhlenbeck Process”. In: Advances in Difference Equations
����.�, ��� (����), pp. �–�. ����: ����-����. ���: /ࠃࠅ߾߾.߽߾
s߾-ࠁ߾߿߿-ࠆ߾߽-߿ࠃࠃࠀ߾.

Veinott Jr., Arthur F. “On the Opimality of (s,S) Inventory Policies:
New Conditions and a New Proof”. In: ���� Journal on
Applied Mathematics ��.� (����), pp. ����–����.

Veinott Jr., Arthur F. and Harvey M. Wagner. “Computing Optimal(s,S) Inventory Policies”. In: Management Science ��.� (����),
pp. ���–���.

Vermeer, Nord-Jan (L. J.), Jens N. Sørensen, and Antonio Cre-
spo. “Wind Turbine Wake Aerodynamics”. In: Progress in
Aerospace Sciences ��.� (����), pp. ���–���.

Verstraeten, Timothy, Pieter J. K. Libin, and Ann Nowé. “Fleet Con-
trol using Coregionalized Gaussian Process Policy Iteration”.
In: Proceedings of the ��th European Conference on Artificial
Intelligence (���� ����). Ed. by Giuseppe De Giacomo, Ale-
jandro Catala, Bistra Dilkina, Michela Milano, Senen Barro,
Alberto Bugarin, and Jerome Lang. Vol. ���. Frontiers in
Artificial Intelligence and Applications. Netherlands: ���
Press, Aug. ����, pp. ����–����. ����: ���-�-�����-���-�.
���: .ࠃࠃ߿߽߽߿FAIA/ࠀࠀ߿ࠀ.߽߾

Vinyals, Oriol, Igor Babuschkin, Junyoung Chung, Michael Mathieu,
Max Jaderberg, et al. AlphaStar: Mastering the Real-Time
Strategy Game StarCraft II. https://deepmind.com/blog/
alphastar-mastering-real-time-strategy-game-starcraft-ii/.
����.

Wagenaar, Jan W., Leo A. H. Machielse, and Jan G. Schepers. “Con- W
trolling Wind in ���’s Scaled Wind Farm”. In: Proc. Europe
Premier Wind Energy Event � (����), pp. ���–���.

���

https://treaties.un.org/pages/ViewDetails.aspx?src=TREATY&mtdsg_no=XXVII-7-d&chapter=27
https://treaties.un.org/pages/ViewDetails.aspx?src=TREATY&mtdsg_no=XXVII-7-d&chapter=27
https://doi.org/10.1186/s13662-019-2214-1
https://doi.org/10.1186/s13662-019-2214-1
https://doi.org/10.3233/FAIA200266
https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/
https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/

Wal, Jan van der. On Uniformly Nearly Optimal Stationary Strategies.
Memorandum ����� ����. Jan. ����.

Wang, Yuanhao, Kefan Dong, Xiaoyu Chen, and Liwei Wang. “Q-
learning with ��� Exploration Is Sample Efficient for Infinite-
Horizon ���”. In: International Conference on Learning Rep-
resentations. Addis Ababa, Ethiopia: OpenReview.net, Apr.
����. ���: https://openreview.net/forum?id=BkglSTNFDB.

Watkins, Christopher J. C. H. “Learning from Delayed Rewards”. PhD
thesis. Cambridge, United Kingdom: King’s College, May ����.
vii, ���. ���: https://www.cs.rhul.ac.uk/~chrisw/thesis.html.

Wessels, Jaap. “Markov programming by successive approximations
with respect to weighted supremum norms”. In: Journal of
mathematical analysis and applications ��.� (����), pp. ���–
���.

White, Douglas J. “Finite state approximations for denumerable
state infinite horizon discounted Markov decision processes
with unbounded rewards”. In: Journal of Mathematical Anal-
ysis and Applications ��.� (����), pp. ���–���.

——— “Finite state approximations for denumerable-state infinite
horizon contracted Markov decision processes: The policy
space method”. In: Journal of Mathematical Analysis and
Applications ��.� (����), pp. ���–���.

——— “Finite-state approximations for denumerable-state infinite-
horizon discounted Markov decision processes”. In: Jour-
nal of Mathematical Analysis and Applications ��.� (����),
pp. ���–���.

——— “Isotone optimal policies for structured Markov decision
processes”. In: European Journal of Operational Research
�.� (����), pp. ���–���.

Yu, Huizhen and Dimitri P. Bertsekas. “A Mixed Value and PolicyY
Iteration Method for Stochastic Control with Universally
Measurable Policies”. In: Mathematics of Operations Re-
search ��.� (����), pp. ���–���. ����: �������X, ��������.

���

https://openreview.net/forum?id=BkglSTNFDB
https://www.cs.rhul.ac.uk/~chrisw/thesis.html

Acknowledgements

This book would have never been possible without the amazing
people in my life to whom I would like to express my gratitude.

First and foremost, this endeavor would not have been possible
without my promotors Prof. dr. Mathijs de Weerdt and Dr. ir. Remco
Verzijlbergh. Both of them have always had faith in me—even when
I could not find it myself—and showed me the amount of support,
trust, and patience that I could only dream of. I’m honored to
have travelled this journey under their guidance.

Next, I would like to thank the other members of the defense
committee: prof. dr. ir. Karen Aardal, prof. dr. Ann Nowé, dr. Herke
van Hoof, dr. Michael Kaisers (with whom I also had a pleasure of
working at ���), dr. Matthijs Spaan, and prof. dr. ir. Bart De Schut-
ter. Thank you for your interest in my work and the insightful
comments and questions.

I would like to thank dr. Scott Sanner from University of Toronto
for all the advice and encouragement (and reviewing requests!)
he gave me during my PhD as my mentor.

My special thanks to prof. dr. Andrei Letchikov, whom I first
met at one of the mathematical contests for middle and high
school students in Udmurtia that he used to organize and I used
to participate in. Later, I became a student at his department
at Udmurt State University, and later still, started working there.
Without him, my academic career would not have been the same. I
would also like to express my gratitude to the other professors and
lecturers I had a privilege to study under and work with at Udmurt
State University: Valentina Shulikovskaya, Anastasia Merzlyakova,
Aleksei Lashkarev, Leonid Romanov, Irina Korepanova, Galina
Slesarenko, and many others.

When my life brought me to ���, I was blessed to have Felix
Claessen as my officemate. He taught me a lot about the Dutch
society, academia, and the beautiful city I now live in. Later, we
were joined by Iliana Pappi and Shantanu Chakraborty. Our office
was always full of both academic discussions and fun small talk,
both of which I enjoyed immensely.

���

Many thanks to my fellow PhD students from the Algorithmics
group in Delft. Thiago Dias Simāo, Canmanie Ponnambalam, Anna
Stawska, and Qisong Yang all started their PhDs around the same
time as me; with all of them we have been through thick and thin;
all of them are dear friends to me. Erwin Walraven, Rens Philipsen,
Grigorii Veviurko, Junhan Wen, and Leonard Volarić Horvat used to
be my officemates in Delft at different times; as such, they offered
me help with and respite from my research—both often needed
so badly! Finally, I would like to thank my other colleagues for
inspiring and thought-provoking conversations, including Sytze
Andrijga, Koos van der Linden, Lei He, Longjian Piao, Natalia
Romero Lane, and Wendelin Böhmer among others.

Words cannot express my gratitude to my best friends, the
“bored game people”—Tim Baarslag, Evgeny Rezunenko, Brinn
Hekkelman, Zerline Henning, Christina Katsimerou, and Valentin
Robu—who are rooting for me no matter what. I am also grateful
to the many other friends I have met in the Netherlands, including
Marie-Claire Dangerfield, Mariane Urias, Carmel Freeman, Marloes
Kunst, Lotte Baltussen, Hay Kranen, Adrian Ajami, Arno Jägers,
Trevor Grahl, and Ginger da Silva.

I thank my dear friends in Russia and all over the globe, who
always tell me how proud they are of me and all of whom I am
immensely proud of myself. First of all, my dear Vasilyev clan:
Alexander, Ekaterina, Vladimir, and Natalya, but also Marianne
McPherson and Damon Sidel, Natalia Nekludova, Irina and Dmitriy
Kolesnikov, Mikhail Stepanov and Tatiana Nizhegorodova, Mariia
Koroleva, Anton Orlov, Svetlana Lepikhina, Faina Blinova, Dana
Bessolitsyna, Pablo Hernandez-Leal, Mariya Galimova, Diana Su-
leymanova, Roza Badaeva, and many others. I hope we have a
chance to see each other again soon.

Finally, I would like to express my deepest appreciation to the
Burgoyne family: Nancy, John, Adam, and especially Ashley, whose
belief in me was my motivation all these years. Thank you all for
making me part of your family. As for my own family, I would like
to address them in Russian now.

Спасибо моим дорогим маме Свете и сестре Соне, а также
(двоюродному) брату Орхану, его жене Алёне и нашей тёте
Марине за их любовь и поддержку, которые часто так нужны
были мне. Спасибо тёте Оле, Давиду и бабушке Рае, тёте Наде
и дяде Лёне, Славе, Наташе и Лёше за то, что вы есть у меня.

G. N.

���

Curriculum Vitæ

D Grigory N�������� d

born in Ustinov, ���� on August ��, ����

E D U C AT I O N

����–���� General education
Municipal school № ��, Izhevsk, Russia

����–���� Specialist, mathematical economist
Udmurt State University, Izhevsk, Russia

W O R K E X P E R I E N C E

����–���� Lead specialist in international
documentary operations
Bank ���, Izhevsk, Russia

����–���� Specialist in distance learning
Udmurt State University, Izhevsk, Russia

����–���� Lecturer
Udmurt State University, Izhevsk, Russia

����–���� Software developer
����, Izhevsk, Russia

����–���� Project researcher
Dutch national research institute for mathematics
and computer science (Centrum Wiskunde &
Informatica, ���) Amsterdam, the Netherlands

����–���� Doctoral researcher
Delft University of Technology, the Netherlands

����– Postdoctoral researcher
Delft University of Technology, the Netherlands

���

List of Publications

R E L AT E D TO T H I S T H E S I S

�. Grigory Neustroev and Mathijs M. de Weerdt. “Action Elimination
in Countably-Infinite Markov Decision Processes”. To appear;
based on Chapter � of this thesis. Manuscript in progress. ����.

�. Grigory Neustroev, Sytze P. E. Andringa, Remco A. Verzijlbergh, and
Mathijs M. de Weerdt. “Deep Reinforcement Learning for Active
Wake Control”. In: Proceedings of the ��st International Conference
on Autonomous Agents and Multiagent Systems. Ed. by Piotr
Faliszewski, Viviana Mascardi, Catherine Pelachaud, and Matthew
E. Taylor. Auckland, New Zealand, virtual event: International
Foundation for Autonomous Agents and Multiagent Systems, May
����, pp. ���–���.

�. Grigory Neustroev and Mathijs M. de Weerdt. “Generalized Op-
timistic Q-Learning with Provable Efficiency”. In: Proceedings
of the ��th International Conference on Autonomous Agents and
Multiagent Systems. Ed. by Bo An, Neil Yorke-Smith, Amal El Fal-
lah Seghrouchni, and Gita Sukthankar. Auckland, New Zealand,
virtual event: International Foundation for Autonomous Agents
and Multiagent Systems, May ����, pp. ���–���.

�. Grigory Neustroev, Mathijs M. de Weerdt, and Remco A. Verzijl-
bergh. “Discovery of Optimal Solution Horizons in Non-Stationary
Markov Decision Processes with Unbounded Rewards”. In: Proceed-
ings of the ��th International Conference on Automated Planning
and Scheduling. Ed. by J. Benton, Nir Lipovetzky, Eva Onaindia,
David E. Smith, and Siddharth Srivastava. Vol. ��. �. Berkeley,
California, ���: ��� Publishing Services, July ����, pp. ���–���.

OT H E R

�. Grigory Neustroev, Canmanie T. Ponnambalam, Mathijs M. de
Weerdt, and Matthijs T. J. Spaan. “Interval Q-Learning: Balancing

���

Deep and Wide Exploration”. In: ��th International Conference
on Autonomous Agents and Multiagent Systems. Adaptive and
Learning Agents Workshop. Ed. by Roxana Radulescu, Felipe
Leno da Silva, Fernando P. Santos, and Patrick MacAlpine. � pp.
Auckland, New Zealand, virtual event, May ����.

�. Stanislav Vladimirovich Puchkovskiy, Marina Stanislavovna Bui-
novskaya, Dzhamal Karimovna Voronetskaya, and Grigory Vla-
dimirovich Neustroev. “On the Studies of Marking Behavior of
Brown Bear in Terms of Tree Diameter Selectivity”. In: Con-
temporary Problems of Ecology �.� (����), pp. ���–���. ���:
.ࠃࠁ߾߽߾߽߿߾ࠂࠂ߿ࠁࠂࠆࠆ߾S/ࠁࠀ߾߾.߽߾

���

https://doi.org/10.1134/S1995425512010146

Appendices

A
Miscellaneous Proofs

T��� �������� contains proofs of auxiliary results pre-
sented in this thesis. Section �.� contains proofs of equiv-
alence of non-stationary ���s to countably-infinite ones.

Section �.� presents the proof that any flow-conserving function
induces a policy. Section �.� concerns feasible solutions of the
occupancy-based linear program. Finally, Section �.� contains
proofs of various properties of the multi-product inventory man-
agement problem.

A . 1 P R O O F S O F T I M E AU G M E N TAT I O N
E Q U I VA L E N C E

Lemma �.� 2 stationary reformulation equivalence
All policies of a non-stationary ��� 𝔐T ,T ≤ ∞ can be repre-
sented in time-augmented version 𝔐̃T by policies of the same gain,
assuming that the gain is well-defined.

Proof. Consider the sample space ̃ΩT = 𝕊̃ × ∏T
i=�(𝔸 × 𝕊̃) of the

augmented ��� 𝔐̃T . It consists of sample paths ̃ω of the following
structure:̃ω = (S�, τ�,A�,S�, τ�,A�, … ,ST−�, τT−�,AT−�,ST , τT).
Let 𝔥̃t denote the history mapping in the augmented problem. Let𝔥̃↓t

t denote the history with all of the times τt removed:(S�, τ�,A�,S�, τ�,A�, … ,St , τt)↓t = (S�,A�,S�,A�, … ,St),

and similarly for sample paths. For any policy π ∈ ℿ, choose an
augmented policy ̃π as ̃πt(a | 𝔥̃t) = πt(a | 𝔥̃↓t

t). (�.�)

By this construction, every policy in the original problem 𝔐T has
a counterpart in the augmented problem 𝔐̃T .

We now show that the gains of these two policies are equal.
We begin with the probability measure ̃P ̃π induced by the

augmented policy ̃π. It is equal tõP ̃π(̃ω) = ̃α(̃S�) ⋅ ̃π�(A� | 𝔥̃�) ⋅ ̃p�(̃S� | ̃S�,A�)by (�.�) ◃ ⋅ ̃π�(̃A� | 𝔥̃�) ⋅ ̃p�(̃S� | ̃S�,A�) ⋅ ⋯
= δτ�,� ⋅ α(S�) ⋅ π�(A� | S�) ⋅ δτ�+�,τ�

⋅ p�(S� | S�,A�)by (�.�), (�.�), and (�.�) ◃ ⋅ π�(A� | S�,A�,S�) ⋅ δτ�+�,τ�
⋅ p�(S� | S�,A�) ⋅ ⋯

= Pπ(̃ω↓t) ⋅ δτ�,� ⋅ T−�
∏
t=�

δτt+�,τt+�
= Pπ(̃ω↓t) ⋅ T−�

∏
t=�

δτt ,t .For the product of
Kronecker deltas to be

non-zero, τ� must be
equal to �. Then τ� must

be equal to τ� + � = �
and so forth. Instead of
sequentially comapring

τt+� to each to the
previous values τt , we
rewrite the product by
comparing them to the
values of time directly.

◃ (�.�)

Let ̃Ω→
T be the set of all sample paths where all the times τt occur

sequentially:̃Ω→
T = { ̃ω ∈ ̃Ω ∣ ̃ω = (S�, �,A�,S�, �,A�, … ,ST−�,T − �,AT−�,ST ,T)}.

For any sample path ̃ω ∈ ̃Ω→
T in this set, the product ∏T−�

t=� δτt ,t is
equal to one. For all other sample paths it is equal to zero. Thus,
the augmented probability measure ̃P ̃π(̃ω) is equal to the original
one ̃Pπ(ω) for all ̃ω ∈ ̃Ω→

T and ω = ̃ω↓t .
Therefore, the gain of the augmented policy J(̃π) is equal to

J(̃π) = ∑̃ω∈ ̃ΩT

γt ⋅ ̃r(St(̃ω), τt(̃ω),At(̃ω)) ⋅ ̃P ̃π(̃ω)
= ∑̃ω∈ ̃Ω→

T

γt ⋅ ̃r(St(̃ω), t,At(̃ω)) ⋅ ̃P ̃π(̃ω)by removing zero
summands

◃
= ∑̃ω∈ ̃Ω→

T

γt ⋅ rt(St(̃ω↓t),At(̃ω↓t)) ⋅ Pπ(̃ω↓t).by (�.�) ◃
The right-hand side uses only augmented sample paths with the
times removed from them. Since there is only one combination of
times in ̃Ω→

T , we can remove the times from the definition of the
sample space as well, and each summand will still appear exactly
once. Therefore,

J(̃π) = ∑
ω∈ΩT

γt ⋅ rt(St(ω),At(ω)) ⋅ Pπ(ω) = J(π),The switch of the
summation index set

from ̃Ω→
T to ΩT is only

possible for well-defined
gains.

◃
and the gains of the augmented policy ̃π and the original policy π
are the same. ���

���

Corollary �.� 2 optimality in non-stationary ∞-horizon ���s
Let Conditions �.� and �.� hold for a non-stationary infinite-horizon
Markov decision process 𝔐∞ with a countable state space, |𝕊| ≤ ∞.
Then there exists a deterministic Markovian policy π ∈ ℿDM that
is optimal.

Proof. By Proposition �.�, the augmented version 𝔐̃T ,T ≤ ∞ of a
non-stationary ��� 𝔐T has an optimal deterministic stationary
policy ̃π⭑ ∈ 𝔻̃ with some gain J⭑. Consider a policy π⭑,t(a | s) ≜̃π⭑(a | s, t). By construction (�.�), its augmentation is equal to

̃π⭑,t(a | s, τt) = π⭑,t(a | s) = ̃π⭑(a | s, t) if τt = t. ▹ instead of the full
history, only its last
element is requiredThus, the augmented version of π⭑,t(a | s) may differ from the

optimal augmented policy ̃π⭑ when τt ≠ t. At the same time, all
such cases happen with zero probability, because δτt ,t appears in
the construction of the probability measure (�.�) and it is equal
to zero when τt ≠ t. Therefore,

̃π⭑,t(a | s, τt) a.s.= ̃π⭑
and their induced probability measures are equivalent. The policy
π⭑,t(a | s) has the same gain as the optimal augmented policy J⭑.

Assume that J⭑ is the optimal gain in the augmented problem𝔐̃T , but not in the original one 𝔐T . In this case there is a
policy π′ with a gain J′ such that J′ > J⭑. But that means that
the augmented policy ̃π′ has the same gain J′. Therefore, in
the augmented problem 𝔐̃T the policy ̃π⭑ is not optimal. By
contradiction, J⭑ is the optimal gain in the original problem 𝔐T
as well. Since π⭑,t achieves this gain, it is optimal. ���

A . 2 P R O O F T H AT F L O W C O N S E RVAT I O N
I N D U C E S P O L I C I E S

Theorem �.�� 2 flow conservation induces policies
Given a stationary infinite-horizon ��� 𝔐∞ with a discrete admissi-
ble control space 𝕏, consider an absolutely-summable non-negative
function f ∈ L�(𝕏), f ≥ �. If the function f is a flow-conserving oc-
cupancy function, then the occupancy function of the policy πf = 𝒵f
induced by the function f is equal to f , zπf = f , and therefore the
function f is an occupancy function.

���

Proof. First, by Definition �.��, we can express the occupancies
zπf of policy πf for arbitrary chosen s″ ∈ 𝕊 and a″ ∈ 𝔸 as

zπf (s″,a″) = Eπf [∞
∑
t=�

γt ⋅ δSt ,s″ ⋅ δAt ,a″] = ∑
t∈𝕋 γt ⋅ Eπf [δSt ,s″ ⋅ δAt ,a″]

=
∞
∑
t=�

γt ⋅ ∑
s∈𝕊 α(s) ⋅ ∑

s′∈𝕊 pt
πf (s′ | s)

⋅ ∑
a′∈Ap(s′)πf (a′ | s′) ⋅ δs′,s″ ⋅ δa′,a″

=
∞
∑
t=�

γt ⋅ ∑
s∈𝕊 α(s) ⋅ ∑

s′∈𝕊 pt
πf (s′ | s) ⋅ πf (a″ | s′) ⋅ δs′,s″

=
∞
∑
t=�

γt ⋅ ∑
s∈𝕊 α(s) ⋅ pt

πf (s″ | s) ⋅ πf (a″ | s″)
= ∑

s∈𝕊 α(s) ⋅ ∞
∑
t=�

γt ⋅ pt
πf (s″ | s) ⋅ πf (a″ | s″).

Next, we express the initial state distribution α in terms of
the function z. If the state occupancy is zero, z(s) = �, then
the occupancy for all actions a ∈ Ap(s) permitted in that state
must be zero as well, z(s,a) = �. This follows directly from (�.��)
and the non-negativity assumption. From the flow-conservation
recurrence,

α(s′) = z(s′) − γ ⋅ ∑
s∈𝕊 ∑

a∈Ap(s) z(s,a) ⋅ p(s′ | s,a)
= z(s′) − γ ⋅ ∑

s∈supp z
∑

a∈Ap(s) z(s,a) ⋅ p(s′ | s,a)by removing zero
summands

◃
= z(s′) − γ ⋅ ∑

s∈supp z
∑

a∈Ap(s) z(s,a) ⋅ p(s′ | s,a) ⋅ z(s)
∑

a″∈Ap(s)z(s,a″)by (�.��) and z(s) ≠ � ◃
= z(s′) − γ ⋅ ∑

s∈supp z
∑

a∈Ap(s) z(s) ⋅ z(s,a)
∑

a″∈Ap(s)z(s,a″) ⋅ p(s′ | s,a)reordering ◃
= z(s′) − γ ⋅ ∑

s∈supp z
∑

a∈Ap(s) z(s) ⋅ πf (a | s) ⋅ p(s′ | s,a)by (�.��) ◃
= z(s′) − γ ⋅ ∑

s∈supp z
z(s) ⋅ pπf (s′ | s)by (�.�) ◃

= z(s′) − γ ⋅ ∑
s∈𝕊z(s) ⋅ pπf (s′ | s).by adding zero

summands
◃

Therefore,

zπf (s″,a″) = ∑
s′∈𝕊(z(s′) − γ ⋅ ∑

s∈𝕊 z(s) ⋅ pπf (s′ | s))
⋅ ∞
∑
t=�

γt ⋅ pt
πf (s″ | s′) ⋅ πf (a″ | s″)

���

= ∑
s′∈𝕊 z(s′) ⋅ ∞

∑
t=�

γt ⋅ pt
πf (s″ | s′) ⋅ πf (a″ | s″) ▹ By expanding the

brackets. This is
possible by
Proposition �.�, because
the quantity in the
brackets is equal to
α(s′) and therefore is
non-negative.

− ∑
s′∈𝕊 γ ⋅ ∑

s∈𝕊 z(s) ⋅ pπf (s′ | s)
⋅ ∞
∑
t=�

γt ⋅ pt
πf (s″ | s′) ⋅ πf (a″ | s″).

Consider the subtrahend only. It can be simplified to

∑
s′∈𝕊γ ⋅ ∑

s∈𝕊z(s) ⋅ pπf (s′ | s) ⋅ ∞
∑
t=�

γt ⋅ pt
πf (s″ | s′) ⋅ πf (a″ | s″)

=
∞
∑
t=�

γt+� ⋅ ∑
s∈𝕊 z(s) ⋅ ∑

s′∈𝕊 pπf (s′ | s) ⋅ pt
πf (s″ | s′) ⋅ πf (a″ | s″) ▹ Changing the

summation order is
possible because all of
the values are
non-negative.

= ∑
s∈𝕊z(s) ⋅ ∞

∑
t=�

γt ⋅ pt
πf (s″ | s) ⋅ πf (a″ | s″)

= ∑
s′∈𝕊z(s′) ⋅ ∞

∑
t=�

γt ⋅ pt
πf (s″ | s′) ⋅ πf (a″ | s″). ▹ by changing indexing

variable from s to s′(�.�)

Therefore,

zπf (s″,a″) = ∑
s′∈𝕊(z(s′) − γ ⋅ ∑

s∈𝕊 z(s) ⋅ pπf (s′ | s))
⋅ ∞
∑
t=�

γt ⋅ pt
πf (s″ | s′) ⋅ πf (a″ | s″)

= ∑
s′∈𝕊 z(s′) ⋅ ∞

∑
t=�

γt ⋅ pt
πf (s″ | s′) ⋅ πf (a″ | s″) ▹ by (�.�)

− ∑
s′∈𝕊 z(s′) ⋅ ∞

∑
t=�

γt ⋅ pt
πf (s″ | s′) ⋅ πf (a″ | s″)

= ∑
s′∈𝕊 z(s′) ⋅ δs″,s′ ⋅ πf (a″ | s′).

If the state s″ is not in the support of the function z, then z(s″) = �
and ∑s′∈𝕊 z(s′) ⋅ δs″,s′ = � because all of the summands are equal
to zero. Therefore, zπf (s″,a″) = z(s″,a″) = � no matter what the
policy is. Otherwise, ∑s′∈𝕊 z(s′) ⋅ δs″,s′ = z(s″) and the occupancy
zπf (s″,a″) can be simplified as follows:

zπf (s″,a″) = z(s″) ⋅ πf (a″ | s″)
= ∑

a″∈Ap(s″)z(s″,a″) ⋅ z(s″,a″)
∑

a∈Ap(s″)z(s″,a) = z(s″,a″).
In both cases, zπf (s″,a″) = z(s″,a″). ���

���

A . 3 P R O O F O F F E A S I B L E R E G I O N E M B E D D I N G

Lemma �.�� 2 feasible region embedding
Under Conditions �.�, �.�, and �.�, the feasible region of the primal
program (�) is a subset of the space L𝒩w∗ (𝕏) of functions withFor (�), see p. ��.
finite w-weighted supremum norm ‖ ⋅ ‖w.

Proof. First, note the following two properties of inner products:

⟨z, z′⟩𝕏 = ∑(s,a)∈𝕏z(s,a) ⋅ z′(s,a) = ∑
s∈𝕊 ∑

a∈Ap(s) z(s,a) ⋅ z′(s,a)
≤ ∑

s∈𝕊(∑
a∈Ap(s) z(s,a)) ⋅ (∑

a∈Ap(s) z′(s,a))
= ⟨𝒩∗z, 𝒩∗z′⟩𝕊, (�.�)⟨𝒩∗𝒩z, z′⟩𝕊 = ∑

s∈𝕊(∑
a∈Ap(s) z(s)) ⋅ z′(s)

= ∑
s∈𝕊∣Ap(s)∣ ⋅ z(s) ⋅ z′(s) ≤ |𝔸| ⋅ ⟨z, z′⟩𝕊. (�.�)

Next, the feasible region is given by the constraint 𝒩∗y−γ ⋅𝒯∗y = α
or alternatively 𝒩∗y = γ ⋅ 𝒯∗y + α. Then, by Definition �.�� andSee p. ��.
linearity of the operators,

⟨y, 𝒩w⟩𝕏 = ⟨𝒩∗y,w⟩𝕊 = ⟨γ ⋅ 𝒯∗y + α,w⟩𝕊
= γ ⋅ ⟨𝒯∗y,w⟩𝕊 + ⟨α,w⟩𝕊 = ⟨y, γ ⋅ 𝒯w⟩𝕏 + ⟨α,w⟩𝕊
≤ γ ⋅ ⟨𝒩∗y, 𝒩∗𝒯w⟩𝕊 + ⟨α,w⟩𝕊

= γ ⋅ ⟨γ ⋅ 𝒯∗y + α, 𝒩∗𝒯w⟩𝕊 + ⟨α,w⟩𝕊
= γ� ⋅ ⟨y, 𝒯𝒩∗𝒯w⟩𝕏 + γ ⋅ ⟨α, 𝒩∗𝒯w⟩𝕊 + ⟨α,w⟩𝕊
= γ� ⋅ ⟨y, 𝒯𝒩∗𝒯w⟩𝕏 + γ ⋅ ⟨𝒩α, 𝒯w⟩𝕏 + ⟨α,w⟩𝕊

≤ γ� ⋅ ⟨y, 𝒯𝒩∗𝒯w⟩𝕏 + γκ ⋅ ⟨𝒩α, 𝒩w⟩𝕏 + ⟨α,w⟩𝕊
= γ� ⋅ ⟨y, 𝒯𝒩∗𝒯w⟩𝕏 + γκ ⋅ ⟨𝒩∗𝒩α,w⟩𝕊 + ⟨α,w⟩𝕊

≤ γ� ⋅ ⟨y, 𝒯𝒩∗𝒯w⟩𝕏 + (γκ|𝔸| + �) ⋅ ⟨α,w⟩𝕊.

Repeating this process ν − � more times we obtain

⟨y, 𝒩w⟩𝕏 ≤ γν ⋅ ⟨y, (𝒯𝒩∗)ν−�𝒯w⟩𝕏 +
ν−�
∑
i=�

(γκ|𝔸|)i ⋅ ⟨α,w⟩𝕊
≤ λ ⋅ ⟨y,w⟩𝕏 + C ⋅ ⟨α,w⟩𝕊,

where C ≜ ∑ν−�
i=� (γκ|𝔸|)i is a finite constant. Thus,

(� − λ) ⋅ ⟨y, 𝒩w⟩𝕏 ≤ C ⋅ ⟨α,w⟩𝕊 and⟨y, 𝒩w⟩𝕏 ≤ C
�−λ ⋅ ⟨α,w⟩𝕊 < ∞. ���

���

A . 4 P R O O F S F O R I N V E N TO RY M AN AG E M E N T
P R O B L E M

�.�.� Proof that Rewards Are Unbounded

Lemma �.�� 2 unbounded rewards in inventory management
If at least one holding cost hi is positive, there exists no uniform
reward bound in the multi-product inventory management problem:

sup(s,a)∈𝕏∣r(s,a)∣ = ∞.

Proof. We prove this statement by showing that for any constant
w ∈ ℝ+, there exists a state s and action a such that r(s,a) < −w
and therefore ∣r(s,a)∣ > w for any w.

Let us assume that no order is placed, a = .߿ In this case,

r(s,߿) = G(s,߿) − H(s,߿) − O(߿) = G(s,߿) − ⟨h, s⟩ ≤ CG − ⟨h, s⟩.
Choose an arbitrary product k with a positive holding cost hk . Let
the inventory of each other product be zero, si = � if i ≠ k . For
the k-th product, consider an inventory sk that is greater than(w + CG)/hk , for example, let sk = ⌊(w + CG)/hk⌋ + �. For this state, ⌊a⌋ + � is the smallest

integer greater than a.the expected immediate reward r(s,߿) is bounded from above by

r(s,߿) ≤ CG−n−�
∑
i=�

hi ⋅si = CG−hk ⋅sk < CG−hk ⋅ w + CG
hk

= −w. ▹ si = � if i ≠ k���

�.�.� Proof of Weight Function Existence

Lemma �.�� 2 weight function in inventory management
In the multi-product inventory management problem, let CG , CO, and
CH denote the expected revenue when the inventory is infinite, the
maximum cost of placing an order and holding it, and the maximum
cost of holding an order.

CG ≜⟨c,d⟩ for all (s,a) ∈ 𝕏, (�.��)

CO ≜of + M ⋅ max
�≤i<n

hi + ov,i
mi

, (�.��)

CH ≜M ⋅ max
�≤i<n

hi
mi

. (�.��)

If the expected demands d are finite, then Condition �.� is satisfied
with the weight function w, the one-stage expansion coefficient κ,
the contraction horizon ν and the ν-stage contraction coefficient λ

���

given by

w(s) ≜ ⟨h, s⟩ + w�, κ ≜ γ ⋅ (� + C),
ν ≜ ⎧{⎨{⎩

�, if κ < �,⌊W−�(C−�γ�/C ln γ)
ln γ − �

C ⌋ + �, if κ ≥ �,
λ ≜ γν ⋅ (� + Cν),

where w� = max{CG,CO}, C ≜ CH/w�, and Wk is the k-th branch
of the Lambert �-function.

Proof. Indeed, if the expected demands d are finite, the expected
revenue when the inventory of each product is infinite is equal
to CG ≜ ⟨c,d⟩ and is also finite. When the inventory is finite, the
expected revenue can not exceed CG,

G(s,a) < CG ≜ ⟨c,d⟩ for all (s,a) ∈ 𝕏. (�.�)

We can formally prove this statement as follows. Let gi(si ,ai)
denote the expected sales of the i-th product when the total
inventory of that product is equal to si + ai .

gi(si ,ai) = ∑
s′∈𝕊 pi(s′

i | si ,ai) ⋅ max{�, si + ai − s′
i }

=
si+ai

∑
k=�

(si + ai − k) ⋅ pi(si + ai − k) + (si + ai) ⋅ qi(si + ai)by (�.��) ◃
=

si+ai−�

∑
j=�

j ⋅ pi(j) + (si + ai) ⋅ qi(si + ai)using j = si + ai − k ◃
=
si+ai−�

∑
j=�

j ⋅ pi(j) +
∞
∑

j=si+ai

(si + ai) ⋅ pi(j)by definition of qi ◃
≤
si+ai−�

∑
j=�

j ⋅ pi(j) +
∞
∑

j=si+ai

j ⋅ pi(j) =
∞
∑
j=�

j ⋅ pi(j) = di . (�.�)

The total expected revenue G(s,a) = ⟨c,g(s,a)⟩ is then indeed
bounded from above by a constant CG = ⟨c,d⟩.

Using this bound, we can see that the rewards are bounded
from above by

r(s,a) = G(s,a) − H(s,a) − O(a) ≤ G(s,a) ≤ CGboth H(s,a) ≥ � and
O(a) ≥ �

◃ (�.�)

and similarly from below by

−r(s,a) = H(s,a) + O(a) − G(s,a) ≤ H(s,a) + O(a)G(s,a) ≥ � ◃
≤ ⟨h, s + a⟩ + ⟨ov,a⟩ + ofby (�.��) and (�.��) ◃

= ⟨h, s⟩ + ⟨h + ov,a⟩ + of. (�.�)

���

The second product ⟨h+ov,a⟩ does not depend on the state s and
we can show that it is bounded from above by some constant. To
find this bound, we solve the following optimization problem

max
a ≥ ߿

⟨h + ov,a⟩
s.t. ⟨m,a⟩ ≤ M .

This is a finite-dimensional linear program, therefore strong duality
holds between it and its dual

min
y ≥ �

M ⋅ y

s.t. y ⋅ mi ≥ hi + ov,i for all � ≤ i < n.

The dual program has a single variable y and has a trivial solution

y = max
�≤i<n

hi + ov,i
mi

.

Indeed, any y that is smaller violates at least one of the constraints,
and any one that is larger yields a larger objective M ⋅ y. Thus, if
we let

CO ≜ of + M ⋅ max
�≤i<n

hi + ov,i
mi

, (�.��)

then the constant CO is an upper bound on ordering costs and
holding costs for the order. By combining the bounds (�.�) and
(�.�), we find that

∣r(s,a)∣ ≤ max{CG, ⟨h, s⟩ + CO} ≤ ⟨h, s⟩ + max{CG,CO} = w(s).
We denote max{CG,CO} by w� because w(߿) = w�. The affine
function w(s) ≜ ⟨h, s⟩+w� is a weight function that satisfies (�.��).
Moreover, we can show that the remaining parts of Condition �.�
hold for this weight function.

The weight function w was chosen so that (�.��) holds. To
complete the proof, we need to show that the constants κ, ν, and
λ of Lemma �.�� satisfy the requirements of Condition �.�.

We start with the one-stage expansion coefficient κ. First, note
that for any two states s ∈ 𝕊 and s′ ∈ 𝕊
w(s′) = ⟨h, s′⟩ + w� = ⟨h, s⟩ + w� + ⟨h, s′ − s⟩ = w(s) + ⟨h, s′ − s⟩.
Therefore, for any state-action pair (s,a) ∈ 𝕏

[𝒯w](s,a) = ∑
s′∈𝕊 p(s′ | s,a) ⋅ w(s′) ▹ by definition

���

= ∑
s′∈𝕊 p(s′|s,a) ⋅ w(s) + ∑

s′∈𝕊 p(s′|s,a) ⋅ ⟨h, s′ − s⟩
= w(s) + ∑

s′∈𝕊
n−�
∑
i=�

p(s′|s,a) ⋅ hi ⋅ (s′
i − si).∑s′∈𝕊 p(s′|s,a) = � ◃

Additionally, the following inequality holds.

∑
s′∈𝕊 pi(s′

i | si ,ai) ⋅ (s′
i − si) =

si+ai

∑
k=�

(k − si) ⋅ pi(si + ai − k)
− si ⋅ qi(si + ai)by (�.��) ◃

≤
si+ai

∑
k=�

(k − si) ⋅ pi(si + ai − k)si ⋅ qi(si + ai) ≥ � ◃
=
si+ai−�

∑
j=�

(ai − j) ⋅ pi(j)using j = si + ai − k ◃
≤
si+ai−�

∑
j=�

ai ⋅ pi(j) ≤ ai ⋅ ∞
∑
j=�

pi(j) = ai .j ≥ � ◃ (�.��)

The transition probabilities p(s′|s,a) are given by (�.��). Because
each of the probabilities pi(s′

i | si ,ai) is between zero and one, for
any product i

p(s′|s,a) = pi(s′
i | si ,ai) ⋅ ∏

j≠i
pj(s′

j | sj ,aj) ≤ pi(s′
i | si ,ai). (�.��)

Therefore,

[𝒯w](s,a) ≤ w(s) + ∑
s′∈𝕊

n−�
∑
i=�

pi(s′
i | si ,ai) ⋅ hi ⋅ (s′

i − si)
= w(s) +

n−�
∑
i=�

hi ⋅ ∑
s′∈𝕊 pi(s′

i | si ,ai) ⋅ (s′
i − si)changing the summation

order
◃

≤ w(s) + ⟨h,a⟩
= w(s) + CH(� + CH

w(s)) ⋅ w(s) (�.��)

≤ (� + CH
infs′∈𝕊 w(s′)) ⋅ w(s) = (� + CH

w�
) ⋅ w(s). (�.��)

The change of summation order is possible because the sum-
mands are all positive and Proposition �.� can be used. The
constant CH is chosen so that ⟨h,a⟩ ≤ CH for any action a. The
derivation of CH is identical to the derivation of CO in equa-
tion (�.��).

By putting inequality (�.��) into the definition of the transition
operator 𝒯, we see that for any state-action pair (s,a) ∈ 𝕏

γ ⋅ [𝒯w](s,a) ≤ κ ⋅ w(s),
���

and therefore γ ⋅ [𝒯πw](s) = γ ⋅ [𝒯w](s,π(s)) ≤ κ ⋅ w(s) for any
Markov deterministic policy π ∈ ℿDM.

Finally, we consider the contraction horizon ν and the ν-stage
contraction coefficient λ. If κ < �, we can set ν = � and λ = κ.
Otherwise we still need to show that Condition �.� holds. We start
this part of the proof with showing that the following inequality
holds: 𝒯k

π w ≤ w + k ⋅ CH for any k ≥ �. (�.��)

We prove it by induction. The base case k = � holds due to the
inequality (�.��). Assuming that the inequality (�.��) holds for
some k −�, we show that it holds for k . Indeed, for any state s ∈ 𝕊

[𝒯k
π w](s) = [𝒯π𝒯k−�

π w](s) = ∑
s′∈𝕊 pπ(s′ | s) ⋅ [𝒯k

π w](s′)
≤ ∑

s′∈𝕊 pπ(s′ | s) ⋅ (w(s′) + (k − �) ⋅ CH) ▹ by the inductive
hypothesis (�.��)

= (k − �) ⋅ CH + ∑
s′∈𝕊 pπ(s′ | s) ⋅ w(s′)

= (k − �) ⋅ CH + [𝒯w](s,π(s))
≤ (k − �) ⋅ CH + w(s) + CH ▹ by (�.��)

= w(s) + k ⋅ CH .

Now that we have proven the inequality (�.��), we use it to show
that [𝒯k

π w](s) ≤ w(s) + k ⋅ CH ≤ (� + k ⋅ CH
w�

) ⋅ w(s).
Thus, if λ = γν ⋅ (� + Cν) < � for some ν, then these values of ν and
λ satisfy Condition �.�. To find such a contraction horizon ν, we
solve the inequality

γν ⋅ (� + Cν) < �,
γν+C−� ⋅ (ν + C−�) ⋅ ln γ > C−�γ�/C ⋅ ln γ, ▹ ×C−� ⋅ γ�/C ⋅ ln γ < �

exp((ν + C−�) ⋅ ln γ) ⋅ (ν + C−�) ⋅ ln γ > C−�γ�/C ⋅ ln γ. ▹ ab = exp(b ⋅ lna)
Let x = C−� ⋅ γ�/C ⋅ ln γ and y = (ν + C−�) ⋅ ln γ. The inequality
becomes y ⋅ ey > x.

Let us solve the equation y ⋅ ey = x first. For real-valued x, this
problem has a solution only if x ≥ −e−� [Corless, Gonnet, Hare,
Jeffrey, and Knuth, ����], which holds if γ ≠ e−C . By substituting
γ = e−C into the formula for κ, it is easy to check that in this case
κ < � for any C > � and we can use ν = �. If γ ≠ e−C , x is a negative
number because ln γ < � for any � < γ < �. For −e−C ≤ x < �, the
equation y ⋅ ey = x has two solutions, y = W−�(x) and y = W�(x)

���

such that W−�(x) < W�(x) < � [Corless, Gonnet, Hare, Jeffrey, and
Knuth, ����]. Moreover, y ⋅ ey > x if y < W−�(x) or y > W�(x).

By substitution of x and y back into the inequality, we obtain(ν +C−�) ⋅ ln γ < W−�(C−� ⋅γ�/C ⋅ ln γ) or (ν +C−�) ⋅ ln γ > W�(C−� ⋅
γ�/C ⋅ ln γ) and thereforeRecall that ln γ is

a negative number,
hence the change in the

inequality signs. ν < W�(C−� ⋅ γ�/C ⋅ ln γ)
ln γ − �

C or ν > W−�(C−� ⋅ γ�/C ⋅ ln γ)
ln γ − �

C .

The first case yields non-positive values of ν. The value of ν used
in the statement of Lemma �.�� is the smallest positive value for
which the second inequality holds. This concludes the proof. ���

�.�.� Proof of Value Bounds

Lemma �.� 2 value bounds in inventory management
In the multi-product inventory management problem, for any policy
π ∈ ℿ the value vπ(s) of each state s ∈ 𝕊 is bounded by the
functions u± ∈ Lw(𝕊):

−μ ⋅ w(s) ≤ u−(s) ≤ vπ(s) ≤ u+(s) ≤ μ ⋅ w(s),
where u−(s) ≜ − �

� − γ ⋅ ⟨h, s⟩ − CO − γ ⋅ (CO − CH)(� − γ)� (�.�)

and u+(s) ≜ CG
� − γ . (�.�)

The constants CG , CO, and CH are defined in Lemma �.��.

Proof. From equations (�.�), (�.�) and (�.��) we know that the
rewards belong to intervals

−w(s) ≤ r−(s) ≤ r(s,a) ≤ r+(s) ≤ w(s), where
r−(s) ≜ −⟨h, s⟩ − CO and r+(s) ≜ CG.

The upper bound u+ = CG/(� + γ) then immediately follows from
r ≤ r+:

vπ(s) =
∞
∑
i=�

γi ⋅ ∑
s′∈𝕊pπ,i(s′ | s) ⋅ rπ(s′)

≤ CG ⋅ ∞
∑
i=�

γi ⋅ ∑
s′∈𝕊pπ,i(s′ | s) = CG ⋅ ∞

∑
i=�

γi = CG
� − γ = u+(s).

Similarly, for the lower bound,

vπ(s) ≥ − CO
� − γ − ∞

∑
i=�

γi ⋅ ∑
s′∈𝕊pπ,i(s′ | s) ⋅ ⟨h, s′⟩. (�.��)

���

To simplify this expression, we show by induction that

∑
s′∈𝕊pk

π(s′ | s) ⋅ ⟨h, s′⟩ ≤ ⟨h, s⟩ + k ⋅ CH for any k ≥ �. (�.��)

For k = �,

∑
s′∈𝕊pk

π(s′ | s) ⋅ ⟨h, s′⟩ = δs,s′ ⋅ ⟨h, s′⟩ = ⟨h, s⟩ = ⟨h, s⟩ + k ⋅ CH . ▹ by (�.�)

Additionally, for k = �,

∑
s′∈𝕊p(s′ | s,a) ⋅ ⟨h, s′⟩ = ∑

s′∈𝕊p(s′ | s,a) ⋅n−�
∑
i=�

hi ⋅ s′
i ▹ by inner product

definition

≤ ∑
s′∈𝕊

n−�
∑
i=�

pi(s′
i | si ,ai) ⋅ hi ⋅ s′

i ▹ by (�.��)

=
n−�
∑
j=�

hi ⋅ ∑
s′∈𝕊pi(s′

i | si ,ai) ⋅ s′
i ▹ changing summation

order

=
n−�
∑
j=�

hi ⋅ (si + ∑
s′∈𝕊pi(s′

i | si ,ai) ⋅ (s′
i − si)) ▹ ∑s′∈𝕊 pi(s′

i | si ,ai) = �

≤
n−�
∑
j=�

hi ⋅ (si + ai) = ⟨h, s⟩ + ⟨h,a⟩ ▹ by (�.��)

≤ ⟨h, s⟩ + CH . ▹ by definition of CH , also
see (�.��)

(�.��)

Assuming that inequality �.�� holds for k − �, we write

∑
s″∈𝕊pk

π(s″ | s) ⋅ ⟨h, s″⟩ = ∑
s′∈𝕊p(s′ ∣ s,π(s)) ⋅ pk−�

π (s″ | s′) ⋅ ⟨h, s″⟩ ▹ by (�.�)

≤ ∑
s′∈𝕊p(s′ ∣ s,π(s)) ⋅ (⟨h, s′⟩ + (k − �) ⋅ CH) ▹ by inductive hypothesis

(�.��)
= ∑
s′∈𝕊p(s′ ∣ s,π(s)) ⋅ ⟨h, s′⟩

+ (k − �) ⋅ CH ⋅ ∑
s′∈𝕊p(s′ ∣ s,π(s))

≤ ⟨h, s⟩ + CH + (k − �) ⋅ CH ⋅ � ▹ by (�.��)

= ⟨h, s⟩ + k ⋅ CH .

Thus, inequality (�.��) holds by induction. Combining it with
inequality (�.��), we obtain the lower bound:

vπ(s) ≥ − CO
� − γ − ∞

∑
i=�

γi ⋅ (⟨h, s⟩ + i ⋅ CH)
= − CO

� − γ − ⟨h, s⟩
� − γ − γ ⋅ CH(� − γ)� ▹ ∑∞

i=� γi ⋅ i = γ(�−γ)�

= − �
� − γ ⋅ ⟨h, s⟩ − CO − γ ⋅ (CO − CH)(� − γ)� . ���

���

B
Active Wake Control

Implementation Details

Table �.�:
Hyperparameters of the
deep reinforcement
learning agents. The
second experiment uses
the same parameters
unless explicitly listed.
In both experiments
learning starts after the
first evaluation. ���
uses noise only in
training, but not in
evaluation. The
parameter α of ��� is
auto-tuned starting with
the initial value. For the
second experiment, the
learning rates of ���
were additionally tuned
using a grid search.

parameter � � �
discounting factor �.��

sampling size of the replay buffer ���

batch size ���
start learning at step ���� ����

actor learning rate ��−� ��−�

layers �
neurons per layer ���
activations �e��

critic learning rate ��−� ��−�

layers �
neurons per layer ���
activations �e��

target updates Polyak τ �.��
frequency ��

��� policy noise �.�
policy update frequency ��
noise clipped at ±�.�
gradient norm clipped at ±�.�

��� initial α �.�
α learning rate ��−� ��−�

	Nomenclature
	Summary
	Samenvatting
	Автореферат
	Introduction
	The Decision-Making Problem
	Planning & Reinforcement Learning
	Examples
	Existing Research
	Content of This Thesis

	A Mathematical Model of Decision-Making
	Markov Decision Processes
	The Existence of Optimal Policies
	Finding Optimal Policies
	Countably-Infinite Problems
	Conclusion

	The Infinite-Horizon Non-Stationary Model
	Introduction
	Model Assumptions
	The Dual Formulation
	A Stopping Rule
	Experiments
	Conclusion

	The Countably-Infinite Model
	Introduction
	Model Assumptions
	A Motivating Example
	Policy Evaluation
	Policy improvement
	The Algorithm
	Proofs
	Experiments
	Conclusion

	Generalized Optimistic Q-Learning
	Introduction
	Preliminaries
	Optimism in Q-Learning
	Proof of Theorem 5.1
	Designing a New Optimistic Algorithm
	Experiments
	Conclusion

	Reinforcement Learning for Active Wake Control
	Introduction
	Preliminaries
	Active Wake Control as a RL Problem
	Experiments
	Conclusion

	Discussion
	Answers to the Research Questions
	Societal Implications
	Future Research Directions

	References
	Acknowledgements
	Curriculum Vitæ
	List of Publications
	Appendices
	Miscellaneous Proofs
	Proofs of Time Augmentation Equivalence
	Proof that Flow Conservation Induces Policies
	Proof of Feasible Region Embedding
	Proofs for Inventory Management Problem

	Active Wake Control Implementation Details

