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SUMMARY

Varying-length cable systems are widely applied in a vast class of engineering problems
which arise in industrial, civil, aerospatial, mechanical, and automotive applications.
Due to external excitations, large oscillations can occur when cables are lifted up or
down. This phenomenon is caused by resonance. In general, resonance is harmful, and
can cause significient deformations and dynamic stresses in machinery and structures,
and even can lead to accidents. Therefore, this doctoral dissertation is devoted to the
study of transverse and longitudinal resonance phenomena and output feedback stabi-
lization of varying-length cables.

Firstly, we are motivated by resonance phenomena occurring in a transversally vi-
brating cable, where one end of the cable is fixed, and the other one is attached to a
spring for which the stiffness properties change in time (due to fatigue, temperature
change, and so on). This problem may serve as a simplified model describing transverse
or longitudinal vibrations as well as resonances in axially moving cables for which the
length changes in time. By setting the frequency of the external force, and the time-
dependent boundary coefficient in the Robin boundary condition, different kinds of
resonances can be obtained. The first aim is to give the exact solution by using the
method of d’Alembert and to determine wave reflections, in which we can divide the
time domain into finite intervals. Then the resonance results can be analyzed by the
constructed solution. The other goal is to give explicit approximations of the solution on
long timescales by using the method of separation of variables, the method of d’Alembert,
the averaging method, and multiple timescales perturbation methods. For problems
with time-dependent coefficients in the Robin boundary condition, the analytical reso-
nance results are all in agreement with those obtained by using a numerical method.

Next, we extend our analytical and numerical results to a real physical model of a flex-
ible hoisting system, in which external disturbances exerted on the boundary can induce
large vibrations. The dynamics is described by a wave equation on a slow time-varying
spatial domain with a small harmonic boundary excitation at one end of the cable, and
a moving mass at the other end. Due to the slow variation of the cable length, a sin-
gular perturbation problem arises. By using an averaging method, and an interior layer
analysis, many resonance manifolds are detected. Further, a three time-scales pertur-
bation method is used to construct formal asymptotic approximations of the solutions.
It turns out that for a given boundary disturbance frequency, many oscillation modes
jump up from order ε amplitudes to order

p
ε amplitudes, where ε is a small parameter

with 0 < ε << 1. Moreover, numerical simulations are presented to verify the obtained
analytical results.

Further, due to external excitation and loading conditions, the nonlinear interactions
between transverse and longitudinal string motions may influence the vibration behav-
ior in two directions when the hoisting conveyance is moving up or down. Therefore,
we study both transverse and longitudinal oscillations and resonances in a hoisting sys-

xi
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tem induced by boundary disturbances. The dynamics can be described by an initial-
boundary value problem for a coupled system of nonlinear wave-equations on a slowly
time-varying spatial domain. It will be shown how the boundary excitations and the
nonlinear terms influence transverse and longitudinal vibrations of the system. Due to
the slow variation of the cable length, a singular perturbation problem arises. By us-
ing an interior layer analysis many resonance manifolds are detected. It will be shown
that resonances in the system are caused not only by boundary disturbances but also by
nonlinear interactions. Based on these observations, a three time-scales perturbation
method is used to approximate the solution of the initial-boundary value problem an-
alytically. It turns out that for special frequencies in the boundary excitations and for
certain parameter values of the longitudinal stiffness and the conveyance mass, many
oscillation modes jump up from small to large amplitudes in the transverse and longitu-
dinal directions. Moreover, numerical simulations are presented to verify the obtained
analytical results.

Since these system vibrations may lead to structural failure by excessive strain in the
moving process, we consider vibration stabilization of axially moving cable systems. We
present an output feedback control design to stabilize an unstable moving cable subject
to a spring-mass-dashpot boundary, where the control actuator is located at the other
boundary of the cable. By constructing an invertible backstepping transformation, we
design a state feedback controller to stabilize the system. Next, we present an observer
to estimate the states of the system, and based on the estimated states, we design an
output-feedback controller. The closed-loop system is proved to be exponentially stable
by Lyapunov analysis. Numerical simulations are presented to verify the effectiveness of
the proposed controller.



SAMENVATTING

Kabelsystemen met variabele lengte worden op grote schaal toegepast in een grote klasse
van technische problemen die zich voordoen in industriële, civiele, luchtvaart en ruim-
tevaart gerelateerd, mechanische, en automobiel toepassingen. Als gevolg van externe
krachten kunnen grote oscillaties optreden wanneer kabels worden op-of neerbewegen.
Dit verschijnsel wordt veroorzaakt door resonantie. In het algemeen is resonantie scha-
delijk, en kan het aanzienlijke vervormingen en dynamische spanningen veroorzaken
in machines en constructies, en zelfs leiden tot ongelukken. Daarom is deze doctoraal-
scriptie gewijd aan de studie van transversale en longitudinale resonantieverschijnselen
en output feedback stabilisatie van kabels met variërende lengte.

In de eerste plaats zijn wij gemotiveerd door resonantieverschijnselen die zich voor-
doen in een transversaal trillende kabel, waarbij het ene uiteinde van de kabel is ge-
fixeerd, en het andere is bevestigd aan een veer waarvan de stijfheidseigenschappen in
de tijd veranderen (ten gevolge van vermoeiing, temperatuursverandering, enzovoort).
Dit probleem kan dienen als een vereenvoudigd model voor het beschrijven van trans-
versale of longitudinale trillingen en resonanties in axiaal bewegende kabels waarvan de
lengte in de tijd verandert. Door de frequentie van de uitwendige kracht en de tijdsaf-
hankelijke grenscoëfficiënt in de Robin-randvoorwaarde in te stellen, kunnen verschil-
lende soorten resonanties worden verkregen. Het eerste doel is de exacte oplossing te
geven met behulp van de methode van d’Alembert en golfreflecties te bepalen, waar-
bij we het tijdsdomein in eindige intervallen kunnen verdelen. Vervolgens kunnen de
resonantieresultaten worden geanalyseerd aan de hand van de kaart van de geconstru-
eerde oplossing. Het andere doel is expliciete benaderingen te geven van de oplossing
op lange tijdschalen door gebruik te maken van de methode van de scheiding van va-
riabelen, de methode van d’Alembert, de middelingsmethode, en perturbatiemethoden
gebaseerd op meerdere tijdschalen. Voor problemen met tijdsafhankelijke coëfficiënten
in de Robin-randvoorwaarde zijn de analytische resonantieresultaten alle in overeen-
stemming met die verkregen met behulp van een numerieke methode.

Vervolgens breiden wij onze analytische en numerieke resultaten uit tot een reëel
fysisch model van een buigingslijf kabel-lift-systeem, waarin externe verstoringen die
aan de rand worden uitgeoefend grote trillingen kunnen induceren. De dynamica wordt
beschreven door een golfvergelijking op een langzaam tijdvariërend ruimtelijk domein
met een kleine harmonische grensexcitatie aan het ene eind van de kabel, en een bewe-
gende massa aan het andere eind. Door de langzame variatie van de kabellengte ontstaat
een singulier storingsprobleem. Door gebruik te maken van een middelingsmethode
en een ïnterior layer"techniek, worden vele resonantiemanifolds gedetecteerd. Verder
wordt een perturbatiemethode met drie tijdschalen gebruikt om formele asymptotische
benaderingen van de oplossingen te construeren. Het blijkt dat voor een gegeven rand-
storingsfrequentie, vele oscillatiemodes in amplitudes toenemen van orde ε amplitudes
naar orde

p
ε amplitudes, waarbij ε een kleine parameter is met 0 < ε << 1. Bovendien

xiii
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worden numerieke simulaties gepresenteerd om de verkregen analytische resultaten te
verifiëren.

Verder kunnen de niet-lineaire interacties tussen de transversale en longitudinale
bewegingen van de snaar, als gevolg van externe krachten en belastingsomstandighe-
den, het trillingsgedrag in twee richtingen beïnvloeden wanneer de lift kabel op en neer
beweegt. Daarom bestuderen we zowel transversale als longitudinale oscillaties en re-
sonanties in een lift-kabel-systeem geïnduceerd door grensstoringen. De dynamica kan
worden beschreven door een initieel-randwaardeprobleem voor een gekoppeld stelsel
van niet-lineaire golfvergelijkingen op een langzaam tijdvariërend ruimtelijk domein. Er
zal worden aangetoond hoe de randstoringen en de niet-lineaire termen de transver-
sale en longitudinale trillingen van het systeem beïnvloeden. Door de langzame variatie
van de kabellengte ontstaat een singulier perturbatieprobleem. Door gebruik te maken
van een ïnterior layer"techniekworden vele resonantie-manifolds gedetecteerd. Er zal
worden aangetoond dat resonanties in het systeem niet alleen worden veroorzaakt door
randstoringen, maar ook door niet-lineaire interacties. Op basis van deze waarnemin-
gen wordt een perturbatiemethode met drie tijdschalen gebruikt om de oplossing van
het initieel-randwaardeprobleem an- alytisch te benaderen. Het blijkt dat voor speciale
frequenties in de randexcitaties en voor bepaalde parameterwaarden van de longitudi-
nale stijfheid en de transportmassa, vele oscillatiemodes in amplitudes toenemen van
kleine naar grote amplitudes in de transversale en longitudinale richtingen. Bovendien
worden numerieke simulaties gepresenteerd om de verkregen analytische resultaten te
verifiëren.

Aangezien de trillingen van deze systemen kunnen leiden tot structureel falen door
overmatige spanning in het bewegende proces, beschouwen wij de stabilisatie van tril-
lingen van axiaal bewegende kabelsystemen. Wij stellen een ontwerp voor van een out-
put feedback regelaar om een onstabiele bewegende kabel te stabiliseren met behulp
van een veer-massa-dashpot systeem, waarbij de regelactuator zich aan de andere kant
van de kabel bevindt. Door een inverteerbare backstepping transformatie te constru-
eren, ontwerpen we een waarnemerssysteem om het systeem te stabiliseren. Vervol-
gens presenteren we een waarnemer om de toestanden van het systeem te schatten, en
op basis van de geschatte toestanden ontwerpen we een output-feedback regelaar. Van
het gesloten-lus systeem wordt exponentieel stabiliteit aangetoond met behulp van Lya-
punov analyse. Numerieke simulaties worden gepresenteerd om de effectiviteit van de
voorgestelde regelaar te verifiëren.



1
INTRODUCTION

1.1. BACKGROUND

W Ith the last decades, elevator systems are widely used for transportation of objects
to a large height or depth. Such systems consist of a drum, a head sheave, a driving

motor, a flexible cable with time-varying length, and a cage moving along two guiding
ropes. When the flexible cable’s bending stiffness is not considered, the mathematical
model for such systems can be described as an axially moving string with a time variable
length [1]. Compared with rigid structures, the flexible cable has many advantages, such
as low costs, high speeds and high load carrying capacities, which are applied in various
engineering fields, for instance, elevators and hoisters [2] (see Figure 1.1), marine risers
[3, 4], suspension bridges [5, 6], medical rescue systems [7], etc.

In lifting processes [8, 9] (see Figure 1.2), vibration-induced structural failure for el-
evator cables may occur due to external disturbances such as airflows or earthquakes,
or due to other internal or external excitations. These failures are usually related to in-
ternal or external resonances [10, 11, 12, 13, 14]. Resonance refers to the phenomenon
that a small periodic excitation can produce large vibrations when the frequency of the
external or internal excitation is close to one of the natural frequencies of the system. In
most cases resonance is harmful, it will not only lead to significant deformations and dy-
namic stress, but also lead to accidents. Therefore, it is important to develop advanced
analytical models to figure out the nature of these large vibrations in moving media.

There are many characteristics in axially moving strings to classify vibrations. One
of the classifications is based on the vibration directions. Vibrations can be divided
into transverse and longitudinal. Most analytical solutions for displacements of moving
strings focus on transverse vibrations, which are subject to classical boundary condi-
tions. In this thesis, we consider the longitudinal vibrations in moving strings, which are
subject to moving nonclassical boundary conditions. Compared to researches subject to
classical boundary conditions, the analysis of axially moving systems with moving non-
classical boundary conditions is a challenging subject for study. Moreover, we not only
consider the longitudinal vibrations, but also consider a non-linearly coupled transverse
and longitudinal vibration problem for axially moving strings with time-varying length.

1
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Figure 1.1: An example of a moving cable system

There is an abundance of analytical methods to determine exact solutions of string
problems in mathematical physics, such as the method of separation of variables (SOV),
or the (equivalent) Laplace transform method, which is used to solve initial-boundary
value problem for a string equation on a bounded interval for various types of bound-
ary conditions with constant coefficients. However, when a boundary condition with
a time-dependent coefficient, or a time-varying interval, is considered in the problem,
the afore-mentioned methods may not be applicable. Thus, it is necessary to develop
analytical methods or to adapt existing methods to solve these types of problems from
a mathematical view-point. Nowadays, with the development of computers, numerical
simulations based on the discretized system models are always used to tackle the practi-
cal and complex mathematical problems. It is widely used in engineering and the phys-
ical sciences by using approximate solutions within specified error bounds rather than
exact solutions. But, since the string problem mentioned above is described by infinite
dimensional partial differential equations, the simple discretization with truncation may
lead to inaccurate results on long timescales. Thus, in this thesis, perturbation methods
give additional insight. These methods have a high amount of information and accuracy
on long timescales compared with the discretized models. Usually by using perturba-
tion methods, we can construct formal asymptotic approximations of the solutions for
the problem. Based on the approximations, it can be seen clearly how each parameter
affects the dynamic behavior of the solution for the system. Nevertheless, perturbation
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Figure 1.2: The longitudinal vibrating cable with time-varying cable length l (t ).

methods also have their disadvantages, for instance, the first order approximation of the
solution does not always provide a required accuracy, or it is often not an easy task to
construct approximations of high orders. Thus, the choice of the best methods to tackle
the string problems depends on what we need, such as the mathematical model, the
scope of the analysis, the accuracy for applications.

Moreover, we also consider the output feedback stabilization of the axially moving
string system. There are many methods to achieve the vibration stabilization of axially
moving strings or beams. One of the most useful methods for boundary controller is
based on Lyapunov’s method, by which control laws to reduce vibration energy to zero
are derived using Lyapunov function candidates constructed by the total mechanical en-
ergy of the moving system. In this method, the controllers are required to follow the
end causing vibration excitation, which is sometimes difficult to achieve in the practical
implementation due to the inconvenient installation. Hence, the control system where
control is applied at the end opposite to the instability is necessary to study. This is a
more challenging task than the classical collocated ”boundary damper” feedback con-
trol. Backstepping approach, which is proposed by Krstic, can deal with the proposed
non-collocated stabilization problem efficiently. Its main principle is to offset the unsta-
ble terms of the system by variable transformations of partial differential equations, and
by boundary feedback.

1.2. MATHEMATICAL MODELS

I N this thesis we consider a set of one-dimensional initial-boundary value problem
describing transverse, longitudinal vibrations as well as resonances in axially moving

strings for which the length changes in time.
In chapter 2, we start with an simple initial-boundary value problem on a bounded,

fixed interval for a one-dimensional and forced string equation subjected to a slowly
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time-varying Robin boundary condition. By using Hamilton’s principle, the initial-boundary
value problem is given by:

ρut t (x, t )−Puxx (x, t ) = εA cos(ωt ), 0 ≤ x ≤ L, t > 0,

u(0, t ) = 0, t > 0,

Pux (L, t )+k(t )u(L, t ) = 0, t > 0,

u(x,0) = u0(x), ut (x,0) = u1(x), 0 ≤ x ≤ L.

(1.1)

where εA cos(ωt ) is a small external excitation with frequency ω, and k(t ) is a slowly
time-varying coefficient. The boundary condition at x = 0 is a Dirichlet type of bound-
ary condition, and the boundary condition at x = L is a Robin type of boundary condi-
tion with a time-dependent coefficient k(t ). For given frequency of the external force ω

and the time-dependent boundary coefficient k(t ), different kinds of solution behaviors
and resonances can be obtained by using different methods. We mainly consider the
following different cases:

• k(t ) is a constant;

• k(t ) = 1
1+εt ;

• k(t ) = k0 +εk1cos(ω̄t );

• k(t ) = 1+εt .

where ε is a dimensionless small parameter.
In chapter 3, we study a real physical varying-length elevator system model, in which

the longitudinal vibrations in an axially moving string system with time-varying length
are considered subject to a small harmonic boundary excitation at one end and a moving
nonclassical boundary condition at the other end. By using the Hamilton’s principle, the
initial-boundary value problem is given by:

ρ(ut t +2vuxt + v2uxx )−E Auxx + c(ut + vux ) = 0, 0 ≤ x ≤ l (t ), t > 0,

[m(ut t +2vuxt + v2uxx )+E Aux + cu(ut + vux )]|x=l (t ) = 0, t > 0,

u(0, t ) = e(t ), t > 0,

u(x,0) = u0(x), ut (x,0) = u1(x), 0 ≤ x ≤ l0,

(1.2)

where the parameters v , c, cu and the function e(t ), we make the following reasonable
assumptions: the longitudinal velocity v is small compared to nominal wave velocity√

E A
ρ ; the viscous damping coefficients c and cu are small; and the oscillation amplitudes

e(t ) at x = 0 are small. Then, we can rewrite v = εv0,c = εc0,cu = εcu0,e(t ) = βsin(αt )
with β = εβ0, where ε is a small parameter with 0 < ε << 1, v0, c0, cu,0, β0 are positive
constants and are of order 1. For convenience we only consider a non-accelerating cable,
l (t ) = l0 + εv0t , where l0 is the initial cable length. It is also assumed that both initial
conditions are O(ε), that is, u0(x) =O(ε), and u1(x) =O(ε).

In chapter 4, we further study the real physical varying-length elevator system model,
in which transverse and longitudinal oscillations and resonances in an axially moving
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string with time-varying length are both considered subject to small harmonic boundary
excitations in transverse and longitudinal directions at one end and a moving nonclassi-
cal boundary condition at the other end. By the Hamilton’s principle, the mathematical
problem for the vibrating cable can be written as a non-linearly coupled initial boundary
value problem for the transverse vibration:

ρ(wt t +2v wxt + v2wxx +awx )− (T wx )x + c1(wt + v wx )−E A(zwx )x = 0,

β2cos(ω2t ) < x < l (t ), t > 0,

w(l (t ), t ) = 0, t ≥ 0,

w(β2cos(ω2t ), t ) =β1cos(ω1t +α), t ≥ 0,

w(x,0) = w0(x), wt (x,0) = w1(x), β2 < x < l0,
(1.3)

and as an initial boundary value problem for the longitudinal vibration:

ρ(ut t +2vuxt + v2uxx +aux +a)+ c2(ut + vux )−E Azx = 0,

β2cos(ω2t ) < x < l (t ), t > 0,

[m(ut t +2vuxt + v2uxx +aux +a)+ cu(ut + vux )+E Az]|x=l (t ) = 0, t ≥ 0,

u(β2cos(ω2t ), t ) =β2cos(ω2t ), t ≥ 0,

u(x,0) = u0(x), ut (x,0) = u1(x), β2 < x < l0,
(1.4)

where z = ux + 1
2 w2

x and

T (x, t ) = [m +ρ(l (t )−x)]g , β2cos(ω2t ) ≤ x ≤ l (t ). (1.5)

We use the following assumptions for the parameters and functions:

• The longitudinal velocity v is small compared to the wave velocities
√

E A
ρ and√

mg
ρ , that is, v = εv0;

• The nominal wave velocities
√

E A
ρ and

√
mg
ρ are of the same order of magnitude,

that is, E A
mg =O(1),

√
E A
mg > 1, and E A

mg is not near 1, i.e.,
√

E A
mg −1 >O(ε);

• The cable mass ρL is small compared to the car mass m (L is the maximum length

of the cable), that is, µ= ρL
m = εµ0;

• The viscous damping parameters c1, c2, and cu are small, that is, c1 = εc1,0,c2 =
εc2,0,cu = εcu,0;

• The fundamental excitations at the top of the elevator rope are small, and the lon-
gitudinal excitation is smaller than the transverse excitation, that is, β1 = εβ1,0,β2 =
ε2β2,0;

• The initial conditions w0(x) = εh0(x), w1(x) = εh1(x), u0(x) = ε2h2(x) and u1(x) =
ε2h3(x);
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• For convenience we only consider a non-accelerating cable, that is, the cable length
l (t ) = l0 + v t and a = 0, where l0 is the initial string length.

In the above assumptions, v0, µ0, c1,0, c2,0, cu,0, β1,0, β2,0, α m, ρ, ω1, ω2, L and l0 are
positive constants and are of order 1, the functions h0(x),h1(x),h2(x),h3(x) are of order
1, and ε is a small parameter with 0 < ε<< 1.

In chapter 5, we consider a moving string system with constant speed on a finite spa-
tial domain subject to a spring-mass-dashpot attached at one end of the string. By the
Hamilton’s principle, the mathematical problem for the vibrating string can be written
as: 

ρ(ut t +2vuxt + v2uxx )−Tuxx = 0, 0 ≤ x ≤ l , t > 0,

mut t (0, t )+Tux (0, t )+ku(0, t )+ρvut (0, t )−ρv2ux (0, t ) = 0, t > 0,

Tux (l , t )+ku(l , t )+ρvut (l , t )−ρv2ux (l , t ) =U (t ), t > 0.

(1.6)

where u(x, t ) is the transverse displacement of the string at the coordinate x and the time
t ; l is the distance between two boundary ends; v is the traveling speed of the moving
string; ρ is the mass density of the string; m is the mass of the spring-mass; T is the
uniform tension of the string; k is the stiffness of the spring; U (t ) is the control force
attached at x = l . Moreover, ρ, v , T , m, l and k are positive constants.

1.3. MATHEMATICAL METHODS

1.3.1. FOURIER SERIES

A Fourier series is a way of representing a periodic function as a (possibly infinite)
sum of sine and cosine functions. It is analogous to a Taylor series, which represents

functions as possibly infinite sums of monomial terms. The Fourier series, as well as
its generalizations, is essential throughout the physical sciences since the trigonometric
functions are eigenfunctions of the Laplacian, which appears in many physical equa-
tions.

Given a function x(t ) with period T , it can be expressed as infinite series:

x(t ) =
+∞∑

k=−∞
ak e i k( 2π

T )t , (1.7)

where

ak = 1

T

∫ T

0
x(t )e−i k( 2π

T )t d t . (1.8)

For functions of two variables that are periodic in both variables, the trigonometric basis
in the Fourier series is replaced by the spherical harmonics. For functions that are not
periodic, the Fourier series is replaced by the Fourier transform. There are several com-
mon conventions for defining the Fourier transform of an integrable function f . One of
them is:

f̂ (ξ) =
∫ ∞

−∞
f (x)e−i 2πξx d x, ∀ξ ∈R. (1.9)

This is the customary form for generalizing to complex-valued functions.
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1.3.2. METHOD OF D’ALEMBERT
Considering the initial value problem for the wave equation:{

ut t −a2uxx = f (x, t ), −∞< x <+∞, t > 0,

u(x,0) = u0(x), ut (x,0) = u1(x), 0 ≤ x ≤ l0.
(1.10)

According to the formular of d’Alembert, the solution of (1.10) is given by

u(x, t ) = u0(x −at )+u0(x +at )

2
+ 1

2a

∫ x+at

x−at
u1(x̄)d x̄ + 1

2a

∫ t

0

∫ x+a(t−τ)

x−a(t−τ)
f (x̄,τ)d x̄dτ.

(1.11)

1.3.3. ADAPTED VERSION OF THE METHOD OF SEPARATION OF VARIABLES
We consider the homogeneous part of equation subject to the homogeneous boundary
conditions: {

ut t (x, t )−uxx (x, t ) = 0, 0 < x < 1, t ≥ 0,

u(0, t ) = 0, ux (1, t )+k(εt )u(1, t ) = 0, , t ≥ 0,
(1.12)

where ε is a small parameter with 0 < ε<< 1. Note that the coefficient k(εt ) in the Robin
boundary condition is slowly varying in time. So, in order to derive a solution of problem
(1.12) , we define an extra slow time variable τ= εt , which will be treated independently
from the variable t . Hence u(x, t ) becomes a new function ū(x, t ,τ) and further problem
(1.12) becomes

ūt t (x, t ,τ)+2εūtτ(x, t ,τ)+ε2ūττ(x, t ,τ)− ūxx (x, t ,τ) = 0,
0 < x < 1, t > 0, τ> 0,

ū(0, t ,τ) = 0, ūx (1, t ,τ)+k(τ)ū(1, t ,τ) = 0, t ≥ 0, τ≥ 0. (1.13)

By looking for a nontrivial solution ū(x, t ,τ) in the form T (t ,τ)X (x,τ), the governing
equations of (1.13) can be approximately written as

X (x,τ)Tt t (t ,τ)+2εX (x,τ)Ttτ(t ,τ)+2εXτ(x,τ)Tt (t ,τ)
−Xxx (x,τ)T (t ,τ)+O(ε2) = 0,

or equivalently as

Tt t (t ,τ)

T (t ,τ)
+O(ε) = Xxx (x,τ)

X (x,τ)
, 0 < x < 1, t ≥ 0, τ≥ 0. (1.14)

The O(1) part of the left-hand side of equation (1.14) is a function of t and τ, and the
right-hand side is a function of x and τ. To be equal, both sides need to be equal to a
function of τ. Let this function be −λ2(τ) (which will be defined later), so we get

Tt t (t ,τ)

T (t ,τ)
= Xxx (x,τ)

X (x,τ)
=−λ2(τ), 0 < x < 1, t ≥ 0, τ≥ 0,

implying:

Xxx (x,τ)+λ2(τ)X (x,τ) = 0, 0 < x < 1, τ≥ 0,
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Tt t (t ,τ)+λ2(τ)T (t ,τ) = 0, t ≥ 0, τ≥ 0. (1.15)

From the boundary condition (1.13), we obtain

T (t ,τ)X (0,τ) = 0 ⇒ X (0,τ) = 0,
T (t ,τ)Xx (1,τ)+k(τ)T (t ,τ)X (1,τ) = 0

⇒ Xx (1,τ)+k(τ)X (1,τ) = 0. (1.16)

In accordance with the first equation for X (x,τ) in (1.15), a nontrivial solution Xn(x,τ)
(satisfying (1.16)) is

Xn(x,τ) = Bn(τ)sin(λn(τ)x), (1.17)

where Bn(τ) is a function of τ only, and λn(τ) is the n-th positive root of

tan(λn(τ)) =−λn(τ)

k(τ)
. (1.18)

In should be observed that the eigenfunctions Xn(x,τ) are orthogonal on 0 < x < 1. And
so, the general solution of (1.12) can be expanded in the following form:

u(x, t ) = ū(x, t ,τ) =
∞∑

n=1
Tn(t ,τ)sin(λn(τ)x), (1.19)

where the boundary conditions (1.12) are automatically satisfied.

1.3.4. AVERAGING METHOD
The idea of averaging as a computational technique, without proof of validity, originates
from the 18 th century; it has been formulated very clearly by Lagrange in his study of
the gravitational three-body problem as a perturbation of the two-body problem.

We assume that f (t , x) is T-periodic in t , and consider the initial value problem:

ẋ = ε f (t , x)+ε2g (t , x,ε), x(0) = x0, (1.20)

where ε is a small parameter with 0 < ε<< 1. We introduce the average

f 0(y) = 1

T

∫ T

0
f (t , y)d t . (1.21)

In performing the integration y has been kept constant. Consider now the initial value
problem for the averaged equation

ẏ = ε f 0(y), y(0) = x0. (1.22)

1.3.5. MULTIPLE TIMESCALES METHOD
The method of multiple timescales is used to construct explicit and accurate approxi-
mate solutions for ordinary differential equations and partial differential equations on
long timescales. Since a straight-forward expansion in ε may have secular terms (which
are unbounded in time t ), one or more new time variables (t0, t1, t2,...) are introduced
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and are treated independently. Then, it is assumed that the solution u(x, t ) of the per-
turbation problem can be expanded in a power series in ε, where ε is a small parameter,
as follows:

u(x, t ;ε) = u0(x, t0, t1, t2, ...)+εu1(x, t0, t1, t2, ...)+O(ε2). (1.23)

In order to avoid unbounded (or secular) terms in the expansion, secularity conditions
have to be found for ui , where i ∈N+

⋃
{0}.

1.4. OUTLINE OF THE THESIS

T He thesis is organized as follows.
In chapter 1, a brief introduction to the subject is given.
In chapter 2, the initial–boundary value problem (1.1) is considered. It can serve

as a simple model for the elevator system describing transverse or longitudinal vibra-
tions as well as resonances in axially moving cables for which the length changes in
time. The first aim is to give the exact solution for the problem by using the method
of d’Alembert and wave reflections. Then the second aim is to construct approximate
solutions for some cases with different time-dependent coefficients k(t ) by using the
method of separation of variables, the method of d’Alembert, averaging method, and
multiple timescales perturbation methods, respectively. Finally, numerical simulations
are presented to verify the obtained analytical results.

In chapter 3, the initial–boundary value problem (1.2) is considered. Due to the slow
variation of the cable length, a singular perturbation problem arises. By using an aver-
aging method, and an interior layer analysis, many resonance manifolds are detected.
Further, a three time-scales perturbation method is used to construct formal asymptotic
approximations of the solutions. Finally, numerical simulations are presented to verify
the obtained analytical results.

In chapter 4, the coupled nonlinear initial–boundary value problems (1.3) and (1.4)
in transverse and longitudinal directions are considered. Due to the slow variation of
the cable length, a singular perturbation problem arises. In order to deal with this prob-
lem, perturbation methods and an internal layer analysis are used in this chapter to ap-
proximate the vibrations and the resonances, including determining the resonance am-
plitudes and the size of the resonance zones. Based on this analysis, solutions of the
coupled initial-boundary value problem for the transverse and the longitudinal motions
can be predicted analytically. Finally, numerical simulations are presented to verify the
obtained analytical results.

In chapter 5, the output feedback stabilization of the initial–boundary value prob-
lem (1.6) is considered. By constructing an invertible backstepping transformation, we
design a state feedback controller to stabilize the system. Next, we present an observer
to estimate the states of the system, and based on the estimated states, we design an
output-feedback controller. The closed-loop system is proved to be exponentially stable
by Lyapunov analysis. Finally, numerical simulations are presented to verify the effec-
tiveness of the proposed controller.





2
TRANSVERSE RESONANCES OF A

VIBRATING STRING WITH A

TIME-DEPENDENT ROBIN

BOUNDARY CONDITION

2.1. INTRODUCTION

I N this chapter we start with the resonance phenomena occurring in a transversally
vibrating string (see Figure 2.1), where one end of the string is fixed, and the other

one is attached to a spring for which the stiffness properties change in time (due to fa-
tigue, temperature change, and so on). Mathematically, we will show how to (approxi-
mately) solve an initial-boundary value problem for a nonhomogeneous wave equation
on a bounded, fixed interval with a Dirichlet type of boundary condition at one endpoint,
and a Robin type of boundary condition with a time-dependent coefficient at the other
end. Actually, the Robin boundary condition is an interesting one to study from the ap-
plicational and mathematical point of view. The wave equations involving a Robin type
of boundary condition with a time-varying coefficient can be regarded as simple mod-
els for vibrations of elevator or mining cables in the study of axially moving strings with
time-varying lengths. There is a lot of research on these types of problems. Chen et al.
[15] considered an analytical vibration response in the time domain for an axially trans-
lating and laterally vibrating string with mixed boundary conditions. Further Chen et
al. [16] investigated the exchange of vibrational energy of a finite length translating ten-
sioned string model with mixed boundary conditions applying D’Alembert’s principle
and the reflection properties. Wang et al. [17] designed an output feedback controller
to regulate the state of a wave equation on a time-varying spatial interval with an un-
known boundary disturbance. Gaiko and van Horssen [18] considered lateral vibrations

Parts of this chapter have been published in Journal of Sound and Vibration 512, 116356 (2021).
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of a vertically moving string with in time harmonically varying length. Zhu and Wu [19]
studied the transverse vibration of the translating string with sinusoidally varying veloc-
ities. Malookani and van Horssen [20] studied transverse vibrations of axially moving
strings with time dependent velocity and further examined its instability. For more in-
formation on initial-boundary value problems for axially moving continua, the reader
is referred to [21, 22, 23, 24, 25]. Also in other fields, Robin boundary conditions play
an important role, and are sometimes called impedance boundary conditions in elec-
tromagnetic problems or convective boundary conditions in heat transfer problems [26,
27].

Usually the method of separation of variables (SOV), or the (equivalent) Laplace
transform method is used to solve initial value problem for a wave equation on a bounded
interval for various types of boundary conditions with constant coefficients [28, 29].
However, when a Robin boundary condition with a time-dependent coefficient is in-
volved in the problem, the afore-mentioned methods are not applicable. For this reason,
van Horssen and Wang in [30] employed the method of d’Alembert to solve a homoge-
neous wave equation involving Robin type of boundary conditions with time-dependent
coefficients. This chapter is an extension of the study by van Horssen and Wang in [30].
The first aim of this chapter is to give the exact solution of the nonhomogenous prob-
lem by using the method of d’Alembert and wave reflections, in which we can divide the
time domain into finite intervals of length 2. Then the resonance results can be analyzed
by the map of the solution from t = 2n to t = 2(n + 1). The other goal is to give explicit
approximations of the solution on long timescales by putting different values of k(t ).

• k(t ) is constant, resonances and exact solutions of this problem are solved by using
the method of separation of variables (SOV).

• k(t ) = 1
1+εt , resonance results are approximated by the map of solutions based on

the method of d’Alembert.

• k(t ) = k0 + εk1 cos(ω̄t ), resonances and explicit approximations of the solutions
are obtained by using a two-timescales perturbation method.

• k(t ) = 1+εt , an additional difficulty is introduced: for t <O( 1
ε ), εt is a small term,

while for t = O( 1
ε ), εt is not a small term. So, by introducing an adapted version

of the method of separation of variables, by using averaging and singular pertur-
bation techniques, and by finally using a three time-scales perturbation method,
resonances in the problem are detected and accurate, analytical approximations
of the solutions of the problem are constructed.

The current chapter is organised as follows. In section 2.2 the problem is formulated
by the Hamilton’s principle. In section 2.3 the exact solution of the problem is tackled
by the method of d’Alembert and wave reflections. In section 2.4, 2.5, 2.6 and in section
2.7 the cases of k(t ) is constant, k(t ) = 1

1+εt , k(t ) = k0 + εk1cos(ω̄t ) and k(t ) = 1+ εt
are analyzed to show the resonance results, respectively. And numerical simulations of
above cases are presented to verify the obtained analytical results. As numerical method
a standard finite difference method is used in this chapter for simplicity, but of course
also more advanced methods such as the finite element method (as has been used in [31,
32, 33, 34, 35]) can be applied. Finally, in section 2.8 some concluding remarks are made.
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2.2. FORMULATION OF THE PROBLEM

k(t )

x = 0 x = L

Figure 2.1: The transverse vibrating string with a time-varying spring-stiffness support at x=L, and an external
force εA cos(ωt ).

B Y using the Hamilton’s principle [36], the governing equation of motion to describe
the transversal vibration of a string as shown in Figure 2.1 can be derived, and is

given by:
ρut t (x, t )−Puxx (x, t ) = εA cos(ωt ), ω> 0, 0 < x < L, t > 0, (2.1)

where ρ is the mass density, P is the axial tension (which is assumed to be constant),
L is the distance between the supports, and u describes the lateral displacement of the
string. The term εA cos(ωt ) in (2.1) is a small external force acting on the whole string,
where ε, ω and A are constants with 0 < ε << 1, ω > 0 and A ∈ R. The boundary condi-
tions and initial conditions are given by:

u(0, t ) = 0, Pux (L, t )+k(t )u(L, t ) = 0, t ≥ 0, (2.2)

u(x,0) = f (x), ut (x,0) = g (x), 0 < x < L, (2.3)

where k(t ) is the time-varying stiffness of the spring at x = L. The boundary condition
at x = 0 is a Dirichlet type of boundary condition, and the boundary condition at x = L
is a Robin type of boundary condition with a time-dependent coefficient k(t ). Different
choices of k(t ) lead to stiff changes of springs in time. This problem may also serve as a
simplified model describing transverse or longitudinal vibrations as well as resonances
in axially moving cables for which the length changes in time.

For simplicity, based on the Buckingham Pi theorem, the following dimensionless
parameters are used:

x = x

L
, u = u

L
, t = t

L

√
P

ρ
, k = L

P
k, ε= εL

√
ρ

P
,

A = A√
ρP

, ω= Lω

√
ρ

P
, f =

√
P

ρ

f

L2 , g = g

L
,

by which, the governing equation (2.1), the boundary conditions (2.2), and the initial
conditions (2.3) can be rewritten into the following non-dimensional form:

ut t (x, t )−uxx (x, t ) = εA cos(ωt ), 0 < x < 1, t ≥ 0,

u(0, t ) = 0, ux (1, t )+k(t )u(1, t ) = 0, t ≥ 0,

u(x,0) = f (x), ut (x,0) = g (x), 0 < x < 1,

(2.4)

where the overbar notations are omitted for convenience.
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2.3. THE METHOD OF D’ALEMBERT

I N this section, it will be shown how the well-known formula of d’Alembert can be used
to obtain the solutions u(x, t ) of the initial-boundary value problem (2.4) with time-

dependent coefficients k(t ) in Robin boundary conditions.

2.3.1. THE GENERAL SOLUTION
According to the method of d’Alembert (see [37]), the general solution to problem (2.4)
without boundary conditions is given by

u(x, t ) = 1

2
[ f (x − t )+ f (x + t )]+ 1

2

∫ x+t

x−t
g (s)d s +εA

∫ t

0
(t −τ)cos(ωτ)dτ. (2.5)

It should be noted that the functions f and g are only defined on the interval [0,1]. To ex-
tend f and g on the whole domain (−∞,+∞), the boundary conditions in problem (2.4)
should be considered. By substituting Eq.(2.5) into boundary conditions, one obtains

f (t )+ f (−t )+
∫ t

−t
g (s)d s +2εA

∫ t

0
(t −τ)cos(ωτ)dτ= 0, (2.6)

f ′(1+ t )+ f ′(1− t )+ g (1+ t )− g (1− t )+k(t )[ f (1+ t )+ f (1− t )

+
∫ 1+t

1−t
g (s)d s +2εA

∫ t

0
(t −τ)cos(ωτ)dτ] = 0. (2.7)

Let

h(t ) = f (t )+
∫ t

0
g (s)d s. (2.8)

On the one hand, Eq.(2.6) can be transformed into

h(t ) =− f (−t )−
∫ 0

−t
g (s)d s −2εA

∫ t

0
(t −τ)cos(ωτ)dτ, −1 ≤ t ≤ 0, (2.9)

which defines h on the interval [-1,0]. So h(x) is now defined on the interval[-1,1]. On
the other hand, it follows from Eq.(2.7) for −1 ≤ 1− t ≤ 1 (0 ≤ t ≤ 2) that

h′(1+ t )+k(t )h(1+ t )

= − f ′(1− t )+ g (1− t )−k(t )[ f (1− t )+
∫ 0

1−t
g (s)d s

+2εA
∫ t

0
(t −τ)cos(ωτ)dτ]. (2.10)

Multiplying both sides of (2.10) by the integrating factor e
∫ t

0 k(s)d s , yields

d(e
∫ t

0 k(s)d s h(1+ t ))

d t

= e
∫ t

0 k(s)d s [− f ′(1− t )+ g (1− t )−k(t )( f (1− t )+
∫ 0

1−t
g (s)d s

+2εA
∫ t

0
(t −τ)cos(ωτ)dτ)]. (2.11)
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Then we integrate (2.11) with respect to t from 0 to t to get

h(t +1) = e−
∫ t

0 k(s)d s h(1)+e−
∫ t

0 k(s)d s
∫ t

0
e

∫ τ
0 k(s)d s [− f ′(1−τ)+ g (1−τ)

−k(τ)( f (1−τ)+
∫ 0

1−τ
g (s)d s +2εA

∫ τ

0
(τ− s)cos(ωs)d s)]dτ. (2.12)

And so, the function h is defined on the interval [1,3]. By using Eq.(2.9) again, the expres-
sion for h on the interval [-3,-1] can be derived and h is now defined on [-3,3]. Further,
referring to Eq.(2.8), the functions f and g can also be constructed on [-3,3]. By using
Eq.(2.8), Eq.(2.9) and Eq.(2.12), we can again obtain the expression for f and g on the in-
terval [-5,5]. Repeating this extension procedure over and over again, the expression for
f(t) and g(t) can be found for all t with −∞≤ t ≤∞.

2.3.2. THE STATEMENT OF WAVE REFLECTION
The Nonhomogeneous wave equation we considered above in problem (2.4) has a prop-
agation speed of 1, which implies that the vibration information at the point x = xi , t = 0
will propagate into two different directions with speed 1, and the information will be
back to the position xi at t = 2 as shown in Figure 2.2 (a). Thus, by treating the infor-
mation of the string at t = 2 as a new initial condition, we can then copy the extension
steps as presented for the time-interval [0,2] for the next time interval of length 2, that is,
2 ≤ t ≤ 4.

Furthermore, Figure 2.2 (b) shows the domain of dependence, from which we can
see that it is sufficient to determine the response of the whole string at 0 ≤ t ≤ 2 by the
information at x ∈ [−2,3], t = 0. By treating the state at x ∈ [−2,3], t=2 as a new initial
condition and using the same extension procedures, the solution u(x, t ), 2 ≤ t ≤ 4, can
also be obtained. Thus, we can calculate the solution of the nonhomogeneous problem
up to every time by dividing the time domain into finite intervals of length 2.

2.3.3. NUMERICAL EXAMPLES
This section is devoted to presenting some numerical simulations on the behavior of the
solution u(x,t) of problem (2.4) for t=2 and 4, respectively. Let us first choose the initial
conditions as {

f (x) = si n(1.8x), 0 ≤ x ≤ 1,

g (x) = 0, 0 ≤ x ≤ 1,
(2.13)

and k(t ) = 1
t+1 , A = 1, ω = 1.8, ε = 1 as an example. The wave shape comparisons be-

tween the D’Alembert method and the finite difference method are shown in Figure 2.3.
According to these figures, we can easily see that the results of the proposed method (the
d’Alembert method) agree well with those of the finite difference method.

2.4. TIME-DEPENDENT COEFFICIENT k(t ) IS CONSTANT

I N this section, the method of separation of variables is used to obtain the exact solu-
tion of the initial boundary value problem (2.4), and the results are verified by numer-

ical simulations.
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(a)

(b)

Figure 2.2: (a) Wave reflections. (b) Domain of dependence.
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(a) (b)

Figure 2.3: String shape comparisons when k(t ) = 1
t+1 : the proposed method (solid line), the finite difference

method (dashed line): u(x,2), u(x,4). (a) String shapes of u(x,2). (b) String shapes of u(x,4).

2.4.1. THE METHOD OF SEPARATION OF VARIABLES
To perform a resonance analysis for k(t) is constant, the method of separation of vari-
ables can be applied in this case, and the solution of problem (2.4) can be found as

u(x, t ) =
∞∑

i=1
[(Ai cos(λi t )+Bi si n(λi t )+εA

∫ t

0
Ci (τ)si nλi (t −τ)dτ)si n(λi x)], (2.14)

where

Ai =
∫ 1

0 f (x)si n(λi x)d x∫ 1
0 si n2(λi x)d x

, Bi =
∫ 1

0 g (x)si n(λi x)d x

λi
∫ 1

0 si n2(λi x)d x
, Ci (τ) = cos(ωτ)

∫ 1
0 si n(λi x)d x

λi
∫ 1

0 si n2(λi x)d x
,

(2.15)
and λi is the eigenvalue of the wave equation and satisfies

− 1

k
λi = t an(λi ), 0 <λ1 <λ2 < ... <λn .... (2.16)

Thus, the analytical result is that if ω = λi , for a certain i = 1,2,3, ..., then resonance
behavior arises.

2.4.2. NUMERICAL EXAMPLES
In Figure 2.4, we give numerical results of the solution behaviors of the problem (2.4),
which are found for the following parameters k(t ) = 1, A = 1, ω = λ1 (λ1 is given by
(2.16)), and ε= 0.01. To better observe the resonance results, it is assumed that the initial
conditions are given by {

f (x) = εsi n(1.7155x), 0 ≤ x ≤ 1,

g (x) = 0, 0 ≤ x ≤ 1.
(2.17)

The displacement response of the problem (2.4) is given in Figure 2.4 (a), and the energy
is given in Figure 2.4 (b), which are in complete agreement with the analytic results in
(2.14).
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(a) (b)

Figure 2.4: (a) The solution u(x, t ) of the problem (2.4). (b)The energy of the solution.

2.5. TIME-DEPENDENT COEFFICIENT k(t ) = 1
εt+1

C Onsidering the case of k(t ) = 1
εt+1 , the resonance results for initial-boundary value

problem (2.4) can be analysed by the map of solutions based on the method of
d’Alembert (in section 2.3) from t=2m to t=2(m+1). Further, the analytical results are
verified by numerical simulations.

2.5.1. SOLUTION AND MAPPING
By treating the state at t = 2m, u(x,2m),ut (x,2m), m = 0,1,2... as new initial conditions,
according to the method of d’Alembert and wave reflections, the solution u(x,2m+t̃ ),0 ≤
t̃ ≤ 2 can be written as

u(x,2m + t̃ ) = 1

2
[u(x − t̃ ,2m)+u(x + t̃ ,2m)]

+1

2

∫ x+t̃

x−t̃
ut (s,2m)d s +εA

∫ t̃

0

∫ x+(t̃−τ)

x−(t̃−τ)
cos(ωτ)dτ. (2.18)

Using the Fourier series, we observe that

u(x,2m + t̃ )

= 1

4π

∞∑
i=1

e iλi (x+t̃ )
∫ 1

0
e−iλi ξu(ξ,2m)dξ+ 1

4π

∞∑
i=1

e iλi (x+t̃ )
∫ 1

0
e−iλi ξ

∫ ξ

0
ut (s,2m)d sdξ

+ 1

4π

∞∑
i=1

e iλi (x−t̃ )
∫ 1

0
e−iλi ξu(ξ,2m)dξ− 1

4π

∞∑
i=1

e iλi (x−t̃ )
∫ 1

0
e−iλi ξ

∫ ξ

0
ut (s,2m)d sdξ

+εA

2π

∞∑
i=1

∫ t̃

0
[e iλi (x+(t̃−τ)) −e iλi (x−(t̃−τ))]

∫ 1

0
e−iλi ξ

∫ ξ

0
cos(ωτ)d sdξ

= 1

2π

∞∑
i=1

cos(λi t̃ )e iλx
∫ 1

0
e−iλi ξu(ξ,2m)dξ

+ 1

2π

∞∑
i=1

i si n(λi t̃ )e iλi x
∫ 1

0
e−iλi ξ

∫ ξ

0
ut (s,2m)d sdξ

+εA

π

∞∑
i=1

∫ t̃

0

∫ 1

0
ξe iλi (x−ξ)dξ[e i (ω−λi )τ+iλi t̃
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−e i (ω−λi )τ−iλi t̃ −e i ((ω+λi )τ−λi t̃ ) +e−i ((ω+λi )τ−λi t̃ )]dτ, (2.19)

where λi satisfies

−(1+2mε)λi = t anλi , (2.20)

and so satisfies equation (2.16) approximately at k = k(t ) = k(2m + t̃ ). When we choose
ω=λi , for a certain i = 1,2,3,..., the last term of equation (2.19) can be written as

εA

π

∞∑
i=1

∫ t̃

0
e iλi x

∫ 1

0
ξe−iλi ξdξ[e i (ω−λi )τ+iλi t̃ −e i (ω−λi )τ−iλi t̃ −e i (ωτ−λi t̃+λi τ)

+e−i (ωτ−λi t̃+λi τ)]dτ

= εA

π

∞∑
i=2

∫ t̃

0
e iλi x

∫ 1

0
e−iλi ξdξcos(ωτ)i si n(λi (t̃ −τ))

+εA

2π

∫ t̃

0
e iλi x

∫ 1

0
ξe−iλi ξdξ[i si n(ωτ+λi (t̃ −τ))]dτ

+ iεA

4π
t̃ si n(ωt̃ )e iλi x

∫ 1

0
ξe−iλi ξdξ. (2.21)

And term "Ãt̃ si n(ωt̃ )" appear in (2.21), where Ã = iεA
4π e iλi x

∫ 1
0 ξe−iλi ξdξ. It implies that

when the frequency of the external force is approximately equal to that of the homo-
geneous wave equation (2.4), i,e., ω = λi approximately, the resonance arises around
t = 2m.

2.5.2. NUMERICAL EXAMPLES
Three different numerical examples are presented to verify the above analytical results.

• For m = 0 (and so, k(0)=1), note from Eq.(2.20) that −λ̃i = t anλ̃i , λ̃1 < λ̃2 < λ̃3 < ...
By choosing ω = λ̃i , the resonance arises around t = 0 in the above analysis. Nu-
merically, let k(t ) = 1

εt+1 , ε= 0.01, ω= 2.0288 ≈ λ̃1, A = 1 and the initial conditions
be (2.17), the solution behaviors and energy of the problem (2.4) are given in Fig-
ure 2.5, which turns out that the resonance arises from t=0 to t=40 approximately.

• For m =∞ (and so, k(∞) = 0), λ̃i = π
2 + (i −1)π. By choosing ω = λ̃i , a resonance

arises as t is big enough in the above analysis. Numerically, let k(t ) = 1
εt+1 , ε =

0.01, ω = 1.5708 ≈ λ̃1, and the initial conditions be (2.17), the solution behaviors
and energy of the problem (2.4) are given in Figure 2.6, which turns out that the
resonance arises from t=200 to t=500 approximately.

• For 0 < m < ∞, and so −(1+ 2mε)λ̃i = t anλ̃i . By choosing ω = λ̃i , a resonance
arises around at t = 2m in the above analysis. Numerically, let k(t ) = 1

εt+1 , ε= 0.01,

ω= 1.82 ≈ λ̃1 at m = 50, and the initial conditions be (2.17), the solution behaviors
and energy of problem (2.4) are given in Figure 2.7. It turns out that resonance
arises from t=40 to t=180 approximately.

These numerical examples are all in good agreement with those results in the
method of d’Alembert.
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(a) (b)

Figure 2.5: (a) The solution of the problem (2.4) for x=0.5, ω= 2.0288. (b)The energy of solution as function of
time t.

(a) (b)

Figure 2.6: (a) The solution of the problem (2.4) for x=0.5, ω= 1.5708. (b)The energy of solution as function of
time t.

(a) (b)

Figure 2.7: (a) The solution of the problem (2.4) for x=0.5, ω = 1.82. (b)The energy of solution as function of
time t.
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2.6. TIME-DEPENDENT COEFFICIENT k(t ) = k0 +εk1cos(ω̄t )

F Or k(t ) = k0 + εk1cos(ω̄t ), the two-timescales perturbation method is used to con-
struct approximations of solutions of the initial boundary value problem (2.4). Fur-

ther, the analytical results are verified by numerical simulations.

2.6.1. TWO-TIMESCALES PERTURBATION METHOD
According to the two-time-scales perturbation method, we have to expand the solution
in a Taylor series in ε as u(x, t ) ∽ u0(x, t ) + εu1(x, t ) + ε2u2(x, t ) + ..., where ui (x, t ) =
O(1), i = 1,2,3, .... The approximation of the solution will contain secular terms, i.e.,
unbounded terms in time. It should be pointed out that the solution is bounded on a
timescale of O(ε−1). Consequently, we apply a two-timescales perturbation method to
avoid the secular terms on long timescales by introducing an extra slow time variable
τ= εt . Hence, u(x, t ) becomes a new function of x, t , and τ, i.e., u(x, t ) = w(x, t ,τ;ε).
Using the time derivatives d

d t → ∂
∂t +ε ∂

∂τ and d 2

d t 2 → ∂2

∂t 2 +2ε ∂2

∂t∂τ +ε2 ∂2

∂τ2 , we can rewrite
the initial-boundary value problem (2.4) in terms of w as follows:

wt t (x, t ,τ;ε)−wxx (x, t ,τ;ε) = ε[Acos(ωt )−2wtτ]−ε2wττ, 0 < x < 1, t > 0, τ> 0,

w(0, t ,τ;ε) = 0, wx (1, t ,τ;ε)+ (k0 +εk1cos(ωt ))w(1, t ,τ;ε) = 0, t > 0, τ> 0,

w(x,0,0;ε) = f (x), wt (x,0,0;ε)+εwτ(x,0,0;ε) = g (x), 0 < x < 1.
(2.22)

Then by substituting a power series expansion of the form w(x, t ,τ)∽ w0(x, t ,τ)
+εw1(x, t ,τ)+ε2w2(x, t ,τ)+... into the initial-boundary value problem (2.22) and equat-
ing the coefficients of like powers of ε, we obtain the O(εn)− problems to solve for n ∈N.
Meanwhile, the initial displacement and velocity can also be expanded in Taylor series in
ε as f (x)∽ f0(x)+ε f1(x)+ε2 f2(x)+... and g (x)∽ g0(x)+εg1(x)+ε2g2(x)+..., respectively.

THE O(1)− PROBLEM.
Collecting the terms of O(1) gives us the following unperturbed initial-boundary value
problem:

w0,t t (x, t ,τ)−w0,xx (x, t ,τ) = 0, 0 < x < 1, t > 0, τ> 0,

w0(0, t ,τ) = 0, w0,x (1, t ,τ)+k0w0(1, t ,τ) = 0, t > 0, τ> 0,

w0(x,0,0) = f0(x), w0,t (x,0,0) = g0(x), 0 < x < 1.

(2.23)

To find the solution of problem (2.23), the method of separation of variables can be used,
yielding

w0(x, t ,τ) =
∞∑

n=1
[An(τ)cos(λn t )+Bn(τ)si n(λn t )]si n(λn x), (2.24)

where the eigenvalues λn satisfy the transcendental equation

λn

k0
+ t an(λn) = 0,λ1 <λ2 < ..., (2.25)

and

An(0) =
∫ 1

0 f0(x)si n(λn x)d x∫ 1
0 si n2(λn x)d x

, Bn(0) =
∫ 1

0 g0(x)si n(λn x)d x

λn
∫ 1

0 si n2(λn x)d x
. (2.26)
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It should be observed that so far w0(x, t ,τ) contains undetermined functions An(τ) and
Bn(τ). These functions will be used in the following O(ε)− problem to avoid secular
terms in w1(x, t ,τ).

THE O(ε)− PROBLEM.
The O(ε)− problem for w1 is given by

w1,t t (x, t ,τ)−w1,xx (x, t ,τ) = Acos(ωt )−2w0,tτ(x, t ,τ), 0 < x < 1, t > 0, τ> 0,

w1(0, t ,τ) = 0, w1,x (1, t ,τ)+k0w1(1, t ,τ)+k1cos(ωt )w0(1, t ,τ) = 0, t > 0, τ> 0,

w1(x,0,0) = f1(x), w1,t (x,0,0) = g1(x)−w0,τ(x,0,0), 0 < x < 1.
(2.27)

Let us introduce the following transformation:

w1(x, t ,τ) = y(x, t ,τ)+xh(t ,τ), (2.28)

where h(t ,τ) = −k1cos(ωt )w0(1,t ,τ)
1+k0

.
Substituting Eq.(2.28) into Eq.(2.27), we obtain a new initial-boundary value problem

for y. 
yt t (x, t ,τ)− yxx (x, t ,τ) = F (x, t ,τ), 0 < x < 1, t > 0, τ> 0,

y(0, t ,τ) = 0, yx (1, t ,τ)+k0 y(1, t ,τ) = 0, t > 0, τ> 0,

y(x,0,0) = f1(x)+ k1
1+k0

f0(1)x, 0 < x < 1,

yt (x,0,0) = g1(x)−w0,τ(x,0,0)+ k1
1+k0

g0(1)x, 0 < x < 1,

(2.29)

where

F (x, t ,τ) = −xht t (t ,τ)+ Acos(ωt )+2
∞∑

i=1
λi [A′

i (τ)si n(λi t )−B ′
i (τ)cos(λi t )]si n(λi x)

=
∞∑

i=1
x[αi Ai (τ)cos((ω+λi )t )+βi Ai (τ)cos((ω−λi )t )

+ αi Bi (τ)si n((ω+λi )t )−βi Bi (τ)si n((ω−λi )t )]

+ 2
∞∑

i=1
λi si n(λi x)[A′

i (τ)si n(λi t )−B ′
i (τ)cos(λi t )]+ Acos(ωt ),

where λi satisfies Eq.(2.25), and

αi =−k1(ω+λi )2si nλi

2(1+k0)
, βi =−k1(ω−λi )2si nλi

2(1+k0)
. (2.30)

Let us expand the unknown solution y(x, t ,τ) in terms of the eigenfunctions of the prob-
lem as follows:

y(x, t ,τ) =
∞∑

n=1
yn(t ,τ)si n(λn x). (2.31)

We use the eigenfunction expansion approach to solve problem (2.29). Then, by sub-
stituting the series (2.31) into Eq. (2.29), by multiplying the so-obtained equation with
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si n(λn x), by integrating then over the interval 0 < x < 1, and by using the orthogonality
of the eigenfunctions, we obtain:

yn,t t +λ2
n yn =

∞∑
i=1

∫ 1
0 xsi n(λn x)d x∫ 1
0 si n2(λn x)d x

[αi Ai (τ)cos((ω+λi )t )+βi Ai (τ)cos((ω−λi )t )

+ αi Bi (τ)si n((ω+λi )t )−βi Bi (τ)si n((ω−λi )t )]

+ 2λn[A′
n(τ)si n(λn t )−B ′

n(τ)cos(λn t )]+ A(1− cosλn)

λn
∫ 1

0 si n2(λn x)d x
cos(ωt )

= Gn(t ,τ), t ,τ> 0. (2.32)

It is obvious that the right-hand side of (2.32) can contain resonant terms (which can
lead to secular terms in yn(t ,τ), for n=1, 2, 3,...) depending on the positive roots λn of
(2.25). For instance, the term in the right-hand side of (2.32) involving A cos(ωt ) is a
resonant term for the M-th mode described by yM (t ) when ω = λM for a fixed M ∈ N+.
Similarly, terms involving si n((ω+λi )t ), cos((ω+λi )t ), si n((ω−λi )t ) or cos((ω−λi )t )
can be resonant when ω is equal to a difference or a sum of fixed eigenvalues λI and λN ,
that is, when ω= λI −λN or ω=±(λI +λN ) with I and N fixed integers. And so, we have
to distinguish the following cases:

1. Assume that ω ̸=λI −λN , ω ̸= ±(λI +λN ) for any I , N = 1,2, ...

1.1 When ω ̸= λn for all n = 1,2, ..., there is no resonant term in the right-hand side of
(2.32), and so it is sufficient to choose An and Bn such that

A′
n(τ) = B ′

n(τ) = 0, n = 1,2, ..., (2.33)

where An(0) and Bn(0) (n=1, 2, 3,...) are given by Eq.(2.26), respectively. In addition, it
follows from Eq.(2.24) and from Eq.(2.33) that

w0(x, t ,τ) =
∞∑

n=1
[An(0)cos(λn t )+Bn(0)si n(λn t )]si n(λn x). (2.34)

When the initial conditions in (2.4) are of O(ε), the solution of O(1) problem (2.23) :

w0(x, t ,τ) = 0, (2.35)

which implies that the solution of initial-boundary value problem (2.4) is of O(ε).
1.2 When there exists M such that ω = λM , then in order to avoid secular terms in the
right-hand side of (2.32), we have to set

A′
M (τ) = 0, A′

n(τ) = B ′
n(τ) = 0, n ̸= M ,

B ′
M (τ) = A(1− cosλM )

2λ2
M

∫ 1
0 si n2(λM x)d x

, (2.36)

by which we observe that there exists M such that BM (τ) is linearly increasing in τ:

BM (τ) = BM (0)+ A(1− cosλM )

2λ2
M

∫ 1
0 si n2(λM x)d x

τ. (2.37)
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It follows from Eq.(2.24) and from Eq.(2.36) that

w0(x, t ,τ) =
∞∑

n ̸=M
[An(0)cos(λn t )+Bn(0)si n(λn t )]si n(λn x)

+[AM (0)cos(λM t )+BM (τ)si n(λM t )]si n(λM x). (2.38)

When the initial conditions in (2.4) are of O(ε), the solution of O(1) problem (2.23):

w0(x, t ,τ) = BM (τ)si n(λM t )si n(λM x), (2.39)

which implies that the solution of initial-boundary value problem (2.4) is of O(1).
Before discussing the other cases, it is necessary to propose a lemma:
There exist no I , N , i ,n ∈N+, such that

λI +λN +λi =λn (2.40)

holds, where λ j (j = 1, 2, ....) satisfies the equation

λ j

k0
+ t an(λ j ) = 0, 0 < k0 <∞. (2.41)

Proof: In Figure 2.8, The lines with blue color, and green color are denoted by ai and bi ,

Figure 2.8: Graphical comparisons of eigenvalues for k0 =∞ and 0 < k0 <∞ with I+N+i=n.

i=1,...,4, respectively.
From equation (2.41), when k0 =∞, λ0

n = nπ (λn is denoted by λ0
n to distinguish this

λn from the other cases), it can be seen that (2.40) is satisfied. When I +N +i = n and we
have:

λ0
I +λ0

N +λ0
i =λ0

I+N+i . (2.42)
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When 0 < k0 <∞, λn is denoted by λ1
n ,

λ1
I+N+i − (λ1

I +λ1
N +λ1

i )
= (λ0

I+N+i −a4)− [(λ0
I −a1)+ (λ0

N −a2)+ (λ0
i −a3)]

= [λ0
I+N+i − (λ0

I +λ0
N +λ0

i )]+ (a1 +a2 +a3 −a4)
= a1 +a2 +a3 −a4. (2.43)

It follows from the relationship, I+N+i=n, that b1 +b2 +b3 = b4. Assume that the angles
αi (i = 1,2,3,4) satisfy α̃1 = α̃2 = α̃3 = α4, then we can obtain that the corresponding ai

satisfy ã1 + ã2 + ã3 = a4, (αi , ai are denoted by α̃i and ãi to distinguish them from that
of the fact case). The fact is that αi > α̃i , i=1,2,3, so then a1 +a2 +a3 > ã1 + ã2 + ã3 = a4.
Hence, it follows from (2.43) that λ1

I +λ1
N +λ1

i <λ1
I+N+i holds.

On the other hand, when k0 = 0, λ∗
n = π

2 + (n −1)π, λn is denoted by λ∗
n in this case, and

so

λ∗
I +λ∗

N +λ∗
i =λ∗

I+N+i−1. (2.44)

From the same deduction, λ1
I +λ1

N +λ1
i >λ1

I+N+i−1 can be obtained.
Above all, λ1

I+N+i−1 <λ1
I +λ1

N +λ1
i <λ1

I+N+i , which implies that there is no I , N , i ,n ∈
N+, such that λI +λN +λi =λn .

For ω=λI −λN and ω=±(λI +λN ), these two cases can not occur at the same time.

2. Assume that there exist I and N, such that ω=λI −λN .

2.1 When ω ̸= λn for any n = 1,2, ..., it follows that An and Bn have to satisfy (in order to
avoid secular terms in w1)

2λI

∫ 1

0
si n2(λI x)d x A′

I (τ)+
∫ 1

0
xsi n(λI x)d xαN BN (τ) = 0,

2λI

∫ 1

0
si n2(λI x)d xB ′

I (τ)−
∫ 1

0
xsi n(λI x)d xαN AN (τ) = 0,

2λN

∫ 1

0
si n2(λN x)d x A′

N (τ)+
∫ 1

0
xsi n(λN x)d xβI BI (τ) = 0,

2λN

∫ 1

0
si n2(λN x)d xB ′

N (τ)−
∫ 1

0
xsi n(λN x)d xβI AI (τ) = 0, (2.45)

which can be solved, yielding

AI (τ) = AI (0)cos(στ)−
√

βI cI dN

αN cN dI
BN (0)sin(στ),

BN (τ) = AI (0)

√
βI cI dN

αN cN dI
sin(στ)+BN (0)cos(στ),

AN (τ) = AN (0)cos(στ)−
√

αN cN dI

βI cI dN
BI (0)sin(στ),

BI (τ) = AN (0)

√
αN cN dI

βI cI dN
sin(στ)+BI (0)cos(στ),
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σ =
√

αNβI dI dN

cI cN
,

αNβI dI dN

cI cN
> 0, (2.46)

where

ci = 2λi

∫ 1

0
si n2(λi x)d x, di =

∫ 1

0
xsi n(λi x)d x = 1

λ2
i

(si nλi −λi cosλi ), i = I , N ,

and,

A′
n(τ) = B ′

n(τ) = 0, n ̸= I , N , (2.47)

where An(0) and Bn(0) (n=1, 2, 3,...) are given by Eq.(2.26). From Eq.(2.24) and from
Eq.(2.46)-(2.47), we can observe that when the initial conditions in (2.4) are of O(ε), the
solution of O(1) problem (2.23):

w0(x, t ,τ) = 0. (2.48)

2.2 When there exists M such that ω = λM (M ̸= N , I ), it follows that An and Bn have to
satisfy (in order to avoid secular terms in w1)

2λI

∫ 1

0
si n2(λI x)d x A′

I (τ)+
∫ 1

0
xsi n(λI x)d xαN BN (τ) = 0,

2λI

∫ 1

0
si n2(λI x)d xB ′

I (τ)−
∫ 1

0
xsi n(λI x)d xαN AN (τ) = 0,

2λN

∫ 1

0
si n2(λN x)d x A′

N (τ)+
∫ 1

0
xsi n(λN x)d xβI BI (τ) = 0,

2λN

∫ 1

0
si n2(λN x)d xB ′

N (τ)−
∫ 1

0
xsi n(λN x)d xβI AI (τ) = 0, (2.49)

A′
M (τ) = 0, A′

n(τ) = B ′
n(τ) = 0, n ̸= M , N , I ,

B ′
M (τ) = A(1− cosλM )

2λ2
M

∫ 1
0 si n2(λM x)d x

. (2.50)

The solution is the same as that in case 1.2 and 2.1, which can be obtained. And when
the initial conditions in (2.4) are of O(ε), the solution of O(1) problem (2.23):

w0(x, t ,τ) = BM (τ)si n(λM t )si n(λM x), (2.51)

which implies that the solution of initial-boundary value problem (2.4) is of O(ε).
2.3 When there exists an M such that ω=λM (M= N (or I)), it follows that An and Bn have
to satisfy (in order to avoid secular terms in w1)

2λI

∫ 1

0
si n2(λI x)d x A′

I (τ)+
∫ 1

0
xsi n(λI x)d xαN BN (τ) = 0,

2λI

∫ 1

0
si n2(λI x)d xB ′

I (τ)−
∫ 1

0
xsi n(λI x)d xαN AN (τ) = 0,
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2λN

∫ 1

0
si n2(λN x)d x A′

N (τ)+
∫ 1

0
xsi n(λN x)d xβI BI (τ) = 0,

2λN

∫ 1

0
si n2(λN x)d xB ′

N (τ)−
∫ 1

0
xsi n(λN x)d xβI AI (τ) = AcN (1− cosλN )

2λ2
N

∫ 1
0 si n2(λN x)d x

.

which can be solved, yielding

AI (τ) = AI (0)cos(στ)−
√

βI cI dN

αN cN dI
BN (0)sin(στ)

−
√

βI cI dN

αN cN dI

(1− cosλN )

cNλNσ
A(1−cos(στ)),

BN (τ) = AI (0)

√
βI cI dN

αN cN dI
sin(στ)+BN (0)cos(στ)+ A(1− cosλN )

cNλN
sin(στ),

AN (τ) = AN (0)cos(στ)−
√

αN cN dI

βI cI dN
BI (0)sin(στ),

BI (τ) = AN (0)

√
αN cN dI

βI cI dN
sin(στ)+BI (0)cos(στ), (2.52)

where σ, ci ,di can be obtained by (2.46).

A′
n(τ) = B ′

n(τ) = 0, n ̸= I , N (M), (2.53)

where An(0) and Bn(0) (n=1, 2, 3,...) are given by Eq.(2.26). Further when the initial
conditions in (2.4) are of O(ε), the solution of O(1) problem (2.23):

w0(x, t ,τ) = AI (τ)cos(λI t )si n(λI x)+BN (τ)sin(λN t )sin(λN x), (2.54)

which implies that the solution of initial-boundary value problem (2.4) is of O(1).
3. Assume that there exist I and N, such that ω=λI +λN (or ω=−(λI +λN )).

3.1 When ω ̸=λn for any n = 1,2, ..., then An and Bn have to satisfy

2λI

∫ 1

0
si n2(λI x)d x A′

I (τ)−
∫ 1

0
xsi n(λI x)d xβN BN (τ) = 0,

2λI

∫ 1

0
si n2(λI x)d xB ′

I (τ)−
∫ 1

0
xsi n(λI x)d xβN AN (τ) = 0,

2λN

∫ 1

0
si n2(λN x)d x A′

N (τ)−
∫ 1

0
xsi n(λN x)d xβI BI (τ) = 0,

2λN

∫ 1

0
si n2(λN x)d xB ′

N (τ)−
∫ 1

0
xsi n(λN x)d xβI AI (τ) = 0, (2.55)

which can be solved, yielding

AI (τ) = σcN

2dNβI
BN (0)[eστ−e−στ]+ 1

2
AI (0)[eστ+e−στ],

BN (τ) = σcI

2dIβN
AI (0)[eστ−e−στ]+ 1

2
BN (0)[eστ+e−στ],
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AN (τ) = σcI

2dIβN
BN (0)[eστ−e−στ]+ 1

2
AI (0)[eστ+e−στ],

BI (τ) = σcN

2dNβI
AN (0)[eστ−e−στ]+ 1

2
BI (0)[eστ+e−στ], (2.56)

where σ, ci ,di can be obtained by (2.46).

A′
n(τ) = B ′

n(τ) = 0, n ̸= I , N , (2.57)

where An(0) and Bn(0) (n=1, 2, 3,...) are given by Eq.(2.26). Further when the initial
conditions in (2.4) are of O(ε), the solution of O(1) problem (2.23):

w0(x, t ,τ) = 0, (2.58)

which implies that the solution of initial-boundary value problem (2.4) is of O(ε).
3.2 When ω=λM and M ̸= I , N , then An and Bn have to satisfy

2λI

∫ 1

0
si n2(λI x)d x A′

I (τ)−
∫ 1

0
xsi n(λI x)d xβN BN (τ) = 0,

2λI

∫ 1

0
si n2(λI x)d xB ′

I (τ)−
∫ 1

0
xsi n(λI x)d xβN AN (τ) = 0,

2λN

∫ 1

0
si n2(λN x)d x A′

N (τ)−
∫ 1

0
xsi n(λN x)d xβI BI (τ) = 0,

2λN

∫ 1

0
si n2(λN x)d xB ′

N (τ)−
∫ 1

0
xsi n(λN x)d xβI AI (τ) = 0, (2.59)

A′
M (τ) = 0, A′

n(τ) = B ′
n(τ) = 0, n ̸= M , N , I ,

B ′
M (τ) = A(1− cosλM )

2λ2
M

∫ 1
0 si n2(λM x)d x

. (2.60)

The solution is the same as that in case 1.2 and 3.1, which can be obtained. When the
initial conditions in (2.4) are of O(ε), the solution of O(1) problem (2.23):

w0(x, t ,τ) = BM (τ)sin(λM t )sin(λM x), (2.61)

which implies that the solution of initial-boundary value problem (2.4) is of O(1).
3.3 When ω=λM and M = I (N ), then An and Bn have to satisfy

2λI

∫ 1

0
si n2(λI x)d x A′

I (τ)−
∫ 1

0
xsi n(λI x)d xβN BN (τ) = 0,

2λI

∫ 1

0
si n2(λI x)d xB ′

I (τ)−
∫ 1

0
xsi n(λI x)d xβN AN (τ) = AcI (1− cosλI )

2λ2
I

∫ 1
0 si n2(λI x)d x

,

2λN

∫ 1

0
si n2(λN x)d x A′

N (τ)−
∫ 1

0
xsi n(λN x)d xβI BI (τ) = 0,

2λN

∫ 1

0
si n2(λN x)d xB ′

N (τ)−
∫ 1

0
xsi n(λN x)d xβI AI (τ) = 0, (2.62)

which can be solved, yielding

AI (τ) = σcN

2dNβI
BN (0)[eστ−e−στ]+ 1

2
AI (0)[eστ+e−στ],
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BN (τ) = σcI

2dIβN
AI (0)[eστ−e−στ]+ 1

2
BN (0)[eστ+e−στ],

AN (τ) = σcI

2dIβN
BN (0)[eστ−e−στ]+ 1

2
AI (0)[eστ+e−στ]

+ AcI (1− cosλI )

2dIβNλI cI
[eστ+e−στ−2],

BI (τ) = σcN

2dNβI
AN (0)[eστ−e−στ]+ 1

2
BI (0)[eστ+e−στ]

+ A(1− cosλI )

2σλI cI
[eστ−e−στ], (2.63)

where σ, ci ,di can be obtained by (2.56).

A′
n(τ) = B ′

n(τ) = 0, n ̸= I , N , (2.64)

where An(0) and Bn(0) (n=1, 2, 3,...) are given by Eq.(2.26). Further when the initial
conditions in (2.4) are of O(ε), the solution of O(1) problem (2.23):

w0(x, t ,τ) = BI (τ)sin(λI t )si n(λI x)+ AN (τ)cos(λN t )sin(λN x), (2.65)

which implies that the solution of initial-boundary value problem (2.4) is of O(1).
The solution of Eq.(2.32) is given by a homogeneous solution and a particular one

yn =Cn(τ)cos(λn t )+Dn(τ)si n(λn t )+En(t ,τ), (2.66)

where

Cn(0) =
∫ 1

0 [ f1(x)+ k1
1+k0

f0(1)x]si n(λn x)d x∫ 1
0 si n2(λn x)d x

,

Dn(0) =
∫ 1

0 [g1(x)−w0,τ(x,0,0)+ k1
1+k0

g0(1)x]si n(λn x)d x

λn
∫ 1

0 si n2(λn x)d x
,

En(t ,τ) = cos(λn t )
∫ t

0
Gn(s,τ)si nλn sd s + 1

λn
si n(λn t )

∫ t

0
Gn(s,τ)cosλn sd s.

The solution of the O(ε)−problem now readily follows from Eq.(2.28), (2.31) and Eq.(2.66),
yielding

w1(x, t ,τ) =
n=N∑
n=1

[Cn(τ)cos(λn t )+Dn(τ)si n(λn t )+En(t ,τ)]si n(λn x)

−x
k1cos(ωt )w0(1, t ,τ)

1+k0
. (2.67)

Threfore, we have constructed a formal approximation u(x, t ) = w(x, t ,τ)∽ w0(x, t ,τ)+
εw1(x, t ,τ), where w0 and w1 are given by Eq.(2.24) and Eq.(2.67), respectively. More-
over, they are twice continuously differentiable with respect to x and t and infinitely
many times with respect to τ. Only the first term in the expansion of the solution for
the string problem is important from the physical point of view. We are not interested
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in high-order approximations; that is why we take Cn(τ) = Cn(0) and Dn(τ) = Dn(0) in
Eq.(2.66). Otherwise, Cn(τ) and Dn(τ) can be found from the solvability conditions of
the O(ε2)− problem.

Concluding, It follows from (2.35), (2.39), (2.48), (2.51), (2.54), (2.58), (2.61), (2.65)
that when the initial conditions in (2.4) are of O(ε), and the frequency of the boundary
excitation ω = λi , for a certain i = 1,2,3,..., solutions of initial boundary value problem
(2.4) are increasing to O(1) on timescales of 1

ε , otherwise, the solution always keep O(ε)

on timescales of 1
ε ,

2.6.2. NUMERICAL EXAMPLES

As illustration of the obtained analytical results in section 2.6.1, we will now present
some numerical results. The following parameter values are used: A = 1, k1 = 1, ε= 0.01
and k0 = 1. The initial conditions are assumed to be (2.17). There will be different be-
havior in the solution for different choices of the parameters ω and ω̄. In Figure 2.9 and
Figure 2.10, we give an indication how the solutions can behave of the problem (2.4).
Figure 2.9 (a) shows the solution behavior in case 1.1; Figure 2.9 (b) shows the solution
behavior and resonance in case 1.2; Figure 2.10 (a) shows the solution behavior in case
2.3. Figure 2.10 (b) shows the solution behavior and resonance in case 3.3. These nu-
merical examples are all in good agreement with those analytical results in section 2.6.1.

(a) (b)

Figure 2.9: (a) The solution of the problem (2.4) for x=0.5, ω = π, ω̄ = π
3 . (b)The solution of the problem (2.4)

for x=0.5, ω=λ1,ω̄= π
3 .

2.7. TIME-DEPENDENT COEFFICIENT k(t ) = 1+εt
By putting k(t ) = 1+εt an additional difficulty is introduced: for t < O( 1

ε ), εt is a small

term, while for t = O( 1
ε ), εt is not a small term. So, we need to analyse this problem

from a new view-point. Firstly, since the coefficient changes slowly in time, we study
the problem by an adapted version of the method of separation of variables, in which
an extra independent slow time variable τ = εt is defined, and u(x, t ) can be separated
as T (t ,τ)X (x,τ). Then, by using the boundary conditions, the original partial differential
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(a) (b)

Figure 2.10: (a) The solution of the problem (2.4) for x=0.5, ω=λ2, ω̄=λ1 −λ2. (b)The solution of the problem
(2.4) for x=0.5, ω=λ1, ω̄=λ1 +λ2.

equation can be transformed into linear ordinary differential equations with slowly vary-
ing (prescribed) frequencies. Unexpectedly (or not), the slow variation leads to a singular
perturbation problem. By applying an interior layer analysis in the averaging procedure
a resonance manifold is found. Three different scalings turn out to be present in the
problem. For that reason, a three-timescales perturbation method is used to construct
explicit approximations of the solutions of the initial-boundary value problem (2.4).

2.7.1. AN ADAPTED VERSION OF THE METHOD OF SEPARATION OF VARI-
ABLES

F IRST of all, in the method of separation of variables we consider the homogeneous
part of equation (2.4) subject to the homogeneous boundary conditions:{

ut t (x, t )−uxx (x, t ) = 0, 0 < x < 1, t ≥ 0,

u(0, t ) = 0, ux (1, t )+k(t )u(1, t ) = 0, k(t ) = 1+εt , t ≥ 0.
(2.68)

Note that the coefficient k(t ) in the Robin boundary condition is slowly varying in time.
So, in order to derive a solution of problem (2.68) , we define an extra slow time variable
τ= εt , which will be treated independently from the variable t . Hence u(x, t ) becomes a
new function ū(x, t ,τ) and further problem (2.68) becomes

ūt t (x, t ,τ)+2εūtτ(x, t ,τ)+ε2ūττ(x, t ,τ)− ūxx (x, t ,τ) = 0,
0 < x < 1, t > 0, τ> 0,

ū(0, t ,τ) = 0, ūx (1, t ,τ)+ (1+τ)ū(1, t ,τ) = 0, t ≥ 0, τ≥ 0. (2.69)

By looking for a nontrivial solution ū(x, t ,τ) in the form T (t ,τ)X (x,τ), the governing
equations of (2.69) can be approximately written as

X (x,τ)Tt t (t ,τ)+2εX (x,τ)Ttτ(t ,τ)+2εXτ(x,τ)Tt (t ,τ)
−Xxx (x,τ)T (t ,τ)+O(ε2) = 0,

or equivalently as

Tt t (t ,τ)

T (t ,τ)
+O(ε) = Xxx (x,τ)

X (x,τ)
, 0 < x < 1, t ≥ 0, τ≥ 0. (2.70)
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The O(1) part of the left-hand side of equation (2.70) is a function of t and τ, and the
right-hand side is a function of x and τ. To be equal, both sides need to be equal to a
function of τ. Let this function be −λ2(τ) (which will be defined later), so we get

Tt t (t ,τ)

T (t ,τ)
= Xxx (x,τ)

X (x,τ)
=−λ2(τ), 0 < x < 1, t ≥ 0, τ≥ 0,

implying:

Xxx (x,τ)+λ2(τ)X (x,τ) = 0, 0 < x < 1, τ≥ 0,
Tt t (t ,τ)+λ2(τ)T (t ,τ) = 0, t ≥ 0, τ≥ 0. (2.71)

From the boundary condition (2.69), we obtain

T (t ,τ)X (0,τ) = 0 ⇒ X (0,τ) = 0,
T (t ,τ)Xx (1,τ)+ (1+τ)T (t ,τ)X (1,τ) = 0

⇒ Xx (1,τ)+ (1+τ)X (1,τ) = 0. (2.72)

In accordance with the first equation for X (x,τ) in (2.71), a nontrivial solution Xn(x,τ)
(satisfying (2.72)) is

Xn(x,τ) = Bn(τ)sin(λn(τ)x), (2.73)

where Bn(τ) is a function of τ only, and λn(τ) is the n-th positive root of

tan(λn(τ)) =−λn(τ)

1+τ
. (2.74)

For τ= 0 it is indicated in Figure 2.11 how λn(0) can be obtained. In should be observed
that the eigenfunctions Xn(x,τ) are orthogonal on 0 < x < 1. And so, the general solution

Figure 2.11: For t=0, intersection points of y = tanλ and y =−λ are giving λn (0).

of (2.4) can be expanded in the following form:

u(x, t ) = ū(x, t ,τ) =
∞∑

n=1
Tn(t ,τ)sin(λn(τ)x), (2.75)
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where the boundary conditions are automatically satisfied.
Substituting Eq.(2.75) into equation (2.4) yields

∞∑
n=1

[(Tn,t t +2εTn,tτ+λ2
n(τ)Tn)sin(λn(τ)x)

+2εx
dλn(τ)

dτ
Tn,t cos(λn(τ)x)] = εA cos(ωt )+O(ε2),

∞∑
n=1

[Tn(0,0)sin(λn(0)x)] = εu0(x),

∞∑
n=1

[(Tn,t (0,0)+εTn,τ(0,0))sin(λn(0)x)

+εTn(0,0)
dλn(0)

dτ
x cos(λn(0)x)] = εu1(x). (2.76)

Now, by multiplying the first equation in (2.76) with sin(λk (τ)x), and the second and
third equations in (2.76) with sin(λk (0)x), by integrating the so-obtained equation from
x = 0 to x = 1, and by using the orthogonality properties of the sin-functions on 0 < x < 1,
we obtain the following differential equations for k = 1,2,3, ..., and t > 0,τ> 0:

Tk,t t +λ2
k (τ)Tk = ε[−2Tk,tτ−2

∑∞
n=1

dλn (τ)
dτ cn,k (τ)Tn,t + Adk (τ)cos(ωt )]

+O(ε2), t ≥ 0, τ≥ 0,

Tk (0,0) = ε
∫ 1

0 u0(ξ)sin(λk (0)ξ)dξ∫ 1
0 sin(λk (0)ξ)sin(λk (0)ξ)dξ

= εFk ,

Tk,t (0,0)+εTk,τ(0,0) = ε
∫ 1

0 u1(ξ)sin(λk (0)ξ)dξ∫ 1
0 sin(λk (0)ξ)sin(λk (0)ξ)dξ

−ε∑∞
n=1 Tn(0,0) dλn (0)

dτ

∫ 1
0 ξcos(λn (0)ξ)sin(λk (0)ξ)dξ∫ 1

0 sin(λk (0)ξ)sin(λk (0)ξ)dξ

= εGk .

(2.77)

where cn,k (τ) and dk (τ) are functions of τ, and are given by:

cn,k (τ) =
∫ 1

0 x cos(λn(τ)x)sin(λk (τ)x)d x∫ 1
0 sin2(λk (τ)x)d x

,

ck,k (τ) =
∫ 1

0 x cos(λk (τ)x)sin(λk (τ)x)d x∫ 1
0 sin2(λk (τ)x)d x

,

dk (τ) =
∫ 1

0 sin(λk (τ)x)d x∫ 1
0 sin2(λk (τ)x)d x

= 4(1−cos(λk (τ)))

2λk (τ)− sin(2λk (τ))
. (2.78)

To simplify the formula, we define a new dependent variable: T̃k (t ) = Tk (t ,τ), yielding
T̃k,t t +λ2

k (τ)T̃k = ε[−2Σ∞
n=1

dλn (τ)
dτ cn,k (τ)T̃n,t + Adk (τ)cos(ωt )]+O(ε2),

T̃k (0) = εFk ,

T̃k,t (0) = εGk ,

(2.79)

where τ= εt , t ≥ 0. In the next section we will use the averaging method to detect reso-
nance zones in problem (2.79), and to determine time-scales which describe the solution
of (2.79) accurately.



2

34
2. TRANSVERSE RESONANCES OF A VIBRATING STRING WITH A TIME-DEPENDENT ROBIN

BOUNDARY CONDITION

2.7.2. AVERAGING AND RESONANCE ZONES

T HE linear ordinary differential equation (2.79) with the slowly varying frequencyλk (τ)
as given by (2.74), can be analysed by making use of the averaging method. In this

section it will be shown that an interior layer analysis (including a rescaling and balanc-
ing procedure) leads to a description of an (un-)expected resonance manifold and leads
to time-scales which describe the solution of (2.79) sufficiently accurately. To apply the
method of averaging to (2.79) the following standard transformations are introduced:

φk (t ) =
∫ t

0
λk (εs)d s and Φ=ωt , (2.80)

and T̃k (t ), T̃k,t (t ) are described by Ak (t ),Bk (t ) in the following way:

T̃k (t ) = Ak (t )sin(φk (t ))+Bk (t )cos(φk (t )),
T̃k,t (t ) = λk (τ)Ak (t )cos(φk (t ))−λk (τ)Bk (t )sin(φk (t )). (2.81)

Problem (2.79) can now be rewritten in the following problem:

Ȧk = ε[−dλk (τ)
dτ ( 1

λk (τ) +2ck,k (τ))Ak cos2(φk (t ))

+dλk (τ)
dτ ( 1

2λk (τ) + ck,k (τ))Bk sin(2φk (t ))

−2Σn ̸=k
dλn (τ)

dτ cn,k (τ)An cos(φn(t ))cos(φk (t ))

+2Σn ̸=k
dλn (τ)

dτ cn,k (τ)Bn sin(φn(t ))cos(φk (t ))

+ Adk (τ)
2λk (τ) (cos(Φ+φk (t ))+cos(Φ−φk (t )))],

Ḃk = ε[ dλk (τ)
dτ ( 1

2λk (τ) + ck,k (τ))Ak sin(2φk (t ))

−dλk (τ)
dτ ( 1

λk (τ) +2ck,k (τ))Bk sin2(φk (t ))

+2Σn ̸=k
dλn (τ)

dτ cn,k (τ)An cos(φn(t ))sin(φk (t ))

−2Σn ̸=k
dλn (τ)

dτ cn,k (τ)Bn sin(φn(t )t )sin(φk (t ))

− Adk (τ)
2λk (τ) (sin(Φ+φk (t ))− sin(Φ−φk (t )))],

τ̇= ε,

Φ̇=ω,

φ̇k =λk (τ).

(2.82)

Resonance in (2.82), due to the external forcing with frequency ω, can be expected when
Φ̇− φ̇k ≈ 0, or Φ̇+ φ̇k ≈ 0. But since ω> 0 and λk (τ) > 0, resonance only will occur when

ω≈λk (τ) ⇔ τ≈− ω

tanω
−1 ⇔ t ≈ 1

ε
(− ω

tanω
−1). (2.83)

Since λk (τ) satisfies (2.11), that is, tan(λk (τ)) =−λk (τ)
1+τ , it follows (see also Figure 2.11)

that when t increases, then the value of λk (τ) increases. Besides, for t tending to infinity,
λk (τ) tends to kπ (with k = 1,2, ...). Therefore, λk (τ) is increasing in time and

0 <λk (0) ≤λk (τ) < kπ, tan(λk (0)) =−λk (0). (2.84)

From (2.84) we can then conclude that:
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1. When the external force frequency ω is bounded away from λk (0) by a constant
and satisfies (k −1)π≤ω<λk (0), then no resonance will occur;

2. When the external force frequency ω satisfies 0 < λk (0) ≤ω < kπ, then resonance
will occur around t = 1

ε (− ω
tanω −1). Moreover, for − ω

tanω −1 > 0, and − ω
tanω −1 =

O(ε), the resonance time zone is around t̃ with t̃ =O(1); and when− ω
tanω−1 =O(1),

the resonance time zone is around t̃ with t̃ =O( 1
ε ).

As long as we stay out of the resonance time zone (or equivalently, the resonance
manifold), the variables Ak and Bk are slowly varying in time. For that reason we can
average the right-hand side of the equations in (2.82) over φk and Φ while keeping Ak

and Bk constant. The averaged equation for Ak and Bk now become{
Ȧa

k =−εdλk (τ)
dτ ( 1

2λk (τ) + ck,k (τ))Aa
k ,

Ḃ a
k =−εdλk (τ)

dτ ( 1
2λk (τ) + ck,k (τ))B a

k ,
(2.85)

where the upper index a indicates that this is the averaged function. From the expression
for ck,k in (2.78), we then obtain

Ȧa
k = −εdλk (τ)

dτ
(

1

2λk (τ)
+

∫ 1
0 x cos(λk (τ)x)sin(λk (τ)x)d x∫ 1

0 sin2(λk (τ)x)d x
)Aa

k

= −ε

2

dλk (τ)

dτ
(

d(ln(λk (τ)))

dλk (τ)
+ d(ln(

∫ 1
0 sin2(λk (τ)x)d x))

dλk (τ)
)Aa

k

= −ε

2

dλk (τ)

dτ
(

d(ln(λk (τ)))

dλk (τ)
+

d(ln( 1
2 −

sin(2λk (τ))
4λk (τ) ))

dλk (τ)
)Aa

k

= −1

2
(

d(ln(λk (τ)
2 − sin(2λk (τ))

4 ))

d t
)Aa

k , (2.86)

which implies that

Aa
k = C1√

2λk (τ)− sin(2λk (τ))
, B a

k = C2√
2λk (τ)− sin(2λk (τ))

, (2.87)

with

C1 =
εGk

√
2λk (0)− sin(2λk (0))

λk (0)
, C2 = εFk

√
2λk (0)− sin(2λk (0)), (2.88)

where Gk and Fk are given in (2.77).
Hence, outside the resonance manifold the solution of system (2.79) is given by

T̃k (t ) = εGk
√

2λk (0)− sin(2λk (0))

λk (0)
√

2λk (τ)− sin(2λk (τ))
sin(φk (t ))

+ εFk
√

2λk (0)− sin(2λk (0))√
2λk (τ)− sin(2λk (τ))

cos(φk (t )), (2.89)

where φk (t ) is defined in (2.80).
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When ω satisfies λk (0) ≤ ω < kπ for a certain k ( with k = 1,2, ...) then a resonance
zone will occur. We introduce

ψ=Φ(t )−φk (t ), (2.90)

and rescale τ−τk = δ(ε)τ̄ with τ̄=O(1) and τk =− ω
tanω −1. System (2.82) then becomes:

Ȧk = ε[−dλk (τ)
dτ ( 1

λk (τ) +2ck,k (τ))Ak cos2(φk (t ))

+dλk (τ)
dτ ( 1

2λk (τ) + ck,k (τ))Bk sin(2φk (t ))

−2Σn ̸=k
dλn (τ)

dτ cn,k (τ)An cos(φn(t ))cos(φk (t ))

+2Σn ̸=k
dλn (τ)

dτ cn,k (τ)Bn sin(φn(t ))cos(φk (t ))

+ Adk (τ)
2λk (τ) (cos(Φ+φk (t ))+cos(ψ)],

Ḃk = ε[ dλk (τ)
dτ ( 1

2λk (τ) + ck,k (τ))Ak sin(2φk (t ))

−dλk (τ)
dτ ( 1

λk (τ) +2ck,k (τ))Bk sin2(φk (t ))

+2Σn ̸=k
dλn (τ)

dτ cn,k (τ)An cos(φn(t )t )sin(φk (t ))

−2Σn ̸=k
dλn (τ)

dτ cn,k (τ)Bn sin(φn(t ))sin(φk (t ))

− Adk (τ)
2λk (τ) (sin(Φ+φk (t ))− sin(ψ)],

τ̇= ε,

Φ̇=ω,
˙̄τ= ε

δ(ε) ,

ψ̇=ω−λk (τk +δ(ε)τ̄).

(2.91)

To simplify (2.91) it should be observed that for τ= τk +δ(ε)τ̄ we have

ψ̇ = ω−λk (τk +δ(ε)τ̄) =λk (τk )−λk (τk +δ(ε)τ̄)

= λk (τk )− (λk (τk )+δ(ε)τ̄
dλk

dτ
|τ=τk +O(δ2(ε)))

= −δ(ε)τ̄
dλk

dτ
|τ=τk +O(δ2(ε)). (2.92)

By differentiating (2.74), that is, tan(λk (τ)) =−λk (τ)
1+τ with respect to τ, we obtain

1

cos2λk

dλk

dτ
= −1

1+τ

dλk

dτ
+ λk

(1+τ)2 . (2.93)

And so, it follows from (2.93) that

dλk

dτ
|τ=τk = λk

(1+τ)
· cos2λk

1+τ+cos2λk
|τ=τk

= − sin2ω

2(1+τk +cos2ω)
= sin2ω

ω− sinωcosω
, (2.94)

which implies for ψ̇ (see (2.92)):

ψ̇=− sin2ω

ω− sinωcosω
δ(ε)τ̄+O(δ2(ε)). (2.95)
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From (2.94) and from λk (0) ≤ω< kπ, we obtain sin2 ω
ω−sinωcosω ̸= 0.

Based on (2.95) it now follows from (2.95) that a balance in system (2.91) occurs when
ε

δ(ε) = δ(ε), and this implies for the averaging procedure in the resonance zone thatδ(ε) =p
ε. So, together with τ−τk = δ(ε)τ̄, it follows from (2.91) that

τ̄=p
ε(t − tk ), tk = τk

ε
. (2.96)

Further, from (2.95), we obtain

ψ(t ) =ψ(tk )− 1

2
αε(t − tk )2, α= sin2ω

ω− sinωcosω
. (2.97)

Hence, in the resonance zone, we can write

cos(ψ(t )) = cos(−1

2
αε(t − tk )2 +ωtk −φk (tk )), tk =−1

ε
(

ω

tanω
+1). (2.98)

So taking into account (2.96), let us average system (2.91) over the fast variables.
Then, the averaged equations for Ak and Bk become{

Ȧa
k =−εdλk (τ)

dτ ( 1
2λk (τ) + ck,k (τ))Aa

k +ε
Adk (τ)
2λk (τ) cos(ψ),

Ḃ a
k =−εdλk (τ)

dτ ( 1
2λk (τ) + ck,k (τ))B a

k +ε
Adk (τ)
2λk (τ) sin(ψ),

(2.99)

where the upper index a indicates that this is the averaged function.
It follows from (2.98) and (2.99) that Aa

k can be written as

Aa
k = C1

lk (εt )
+ Aε

lk (εt )

∫ t

0
hk (εt̄ )cos[−1

2
αε(t̄ − tk )2 +ωtk −φk (tk )]d t̄ , (2.100)

where C1 is given by (2.88) and

lk (εt ) =
√

2λk (εt )− sin(2λk (εt )), (2.101)

hk (εt̄ ) = lk (εt̄ )

2λk (εt̄ )
dk (εt̄ ) = 2(1−cos(λk (εt̄ )))

λk (εt̄ )
√

2λk (εt̄ )− sin(2λk (εt̄ ))
. (2.102)

For t̄ = tk +O( 1p
ε

), τk = εtk ,

hk (εt̄ ) = hk (εtk +O(
p
ε)) = hk (− ω

tanω
−1+O(

p
ε))

= hk (− ω

tanω
−1)+O(

p
ε) · dhk (a)

d a
|a=τk +h.o.t, (2.103)

where dhk (a)
d a |a=τk is bounded due to (2.94). Then,

Aa
k = C1

lk (εt )
+ εAhk (− ω

tanω −1)

lk (εt )

∫ t

0
cos[−1

2
αε(t̄ − tk )2 +ωtk −φk (tk )]d t̄

+h.o.t, (2.104)
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where C1 is given by (2.88). We know that C1
lk (εt ) =O(ε) and

Ahk (− ω
tanω−1)

lk (εt ) =O(1), and so it
is important to consider the order of

ε

∫ t

0
cos[−1

2
αε(t − tk )2 +ωtk −φk (tk )]d t̄ . (2.105)

By setting u =
√

1
2αε(t − tk ) , we obtain

ε

∫ t

0
cos[−1

2
αε(t − tk )2 +ωtk −φk (tk )]d t̄

=
√

2ε

α

∫ p
αε
2 (t−tk )

p
αε
2 (−tk )

cos(−u2 +ωtk −φk (tk ))du

=
√

2ε

α
cos(ωtk −φk (tk ))CF r (t )+

√
2ε

α
sin(ωtk −φk (tk ))SF r (t ), (2.106)

where

CF r (t ) =
∫ p

αε
2 (t−tk )

p
αε
2 (−tk )

cos(u2)du, SF r (t ) =
∫ p

αε
2 (t−tk )

p
αε
2 (−tk )

sin(u2)du, tk = τk

ε
. (2.107)

When 0 ≤ tk ≤O( 1p
ε

),

{
0 ≤CF r (t ) ≤O(1), 0 ≤ t ≤ tk +O( 1p

ε
);

CF r (t ) =O(1), t > tk +O( 1p
ε

).
(2.108)

When tk >O( 1p
ε

),


CF r (t ) =O(

p
ε), 0 ≤ t < tk −O( 1p

ε
);

O(
p
ε) ≤CF r (t ) ≤O(1), tk −O( 1p

ε
) ≤ t ≤ tk +O( 1p

ε
);

CF r (t ) =O(1), t > tk +O( 1p
ε

).

(2.109)

In the same way, SF r (t , α̂) also satisfies (2.108) and (2.109). So, the presence of the func-
tions CF r (t ) and CF r (t ) causes resonance jumps in the system. CF r (t ) and SF r (t ) are
plotted for ε= 0.01, ω= 2.2889, and so tk = 100 in Figure 2.12.

Above all, it follows from (2.104) that

Ak = 2
p

2εA(1−cos(λk (εt )))p
αλk (εt )(2λk (εt )− sin(2λk (εt )))

|t=− ω
εt anω− 1

ε

·[cos(ωtk −φk (tk ))CF r (t )+ sin(ωtk −φk (tk ))SF r (t )]+O(ε), (2.110)

and 
Ak =O(ε), 0 ≤ t < tk −O( 1p

ε
);

O(ε) ≤ Ak ≤O(
p
ε), tk −O( 1p

ε
) ≤ t ≤ tk +O( 1p

ε
);

Ak =O(
p
ε), t > tk +O( 1p

ε
).

(2.111)
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(a) (b)

Figure 2.12: (a) CF r (t ) (b)SF r (t ) have a resonance jump from O(
p
ε) to O(1) around t=100.

Similarly, Bk also satisfies (2.111). So, in the resonance zone,

T̃k (t )
= p

εM1[(cos(ωtk −φk (tk ))CF r (t )+ sin(ωtk −φk (tk ))SF r (t ))sin(φk (t ))
+ (sin(ωtk −φk (tk ))CF r (t )−cos(ωtk −φk (tk ))SF r (t ))cos(φk (t ))]+O(ε)

= p
εM1[(cos(ωtk )CF r (t )+ sin(ωtk )SF r (t ))sin(

∫ t

tk

λk (εt̄ )d t̄ )

+ (sin(ωtk )CF r (t )−cos(ωtk )SF r (t ))cos(
∫ t

tk

λk (εt̄ )d t̄ )]+O(ε), (2.112)

where CF r (t ) and SF r (t ) are given in (2.107), and

M1 = 2
p

2A(1−cos(λk (εt )))p
αλk (εt )(2λk (εt )− sin(2λk (εt )))

|t=− ω
ε tanω− 1

ε
. (2.113)

Hence, when the external force frequency ω is bounded away from λk (0) by a con-
stant and satisfies (k − 1)π ≤ ω < λk (0), for all k=1,2,..., (where λk (0) satisfies (2.84)),
then no resonance will occur, and for an O(ε) external excitation there is only an O(ε)
response, which is described in detail in (2.89). When the external force frequency ω

satisfies λk (0) ≤ ω < kπ, for a certain k (with k=1,2,...) and λk (0) satisfies (2.84), then a
resonance will occur for t near − ω

ε tan(ω) − 1
ε , and for the O(ε) external excitation an O(

p
ε)

amplitude response will occur, which is described in detail in (3.33).

In the next section, the occurrence of the (un)expected timescales will be used to
construct accurate approximation of the solution for problem (2.76) and for the original
problem (2.68) when a resonance zone exists. When a resonance zone does not exist
then the solution of problem (2.68) will remain O(ε) for t =O(ε−1).

2.7.3. THREE-TIMESCALES PERTURBATION METHOD

I N the section 2.7.2, it was shown that (under certain condition on the external fre-
quency ω) resonance can occur around time t = 1

ε (− ω
tanω − 1). For this reason, we

rescale t by defining t = t̃ + 1
ε (− ω

tanω −1), and τ= εt̃ − ω
tanω −1. Thus, problem (2.79) can
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be rewritten in t̃ as follows
T̃k,t̃ t̃ +λ2

k (τ)T̃k = ε[−2Σn=∞
n=1

dλn (τ)
dτ cn,k (τ)T̃n,t̃

+Adk (τ)cos(ωt̃ + ω
ε (− ω

tanω −1))]+O(ε2),

T̃k ( 1
ε ( ω

tanω +1)) = εFk ,

T̃k,t̃ ( 1
ε ( ω

tanω +1)) = εGk .

(2.114)

We study problem (2.114) in detail under the assumption that ω is such that a resonance
zone exits for the k th oscillation mode. The application of the straightforward expansion
method to solve (2.114) will result in the occurrence of so-called secular terms which
cause the approximations of the solutions to become unbounded on long timescales.
For this reason, to remove secular terms, we introduce three timescales t0 = t̃ , t1 =

p
εt̃ ,

t2 = εt̃ . The time-scale t1 = p
εt̃ is introduced because of the size of the resonance

zone which has been found in the previous section, and the other two time-scales are
the natural scalings for weakly nonlinear equations such as (2.114). By using the three
timescales perturbation method, the function T̃k (t̃ ;

p
ε) is supposed to be a function of

t0, t1 and t2,
T̃k (t̃ ;

p
ε) = wk (t0, t1, t2;

p
ε). (2.115)

By substituting (2.115) into (2.114), we obtain the following equations up to O(ε
p
ε):

∂2wk

∂t 2
0

+λ2
k (t2)wk +2

p
ε

∂2wk
∂t0∂t1

+ε(2 ∂2wk
∂t0∂t2

+ ∂2wk

∂t 2
1

)+2ε
p
ε

∂2wk
∂t1∂t2

= ε[−2Σn=∞
n=1

dλn (t2)
d t2

cn,k (t2) ∂wn
∂t0

+ Adk (t2)cos(ω(t0 −a))]

−2ε
p
ε[Σn=∞

n=1
dλn (t2)

d t2
cn,k (t2) ∂wn

∂t1
],

wk (a,b,c;
p
ε) = εFk ,

∂wk
∂t0

(a,b,c;
p
ε)+p

ε
∂wk
∂t1

(a,b,c;
p
ε)+ε

∂wk
∂t2

(a,b,c;
p
ε) = εGk ,

(2.116)

where

a = 1

ε
(

ω

tan(ω)
+1), b = 1p

ε
(

ω

tan(ω)
+1), c = ω

tan(ω)
+1. (2.117)

By using a three-timescales perturbation method, wk (t0, t1, t2;
p
ε) will be approxi-

mated by the formal asymptotic expansion

wk (t0, t1, t2;
p
ε) = p

εwk,0(t0, t1, t2;
p
ε)+εwk,1(t0, t1, t2;

p
ε)

+εpεwk,2(t0, t1, t2;
p
ε)+O(ε2). (2.118)

It is reasonable to assume this solution form since the function wk (t0, t1, t2;
p
ε) analyti-

cally depends on
p
ε, and we are interested in approximations of the solution of Eq.(2.4),

when the initial conditions and the external excitation are of O(ε). By substituting (2.118)
into problem (2.116), and after equating the coefficients of like powers in

p
ε, we obtain

as:
the O(

p
ε)-problem:

∂2wk,0

∂t 2
0

+λ2
k (t2)wk,0 = 0, wk,0(a,b,c) = 0,

∂wk,0

∂t0
(a,b,c) = 0, (2.119)
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the O(ε)-problem:

∂2wk,1

∂t 2
0

+λ2
k (t2)wk,1 =−2

∂2wk,0

∂t0∂t1
+ Adk (t2)cos(ω(t0 −a)),

wk,1(a,b,c) = Fk ,
∂wk,1

∂t0
(a,b,c) =−∂wk,0

∂t1
(a,b,c)+Gk , (2.120)

and the O(ε
p
ε)-problem:

∂2wk,2

∂t 2
0

+λ2
k (t2)wk,2 =−2

∂2wk,1

∂t0∂t1
−2

∂2wk,0

∂t0∂t2
− ∂2wk,0

∂t 2
1

−2Σ∞
n=1

dλn(t2)

dτ
cn,k (t2)

∂wn,0

∂t0
,

wk,2(a,b,c) = 0,
∂wk,2

∂t0
(a,b,c) =−∂wk,0

∂t2
(a,b,c)− ∂wk,1

∂t1
(a,b,c). (2.121)

The O(
p
ε)− problem has as solution

wk,0(t0, t1, t2;
p
ε) =Ck,1(t1, t2)sin(λk (t2)t0)+Ck,2(t1, t2)cos(λk (t2)t0), (2.122)

where Ck,1 and Ck,2 are still unknown functions of the slow variables t1 and t2, and they
can be determined by avoiding secular terms in the solutions of the O(ε)− and O(ε

p
ε)−

problems. By using the initial conditions (2.119), it follows that Ck,1(b,c) =Ck,2(b,c) = 0.
Now, we shall solve the O(ε)− problem (2.120).

This problem (outside as well as inside the resonance manifold) can be written as

∂2wk,1

∂t 2
0

+λ2
k (t2)wk,1

= −2λk (t2)[
∂Ck,1

∂t1
cos(λk (t2)t0)− ∂Ck,2

∂t1
sin(λk (t2)t0)]+ Adk (t2)cos(ω(t0 −a)),

wk,1(a,b,c) = Fk ,
∂wk,1

∂t0
(a,b,c) = −∂wk,0

∂t1
(a,b,c)+Gk . (2.123)

By introducing the transformation (wk,1, wk,1,t0 ) → (Dk,1,Dk,2) with

wk,1(t0, t1, t2;
p
ε)

= Dk,1(t0, t1, t2;
p
ε)sin(λk (t2)t0)+Dk,2(t0, t1, t2;

p
ε)cos(λk (t2)t0),

wk,1,t0 (t0, t1, t2;
p
ε)

= λk (t2)[Dk,1(t0, t1, t2;
p
ε)cos(λk (t2)t0)−Dk,2(t0, t1, t2;

p
ε)sin(λk (t2)t0)],

it follows that the partial differential equation in (2.123) is equivalent with the system
Ḋk,1 =− ∂Ck,1

∂t1
[cos(2λk (t2)t0)+1]+ ∂Ck,2

∂t1
sin(2λk (t2)t0)

+ Adk (t2)
2λk (t2) [cos(ωt0 −ωa +λk (t2)t0)+cos(ωt0 −ωa −λk (t2)t0)],

Ḋk,2 = ∂Ck,1
∂t1

sin(2λk (t2)t0)− ∂Ck,2
∂t1

[1−cos(2λk (t2)t0)]

− Adk (t2)
2λk (t2) [sin(ωt0 −ωa +λk (t2)t0)− sin(ωt0 −ωa −λk (t2)t0)],

(2.124)
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where the overdot represents differentiation with respect to t0, that is,˙= ∂
∂t0

.
Outside of the resonance zone, whether it exists or not it should be observed that the

last terms in both equations in (2.124) do not give rise to secular terms in Dk,1 and Dk,2.
To avoid secular terms, Ck,1 and Ck,2 have to satisfy the following conditions

∂Ck,1

∂t1
= 0,

∂Ck,2

∂t1
= 0. (2.125)

Then, Ck,1(t1, t2) = C̄k,1(t2), and Ck,2(t1, t2) = C̄k,2(t2).
Inside the resonance zone, we observe that cos(ωt0 −ωa −λk (t2)t0) and sin(ωt0 −

ωa−λk (t2)t0) might cause secular terms. In accordance with the resonance timescale of
O( 1p

ε
), see (2.95), it is convenient to rewrite the arguments of the cos− and sin− function

as

ωt0 −ωa −λk (t2)t0 =−α

2
t 2

1 −ωa,

where α is given by (2.97). Accordingly, the solution of wk,1 in Eq.(2.123) has unbounded
terms in t0 unless

−2λk (t2)
∂Ck,1

∂t1
+ Adk (t2)cos[−α

2
t 2

1 −ωa] = 0,

2λk (t2)
∂Ck,2

∂t1
− Adk (t2)sin[−α

2
t 2

1 −ωa] = 0, (2.126)

which implies that

Ck,1(t1, t2) = C̄k,1(t2)+ A cos(ωa)dk (t2)p
2αλk (t2)

C̄F r (t1)− A sin(ωa)dk (t2)p
2αλk (t2)

S̄F r (t1),

Ck,2(t1, t2) = C̄k,2(t2)− A sin(ωa)dk (t2)p
2αλk (t2)

C̄F r (t1)− A cos(ωa)dk (t2)p
2αλk (t2)

S̄F r (t1), (2.127)

where

C̄F r (t ) =
∫ p

α
2 t

p
α
2 b

cos(x2)d x, and S̄F r (t ) =
∫ p

α
2 t

p
α
2 b

sin(x2)d x, (2.128)

and which are the well-known Fresnel integrals. Thus, it follows from (2.124) that

Dk,1(t0, t1, t2) = D̄k,1(t1, t2)+ Adk (t2)

2λk (t2)(ω+λk (t2))
sin(ωt0 −ωa +λk (t2)t0)

+ Adk (t2)

2λk (t2)(ω−λk (t2))
sin(ωt0 −ωa −λk (t2)t0),

Dk,2(t0, t1, t2) = D̄k,2(t1, t2)+ Adk (t2)

2λk (t2)(ω+λk (t2))
cos(ωt0 −ωa +λk (t2)t0)

− Adk (t2)

2λk (t2)(ω−λk (t2))
cos(ωt0 −ωa −λk (t2)t0). (2.129)

where D̄k,1 and D̄k,2 are still unknown functions of the slow variables t1 and t2. The
undetermined behaviour with respect to t1 and t2 can be used to avoid secular terms in
the O(ε

p
ε)− problem (2.121), and in the high order problems.
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Taking into account the secularity conditions, the general solution of the O(ε) equa-
tion is given by

wk,1(t0, t1, t2;
p
ε) = Dk,1(t0, t1, t2)sin(λk (t2)t0)+Dk,2(t0, t1, t2)cos(λk (t2)t0), (2.130)

where Dk,1(t0, t1, t2) and Dk,1(t0, t1, t2) are given by (2.129) and

Dk,2(a,b,c) = Fk , Dk,1(a,b,c) =−∂wk,0

∂t1
(a,b,c)+Gk . (2.131)

The O(ε
p
ε)− problem (2.121) outside and inside the resonance manifold can be

written as

∂2wk,2

∂t 2
0

+λ2
k (t2)wk,2 = −2λk (t2)[

∂Dk,1

∂t1
cos(λk (t2)t0)− ∂Dk,2

∂t1
sin(λk (t2)t0)]

−2λk (t2)[
∂Ck,1

∂t2
cos(λk (t2)t0)− ∂Ck,2

∂t2
sin(λk (t2)t0)]

+[
∂2Ck,1

∂t 2
1

sin(λk (t2)t0)+ ∂2Ck,2

∂t 2
1

cos(λk (t2)t0)]

−2Σn=∞
n=1

dλn(t2)

d t2
cn,k (t2)λk (t2)[Cn,1 cos(λk (t2)t0)

−Cn,2 sin(λk (t2)t0)],

wk,2(a,b,c) = 0,
∂wk,2

∂t0
(a,b,c) = −∂wk,0

∂t2
(a,b,c)− ∂wk,1

∂t1
(a,b,c). (2.132)

To avoid secular terms in the solution wk,2 in Eq.(2.132), the following conditions have
to be imposed

−2λk (t2)
∂Dk,1

∂t1
−2λk (t2)

∂Ck,1

∂t2
+ ∂2Ck,2

∂t 2
1

−2ck,k (t2)λk (t2)
dλk (t2)

d t2
Ck,1 = 0,

2λk (t2)
∂Dk,2

∂t1
+2λk (t2)

∂Ck,2

∂t2
+ ∂2Ck,1

∂t 2
1

+2ck,k (t2)λk (t2)
dλk (t2)

d t2
Ck,2 = 0. (2.133)

Next, we analyse this equation (2.133) inside and outside the resonance manifold.
Inside the resonance zone, substituting (2.127) and (2.129) into (2.133), we obtain the

following secularity conditions:

−2
∂D̄k,1

∂t1
−2

dC̄k,1

d t2
−2ck,k (t2)

dλk (t2)

d t2
C̄k,1

−
d( A cos(ωa)dk (t2)

λk (t2) )

d t2
(C̄F r (t1)− S̄F r (t1))+ Adk (t2)

λk (t2)
αt1 sin[−αt 2

1 −ωa]

+ck,k (t2)
dλk (t2)

d t2

A cos(ωa)dk (t2)

λk (t2)
(S̄F r (t1)− C̄F r (t1)) = 0, (2.134)
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and

2
∂D̄k,2

∂t1
+2

dC̄k,2

d t2
+2ck,k (t2)

dλk (t2)

d t2
C̄k,2

−
d( A cos(ωa)dk (t2)

λk (t2) )

d t2
(C̄F r (t1)+ S̄F r (t1))− Adk (t2)

λk (t2)
αt1 cos[−αt 2

1 −ωa]

−ck,k (t2)
dλk (t2)

d t2

A cos(ωa)dk (t2)

λk (t2)
(S̄F r (t1)+ C̄F r (t1)) = 0.(2.135)

Solving (2.134) and (2.135) for D̄k,1 and D̄k,2, we observe that the solution will be un-
bounded in t1, due to terms which are only depending on t2. Therefore, to have secular-
free solutions for D̄k,1 and D̄k,2, the following conditions have to be imposed indepen-
dently

∂C̄k,1

∂t2
+ ck,k (t2)

dλk (t2)

d t2
C̄k,1 = 0,

∂C̄k,2

∂t2
+ ck,k (t2)

dλk (t2)

d t2
C̄k,2 = 0, (2.136)

together with

−2
∂D̄k,1

∂t1
−

d( A cos(ωa)dk (t2)
λk (t2) )

d t2
(C̄F r (t1)− S̄F r (t1))

+ Adk (t2)

λk (t2)
αt1 sin[−αt 2

1 −ωa]

+ck,k (t2)
dλk (t2)

d t2

A cos(ωa)dk (t2)

λk (t2)
(S̄F r (t1)− C̄F r (t1)) = 0, (2.137)

and

2
∂D̄k,2

∂t1
+

d( A cos(ωa)dk (t2)
λk (t2) )

d t2
(C̄F r (t1)− S̄F r (t1))

− Adk (t2)

λk (t2)
αt1 cos[−αt 2

1 −ωa]

−ck,k (t2)
dλk (t2)

d t2

A cos(ωa)dk (t2)

λk (t2)
(S̄F r (t1)+ C̄F r (t1)) = 0. (2.138)

where D̄k,1 and D̄k,2 can be found by integration of (2.137) and (2.138), but we omit the
details because of cumbersome expressions.

Next, from (2.136) we obtain the functions C̄k,1(t2) and C̄k,2(t2):

C̄k,1(t2) = m1e−
∫ t2

c ckk (s)
dλk (s)

d s d s , C̄k,2(t2) = m2e−
∫ t2

c ckk (s)
dλk (s)

d s d s , (2.139)

where m1 and m2 are constants. Since Ck,1(b,c) = 0 and Ck,2(b,c) = 0, together with
(2.127), this implies that C̄k,1(t2),C̄k,2(t2) are both identically equal to zero.

So, in the resonance zone,

wk,0(t0, t1, t2;
p
ε)

= [
A cos(ωa)dk (t2)p

2αλk (t2)
C̄F r (t1)− A sin(ωa)dk (t2)p

2αλk (t2)
S̄F r (t1)]sin(λk (t2)t0)
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−[
A cos(ωa)dk (t2)p

2αλk (t2)
SF r (t1)+ A sin(ωa)dk (t2)p

2αλk (t2)
C̄F r (t1)]cos(λk (t2)t0)

= M1[(cos(ωa)C̄F r (t1)− sin(ωa)S̄F r (t1))sin(λk (t2)t0)
−(cos(ωa)S̄F r (t1)+ sin(ωa)C̄F r (t1))cos(λk (t2)t0)]+h.o.t , (2.140)

where M1 is given by (2.113). Outside the resonance zone, it follows from (2.125) and
(2.133) that

∂C̄k,1

∂t2
+ ck,k (t2)

dλk (t2)

d t2
C̄k,1 = 0,

∂C̄k,2

∂t2
+ ck,k (t2)

dλk (t2)

d t2
C̄k,2 = 0,

which implies that

C̄k,1(t2) = m1e−
∫ t2

c ckk (s)
dλk (s)

d s d s C̄k,2(t2) = m2e−
∫ t2

c ckk (s)
dλk (s)

d s d s , (2.141)

where m1 and m2 are constants. Since Ck,1(b,c) = 0, Ck,2(b,c) = 0, this implies that
C̄k,1(t2), and C̄k,2(t2) are identically equal to zero outside the resonance zone.

Now we can solve the O(ε
p
ε)− problem, where

wk,2(t0, t1, t2;
p
ε) = Ek,1(t0, t1, t2)sin(λk (t2)t0)+Ek,2(t0, t1, t2)cos(λk (t2)t0), (2.142)

where Ek,1 and Ek,2 are still unknown functions of the variable t0, and the slow variables
t1, t2, and they can be obtained by avoiding secular terms from higher order problems.
Moreover,

Ek,2(a,b,c) = 0,

Ek,1(a,b,c) = −∂wk,0

∂t2
(a,b,c)− ∂wk,1

∂t1
(a,b,c). (2.143)

Note that in Eq.(2.130) and Eq.(2.142), Dk,1,Dk,2,Ek,1,Ek,2 are yet also undetermined
functions. All these unknown functions can be determined from the O(ε2)− problem
and O(ε2pε)− problem. At this moment, only the first term in the expansion of the so-
lution for the string problem is important from the physical point of view. We are not
interested in high-order approximations; that is why we take

D̄k,1(t1, t2) = D̄k,1(b,c), D̄k,2(t1, t2) = D̄k,2(b,c),
Ek,1(t0, t1, t2) = Ek,1(a,b,c), Ek,2(t0, t1, t2) = Ek,2(a,b,c). (2.144)

Thus, an approximation of the solution of Eq.(2.4) is given by

u(x, t )

=
∞∑

n=1
[
p
εwn,0(t0, t1, t2;

p
ε)+εwn,1(t0, t1, t2;

p
ε)

+εpεwn,2(t0, t1, t2;
p
ε)]sin(λn(τ)x)+O(ε2), (2.145)

where wk,0, wk,1 and wk,2 are given by (2.122), (2.130) and (2.142).

• When the external force frequency ω is bounded away from λk (0) by a constant
and satisfies (k − 1)π ≤ ω < λk (0), with λk (0) given by (2.84), for all k = 1,2, ..., it
follows from (2.125) and (2.141) that wk,0(t0, t1, t2;

p
ε) = 0. Further from (2.115)

and (2.118), we obtain T̃k (t ) =O(ε), i.e., for the O(ε) external excitation, there is an
O(ε) response. This case can be referred to as the non-resonant case.
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• When the external force frequency ω satisfies λk (0) ≤ω < kπ, with λk (0) given by
(2.84), for a fixed k = 1,2, ..., it follows from (2.140) that wn,0(t0, t1, t2;

p
ε)n ̸=k = 0

and

wk,0(t0, t1, t2;
p
ε)

= M1[(cos(ωa)C̄F r (t1)− sin(ωa)S̄F r (t1))sin(λk (t2)t0)
−(cos(ωa)S̄F r (t1)+ sin(ωa)C̄F r (t1))cos(λk (t2)t0)], (2.146)

where M1 satisfies (2.113). For the solution u(x, t ) of the original problem (2.130)
this implies a resonance jump from O(ε) to O(

p
ε) around t = 1

ε (− ω
tanω −1) in the

k-th oscillation mode.

Figure 2.13: (a) The solution u(0.5, t ) of the system withω= 2.0917, and the resonance time t ≈ 20, λ1(ε·20) =ω.
(b) The solution u(0.5, t ) of the system with ω= 2.4556, and the resonance time t ≈ 200, λ1(ε ·200) =ω.

It should be observed that T̃k (t ) as calculated by using a three-timescales perturbation
method agrees well with the approximation as calculated by using the averaging method.
Further, by using the first term wk,0(t0, t1, t2;

p
ε) as u(x, t ) = [

p
εwk,0 +O(ε)]sin(λk (τ)x)

with λk (0) ≤ ω < kπ and λk (0) given by (2.84), u(0.5, t ) is plotted for ε = 0.01, A = 1,
ω = 2.0917, and so tk = 20 in Figure 2.13 (a) and u(0.5, t ) is plotted for ε = 0.01, A = 1,
ω= 2.4556, and so tk = 200 in Figure 2.13 (b).

2.7.4. NUMERICAL EXAMPLES

I N this section the finite difference method is used to present numerical approxima-
tions of the vibration response and energy of the string. The computations are per-

formed by using the parameters ε= 0.01, A = 1. The initial conditions are assumed to be
given by (2.17). There will be different behavior in the amplitude response of the solu-
tion for different choices of the parameter ω. Note that the following numerical results
are computed based on O(ε) approximations of the equations. Higher order terms in the
equations are neglected due to their unimportant contribution in the solution. By using
(2.83), and according to our analytical results, resonance occurs around times

t =− ω

ε · tanω
− 1

ε
. (2.147)
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Figure 2.14: The solution u(0.5, t ) (a) and the energy E(t ). (b) of the system with ω= 2.0917, and the resonance
time t ≈ 20, λ1(ε ·20) =ω.

Figure 2.15: The solution u(0.5, t ) (a) and the energy E(t ). (b) of the system with ω= 2.4556, and the resonance
time t ≈ 200, λ1(ε ·200) =ω.

When the external force frequency ω is bounded away from λk (0) by a constant and
satisfies (k − 1)π ≤ ω < λk (0), with λk (0) given by (2.84), for all k = 1,2, ... Figure 2.14
shows the displacement at x = 0.5 and the vibratory energy of the system, respectively,
for times up to t=200 for ω= 2.0917. We observe that for t ≈ 20 the response amplitudes
of the vibration become of order

p
ε from order ε at t = 0. Similarly, Figure 2.15 shows

the displacement and vibratory energy of the system for times up to t=400 for ω= 2.4556.
Again we observe that the response amplitudes of the vibration become of order

p
ε but

now for t ≈ 200. When the external force frequency ω is bounded away from λk (0) by a
constant and satisfies (k −1)π ≤ ω < λk (0), with λk (0) given by (2.84), for all k = 1,2, ...,
Figure 2.16 shows the displacement and vibratory energy of the system for times up to
t=400 for ω = 1.58, but now there is no resonance and the response amplitudes of the
vibration are still of order ε. These numerical results are in agreement with our results
as presented in section 2.7.2 and in section 2.7.3. Moreover, in these figures, the shad-
owed bands represent the resonance zones, which have the size of (O( 1p

ε
)) as was also
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Figure 2.16: The solution u(0.5, t ) (a) and the energy E(t ). (b) of the system with ω= 1.5, there is no resonance.

obtained analytically. Therefore, from Figure 2.14, Figure 2.15 and Figure 2.16, we can
conclude that the general dynamic behavior of the solution as approximated numeri-
cally is in complete agreement with the analytic approximations as obtained in section
2.7.2 and in section 2.7.3.

2.8. CONCLUSIONS

I N this chapter resonances in a transversally vibrating string are studied. A small, exter-
nally applied and harmonic force with frequency ω is acting on the whole string. The

string is fixed at one end, and at the other end a spring is attached for which the stiffness
slowly varies in time. Firstly, based on the d’Alembert formula and on the boundary con-
ditions, the initial conditions are extended on the whole x-domain. Taking into account
the wave travelling speed and the total reflection time, the time domain is divided into
smaller intervals of fixed length, so that the initial conditions extension procedure for
each interval coincides with the previous ones. In this way one can obtain in a rather
straightforward way an analytical expression for the solution on the time-interval [0, 2n]
with n= 1, 2, 3, . . . , N and N not too large. Moreover, four choices are made for the slowly
varying stiffness, but also other choices can be made and a similar analysis as presented
in this chapter can be given. By assuming that the small external force is of order ε and
by assuming that the initial values are also small and of order ε, it is shown in this chap-
ter that resonances can occur for certain values of ω. To obtain these results, the method
of separation of variables (SOV), the method of d’Alembert, and the adapted version of
the method of separation of variables is introduced, and perturbation methods, (such
as averaging methods, singular perturbation techniques, and multiple timescales per-
turbation methods) are used. Explicit, and accurate approximations of solutions of the
initial-boundary value problem are constructed. All approximations are valid on time-
scales of order ε−1. Also a finite difference method is applied to construct numerical
approximations of the solution of the initial-boundary value problem. These numerical
approximations are in full agreement with the analytically obtained approximations.
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APPENDIX A NUMERICAL APPROXIMATION
Firstly, we introduce a uniform mesh ∆x, a constant discretization time ∆t , and a rectan-
gular mesh consisting of points (xi , t j ) with xi = i∆x and t j = j∆t , where i = 1,2,3, ..., N ,
j = 1,2, ..., with N∆x = 1. Following the finite difference method and by using the Taylor
series expansion, the second order space and time derivatives can be discretized by

∂2u

∂x2 = u(xi+1, t j )−2u(xi , t j )+u(xi−1, t j )

(∆x)2 +O((∆x)2), (2.148)

∂2u

∂t 2 = u(xi , t j+1)−2u(xi , t j )+u(xi , t j−1)

(∆x)2 +O((∆t )2). (2.149)

Substituting the finite difference formulae into Eq. (2.4), and rearranging the terms, we
end up with the linear iterative system

ui , j+1 =σ2ui+1, j +2(1−σ2)ui , j +σ2ui−1, j −ui , j−1 +εA cos(ωt j ), (2.150)

where σ= ∆t
∆x . From the boundary condition in (2.4) it follows that

u0, j = 0, un, j =
un−1, j

1+k(t j )∆x
. (2.151)

Let us introduce the following vector: U ( j ) = [u1, j ,u2, j , ...,un−2, j ,un−1, j ]T ,
S( j ) = [s̄ j , s̄ j , ..., s̄ j︸ ︷︷ ︸

n-1 times

]T , s̄ j = εAcos(ωt j ),

B =



2(1−σ2) σ2 0 · · · · · · 0
σ2 2(1−σ2) σ2 · · · · · · 0
...

. . .
. . .

. . .
. . .

...
0 · · · · · · σ2 2(1−σ2) σ2

0 · · · · · · 0 σ2 2(1−σ2)+ σ2

1+k(t j )∆x

 ,

then the iteration process can be rewritten in the following matrix form

U ( j+1) = BU ( j ) −U ( j−1) +S( j ), (2.152)

where the initial conditions imply:

ui ,0 = fi = f (xi ), ui ,1 = 1

2
σ2 fi+1 + (1−σ2) fi + 1

2
σ2 fi−1 +∆t gi . (2.153)





3
LONGITUDINAL RESONANCES FOR A

VERTICALLY MOVING CABLE

3.1. INTRODUCTION

I N this chapter we study a real physical varying-length elevator system model, in which
the longitudinal vibrations in an axially moving cable with time-varying length are

considered subject to a small harmonic boundary excitation at one end of the cable and a
moving nonclassical boundary condition at the other end. This elevator system consists
of a drum, a head sheave, a driving motor, a moving conveyance, and a flexible cable
with time-varying length l (t ). The upper end of the vertical cable is located at x = e(t ),
where the small displacement e(t ) of this upper end is supposed to be generated by the
catenary system (consisting of drum, head sheave) in vertical direction. A flexible cable
lets the conveyance run up and down (see Figure 3.1).

Most analytical solutions for moving cables focus on transversal displacements or
classical boundary conditions. Tan and Ying in [38] analyzed the axially moving cable
based on wave propagetion subject to a classical boundary condition. Zhu in [39] con-
sidered a class of translating media with moving Dirichlet boundary conditions. Sandilo
and van Horssen in [40] studied auto-resonance phenomena in a space time-varying
mechanical system with a moving Dirichlet boundary condition. Gaiko and van Horssen
in [41] considered transverse vibrations of a traveling cable subject to a moving Dirich-
let boundary condition with boundary damping, and in [42] the authors further dis-
cussed resonances and vibrations in an elevator cable system due to boundary sway. Re-
cently, researchers started to study longitudinal vibrations of moving cables with moving
nonclassical boundary conditions. Wang et al. in [43] investigated the longitudinal re-
sponses of the two hoisting ropes, and the model is calculated numerically with different
coefficients and excitations. Bao et al. in [44] evaluated longitudinal vibration of flexi-
ble hoisting systems with time-varying length by using The Galerkin’s method. Ghayesh

A slightly varied version of this chapter have been published in Applied Mathematical Modelling 111, 44-62
(2022).
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in [45] numerically investigated the coupled longitudinal–transverse nonlinear dynam-
ics of an axially accelerating beam. Wang et al. in [46] investigated a coupled dynamic
model for a flexible guiding hoisting system and presented the response of the system
by numerical simulations. Wang et al. in [47] studied the axial vibration suppression
in a partial differential equation model for an ascending mining elevator cable system.
These studies mainly focus on numerical simulations, and not on an analytical, mathe-
matical analysis. For more information on numerical results for axially moving continua,
the reader is referred to [48, 49, 50, 51, 22, 52, 53]. Compared to the analysis of systems
subject to classical boundary conditions, the analytical study of axially moving systems
with moving nonclassical boundary conditions is a challenging subject for research. And
compared to chapter 2, the model in this chapter is physically relevant, including a fun-
damental excitation in a boundary condition, a time-varying interval (0, l (t )), second
order derivatives in a boundary condition, viscous damping, spatiotemporally varying
tension, longitudinal stiffness and so on. An adapted version of the method of separa-
tion of variables, an averaging method, singular perturbation techniques, and a three
time-scales perturbation method are applied to construct accurate, analytical approx-
imations of the solutions of the problem. For the aforementioned reasons, averaging,
determining the resonance zones, and constructing accurate approximations of solu-
tions are much harder than for the problem as studied in chapter 2. And in chapter 2
we concluded that when the external force frequency satisfies a certain condition, then
the resonance will occur in one oscillation mode only and no resonance will occur in
the other modes, i.e., resonance emerges for only one time internal. However, in this
chapter, based on a perturbation analysis of the formulated, mathematical problem for
the cable equation, we come to the conclusion that for a given arbitrary excitation fre-
quency, many oscillation modes jump up from O(ε) to O(

p
ε) amplitudes, i.e., resonance

emerges for many times and the size of the resonance zone is of O( 1p
ε

). This analytical

result is accurate and valuable for real applications.

Figure 3.1: The longitudinal vibrating cable with time-varying cable length l (t ).
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The chapter is organised as follows. In section 3.2 the problem is formulated and
some transformations are introduced to simplify the originally formulated problem. In
section 3.3 an interior layer analysis is presented. By introducing an adapted version
of the method of separation of variables, by using averaging and singular perturbation
techniques, the resonance zones are detected and the scalings are determined in the
problem. By using these scalings, in section 3.4 a three time-scales perturbation method
is used to construct accurate, analytical approximations of the solutions of the problem.
In section 3.5 numerical approximations are presented by using a central finite differ-
ence scheme, which are in full agreement with the obtained, analytical approximations.
In section 3.6 we draw some conclusions based on the analytical and numerical results
and also we discuss future research.

3.2. FORMULATION OF THE PHYSICAL PROBLEM

Nomenclature:
u(x, t ) the longitudinal displacement of the cable

l (t ) the length of the cable
v = l̇ (t ) the longitudinal velocity of the cable, v is assumed to be a constant.

ρ the mass density of the cable
m the mass of the conveyance

E A the longitudinal stiffness, E Young’s elasticity modulus,
A the cross-sectional area of the cable

T (x, t ) the spatiotemporally varying tension in the cable
c viscous damping coefficient in the cable
g gravity

Eg s initial gravitational potential energy
cu viscous damping coefficient

e(t ) the generated longitudinal displacement at the top of the vertical cable

B Y using the Hamilton’s variational principle, the longitudinal vibrations of the axi-
ally moving rope in Figure 3.1 are described by the following initial boundary value

problem (see Appendix B.1):
ρ(ut t +2vuxt + v2uxx )−E Auxx + c(ut + vux ) = 0, 0 ≤ x ≤ l (t ), t > 0,

[m(ut t +2vuxt + v2uxx )+E Aux + cu(ut + vux )]|x=l (t ) = 0, t > 0,

u(0, t ) = e(t ), t > 0,

u(x,0) = u0(x), ut (x,0) = u1(x), 0 ≤ x ≤ l0.

(3.1)

For the parameters v , c, cu and the function e(t ), we make the following reasonable as-

sumptions: the longitudinal velocity v is small compared to nominal wave velocity
√

E A
ρ ;

the viscous damping coefficients c and cu are small; and the oscillation amplitudes e(t )
at x = 0 are small. Then, we can rewrite v = εv0,c = εc0,cu = εcu0,e(t ) = βsin(αt ) with
β = εβ0, where ε is a small parameter with 0 < ε << 1. And l (t ) = l0 + εv0t , where l0 is
the initial cable length. It is also assumed that both initial conditions are O(ε), that is,
u0(x) =O(ε), and u1(x) =O(ε).
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To put problem (3.1) in a non-dimensional form, the following dimensionless pa-
rameters will be used:

u∗ = u

L
, x∗ = x

L
, t∗ = t

L

√
E A

ρ
, l∗ = l

L
, v∗ = v

√
ρ

E A
,

c∗ = cL√
E Aρ

,c∗u = Lcu

m

√
E A

ρ
, β∗ = β

L
, α∗ = Lα

√
ρ

E A
, u∗

0 = u0

L
, u∗

1 =
√

ρ

E A
u1,

where L is the maximum length of the cable. The equations of motion in non-dimensional
form then become:

ut t −uxx =−2vuxt − v2uxx − c(ut + vux ), 0 ≤ x ≤ l (t ), t > 0,

ut t (l (t ), t )+ ρL
m ux (l (t ), t ) = [−2vuxt − v2uxx − cu(ut + vux )]|x=l (t ), t > 0,

u(0, t ) = e(t ) =βsin(αt ), t > 0,

u(x,0) = u0(x), ut (x,0) = u1(x), 0 ≤ x ≤ l0,

(3.2)

where m, ρ, α, β, L and l0 are positive constants, and where the asterisks (indicating the
dimensionless variables and parameters) are omitted in problem (3.2) for convenience.

In order to simplify the integration of (3.2), it is convenient to transform the time-
varying spatial domain [0, l (t )] to a fixed domain [0,1] by introducing a new independent
spatial coordinate ξ= x

l (t ) . Since the function u(x, t ) becomes a new function ũ(ξ, t ), all
the partial derivatives have to be transformed in accordance with this new variable ξ as
follows:

ux = 1

l
ũξ, uxx = 1

l 2 ũξξ, ut =−ξv

l
ũξ+ ũt ,

uxt =− v

l 2 ũξ+
1

l
ũξt −ξ

v

l 2 ũξξ, ut t = ũt t −2
v

l
ξũξt +

v2

l 2 ξ2ũξξ+
2v2

l 2 ξũξ.

Substituting these derivatives into (3.2), we obtain the following problem for ũ(ξ, t ):
ũt t − 1

l 2 ũξξ = 2v
l ξũξt − 2v

l ũξt − cũt +O(ε2), 0 ≤ ξ≤ 1, t > 0,

ũt t (1, t )+ ρL
ml ũξ(1, t ) = [ 2v

l ξũξt − 2v
l ũξt − cu ũt ]|ξ=1 +O(ε2), t > 0,

ũ(0, t ) = ẽ(t ) =βsin(αt ), t > 0,

ũ(ξ,0) = ũ0(ξ), ũt (ξ,0) = ũ1(ξ), 0 ≤ ξ≤ 1,

(3.3)

where l = l (t ), ũ0(ξ) = u0(ξl0), and ũ1(ξ) = u1(ξl0)−ε
ξv0
l0

uξ(ξ,0).
In the following sections, we will construct analytical approximations of the solution

of problem (3.3) on a time-scale of order 1
ε by an internal layer analysis and a three time-

scales perturbation method. Moreover, to verify the analytical results, in subsection 3.5
we will compare these analytical approximations with numerically obtained approxima-
tions.

3.3. INTERNAL LAYER ANALYSIS

I N this section, we determine resonance manifolds and their corresponding timescales
by an adapted version of the method of separation of variables, by using averaging and

singular perturbation techniques.
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3.3.1. TRANSFORMATIONS
The partial differential equation in (3.3) has in the left-hand side of the equation a vari-
able coefficient 1

l 2 . To remove this variable coefficient the Liouville-Green transforma-
tion (or equivalently the WKBJ method [54, 55]) is used by introducing a new time-like
variable s(t ) with

ds

dt
= 1

l (t )
. (3.4)

Substituting the derivative into (3.3), we obtain the problem for ū(ξ, s) = ũ(ξ, t ) (see Ap-
pendix B.2). Further, in order to eliminate the non-homogeneous terms up to order ε2 in
the boundary condition at ξ= 0 and ξ= 1 in (3.3), the following transformation is used:

ū(ξ, s) =W (ξ, s)+ε
mξ

ρL
(c0 − cu0)Ws (1, s)+ ē(s)+O(ε2). (3.5)

Thus, in order to obtain an order ε accurate approximation of the solution of ū(ξ, s), it is
necessary and sufficient to construct an order ε accurate approximation of the solution
of W (ξ, s). From (3.5) and Appendix B, it follows that W (ξ, s) has to satisfy:

Wss −Wξξ = ε[(v0 − c0 l̂ )Ws +2v0(ξ−1)Wξs +β0α
2 l̂ 2 sin(αl0

εv0
(eεv0s −1))

−mξ(c0−cu0)
ρL Wξξs (1, s)]+O(ε2), 0 ≤ ξ≤ 1, s > 0,

Wξξ(1, s)+ ρLl̂
m Wξ(1, s) =O(ε2), W (0, s) =O(ε2), s > 0,

W (ξ,0) =W0(ξ), Ws (ξ,0) =W1(ξ), 0 ≤ ξ≤ 1,

(3.6)

where W0(ξ) = f (ξ)− ē(0)+O(ε2), W1(ξ) = g (ξ)− ēs (0)+O(ε2). So the problem (3.3) is
transformed into a simplified problem (3.6). In the following sections, accurate, analyti-
cal approximations of the solution W (ξ, s) of problem (3.6) are constructed, and by using
(3.4) and (3.5), accurate approximations of ũ of problem (3.3) can be obtained.

3.3.2. AN ADAPTED VERSION OF THE METHOD OF SEPARATION OF VARI-
ABLES

First of all, in order to make the method of separation of variables applicable to problem
(3.6), we consider problem (3.6) by neglecting the O(ε) terms, that is,

Wss −Wξξ = 0, 0 ≤ ξ≤ 1, s > 0,

W (0, s) = 0, Wξξ(1, s)+ ρLl̂ (s)
m Wξ(1, s) = 0, s > 0,

W (ξ,0) =W0(ξ), Ws (ξ,0) =W1(ξ), 0 ≤ ξ≤ 1,

(3.7)

where it should be noted that l̂ (s) = l0eεv0s . By defining a slow time variable τ = εs,
which will be treated independently from the variable s, and so by defining l̄ (τ) = l0ev0τ,
function W (ξ, s) becomes a new function W ∗(ξ, s,τ), and problem (3.7) becomes:

W ∗
ss (ξ, s,τ)+2εW ∗

sτ(ξ, s,τ)+ε2W ∗
ττ(ξ, s,τ)−W ∗

ξξ
(ξ, s,τ) = 0,

W ∗(0, s,τ) = 0, W ∗
ξξ

(1, s,τ)+ ρLl̄ (τ)
m u∗

ξ
(1, s,τ) = 0, l̄ (τ) = l0ev0τ,

W ∗(ξ,0,0) =W0(ξ), W ∗
s (ξ,0,0)+εW ∗

τ (ξ,0,0) =W1(ξ),

(3.8)
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where 0 ≤ ξ ≤ 1 and s,τ > 0. Now let T (s,τ)X (ξ,τ) be a nontrivial solution of (3.8). The
general solution of (3.6) can be expanded in the following form (see Appendix B.3):

W (ξ, s) =
∞∑

n=1
T̄n(s,τ)sin(λn(τ)ξ), (3.9)

where λn(τ) is the n-th positive root of

t an(λn(τ)) = ρLl̄ (τ)

m

1

λn(τ)
, l̄ (τ) = l0ev0τ, (3.10)

and T̄k (s,τ) for k = 1,2,3, ..., s > 0,τ> 0 have to satisfy:

T̄k,ss +λ2
k (τ)T̄k =−2εT̄k,sτ+ε(v0 − c0 l̄ (τ))T̄k,s −2

∑∞
n=1 εc1

n,k (τ) dλn (τ)
dτ T̄n,s

+2
∑∞

n=1 εv0c2
n,k (τ)T̄n,s +∑∞

n=1 ε
m(c0−cuo )

ρL c3
n,k (τ)T̄n,s

+εβ0α
2 l̄ 2(τ)dk (τ)sin(αl0

εv0
(eεv0s −1)), t ,τ≥ 0,

T̄k (0,0) =
∫ 1

0 σ(0,ξ)W0(ξ)sin(λk (0)ξ)dξ∫ 1
0 σ(0,ξ)sin2(λk (0)ξ)dξ

= Fk ,

T̄k,s (0,0)+εT̄k,τ(0,0) =−ε∑∞
n=1 Tn(0,0) dλn (τ)

dτ |τ=0

∫ 1
0 σ(0,ξ)ξsin(λn (0)ξ)cos(λk (0)ξ)dξ∫ 1

0 σ(0,ξ)sin2(λk (0)ξ)dξ

+
∫ 1

0 σ(0,ξ)W1(ξ)sin(λk (0)ξ)dξ∫ 1
0 σ(0,ξ)sin2(λk (0)ξ)dξ

=Gk ,
(3.11)

where c1
n,k (τ), c2

n,k (τ), c3
n,k (τ) and dk (τ) are functions of τ, and are given by:

c1
n,k (τ) =

∫ 1
0 σ(τ,ξ)ξcos(λn(τ)ξ)sin(λk (τ)ξ)dξ∫ 1

0 σ(τ,ξ)sin2(λk (τ)ξ)dξ
,

c2
n,k (τ) = λn(τ)

∫ 1
0 σ(τ,ξ)(ξ−1)cos(λn(τ)ξ)sin(λk (τ)ξ)dξ∫ 1

0 σ(τ,ξ)sin2(λk (τ)ξ)dξ
,

c3
n,k (τ) = λ2

n(τ)sin(λn(τ))
∫ 1

0 σ(τ,ξ)ξsin(λk (τ)ξ)dξ∫ 1
0 σ(τ,ξ)sin2(λk (τ)ξ)dξ

,

dk (τ) =
∫ 1

0 σ(τ,ξ)sin(λk (τ)ξ)dξ∫ 1
0 σ(τ,ξ)sin2(λk (τ)ξ)dξ

. (3.12)

To simplify the formulas, we define a new dependent variable T̃k (s) = T̄k (s,τ), for k =
1,2,3, ..., yielding:

T̃k,ss +λ2
k (τ)T̃k = ε(v0 − c0 l̄ (τ))T̃k,s −2

∑∞
n=1 ε(c1

n,k (τ) dλn (τ)
dτ − v0c2

n,k (τ))T̃n,s

+∑∞
n=1 ε

m(c0−cuo )
ρL c3

n,k (τ)T̃n,s +εα2β0 l̄ 2(τ)dk (τ)sin(αl0
εv0

(ev0τ−1))

+O(ε2),

T̃k (0) = Fk ,

T̃k,s (0) =Gk ,
(3.13)

where Fk = O(ε), Gk = O(ε), s ≥ 0 and τ = εs. In the next subsection we will use the
averaging method to detect resonance zones in problem (3.13), and to determine time-
scales which describe the solutions of (3.13) accurately.
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3.3.3. AVERAGING AND RESONANCE ZONES
The solution of the linear ordinary differential equation (3.13) with the slowly varying fre-
quencies λk (τ) as given by (3.10), can be approximated by using the averaging method.
In this section, by an interior layer analysis (including a rescaling and balancing proce-
dure), the slowly varying frequenciesλk (τ) lead to a description of many resonance man-
ifolds and lead to time-scales which describe the solution of (3.13) sufficiently accurate.
For the sake of convenience let us introduce the following standard transformations:

φk (s) =
∫ s

0
λk (εs̄)ds̄ and Φ= αl0

εv0
(ev0τ−1), (3.14)

and according to an adapted version of the Lagrange variation of constants method, we
assume that T̃k (s), T̃k,s (s) are described by Ak (s),Bk (s) in the following way:

T̃k (s) = Ak (s)sin(φk (s))+Bk (s)cos(φk (s)),
T̃k,s (s) = λk (τ)Ak (s)cos(φk (s))−λk (τ)Bk (s)sin(φk (s)). (3.15)

Then, by substituting (4.19) into problem (3.13), we obtain the following problem (where
the dot · represents differentiation with respect to s):

Ȧk = Ãk (s)+ε
α2β0 l̄ 2dk (τ)

2λk (τ) (sin(Φ+φk )+ sin(Φ−φk )),

Ḃk = B̃k (s)+ε
α2β0 l̄ 2dk (τ)

2λk (τ) (cos(Φ+φk )−cos(Φ−φk )),

τ̇= ε,

Φ̇=αl0ev0τ,

φ̇k =λk (τ),

(3.16)

where

Ãk (s) = 1

2
ε(v0 − c0 l̄ (τ))[Ak (s)(cos(2φk (s))+1)−Bk (s)sin(2φk (s))]

+εdλk (τ)

dτ

1

2λk
[Bk (s)sin(2φk (s))− Ak (s)(cos(2φk (s))+1)]

−εηk,k (τ)[Ak (s)(cos(2φn(s))+1)−Bk (s)sin(2φk (s))]

−2ε
∑

n ̸=k

λn(τ)

λk (τ)
ηn,k (τ)[An(s)cos(φn(s))cos(φk (s))−Bn(s)sin(φn(s))cos(φk (s))],

B̃k (s) = −1

2
ε(v0 − c0 l̄ (τ))[Ak (s)sin(2φk (s))−Bk (s)(1−cos(2φk (s)))]

+εdλk (τ)

dτ

1

2λk
[Ak (s)sin(2φk (s))−Bk (s)(1−cos(2φk (s)))]

+εηk,k (τ)[Ak (s)sin(2φk (s))−Bk (s)(1−cos(2φn(s)))]

+2ε
∑

n ̸=k

λn(τ)

λk (τ)
ηn,k (τ)[An(s)cos(φn(s))sin(φk (s))

−Bn(s)sin(φn(s))sin(φk (s))], (3.17)

and ηn,k (τ) = c1
n,k (τ) dλn (τ)

dτ − v0c2
n,k (τ)− m(c0−cuo )

2ρL c3
n,k (τ). Resonance in (3.16), can be ex-

pected when Φ̇− φ̇k ≈ 0, or when Φ̇+ φ̇k ≈ 0. But since αl0ev0τ and λk (τ) > 0, resonance
only will occur when

αl0ev0τ ≈λk (τ). (3.18)
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Since λk (τ) satisfies (3.10), that is, t an(λk (τ)) = ρLl0ev0τ

m
1

λk (τ) , it follows that resonance
occurs when

λk ≈ arctan(
ρL

αm
)+ (k −1)π, k = 1,2, ..., (3.19)

corresponding to the manifold τ around τk with

τk = 1

v0
ln(

1

αl0
λk ) = 1

v0
ln(

arctan( ρL
αm )+ (k −1)π

αl0
), λk ≥αl0, k = 1,2, ... (3.20)

From (3.20), we can conclude that no matter what the frequency is, there will be many
resonance manifolds.

Outside the resonance manifold, we can average the right-hand side of the equations
in (3.16) over φk and Φ while keeping Ak and Bk fixed [56, 57, 58]. Note that Ãk (s) and
B̃k (s) are slowly varying, therefore they will not average out. The last terms of the first
and second equations in (3.16) is the fast varying terms outside the resonance manifolds,
therefore they will average out. Thus, the averaged equation for Ak and Bk now become{

Ȧa
k = [ 1

2ε(v0 − c0 l̄ (τ))−εc1
k,k (τ) dλk (τ)

dτ +εv0c2
k,k (τ)+εm(c0−cuo )

2ρL c3
k,k (τ)−ε

dλk (τ)
dτ

1
2λk

]Aa
k ,

Ḃ a
k = [ 1

2ε(v0 − c0 l̄ (τ))−εc1
k,k (τ) dλk (τ)

dτ +εv0c2
k,k (τ)+εm(c0−cuo )

2ρL c3
k,k (τ)−ε

dλk (τ)
dτ

1
2λk

]B a
k ,

(3.21)
where the upper index a indicates that this is the averaged function. From the expression
for c1

k,k > 0, c2
k,k =− 1

2 and c3
k,k = 0 in (3.12), we then obtain

Aa
k (s) = Gk

λk (0)
e−

∫ τ
0 ζ(ϱ)dϱ, B a

k (s) = Fk e−
∫ τ

0 ζ(ϱ)dϱ, (3.22)

with

ζ(τ) = 1

2
c0 l̄ (τ)+ c1

k,k (τ)
dλk (τ)

dτ
+ dλk (τ)

dτ

1

2λk
, (3.23)

and Gk =O(ε), Fk =O(ε) are given in (3.13). Hence, outside the resonance manifold the
solution of system (3.13) is given by

T̃k (s) = Gk

λk (0)
e−

∫ εs
0 ζ(ϱ)dϱ sin(φk (s))+Fk e−

∫ εs
0 ζ(ϱ)dϱ cos(φk (s)), (3.24)

where s =O( 1
ε ). Observe that outside the resonance zone T̃k (s) remains order ε.

To study the behavior of the solution in the resonance zone we introduce ψ=Φ(t )−
φk (t ) and rescale τ−τk = δ(ε)τ̄ with τ̄=O(1) and τk is given by (3.20). System (3.13) then
becomes: Ȧk = Ãk (s)+ε

α2β0 l̄ 2(τ)dk (τ)
2λk (τ) (sin(Φ+φk )+ sin(ψ)),

Ḃk = B̃k (s)+ε
α2β0 l̄ 2(τ)dk (τ)

2λk (τ) (cos(Φ+φk )−cos(ψ)),
(3.25)

combined with the slow/fast variables

τ̇= ε,
˙̄τ= ε

δ(ε) ,

Φ̇=λk (τk )ev0δ(ε)τ̄,

φ̇k =λk (τk +δ(ε)τ̄),

ψ̇=λk (τk )ev0δ(ε)τ̄−λk (τk +δ(ε)τ̄) = (v0λk (τk )− dλk
dτ |τ=τk )δ(ε)τ̄+O(δ2(ε)),

(3.26)
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where Ãk (s) and B̃k (s) are given by (3.17). By differentiating (3.10) with respect to τ, we
obtain

1

cos2(λk (τ))

dλk (τ)

dτ
= ρLv0 l̄ (τ)

mλk (τ)
− ρLl̄ (τ)

mλ2
k (τ)

dλk (τ)

dτ

⇒ dλk (τ)

dτ
= ρLv0 l̄ (τ)λk (τ)cos2(λk (τ))

mλ2
k (τ)+ρLl̄ (τ)cos2(λk (τ))

. (3.27)

This implies for ψ̇ (see (3.26)) that

ψ̇= γδ(ε)τ̄+O(δ2(ε)), γ= mv0λ
3
k (τk )

mλ2
k (τk )+ρLl̄ (τk )cos2(λk (τk ))

̸= 0. (3.28)

It now follows from (3.26) and (3.28) that a balance in system (3.26) occurs by choosing
ε

δ(ε) = δ(ε), that is, δ(ε) = p
ε. This is the size of the resonance zone. So, together with

τ−τk = δ(ε)τ̄, it follows from (3.26) that

τ̄=p
ε(s − sk ), sk = τk

ε
. (3.29)

Further, from (3.28), we obtain ψ(s) =ψ(sk )+ 1
2γε(s−sk )2. Hence, in the resonance zone,

we can write

sin(ψ(s)) = sin(
1

2
γε(s − sk )2 + αl0

εv0
(eεv0sk −1)−φk (sk )), sk = τk

ε
, (3.30)

where τk is given by (3.20). So, let us average system (3.25) over the fast variables. Then,
the averaged equations for Ak and Bk become

Ȧa
k =−εζ(τ)Aa

k + εα2β0 l̄ 2(τ)dk (τ)

2λk (τ)
sin(ψ(s)), Ḃ a

k =−εζ(τ)B a
k − εα2β0 l̂ 2(τ)dk (τ)

2λk (τ)
cos(ψ(s)),

(3.31)
where the upper index a indicates that this is the averaged function. It follows from (3.30)
and (3.31) that Aa

k can be written as

Aa
k (s) = Gk

λk (0)
e−

∫ εs
0 ζ(ϱ)dϱ

+εα2β0e−
∫ εs

0 ζ(ϱ)dϱ
∫ s

0

l̄ 2(εs̄)dk (εs̄)

2λk (εs̄)
e−

∫ −εs̄
0 ζ(ϱ)dϱ sin[

1

2
γε(s̄ − sk )2

+αl0

εv0
(eεv0sk −1)−φk (sk )]ds̄,

where ζ(τ) is given by (3.23). For s̄ = sk +O( 1p
ε

), τk = εsk , we can observe that

l̄ 2(εs̄)dk (εs̄)

2λk (εs̄)
e−

∫ −εs̄
0 ζ(ϱ)dϱ = l̄ 2(εsk )dk (εsk )

2λk (εsk )
e−

∫ −εsk
0 ζ(ϱ)dϱ+O(

p
ε).

Then, it follows from (3.32) that

Aa
k (s) = Gk

λk (0)
e−

∫ εs
0 ζ(ϱ)dϱ
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+εα2β0 l̄ 2(τk )dk (τk )

2λk (τk )

∫ s

0
si n[

1

2
γε(s̄ − sk )2 + αl0

εv0
(eεv0sk −1)−φk (sk )]ds̄

+high order terms in ε.

By setting u =
√

1
2γε(s̄ − sk ) , we obtain

ε

∫ s

0
sin[

1

2
γε(s̄ − sk )2 + αl0

εv0
(eεl1sk −1)−φk (sk )]ds̄

= p
εᾱ

∫ p
εβ̄(s−sk )

−pεβ̄sk

sin(u2 + αl0

εv0
(eεv0sk −1)−φk (sk ))du

= p
εᾱsin(

αl0

εv0
(eεv0sk −1)−φk (sk ))CF r (s, sk )

+pεᾱcos(
αl0

εv0
(eεv0sk −1)−φk (sk ))SF r (s, sk ),

where γ is given by (3.28), and where ᾱ=
√

2
γ , β̄=

√
γ
2 and

CF r (s, sk ) =
∫ p

εβ̄(s−sk )

−pεβ̄sk

cos(u2)du, SF r (s, sk ) =
∫ p

εβ̄(s−sk )

−pεβ̄sk

sin(u2)du, sk = τk

ε
. (3.32)

Actually the presence of the Fresnel functions CF r (s) and SF r (s) cause resonance jumps
in the system. The integrals CF r (s) and SF r (s) are plotted in Figure 3.2 with ε = 0.01,
β̄= 1, and sk = 100, respectively. B a

k can also be approximated in a similar expression as

Figure 3.2: (a) CF r (s, sk ) has a resonance jump from O(
p
ε) to O(1) around s=100. (b) SF r (s, sk ) has a resonance

jump from O(
p
ε) to O(1) around s=100.

for Aa
k . So, in the resonance zone, the solution of T̃k (s) for problem (3.13) is given by

T̃k (s) = p
εMk [(sin(

αl0

εv0
(eεv0sk −1)−φk (sk ))CF r (s, sk )

+cos(
αl0

εv0
(eεv0sk −1)−φk (sk ))SF r (s, sk ))sin(φk (s))− (cos(

αl0

εv0
(eεv0sk −1)

−φk (sk ))CF r (s, sk )− sin(
αl0

εv0
(eεv0sk −1)−φk (sk ))SF r (s, sk ))cos(φk (s))]
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+O(ε),

where CF r (s, sk ) and SF r (s, sk ) are given in (3.32), and

Mk = ᾱα2β0 l̄ 2(τk )dk (τk )

2λk (τk )
, (3.33)

where ᾱ is given in (3.32). Thus, the resonance always occurs for s near sk and the size of
the resonance zone in s is of O( 1p

ε
). For O(ε) initial conditions and for an O(ε) external,

harmonic excitation, an O(
p
ε) amplitude modal response will occur. And for a fixed fun-

damental excitation frequency α, many resonance manifolds arise. The solution ū(ξ, s)
in (3.5) (see also Appendix B.3 (3.65)) is given by

ū(ξ, s) =
∞∑

k=1

p
εMk [(sin(

αl0

εv0
(eεv0sk −1))CF r (s, sk )+cos(

αl0

εv0
(eεv0sk

−1))SF r (s, sk ))sin(
∫ s

sk

λk (εs̄)ds̄)+ (−cos(
αl0

εv0
(eεv0sk −1))CF r (s, sk )

+sin(
αl0

εv0
(eεv0sk −1))SF r (s, sk ))cos(

∫ s

sk

λk (εs̄)ds̄)]sin(λk (εs)ξ)

+O(ε). (3.34)

In the next section, the timescales as found by using the averaging method in this section
will be used again to construct accurate approximations of the solutions for problem
(3.13) by using a three-timescales perturbation method.

3.4. FORMAL APPROXIMATION

3.4.1. ANALYSIS RESULTS BY USING A THREE-TIMESCALES PERTURBATION

METHOD

I N this section the solution of problem (3.13) will be approximated by using a three-
timescales perturbation method. This method can be applied to construct more ac-

curate approximations of the solutions for problem (3.13) and can be applied to test the
accuracy of the analytical results as obtained in the previous sections. It will turn out
that the approximation as constructed in this section coincides up to order

p
ε with the

approximation as constructed in the previous section by using the averaging method.
The Liouville-Green transformation and the following standard transformations are in-
troduced (for fixed k) to study problem (3.13):

T̃k,s =λk (τ)T̂k,φk
, T̃k,ss =λ2

k (τ)T̂k,φkφk
+ε

dλk (τ)

dτ
T̂k,φk

, (3.35)
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where T̃k (s) = T̂k (φk (s)) and φk (s) is given by (3.14). Substituting the transformations
(3.35) into (3.13), we obtain the following problem for T̂k (φk ):



T̂k,φkφk
+ T̂k =−εdλk (τ)

dτ
1

λ2
k (τ)

T̂k,φk
+ε(v0 − c0 l̄ (τ)) 1

λk (τ) T̂k,φk
+2

∑∞
n=1 ε

v0c2
n,k (τ)

λn (τ) T̂n,φn

−2
∑∞

n=1 εc1
n,k (τ) dλn (τ)

dτ
1

λn (τ) T̂n,φn +
∑∞

n=1 ε
m(c0−cuo )

ρL c3
n,k (τ) 1

λn (τ) T̂n,φn

+εα2β0 l̄ 2(τ) dk (τ)
λ2

k (τ)
sin(αl0

εv0
(ev0τ−1))+O(ε2), t ≥ 0,

T̂k (0) = Fk ,

T̂k,φk
(0) = Gk

λk (0) ,
(3.36)

where τ = εs is a function of φk . In the previous section, it was shown that (under cer-
tain conditions on the fundamental excitation frequency α) resonance can occur around
times sk , for k = 1,2, .... In order to construct accurate approximations in the neighbor-
hood of sk , we rescale s with s = s̃ + sk , τ = εs̃ + τk , and φk (s) = φk (s̃ + sk ) = φ̃k (s̃) =∫ s̃
−sk

λk (τk +εs̄)ds̄. So, problem (3.36) can be rewritten for the function T̂k (φ̃k ) in:



T̂k,φ̃k φ̃k
+ T̂k =−εdλk (τ)

dτ
1

λ2
k (τ)

T̂k,φ̃k
+ε(v0 − c0 l̄ (τ)) 1

λk (τ) T̂k,φ̃k
+2

∑∞
n=1 ε

v0c2
n,k (τ)

λn (τ) T̂n,φ̃n

−2
∑∞

n=1 εc1
n,k (τ) dλn (τ)

dτ
1

λn (τ) T̂n,φ̃n
+∑∞

n=1 ε
m(c0−cuo )

ρL c3
n,k (τ) 1

λn (τ) T̂n,φ̃n

+εα2β0 l̄ 2(τ) dk (τ)
λ2

k (τ)
sin(αl0

εv0
(ev0τ−1))+O(ε2), t ≥ 0,

T̂k (0) = Fk ,

T̂k,φ̃k
(0) = Gk

λk (0) ,
(3.37)

where τ is a function of φ̃k . Next we study problem (3.37) in detail. The application
of the straightforward expansion method to solve (3.37) will result in the occurrence of
so-called secular terms which cause the approximations of the solutions to become un-
bounded on long timescales. And it has been shown in the previous section that the O(ε)
excitation can produce timescale of O(

p
ε). Therefore, to avoid these secular terms, we

introduce three timescales s̃0 = s̃, s̃1 =
p
εs̃, s̃2 = εs̃, τ= s̃2 +τk , and so φ̃k,0, φ̃k,1, φ̃k,2 are

introduced as follows:

φ̃k,0 =
∫ s̃0

a
λk (τk +εs̄)ds̄, φ̃k,1 =

∫ s̃1

b
λk (τk +

p
εs̄)ds̄, φ̃k,2 =

∫ s̃2

c
λk (τk + s̄)ds̄,

where a =−sk , b =−pεsk , c =−εsk . These scalings are based on the size of the reso-
nance zone (which has been found in the previous section), and on the natural scalings
for weakly nonlinear equations such as (3.37). By using the three timescales perturba-
tion method, the function T̂k (φ̃k ;

p
ε) is supposed to be a function of φ̃k,0, φ̃k,1, φ̃k,2, that

is,

T̂k (φ̃k ;
p
ε) = wk (φ̃k,0, φ̃k,1, φ̃k,2;

p
ε). (3.38)
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By substituting (3.38) into (3.37), we obtain the following equations up to O(ε
p
ε):

∂2wk

∂φ̃2
k,0

+wk +2
p
ε

∂2wk

∂φ̃k,0∂φ̃k,1
+ε(2 ∂2wk

∂φ̃k,0∂φ̃k,2
+ ∂2wk

∂φ̃2
k,1

)+2ε
p
ε

∂2wk

∂φ̃k,1∂φ̃k,2

= ε[−dλk (τ)
dτ

1
λ2

k (τ)
∂wk

∂φ̃k,0
+ (v0 − c0 l̄ (τ)) 1

λk (τ)
∂wk

∂φ̃k,0
+α2β0 l̄ 2(τ) dk (τ)

λ2
k (τ)

sin(αl0
εv0

(ev0τ−1))

−2
∑∞

n=1(c1
n,k (τ) dλn (τ)

dτ − v0c2
n,k (τ)− m(c0−cuo )

2ρL c3
n,k (τ)) 1

λn (τ)
∂wn

∂φ̃n,0
]

+εpε[−dλk (τ)
dτ

1
λ2

k (τ)
∂wk

∂φ̃k,1
+ (v0 − c0 l̄ (τ)) 1

λk (τ)
∂wk

∂φ̃k,1

−2
∑∞

n=1(c1
n,k (τ) dλn (τ)

dτ − v0c2
n,k (τ)− m(c0−cuo )

2ρL c3
n,k (τ)) 1

λn (τ)
∂wn

∂φ̃n,1
],

wk (0,0,0;
p
ε) = Fk ,

∂wk

∂φ̃k,0
(0,0,0;

p
ε)+p

ε
∂wk

∂φ̃k,1
(0,0,0;

p
ε)+ε

∂wk

∂φ̃k,2
(0,0,0;

p
ε) = Gk

λk (0) ,

(3.39)
where Fk = εF̄k and Gk = εḠk are O(ε), and τ is a function of φ̃k,2. By using a three-
timescales perturbation method, the function wk (φ̃k,0, φ̃k,1, φ̃k,2;

p
ε) is approximated by

the formal asymptotic expansion

wk (φ̃k,0, φ̃k,1, φ̃k,2;
p
ε) = p

εwk,0(φ̃k,0, φ̃k,1, φ̃k,2;
p
ε)+εwk,1(φ̃k,0, φ̃k,1, φ̃k,2;

p
ε)

+εpεwk,2(φ̃k,0, φ̃k,1, φ̃k,2;
p
ε)+O(ε2). (3.40)

By substituting (3.40) into problem (3.39), and after equating the coefficients of like pow-
ers in

p
ε, we obtain as:

the O(
p
ε)-problem:

∂2wk,0

∂φ̃2
k,0

+wk,0 = 0, wk,0(0,0,0) = 0,
∂wk,0

∂φ̃k,0
(0,0,0) = 0, (3.41)

the O(ε)-problem:

∂2wk,1

∂φ̃2
k,0

+wk,1 = −2
∂2wk,0

∂φ̃k,0∂φ̃k,1
+α2β0 l̄ 2(τ)

dk (τ)

λ2
k (τ)

sin(
αl0

εv0
(ev0τ−1)),

wk,1(0,0,0) = F̄k ,
∂wk,1

∂φ̃k,0
(0,0,0) =−∂wk,0

∂φ̃k,1
(0,0,0)+ Ḡk

λk (0)
, (3.42)

and the O(ε
p
ε)-problem:

∂2wk,2

∂φ̃2
k,0

+wk,2 = −2
∂2wk,1

∂φ̃k,0∂φ̃k,1
−2

∂2wk,0

∂φ̃k,0∂φ̃k,2
− ∂2wk,0

∂φ̃2
k,1

+ [(v0 − c0 l̄ (τ))λk (τ)

−dλk (τ)

dτ
]

1

λ2
k (τ)

∂wk,0

∂φ̃k,0
−2

∞∑
n=1

[c1
n,k (τ)

dλn(τ)

dτ
− v0c2

n,k (τ)

−m(c0 − cuo)

2ρL
c3

n,k (τ)]
1

λn(τ)

∂wk,0

∂φ̃k,0
,

wk,2(0,0,0) = 0,
∂wk,2

∂φ̃k,0
(0,0,0) =−∂wk,0

∂φ̃k,2
(0,0,0)− ∂wk,1

∂φ̃k,1
(0,0,0). (3.43)

The O(
p
ε)− problem has as solution

wk,0(φ̃k,0, φ̃k,1, φ̃k,2;
p
ε) =Ck,1(φ̃k,1, φ̃k,2)sin(φ̃k,0)+Ck,2(φ̃k,1, φ̃k,2)cos(φ̃k,0), (3.44)
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where Ck,1 and Ck,2 are still unknown functions of the slow variables φ̃k,1 and φ̃k,2, and
they can be determined by avoiding secular terms in the solutions of the O(ε)− and the
O(ε

p
ε)− problems (see Appendix B.4). Before entering the resonance zone, the follow-

ing result is found:

Ck,1(φ̃k,1, φ̃k,2) = 0, Ck,2(φ̃k,1, φ̃k,2) = 0, (3.45)

and inside of the resonance zone, to avoid secular terms in the solution wk,1 and wk,2, it
turns out that

Ck,1(φ̃k,1, φ̃k,2) = ᾱα2β0 l̄ 2(τ)
dk (τ)

2λk (τ)
[sin(ϑ(sk ))C̄F r (s̃1)+cos(ϑ(sk ))S̄F r (s̃1)],

Ck,2(φ̃k,1, φ̃k,2) = ᾱα2β0 l̄ 2(τ)
dk (τ)

2λk (τ)
[cos(ϑ(sk ))C̄F r (s̃1)− sin(ϑ(sk ))S̄F r (s̃1)], (3.46)

where γ is given by (3.28), ᾱ and β̄ are given by (3.32),

ϑ(sk ) = αl0

εv0
(eεv0sk −1)−φk (sk ),

C̄F r (s̃1) =
∫ β̄s̃1

β̄b
cos(u2)du, S̄F r (s̃1) =

∫ β̄s̃1

β̄b
sin(u2)du. (3.47)

Further, to obtain more accurate approximations of problem (3.39), the O(ε)− prob-
lem and the O(ε

p
ε)− problem can also be solved by using a similar analysis as for the

O(
p
ε)− problem in Appendix B.4. At this moment, only the first term in the expansion

of the solution for the cable problem is important from the physical point of view. So, to
shorten the paper, we are not interested in high-order approximations.

Thus, from (3.40), an approximation of the solution of Eq.(3.39) is given by w(ξ, s) =∑∞
n=1

p
εwn,0+O(ε), where wn,0, is given by (3.44). It follows from (3.20), for a given value

of α, that around τ = τn = 1
v0

ln(
ar ct an( ρL

αm )+(n−1)π
αl0

) the n-th oscillation mode jumps up

from O(ε) to O(
p
ε). For such a jump the inequality ar ct an( ρL

αm )+ (n −1)π ≥ αl0 needs
to be satisfied. This implies that it might occur that the first few modes do not show this
jump, but all that the higher order modes do. Before entering the resonance zone for the
n-th oscillation mode wn,0 ≡ 0 and in the resonance zone the n-th oscillation mode wn,0

is given by

wn,0(φ̃n,0, φ̃n,1, φ̃n,2;
p
ε)

= 1

2
α2β0 l̄ 2(τn)

dn(τn)

λn(τn)
ᾱ[sin(ϑ(sn))C̄F r (s̃1)+cos(ϑ(sn))S̄F r (s̃1)]sin(φ̃n,0)

−1

2
α2β0 l̄ 2(τn)

dn(τn)

λn(τn)
ᾱ[cos(ϑ(sn))C̄F r (s̃1)− sin(ϑ(sn))S̄F r (s̃1)]cos(φ̃n,0)

= Mn[(sin(
αl0

εv0
(eεv0sn −1))C̄F r (s̃1)+cos(

αl0

εv0
(eεv0sn −1))S̄F r (s̃1))sin(φ̃n,0 −φn(sn))

+(−cos(
αl0

εv0
(eεv0sn −1))C̄F r (s̃1)

+sin(
αl0

εv0
(eεv0sn −1))S̄F r (s̃1))cos(φ̃n,0 −φn(sn))], (3.48)
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where φ̃k,0 −φk (sk ) = ∫ s
sk
λk (εs̄)ds̄, γ, ᾱ, ϑ(sn) , C̄F r (s̃1) and S̄F r (s̃1) are given by (3.28),

(3.32), (3.47) and Mn is given by (3.33). The solution wn,0 in (3.48) implies a resonance
jump from O(ε) to O(

p
ε) around τn in the n-th oscillation mode. Thus, the solution

ū(ξ, s) in (3.5) (see also Appendix B (3.65)) is given by

ū(ξ, s) =
∞∑

k=1

p
εwk,0(φ̃k,0, φ̃k,1, φ̃k,2;

p
ε)sin(λk (εs)ξ)+O(ε). (3.49)

The solution in (3.49) is in agreement with (3.34), that is, the one obtained by the aver-
aging method. All in all, introducing the following notation χ(t ) = 1

εv0
ln( l (t )

l0
), according

to the solution of ū(ξ, s) in (3.49), we obtain as approximation for the solution ũ(ξ, t ) of
problem (3.3)

ũ(ξ, t ) =
∞∑

k=1

p
εMk [(sin(

αl0

εv0
(eεv0sk −1))C̄F r (

p
ε(χ(t )− sk ))

+cos(
αl0

εv0
(eεv0sk −1))S̄F r (

p
ε(χ(t )− sk )))sin(

∫ χ(t )

sk

λk (εs̄)ds̄)

+(−cos(
αl0

εv0
(eεv0sk −1))C̄F r (

p
ε(χ(t )− sk ))

+sin(
αl0

εv0
(eεv0sk −1))S̄F r (

p
ε(χ(t )− sk )))cos(

∫ χ(t )

sk

λk (εs̄)ds̄)]sin(λk (εχ(t ))ξ)

+O(ε), (3.50)

where sk = τk
ε and τk is given by (3.20), C̄F r , S̄F r (s̃1) are given by (3.47), Mk is given by

(3.33) and ξ= x
l (t ) .

3.4.2. NUMERICAL RESULTS
In this section we will present numerical simulations of the vibration response as com-
puted and based on the analytical expressions (3.50). The computations are performed
by using the following parameters:

ε= 0.01, l0 = 3, v0 = 1, c0 = 2, cuo = 1, ρ = 1, m = 10, L = 10, β0 = 1, α= 1. (3.51)

For simplicity, let us assume that only the initial displacement is prescribed, so that

ũ0(ξ) = εsin(1.5ξ), ũ1(ξ) = 0, 0 ≤ ξ≤ 1. (3.52)

It is worth mentioning that the following numerical results are computed based on O(ε)
approximations. Higher-order approximations are neglected due to their insignificant
and small contribution to the solution. By using (3.18), we see that the resonance occurs
around time instants sk satisfying

αl0ev0τ =λk , τ= εs. (3.53)

By using the Liouville-Green transformation with d s
d t = 1

l (t ) , we obtain αl (t ) =λk , l (t ) =
l0 +εv0t , which implies that

tk = λk −αl0

εαv0
, k ∈N, (3.54)
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where λk is given by (3.19). From the analysis in section 4.1, we observe that the reso-
nance times depend on the mode numbers k. Resonance for the first oscillation mode
does not occur in this numerical example. For the second, third and forth oscillation
modes, resonance emerges for times t2 ≈ 92.7, t3 ≈ 406.8, t4 ≈ 721.0, respectively. The
solution ũ(ξ, t ) in (3.50), and its corresponding energy are illustrated in Figure 3.3, re-
spectively.

Figure 3.3: Perturbation method: (a) Displacements of the mid-point of the cable. (b) The energy of the cable.
The shadowed bands represent the resonance zones.

3.5. NUMERICAL APPROXIMATIONS

I N this section we will directly integrate problem (3.3) with a numerical method. To
solve (3.3) numerically, we first rewrite (3.3) as
ũt t − 1

l 2 ũξξ = 2v
l ξũξt − 2v

l ũξt − cũt +O(ε2), 0 ≤ ξ≤ 1, t > 0,

ũξξ(1, t )+ ρLl
m ũξ(1, t ) = [(c − cu)l 2ũt ]|ξ=1 +O(ε2), ũ(0, t ) = ẽ(t ) =βsin(αt ), t > 0,

ũ(ξ,0) = ũ0(ξ), ũt (ξ,0) = ũ1(ξ), 0 ≤ ξ≤ 1.
(3.55)

By using the transformation ũ(ξ, t ) = ǔ(ξ, t ) +βsin(αt ) + ξml
ρL (c − cu)ǔt (1, t ), problem

(3.55) can be written as
ǔt t − 1

l 2 ǔξξ = 2v
l (ξ−1)ǔξt − cǔt +α2βsin(αt )− mξ(c−cu )

ρLl ǔξξt (1, t )+O(ε2),

0 ≤ ξ≤ 1, t > 0,

ǔξξ(1, t )+ ρLl
m ǔξ(1, t ) =O(ε2), ǔ(0, t ) = 0, t > 0,

ǔ(ξ,0) = ǔ0(ξ), ǔt (ξ,0) = ǔ1(ξ), 0 ≤ ξ≤ 1,

(3.56)

where 0 ≤ ξ ≤ 1 and t > 0. For problem (3.56), we first discretize the partial differential
equation in (3.56) in the ξ− coordinate by using a central finite difference scheme. Then,
we rewrite the so-obtained discretized equation in a matrix form and use the numeri-
cal time integration method of Crank-Nicolson(see Appendix B.5). We will use the same
parameter values (3.51) and initial conditions (3.52) as for the analytic approximation,
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which is presented in the previous section (see also Figure 3.3). Figure 4.3 show the dis-
placements at ξ= 0.5 and the vibratory energy of the cable, respectively, for times up to
t = 850.

Comparison with Figure 3.3: both Figure 3.3 and Figure 4.3 illustrate that resonances
emerge at times t1 ≈ 92.7, t2 ≈ 406.8, t3 ≈ 721.0. In the resonance zones the displace-
ments and the energy increase, and between these zones, stay constant (approximately).
Around the first resonance time t1, the displacement amplitudes jump up from O(ε) to
O(

p
ε). Around the second resonance time t2 and the third resonance time t3, the am-

plitudes change again at the O(
p
ε) level, where ε is a small parameter with ε = 0.01.

Moreover, we can observe that, between the resonance times, the frequency ranges are
similar in Figure 3.3 and Figure 4.3, and the sizes of the resonance zones are of O( 1p

ε
).

Thus, the numerical simulations in Figure 4.3 agree very well with the analytical results
as presented in Figure 3.3, respectively.

Figure 3.4: Numerical method: (a) Displacements of the mid-point of the cable. (b) The energy of the cable.
The shadowed bands represent the resonance zones.

3.6. CONCLUSIONS
In this chapter, the longitudinal vibrations and associated resonances in an elevator sys-
tem due to a harmonic excitation at one of its boundaries have been studied. The prob-
lem is described by a partial differential equation (PDE) on a time-varying spatial inter-
val with a small harmonic disturbance at one end and a moving nonclassical boundary
condition at the other end. By assuming that the small harmonic boundary disturbance
is of order ε and by assuming that the initial values are also small and of order ε, it is
shown in this paper that for a given arbitrary boundary disturbance frequency, many os-
cillation modes jump up from O(ε) to O(

p
ε). To obtain these results an adapted version

of the method of separation of variables is introduced and presented, and perturbation
methods, (such as averaging methods, singular perturbation techniques, and multiple
timescales perturbation methods) are used. Furthermore, explicit, and accurate approx-
imations of the solution of the initial-boundary value problem are constructed. These
approximations are valid on time-scales of order ε−1. Also approximations of the solu-
tion of the initial-boundary value problem are computed by using a numerical method.
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These numerical approximations are in full agreement with the analytically obtained
approximations. The presented methods clearly indicate how more complicated prob-
lems can now be treated analytically. Also more complicated boundary conditions and
changes of cable length over time can be included in the analysis of these problems. Fi-
nally, it should be remarked that we intend to apply the presented analytical approach
to nonlinearly coupled transverse and longitudinal vibrations of axially moving cables.
For these problems the partial differential equations, the boundary conditions and the
nonlinear terms are expected to give challenges, which might be solved by applying the
approach as has been presented in this chapter.

APPENDIX B
APPENDIX B.1 THE DERIVATION OF MOTION (3.1)
According to Figure 3.1, the partial differential equation (PDE) can be derived by Hamil-
ton’s variational principle:∫ t2

t1

(δEk (t )−δEp (t )+δWc (t ))dt = 0. (3.57)

The Kinetic energy Ek (t ) can be represented as Ek (t ) = 1
2ρ

∫ l (t )
0 ( Du

Dt + v)2dx + 1
2 m( Du

Dt +
v)2|x=l (t ), the Potential energy Ep (t ) can be expressed as Ep (t ) = 1

2 E A
∫ l (t )

0 u2
x dx

+∫ l (t )
0 Tux dx +Eg s −

∫ l (t )
0 ρg udx −mg u|x=l (t ), and

δEk (t )−δEp (t ) = ρ

∫ l (t )

0
(

Du

Dt
+ v)δ

Du

Dt
dx +m(

Du

Dt
+ v)δ

Du

Dt
|x=l (t )

−[E A
∫ l (t )

0
uxδux dx +

∫ l (t )

0
Tδux dx

−
∫ l (t )

0
ρgδudx −mgδu|x=l (t )], (3.58)

where the operator Du
Dt is defined as Du

Dt = ∂u
∂t + v ∂u

∂x = ut + vux . The virtual work δWc

done by the distributed and the lumped damping force is given by

δWc (t ) =−
∫ l (t )

0
c

Du

Dt
δudx − cu

Du

Dt
δu|x=l (t ). (3.59)

By substituting the equations (3.58)-(3.59) into (3.57), we obtain∫ t2

t1

∫ l (t )

0
ρ(

Du

Dt
+ v)δ

Du

Dt
dxdt +

∫ t2

t1

m(
Du

Dt
+ v)δ

Du

Dt
|x=l (t )dt

−E A
∫ t2

t1

∫ l (t )

0
uxδux dxdt −

∫ t2

t1

∫ l (t )

0
Tδux dxdt +

∫ t2

t1

∫ l (t )

0
ρgδudxdt

+
∫ t2

t1

mgδu|x=l (t )dt −
∫ t2

t1

∫ l (t )

0
c

Du

Dt
δudxdt −

∫ t2

t1

cu
Du

Dt
δu|x=l (t )dt = 0. (3.60)

By integrating by parts the integrals in (3.60) it then follows that (3.60) can be rewritten
in: ∫ t2

t1

∫ l (t )

0
[−ρ(ut t +2vuxt + v2uxx )+E Auxx +Tx +ρg − c(ut + vux )]δudxdt
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+
∫ t2

t1

[−m(ut t +2vuxt + v2uxx +aux )−E Aux −T +mg − cu(ut + vux )]δu|x=l (t )dt

+
∫ t2

t1

[ρv(ut + vux + v)+E Aux +T ]δu|x=0dt = 0.

So, the initial boundary value problem of the system can be obtained as

ρ(ut t +2vuxt + v2uxx )−E Auxx −Tx −ρg + c(ut + vux ) = 0, 0 ≤ x ≤ l (t ), t > 0, (3.61)

[m(ut t +2vuxt + v2uxx )+E Aux +T −mg + cu(ut + vux )]|x=l (t ) = 0, t > 0, (3.62)

E Aux +T +ρv(ut + vux + v)|x=0 = 0, t > 0. (3.63)

Note that (3.62) and (3.63) are the natural boundary conditions. However, the natural
boundary condition (3.63) is not appropriate for our problem, since the cable at the top
has an assumed and prescribed displacement e(t ), which is supposed to be generated
by the catenary system (consisting of drum, head sheave) in vertical direction. Thus,
the boundary condition is given by u(e(t ), t ) = e(t ), t ≥ 0. By using the Taylor expansion
for u(x, t ) in x for x = 0, and by assuming that e(t ) and u(x, t ) are small, the boundary
condition

e(t ) = u(e(t ), t ) = u(0, t )+e(t )
∂u

∂x
(0, t )+O(e2(t ))

can be approximated by u(0, t ) = e(t ). Since the tension T (x, t ) is given by T (x, t ) = [m +
ρ(l (t )− x)]g , 0 ≤ x ≤ l (t ), it then follows that the initial boundary value problem for the
axially moving hoisting rope is given by (3.1).

APPENDIX B.2 TRANSFORMATION TO A FIXED DOMAIN

By introducing a new time-like variable s(t ) with ds
dt = 1

l (t ) , l (t ) = l̂ (s) = l0eεv0s , All partial

derivatives then become s = 1
εv0

ln( l (t )
l0

), ũt = 1
l̂

ūs , ũξt = 1
l̂

ūξs , ũt t = 1
l̂ 2 ūss − v

l̂
ūs , ẽ(t ) =

βsin(αl0
εv0

(eεv0s −1)), where ũ(ξ, t ) = ū(ξ, s). Substituting these derivatives into (3.3), we
obtain the following problem for ū(ξ, s):

ūss − ūξξ = vūs +2vξūξs −2vūξs − cl̂ ūs +O(ε2), 0 ≤ ξ≤ 1, s > 0,

ūss (1, s)+ ρLl̂
m ūξ(1, s) = [vl̂ ūs +2vξūξs −2vūξs − cu l̂ ūs ]|ξ=1 +O(ε2), s > 0,

ū(0, s) =βsin(αl0
εv0

(eεv0s −1)), s > 0,

ū(ξ,0) = f (ξ), ūs (ξ,0) = g (ξ), 0 ≤ ξ≤ 1,

(3.64)

where l̂ = l̂ (s), f (ξ) = ũ0(ξ) and g (ξ) = l0ũ1(ξ). By using the PDE, the boundary condition
at ξ= 1 can be rewritten and we obtain from (3.64) the following problem:

ūss − ūξξ = vūs +2vξūξs −2vūξs − cl̂ ūs +O(ε2), 0 ≤ ξ≤ 1, s > 0,

ūξξ(1, s)+ ρLl̂
m ūξ(1, s) = (c − cu)l̂ ūs (1, s)+O(ε2), s > 0,

ū(0, s) = ē(s) =βsin(αl0
εv0

(eεv0s −1)), s > 0,

ū(ξ,0) = f (ξ), ūs (ξ,0) = g (ξ), 0 ≤ ξ≤ 1.

(3.65)
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APPENDIX B.3 AN ADAPTED VERSION OF THE METHOD OF SEPARATION OF

VARIABLES
By substituting T (s,τ)X (ξ,τ) into the partial differential equation in (3.8),we obtain

Tss (s,τ)

T (s,τ)
+O(ε) = Xξξ(ξ,τ)

X (ξ,τ)
, 0 ≤ ξ≤ 1, s > 0, τ> 0. (3.66)

The O(1) part of the left-hand side of equation (3.66) is a function of s and τ, and the
right-hand side is a function of ξ and τ. To be equal, both sides need to be equal to a
function of τ. Let this function be −λ2(τ) (which will be defined later), so we obtain from

(3.66) by neglecting terms of order ε: Tss (s,τ)
T (s,τ) = Xξξ(ξ,τ)

X (ξ,τ) =−λ2(τ), implying:

Xξξ(ξ,τ)+λ2(τ)X (ξ,τ) = 0, Tss (s,τ)+λ2(τ)T (s,τ) = 0, 0 ≤ ξ≤ 1, s > 0, τ> 0. (3.67)

In accordance with the first equation for X (ξ,τ) in (3.67) and boundary conditions in
(3.8), a nontrivial solution Xn(ξ,τ) is

Xn(ξ,τ) = Bn(τ)sin(λn(τ)ξ), (3.68)

where Bn(τ) is an arbitrary function of τ only, and λn(τ) is given by (3.10). Assuming that
ρLl0

m = 1, the values of λn(0) can be obtained in Figure 3.5. It should be observed that
the eigenfunctions Xn(ξ,τ) are orthogonal on 0 < ξ < 1. And so, The general solution

Figure 3.5: For s=0, intersection points of y = t anλ and y = 1
λ

are giving λn (0).

of (3.7) - (3.8) can be expanded in the form in (3.9). By substituting Eq.(3.9) into the
nonhomogeneous governing equation and initial conditions in (3.6), we obtain

∞∑
n=1

[(T̄n,ss +2εT̄n,sτ+λ2
n(τ)T̄n)sin(λn(τ)ξ)+2εξ

dλn(τ)

dτ
T̄n,s cos(λn(τ)ξ)]

=
∞∑

n=1
ε[(v0 − c0 l̄ (τ))T̄n,s sin(λn(τ)ξ)+2(ξ−1)v0λn(τ)T̄n,s cos(λn(τ)ξ)

+m(c0 − cuo)λ2
n(τ)ξ

ρL
T̄n,s sin(λn(τ))]+εβ0α

2 l̄ 2(τ)sin(
αl0

εv0
(eεv0s −1))+O(ε2),
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∞∑
n=1

[T̄n(0,0)sin(λn(0)ξ)] =W0(ξ),

∞∑
n=1

[(T̄n,s (0,0)+εT̄n,τ(0,0))sin(λn(0)ξ)

+εT̄n(0,0)
dλn(0)

dτ
ξcos(λn(0)ξ)] =W1(ξ). (3.69)

Now, let σ(τ,ξ) = 1+ 2m
ρLl̄ (τ)

δ(ξ−1) be a weight function, where δ(ξ−1) is the Dirac delta

function (with δ(ξ−1) = 0 for ξ ̸= 1, and
∫ 1

0 δ(ξ−1)dξ= 1
2 ). By multiplying the first equa-

tion in (3.69) by σ(τ,ξ)sin(λk (τ)ξ), and the second and third equations in (3.69) with
σ(0,ξ)sin(λk (0)ξ), by integrating the so-obtained equation from ξ = 0 to ξ = 1, and by
using the fact that the sin(λk (τ)ξ) functions subject to the inner product with weight
function σ(τ,ξ) are orthogonal on 0 ≤ ξ ≤ 1, it follows that T̄k (s,τ) for k = 1,2,3, ..., and
s > 0,τ> 0 have to satisfy (3.11).

APPENDIX B.4 THE CONSTRUCTION OF THE FUNCTIONS Ck,1 AND Ck,2
First of all, by using the initial conditions in Eq.(3.41), it follows that Ck,1(0,0) =Ck,2(0,0) =
0. Then, we shall solve the O(ε)− problem (3.42). This problem (outside as well as inside
the resonance manifold) can be written as

∂2wk,1

∂φ̃2
k,0

+wk,1 = −2[
∂Ck,1

∂φ̃k,1
cos(φ̃k,0)− ∂Ck,2

∂φ̃k,1
sin(φ̃k,0)]

+α2β0 l̄ 2(τ)
dk (τ)

λ2
k (τ)

sin(
αl0

εv0
(ev0τ−1)), (3.70)

wk,1(0,0,0) = F̄k ,
∂wk,1

∂φ̃k,0
(0,0,0) =−∂wk,0

∂φ̃k,1
(0,0,0)+Ḡk . (3.71)

Outside of the resonance zone, it should be observed that the last term in Eq. (3.70)
does not give rise to secular terms in wk,1. To avoid secular terms outside the resonance
zone, it follows from (3.70) that Ck,1 and Ck,2 have to satisfy the following conditions
∂Ck,1

∂φ̃k,1
= 0,

∂Ck,2

∂φ̃k,1
= 0, which has as solutions

Ck,1(φ̃k,1, φ̃k,2) = C̄k,1(φ̃k,2), Ck,2(φ̃k,1, φ̃k,2) = C̄k,2(φ̃k,2), (3.72)

where C̄k,1 and C̄k,2 are still unknown functions of the slow variable φ̃k,2, and can be used
to avoid secular terms in the O(ε

p
ε)− problem (3.43). Since Ck,1(0,0) = Ck,2(0,0) = 0,

this implies that C̄k,1(0) = C̄k,2(0) = 0. Now we consider the O(ε) equation inside the
resonance zone and observe that inside the resonance zone, the last term in Eq. (3.70)
gives rise to secular terms in wk,1. According to (3.30), we can write sin(αl0

εv0
(ev0τ−1)) =

sin( 1
2γs̃2

1 + αl0
εv0

(eεv0sk −1)−φk (sk )+φ̃k,0), where γ is given by (3.28). So we can rewrite Eq.
(3.70) inside the resonance zone as

∂2wk,1

∂φ̃2
k,0

+wk,1 = [−2
∂Ck,1

∂φ̃k,1
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+α2β0 l̄ 2(τ)
dk (τ)

λ2
k (τ)

sin(
1

2
γs̃2

1 +
αl0

εv0
(eεv0sk −1)−φk (sk ))]cos(φ̃k,0)

+[2
∂Ck,2

∂φ̃k,1

+α2β0 l̄ 2(τ)
dk (τ)

λ2
k (τ)

cos(
1

2
γs̃2

1 +
αl0

εv0
(eεv0sk −1)−φk (sk ))]sin(φ̃k,0).

In order to remove secular terms, it follows that Ck,1 and Ck,2 have to satisfy

−2
∂Ck,1

∂φ̃k,1
+α2β0 l̄ 2(τ)

dk (τ)

λ2
k (τ)

sin(
1

2
γs̃2

1 +ϑ(sk )) = 0,

2
∂Ck,2

∂φ̃k,1
+α2β0 l̄ 2(τ)

dk (τ)

λ2
k (τ)

cos(
1

2
γs̃2

1 +ϑ(sk )) = 0,

where ϑ(sk ) = αl0
εv0

(eεv0sk −1)−φk (sk ) and
∂Ck,i

∂φ̃k,1
= 1

λk (τ)
∂Ck,i
∂s̃1

, i = 1,2. Thus,

Ck,1(φ̃k,1, φ̃k,2) = C̄k,1(φ̃k,2)+ 1

2
α2β0 l̄ 2(τ)

dk (τ)

λk (τ)

∫ s̃1

b
sin(

1

2
γs̃2

1 +ϑ(sk ))ds̄1

= C̄k,1(φ̃k,2)+ F̃ (s̃1,τ),
Ck,2(φ̃k,1, φ̃k,2) = C̄k,2(φ̃k,2)−G̃(s̃1,τ), (3.73)

where

F̃ (s̃1,τ) = ᾱα2β0 l̄ 2(τ)
dk (τ)

2λk (τ)
[sin(ϑ(sk ))C̄F r (s̃1)+cos(ϑ(sk ))S̄F r (s̃1)],

G̃(s̃1,τ) = ᾱα2β0 l̄ 2(τ)
dk (τ)

2λk (τ)
[cos(ϑ(sk ))C̄F r (s̃1)− sin(ϑ(sk ))S̄F r (s̃1)], (3.74)

and where C̄k,1 and C̄k,2 are still unknown functions of the slow variables φ̃k,2. The un-
determined behaviour with respect to φ̃k,2 can be used to avoid secular terms in the
O(ε

p
ε)− problem (3.43). Taking into account the secularity conditions, the general so-

lution of wk,1 is given by

wk,1(φ̃k,0, φ̃k,1, φ̃k,2;
p
ε) = Dk,1(φ̃k,1, φ̃k,2)sin(φ̃k,0)+Dk,2(φ̃k,1, φ̃k,2)cos(φ̃k,0), (3.75)

where Dk,1(φ̃k,1, φ̃k,2) and Dk,1(φ̃k,1, φ̃k,2) are unknown functions of φ̃k,1 and φ̃k,2. By
using the initial conditions in Eq.(3.42), the values of Dk,1(0,0) and Dk,2(0,0) are given by

the following equations Dk,1(0,0) = Ḡk
λk (0) −

∂Ck,2

∂φ̃k,1
(0,0), Dk,2(0,0) = F̄k .

The O(ε
p
ε)− problem (3.43) outside and inside the resonance manifold can be writ-

ten as

∂2wk,2

∂φ̃2
k,0

+wk,2 = −2[
∂Dk,1

∂φ̃k,1
cos(φ̃k,0)− ∂Dk,2

∂φ̃k,1
sin(φ̃k,0)]

−2[
∂Ck,1

∂φ̃k,2
cos(φ̃k,0)− ∂Ck,2

∂φ̃k,2
sin(φ̃k,0)]

−[
∂2Ck,1

∂φ̃2
k,1

sin(φ̃k,0)+ ∂2Ck,2

∂φ̃2
k,1

cos(φ̃k,0)]
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+[(v0 − c0 l̄ (τ))λk (τ)− dλk (τ)

dτ
]

1

λ2
k (τ)

[Ck,1 cos(φ̃k,0)−Ck,2 sin(φ̃k,0)]

−2[c1
k,k (τ)

dλk (τ)

dτ
− v0c2

k,k (τ)

−m(c0 − cuo)

2ρL
c3

k,k (τ)]
1

λk (τ)
[Ck,1 cos(φ̃k,0)−Ck,2 sin(φ̃k,0)]

−2
∞∑

n ̸=k
[c1

n,k (τ)
dλn(τ)

dτ
− v0c2

n,k (τ)

−m(c0 − cuo)

2ρL
c3

n,k (τ)]
1

λn(τ)
[Cn,1 cos(φ̃n,0)−Cn,2 sin(φ̃n,0)]

wk,2(0,0,0) = 0,
∂wk,2

∂φ̃k,0
(0,0,0) =−∂wk,0

∂φ̃k,2
(0,0,0)− ∂wk,1

∂φ̃k,1
(0,0,0). (3.76)

To avoid secular terms in the solution wk,2 of Eq.(3.76), outside the resonance zone, it
follows from (3.76) that Dk,1, Dk,2, C̄k,1, and C̄k,2 have to satisfy:

−2
∂Dk,1

∂φ̃k,1
−2

∂C̄k,1

∂φ̃k,2
+ ζ̄(τ)

1

λk (τ)
C̄k,1 = 0, 2

∂Dk,2

∂φ̃k,1
+2

∂C̄k,2

∂φ̃k,2
− ζ̄(τ)

1

λk (τ)
C̄k,2 = 0, (3.77)

where ζ̄(τ) = (v0 − c0 l̄ (τ))− dλk (τ)
dτ

1
λk (τ) −2c1

k,k (τ) dλk (τ)
dτ +2v0c2

k,k (τ)+2 m(c0−cuo )
2ρL c3

k,k (τ). If

we solve Eqs. (3.77) for Dk,1 and Dk,2 and integrate Eqs.(3.77) with respect to φ̃k,1, we
observe that the solutions will be unbounded in φ̃k,1 due to terms which are only de-
pending on φ̃k,2. Therefore, to have secular-free solutions, the following conditions have
to be imposed independently

∂C̄k,1

∂φ̃k,2
− 1

2
ζ̄(τ)

1

λk (τ)
C̄k,1 = 0,

∂C̄k,2

∂φ̃k,2
− 1

2
ζ̄(τ)

1

λk (τ)
C̄k,2 = 0. (3.78)

For
∂C̄k,i

∂φ̃k,2
= 1

λk (τ)
∂C̄k,i
∂s̃2

, i = 1,2, we obtain C̄k,1 = C̄k,1(0)e
∫ τ

0
1
2 ζ̄(ϱ)dϱ, C̄k,2 = C̄k,2(0)e

∫ τ
0

1
2 ζ̄(ϱ)dϱ.

Since C̄k,1(0) = C̄k,2(0) = 0 and λk (τ) is bounded, it follows from Eq. (3.78) that outside
the resonance zone

Ck,1(φ̃k,1, φ̃k,2) = 0, Ck,2(φ̃k,1, φ̃k,2) = 0. (3.79)

Inside the resonance zone, to avoid secular terms in the solution wk,2 of Eq.(3.76),
the following conditions have to be imposed

−2
∂Dk,1

∂φ̃k,1
−2

∂C̄k,1

∂φ̃k,2
−2

∂F̃ (s̃1,τ)

∂φ̃k,2
+ 1

λ2
k (τ)

∂2G̃(s̃1)

∂s̃2
1

+ ζ̄(τ)
1

λk (τ)
(C̄k,1 + F̃ (s̃1,τ)) = 0, (3.80)

2
∂Dk,2

∂φ̃k,1
+2

∂C̄k,2

∂φ̃k,2
−2

∂G̃(s̃1,τ)

∂φ̃k,2
− 1

λ2
k (τ)

∂2F̃ (s̃1)

∂s̃2
1

− ζ̄(τ)
1

λk (τ)
(C̄k,2 −G̃(s̃1,τ)) = 0. (3.81)

If we solve Eqs. (3.80) and (3.81) for Dk,1 and Dk,2 and integrate respect to φ̃k,1, we ob-
serve that the solutions will be unbounded in φ̃k,1 due to terms which are only depend-
ing on φ̃k,2. Therefore, to have secular-free solutions, the following conditions have to
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be imposed independently

∂C̄k,1

∂φ̃k,2
= 1

2
ζ̄(τ)

1

λk (τ)
C̄k,1,

∂C̄k,2

∂φ̃k,2
= 1

2
ζ̄(τ)

1

λk (τ)
C̄k,2. (3.82)

Since C̄k,1(0) = C̄k,2(0) = 0, it follows from Eq. (3.82) that inside the resonance zone

C̄k,1(φ̃k,2) = 0, C̄k,2(φ̃k,2) = 0,
Ck,1(φ̃k,1, φ̃k,2) = F̃ (s̃1,τ), Ck,2(φ̃k,1, φ̃k,2) = G̃(s̃1,τ), (3.83)

where F̃ (s̃1,τ) and G̃(s̃1,τ) are given by (3.74). Thus, we obtain the functions of
Ck,1(φ̃k,1, φ̃k,2) and Ck,1(φ̃k,1, φ̃k,2) in (3.79) and (3.83). Similarly, we also can obtain the
solution wk,1 of O(ε) problem and the solution wk,2 of O(ε

p
ε) problem by using the

above analysis. In order to shorten the paper, this derivation is omitted.

APPENDIX B.5 DISCRETIZATION AND ENERGY
To solve (3.56) numerically, it is convenient to rewrite the second order partial differen-
tial equation as a system of two coupled first-order partial differential equations:

ǔt = ν̌, ν̌t = 1

l 2 ǔξξ+ε[
2v0

l
(ξ−1)ν̌ξ− c0ν̌+α2βsin(αt )− mξ(c − cu)

ρLl
ν̌ξξ(1, t )]. (3.84)

Next, let us use mesh grids ξ j = ( j−1)∆ξ for j = 1,2, . . . ,n,n+1 with n∆ξ= 1. By introduc-

ing the differences, ǔξξ(ξ j , t ) = ǔ j+1−2ǔ j +ǔ j−1

(∆ξ)2 +O((∆ξ)2), ν̌ξ(ξ j , t ) = ν̌ j+1−ν̌ j−1

2∆ξ +O((∆ξ)2),

ν̌ξξ(ξ j , t ) = ν̌ j+1−2ν̌ j +ν̌ j−1

(∆ξ)2 +O((∆ξ)2), it follows how system (3.84) can be discretized, yield-
ing: 

dǔ
d t (ξ j , t ) = ν̌ j ,
d ν̌
d t (ξ j , t ) = r (ǔ j+1 −2ǔ j + ǔ j−1)+q j (ν̌ j+1 − ν̌ j−1)−εc0v j +p j ν̌n −p j ν̌n−1

+εα2β0 sin(αt ),

where r = 1
l 2(∆ξ)2 , q j = εv0(ξ j −1)

l∆ξ , p j = εm(c0−cu0)ξ j

ρL(2+∆ξ)∆ξ for j=1,2,..,n. Further,

R =


−2r r 0 · · · · · · 0

r −2r r · · · · · · 0
...

. . .
. . .

. . .
. . .

...
0 · · · · · · r −2r r
0 · · · · · · 0 c −c

 ∈Rn×n , where c = 2ρL

l (2m +ρLl∆ξ)∆ξ
, and

P =



−εc0 q1 0 · · · 0 −p1 p1

−q2 −εc0 q2 · · · 0 −p2 p2
...

. . .
. . .

. . .
...

...
...

0 · · · 0 −qn−2 −εc0 qn−2 −pn−2 pn−2

0 · · · 0 0 −qn−1 −εc0 −pn−1 qn−1 +pn−1

0 · · · · · · · · · 0 dn −qn −pn en −εc0


∈Rn×n ,
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where dn = ρLl∆ξ−2m
2m+ρLl∆ξ , en = 4m

2m+ρLl∆ξ +pn . The four matrices ;, I , R and P compose the
system matrix M :

M =
(; I

R P

)
∈R2n×2n ,

where ; is the zero matrix, and I is the identity matrix. In addition, let us introduce
the following vector: w = (u1(ξ1, t ),u2(ξ2, t ), ...,un(ξn , t ),ν1(ν1, t ),ν2(ξ2, t ), ...,νn(ξn , t ))T ,
s = (0,0, ...,0︸ ︷︷ ︸

n times

, s̄, s̄, ..., s̄︸ ︷︷ ︸
n times

)T , where s̄ = εα2β0 sin(αt ). So, system (3.84) can be written in the

following matrix form: d w
d t = M w + s. In order to perform a time integration, we apply

the Crank-Nicolson method. Introducing the mesh grid in time, tk = k∆t for k=1,2,...,n,
we obtain

wk+1 = Dwk + ∆t

2
(I − ∆t

2
M k+1)−1(sk+1 + sk ), (3.85)

where I is the identity matrix and I ∈R2n×2n and D = (I − ∆t
2 M k+1)−1(I + ∆t

2 M k ).
The total mechanical energy of the problem (8) is given by

E(t ) = 1

2

∫ l (t )

0
[ρ(ut + vux )2 +E Au2

x ]d x + m

2
[ut (l (t ), t )+ vux (l (t ), t )]2.

Using the dimensionless quantities, we rewrite the energy in a dimensionless form:

E(t ) = 1

2
E AL

∫ l (t )

0
[(ut + vux )2 +u2

x ]d x + E Am

2ρ
[ut (l (t ), t )+ vux (l (t ), t )]2.

In order to define the energy on the interval (0,1), we obtain problem (10) by using the
following transformation ξ= x

l (t ) :

E(t ) = E AL

2l (t )

∫ 1

0
[(l (t )ũt + (1−ξ)vũξ)2 + ũ2

ξ]dξ

+ E Am

2ρl 2(t )
[l (t )ũt (1, t )+ (1−ξ)vũξ(1, t )]2. (3.86)





4
TRANSVERSE AND LONGITUDINAL

RESONANCES FOR AN ELEVATOR

SYSTEM

4.1. INTRODUCTION

Figure 4.1: Coupled transverse-longitudinal vibrating cable with time-varying cable length.

I N chapter 3, we considered the longitudinal vibrations in an axially moving cable with
time-varying length subject to a small harmonic boundary excitation at one end of the

77
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cable and a moving loading mass at the other end. Due to boundary excitation and load-
ing conditions, the nonlinear interactions between transverse and longitudinal string
motions may influence the vibration behavior in two directions when the elevator con-
veyance is moving up or down. Some research has been conducted on similar types of
problems by using numerical simulations. Crespo et al. in [59] introduced a stationary
high-rise elevator cable system model and presented its numerical simulations. Wang et
al. in [60] studied the dynamic behavior of the multi-cable double drum winding hoister
with unbalance factors, the conveyance eccentricity and the drum radius inconformity
by simulation. Cao et al. in [61] analysed coupled vibrations of rope-guided hoisting
system with tension difference between two guiding ropes by simulations. Wang et al.
in [46] investigated a coupled dynamic model for a flexible guiding hoisting system and
presented the response of the system by numerical simulations. For more information
on numerical results for coupled transverse and longitudinal dynamics of axially moving
continua, the reader is referred to [62, 63, 64, 65, 66].

In this chapter, we will construct analytical approximate solutions for the nonlinear
coupled transverse and longitudinal vibration string problem with time-varying length.
The elevator system considered in this chapter is described by a vertically translating
string with a time-varying length and a mass attached at one of the ends of the string.
The time-varying length of the string is given by l (t ) = l0+εv0t , where l0 and v0 are con-
stants, and where ε is a dimensionless small parameter. It is assumed that the axial veloc-
ity of the string is small compared to nominal wave velocity, and that the string mass is
small compared to cage mass. The system is excited at the upper end by small displace-
ments in the horizontal and vertical directions from its equilibrium position caused by,
for instance, wind forces (see Figure 4.1). By Hamilton’s principle, the model can be writ-
ten as a coupled system of nonlinear wave equations (in transverse and longitudinal di-
rections) on a slowly time-varying spatial domain. The string is excited at a boundary by
two harmonic functions in the horizontal and in the vertical directions. The main objec-
tive of this chapter is to study how the boundary excitations and nonlinear interactions
between the two motion-directions influence the vibration behavior in the transverse
and in the longitudinal directions for the moving string. In contrast to previous research,
where only the transverse or the longitudinal vibration behavior was studied the (reader
is referred to [67, 68, 69, 70]), the coupled model is more accurate. However, the appear-
ance of nonlinear and coupled terms increases the complexity of the system analysis.
In order to deal with this difficulty, perturbation methods and an internal layer analysis
are used in this chapter to approximate the vibrations and the resonances, including de-
termining the resonance-amplitudes and the size of the resonance zones. Based on this
analysis, solutions of the coupled initial-boundary value problem for the transverse and
the longitudinal motions can be predicted analytically. To the best of our knowledge, the
results about analytical approximations of the solutions have not been proposed for the
coupled transverse and longitudinal vibrations of the moving cable system until now.

The remaining part of this chapter is organized as follows. In section 4.2 the problem
is formulated. In section 4.3 the problem is reformulated from a partial differential equa-
tions formulation to an ordinary differential equations formulation by using the method
of separation of variables. Many resonance manifolds for the transverse and longitudi-
nal motions are detected by an inner layer analysis. In section 4.4 approximate solutions
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are constructed analytically for the transverse and longitudinal motions by using a three
time-scales perturbation method. In section 4.5 some numerical approximations are
presented by using a central finite difference scheme to validate the theoretical results
from section 4.4. Finally, in the last section we draw some conclusions.

4.2. FORMULATION OF THE PHYSICAL SYSTEM

In this section the mathematical model of the elevator system is described and the equa-
tions for the transverse and the longitudinal motions of the system are derived and ex-
plained.

Nomenclature:
w(x, t ) the transverse displacement
u(x, t ) the longitudinal displacement

l (t ) the length of the elevator cable
v = l̇ (t ) the longitudinal velocity of the elevator cable
a = l̈ (t ) the longitudinal acceleration of the hoisting cable

ρ the linear density of the elevator cable
m the mass of the elevator conveyance

E A the longitudinal stiffness,
E Young’s elasticity modulus, A the cross-sectional area

T (x, t ) the spatiotemporally varying tension in elevator cable
c1, c2 transverse and longitudinal viscous damping coefficients

in elevator cable
g the standard gravity

Eg s initial gravitational potential energy
cu longitudinal viscous damping coefficient in elevator conveyance

ew (t ), eu(t ) the transverse and longitudinal fundamental excitations
at the top of the elevator cable

ew (t ) =β1cos(ω1t +α), eu(t ) =β2cos(ω2t )
β1, β2 the amplitudes of the transverse

and longitudinal fundamental excitations
α primary phase of the transverse fundamental excitation

By using Hamilton’s principle, the mathematical problem for the vibrating cable (Fig-
ure 4.1) can be written as an initial boundary value problem for the transverse vibration
(see also Appendix C.1):

ρ(wt t +2v wxt + v2wxx +awx )− (T wx )x + c1(wt + v wx )−E A(zwx )x = 0,

β2 cos(ω2t ) < x < l (t ), t > 0,

w(l (t ), t ) = 0, t ≥ 0,

w(β2 cos(ω2t ), t ) =β1 cos(ω1t +α), t ≥ 0,

w(x,0) = w0(x), wt (x,0) = w1(x), β2 < x < l0,
(4.1)
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and as an initial boundary value problem for the longitudinal vibration:

ρ(ut t +2vuxt + v2uxx +aux +a)+ c2(ut + vux )−E Azx = 0,

β2 cos(ω2t ) < x < l (t ), t > 0,

[m(ut t +2vuxt + v2uxx +aux +a)+ cu(ut + vux )+E Az]|x=l (t ) = 0, t ≥ 0,

u(β2 cos(ω2t ), t ) =β2 cos(ω2t ), t ≥ 0,

u(x,0) = u0(x), ut (x,0) = u1(x), β2 < x < l0,
(4.2)

where z = ux + 1
2 w2

x and

T (x, t ) = [m +ρ(l (t )−x)]g , β2 cos(ω2t ) ≤ x ≤ l (t ). (4.3)

In this paper, we use the following assumptions for the parameters and functions:

• The longitudinal velocity v is small compared to the wave velocities
√

E A
ρ and√

mg
ρ , that is, v = εv0;

• The nominal wave velocities
√

E A
ρ and

√
mg
ρ are of the same order of magnitude,

that is, E A
mg =O(1),

√
E A
mg > 1, and E A

mg is not near 1, i.e.,
√

E A
mg −1 >>O(ε);

• The cable mass ρL is small compared to the car mass m (L is the maximum length

of the cable), that is, µ= ρL
m = εµ0;

• The viscous damping parameters c1, c2, and cu are small, that is, c1 = εc1,0,c2 =
εc2,0,cu = εcu,0;

• The fundamental excitations at the top of the elevator rope are small, and the lon-
gitudinal excitation is smaller than the transverse excitation, that is, β1 = εβ1,0,β2 =
ε2β2,0;

• The initial conditions w0(x) = εh0(x), w1(x) = εh1(x), u0(x) = ε2h2(x) and u1(x) =
ε2h3(x);

• For convenience we only consider a non-accelerating cable, that is, the cable length
l (t ) = l0 + v t and a = 0, where l0 is the initial string length.

In the above assumptions, v0, µ0, c1,0, c2,0, cu,0, β1,0, β2,0, α m, ρ, ω1, ω2, L and l0 are
positive constants and are of order 1, the functions h0(x),h1(x),h2(x),h3(x) are of order
1, and ε is a small parameter with 0 < ε<< 1.

To put the equations (4.1) and (4.2) into non-dimensional forms, the following di-
mensionless variables and parameters are used:

w∗ = w

L
, u∗ = u

L
, x∗ = x

L
, t∗ = t

L

√
mg

ρ
, v∗ = v

√
ρ

mg
, β∗

1 = β1

L
, β∗

2 = β2

L
,

c∗1 = c1
Lp

mgρ
, c∗u = cu

L

m

√
ρ

mg
, ω∗

1 = Lω1

√
ρ

mg
, u∗

0 = u0

L
, u∗

1 =
√

ρ

mg
u1,
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l∗ = l

L
, µ= ρL

m
, c∗2 = c2

Lp
mgρ

, ω∗
2 = Lω2

√
ρ

mg
, w∗

0 = w0

L
, w∗

1 =
√

ρ

mg
w1.

The initial boundary value problem for the transverse motion in non-dimensional form
becomes:

wt t +2v wxt + v2wxx −wxx −µ(l (t )−x)wxx +µwx + c1(wt + v wx )− E A
mg (zwx )x = 0,

β2 cos(ω2t ) < x < l (t ), t > 0,

w(l (t ), t ) = 0, t ≥ 0,

w(β2 cos(ω2t ), t ) =β1 cos(ω1t +α), t ≥ 0,

w(x,0) = w0(x), wt (x,0) = w1(x), β2 < x < l0,
(4.4)

and the initial boundary value problem for the longitudinal motion in non-dimensional
form becomes:

ut t +2vuxt + v2uxx + c2(ut + vux )− E A
mg uxx − E A

mg ( 1
2 w2

x )x = 0,

β2 cos(ω2t ) < x < l (t ), t > 0,

[ut t +2vuxt + v2uxx + cu(ut + vux )+ µE A
mg z]|x=l (t ) = 0, t ≥ 0,

u(β2 cos(ω2t ), t ) =β2 cos(ω2t ), t ≥ 0,

u(x,0) = u0(x), ut (x,0) = u1(x), β2 < x < l0,
(4.5)

where the asterisks (indicating the dimensionless variables and parameters) are omitted
in the problems (4.4) and (4.5) for convenience.

In order to convert the time-varying spatial domain [β1 cos(ω1t ), l (t )] for x to a fixed

domain [0,1] for ξ, a new independent spatial coordinate ξ= x−β2 cos(ω2t )
h(t ) , in which h(t ) =

l (t )−β2 cos(ω2t ), is introduced. After this spatial transformation, the equation for the
transverse motion becomes:

w̄t t + 2v
h(t ) w̄ξt − 1

h2(t )
w̄ξξ− µ

h(t ) (1−ξ)w̄ξξ+ µ
h(t ) w̄ξ+ c1w̄t − E A

mg h3(t )
(ūξw̄ξ)ξ

− E A
mg h4(t )

( 1
2 w̄3

ξ
)ξ− 2vξ

h(t ) w̄ξt =O(ε2w̄), 0 < ξ< 1, t > 0,

w̄(1, t ) = 0, t ≥ 0,

w̄(0, t ) =β1 cos(ω1t +α), t ≥ 0,

w̄(ξ,0) = w̄0(ξ), w̄t (ξ,0) = w̄1(ξ), 0 < ξ< 1,
(4.6)

where w̄0(ξ) = w0(ξl0 +β2(1−ξ)) and w̄1(ξ) = w1(ξl0 +β2(1−ξ)). It should be observed
that the order of the term − E A

mg h3(t )
(ūξw̄ξ)ξ in (4.6) is unknown a priori due to possibly

occurring resonances. So, we keep this term explicitly in the equation, and analyse it
later. The equation for the longitudinal motion then becomes:

ūt t + 2v
h(t ) ūξt + c2ūt − E A

mg h2(t )
ūξξ− E A

mg h3(t )
w̄ξw̄ξξ− 2vξ

h(t ) ūξt =O(ε2ū), 0 < ξ< 1, t > 0,

[ūt t + cu ūt + µE A
mg h(t ) ūξ+ µE A

2mg h2(t )
w̄2

ξ
]|ξ=1 =O(ε2ū), t ≥ 0,

ū(0, t ) =β2 cos(ω2t ), t ≥ 0,

ū(ξ,0) = ū0(ξ), ūt (ξ,0) = ū1(ξ), 0 < ξ< 1,
(4.7)
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where ū0(ξ) = u0(ξl0 +β2(1−ξ)) and ū1(ξ) = u1(ξl0 +β2(1−ξ)). The orders of the term

− E A
mg h3(t )

w̄ξw̄ξξ and the term µE A
2mg h2(t )

w̄2
ξ

(1, t ) in (4.7) are unknown a priori due to possi-

ble resonances. So, we keep these terms in the equation, and analyse them later.
Further, we also introduce the Liouville-Green transformation (as used in the WKBJ

method) with d s
d t = 1

l (t ) , and a transformation to eliminate the non-homogenous terms
in the boundary conditions (see Appendix C.2 for details). Then, the initial boundary
value problem in the transverse direction becomes:

ŵss − ŵξξ = v ŵs −2v ŵξs − c1 l̂ ŵs −µl̂ ŵξ+µl̂ (1−ξ)ŵξξ+ E A
mg l̂

(ûξŵξ)ξ+ E A
mg l̂ 2 ( 1

2 ŵ3
ξ

)ξ

+2vξŵξs +β1(1−ξ)ω2
1 l̂ 2 cos(ω2χ(s)+α)

− E A
mg l̂ 2 ŵξ(1, s)ŵξξ(1, s)[ŵξ+ξŵξξ]+h.o.t ., 0 < ξ< 1, s > 0,

ŵ(1, s) = 0, s ≥ 0,

ŵ(0, s) = 0, s ≥ 0,

ŵ(ξ,0) = w̃(ξ,0)−β1(1−ξ)cos(α), ŵs (ξ,0) = w̃s (ξ,0)+β1ω1l0(1−ξ)sin(α), 0 < ξ< 1,
(4.8)

where according to the initial condition assumptions, the terms in "h.o.t.", consisting of
O(εû), O(ε2ŵ), O(εŵ2), O(εûŵ) and O(εŵ3), can not influence the lowest order of the
solution of problem (4.8) on time-scales of O( 1

ε ).
The initial boundary value problem in the longitudinal direction then becomes:

ûss − E A
mg ûξξ = vûs −2vûξs − c2 l̂ ûs +2vξûξs + (c2 − cu)l̂ ûs (1, s)− E A

mg µl̂ ûξ(1, s)

+µl̂ξ2

2
E A
mg ûξξξ(1, s)− ξ2

2 (c2 − cu)l̂ ûsξξ(1, s)+O(ε2û)

+ E A
mg l̂

ŵξŵξξ− E A
mg l̂

ŵξ(1, s)ŵξξ(1, s)

− ξ2

2l̂
[ŵξξξ(1, s)ŵξξ(1, s)+ ŵξŵξξξξ(1, s)]− ξ2

l̂
ŵξs (1, s)ŵξξs (1, s)+O(εŵ2)

− E A
mg l̂

β1 cos(ω1χ(s)+α)ŵξξ+ E A
mg l̂

β1 cos(ω1χ(s)+α)ŵξξ(1, s)

+ ξ2

2l̂
E A
mg β1 cos(ω1χ(s)+α)ŵξξξξ(1, s)−ξ2β1ω1 sin(ω1χ(s)+α)ŵξξs (1, s)

+O(ε2ŵ)+β2ω
2
2 l̂ 2 cos(ω2χ(s))+O(ε3), 0 < ξ< 1, s > 0,

(4.9)
and

ûξξ(1, s) =O(ε2û), s ≥ 0,

û(0, s) = 0, s ≥ 0,

û(ξ,0) = ũ(ξ,0)− ξ2

2 [−µl̂ ũξ(1,0)+ mg
E A (c2 − cu)l̂ ũs (1,0)− µ

2 w̃2
ξ

(1,0)− 1
l̂

w̃ξ(1,0)w̃ξξ(1,0)]

+O(ε3),

ûs (ξ,0) = ũs (ξ,0)− ξ2

2 [−µl̂ ũξs (1,0)+ mg
E A (c2 − cu)l̂ ũξξ(1,0)−µw̃ξ(1,0)w̃ξs (1,0)

− 1
l̂

w̃ξs (1,0)w̃ξξ(1,0)− 1
l̂

w̃ξ(1,0)w̃ξξs (1,0)]+O(ε3), 0 < ξ< 1,
(4.10)

where according to the initial condition assumptions, the terms in O(εŵ2), O(ε2û),
O(ε2ŵ), and O(ε3) can not influence the lowest order of the solution û(ξ, s) in problem
(4.9) on time-scales of O( 1

ε ), so they can be neglected in the further analysis. In the fol-
lowing sections, the solutions of ŵ(ξ, s), û(ξ, s) in problem (4.8) and (4.9) will be approx-
imated by using an interior layer analysis and a three time-scales perturbation method.
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4.3. INNER LAYER ANALYSIS
It will be shown that an interior layer analysis (including a rescaling and balancing proce-
dure) leads to a description of an (un-)expected resonance manifold and leads to time-
scales which describe the solutions of the partial differential equations (4.8) and (4.9)
sufficiently accurately. To derive the solutions ŵ(ξ, s) and û(ξ, s) in problem (4.8) and
(4.9), firstly the method of separation of variables is employed. In accordance with the
method of separation of variables, the general solution of the transverse problem (4.8)
can be expanded in the following form:

ŵ(ξ, s) =
∞∑

n=1
Tn(s)sin(nπξ), (4.11)

and the general solution of the longitudinal problem (4.9) can be expanded in the fol-
lowing form:

û(ξ, s) =
∞∑

n=1
Yn(s)sin(nπξ). (4.12)

Substituting (4.11) into the initial boundary value problem (4.8), and substituting (4.12)
into problem (4.9), further by multiplying the obtained equations with sin(kπξ), and by
integrating with respect to ξ from ξ= 0 to ξ= 1, and by using the orthogonality properties
of the sin-functions on 0 < ξ< 1, we obtain the following ordinary differential equations
for Tk (s) (with k = 1,2,3, ...) in the transverse direction:

Tk,ss +k2π2Tk = χ̂(s), (4.13)

where

χ̂(s)

= εv0Tk,s −εc1,0 l̂ Tk,s −
∞∑

n=1
εc1

n,kµ0 l̂ (nπ)2Tn +
∞∑

n=1
c2

n,k (−2v0nπTn,s −µ0 l̂nπTn)

+ε
∞∑

n=1
c3

n,k 2v0nπTn,s + E Aπ3

2mg l̂
[

∞∑
p=k+1

kp(k −p)Yp Tp−k −
k−1∑
p=1

kp(k −p)Yp Tk−p ]

−E Aπ3

2mg l̂

∞∑
p=1

kp(k +p)Yp Tk+p + 3E A

8mg l̂ 2

n+p=∞∑
n+p=k+1

npπ3(k −n −p)TnTp Tn+p−k

+ 3E A

8mg l̂ 2
[
n−p=k−1∑
n−p=−∞

npπ3(k −n +p)TnTp Tk−n+p

+
∞∑

n,p=1
npπ3(k +n +p)TnTp Tk+n+p ]

+ 3E A

8mg l̂ 2
[

p−n=k−1∑
p−n=−∞

npπ3(k +n −p)TnTp Tk+n−p

−
p−n=∞∑

p−n=k+1
npπ3(p −k −n)TnTp Tp−k−n]

+ 3E A

8mg l̂ 2
[
n+p=k−1∑

n+p=2
npπ3(k −n −p)TnTp Tk−n−p
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+
n−p=∞∑

n−p=k+1
npπ3(k −n +p)TnTp Tn−p−k ]

+εβ2,0dkω
2
2 l̂ 2 cos(ω2χ(s)+α)+h.o.t .,

Tk (0) =
∫ 1

0 ŵ0(ξ)sin(kπξ)dξ∫ 1
0 sin(kπξ)sin(kπξ)dξ

= Fk ,

Tk,s (0) =
∫ 1

0 ŵ1(ξ)sin(kπξ)dξ∫ 1
0 sin(kπξ)sin(kπξ)dξ

=Gk , (4.14)

where Fk =O(ε) and Gk =O(ε). c1
n,k , c2

n,k , c3
n,k and dk are given by:

c1
n,k =

∫ 1
0 (1−ξ)sin(nπξ)sin(kπξ)dξ∫ 1

0 sin2(kπξ)dξ
,

c2
n,k =

∫ 1
0 cos(nπξ)sin(kπξ)dξ∫ 1

0 sin2(kπξ)dξ
,

c3
n,k =

∫ 1
0 ξcos(nπξ)sin(kπξ)dξ∫ 1

0 sin2(kπξ)dξ
, dk =

∫ 1
0 (1−ξ)sin(kπξ)dξ∫ 1

0 sin2(kπξ)dξ
. (4.15)

Further, the differential equation (4.13) can be written as:

Tk,ss +k2π2Tk

= ε[v0Tk,s − c1,0 l̂Tk,s −
∞∑

n=1
c1

n,kµ0 l̂ (nπ)2Tn +
∞∑

n=1
c2

n,k (−2v0nπTn,s −µ0 l̂nπTn)

+
∞∑

n=1
c3

n,k 2v0nπTn,s + E Aπ3

2εmg l̂

∞∑
p=k+1

kp(k −p)Yp Tp−k

− E Aπ3

2εmg l̂

k−1∑
p=1

kp(k −p)Yp Tk−p

− E Aπ3

2εmg l̂

∞∑
p=1

kp(k +p)Yp Tk+p +β1,0dkω
2
1 l̂ 2 cos(ω1χ(s)+α)]+h.o.t ., (4.16)

where Tk (0) and Tk,s (0) are given by (4.14), c1
n,k , c2

n,k , c3
n,k and dk are given by (4.15). Note

that the term "h.o.t."(including TnTp T j in (4.13)) can not influence the lowest order of
the solution of the differential equation (4.16) on time-scales of O( 1

ε ). This can be seen as
follows. When the addition or subtraction of the three subscripts in TnTp T j equals to k
or−k, then for the given initial conditions of O(ε), TnTp T j leads to O(ε2) contributions in
the solution of the differential equation (4.16) on time-scales of O( 1

ε ); otherwise, TnTp T j

will leads to contributions of O(ε3) in the solution of the differential equation (4.16) on
time-scales of O( 1

ε ).
Similarly, we obtain the following differential equations for Yk ( with k = 1,2,3, ...) in

the longitudinal direction:

Yk,ss +
E A

mg
k2π2Yk

= ε(v0 − c2,0 l̂ )Yk,s +
∞∑

n=1
2εv0nπd 1

n,k Yn,s −
∞∑

n=1

E A

mg
µl̂nπd 3

n,k Yn
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+
k−1∑
j=1

d 4
k− j , j Tk− j T j +

∞∑
j=k+1

d 4
j−k, j T j−k T j −

∞∑
j=1

d 4
j+k, j T j+k T j

+β1d̃ 4
k,k Tk cos(ω1χ(s)+α)+β2ω

2
2 l̂ 2d1,k cos(ω2χ(s))+h.o.t .,

Yk (0) =
∫ 1

0 û0(ξ)sin(kπξ)dξ∫ 1
0 sin(kπξ)si n(kπξ)dξ

= fk ,

Yk,s (0) =
∫ 1

0 û1(ξ)sin(kπξ)dξ∫ 1
0 sin(kπξ)si n(kπξ)dξ

= gk , (4.17)

where fk =O(ε2) and gk =O(ε2). d 1
n,k , d 3

n,k , d 4
n, j , d1,k , d̃ 4

k,k are given by:

d 1
n,k =

∫ 1
0 (ξ−1)cos(nπξ)sin(kπξ)dξ∫ 1

0 sin2(kπξ)dξ
, d 3

n,k =
∫ 1

0 (1+ (nπξ)2

2 )cos(nπ)sin(kπξ)dξ∫ 1
0 sin2(kπξ)dξ

,

d 4
n, j = E An j 2π3

2mg l̂
, d1,k =

∫ 1
0 sin(kπξ)dξ∫ 1

0 sin2(kπξ)dξ
, d̃ 4

k,k = E A

mg l̂
k2π2. (4.18)

Before approximately solving the ordinary differential equations (4.16) and (4.17),
according to an inner layer analysis process (see also chapter 3), we can make the fol-
lowing remarks beforehand. For the given initial conditions for Yk (which are of O(ε2)),
the terms in the right side of equation (4.17) can lead to different contributions in the
solution Yk on time-scales of O( 1

ε ). The first three terms in the right side of equation
(4.17) only lead to contributions of O(ε2). The coupled, nonlinear terms including Tp T j

can lead to contributions up to O( 1
εTp T j ), and the term with frequency ω1 lead to con-

tributions up to O(
p
εTk ). The term with frequency ω2 can lead to contributions up to

O(ε
p
ε). Since Tk may increase from the initial state order of O(ε) to lower orders, the

orders of the terms including Tp T j determine that of the solution Yk . Therefore, the so-
lution of equation (4.17) can be approximated as Yk = O( 1

εTp T j ). Similarly, we obtain
that for the given initial conditions for Tk ( which are of O(ε)), terms in the right side of
equation (4.16) can also have different contributions to the solution Tk on time-scales
of O( 1

ε ). The first five terms in the right side of equation (4.16) only can lead to contri-

butions of O(ε). Based on the fact that Yk = O( 1
εTp T j ), terms including Yp T j can lead

to contributions up to O(ε), and the last term with frequency ω1 can lead to contribu-
tions up to O(

p
ε). This implies that in equation (4.16) only the external forcing with

frequency ω1 produces resonance, and leads to a jump in the solution Tk from O(ε) to
O(

p
ε). Further, it follows from equation (4.17) that the coupled terms including Tp T j

produce maximum amplitude responses, and the amplitude responses are depend on
the solution Tk of equation (4.16).

After the above made observations, to obtain the (un-)expected resonance manifolds
which describe the solutions of ordinary differential equations (4.16) and (4.17) suffi-
ciently accurately, the following standard transformations are introduced:

Tk (s) = A1,k (s)sin(kπs)+B1,k (s)cos(kπs),
Tk,s (s) = kπA1,k (s)cos(kπs)−kπB1,k (s)sin(kπs),

Yk (s) = C1,k (s)sin(λk s)+D1,k (s)cos(λk s),
Yk,s (s) = λkC1,k (s)cos(λk s)−λk D1,k (s)sin(λk s),
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where λk =
√

E A
mg kπ. The transverse problem (4.16) can now be rewritten in the follow-

ing form (where the dot · represents differentiation with respect to s):

Ȧ1,k = ε(v0 − c1,0 l̂ )A1,k cos2(kπs)−ε(v0 − c1,0 l̂ )B1,k sin(kπs)cos(kπs)

+ε
∞∑

n=1
[(−c1

n,kµ0 l̂
n2π

k
)A1,n + (2c2

n,k v0
n2π

k
)B1,n

−(c2
n,kµ0 l̂

n

k
)A1,n − (2c3

n,k v0
n2π

k
)B1,n]sin(nπs)cos(kπs)

+ε
∞∑

n=1
[(−c1

n,kµ0 l̂
n2π

k
)B1,n + (2c2

n,k v0
n2π

k
)A1,n

−(c2
n,kµ0 l̂

n

k
)B1,n + (2c3

n,k v0
n2π

k
)A1,n]cos(nπs)cos(kπs)

+E Aπ2

2mg l̂

∞∑
p=k+1

p(k −p)[C1,p A1,p−k sin(λp s)sin((p −k)πs)

+C1,p B1,p−k sin(λp s)cos((p −k)πs)
+D1,p A1,p−k cos(λp s)sin((p −k)πs)
+D1,p B1,p−k cos(λp s)cos((p −k)πs)]cos(kπs)

−E Aπ2

2mg l̂

k−1∑
p=1

p(k −p)[C1,p A1,k−p sin(λp s)sin((k −p)πs)

+C1,p B1,k−p sin(λp s)cos((k −p)πs)
+D1,p A1,k−p cos(λp s)sin((k −p)πs)
+D1,p B1,k−p cos(λp s)cos((k −p)πs)]cos(kπs)

−E Aπ2

2mg l̂

∞∑
p=1

p(k +p)[C1,p A1,p+k sin(λp s)sin((p +k)πs)

+C1,p B1,p+k sin(λp s)cos((p +k)πs)
+D1,p A1,p+k cos(λp s)sin((p +k)πs)
+D1,p B1,p+k cos(λp s)cos((p +k)πs)]cos(kπs)

+β1
dkω

2
1 l̂ 2

2
[cos(kπs +ω1χ(s)+α)+cos(kπs −ω1χ(s)−α)]+h.o.t , (4.19)

Ḃ1,k = −ε(v0 − c1,0 l̂ )A1,k cos(kπs)sin(kπs)+ε(v0 − c1,0 l̂ )B1,k sin2(kπs)

−ε
∞∑

n=1
[(−c1

n,kµ0 l̂
n2π

k
)A1,n + (2c2

n,k v0
n2π

k
)B1,n

−(c2
n,kµ0 l̂

n

k
)A1,n − (2c3

n,k v0
n2π

k
)B1,n]sin(nπs)sin(kπs)

−ε
∞∑

n=1
[(−c1

n,kµ0 l̂
n2π

k
)B1,n + (2c2

n,k v0
n2π

k
)A1,n

−(c2
n,kµ0 l̂

n

k
)B1,n + (2c3

n,k v0
n2π

k
)B1,n]cos(nπs)sin(kπs)

−E Aπ2

2mg l̂

∞∑
p=k+1

p(k −p)[C1,p A1,p−k sin(λp s)sin((p −k)πs)

+C1,p B1,p−k sin(λp s)cos((p −k)πs)
+D1,p A1,p−k cos(λp s)sin((p −k)πs)
+D1,p B1,p−k cos(λp s)cos((p −k)πs)]sin(kπs)
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+E Aπ2

2mg l̂

k−1∑
p=1

p(k −p)[C1,p A1,k−p sin(λp s)sin((k −p)πs)

+C1,p B1,k−p sin(λp s)cos((k −p)πs)
+D1,p A1,k−p cos(λp s)sin((k −p)πs)
+D1,p B1,k−p cos(λp s)cos((k −p)πs)]sin(kπs)

+E Aπ2

2mg l̂

∞∑
p=1

p(k +p)[C1,p A1,p+k sin(λp s)cos((p +k)πs)

+C1,p B1,p+k sin(λp s)cos((p +k)πs)
+D1,p A1,p+k cos(λp s)sin((p +k)πs)
+D1,p B1,p+k cos(λp s)cos((p +k)πs)]sin(kπs)

−β1
dkω

2
1 l̂ 2

2
[sin(kπs +ω1χ(s)+α)+ sin(kπs −ω1χ(s)−α)]+h.o.t . (4.20)

Large transverse amplitude responses in (4.19) and (4.20), due to the external forcing
with frequency ω1, can be expected when kπ−ω1χ̇(s) ≈ 0, or kπ+ω1χ̇(s) ≈ 0. But since
kπ> 0 and ω1χ̇(s) > 0, resonance only will occur when

ω1l0eεv0s ≈ kπ. (4.21)

So, transverse resonances are expected for times s around s(k) with

s(k) = 1

εv0
ln(

kπ

ω1l0
), kπ≥ω1l0, k = 1,2, ... (4.22)

To study the situation in the transverse resonance zone, we introduce time-like vari-
ables

τ= εs, φk (s) = kπs, ϕ(s) =ω1χ(s)+α, ψk (s) =φk (s)−ϕ(s),

and rescale τ−τ(k) = δ(ε)τ̂ with τ̂=O(1) and τ(k) = εs(k) = 1
v0

ln( kπ
ω1l0

). Then
τ̇= ε, ˙̂τ= ε

δ(ε) ,

φ̇k = kπ,

ϕ̇=ω1l0ev0(τ(k)+δ(ε)τ̂),

ψ̇k = kπ−ω1l0ev0(τ(k)+δ(ε)τ̂) = δ(ε)ω1l0v0ev0τ
(k)
τ̂,

(4.23)

and Ȧ1,k (s), Ḃ1,k (s) are given by (4.19). It now follows that a balance in system (4.23)
occurs when ε

δ(ε) = δ(ε), and this implies that in the transverse resonance zone that

δ(ε) = p
ε, i.e., the size of transverse resonance zone is O( 1p

ε
) for times s. So, together

with τ−τ(k) = δ(ε)τ̂, it follows from (4.23) that

τ̂=p
ε(s − s(k)). (4.24)

Further, from (4.23), we obtain ψk (s) =ψk (s(k))+ 1
2ω1l0v0ev0τ

(k)
ε(s− s(k))2. Hence, in the

transverse resonance zone, we can write

sin(ψk (s)) = sin(
1

2
ω1l0v0ev0τ

(k)
ε(s − s(k))2 +ψk (s(k))),
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cos(ψk (s)) = cos(
1

2
ω1l0v0ev0τ

(k)
ε(s − s(k))2 +ψk (s(k))), (4.25)

where ψk (s(k)) = kπs(k) − kπ−ω1l0
εv0

−α.
It was analysed that the resonance responses for Yk in (4.17) are depend on the terms

including Tp T j , and the resonance responses for Tk in (4.16) are depend on the terms
with frequency ω1. So, based on the inner layer analysis, the size of the emerged reso-
nance zones has been established, and this size will also be used as a new asymptotic
scale to introduce a three-timescale perturbation method in the next section to study
problems (4.16) and (4.17) in detail and construct asymptotic approximations of the so-
lutions of the initial-boundary value problems (4.8) and (4.9).

4.4. THREE-TIMESCALES PERTURBATION METHOD
In the previous section, it was shown that (under certain condition on the external fre-
quencyω1) resonances in the transverse direction can occur around time s = 1

εv0
ln( kπ

ω1l0
),

and that resonances in the longitudinal direction depend on the solutions Tk of equa-
tion (4.16). For this reason, we rescale s by defining s = s̃ + 1

εv0
ln( kπ

ω1l0
). Thus, problem

(4.16) can be rewritten in s̃ as follows:

Tk,s̃ s̃ +k2π2Tk

= ε[v0Tk,s̃ − c1,0 l̂Tk,s̃ −
∞∑

n=1
c1

n,kµ0 l̂ (nπ)2Tn +
∞∑

n=1
c2

n,k (−2v0nπTn,s̃ −µ0 l̂nπTn)

+
∞∑

n=1
c3

n,k 2v0nπTn,s̃ + E Aπ3

2εmg l̂

∞∑
p=k+1

kp(k −p)Yp Tp−k

− E Aπ3

2εmg l̂

k−1∑
p=1

kp(k −p)Yp Tk−p − E Aπ3

2εmg l̂

∞∑
p=1

kp(k +p)Yp Tk+p

+β1,0dkω
2
1 l̂ 2 cos(ω1χ(s̃ + 1

εv0
ln(

kπ

ω1l0
))+α)]+h.o.t .,

Tk (− 1

εv0
ln(

kπ

ω1l0
)) = Fk , Tk,s̃ (− 1

εv0
ln(

kπ

ω1l0
)) =Gk , (4.26)

and problem (4.17) can be rewritten in s̃ as follows:

Yk,s̃ s̃ +λ2
k Yk

= ε(v0 − c2,0 l̂ )Yk,s̃ +
∞∑

n=1
2εv0nπd 1

n,k Yn,s̃ −
∞∑

n=1

E A

mg
µl̂nπd 3

n,k Yn

+
k−1∑
j=1

d 4
k− j , j Tk− j T j +

∞∑
j=k+1

d 4
j−k, j T j−k T j −

∞∑
j=1

d 4
j+k, j T j+k T j

+β1d̃ 4
k,k Tk cos(ω1χ(s̃ + 1

εv0
ln(

kπ

ω1l0
))+α)

+β2ω
2
2 l̂ 2d1,k cos(ω2χ(s̃ + 1

εv0
ln(

kπ

ω1l0
))+α)

+h.o.t .,

Yk (− 1

εv0
ln(

kπ

ω1l0
)) = fk , Yk,s̃ (− 1

εv0
ln(

kπ

ω1l0
)) = gk . (4.27)
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Next, we study problems (4.26) and (4.27) in detail under the assumption that ω1 is
such that a resonance zone exits for the k th oscillation mode. The application of the
straightforward expansion method to solve (4.26) and (4.27) will result in the occurrence
of so-called secular terms which cause the approximations of the solutions to become
unbounded on long timescales. For this reason, to remove secular terms, and to ob-
tain approximations which are valid on long timescales, we introduce three timescales
s0 = s̃, s1 = p

εs̃, s2 = εs̃. The time-scale s1 = p
εs̃ is introduced because of the size of

the resonance zone which has been found in the previous section, and the other two
time-scales are the natural scalings for nonlinear equations such as (4.26) and (4.27). By
using the three time-scales perturbation method, the functions Tk (s̃;

p
ε) and Yk (s̃;

p
ε)

are supposed to be functions of s0, s1 and s2,

Tk (s̃;
p
ε) = T̃k (s0, s1, s2), Yk (s̃;

p
ε) = Ỹk (s0, s1, s2).

By substituting T̃k (s0, s1, s2) and Ỹk (s0, s1, s2) into the differential equation (4.16), we ob-
tain the following equations up to O(ε

p
ε):

∂2T̃k

∂s2
0

+k2π2T̃k +2
p
ε

∂2T̃k

∂s0∂s1
+ε(2

∂2T̃k

∂s0∂s2
+ ∂2T̃k

∂s2
1

)+2ε
p
ε

∂2T̃k

∂s1∂s2

= ε[(v0 − c1,0 l̂ )
∂T̃k

∂s0
−

∞∑
n=1

c1
n,kµ0 l̂ (nπ)2T̃n +

∞∑
n=1

c2
n,k (−2v0nπ

∂T̃n

∂s0
−µ0 l̂nπT̃n)

+
∞∑

n=1
c3

n,k 2v0nπ
∂T̃n

∂s0
]

+εpε[(v0 − c1,0 l̂ )
∂T̃k

∂s1
+

∞∑
n=1

c2
n,k (−2v0nπ

∂T̃n

∂s1
+

∞∑
n=1

c3
n,k 2v0nπ

∂T̃n

∂s1
]

+E Aπ3

2mg l̂

∞∑
p=k+1

kp(k −p)Yp Tp−k −
E Aπ3

2mg l̂

k−1∑
p=1

kp(k −p)Yp Tk−p

−E Aπ3

2mg l̂

∞∑
p=1

kp(k +p)Yp Tk+p

+β1dkω
2
1 l̂ 2 cos(ω1χ(s0 −a)+α),

T̃k (a,b,c;
p
ε) = Fk = εF̃k ,

∂T̃k

∂s0
(a,b,c;

p
ε)+p

ε
∂T̃k

∂s1
(a,b,c;

p
ε)+ε

∂T̃k

∂s2
(a,b,c;

p
ε) =Gk = εG̃k , (4.28)

where F̃k = O(1) and G̃k = O(1). Similarly, by substituting T̃k (s0, s1, s2), Ỹk (s0, s1, s2) into
the differential equation (4.17), we obtain the following equations up to O(ε

p
ε):

∂2Ỹk

∂s2
0

+λ2
k Ỹk +2

p
ε

∂2Ỹk

∂s0∂s1
+ε(2

∂2Ỹk

∂s0∂s2
+ ∂2Ỹk

∂s2
1

)+2ε
p
ε

∂2Ỹk

∂s1∂s2

= ε[(v0 − c2,0 l̂ )
∂Ỹk

∂s0
+

∞∑
n=1

2v0nπd 1
n,k

∂Ỹk

∂s0
−

∞∑
n=1

E A

mg
µ0 l̂nπd 3

n,k Ỹn

+β1,0d̃ 4
k,k T̃k cos(ω1χ(s0 −a)+α)]

ε
p
ε[(v0 − c2,0 l̂ )

∂Ỹk

∂s1
+

∞∑
n=1

2v0nπd 1
n,k

∂Ỹk

∂s1
]
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+
k−1∑
j=1

d 4
k− j , j T̃k− j T̃ j +

∞∑
j=k+1

d 4
j−k, j T̃ j−k T̃ j −

∞∑
j=1

d 4
j+k, j T̃ j+k T̃ j

Ỹk (a,b,c;
p
ε) = fk = ε2 f̃k ,

∂Ỹk

∂s0
(a,b,c;

p
ε)+p

ε
∂Ỹk

∂s1
(a,b,c;

p
ε)+ε

∂Ỹk

∂s2
(a,b,c;

p
ε) = gk = ε2 g̃k , (4.29)

where λk =
√

E A
mg kπ, f̃k =O(1), g̃k =O(1), and

a =− 1

εv0
ln(

kπ

ω1l0
), b =−

p
ε

εv0
ln(

kπ

ω1l0
), c =− 1

v0
ln(

kπ

ω1l0
). (4.30)

Since the functions T̃k and Ỹk can increase in s from the initial state orders to O(
p
ε)

as has been shown in the previous section, a three-timescales perturbation method will
be used, and T̃k (s0, s1, s2) and Ỹk (s0, s1, s2) will be approximated by the following formal
asymptotic expansions:

T̃k (s0, s1, s2) = p
εT̃k,0(s0, s1, s2)+εT̃k,1(s0, s1, s2)+ε

p
εT̃k,2(s0, s1, s2)+O(ε2),(4.31)

Ỹk (s0, s1, s2) = p
εỸk,0(s0, s1, s2)+εỸk,1(s0, s1, s2)+ε

p
εỸk,2(s0, s1, s2)+O(ε2),(4.32)

where T̃k,0, T̃k,1, T̃k,2, Ỹk,0, Ỹk,1, Ỹk,2 are all functions of O(1).In the transverse direction,
by substituting (4.31) and (4.32) into problem (4.28), and after equating the coefficients
of like powers in

p
ε, we obtain :

the O(
p
ε)-problem:

∂2T̃k,0

∂s2
0

+k2π2T̃k,0 = 0,

T̃k,0(a,b,c) = 0,
∂T̃k,0

∂s0
(a,b,c) = 0, (4.33)

the O(ε)-problem:

∂2T̃k,1

∂s2
0

+k2π2T̃k,1 +2
∂2T̃k,0

∂s0∂s1

= E Aπ3

2mg l̂

∞∑
p=k+1

kp(k −p)Ỹp,0T̃p−k,0 −
E Aπ3

2mg l̂

k−1∑
p=1

kp(k −p)Ỹp,0T̃k−p,0

−E Aπ3

2mg l̂

∞∑
p=1

kp(k +p)Ỹp,0T̃k+p,0 +β1,0dkω
2
1 l̂ 2 cos(ω1χ(s0 −a)+α),

T̃k,1(a,b,c) = F̃k ,
∂T̃k,1

∂s0
(a,b,c)+ ∂T̃k,0

∂s1
(a,b,c) = G̃k , (4.34)

the O(ε
p
ε)-problem:

∂2T̃k,2

∂s2
0

+k2π2T̃k,2 +2
∂2T̃k,1

∂s0∂s1
+2

∂2T̃k,0

∂s0∂s2
+ ∂2T̃k,0

∂s2
1

= (v0 − c1,0 l̂ )
∂T̃k,0

∂s0
−

∞∑
n=1

c1
n,kµ0 l̂ (nπ)2T̃n,0 +

∞∑
n=1

c2
n,k (−2v0nπ

∂T̃n,0

∂s0
−µ0 l̂ nπT̃n,0)
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+
∞∑

n=1
c3

n,k 2v0nπ
∂T̃n,0

∂s0
,

T̃k,2(a,b,c) = 0,
∂T̃k,2

∂s0
(a,b,c)+ ∂T̃k,1

∂s1
(a,b,c)+ ∂T̃k,0

∂s2
(a,b,c) = 0. (4.35)

The solution of the O(
p
ε)-problem (4.33) can be written as:

T̃k,0(s0, s1, s2) = Ak (s1, s2)cos(kπs0)+Bk (s1, s2)sin(kπs0), (4.36)

where Ak (b,c) = 0, Bk (b,c) = 0, and where Ak (s1, s2), Bk (s1, s2) can be obtained explicitly
by solving the O(ε)-problem (4.34) and the O(ε

p
ε)-problem (4.35). We will study these

problems later in this section.
In the longitudinal direction, by substituting (4.31) and (4.32) into problem (4.29),

and after equating the coefficients of like powers in ε, we obtain :
the O(

p
ε)-problem:

∂2Ỹk,0

∂s2
0

+λ2
k Ỹk,0 = 0,

Ỹk,0(a,b,c) = 0,
∂Ỹk,0

∂s0
(a,b,c) = 0, (4.37)

the O(ε)-problem:

∂2Ỹk,1

∂s2
0

+λ2
k Ỹk,1 +2

∂2Ỹk,0

∂s0∂s1

= [
k−1∑
j=1

d 4
k− j , j Tk− j ,0T j ,0 +

∞∑
j=k+1

d 4
j−k, j T j−k,0T j ,0 −

∞∑
j=1

d 4
j+k, j T j+k,0T j ,0],

Ỹk,1(a,b,c) = 0,
∂Ỹk,1

∂s0
(a,b,c)+ ∂Ỹk,0

∂s1
(a,b,c) = 0, (4.38)

and the O(ε
p
ε)-problem:

∂2Ỹk,2

∂s2
0

+λ2
k Ỹk,2 +2

∂2Ỹk,1

∂s0∂s1
+2

∂2Ỹk,0

∂s0∂s2
+ ∂2Ỹk,0

∂s2
1

= (v0 − c2,0 l̂ )
∂Ỹk,0

∂s0
+

∞∑
n=1

2v0nπd 1
n,k

∂Ỹn,0

∂s0
−

∞∑
n=1

E A

mg
µ0 l̂nπd 3

n,k Ỹn,0

+β1,0d̃ 4
k,k T̃k,0 cos(ω1χ(s0 −a)+α),

Ỹk,2(a,b,c) = 0,
∂Ỹk,2

∂s0
(a,b,c)+ ∂Ỹk,1

∂s1
(a,b,c)+ ∂Ỹk,0

∂s2
(a,b,c) = 0, (4.39)

where λk =
√

E A
mg kπ.

The solution of the O(
p
ε)-problem (4.37) can be written as:

Ỹk,0(s0, s1, s2) = Ck (s1, s2)cos(λk s0)+Dk (s1, s2)sin(λk s0), (4.40)

where Ck (s1, s2) and Dk (s1, s2) are still unknown functions in the slow variables s1 and s2,
and these functions can be determined by avoiding secular terms in the O(ε)− problem
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(4.38) and in the O(ε
p
ε)− problem (4.39). By using the initial conditions in (4.37), it

follows that Ck (b,c) = Dk (b,c) = 0. Now, we shall solve the O(ε)− problem (4.38). By
using (4.36) for T̃k,0, and by using d 1

k,k = − 1
2kπ , which is given in (4.18), problem (4.38)

can be written as:

∂2Ỹk,1

∂s2
0

+λ2
k Ỹk,1

= 2λk
∂Ck

∂s1
sin(λk s0)−2λk

∂Dk

∂s1
cos(λk s0)

+1

2

k−1∑
j=1

d 4
k− j , j [(Ak− j A j −Bk− j B j )cos(kπs0)+ (Ak− j B j +Bk− j A j )sin(kπs0)

+(Ak− j A j +Bk− j B j )cos((k −2 j )πs0)+ (Ak− j B j −Bk− j A j )sin((k −2 j )πs0)]

+1

2

∞∑
j=k+1

d 4
j−k, j [(A j−k A j +B j−k B j )cos(kπs0)+ (A j−k B j −B j−k A j )sin(kπs0)

+(A j−k A j −B j−k B j )cos((2 j −k)πs0)+ (A j−k B j +B j−k A j )sin((2 j −k)πs0)]

−1

2

∞∑
j=1

d 4
k+ j , j [(Ak+ j A j +Bk+ j B j )cos(kπs0)+ (A j B j+k −B j A j+k )sin(kπs0)

+(Ak+ j A j −Bk+ j B j )cos((k +2 j )πs0)+ (A j B j+k +B j A j+k )sin((k +2 j )πs0)],

Ỹk,1(0,0,0) = 0,
∂Ỹk,2

∂s0
(0,0,0)+ ∂Ỹk,1

∂s1
(0,0,0)+ ∂Ỹk,0

∂s2
(0,0,0) = 0. (4.41)

It is obvious that the right-hand side of (4.41) contains resonant terms, such that sin(λk s0)
and cos(λk s0), the term in the right-hand side of (4.41) involving sin((2 j−k)πs0),cos((2 j−
k)πs0),sin((k +2 j )πs0),cos((k +2 j )πs0) is also a resonant term when there exist k, j1, j2,

s.t., 2 j1
k =

√
E A
mg +1+O(ε) or 2 j2

k =
√

E A
mg −1+O(ε). Actually, for any fixed parameter value

of
√

E A
mg with assumptions

√
E A
mg = O(1) and

√
E A
mg − 1 > O(ε), there always exist k s.t.

2 j1
k =

√
E A
mg + 1+O(ε) or 2 j2

k =
√

E A
mg − 1+O(ε) with j1 = (1+

√
E A
mg )k

2 and j2 = (
√

E A
mg −1)k

2 .

Therefore, to avoid secular terms in (4.41) the functions of Ck (s1, s2) and Dk (s1, s2) have
to satisfy the following:

• When k does not satisfy the conditions that there always exist j1, j2 s.t. 2 j1
k =√

E A
mg +1+O(ε) or 2 j2

k =
√

E A
mg −1+O(ε), then:

∂Ck

∂s1
= 0,

∂Dk

∂s1
= 0, (4.42)

and Ck (s1, s2) and Dk (s1, s2) are given by:

Ck (s1, s2) =C k (s2), Dk (s1, s2) = Dk (s2). (4.43)

• When k satisfies the conditions that there always exist j1, j2 s.t. 2 j1
k =

√
E A
mg +1+

O(ε) or 2 j2
k =

√
E A
mg −1+O(ε), then:
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∂Ck

∂s1
= −

d 4
j1−k, j1

4λk
(A j1−k B j1 +B j1−k A j1 )

+
d 4

k+ j2, j2

4λk
(A j2 B j2+k +B j2 A j2+k ) = P̃2(s1, s2),

∂Dk

∂s1
=

d 4
j1−k, j1

4λk
(A j1−k A j1 −B j1−k B j1 )

−
d 4

k+ j2, j2

4λk
(Ak+ j2 A j2 −Bk+ j2 B j2 ) = Q̃2(s1, s2), (4.44)

and Ck (s1, s2) and Dk (s1, s2) can be obtained as:

Ck (s1, s2) =
∫ s1

b
P̃2(τ̄, s2)d τ̄+C k (s2), Dk (s1, s2) =

∫ s1

b
Q̃2(τ̄, s2)d τ̄+Dk (s2), (4.45)

where C k (s2) and Dk (s2) in (4.43) and (4.45) are still unknown functions in the slow vari-
able s2. By Ck (b,c) = 0 and Dk (b,c) = 0, we obtain that C k (c) = 0 and Dk (c) = 0. The
undetermined behaviour with respect to s2 can be used to avoid secular terms in the
solution of the O(ε

p
ε)− problem (4.39).

According to (4.41), taking into account the secularity conditions, the general solu-
tion of the O(ε)− problem (4.38) is given by

Yk,1(s0, s1, s2;
p
ε) = Ek (s0, s1, s2)cos(λk s0)+Hk (s0, s1, s2)sin(λk s0), (4.46)

where

Ek (a,b,c) = 0, Hk (a,b,c) =−∂Yk,0

∂s1
(a,b,c). (4.47)

Then the O(ε
p
ε)− problem (4.39) can be written as:

∂2Ỹk,2

∂s2 +λ2
k Ỹk,2

= [−2
∂2Ek

∂s0∂s1
−2λk

∂Hk

∂s1
−2λk

∂Dk

∂s2
− ∂2Ck

∂s2
1

+(v0 − c2,0 l̂ )λk Dk +2v0kπd 1
k,kλk Dk −

E A

mg
µ0 l̂ kπd 3

k,kCk ]cos(λk s0)

+[−2
∂2Hk

∂s0∂s1
+2λk

∂Ek

∂s1
+2λk

∂Ck

∂s2
− ∂2Dk

∂s2
1

−(v0 − c2,0 l̂ )λkCk −2v0nπd 1
k,kλkCk −

E A

mg
µ0 l̂ kπd 3

k,k Dk ]sin(λk s0),

+β1,0d̃ 4
k,k [Ak cos(kπs0)+Bk sin(kπs0)]cos(ω1χ(s0 −a)+α),

Ỹk,2(a,b,c) = 0,
∂Ỹk,2

∂s0
(a,b,c) =−∂Ỹk,1

∂s1
(a,b,c)− ∂Ỹk,0

∂s2
(a,b,c). (4.48)

Note that in the analysis of section 3, the last term including cos(ω1χ(s0−a)+α) in (4.48)
can not affect the function Ỹk,0. So, to avoid secular terms in the solution Ỹk,2 in equation
(4.48), the following different cases have to be considered:
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• When k does not satisfy the conditions that there always exist j1, j2 s.t. 2 j1
k =√

E A
mg +1+O(ε) or 2 j2

k =
√

E A
mg −1+O(ε), then:

−2
∂2Ek

∂s0∂s1
−2λk

∂Hk

∂s1

= 2λk
∂Dk

∂s2
− (v0 − c2,0 l̂ )λk Dk −2v0kπd 1

k,kλk Dk +
E A

mg
µ0 l̂ kπd 3

k,kC k ,

−2
∂2Hk

∂s0∂s1
+2λk

∂Ek

∂s1

= −2λk
∂C k

∂s2
+ (v0 − c2,0 l̂ )λkC k +2v0kπd 1

k,kλkC k +
E A

mg
µ0 l̂ kπd 3

k,k Dk . (4.49)

• When k satisfies the conditions that there always exist j1, j2 s.t. 2 j1
k =

√
E A
mg +1+

O(ε) or 2 j2
k =

√
E A
mg −1+O(ε), then:

−2
∂2Ek

∂s0∂s1
−2λk

∂Hk

∂s1
−2λk

∂
∫ s1

0 Q̃2(τ̄, s2)d τ̄

∂s2
− ∂P̃2

∂s1
+ (v0 − c2,0 l̂ )λk

∫ s1

0
Q̃2(τ̄, s2)d τ̄

+2v0kπd 1
k,kλk

∫ s1

0
Q̃2(τ̄, s2)d τ̄− E A

mg
µ0 l̂ kπd 3

k,k

∫ s1

0
P̃2(τ̄, s2)d τ̄

= 2λk
∂Dk

∂s2
− (v0 − c2,0 l̂ )λk Dk −2v0kπd 1

k,kλk Dk +
E A

mg
µ0 l̂ kπd 3

k,kC k ,

−2
∂2Hk

∂s0∂s1
+2λk

∂Ek

∂s1
+2λk

∂
∫ s1

0 P̃2(τ̄, s2)d τ̄

∂s2
− ∂Q̃2

∂s1
− (v0 − c2,0 l̂ )λk

∫ s1

0
P̃2(τ̄, s2)d τ̄

−2v0kπd 1
k,kλk

∫ s1

0
P̃2(τ̄, s2)d τ̄− E A

mg
µ0 l̂ kπd 3

k,k

∫ s1

0
Q̃2(τ̄, s2)d τ̄

= −2λk
∂C k

∂s2
+ (v0 − c2,0 l̂ )λkC k +2v0kπd 1

k,kλkC k +
E A

mg
µ0 l̂ kπd 3

k,k Dk . (4.50)

Solving (4.49) and (4.50) for Ek and Hk , we observe that the solution will be unbounded
in s0 and s1, due to terms which are only depending on s2. Therefore, to have secular-free
solutions for Ek and Hk , the following conditions have to be imposed independently:

2λk
dDk

d s2
− (v0 − c2,0 l̂ )λk Dk −2v0kπd 1

k,kλk Dk +
E A

mg
µ0 l̂ kπd 3

k,kC k = 0,

−2λk
dC k

d s2
+ (v0 − c2,0 l̂ )λkC k +2v0kπd 1

k,kλkC k +
E A

mg
µ0 l̂ kπd 3

k,k Dk = 0. (4.51)

Due to d 2
k,k =− 1

2kπ , we then obtain from (4.61):

C k (s2) = e−
1
2 c2,0 l̂ (s2−c)[C k (c)cos(

E Aµ0 l̂ kπd 3
k,k

2mgλk
(s2 − c))

−Dk (c)sin(
E Aµ0 l̂ kπd 3

k,k

2mgλk
(s2 − c))],
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Dk (s2) = e−
1
2 c2,0 l̂ (s2−c)[C k (c)sin(

E Aµ0 l̂ kπd 3
k,k

2mgλk
(s2 − c))

+Dk (c)cos(
E Aµ0 l̂ kπd 3

k,k

2mgλk
(s2 − c))].

Since C k (c) = 0 and Dk (c) = 0, this implies that

C k (s2) = 0, Dk (s2) = 0. (4.52)

Now, all unknown functions in (4.40) can be determined, and the solution of the O(
p
ε)-

problem (4.37) can be written as:

Ỹk,0(s0, s1, s2) = Ck (s1, s2)cos(λk s0)+Dk (s1, s2)sin(λk s0), (4.53)

where Ck (s1, s2) and Dk (s1, s2) are given by (4.43), (4.45) and (4.52).
Now, substituting (4.36) and (4.53) into the O(ε)-problem (4.34) for T̃k,1, together

with c1
k,k = 1

2 , c2
k,k = 0 and c3

k,k = − 1
2kπ in (4.15), problem (4.34)becomes a nonlinear

ordinary differential equation without coupling term:

∂2T̃k,1

∂s2
0

+k2π2T̃k,1

= 2kπ
∂Ak

∂s1
cos(kπs0)−2kπ

∂Bk

∂s1
cos(kπs0)︷ ︸︸ ︷

+E Aπ3

2mg l̂

∞∑
p=k+1

kp(k −p)[
Ap−k Dp +Bp−kCp

2
sin((λp + (p −k)π)s0)

+ Ap−kCp −Bp−k Dp

2
cos((λp + (p −k)π)s0)

+ Ap−k Dp −Bp−kCp

2
sin((λp − (p −k)π)s0)

+ Ap−kCp +Bp−k Dp

2
cos((λp − (p −k)π)s0)]

−E Aπ3

2mg l̂

k−1∑
p=1

kp(k −p)[
Ak−p Dp +Bk−pCp

2
sin((λp + (k −p)π)s0)

+ Ak−pCp −Bk−p Dp

2
cos((λp + (k −p)π)s0)

+ Ak−p Dp −Bk−pCp

2
sin((λp − (k −p)π)s0)

+ Ak−pCp +Bk−p Dp

2
cos((λp − (k −p)π)s0)]

−E Aπ3

2mg l̂

∞∑
p=1

kp(k +p)
Ak+p Dp +Bk+pCp

2
sin((λp + (k +p)π)s0)

+ Ak+pCp −Bk+p Dp

2
cos((λp + (k +p)π)s0)

+ Ak+p Dp −Bk+pCp

2
sin((λp − (k +p)π)s0)
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+ Ak+pCp +Bk+p Dp

2
cos((λp − (k +p)π)s0)]︸ ︷︷ ︸
I

+β1,0dkω
2
1 l̂ 2cos(ω1χ(s0 −a)+α)︸ ︷︷ ︸

I I

, (4.54)

where Cp and Dp are given by (4.43) and (4.45). The right-hand side of equation (4.54)
contains resonant terms: for instance, at least one of the I terms is a resonant term when

there exist k, p1, p2 s.t. 2k
p1

=
√

E A
mg +1+O(ε) or 2k

p2
=

√
E A
mg −1+O(ε). The II term with ω1

can be resonant when kπ−ω1χ̇(s) ≈ 0 or kπ+ω1χ̇(s) ≈ 0. Obviously, the terms in (4.54)
involving sin(kπs0) or cos(kπs0) are resonant.

Outside the resonance zone (or equivalently the resonance manifold), the corre-
sponding timescales are s0 = s̃ and s2 = εs̃ (without s1 =p

εs̃), so to avoid secular terms
in (4.54), Ak and Bk have to satisfy the following equations depending on the parameter
values:

∂Ak

∂s1
= 0,

∂Bk

∂s1
= 0, (4.55)

which implies that:

Ak (s1, s2) = Ak (s2), Bk (s1, s2) = B k (s2), (4.56)

where Ak (s2) and B k (s2) are still unknown functions in the slow variable s2. Since Ak (b,c)=
0 and Bk (b,c) = 0, we obtain that Ak (c) = 0 and B k (c) = 0. The undetermined behaviour
with respect to s2 can be used to avoid secular terms in the O(ε

p
ε)− problem (4.35). Ac-

cording to (4.54), taking into account the secularity conditions, the general solution of
the O(ε)− problem (4.34) can be written as

Tk,1(s0, s1, s2;
p
ε) = Lk (s0, s1, s2)cos(kπs0)+Mk (s0, s1, s2)sin(kπs0), (4.57)

where

Lk (a,b,c) = Fk , Mk (a,b,c) =−∂Tk,0

∂s1
(a,b,c)+Gk . (4.58)

Then, together with c1
k,k = 1

2 , c2
k,k = 0 and c3

k,k = − 1
2kπ in (4.15), the O(ε

p
ε)− problem

(4.35) can be written as

∂2T̃k,2

∂s2 + (kπ)2T̃k,2

= [−2
∂2Lk

∂s0∂s1
−2kπ

∂Mk

∂s1
−2kπ

∂Bk

∂s2
− ∂2 Ak

∂s2
1

− c1,0 l̂ kπBk −
µ0 l̂ (kπ)2

2
Ak ]cos(kπs0)

+[−2
∂2Mk

∂s0∂s1
+2kπ

∂Lk

∂s1
+2kπ

∂Ak

∂s2
− ∂2Bk

∂s2
1

+ c1,0 l̂ )kπAk −
µ0 l̂ (kπ)2

2
Bk ]sin(kπs0),

Ỹk,2(0,0,0) = 0,
∂Ỹk,2

∂s
(0,0,0) = 0. (4.59)
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To avoid secular terms in T̃k,2 in equation (4.59), the following conditions have to be
imposed

−2
∂2Lk

∂s0∂s1
−2kπ

∂Mk

∂s1
= 2kπ

∂B k (s2)

∂s2
+ c1,0 l̂ kπB k (s2)+ µ0 l̂ (kπ)2

2
Ak (s2),

−2
∂2Mk

∂s0∂s1
+2kπ

∂Lk

∂s1
= −2kπ

∂Ak (s2)

∂s2
− c1,0 l̂ kπAk (s2)+ µ0 l̂ (kπ)2

2
B k (s2). (4.60)

By solving (4.60) for Lk and Mk , we observe that the solution will be unbounded in s0

and s1, due to terms which are only depending on s2. Therefore, to have secular-free
solutions for Lk and Mk , the following conditions have to be imposed independently

2kπ
dB k (s2)

d s2
+ c1,0 l̂λk B k (s2)+ µ0 l̂ (kπ)2

2
Ak (s2) = 0,

−2kπ
d Ak (s2)

d s2
− c1,0 l̂λk Ak (s2)+ µ0 l̂ (kπ)2

2
B k (s2) = 0, (4.61)

we then obtain

Ak (s2) = e−
1
2 c2,0 l̂ (s2−c)[Ak (c)cos(

kπµ0 l̂

4
(s2 − c))−B k (c)sin(

kπµ0 l̂

4
(s2 − c))],

B k (s2) = e−
1
2 c2,0 l̂ (s2−c)[Ak (c)sin(

kπµ0 l̂

4
(s2 − c))+B k (c)cos(

kπµ0 l̂

4
(s2 − c))]. (4.62)

Since Ak (c) = 0 and B k (c) = 0, together with (4.62), this implies that

Ak (s2) = 0, B k (s2) = 0. (4.63)

Now, outside the resonance zone, all these unknown functions in (4.36) have been de-
termined in (4.56), so the solution of the O(

p
ε)-problem (4.33) is T̃k,0(s0, s1, s2) ≡ 0.

Inside the resonance zone around s = s(k) (or equivalently, in the resonance mani-
fold), according to the inner analysis in section 4.3, and to avoid secular terms in (4.54),
Ak , Bk have to satisfy the following equations:

• When k does not satisfy the conditions that there always exist p1, p2 s.t. 2k
p1

=√
E A
mg +1+O(ε) or 2k

p2
=

√
E A
mg −1+O(ε), then:

∂Ak

∂s1
= β1,0dkω

2
1 l̂ 2

2
sin(

1

2
ω1l0v0ev0τ

(k)
s2

1 +ψk (s(k))),

∂Bk

∂s1
= −β1,0dkω

2
1 l̂ 2

2
cos(

1

2
ω1l0v0ev0τ

(k)
s2

1 +ψk (s(k))), (4.64)

which implies that

Ak (s1, s2) =
p

2β1,0dkω
2
1 l̂ 2

p
α̃

sin(ψk (s(k)))C̄F r (s1)

+
p

2β1,0dkω
2
1 l̂ 2

p
α̃

cos(ψk (s(k)))S̄F r (s1)+ Ak (s2),
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Bk (s1, s2) = −
p

2β1,0dkω
2
1 l̂ 2

p
α̃

cos(ψk (s(k)))C̄F r (s1)

+
p

2β1,0dkω
2
1 l̂ 2

p
α̃

sin(ψk (s(k)))S̄F r (s1)+B k (s2), (4.65)

where α̃=ω1l0v0ev0τ
(k)

, and

C̄F r (s) =
∫ √

α̃
2 s√

α̃
2 b

cos(x2)d x, and S̄F r (s) =
∫ √

α̃
2 s√

α̃
2 b

sin(x2)d x, (4.66)

which are the well-known Fresnel integrals. The presence of Fresnel functions CF r (s1)
and SF r (s1) cause resonance jumps in the system. In (4.65) , Ak (s2) and B k (s2) are still
unknown functions in the slow variable s2. Since Ak (b,c) = 0 and Bk (b,c) = 0, we obtain
that Ak (c) = 0 and B k (c) = 0. The undetermined behaviour with respect to s2 can be
used to avoid secular terms in the solutions of the O(ε

p
ε)− problem (4.35). Following

the derivation of (4.57)-(4.52) together with (4.65), we obtain

Ak (s2) = 0, B k (s2) = 0. (4.67)

• When k satisfies the conditions that there always exist p1, p2 s.t. 2k
p1

=
√

E A
mg +1+

O(ε) or 2k
p2

=
√

E A
mg −1+O(ε), then there exist j1 = k, j2 = kp1

p2
= θk s.t. 2 j1

p1
=

√
E A
mg +

1+O(ε) or 2 j2
p1

=
√

E A
mg − 1+O(ε); and there exist j1 = kp2

p1
= ϑk, j2 = k s.t. 2 j1

p2
=√

E A
mg + 1 +O(ε) or 2 j2

p2
=

√
E A
mg − 1 +O(ε). Then, the functions of Ak (s1, s2) and

Bk (s1, s2) have to satisfy:

∂Ak

∂s1
= E Aπ3

4mg l̂
(1−θ)θk3 Aθk Dp1(k) −BθkCp1(k)

2

+E Aπ3

4mg l̂
(ϑ−1)ϑk3 Aϑk Dp2(k) −BϑkCp2(k)

2

+β1,0dkω
2
1 l̂ 2

2
sin(

1

2
ω1l0v0ev0τ

(k)
s2

1 +ψk (s(k))),

∂Bk

∂s1
= −E Aπ3

4mg l̂
(1−θ)θk3 AθkCp1(k) +Bθk (τ)Dp1(k)

2

−E Aπ3

4mg l̂
(ϑ−1)ϑk3 AϑkCp2(k) +Bϑk Dp2(k)

2

−β1,0dkω
2
1 l̂ 2

2
cos(

1

2
ω1l0v0ev0τ

(k)
s2

1 +ψk (s(k))), (4.68)

where

Cp1(k) = 1

4λp1

(d 4
k,θk −d 4

θk,k )
∫ s1

b
(Aθk (τ)Bk (τ)+Bθk (τ)Ak (τ))dτ,

Dp1(k) = 1

4λp1

(d 4
k,θk −d 4

θk,k )
∫ s1

b
(Aθk (τ)Ak (τ)−Bθk (τ)Bk (τ))dτ,
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Cp2(k) = 1

4λp2

(d 4
ϑk,k −d 4

k,ϑk )
∫ s1

b
(Ak (τ)Bϑk (τ)+Bk (τ)Aϑk (τ))dτ,

Dp2(k) = 1

4λp2

(d 4
ϑk,k −d 4

k,ϑk )
∫ s1

b
(Ak (τ)Aϑk (τ)−Bk (τ)Bϑk (τ))dτ, (4.69)

and p1(k) = 2k

1+
√

E A
mg

, p2(k) = 2k√
E A
mg −1

, θ =
√

E A
mg −1

1+
√

E A
mg

, ϑ=
√

E A
mg +1√
E A
mg −1

.

By noting that Aϑk = 0 and Bϑk = 0 inside the resonance zone around s(k), it follows
that system (4.68) can be written as

∂Ak

∂s1
= E Aπ3

4mg l̂
(1−θ)θk3 Aθk Dp1(k) −BθkCp1(k)

2

+β1,0dkω
2
1 l̂ 2

2
sin(

ω1l0v0ev0τk

2
s2

1 +ψk (sk )),

∂Bk

∂s1
= −E Aπ3

4mg l̂
(1−θ)θk3 AθkCp1(k) +Bθk Dp1(k)

2

−β1,0dkω
2
1 l̂ 2

2
cos(

ω1l0v0ev0τk

2
s2

1 +ψk (sk )), (4.70)

where Cp1(k)(s1, s2) and Dp1(k)(s1, s2) are given by (4.69). For any mode k satisfying the

conditions that there exist p1, p2 s.t. 2k
p1

=
√

E A
mg +1 or 2k

p2
=

√
E A
mg −1, we can always find

k1 (k1 is an integer), s.t. θn−1k = k1, and θnk is not an integer, n = 1,2, ... From that,
we get a mode sequence (k1,ϑk1,ϑ2k1, ...,k,ϑnk1, ...). We firstly solve the ordinary dif-
ferential equations (4.70) for mode k1, which can be rewritten as (4.64) (here the mode
k1 is denoted by k), and it can be solved as in (4.65). For the mode k2 in (4.70), k = k2,
Aθk = Ak1 and Bθk = Bk1 , thereby inside the resonance zone around s(k2), we can obtain
the solutions Ak2 and Bk2 from (4.70). Next, by using an iterative method we can pre-
dict and obtain the functions Ak and Bk . Note that (4.70) is a nonlinear perturbation
problem. It is hard to obtain the analytical, explicit solution, but we can find proper-
ties of Ak and Bk by the above analysis, which can be used to describe the behaviors of
the solution T̃k,0(s0, s1, s2) of O(

p
ε)-problem (4.33). Moreover, the solution of (4.70) can

be obtained by numerical calculations. Now, inside the resonance zone around s(k) in
(4.22), the solution of the O(

p
ε)-problem (4.33) is given by (4.65) and (4.70).

To summarize, the solution ŵ(ξ, s) of equation (4.8) readily follows:

ŵ(ξ, s) =
∞∑

n=1
[An(

p
ε(s − s(n)),ε(s − s(n)))cos(nπ(s − s(n)))

+Bn(
p
ε(s − s(n)),ε(s − s(n)))sin(nπ(s − s(n)))]si n(nπξ)+O(ε), (4.71)

where s(n) is given by (4.22), and An and Bn are given by (4.56), (4.63), (4.65) and (4.70).
In the longitudinal direction, according to the analysis of (4.40)-(4.53), Ỹk,0 in equa-

tion (4.40) can be approximated as:

Ỹk,0(s0, s1, s2) = Ck (s1, s2)cos(λk s0)+Dk (s1, s2)sin(λk s0). (4.72)

• When k does not satisfy the conditions that there always exist j1, j2 s.t. 2 j1
k =√

E A
mg +1+O(ε) or 2 j2

k =
√

E A
mg −1+O(ε), then:
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Ck (s1, s2) = Dk (s1, s2) = 0, (4.73)

which follows from (4.43) and (4.52).

• When k satisfies the conditions that there always exist j1, j2 s.t. 2 j1
k =

√
E A
mg +1+

O(ε) or 2 j2
k =

√
E A
mg −1+O(ε), then:

Ck (s1, s2) =
∫ s1

b
−

d 4
j1−k, j1

4λk
(A j1−k B j1 +B j1−k A j1 )

+
d 4

k+ j2, j2

4λk
(A j2 B j2+k +B j2 A j2+k )d τ̄,

Dk (s1, s2) =
∫ s1

b

d 4
j1−k, j1

4λk
(A j1−k A j1 −B j1−k B j1 )

−
d 4

k+ j2, j2

4λk
(Ak+ j2 A j2 −Bk+ j2 B j2 )d τ̄, (4.74)

which follows from (4.45) and (4.52). And inside the resonance zone around s(k), Ak and
Bk are given by (4.65) and (4.70); outside the resonance zone, Ak and Bk are given by
(4.56) and (4.63).

The solution û(ξ, s) of equation (4.9) readily follows:

û(ξ, s) =
∞∑

n=1
[Cn(

p
ε(s − s(n)),ε(s − s(n)))cos(nπ(s − s(n)))

+Dn(
p
ε(s − s(n)),ε(s − s(n)))sin(nπ(s − s(n)))]si n(nπξ)+O(ε), (4.75)

where s(n) is given by (4.22), Cn and Dn are given by (4.73) and (4.74).
By the three time-scales perturbation method, we obtained that for special frequen-

cies in the boundary excitations and for certain parameter values of the longitudinal
stiffness and the conveyance mass, the transverse solution ŵ(ξ, s) of equation (4.8) jump
up from O(ε) to O(

p
ε), and the longitudinal solution û(ξ, s) of equation (4.9) jump up

from O(ε2) to O(
p
ε). We can not (always) construct formal approximations of the so-

lutions but we can get properties and predictions of solution behaviors analytically on
time-scales of O( 1

ε ). Based on the properties and equations in the analysis, the approx-
imated solutions for transverse and longitudinal motions will be computed by using an
iterative method as well as by using a numerical method in the next section. Also the
approximations will be computed by using a central finite difference scheme in the next
section to verify the analytical results in this section.

4.5. NUMERICAL RESULTS
Since the nonlinear initial-boundary value problems for the transverse motion (4.8) and
for the longitudinal motion (4.9) are coupled, we can not construct formal explicit ap-
proximations of the solutions, but we can reduce the problems to ordinary differential
equations in the transverse and in the longitudinal directions. So, on the one hand, we
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can compute the transverse and the longitudinal motions of the cable for (4.8) and (4.9)
by computing numerically the solutions of the ordinary differential equation (4.71) and
(4.75). On the other hand, we can compute numerically the solutions of the problem
(4.8) and the problem (4.9) straight-forwardly by applying a finite difference method.

4.5.1. ANALYTICAL APPROXIMATIONS

The numerical results simulating the transverse and the longitudinal vibration responses
are computed based on the analytical expression (4.71) for ŵ(ξ, s) and the expression
(4.75) for û(ξ, s). The computations are performed by using the following parameters:

v = 0.01,
E A

mg
= 9, µ= 0.01, cu = 0.01, c1 = 0.01, c2 = 0.01,

β1 = 0.0001, β2 = 0.01, ω1 = 0.6π, ω2 = 0.5π, l0 = 1,ε= 0.01, (4.76)

and the initial conditions are taken to be:

ŵ(ξ,0) = 0.01sin(1.5ξ), ŵs (ξ,0) = 0,
û(ξ,0) = 0.0001sin(1.5ξ), ûs (ξ,0) = 0, 0 ≤ ξ≤ 1. (4.77)

By using the Liouville-Green transformation with d s
d t = 1

l (t ) , we obtain that the resonance
zones (in the transverse direction) are located around the times

tk = l0ev sk − l0

v
= kπ

ω2v
− l0

v
, (4.78)

where the resonance time depends on the mode number k. For the first three oscillation
modes, resonance emerges at times t1 ≈ 100, t2 ≈ 300, t3 ≈ 500. The displacements of the
first and third mode are given by (4.65) and (4.71), the displacements of the second mode
are given by (4.70) and (4.71). They are all illustrated in Figure 4.2(a). The displacements

Figure 4.2: (a) Transverse displacements w(0.25, t ). (b) Longitudinal displacements u(0.25, t ).

of the longitudinal motion are given by (4.75), which are illustrated in Figure 4.2(b).
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4.5.2. NUMERICAL APPROXIMATIONS
In this subsection, the finite difference method is applied in both the time and the space
domain for both PDEs and boundary conditions in (4.6) and (4.7) with space grid size
dξ= 5×10−2, and time step d t = 5×10−3. We rewrite the so-obtained discretized equa-
tion (4.6) and (4.7) in matrix forms and use as numerical time integration method, the
Crank-Nicolson method (see Appendix C.3). Note that the same parameter values as for
the analytic approximations in section 4.5.1 are used here for the computations. In Fig-

Figure 4.3: (a) Transverse displacements w(0.25, t ). (b) Transverse vibratory energy.

ure 4.3 the transverse displacements and the vibratory energy of the cable up to the first
three oscillation modes on timescales up to t = 600 are presented. In Figure 4.3, one can
see that the transverse resonances emerge around times t1 = 100, t2 = 300 and t3 = 500.
In the resonance zones the displacements and the energy increase, and in between these
zones, stay constant (approximately). Around the first resonance time t1, the displace-
ment amplitudes jump up from O(ε) to O(

p
ε). Around the second resonance time t2

and the third resonance time t3, the amplitudes change again at the O(
p
ε) level, where

ε is a small parameter with ε = 0.01. In Figure 5.2 the longitudinal displacements and

Figure 4.4: (a) Longitudinal displacements u(0.25, t ). (b) Longitudinal vibratory energy.

the vibratory energy of the cable on timescales up to t = 600 are given. In Figure 5.2, one
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Figure 4.5: (a) The total mechanical energy based on analytical results. (b) The total mechanical energy based
on numerical results.

can see that the longitudinal displacements increase from O(ε2) to O(
p
ε), and that the

vibratory energy increases from O(ε4) to O(ε). In Figure 4.5 compare the total mechani-
cal energy (see also Appendix C.4 for definations) based on the analytical results and the
total energy based on the numerical results can be compared. Based on the Figures 4.2,
4.3, 5.2, and 4.5, we can draw the conclusion that the general dynamic behavior of the
solution as approximated by direct numerical integration of the problem is in agreement
with the analytic approximations as obtained by applying perturbation methods.

4.6. CONCLUSIONS

In this chapter, we studied the coupled transverse and longitudinal vibrations and asso-
ciated resonances induced by boundary excitations in a elevator system. The problem
is described by nonlinear coupled partial differential equations on a time-varying spa-
tial interval with small harmonic disturbances at one end and a moving nonclassical
boundary condition at the other end. Assuming that the transverse harmonic bound-
ary disturbances and the corresponding initial values are of order ε, and the longitudi-
nal harmonic boundary disturbances and the corresponding initial values are of order
ε2, it is shown in this chapter that for special frequencies in the boundary excitations
and that for certain parameter values of the longitudinal stiffness and the conveyance
mass, many large oscillations arise in transverse and longitudinal directions. The os-
cillation modes for transverse motion jump up from O(ε) to O(

p
ε), and the oscillation

modes for longitudinal motion jump up from O(ε2) to O(
p
ε). To obtain these results the

method of separation of variables is presented, and perturbation methods, (such as aver-
aging methods, and singular perturbation techniques) are used. Furthermore, since the
initial-boundary value problems for the transverse motion and the longitudinal motion
are nonlinearly coupled, we can not (always) construct formal approximations of the so-
lutions but we can get properties and predictions of solution behaviors analytically on
time-scales of order ε−1. Furthermore, approximations of the solutions are computed
by using an iterative method as well as by using a numerical method. Also approxima-
tions of the solutions of the initial-boundary value problems are computed by using a
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central finite difference scheme. The numerical approximations are in agreement with
the analytically obtained approximations.

APPENDIX C
APPENDIX C.1 THE DERIVATION OF THE EQUATIONS (4.1) AND (4.2)
According to Figure 1, the partial differential equation (PDE) can be derived by the ex-
tended
Hamilton’s principle: ∫ t2

t1

(δEk (t )−δEp (t )+δWc (t ))d t = 0. (4.79)

The kinetic energy Ek (t ) can be represented as

Ek (t ) = 1

2
ρ[

∫ l (t )

eu (t )
(

Du

Dt
+ v)2d x +

∫ l (t )

eu (t )
(

Dw

Dt
)2d x]+ 1

2
m[(

Du

Dt
+ v)2|x=l (t ) + (

Dw

Dt
)2|x=l (t )],

(4.80)
where the operator Du

Dt is defined as Du
Dt = ∂u

∂t + v ∂u
∂x = ut + vux , and the operator Dw

Dt is

defined as Dw
Dt = ∂w

∂t + v ∂w
∂x = wt + v wx . The potential energy Ep (t ) can be expressed as

Ep (t ) = 1

2
E A

∫ l (t )

eu (t )
z2d x +

∫ l (t )

eu (t )
Tzd x +Eg s −

∫ l (t )

eu (t )
ρg ud x −mg u|x=l (t ), (4.81)

where z = ux + 1
2 w2

x , and

δEk (t )−δEp (t ) = ρ

∫ l (t )

eu (t )
(

Du

Dt
+ v)δ

Du

Dt
d x +m(

Du

Dt
+ v)δ

Du

Dt
|x=l (t )

+ρ
∫ l (t )

eu (t )
(

Dw

Dt
)δ

Dw

Dt
d x +m(

Dw

Dt
)δ

Dw

Dt
|x=l (t )

−[E A
∫ l (t )

eu (t )
zδzd x +

∫ l (t )

eu (t )
Tδzd x −

∫ l (t )

eu (t )
ρgδud x

−mgδu|x=l (t )]. (4.82)

The virtual work δWc done by the distributed and the lumped damping force is given as

δWc (t ) =−
∫ l (t )

eu (t )
c2

Du

Dt
δud x −

∫ l (t )

eu (t )
c1

Dw

Dt
δwd x − cu

Du

Dt
δu|x=l (t ). (4.83)

By substituting equation (4.80)-(4.83) into (4.79), we obtain∫ t2

t1

∫ l (t )

eu (t )
ρ(

Du

Dt
+ v)δ

Du

Dt
d xd t +

∫ t2

t1

m(
Du

Dt
+ v)δ

Du

Dt
|x=l (t )d t

+
∫ t2

t1

∫ l (t )

eu (t )
ρ(

Dw

Dt
)δ

Dw

Dt
d xd t +

∫ t2

t1

m(
Dw

Dt
)δ

Dw

Dt
|x=l (t )d t

−E A
∫ t2

t1

∫ l (t )

eu (t )
zδzd xd t −

∫ t2

t1

∫ l (t )

eu (t )
Tδzd xd t +

∫ t2

t1

∫ l (t )

eu (t )
ρgδud xd t

+
∫ t2

t1

mgδu|x=l (t )d t −
∫ t2

t1

∫ l (t )

eu (t )
c2

Du

Dt
δud xd t −

∫ t2

t1

cu
Du

Dt
δu|x=l (t )d t
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−
∫ t2

t1

∫ l (t )

eu (t )
c1

Dw

Dt
δwd xd t = 0. (4.84)

By integrating by parts it follows from (4.84) that∫ t2

t1

∫ l (t )

eu (t )
[−ρ(ut t +2vuxt + v2uxx +aux +a)+E Azx

+Tx +ρg − c2(ut + vux )]δud xd t

+
∫ t2

t1

∫ l (t )

eu (t )
[−ρ(wt t +2v wxt + v2wxx +awx )

+E A(zwx )x + (T wx )x − c1(wt + v wx )]δwd xd t

+
∫ t2

t1

[−m(ut t +2vuxt + v2uxx +aux +a)

−E Az −T +mg − cu(ut + vux )]δu|x=l (t )d t

+
∫ t2

t1

[−m(wt t +2v wxt + v2wxx +awx )−E Azwx −T wx ]δw |x=l (t )d t

+
∫ t2

t1

[−ρv(ut + vux + v)+E Az +T ]δu|x=eu (t )d t

+
∫ t2

t1

ėu(t )ρ(ut + vux + v)δu|x=eu (t )d t

+
∫ t2

t1

[−ρv(wt + v wx )+E Azwx +T wx ]δw |x=eu (t )d t

+
∫ t2

t1

ėu(t )ρ(wt + v wx )δw |x=eu (t )d t = 0.

So, the governing equations of motion are given by

ρ(ut t +2vuxt + v2uxx +aux +a)−E Azx −Tx −ρg + c2(ut + vux ) = 0,
eu(t ) < x < l (t ), t > 0, (4.85)

ρ(wt t +2v wxt + v2wxx +awx )−E A(zwx )x − (T wx )x + c1(wt + v wx ) = 0,
eu(t ) < x < l (t ), t > 0. (4.86)

The corresponding boundary conditions on the upper end at x = eu(t ) are given by:

[−ρv(ut + vux + v)+E Az +T + ėu(t )ρ(ut + vux + v)]|x=eu (t ) = 0, t ≥ 0,
[−ρv(wt + v wx )+E Azwx +T wx + ėu(t )ρ(wt + v wx )]|x=eu (t ) = 0, t ≥ 0, (4.87)

and the boundary conditions at x = l (t ) are given by:

[m(ut t +2vuxt + v2uxx +aux +a)+E Az +T −mg + cu(ut + vux )]|x=l (t ) = 0,
[m(wt t +2v wxt + v2wxx +awx )+E Azwx +T wx ]|x=l (t ) = 0, t ≥ 0. (4.88)

Note that (4.87) and (4.88) are the natural boundary conditions. But (4.87) is not appro-
priate for our problem, since the string is excited at the top boundary with the funda-
mental excitations eu(t ) and ew (t ). Thus, the correct boundary condition at the upper
end are:

u(eu(t ), t ) = eu(t ), w(eu(t ), t ) = ew (t ), t ≥ 0, (4.89)
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where eu(t ) and ew (t ) are given in Nomenclature in section 4.2, and at the bottom bound-
ary, the string is assumed to be fixed in horizontal direction. Thus, the corresponding
transverse boundary condition at x = l (t ) is:

w(l (t ), t ) = 0, t ≥ 0. (4.90)

Considering

T (x, t ) = [m +ρ(l (t )−x)]g , eu(t ) ≤ x ≤ l (t ), (4.91)

together with the governing equations given in (4.85) and in (4.86), the boundary exci-
tations conditions given in (4.88), (4.89) and (4.90), we obtain the initial boundary value
problem (4.1) for the transverse vibration and (4.2) for the longitudinal vibration.

APPENDIX C.2 SIMPLIFICATION OF THE PROBLEMS (4.1) AND (4.5)
In order to convert the time-varying spatial domain [β2cos(ω2t ), l (t )] for x to a fixed do-

main [0,1] for ξ, a new independent spatial coordinate ξ = x−β2cos(ω2t )
h(t ) , where h(t ) =

l (t )−β2cos(ω2t ), is introduced. After this spatial transformation, new dependent vari-
ables w̄(ξ, t ) = w(x, t ), ū(ξ, t ) = u(x, t ), and all the partial derivatives have to be rewritten
as follows:

ξt = − vξ

h(t )
+β2

ω2(1−ξ)si n(ω2t )

h(t )
,

ξt t = v2ξ

h2(t )
+β2[

ω2
2(1−ξ)cos(ω2t )

h(t )
− vω2(1−2ξ)si n(ω2t )

h2(t )
]−β2

2

ω2
2(1−ξ)si n2(ω2t )

h2(t )
,

wt = w̄ξξt + w̄t , wt t = w̄ξξ(ξt )2 +2w̄ξtξt + w̄ξξt t + w̄t t ,

wx = 1

h(t )
w̄ξ, wxx = 1

h2(t )
w̄ξξ,

ut = ūξξt + ūt , ut t = ūξξ(ξt )2 +2ūξtξt + ūξξt t + ūt t ,

ux = 1

h(t )
ūξ, uxx = 1

h2(t )
ūξξ.

So, the initial boundary value problem for the transverse motion is given by (4.6), and
the initial boundary value problem for the longitudinal motion is given by (4.7).

In order to eliminate the time-variable coefficients in 1
h2(t )

w̄ξξ and in E A
mg h2(t )

ūξξ in

the initial boundary problems (4.6) and (4.7), the Liouville-Green transformation (see
also the WKBJ method) is introduced with d s

d t = 1
l (t ) . In accordance with a new time

variable s, all the partial derivatives have to be rewritten as follows:

s = 1

εv0
l n(

l (t )

l0
), l (t ) = l̂ (s) = l0eεv0s , χ(s) = l0(eεv0s −1)

εv0
,

w̄t = 1

l̂
w̃s , w̄ξt =

1

l̂
w̃ξs , w̄t t = 1

l̂ 2
w̃ss − v

l̂ 2
w̃s ,

ūt = 1

l̂
ũs , ūξt =

1

l̂
ũξs , ūt t = 1

l̂ 2
ũss − v

l̂ 2
ũs .

Substituting these derivatives into the problem (4.6), the initial boundary value problem
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for the transverse motion becomes:

w̃ss − w̃ξξ = v w̃s −2v w̃ξs − c1 l̂ w̃s −µl̂ w̃ξ+µl̂ (1−ξ)w̃ξξ+ E A
mg l̂

(ũξw̃ξ)ξ+ E A
mg l̂ 2 ( 1

2 w̃3
ξ

)ξ

+2vξw̃ξs +O(ε2w̃), 0 < ξ< 1, s > 0,

w̃(1, s) = 0, s ≥ 0,

w̃(0, s) =β1cos(ω1χ(s)+α), s ≥ 0,

w̃(ξ,0) = w̄0(ξ), w̃s (ξ,0) = l0w̄1(ξ), 0 < ξ< 1.
(4.92)

The initial boundary value problem for the longitudinal motion becomes:
ũss − E A

mg ũξξ = vũs −2vũξs − c2 l̂ ũs + E A
mg l̂

w̃ξw̃ξξ+2vξũξs +O(ε2ũ), 0 < ξ< 1, s > 0,

ũss (1, s) = [−µE Al̂
mg ũξ+ vũs − cu l̂ ũs − µE A

2mg w̃2
ξ

]|ξ=1 +O(ε2ũ), s ≥ 0,

ũ(0, s) =β2cos(ω2χ(s)), s ≥ 0,

ũ(ξ,0) = ū0(ξ), ūs (ξ,0) = l0ū1(ξ), 0 < ξ< 1.
(4.93)

The initial boundary value problem (4.93) can further be rewritten as
ũss − E A

mg ũξξ = vũs −2vũξs − c2 l̂ ũs + E A
mg l̂

w̃ξw̃ξξ+2vξũξs +O(ε2ũ), 0 < ξ< 1, s > 0,

ũξξ(1, s) = [−µl̂ ũξ+ mg
E A (c2 − cu)l̂ ũs − µ

2 w̃2
ξ
− 1

l̂
w̃ξw̃ξξ]|ξ=1 +O(ε2ũ), s ≥ 0,

ũ(0, s) =β2cos(ω2χ(s)), s ≥ 0,

ũ(ξ,0) = ū0(ξ), ũs (ξ,0) = l0ū1(ξ), 0 < ξ< 1.
(4.94)

In order to eliminate the non-homogenous terms in the boundary conditions in (4.92)
and in (4.94), the following transformations are used:

w̃(ξ, s) = β1(1−ξ)cos(ω1χ(s)+α)+ ŵ(ξ, s), (4.95)

ũ(ξ, s) = û(ξ, s)+ ξ2

2
[−µl̂ ûξ+

mg

E A
(c2 − cu)l̂ ûs − µ

2
ŵ2

ξ ]|ξ=1 +
ξ2

2
[−1

l̂
ŵξŵξξ]|ξ=1

+ξ2

4
µ[ŵ2

ξξ+ ŵξŵξξξ]|ξ=1 −
ξ2

4

mg

E A
(c2 − cu)[ŵξs ŵξξ+ ŵξŵξξs ]|ξ=1

+ξ2µβ1

2
cos(ω1χ(s)+α)ŵξ(1, s)+ ξ2β1

2l̂
cos(ω1χ(s)+α)ŵξξ(1, s)

−ξ2

4

mg

E A
(c2 − cu)β1[ω1 l̂ si n(ω1χ(s)+α)ŵξξ(1, s)−cos(ω1χ(s)+α)ŵξξs (1, s)]

−ξ2µβ1

4
cos(ω1χ(s)+α)ŵξξξ(1, s)+β2 cos(ω2χ(s)), (4.96)

Thus, in the transverse direction, we obtain the initial boundary value problem (4.8), and
in the longitudinal direction, we obtain the initial boundary value problem (4.9).

APPENDIX C.3 DISCRETIZATION AND TIME INTEGRATION
To solve (4.8) numerically, it is convenient to rewrite the second order partial differential
equation as a system of two coupled first-order partial differential equations:

w̌t = ζ̌,
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ζ̌t = 1

l 2 [1+µl (1−ξ)]w̌ξξ+
2v

l
(ξ−1)ζ̌ξ− c1ζ̌− µ

l
w̌ξ

+(1−ξ)ω2
2β2 cos(ω2t +α). (4.97)

Next, let us use the mesh grids ξ j = ( j − 1)∆ξ for j = 1,2, . . . ,n,n + 1 with n∆ξ = 1. By

introducing the differences, w̌ξξ(ξ j , t ) = w̌ j+1−2w̌ j +w̌ j−1

(∆ξ)2 +O((∆ξ)2), ζ̌ξ(ξ j , t ) = ζ̌ j+1−ζ̌ j−1

2∆ξ +
O((∆ξ)2), it follows how system (4.97) can be discretized, yielding:

d w̌
d t (ξ j , t ) = ζ̌ j ,
d ζ̌
d t (ξ j , t ) = r j (w̌ j+1 −2w̌ j + w̌ j−1)+q j (ζ̌ j+1 − ζ̌ j−1)− c1ζ j −p(w̌ j+1 − w̌ j−1)

+(1−ξ)ω2
2β2 cos(ω2t +α),

where r j = 1+µl (1−ξ j )

l 2(∆ξ)2 , q j = v(ξ j −1)
l∆ξ , p = µ

2l∆ξ for j=1,2,..,n. Further,

R =


−2r1 r1 −p 0 · · · · · · 0
r2 +p −2r2 r2 −p · · · · · · 0

...
. . .

. . .
. . .

. . .
...

0 · · · · · · rn−1 +p −2rn−1 rn−1 −p
0 · · · · · · 0 rn +p −2rn

 ∈Rn×n , and

P =


−c1 q1 0 · · · · · · 0
−q2 −c1 q2 · · · · · · 0

...
. . .

. . .
. . .

. . .
...

0 · · · · · · −qn−1 −c1 qn−1

0 · · · · · · 0 −qn −c1

 ∈Rn×n ,

The four matrices ;, I , R, and P compose the system matrix M :

M =
(; I

R P

)
∈R2n×2n ,

where ; is the zero matrix, and I is the identity matrix. In addition, let us introduce the
following
vectors: w = (w1(ξ1, t ), w2(ξ2, t ), ..., wn(ξn , t ),ζ1(ξ1, t ),ζ2(ξ2, t ), ...,ζn(ξn , t ))T ,
s = (0,0, ...,0︸ ︷︷ ︸

n times

, s̄1, s̄2, ..., s̄n︸ ︷︷ ︸
n times

)T , where s̄i = (1−ξi )ω2
2β2 cos(ω2t +α). So, system (4.97) can be

written in the following matrix
form: d w

d t = M w+s. In order to perform a time integration, we apply the Crank-Nicolson
method. Introducing the mesh grid in time, tk = k∆t for k=1,2,...,n, we obtain

wk+1 = Dwk + ∆t

2
(I − ∆t

2
M k+1)−1(sk+1 + sk ), (4.98)

where wk = (w1(ξ1, tk ), w2(ξ2, tk ), ..., wn(ξn , tk ),ζ1(ξ1, tk ),ζ2(ξ2, tk ), ...,ζn(ξn , tk ))T ,
sk = (0,0, ...,0︸ ︷︷ ︸

n times

, s̄k
1 , s̄k

2 , ..., s̄k
n︸ ︷︷ ︸

n times

)T with s̄k
i = (1−ξi )ω2

2β2 cos(ω2tk +α), I is the identity matrix

and I ∈ R2n×2n , and D = (I − ∆t
2 M k+1)−1(I + ∆t

2 M k ). Similarly, we can also directly inte-
grate problem (4.7) with the above numerical scheme.
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APPENDIX C.4 ENERGY
The mechanical energy of the initial-boundary value problem (4.2) related to the trans-
verse motion is given by

E1(t ) = 1

2

∫ l (t )

0
[ρ(wt + v wx )2 +T w2

x ]d x,

where T is given by (4.3). Using the dimensionless quantities, we rewrite the energy in a
dimensionless form:

E1(t ) = 1

2

∫ l (t )

0
[(wt + v wx )2 + (1+µ(l (t )−x))w2

x ]d x.

In order to define the energy on the interval (0,1), we change the variables by using the
following transformation ξ= x

l (t ) :

E1(t ) = 1

2l (t )

∫ 1

0
[(l (t )w̃t + (1−ξ)v w̃ξ)2 + (1+ l (t )µ(1−ξ))w̃2

ξ ]dξ. (4.99)

The mechanical energy of the initial-boundary value problem (4.1) related to the longi-
tudinal motion is given by

E2(t ) = 1

2

∫ l (t )

0
[ρ(ut + vux )2 +E Au2

x ]d x + m

2
[ut (l (t ), t )+ vux (l (t ), t )]2.

Using the dimensionless quantities, we rewrite the energy in a dimensionless form:

E2(t ) = 1

2
E AL

∫ l (t )

0
[(ut + vux )2 +u2

x ]d x + E Am

2ρ
[ut (l (t ), t )+ vux (l (t ), t )]2.

In order to define the energy on the interval (0,1), we change the variables by using the
following transformation ξ= x

l (t ) :

E2(t ) = E AL

2l (t )

∫ 1

0
[(l (t )ũt + (1−ξ)vũξ)2 + ũ2

ξ]dξ

+ E Am

2ρl 2(t )
[l (t )ũt (1, t )+ (1−ξ)vũξ(1, t )]2. (4.100)

The total mechanical energy is now given by

E(t ) = 1

2l (t )

∫ 1

0
[(l (t )w̃t + (1−ξ)v w̃ξ)2 + (1+ l (t )µ(1−ξ))w̃2

ξ ]dξ

+E AL

2l (t )

∫ 1

0
[(l (t )ũt + (1−ξ)vũξ)2 + ũ2

ξ]dξ

+ E Am

2ρl 2(t )
[l (t )ũt (1, t )+ (1−ξ)vũξ(1, t )]2. (4.101)





5
OUTPUT FEEDBACK STABILIZATION

OF AN AXIALLY MOVING STRING

5.1. INTRODUCTION

T He previous chapters showed resonances and vibrations in moving cables. In this
chapter we study, the vibration stabilization of an axially moving string with con-

stant speed on a finite spatial domain subject to a spring-mass-dashpot attached at one
end, which is shown in Figure 5.1. This model arises from conveyor belts, cranes or el-
evators devices for suppressing large vibrations. For more information on this model,
the reader is referred to [71, 72, 73, 74, 75]. The objective of the chapter is to design an
observer-based output feedback controller at the nature boundary to stabilize the sys-
tem. There are many methods to achieve the vibration stabilization of axially moving
strings or beams. One of the most useful methods for boundary controller is based on
Lyapunov method, by which control laws to reduce vibration energy to zero are derived
using Lyapunov function candidates constructed by the total mechanical energy of the
moving system. Nguyen and Hong [76] investigated an adaptive boundary control based
on Lyapunov’s method for an nonlinear axially moving string. Nguyen and Hong [77]
presented simultaneous controls of longitudinal and transverse vibrations of an axially
moving string with velocity tracking. Tebou [78] studied the boundary stabilization of an
axially moving Euler-Bernoulli beam. In the literature, the controllers are required to fol-
low the end causing vibration excitation, which is sometimes difficult to achieve in the
practical implementation due to the inconvenient installation. Hence, the control sys-
tem where control is applied at the end opposite to the instability is necessary to study.
This is a more challenging task than the classical collocated "boundary damper" feed-
back control (Krstic et al., [79]). Backstepping approach, which is proposed by Krstic,
can deal with the proposed non-collocated stabilization problem. Ren et al.[80] anal-
ysed boundary stability of an ODE-Schrödinger cascade. Krstic [81] provided an explicit

A slightly varied version of this chapter have been received in Internal Journal of Control (Published online: 14
Jun 2022).
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feedback law that compensates the wave PDE dynamics at the input of an LTI ODE and
stabilizes the overall system. In Susto and Krstic [82], a ODE-PDE cascade system was
extended from the Dirichlet type interconnections to Neumann type interconnections.
Wang et al.[83] designed an obsever-based output-feedback control law for the stability
of the axial vibration in the ascending mining cable elevator. For more information on
vibration suppression problems of axially moving strings, the reader is referred to (Zhu
et al.[84], He et al.[85] and He et al.[86]).

The remaining part of this chapter is organized as follows. Section 5.2 formulates
the problem by extended Hamilton’s principle. Section 5.3 designs a controller based
state feedback to stabilize the system exponentially. Section 5.4 concludes the output
feedback law based observer. Section 5.5 presents some numerical approximations by
using a central finite difference scheme to validate the theoretical results, and in the last
section we draw some conclusions.

Figure 5.1: An axially moving string with a spring-mass-dashpot boundary.

5.2. FORMULATION OF THE PROBLEM

5.2.1. MODELING OF THE PHYSICAL SYSTEM

Nomenclature:
u(x, t ) the transverse displacement of the string

at the coordinate x and the time t
l the distance between two boundary ends
v the traveling speed of the moving string
ρ the mass density of the string
m the mass of the spring-mass
T the uniform tension of the string
k the stiffness of the spring

According to Figure 5.1, we can obtain the partial differential equation (PDE) for the
moving string by applying Hamilton’s principle in the following form :∫ t2

t1

(δEk (t )−δEp (t )+δW (t ))dt = 0. (5.1)
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The Kinetic energy Ek (t ) is given by

Ek (t ) = 1

2
ρ

∫ l

0
(ut + vux )2dx + 1

2
mu2

t (0, t ), (5.2)

where ut +vux is the instantaneous transverse velocity of a material particle. The poten-
tial energy Ep (t ) is given by

Ep (t ) = 1

2

∫ l

0
Tu2

x dx + 1

2
ku2(0, t ), (5.3)

and the difference of δEk (t ) and δEp (t ) is

δEk (t )−δEp (t ) = ρ

∫ l

0
(ut + vux )δ(ut + vux )dx +mut (0, t )δut (0, t )

−[
∫ l

0
Tuxδux dx +ku(0, t )δu(0, t )]. (5.4)

The virtual work δW (t ) is written as

δW (t ) =U (t )δu(l , t ). (5.5)

Substituting the equations (5.4)-(5.5) into (5.1) yields:

∫ t2

t1

∫ l

0
ρ(ut + vux )δ(ut + vux )dxdt +

∫ t2

t1

mut (0, t )δut (0, t )dt

−
∫ t2

t1

∫ l

0
Tuxδux dxdt −

∫ t2

t1

ku(0, t )δu(0, t )dt +
∫ t2

t1

U (t )δu(l , t )dt = 0. (5.6)

Integrating (5.6) by parts with respect to the spatial variable (refer to Chen et al., [16])
yields:


ρ(ut t +2vuxt + v2uxx )−Tuxx = 0, 0 ≤ x ≤ l , t > 0,

mut t (0, t )+Tux (0, t )+ku(0, t )+ρvut (0, t )−ρv2ux (0, t ) = 0, t > 0,

Tux (l , t )+ρvut (l , t )−ρv2ux (l , t ) =U (t ), t > 0.

(5.7)

To simplicity, we introduce the following dimensionless parameters: u∗ = u
l , x∗ = x

l , t∗ =
t
l

√
T
ρ , v∗ = v

√
ρ
T , m∗ = m

ρl , k∗ = kl
T , U∗ = U

T . The problem (5.7) then becomes:


ut t +2vuxt + (v2 −1)uxx = 0, 0 ≤ x ≤ 1, t > 0,

mut t (0, t )− (v2 −1)ux (0, t )+ku(0, t )+ vut (0, t ) = 0, t > 0,

(1− v2)ux (1, t )+ vut (1, t ) =U (t ), t > 0,

(5.8)

where the asterisks are omitted in problem (5.8) for convenience, and 0 < v < 1.
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5.2.2. SIMPLIFIED MODEL FOR CONTROLLER DESIGN
Define the control force as

U (t ) = vut (1, t )+ (1− v2)U2(t ), (5.9)

where U2(t ) is a new control. Then, problem (5.8) can be rewritten as
ut t +2vuxt + (v2 −1)uxx = 0, 0 ≤ x ≤ 1, t > 0,

mut t (0, t )− (v2 −1)ux (0, t )+ku(0, t )+ vut (0, t ) = 0, t > 0,

ux (1, t ) =U2(t ), t > 0,

(5.10)

Notice that the axially moving problem (5.10) is a wave PDE with a second-order deriva-
tive in time boundary condition, we introduce new variables x1(t ) and x2(t ):

x1(t ) = u(0, t ), x2(t ) = ut (0, t ), (5.11)

Substituting (5.11) into the boundary condition at x = 0 in problem (5.10), we have

ẋ1(t ) = x2(t ),

ẋ2(t ) = v2 −1

m
ux (0, t )− k

m
u(0, t )+ v

m
ut (0, t ). (5.12)

Let X (t ) ∈R2×1 be a state variable:

X (t ) = [x1(t ), x2(t )]T , (5.13)

then we rewrite problem (5.10) as the following coupled ODE-PDE system:
Ẋ (t ) = AX (t )+Bux (0, t ), t > 0,

ut t +2vuxt + (v2 −1)uxx = 0, 0 ≤ x ≤ 1, t > 0,

u(0, t ) =C X (t ), t > 0,

ux (1, t ) =U2(t ), t > 0,

(5.14)

where

A =
(

0 1
− k

m
v
m

)
, B =

(
0

v2−1
m

)
, C = (

1,0
)

. (5.15)

5.3. STATE FEEDBACK CONTROL
In this section, we construct an invertible transformation to make the system (5.14)
equivalent to a ODE-PDE cascade target system. For the target system, we present the
well-posedness and stability results in a suitable space.

First, we consider the backstepping transformation of the form (Krstic et al., [81, 87]):

w(x, t ) = u(x, t )−
∫ x

0
b(x, y)u(y, t )d y −

∫ x

0
c(x, y)ut (y, t )d y −γ(x)X (t ), (5.16)
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where the kernel functions b(x, y) ∈ R, c(x, y) ∈ R and γ(x) ∈ R1×2 need to be chosen to
transform the system (5.14) into the system of ODE-PDE cascade

Ẋ (t ) = (A+BK )X (t )+B wx (0, t ), t > 0,

wt t +2v wxt + (v2 −1)wxx = 0, 0 ≤ x ≤ 1, t > 0,

w(0, t ) = 0, t > 0,

wx (1, t ) = 0, t > 0,

(5.17)

where K = (k1,k2) is chosen to make A +BK Hurwitz (which implies that system Ẋ (t ) =
(A+BK )X (t ) is asymptotically stable), and

U2(t ) = b(1,1)u(1, t )+ c(1,1)ut (1, t )+γ′(1)X (t )

+
∫ 1

0
bx (1, y)u(y, t )d y +

∫ 1

0
cx (1, y)ut (y, t )d y. (5.18)

5.3.1. KERNELS OF b(x, y),c(x, y) AND γ(x)
In this subsection, we compute the kernels of b(x, y),c(x, y) and γ(x). Differentiate (5.16)
with respect to t and to x, we get

wt t +2v wxt + (v2 −1)wxx

= 2(1− v2)(
d

d x
b(x, x))u(x, t )+ (1− v2)

∫ x

0
(bxx (x, y)−by y (x, y))u(y, t )d y

−2v
∫ x

0
(bx (x, y)+by (x, y))ut (y, t )d y

+2(1− v2)(
d

d x
c(x, x))ut (x, t )+ (1− v2)

∫ x

0
(cxx (x, y)− cy y (x, y))ut (y, t )d y

−2v
∫ x

0
(cx (x, y)+ cy (x, y))ut t (y, t )d y

+[−2vγ′(x)B + (1− v2)b(x,0)−2vb(x,0)C B −γ(x)AB
−(1− v2)cy (x,0)C B −2vc(x,0)C AB ]ux (0, t )
+[−γ(x)B −2vc(x,0)C B + (1− v2)c(x,0)]uxt (0, t )
+[−γ(x)A2 + (1− v2)γ′′(x)−2vγ′(x)A−2vb(x,0)C A− (1− v2)by (x,0)C
−(1− v2)cy (x,0)C A−2vc(x,0)C A2]X (t ) = 0, (5.19)

which together with C B = 0 yields

d
d x b(x, x) = 0, d

d x c(x, x) = 0,

bxx (x, y)−by y (x, y) = 0, cxx (x, y)− cy y (x, y) = 0,

bx (x, y)+by (x, y) = 0, cx (x, y)+ cy (x, y) = 0,

−2vγ′(x)B + (1− v2)b(x,0)−γ(x)AB −2vc(x,0)C AB = 0,

−γ(x)B −2vc(x,0)C B + (1− v2)c(x,0) = 0,

−γ(x)A2 + (1− v2)γ′′(x)−2vγ′(x)A−2vb(x,0)C A

−(1− v2)by (x,0)C − (1− v2)cy (x,0)C A−2vc(x,0)C A2 = 0.

(5.20)

Substitute the transformation (5.16) into the first and third equations of system (5.17),
we derive

γ(0) = C ,
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γ′(0) = K −b(0,0)C − c(0,0)C A, (5.21)

for which, the solutions b(x, y),c(x, y) and γ(x) of (5.20) can be presented as follows

γ(x) = [γ(0),γ′(0)]eDx
(

I 2×2

02×2

)
,

b(x, y) = 2v

1− v2 γ
′(x − y)B + 1

1− v2 γ(x − y)AB + 2v

(1− v2)2 γ(x − y)BC AB ,

c(x, y) = 1

1− v2 γ(x − y)B (5.22)

where

γ(0) = (1,0),

γ′(0) = (k1 + 1+2vk2

m
,k2),

D =


0 0 1+3v2

m(1−v2)
2v

1−v2

0 0 2kmv+v(1−5v2)
m2(1−v2)

1−3v2

m(1−v2)

1 0 − km+2v2

m2(1−v2)
− v

m(1−v2)

0 1 −kmv+2v3

m3(1−v2)
v2−mk

m2(1−v2)

 .

In the same deduction, we seek the inverse transformation w(x, t ) → u(x, t ):

u(x, t ) = w(x, t )−
∫ x

0
ϕ(x, y)w(y, t )d y −

∫ x

0
λ(x, y)wt (y, t )d y −α(x)X (t ), (5.23)

with

α(x) = [−C ,−K ]e Z x
(

I 2×2

02×2

)
,

ϕ(x, y) = 1

1− v2 α(x − y)(A+BK )B + 2v

1− v2 α
′(x − y)B ,

λ(x, y) = α(x − y)B ,

Z =


0 0 k1v2−k1−k

m(1−v2)
k2v2−k2+v

m(1−v2)

0 0 (k1v2−k1−k)(k2v2−k2+v)
m2(1−v2)

(k2v2−k2+v)2

m2(1−v2)
1 0 0 2v

1−v2

0 1 2v(k1v2−k1−k)
m(1−v2)

2v(k2v2−k2+v)
m(1−v2)

 .

5.3.2. STABILITY OF TARGET SYSTEM
Firstly, let us reformulate target system (5.17) in an appropriate Hilbert state space H .
Let H be the following space:

H =R2 ×V 1(0,1)×L2(0,1), V k (0,1) = {ξ ∈ H k (0,1)|ξ(0) = 0}, (5.24)

equipped with an inner product, for (X1, w1, w2), (X2, w̄1, w̄2) ∈H :

〈(X1, w1, w2), (X2, w̄1, w̄2)〉
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= X T
1 X2 +

∫ 1

0
(w2 + v w1,x )(w̄2 + v w̄1,x )d x +

∫ 1

0
w1,x w̄1,x d x, (5.25)

Define a linear operator A : D(A ) ⊂H →H as follows:{
A (X , f1, f2) = ((A+BK )X (t )+B f ′

1(0), f2,−2v f ′
2 + (1− v2) f ′′

1 ),

D(A ) = {(X , f1, f2) ∈R2 ×H 2(0,1)×V 1(0,1)| f ′
1(1) = 0}.

(5.26)

Then, system (5.17) can be written as an evolution equation in H :

d

d t
(X (t ), w(·, t ), wt (·, t )) =A (X (t ), w(·, t ), wt (·, t )). (5.27)

Lemma 5.3.1 Let A and H be defined as before. A generates a C0 semigroup of contrac-
tions on H .

Proof. Define an equivalent inner product:

〈(X1, w1, w2), (X2, w̄1, w̄2)〉1

= µX T
1 P1X2 +

∫ 1

0
(w2 + v w1,x )(w̄2 + v w̄1,x )d x +

∫ 1

0
w1,x w̄1,x d x, (5.28)

where

0 <µ≤ v(1− v2)λmin(Q1)

2|P1B |2 , (5.29)

and the matrix P1 = P T
1 > 0 is the solution to the equation:

P1(A+BK )+ (A+BK )T P1 =−Q1, (5.30)

for some Q1 = QT
1 > 0. For any z = (X (t ), w(·, t ), wt (·, t ))T ∈ D(A ), a straight forward

calculation yields

R〈A z, z〉1

= −µ

2
X (t )T Q1X (t )+µX (t )T P1B wx (0, t )− v

2
w2

t (1, t )− v(1− v2)

2
w2

x (0, t ).

According to Young’s inequality ab ≤ εa2

2 + b2

2ε , we obtain

R〈A z, z〉1

≤ −µλmin(Q1)

4
|X (t )|2 −

[
− µ|P1B |2
λmin(Q1)

+ v(1− v2)

2

]
w2

x (0, t )− v

2
w2

t (1, t ) ≤ 0,

where µ is given by (5.29). Hence, A is dissipative in H . Moreover, let (Y , g1, g2) ∈ H ,
and solve A (X , f1, f2) = (Y , g1, g2) for (X , f1, f2) ∈ D(A ), that is,

(A+BK )X (t )+B f ′
1(0) = Y ,

f2 = g1,

−2v f ′
2 + (1− v2) f ′′

1 = g2,

f1(0) = 0, f ′
1(1) = 0.

(5.31)
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A direct computation gives the unique solution
f2 = g1,

f1 =−∫ x
0

∫ 1
ξ

1
1−v2 (g2(ς)+2v g ′

1(ς))dςdξ,

X (t ) = (A+BK )−1Y −
[
−∫ 1

0
1

1−v2 (g2(ς)+2v g ′
1(ς))dς

]
(A+BK )−1B.

(5.32)

Hence, we get the unique solution (X , f1, f2) ∈ D(A ) and A −1 exists. The Sobolev em-
bedding theorem (Adams et al., [88]) implies that A −1 is compact on H . Therefore, the
Lumer-Phillips theorem asserts that A generates a C0 semigroup of contractions on H .
The proof is complete.

Lemma 5.3.2 For any initial values (X (t ), w(x,0), wt (x,0)), which belong to H , the tar-
get system (5.17) is exponentially stable in H .

Proof. Define

Ξ1(t ) = ∥wt (t )+ v wx (t )∥2 +∥wx (t )∥2 +|X (t )|2. (5.33)

Let V1 be a Lyapunov function written as

V1(t ) = X (t )T P1X (t )+a1E1(t ), (5.34)

where the matrix P1 is given by (5.30). The positive parameter a1 is to be chosen later
and function E1(t ) is defined by

E1(t ) = 1

2

[∥wt (t )+ v wx (t )∥2 +∥wx (t )∥2]
+δ1

∫ 1

0
(1+ y)wx (y, t )

[
wt (y, t )+ v wx (y, t )

]
d y, (5.35)

We observe that

θ11Ξ1(t ) ≤V1(t ) ≤ θ12Ξ1(t ), (5.36)

where

θ11 = min
{
λmi n(P1),

a1

2
[1−2δ1]

}
,

θ12 = max
{
λmax (P1),

a1

2
[1+2δ1]

}
. (5.37)

We choose 0 < δ1 < 1
2 .

V̇1(t ) = −X (t )T Q1X (t )+2X (t )T P1B wx (0, t )+a1Ė1(t )
= −X (t )T Q1X (t )+2X (t )T P1B wx (0, t )

+a1

[
− δ1

2
((1− v2)∥wx∥2 +∥wt∥2 + (1− v2)|wx (0, t )|2)

−(
v

2
−δ1)|wt (1, t )|2 − v(1− v2)

2
|wx (0, t )|2

]
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≤ −λmin(Q1)

2
|X (t )|2 −

[
− 2|P1B |2
λmin(Q1)

+ a1v(1− v2)

2
+ a1δ1(1− v2)

2

]
|wx (0, t )|2

−a1(
v

2
−δ1)|wt (1, t )|2 − a1δ1

2
((1− v2)∥wx∥2 +∥wt∥2). (5.38)

To have V̇1(t ) < 0 we choose

a1 ≥ 4|P1B |2[
v(1− v2)+δ1(1− v2)

]
λmi n(Q1)

, 0 < δ1 ≤ v

2
. (5.39)

We now have

V̇1(t ) ≤−λmin(Q1)

2
|X (t )|2 − a1δ1(1− v2)

2(1+ v2 + v)

(∥wx∥2 +∥wt + v wx∥2)≤−η1V1(t ), (5.40)

where

η1 =
min

{
λmi n (Q1)

2 , a1δ1(1−v2)
2(1+v2+v)

}
θ12

. (5.41)

Thus, we arrive at

V1(t ) ≤ e−η1t V1(0). (5.42)

The proof is complete.

Theorem 5.3.3 For initial value (X (0),u(x,0),ut (x,0)), which belongs to H , the closed-
loop system (5.14) with state feedback control law U2(t ) in (5.18) admits a unique solution
(X (t ),u(x, t ),ut (x, t )) that decays to zero exponentially in H as time t goes to infinity.

Proof. The equivalent well-posedness and stability property between the target system
(5.17) and the closed-loop system (5.14) are ensured due to the invertibility of the back-
stepping transformation. Then by Lemma 5.3.1 and Lemma 5.3.2, the proof is complete.

5.4. OBSERVER AND OUTPUT FEEDBACK CONTROL
In this section we consider an observer-based output feedback control law, and the ob-
servation output is given as

yout (t ) =C X (t ), (5.43)

where C and A are given by (5.15) and (5.26), and (A ,C ) is observable.

5.4.1. OBSERVER DESIGN
Design the observer of system (5.14):

˙̂X (t ) = AX̂ (t )+Bûx (0, t )+ L̄C (X (t )− X̂ (t )), t > 0,

ût t =−2vûxt + (1− v2)ûxx , 0 ≤ x ≤ 1, t > 0,

û(0, t ) =C X (t ), t > 0,

ûx (1, t ) =U2(t ), t > 0.

(5.44)
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The observer gain L̄ = (l̄1, l̄2)T is chosen to make A − L̄C Hurwitz. Define the observer
error as

ũ(x, t ) = u(x, t )− û(x, t ), X̃ (t ) = X (t )− X̂ (t ). (5.45)

Then the observer error system can be written as
˙̃X (t ) = (A− L̄C )X̃ (t )+Bũx (0, t ), t > 0,

ũt t =−2vũxt + (1− v2)ũxx , 0 ≤ x ≤ 1, t > 0,

ũ(0, t ) = 0, t > 0,

ũx (1, t ) = 0, t > 0.

(5.46)

Let us reformulate error system (5.46) in Hilbert state space H , equipped with inner
product in (5.25). Define a linear operator Ã : D(Ã ) ⊂H →H as follows:{

Ã (X , f1, f2) = (
(A− L̄C )X (t )+B f ′

1(0), f2,−2v f ′
2 + (1− v2) f ′′

1

)
,

D(Ã ) = {
(X , f1, f2) ∈R2 ×H 2(0,1)×V 1(0,1)| f ′

1(1) = 0
}

.
(5.47)

Then, system (5.46) can be written as an evolution equation in H :

d

d t
(X̃ (t ), ũ(·, t ), ũt (·, t )) = Ã (X̃ (t ), ũ(·, t ), ũt (·, t )). (5.48)

Theorem 5.4.1 For initial value (X̃ (0), ũ(x,0), ũt (x,0)), which belongs to H , the error sys-
tem (5.46) admits a unique solution (X̃ (t ), ũ(x, t ), ũt (x, t )) that decays to zero exponen-
tially in H as time t goes to infinity.

Proof. The proofs are similar to the proofs for Lemma 5.3.1 and 5.3.2, so we omit the
details here.

5.4.2. OUTPUT FEEDBACK CONTROL
Based on the state feedback controller (5.18) and observer (5.44), we can naturally design
the following output-feedback controller:

U2(t ) = b(1,1)û(1, t )+γ′(1)X̂ (t )+
∫ 1

0
bx (1, y)û(y, t )d y +

∫ 1

0
cx (1, y)ût (y, t )d y, (5.49)

which leads to the closed-loop system of (5.14):

Ẋ (t ) = AX (t )+Bux (0, t ),

ut t +2vuxt + (v2 −1)uxx = 0,

u(0, t ) =C X (t ),

ux (1, t ) = b(1,1)û(1, t )+γ′(1)X̂ (t )+∫ 1
0 bx (1, y)û(y, t )d y +∫ 1

0 cx (1, y)ût (y, t )d y,
˙̂X (t ) = AX̂ (t )+Bûx (0, t )+ L̄C (X (t )− X̂ (t )),

ût t =−2vûxt + (1− v2)ûxx , 0 ≤ x ≤ 1,

û(0, t ) =C X (t ),

ûx (1, t ) = b(1,1)û(1, t )+γ′(1)X̂ (t )+∫ 1
0 bx (1, y)û(y, t )d y +∫ 1

0 cx (1, y)ût (y, t )d y.
(5.50)
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Theorem 5.4.2 For any initial state (X (0),u(x,0),ut (x,0), X̂ (0), û(x,0), ût (x,0)) ∈H 2, the
closed-loop system (5.50) admits a unique solution (X (t ),u(x, t ),ut (x, t ), X̂ (t ), û(x, t ),
ût (x, t )) that decays to zero exponentially in H as time t goes to infinity.

Proof. By using the transformation (5.16), the closed-loop system (5.50) can be con-
verted to the following equivalent system:

Ẋ (t ) = (A+BK )X (t )+B wx (0, t ), t > 0,

wt t +2v wxt + (v2 −1)wxx = 0, 0 ≤ x ≤ 1, t > 0,

w(0, t ) = 0, t > 0,

wx (1, t ) =F (X̃ , ũ, ũt ),
˙̃X (t ) = (A− L̄C )X̃ (t )+Bũx (0, t ), t > 0,

ũt t =−2vũxt + (1− v2)ũxx , 0 ≤ x ≤ 1, t > 0,

ũ(0, t ) = 0, t > 0,

ũx (1, t ) = 0, t > 0,

(5.51)

where operator F : H →R defined by F (X̃ (t ), ũ(·, t ), ũt (·, t )) = b(1,1)ũ(1, t )+γ′(1)X̃ (t )+∫ 1
0 bx (1, y)ũ(y, t )d y + ∫ 1

0 cx (1, y)ũt (y, t )d y . The proof will be completed if we can prove
that (5.51) has a unique solution and is exponentially stable in H .

The closed-loop system (5.51) can be written as the following evolution equations:

d

d t
Y (t ) = A Y (t )+ B̄F Ỹ (t ), (5.52)

d

d t
Ỹ (t ) = Ã Ỹ (t ), (5.53)

where A and Ã are given by (5.26) and (5.47), Y (t ) = (X (t ), w(·, t ), wt (·, t )) ∈ H , Ỹ (t ) =
(X̃ (t ), ũ(·, t ), ũt (·, t )) ∈H , and

B̄F Ỹ (t ) = [
0,0,δ(x −1)F Ỹ (t )

]
(5.54)

with δ is Dirac function. The operator A and Ã generate C0 semigroup of contractions

eA t and eÃ t on H respectively. Notice that B̄ is an unbounded operator, we will show
that B̄ is admissible to the C0 semigroup eA t .

Lemma 5.4.3 B̄ is admissible to the C0 semigroup eA t .

Proof. As A ∗ is defined by
A ∗(X , f1, f2) = (

(A+BK )X (t ),− f2,2v f ′
2 − (1− v2) f ′′

1

)
,

D(A ∗) =


(X , f1, f2) ∈R2 ×H 2(0,1)×H 1(0,1),

(1− v2) f ′
1(1)− v f2(1) = 0,

(1− v2)(v f ′
1(0)+ f2(0))−B T X ∗ = 0.

 ,
(5.55)

the dual system of (5.52) can be written as{
d

d t (X ∗(t ),−w∗(·, t ), w∗
t (·, t )) =A ∗(X ∗(t ),−w∗(·, t ), w∗

t (·, t )),

y(t ) = B̄∗(X ∗(t ),−w∗(·, t ), w∗
t (·, t )) = w∗

t (1,t )
1−v2 ,

(5.56)
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which means 
Ẋ ∗(t ) = (A+BK )X ∗(t ), t > 0,

w∗
t t −2v w∗

xt + (v2 −1)w∗
xx = 0, 0 ≤ x ≤ 1, t > 0,

(1− v2)w∗
x (1, t )+ v w∗

t (1, t ) = 0, t > 0,

(1− v2)(−v w∗
x (0, t )+w∗

t (0, t ))−B T X ∗ = 0, t > 0.

(5.57)

The energy function of system is defined by

E∗(t ) = 1

2
X ∗(t )T X ∗(t )+ 1

2

∫ 1

0
(w∗

t − v w∗
x )2d x + 1

2

∫ 1

0
w∗2

x d x. (5.58)

Let

E∗
1 (t ) = χ

2
X ∗(t )T P1X ∗(t )+ 1

2

∫ 1

0
(w∗

t − v w∗
x )2d x + 1

2

∫ 1

0
w∗2

x d x, (5.59)

where P1 is given by (5.30), and β is given by

χ≥ 2|B |2
v(1− v2)λmin(Q1)

. (5.60)

A simple computation for the derivative of E∗
1 (t ) with respect to t along the solution to

(5.57) gives

Ė∗
1 (t ) = −χ

2
X ∗(t )T Q1X ∗(t )−B T X ∗(t )w∗

x (0, t )− v

2
|w∗

t (1, t )|2

−v(1− v2)

2
|w∗

x (1, t )|2 − v

2
|w∗

t (0, t )|2 − v(1− v2)

2
|w∗

x (0, t )|2

≤ −χλmin(Q1)

4
|X ∗(t )|2 +

[ |B |2
χλmin(Q1)

− v(1− v2)

2

]
|w∗

x (0, t )|2

−v

2
|w∗

t (1, t )|2 − v(1− v2)

2
|w∗

x (1, t )|2 − v

2
|w∗

t (0, t )|2. (5.61)

Hence, E∗
1 (t ) ≤ E∗

1 (0). Define

ρ(t ) =
∫ 1

0
x(w∗

t − v w∗
x )w∗

x d x. (5.62)

Then ρ(t ) ≤ E∗
1 (t ) for ∀ t ≥ 0. Noticing that

ρ̇(t ) = 1

2(1− v2)
|w∗

t (1, t )|2 − 1

2

∫ 1

0
(1− v2)w∗2

x d x − 1

2

∫ 1

0
w∗2

t d x, (5.63)

we have that∫ T

0
w∗2

t (1, t )d t = 2(1− v2)
[
ρ(T )−ρ(0)

]+ (1− v2)
∫ T

0

[∫ 1

0
(1− v2)w∗2

x +w∗2
t d x

]
d t

≤
[

4(1− v2)+ T (1− v2)

1− v

]
E∗

1 (0)
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≤
[

4(1− v2)+ T (1− v2)

1− v

]
η∗E∗(0), (5.64)

where η∗ = max{χλmax (P1),1}. A direct calculation shows that

B̄∗A ∗−1(Y , g1, g2) =− g1(1)

1− v2 , ∀ (Y , g1, g2) ∈H , (5.65)

which tells us that B̄∗A ∗−1 is bounded. This together with (5.64) yields that B̄∗ is admis-
sible for eA ∗t , which means that B̄ is admissible for eA t . The proof is completed.

To prove the stability of the closed-loop system (5.51), define

Ṽ (t ) = X̃ (t )T P2 X̃ (t )+a2E2(t ), (5.66)

The matrix P2 = P T
2 > 0 is the solution to the equation:

P2(A− L̄C )+ (A− L̄C )T P2 =−Q2, (5.67)

for some Q2 =QT
2 > 0. Function E2(t ) is defined by

E2(t ) = 1

2

(∥ũt (t )+ vũx (t )∥2 +∥ũx (t )∥2)
+δ2

∫ 1

0
(1+ y)ũx (y, t )

(
ũt (y, t )+ vũx (y, t )

)
d y. (5.68)

By choosing

a2 ≥ 4|P2B |2[
v(1− v2)+δ2(1− v2)

]
λmi n(Q2)

, 0 < δ2 ≤ v

2
, (5.69)

and according to the proof the stability of the target system in subsection 3.2, we arrive
at

Ṽ (t ) ≤ e−η2t Ṽ (0), (5.70)

where

η2 =
min

{
λmi n (Q2)

2 , a2δ2(1−v2)
2(1−v2+v)

}
θ22

. (5.71)

Let V be a Lyapunov function written as

V (t ) =V1(t )+βṼ (t ), (5.72)

V̇ (t ) = −X (t )T Q1X (t )+2X (t )T P1B wx (0, t )+a1Ė1(t )+βṼ (t )
= −X (t )T Q1X (t )+2X (t )T P1B wx (0, t )

+a1

[
− δ1

2
((1− v2)∥wx∥2 +∥wt∥2 + (1− v2)|wx (0, t )|2)

−(
v

2
−δ1)|wt (1, t )|2 − v(1− v2)

2
|wx (0, t )|2

]



5

124 5. OUTPUT FEEDBACK STABILIZATION OF AN AXIALLY MOVING STRING

+a1(δ1 + v

2
)(1− v2)|wx (1, t )|2 +a1(1− v2)wt (1, t )wx (1, t )+β ˙̃V (t )

≤ −λmin(Q1)

2
|X (t )|2 −

[
− 2|P1B |2
λmin(Q1)

+ a1v(1− v2)

2
+ a1δ1(1− v2)

2

]
|wx (0, t )|2

+a1(1− v2)(δ1 + v

2
+ 1

v
)|wx (1, t )|2

−a1(
v

4
−δ1)|wt (1, t )|2 − a1δ1

2

[
(1− v2)∥wx∥2 +∥wt∥2]−βη2Ṽ (t ). (5.73)

From the second boundary condition in the closed-loop system (5.51), we obtain

|wx (1, t )|2 ≤ b2(1,1)|ũ(1, t )|2 + (γ′(1))2|X̃ (t )|2

+
(∫ 1

0
bx (1, y)ũ(y, t )d y

)2

+
(∫ 1

0
cx (1, y)ũt (y, t )d y

)2

. (5.74)

According to Ag mon′s inequality and Poi ncar é inequality, we obtain

∥ũ(t )∥2 ≤ 2|ũ(0, t )|2 +4∥ũx (t )∥2, |ũ(1, t )|2 ≤ 3|ũ(0, t )|2 +5∥ũx (t )∥2. (5.75)

Thus, by choosing β big enough and

a1 ≥ 4|P1B |2
[v(1− v2)+δ1(1− v2)]λmi n(Q1)

, 0 < δ1 ≤ v

4
, (5.76)

there exits η3 such that

V̇ (t ) ≤−η3V (t ), (5.77)

Thus, we arrive at

V (t ) ≤ e−η3t V (0). (5.78)

Thus, the closed-loop system of (5.51) admits a unique solution and decays to zero ex-
ponentially in H as time t goes to infinity. The proof is complete.

5.5. NUMERICAL SIMULATIONS
In this section, we give some numerical simulation results for the system (5.8). The finite
difference method is adopted in both the time and the space domain for both PDEs and
boundary conditions in (5.8). In the numerical scheme, we choose the space grid size
N = 200, time step d t = 5×10−2. The parameter values are set to be

v = 0.1, k = 1, m = 1, K = [k1,k2] = [1,1], L̄ = [l̄1, l̄2] = [−1,0.5], (5.79)

and the initial conditions are taken to be

u(x,0) = 0.1sin(1.5x), ut (x,0) = 0, 0 ≤ ξ≤ 1. (5.80)

Figure 5.2 show that the displacement of the open-loop system (5.8) is not convergent
to zero. Figure 5.3 show that the displacement of the closed-loop system (5.8) with state
feedback controller (5.18) converges to zero. It can be seen that the output feedback
controller can make the closed-loop system exponentially stable.
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Figure 5.2: The state of system (5.8) when U (t ) = 0. (a) The responses for the whole space domain (0, 1). (b)
The responses at the midpoint.
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Figure 5.3: The state u(x, t ) of closed-loop system (5.8) with full-state feedback controller (5.18). (a) The re-
sponses for the whole space domain (0, 1). (b) The responses at the midpoint.
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5.6. CONCLUSIONS
In this chapter, we have presented a control design to stabilize an unstable moving string
subject to a spring-mass-dashpot boundary, where the control actuator is located at the
other nature boundary. Firstly, by constructing an invertible backstepping transforma-
tion, we design a state feedback controller to stabilize the system. Next, we present an
observer to estimate the states of the system, and based on the estimated states, we de-
sign an output-feedback controller. It is shown that by using boundary measurements
only, the output feedback can make the closed-loop system exponentially stable. Finally,
the simulation results illustrate that the proposed control law can efficiently suppress the
axial vibrations of the moving string system.



6
CONCLUSION

In this thesis four initial-boundary value problems are studied. These problems describe
the motion of axially moving continua, which may be regarded in reality as models de-
scribing the transverse or longitudinal vibrations of mechanical elastic structures such
as conveyor belts, elevator cables and hoisting ropes.

Chapter 2 starts with a simple model for transverse vibrations of a string on a bounded,
fixed interval with a slowly time-varying Robin boundary condition. We showed how to
(approximately) solve initial-boundary value problems with different choices of time-
dependent coefficients k(t ) in Robin boundary conditions. Different values for k(t ) lead
to different difficulties in the analysis. So, we tackle these problems by using the method
of d’Alembert, averaging and singular perturbation techniques, and by using a three
time-scales perturbation method, respectively. It turns out that small order excitations
can lead to large responses when the frequency of the external force satisfies certain con-
ditions, and these results are valid on time-scales of order 1

ε , where ε is a dimensionless
small parameter.

Chapter 3 continues with the longitudinal vibrations and associated resonances in
a practical elevator system due to a harmonic excitation at one of its boundaries. We
analyse this problem by an adapted version of the method of separation of variables and
perturbation methods, (such as averaging methods, singular perturbation techniques,
and multiple timescales perturbation methods). Based on the analysis, explicit, and ac-
curate approximations of the solution of the initial-boundary value problem are con-
structed, and these approximations are valid on time-scales of order 1

ε . It turns out that
for a given boundary disturbance frequency, many oscillation modes jump up from or-
der ε amplitudes to order

p
ε amplitudes.

Chapter 4 extends the study in chapter 3 and analyses transverse as well as longitu-
dinal oscillations and resonances in an elevator system due to boundary excitations. It is
shown in this chapter that for special frequencies in boundary excitations and for certain
parameter values of the longitudinal stiffness and the conveyance mass, many large os-
cillations arise in transverse and longitudinal directions. The oscillation modes for trans-
verse motion jump up from O(ε) to O(

p
ε), and the oscillation modes for longitudinal
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motion jump up from O(ε2) to O(
p
ε). To obtain these results the method of separation

of variables is presented, and perturbation methods, (such as averaging methods, sin-
gular perturbation techniques) are used. Furthermore, since the initial-boundary value
problems for transverse motion and longitudinal motion are nonlinear, we can not al-
ways construct formal approximations of the solutions but we can get properties and
predictions of solutions analytically on time-scales of order 1

ε . And approximations of
the solutions are computed by using an iterative method analytically together with nu-
merical methods.

Chapter 5 presents a control design to stabilize an unstable moving string subject
to a spring-mass-dashpot boundary, where the control actuator is located at the other
boundary of the string. Firstly, by a transformation for the boundary condition, the
problem can be convert to a coupled ODE-PDE system. Secondly, by an invertible back-
stepping transformation, the coupled ODE-PDE system is equivalent to a target system
of ODE-PDE cascades, which is shown to be exponentially stable in a suitable Hilbert
space. Thirdly, we design the observer-based output feedback controller. It is shown that
by using boundary measurements only, the output feedback can make the closed-loop
system exponentially stable.

Also approximations of the solutions of the above four initial-boundary value prob-
lems are computed by using central finite difference schemes. The numerical approxi-
mations are in agreement with the analytically obtained results.

The analytical schemes in this thesis can be extended to study other, and more com-
plicated types of moving cable systems.
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