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Vlaho Petrović4, Lejla Imširović2, Robert Braunbehrens2, Jaime Liew1, Mads Baungaard1,

Maarten Paul van der Laan1, Guowei Qian5, Maria Aparicio-Sanchez6, Rubén González-Lope6,
Vinit V. Dighe7, Marcus Becker7, Maarten J. van den Broek7, Jan-Willem van Wingerden7,

Adam Stock8, Matthew Cole8, Renzo Ruisi9, Ervin Bossanyi9, Niklas Requate10, Simon Strnad10,
Jonas Schmidt10, Lukas Vollmer10, Ishaan Sood11, and Johan Meyers11

1DTU Wind and Energy Systems, Technical University of Denmark, Lyngby/Roskilde, Denmark
2Wind Energy Institute, Technische Universität München, 85748 Garching b. München, Germany

3ENGIE Green, 6 rue Alexander Fleming, 69007 Lyon, France
4ForWind, Institute of Physics, University of Oldenburg, Küpkersweg 70, 26129 Oldenburg, Germany

5Department of Civil Engineering, School of Engineering, The University of Tokyo, 7-3-1,
Hongo, Bunkyo-ku, Tokyo, Japan

6Wind Energy Department, CENER, Sarriguren, Spain
7Delft Center for Systems and Control, Delft University of Technology, Delft, the Netherlands

8Wind Energy and Control Centre, Department of Electronic and Electrical Engineering,
The University of Strathclyde, Glasgow, UK

9DNV, Group Research & Development, Bristol, United Kingdom
10Fraunhofer IWES, Bremerhaven, Germany

11Mechanical Engineering, KU Leuven, Celestijnenlaan 300, Leuven 3001, Belgium

Correspondence: Tuhfe Göçmen (tuhf@dtu.dk)

Received: 14 January 2022 – Discussion started: 15 February 2022
Revised: 21 July 2022 – Accepted: 26 July 2022 – Published: 8 September 2022

Abstract. Wind farm flow control (WFFC) is a topic of interest at several research institutes and industry and
certification agencies worldwide. For reliable performance assessment of the technology, the efficiency and the
capability of the models applied to WFFC should be carefully evaluated. To address that, the FarmConners con-
sortium has launched a common benchmark for code comparison under controlled operation to demonstrate its
potential benefits, such as increased power production. The benchmark builds on available data sets from pre-
vious field campaigns, wind tunnel experiments, and high-fidelity simulations. Within that database, four blind
tests are defined and 13 participants in total have submitted results for the analysis of single and multiple wakes
under WFFC. Here, we present Part I of the FarmConners benchmark results, focusing on the blind tests with
large-scale rotors. The observations and/or the model outcomes are evaluated via direct power comparisons at the
upstream and downstream turbine(s), as well as the power gain at the wind farm level under wake steering control
strategy. Additionally, wake loss reduction is also analysed to support the power performance comparison, where
relevant. The majority of the participating models show good agreement with the observations or the reference
high-fidelity simulations, especially for lower degrees of upstream misalignment and narrow wake sector. How-
ever, the benchmark clearly highlights the importance of the calibration procedure for control-oriented models.
The potential effects of limited controlled operation data in calibration are particularly visible via frequent model
mismatch for highly deflected wakes, as well as the power loss at the controlled turbine(s). In addition to the flow
modelling, the sensitivity of the predicted WFFC benefits to the turbine representation and the implementation
of the controller is also underlined. The FarmConners benchmark is the first of its kind to bring a wide variety
of data sets, control settings, and model complexities for the (initial) assessment of farm flow control benefits. It
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forms an important basis for more detailed benchmarks in the future with extended control objectives to assess
the true value of WFFC.

1 Introduction

Wind farm flow control (WFFC) promises to mitigate the
losses due to aerodynamic turbine–turbine interactions and
can potentially provide several benefits to reduce the cost
of energy in the design and operation of wind farms. Its
most prominent benefits are the potential increase in power
production and/or alleviation of turbine structural loading at
wind farms by reducing wake losses and encouraging energy
entrainment into the farm. The phenomenon has been thor-
oughly investigated, with lower-order and high-fidelity flow
and structural response models (e.g. Gebraad et al., 2016;
Munters and Meyers, 2018; Duc et al., 2019; Hulsman et al.,
2020), wind tunnel tests (e.g. Rockel et al., 2017; Bastankhah
and Porté-Agel, 2019; Campagnolo et al., 2020; Bottasso
and Campagnolo, 2021), and field experiments (e.g. Fleming
et al., 2017; Annoni et al., 2018; Doekemeijer et al., 2021;
Bossanyi and Ruisi, 2021; Simley et al., 2021). A compre-
hensive review of the power maximization through WFFC
is presented in Kheirabadi and Nagamune (2019) and An-
dersson et al. (2021). To realize those benefits, the control
strategy might be

1. axial induction control, in which some upstream tur-
bines will lower their energy capture (also referred to
as curtailment, down-regulation, or derating), hence in-
creasing the wind velocity and reducing the turbulence
downstream;

2. wake steering, in which some of the turbines will be
misaligned to redirect the wake away from the other tur-
bines, hence mitigating the wake effects; and

3. wake mixing where upstream turbines are dynamically
up-regulated and down-regulated on short timescales to
induce additional wake mixing and wake recovery, min-
imizing the losses further downstream.

A number of control-oriented models with different levels
of complexity have been proposed in literature to implement
those control strategies, but uncertainty remains high and a
systematic validation and comparison under different control
settings have been lacking. Validation and industrial imple-
mentation, in fact, is identified as one of the four key chal-
lenges within the WFFC field and thoroughly discussed in
Meyers et al. (2022), where an in-depth review of the rele-
vant studies is also presented.

In order to assess the performance of the WFFC technol-
ogy, the capabilities of WFFC models should be evaluated.
Accordingly, the FarmConners consortium (FarmConners,
2019) has launched a common benchmark for code com-
parison, where high-fidelity simulation results, wind tunnel

experiments, and field data measured at a full-scale wind
farm are brought together. This unique database combines
the efforts of the connected WFFC projects of different sizes
all over Europe and consists of four blind tests in total:
(1) SMARTEOLE Sole du Moulin Vieux (SMV) field mea-
surement campaign (Duc et al., 2019), (2) CL-Windcon wind
tunnel experiments (CL-Windcon, 2016), (3) CL-Windcon
large-eddy simulations (LESs) (CL-Windcon, 2016), and
(4) TotalControl LES (TotalControl, 2018). Every data set
is divided into a “calibration” and a “blind test” period to
resemble field application of WFFC models. The calibration
period involves both input and output features which can be
used to calibrate the participating models under normal oper-
ation and limited control set points. In the blind test period,
the calibrated models are to be run “blindly”, where only the
input features are provided and their outputs are compared
against the validation data set or the blind test reference, as
well as each other.

Promoting data sharing and standardization for validation
processes as well, one of the most relevant exercises with
similar structure is Wakebench (Rodrigo et al., 2014; Mo-
riarty et al., 2014), focusing on wind farm flow modelling
under normal operation. Although sharing similar goals,
the FarmConners benchmark blind tests conduct the per-
formance evaluation exclusively under controlled operation.
Therefore, the two benchmarks diverge in terms of test cases,
quantities of interests and the validation metrics. However,
the lessons learned from the extensive Wakebench experi-
ence (Doubrawa et al., 2020) is attentively taken into con-
sideration while preparing the framework, aiming to extend
the standard verification and validation (V&V) practices to
include WFFC in wake research, globally.

The FarmConners benchmark is launched in TORQUE
2020 (Göçmen et al., 2020a), and in the end, 13 participants
have submitted the results from their models, taking part in
different blind tests. The overview of participants among the
benchmark blind tests is presented in Table 1, and it should
be noted that some participants have provided results from
several models. The primary quantities of interest used in the
model evaluations are the direct power comparisons at up-
stream and downstream turbines, as well as the power gain at
the wind farm level by applying wake steering control strat-
egy. Additional analysis on the wake loss reduction has also
been presented to support the evaluation of the power per-
formance, where relevant. It should be noted that the poten-
tial of the structural load alleviation, which was originally
a quantity of interest in the benchmark, has been excluded
from this study. This is due not only to the limited number
of participating models capable of providing the necessary
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channels, but also to keep the focus on the most important
benefit of the WFFC technology, as reported in the expert
elicitation survey (van Wingerden et al., 2020). Similarly,
scenarios with axial induction control that were included in
the majority of the blind tests originally are also omitted due
to limited participating model results. All the data collected
for the benchmark can potentially be made available upon
request for researchers; see Data availability section for de-
tails. The notebooks, including data snippets, where the blind
test results are produced are also publicly available; see Code
availability section for details.

The analysis and discussion of the results of the bench-
mark are divided into two parts. Here in Part I, the modelling
of the large-scale rotors (blind tests 1, 3, and 4) is investi-
gated, and in Part 2 the blind test results of the wind tunnel
experiments are presented. Accordingly, Sect. 2 describes the
SMV field campaign and presents the participating model re-
sults for single- and multiple-wake scenarios under upstream
wake steering. High-fidelity simulations being a key enabler
for the industrial implementation of WFFC, the subset of the
extensive CL-Windcon LES database used for the FarmCon-
ners benchmark is detailed in Sect. 3. The participating mod-
els for the CL-Windcon LES blind tests are then evaluated
for three and nine-turbine wind farm configurations, with 5-
and 7-diameter (D) spacing respectively. Similarly, Sect. 4
utilizes up to eight-turbine subsets of a 32-turbine layout
of a reference wind farm developed under the TotalControl
project and compares the participating model results with the
reference LES database under upstream wake steering.

Here in this article, we present the results from the large-
scale rotor analysis of the FarmConners benchmark. The
analysis is broken down into blind-test-specific, relatively
stand-alone sections with limited cross-references and can be
read separately if preferred.

2 Blind test 1: SMV wind farm field data

The wind farm field data come from the Sole du Moulin
Vieux (SMV) wind farm, located in the northern part of
France (approximately midway between Paris and Lille) and
operated by ENGIE Green. It consists of seven Senvion
MM82 wind turbines (diameter of 82 m, nominal power of
2050 kW, hub height of 80 m; see Duc et al. (2019) for power
and thrust coefficient, CT curves), organized in an irregular
single row layout and labelled SMV1 to SMV7 from north to
south. This wind farm has been used for the field tests of the
French national project SMARTEOLE, whose results have
been presented in Ahmad et al. (2017) and Duc et al. (2019)
for field campaign 1 and in Simley et al. (2021) for field cam-
paign 3. The layout of the wind farm is shown in Fig. 1, and
the long-term wind rose observed at the site is presented in
Fig. 2.

The data set used for this benchmark exercise corresponds
to the experiments carried out during field campaign 2, be-

Figure 1. Layout of SMV wind farm. Distances between wind tur-
bines (normalized by their rotor diameter D= 82 m) and directions
related to SMV6 and SMV5 are also shown. The location of the
Windcube v2 sensor used for field campaign 2 is also indicated.

Figure 2. Long-term wind rose for the SMV wind plant at hub
height (80 m). It was obtained through a correlation process be-
tween short-term met-mast measurements on-site and long-term
reference wind data (ERA5 reanalysis data). Taken from Simley
et al. (2021).

tween May 2017 and March 2018. A ground-based lidar
Windcube v2 was installed specifically for these field tests;
its location close to SMV6 is displayed in Fig. 1.

Between 12 August 2017 and 3 October 2017, the SMV6
wind turbine was constantly misaligned for all wind direc-
tions. The averaged value of the turbine yaw offset during
this 7-week period was −13.3◦ (turbine rotated anticlock-
wise when viewed from above), as illustrated in Fig. 11 be-
low. This misalignment creates a wake steering that affects
the downstream turbines, mostly SMV5 for wind directions
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Table 1. Overview of the FarmConners benchmark participants (participant IDs P3–P20) per test case, per blind test. WFFC-oriented model
comparison is performed separately for each column. The participants are colour coded for easy access through the article, where CL-
Windcon wind tunnel experiments blind test results are discussed in Part 2 of the series.

between 200 and 215◦ and more slightly SMV4 to SMV1 for
wind directions below 200◦.

2.1 Calibration and blind test data sets

A total of 12 months of normal operation data, from 1 Octo-
ber 2016 to 30 November 2017 (removing the 2 months for
which the wake steering tests were conducted) were provided
to the benchmark participants to help them calibrate their
wake models. The calibration data consist of 10 min statis-
tics (average, minimum, maximum, and standard deviation)
of 10 of the most important variables of supervisory control
and data acquisition (SCADA) data, including active power,
wind speed and direction, yaw angle, pitch angle, outdoor
temperature, and rotor and generator speed.

The data were filtered to keep only timestamps when all
wind turbines were operating at the same time. Any times-
tamps when curtailments were detected in one of the turbines
were also removed from the data set. Yaw angle and direc-
tion data were corrected for north alignment issues, making
sure those signals were consistent over the full period. One
turbine experienced a modification of its blade aerodynamic
properties during the period. The effect of this change on tur-
bine performance or anemometer wind speed measurement
is unknown and could not be corrected.

The available data set for the wake steering experiment
was unfortunately limited and could not be split into cal-
ibration and blind test subsets. Consequently the partici-
pants could only calibrate their wake deficit and superposi-
tion models and did not have any data to adjust either the
parameters of their wake deflection models or the yaw loss
function of the misaligned turbine.

Table 2. Summary of wind direction ranges for each of the blind
tests.

Single-wake Multiple-wake
blind test blind test

Normal operations 195–215◦ 355–15◦

Wake steering 195–215◦ 180–215◦

The blind data set was prepared using the same proce-
dure as for the calibration data set. The only difference is
that the active power signal was removed for all turbines,
and the wind speed signal was removed for all but the up-
stream turbines (SMV6 for south, south-westerly and SMV1
for northerly directions, indicated in Table 2). The Wind-
cube data provided to the participants cover the full wake
steering period and part of the calibration data, starting on
31 May 2017 and ending on 23 January 2018. All heights of
measurements, ranging from 40 to 200 m, were kept in the
data set. The participants were left free to use these data to
calibrate any onsite atmospheric parameters, such as the tur-
bulence intensity or the wind shear.

2.2 Participating models

Within the FarmConners benchmark, in total five participants
(IDs=P4, P5, P6, P16, P17) have taken part in the SMV
wind farm field data blind test. The participating models
cover a relatively broad range of assumptions, approxima-
tions, and parameters representing the flow behind a steered
turbine. Here in this section, these participating models are
briefly described, and implemented parameters are listed
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when relevant. Table 3 summarizes the prominent charac-
teristics of the participating models. However, it should be
noted that a seemingly identical model applied by the partic-
ipants is likely to be calibrated differently, resulting in differ-
ent performance in their predictions. This is further discussed
in the detailed model descriptions per participant and high-
lighted in the blind test results later in the section.

2.2.1 P4

Wind speed and turbulence intensity. The wind speed was de-
fined using nacelle anemometers at each wind turbine. The
turbulence intensity was calculated using the mean and stan-
dard deviation of the anemometer data for each wind turbine.

Wind direction. It has been assumed that the average of
the directions indicated by turbines’ wind vanes was a good
estimate of the free wind. The multiple-wake simulations
used the average of all wind turbines measurements, and the
single-wake simulations averaged SMV5 and SMV6 direc-
tion data.

Heterogeneous flow. The non-homogeneous flow field in
the steady simulation was obtained through speed factors be-
tween turbines in free sectors (Vg – velocity factor, TIg – tur-
bulence intensity factor). The factors were obtained using the
wind turbine anemometer measurements, and they were ap-
plied regardless of the wind direction. These factors were de-
fined with respect to the reference free wind turbine (SMV1
in multiple-wake case – Table 4 and SMV6 in single-wake
case – Table 5).

Free-stream wind speed and turbulence. The free-stream
turbine conditions for the blind test simulations were deter-
mined by the free-stream turbines (SMV1 in multiple-wake
case and SMV6 in single-wake case). For calibration, the
free-stream wind speed and turbulence intensity were ob-
tained averaging the free-stream turbines depending on the
orientation. The heterogeneous factors were taken into ac-
count in order to refer the magnitudes to SMV1 (reference
wind turbine for the multiple wake).

Wake model. The calibration performed by P4 was based
on the FLORIS model, using the Gaussian velocity deficit
model by Bastankhah and Porté-Agel (2014), and wake-
added turbulence was modelled with the Crespo-Hernández
model (Crespo and Hernández, 1996). The combination
model selected was “SOSFS”, which uses sum of squares
free-stream superposition to combine the wake velocity
deficits to the base flow field (Katic et al., 1986). The yaw
steering is represented by the deflection model Bastankhah
and Porté-Agel (2016).

Calibration. The calibration process was performed using
normal operation with multiple-wake data. The data were
discretized with respect to the assumed wind direction (av-
erage of all wind turbines, bin size= 5◦) and free wind speed
bins (bin size= 2 m s−1). From these data, a calibration ma-
trix was created, by extracting mean values for velocity, tur-
bulence intensity, and power in each wind turbine. Only cases

where there is a wake effect were included in the calibration
matrix. The calibration was performed using a genetic algo-
rithm to obtain wake velocity and wake turbulence parame-
ters. The parameters obtained in this process are presented in
Table 6.

The comparison between the original experimental data,
the average values used for calibration, and the simulation
with the final calibrated parameters can be observed for spe-
cific wind conditions in Figs. 3 and 4, as illustrative exam-
ples. The original experimental data are shown as a box-
plot, representing the median of the magnitudes and the
dispersion of the data. The calibration values and the final
simulation are represented by points for each wind turbine.
Figure 3 presents the results for the bin centred in direc-
tion= 210◦ and wind speed= 10 m s−1, where the wake is
evident for wind turbine SMV5 (single-wake sector). The
agreement in the values in terms of velocity, turbulence in-
tensity, and power is evident for wind turbine SMV5. Fig-
ure 4 presents results for the bin centred in direction= 185◦

and wind speed= 6 m s−1, where wind turbine SMV7 shows
higher power and wind velocity than the rest of the turbines.
The agreement in terms of velocity, turbulence intensity, and
power is clear.

FLORIS deflection parameters were not calibrated: the de-
fault parameters were used during calibration and subsequent
simulation of the results. On the steered turbine, the power
loss due to misalignment was modelled via the yaw loss func-
tion in Eq. (1), where 9 is the steering control setting and
n is the yaw loss exponent, as stated in Table 6. There are
several values proposed for n depending on the experimen-
tal setup and the turbine type, where n= 3 is typically con-
sidered based on blade element momentum (BEM) theory
as well as numerous wind tunnel experiments (Krogstad and
Adaramola, 2012; Bartl et al., 2018b, a), n= 1.8 is proposed
by other wind tunnel experiments (Schreiber et al., 2017) and
LES (Draper et al., 2018), n= 1.88 was considered in Ge-
braad et al. (2016), and n= 1.4 was used in Fleming et al.
(2014). Further discussion on varying nwithin the wind farm
(based on upstream and downstream turbine configurations)
can be found in Liew et al. (2020b).

P = 0.5ρACPu3(cos9)n (1)

The yaw loss exponent could not be calibrated, and the value
for the simulations was set as n= 3. In the blind test sim-
ulations, the yaw misalignment time-series data were used
instead of using the intervals or average values.

It should be noted that the potential effects of atmospheric
stability, shear, and veer were not taken into account in the
P4 simulations, and tilt angle of the wind turbines was ne-
glected. The parameters listed in Table 6 follow the abbrevi-
ation convention in the FLORIS repository (NREL, 2021).

https://doi.org/10.5194/wes-7-1791-2022 Wind Energ. Sci., 7, 1791–1825, 2022
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Table 3. Overview of the participating WFFC-oriented models, wind farm field data blind test. a Bastankhah and Porté-Agel (2014). b Ainslie
(1988). c Ishihara and Qian (2018). d Crespo and Hernández (1996). e Quarton and Ainslie (1990) – with sum of difference. f Frandsen (2007)
– IEC 2019 standard. g SOSFS – sum of squares free-stream superposition. h Bastankhah and Porté-Agel (2016). i Jiménez et al. (2010).
j Qian and Ishihara (2018). k RLSOD – rotor-based linear sum of deficits.

Figure 3. P4: the y axes show (a) velocity (m s−1), (b) turbulence intensity (TI, –), and (c) power (P , kW). Comparison per SMV wind
turbine (turbine numbering SMV1–SMV7 in x axis) between experimental data (boxplot), average values used for experimental calibration
(ExpCalibration, blue circles), and simulation with calibrated parameters (P4, red circles). Bin direction= 210◦; bin wind speed= 10 m s−1.
Empty black circles represent outliers.

Table 4. P4: non-homogeneous factors for the multiple-wake case.

Turbine ID XUTM YUTM Vg TIg

SMV1 633 519 2 539 349 1.000 1.000
SMV2 633 489 2 539 000 0.997 0.938
SMV3 633 500 2 538 650 0.987 1.000
SMV4 633 473 2 538 300 0.979 1.026
SMV5 633 445 2 537 950 0.985 0.997
SMV6 633 307 2 537 680 0.971 0.984
SMV7 633 343 2 537 367 0.953 1.025

Table 5. P4: non-homogeneous factors for the single-wake case.

Turbine ID XUTM YUTM Vg TIg

SMV5 633445 2537950 1.015 1.014
SMV6 633307 2537680 1.000 1.000

2.2.2 P5

The baseline engineering flow model FLORIS (NREL, 2021)
was adapted to the site by introducing parametric correction
terms, which are learned from the available training SCADA
data.

Preparation of the calibration data set. The tuning of the
engineering model was performed using the provided cali-
bration data set. As FLORIS is a steady-state model, some
of the SCADA data were discarded by looking at the nacelle
position measurements, with the aim of only using data char-
acterized by fairly steady and uniform inflow and operating
conditions. Specifically, a 10 min SCADA data point was dis-
carded if

– the variation in the nacelle orientation of any turbine
between two consecutive timestamps exceeds 20◦, so as
to discard data measured under strongly varying wind
direction;

– the deviation of the nacelle orientation of any turbine
from the average pointing direction of the entire wind
farm exceeds 20◦, so as to discard data measured under
highly non-homogeneous wind direction;

– the standard deviation of the nacelle orientation of
any waked turbine was not null, so as to discard data
recorded while one of the waked turbines was yawing
during the 10 min period.

Determination of the ambient wind conditions. Once the
data were prepared, it was possible to estimate the ambi-
ent wind conditions to be used as input to the engineering

Wind Energ. Sci., 7, 1791–1825, 2022 https://doi.org/10.5194/wes-7-1791-2022
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Table 6. Calibrated parameters of the used velocity and turbulence sub-models of the relevant models used by participants P4 and P5, where
α and β; ka and kb; and TIconstant, TIai, TIinitial, and TIdownstream are model parameters in FLORIS (NREL, 2021), and n is the yaw loss
exponent in Eq. (1). ∗ In Simley et al. (2021), the wake model fitting was realized by tuning the ambient turbulence intensity value rather
than updating the model parameters. Within FLORIS (NREL, 2021), the Gauss velocity model (Bastankhah and Porté-Agel, 2014, 2016;
Blondel and Cathelain, 2020; King et al., 2021) was used rather than the Gauss legacy model (Bastankhah and Porté-Agel, 2014, 2016) as
for P4 and P5.

α β ka kb TIconstant TIai TIinitial TIdownstream n

Initial value 0.58 0.077 0.38 0.004 0.9 0.75 0.5 −0.325

P4 0.352 0.108 0.576 0.00064 0.242 0.112 0.103 −0.279 3

P5 0.76 0.084 0.18 0.0035 0.74 0.88 0.05 −0.316 1.88

Simley et al. (2021) ∗ 0.58 0.077 0.38 0.004 0.5 0.8 0.1 −0.32 < 2.3

Figure 4. P4: the y axes show (a) velocity (m s−1), (b) turbulence intensity (TI, –), and (c) power (P , kW). Comparison per SMV wind tur-
bine (turbine numbering SMV1–SMV7 on the x axis) between experimental data (boxplot), average values used for experimental calibration
(ExpCalibration, blue circles), and simulation with calibrated parameters (P4, red circles). Bin direction= 185◦; bin wind speed= 6 m s−1.
Empty black circles represent outliers.

model. First, the ambient wind direction in each timestamp
was calculated by computing the average of the wind direc-
tions measured with the turbines’ wind vanes. Only obser-
vations within the southern 175–220◦ and northern 350–20◦

sector were kept. Overall, 5329 data points (≈ 15.4 % of the
calibration subset) for each of the seven turbines were used
for calibrating the flow model.

Free-stream turbines were used to determine inflow wind
speed and turbulence. The wind speed was reconstructed
from the turbine power, while the turbulence was computed
using the mean and standard deviation values of the nacelle
anemometer recordings. The determination of whether a tur-
bine operates in free stream or not was based on the wind
farm layout and inflow wind direction, thus following the rec-
ommendations given in International Electrotechnical Com-
mission (2005). For wind directions in the sector between
345–25◦, measurements from SMV1 were therefore used.
Measurements from SMV6 were instead used for wind direc-
tions between 195–225◦. For wind directions between 170–
195◦, corrected measurements from SMV7 were used, since
it was expected that its sensed wind speed would be affected
by the nearby forest. In detail, a third-order polynomial func-
tion was best fit to the ratio between the wind speed mea-

sured by the Windcube v2 at 80 m and the wind speed mea-
sured by the SMV7 anemometer, while both were operating
in free-stream conditions. Details of the fit are specified in
Fig. 5. The resulting correction, scheduled as a function of
the SMV7 anemometer measurement, was then applied to
both the calibration and blind test subsets.

As for the wind shear, a constant value of 0.25 was used,
which corresponds to the average of the shears measured by
the Windcube v2.

Finally, the complete data set was binned over wind speed
and wind direction in bins of 1 m s−1 and 1◦ respectively so
as to further reduce the measurement noise and speed up the
tuning process.

Tuning parameters and process. The velocity deficit was
modelled with the kinematic Gaussian velocity deficit model
by Bastankhah and Porté-Agel (2014) and the root sum of
squared deficits superposition model (Katic et al., 1986).
Wake-added turbulence was modelled with the Crespo and
Hernández (1996) turbulence model and deflection through
the Bastankhah and Porté-Agel (2016) deflection model. The
model calibration parameters that describe the wake veloc-
ity and wake turbulence models were further corrected in the
tuning process, whereas for the wake deflection model the
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Figure 5. Comparison of wind speed measured by the Windcube
lidar at 80 m height and the nacelle wind speed of SMV7 in the
sector 170–195◦. Fit statistics performed by P5: R2

= 0.94, σ =
0.54 m s−1.

default FLORIS values were used. In addition to that, the ex-
ponent n of the cosine law (Eq. 1) used to model the power
losses of yawed turbines was set to 1.88, i.e the value adopted
by Gebraad et al. (2016).

As the incoming wind is permanently affected by the lo-
cal orography and vegetation, it is necessary to account for
the long-term spatial variability of both wind speed and wind
direction. To achieve that, a heterogeneous flow field is pa-
rameterized in terms of shape functions and associated un-
known speed-up (1WS) and wind direction (1WD) nodal
values (Schreiber et al., 2020). The nodes were placed at
the coordinates of the turbines, and the resulting mesh was
further discretized for five different inflow wind directions.
This resulted in seven nodes for each of the considered in-
flow wind directions (WD-20◦, WD-175◦, WD-195◦, WD-
220◦, and WD-350◦), leading to a total of 35 speed-up and
35 wind direction nodes. The desired flow correction is then
obtained by mapping the nodal values, with associated linear
shape functions, to the locations of interest. The distribution
of the nodes in terms of location and direction can be seen
in Fig. 6a, which also depicts the resulting background flow
field for an inflow speed of 7.56 m s−1 and a wind direction
equal to 214.7◦.

The intrinsic parameters of the adopted wake and turbu-
lence sub-models were identified together with the heteroge-
neous flow nodal quantities, resulting in a site-specific cou-
pled simultaneous correction and tuning of the model. This
ill-conditioned optimization problem was solved by mapping
the unknown parameters into an orthogonal space via the sin-
gular value decomposition (SVD), solving the identification
by a maximum likelihood estimation in the reduced space
and then mapping back the solution to the physical space
(Schreiber et al., 2020). The identified, tuned parameters for

the wake model are shown in Table 6, while Fig. 6b and c
show the identified speed-up and wind direction nodal val-
ues. For further details on the description of model parame-
ters, see NREL (2021). For further discussion on the signif-
icance of such a parameterization, see e.g. van Beek et al.
(2021).

2.2.3 P6

Atmospheric conditions at the site. The provided SCADA
data covering the calibration period were used to model the
site’s characteristics and perform preliminary comparisons.

Wind direction. The wind rose obtained from the calibra-
tion period data is similar to the one shown in Fig. 2 and
contains a large portion of data for which no yaw offset is
reported (about 65%), whereas the remaining 12046 data
points report a yaw offset. The ranges of wind direction that
occurred during the provided blind test SCADA data are re-
ported in Table 2. The yaw offsets during the calibration
phase (calculated as the difference between the Windcube
v2 lidar directional data at hub height and turbine SMV6’s
nacelle-corrected heading) have a mean value of −13.3◦,
with values ranging from −26 to +30◦.

Wind speed. The only available source of wind speed for
both the calibration data set and the blind test data set is the
nacelle-mounted anemometers at each turbine, if the Wind-
cube v2 lidar is excluded. Preliminary correlations between
the lidar’s and turbine SMV6’s wind speed signals showed
a non-linear relationship and significant amount of scatter-
ing, suggesting the underestimation of wind speeds by the
nacelle-mounted anemometers, especially for wind speeds
lower than 10 m s−1 (as measured by the lidar). As explained
in the next section, transfer functions have been used to
convert wind speeds from anemometers to free-stream wind
speeds using the measured active power and the provided
warranted power curve. Additionally, directional correlations
between different turbines have been used to obtain a table of
wind speed corrections that represent the variation in wind
speed at the site (also known as speed-ups). It is also stressed
that any estimation of the wind farm blockage effect has not
been attempted.

Atmospheric turbulence intensity. The variation in turbu-
lence intensity with wind speed is shown in Fig. 7 as mea-
sured from both the lidar and turbine SMV6. Both the mean
and the P90 turbulence levels in the two plots show some
similarities, especially for wind speeds above approximately
7.5 m s−1. Although the correlation between the wind speed
standard deviation at the lidar and SMV6’s nacelle-mounted
anemometers shows significant scattering (not shown here),
using the 10 min averaged wind standard deviation from the
SCADA data is considered to be broadly suitable in this case
for the purpose of wake modelling, as also pointed out in Duc
et al. (2019). It is noted that the SCADA wind speed stan-
dard deviation data have not been used to obtain any turbine-
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Figure 6. (a) Wind speed and direction node locations within the cluster. (b) Identified speed-up (1WS) nodal values. (c) Identified wind
direction (1WD) nodal values.

specific turbulence intensity correction across the site, as was
done for the wind speeds.

Air density. Historical atmospheric data have been ob-
tained from ERA5 and NEWA reanalysis data sets at the
closest available nodes to the site. The long-term averaged air
density at the site was found to be 1.23 kg m−3, with values
ranging between 1.13 and 1.35 kg m−3. These values have
been used to correct the power curve in the simulations (see
below).

Wind shear. The lidar measurements were provided at dif-
ferent heights and for a period of about 8 months. The two
measurements closest to the low tip and high tip of the rotor
(40 and 120 m respectively) have been used to estimate the
average shear profile across the turbine rotor. Assuming the
directional wind shear estimations at the lidar location are
representative for all turbine locations (except for the direc-
tions with the wake effects), power-law exponents 0.178 and
0.268, respectively corresponding to wind direction bins cen-
tred at 0 and 210◦, have been used for the blind test simula-
tions based on each case’s wind direction range (see Table 2).

Calibration of turbine characteristics. The first step for
the calibration process was to focus on data representative
of normal operations only by filtering out any data recorded
when yaw misalignment was present. The variation in wind
speeds across the turbine locations was pragmatically esti-
mated from correlations between the turbines’ SCADA data,
only from the two main directions of interest for the blind
tests, in Table 2. In order to exclude the sectors with the
wake effects and have enough data points, the SCADA wind
speed signals at each turbine were filtered for broader direc-
tional sectors around the aligned directions with the wake
effects. By using SMV1 and SMV6 as reference turbines for
the north and the south wind direction cases respectively, cor-
relations between each turbine and each reference turbine
were performed for the filtered wind directions, in order to

find speed-up factors describing the local variation in free
wind speeds for the directions of interest. The obtained val-
ues were used to define these effects for the excluded direc-
tions with the wake effects, by averaging the valid directional
values. An example of this approach is given in Fig. 8.

The turbine’s wind speed standard deviation values were
assumed to be representative of the free atmospheric condi-
tions, as described in the previous section, and have therefore
been used for the definition of turbulent intensity.

Plotting the active power against the wind speeds from
the nacelle-mounted anemometers for each turbine, large dif-
ferences emerge when compared to the provided warranted
power curve. The wind speed could be back-calculated from
the active power SCADA signal; however, this signal is only
provided for the calibration data set and not as part of the
blind test package. Since at least one turbine’s SCADA wind
speed signal was made available for each blind test scenario,
the available calibration data set was used to create a trans-
fer function linking nacelle anemometers’ measurements and
wind speeds back-calculated from active power, exclusively
for the wind directions of interest. This was achieved, for
each turbine, by using a sixth-order polynomial fitting pro-
cess for SCADA wind speeds ranging between cut-in and
rated wind speeds, hence covering the whole wind speed
range in all the blind test scenarios analysed.

In order to calibrate the power curves from the available
data recorded when yaw misalignment was present, the data
were binned for different yaw angle ranges. Due to the lim-
ited amount of data recorded during the yaw misalignment
tests, it was decided to focus specifically on three misalign-
ment angles,−7,−13.3, and−18◦, deemed to be representa-
tive of the distribution of measured yaw misalignment angles
during the blind tests. A power curve for each of these angles
was obtained by fitting the data clustered in these three bins,
and the thrust curves were also adapted to the yawed cases
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Figure 7. Turbulence intensity (%) measured by (a) Windcube v2 at 80 m and (b) turbine SMV6 vs. wind speed (m s−1).

Figure 8. (a) Rotor effective vs. nacelle anemometer wind speed (m s−1): Fitting between anemometer and power-based wind speeds at
turbine SMV1 for northern wind speeds under rated power. (b) Power (kW) vs. wind speed (m s−1): comparison at turbine SMV1 between
warranted power curve (PC), power based on anemometer wind speeds, and corrected power curve using the transfer function as described.

by applying the same wind speed shift found for the power
curves. It is noted that the commonly used approach of mod-
ifying the power and thrust values by multiplying these by
a factor such as cos(9)n (where n is a positive real number
and 9 is the turbine yaw angle, as shown in Eq. 1) has not
been used in this instance, also due to the large uncertainty
given by the large range of exponent values found in litera-
ture. For completeness, a comparison between the calibrated
power and thrust curves and the best-fitting cosine exponents
(respectively being found to be 1.7 and 1.2) is shown in Fig. 9
for wind speeds of 6, 7, and 8 m s−1.

Wake modelling. Different wake modelling approaches
have been tested for this specific site. The chosen steady-
state model utilized, in a time-series fashion, for producing
the results presented in this report is based on the Ainslie

model (Ainslie, 1988), including modifications suggested
by Anderson (2009) and Ruisi and Bossanyi (2019). The
wake-added turbulence was modelled using the Quarton and
Ainslie (1990) model, and for the superposition of wake ef-
fects the sum of deficits method is used for the velocity
deficits, and sum of variances is used for turbulence super-
position. The time series of air densities has been used to
correct the power curve during simulations, as prescribed by
the IEC standards. The rotor-averaged quantities have been
calculated by taking into account the directional wind shear
across the rotor, as explained in the previous section. Fur-
thermore, it is noted that the effects of wind farm blockage,
atmospheric stability, and veer have not been taken into ac-
count for the purpose of wake modelling at this site.
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Figure 9. (a) Power and (b) thrust values obtained from data calibration at three wind speed values and at four yaw misalignment settings,
compared to a cos(9)n function.

The model used for this simulation is the one by Bas-
tankhah and Porté-Agel (2016), where the four numerical pa-
rameters used in the model were not calibrated (hence were
kept the same as reported in the original article); however
an additional factor of 2 is added to the formula predicting
the skew angle in Eq. (6.12) in Bastankhah and Porté-Agel
(2016) (as implemented also in FLORIS NREL, 2021). This
version of the model was preferred to the same model with
the exclusion of this additional skew factor, or the model by
Jimenez (Jiménez et al., 2010) for which the characteristic
parameter k was set to 0.05 (as opposed to 0.15, as suggested
in the original article), based on previous experience with
other calibration data sets.

2.2.4 P16

P16 results are obtained using an in-house wake modelling
code. The calculations are based on single-wake superposi-
tion with the Bastankhah and Porté-Agel (2016) wake model,
capable of modelling yaw deflection. The model parameters
are optimized based on the provided calibration data set un-
der normal SMV wind farm operation, using the SGA opti-
mizer of the “pygmo” library (Biscani and Izzo, 2020). For
the optimization run, the data were filtered for wind direc-
tions coming from the north, reflecting the multiple-wake
case. Influences of orography and forest, resulting in an in-
homogeneous wind field, were not taken into account. Wind
speed, wind direction, and TI values from the upstream tur-
bine (SMV1) were directly used for the definition of the am-
bient wind field. The parameters of the wake model were ob-
tained by minimizing the sum of the average quadratic dif-
ferences between power measurements and simulated power
at every turbine of the wind farm. The following parameters
were results of the optimization and used for further mod-
elling: ka = 0.234, kb = 0.0037 and α = 4.967, β = 0.0015.
Those are principally the same model parameters as de-

scribed for the other participants in Table 6, described in de-
tail in Bastankhah and Porté-Agel (2016), but implemented
in a different framework than FLORIS. Measurement uncer-
tainties were not taken into account for the model calibration.
We expect the high value of α, compared to literature studies,
to be a reflection of the general uncertainty, especially of the
wind direction measurement. As a large α leads to quite short
near-wake lengths, which are essential for the magnitude of
wake deflection in the deflection model, we expect the wake
deflection with these parameters to be quite inefficient. For
the yawed turbine, the power loss is modelled via Eq. (1)
with n= 1.88, and the change of CT with yaw is modelled
analogously with an exponent of n= 1. This assumption was
made due to the unknown behaviour of the turbine in yaw
and based on Fleming et al. (2014).

Since there is no general agreement in literature, we expect
the modelling of the turbine performance in yaw to be a large
uncertainty factor. The multiple wakes are superposed via the
quadratic sum of their deficits, and the rotor effective wind
speed is calculated as the weighted sum at 19 points over
the rotor. The wake-added turbulence intensity is modelled
with the Frandsen (2007) model. Figure 10 shows the rela-
tive power of SMV2 compared to SMV1 for the data which
were used for calibration of the model. In general, the mean
wake losses show a good agreement with the measured data
considering that the spread of the measured data is naturally
higher due to measurement uncertainties.

2.2.5 P17

Wake model description. A modified Gaussian wake model
named Gaussian-IQ, which provides three-dimensional wake
characteristics including wake width, velocity deficit, added
turbulence (Ishihara and Qian, 2018), and wake deflection
caused by yaw offset (Qian and Ishihara, 2018), is utilized
by P17. Parameters that govern the evolution of wake in the
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Figure 10. Comparison of measurements and P16 model outputs
for calibration period, SMV2 compared to SMV1. The y axis shows
relative power of SMV2 and SMV1, and the x axis indicates the
incoming wind direction in (◦). Solid lines are the binned average
of the measurements and model results indicated as scatters.

Gaussian-IQ model are determined as the function of thrust
coefficient and local hub-height turbulence intensity. No ad-
ditional calibration of model parameters has been added, and
the default values were utilized. To combine velocity deficits
of multiple wakes, the rotor-based linear sum (RLS) is em-
ployed. For turbulence intensity in the multiple wakes, it is
formulated based on the principle of a linear sum of square
(LSS) with an additional correction term to consider the ef-
fects of wake interaction (Qian and Ishihara, 2021).

Turbine model description. The theoretical power and
thrust curves of Senvion MM82 at the site are used to deter-
mine the turbine performance under normal operating con-
ditions for an air density of 1.225 kg m−3. For the steered
turbine, to model the power loss and thrust force change due
to the yaw misalignment, an effective wind speed is intro-
duced to power and thrust look-up tables, following the ap-
proach recommended by Ruisi and Bossanyi (2019), feeding
into Eq. (1) as ueff = u · (cos9)n/3, where 9 is the yaw off-
set angle and n is the yaw loss exponent set to 1.88, which is
the value suggested by Gebraad et al. (2016).

Simulation process. The wind farm simulation is per-
formed in steady state, and results are provided via a data set
binned over wind speed and wind direction (WD) in bins of
1 m s−1 and 5◦ respectively. For each wind speed, the binned
values with respect to, for example WD= 5◦± 2.5◦, are ob-
tained by taking the average of the results from 10 simula-
tions of WD= 2.5◦ : 0.5◦ : 7.5◦. The wind speed, wind direc-
tion, and turbulence intensity (TI) in the axial direction are
assumed to be homogeneously distributed in the wind farm.
A wind shear profile following the power law with a con-
stant exponent of 0.15 is applied to the inflow wind speed.
As shown in Fig. 7, the variation in turbulence intensity with
wind speed measured by the free-stream turbine SMV6 is

quite stable for wind speeds above approximately 4 m s−1.
Thus, the ambient turbulence level at hub height is set to be
constant with the mean value of TI= 0.11.

2.3 Validation data pre-processing

The wind farm field data blind tests are prepared as sin-
gle and multiple wakes, where the upstream turbine SMV6
was steered with −13.3◦ mean with respect to the incoming
south-westerly wind. The results are evaluated in terms of
balanced energy gains, as defined in Fleming et al. (2019).
Since the experiments were not realized in the form of a
toggle test, the baseline case is taken by considering two 2-
month periods before and after the field tests, as shown in
Fig. 11.

The wind speed and direction reference signals for com-
puting the energy ratios come from the Windcube v2. Due to
the proximity of this sensor with the controlled turbine, the
atmospheric conditions measured should be very similar to
the ones faced by SMV6. The reference power signal is is-
sued from the SMV7 wind turbine, which is the only remain-
ing upstream turbine for the southerly wind sector. However,
SMV7 is located very close to the forest and therefore ex-
periences a much disturbed wind compared to SMV6. Con-
sequently the SMV7 active power signal must be corrected
to be representative of SMV6 in the baseline situation. This
is done following the same procedure as explained in Sim-
ley et al. (2021); namely under normal operation, SMV6 and
SMV7 active power signals are binned against wind speed
(1 m s−1 bins) and wind direction (calculated every degree on
overlapping 10◦ bins). Then, a transfer function is estimated
by dividing the SMV6 averaged power by SMV7 averaged
power in each bin. Finally this transfer function is applied to
SMV7 power time series to generate a reference power sig-
nal used in both the baseline and the wake steering cases for
the computation of the energy ratios.

2.4 Single-wake results

For the single-wake case, the estimated and observed per-
formance of the SMV6–SMV5 turbine pair is investigated
within a narrow wind sector of 200–215◦ (i.e. ±7.5◦ around
the perpendicular direction), where the upstream turbine
SMV6 is misaligned for 13–15◦ anticlockwise (negative mis-
alignment with mean ≈−13.3◦). The final data set within
that sector for wake steering consists of 216 10 min data
points, while the normal operation data set used to calculate
the baseline wake effect is made of 1120 10 min data points
(484 recorded in June and July 2017, 616 recorded in Octo-
ber and November 2017).

2.4.1 Time-series comparison

For the submitted time-series results from P4, P5, P6, and
P16, the predicted and observed power values at the upstream
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Figure 11. Evolution of the yaw offset of all turbines in the farm during the period of the analysis. The reference wind direction is taken
from the Windcube lidar. To smooth out the time series, a moving average of 3 d was applied. The periods corresponding to the baseline case
and the wake steering case are marked by the arrows. The averaged misalignment angle on the SMV6 turbine is indicated.

and downstream turbines are compared in Fig. 12. The root-
mean-square errors are normalized (NRMSE) by 2050 kW
rated power of the turbines. For the upstream turbine, SMV6,
with wake steering control (or yaw misalignment) of −13.3◦

mean anticlockwise, P4 and P16 are seen to underestimate
the power production for lower wind speeds. On the other
hand, P5 seems to overestimate the SMV6 turbine power for
higher wind speeds, around the transition between Regions II
and III. P6, however, is seen to have a very good agreement
with the observed power at the controlled SMV6 turbine up-
stream, though potentially with a slight under-estimation.

At the downstream turbine under a steered wake, SMV5,
the variance around the power predictions is notably higher
for the steady-state models, potentially driven by the wake-
added turbulence. The underestimation trend by participants
P4 and P16 continues at SMV5 power comparisons as well,
although a lesser discrepancy is observed for P16 results.

As stated earlier, the calibration data set the participants
were provided for the wind farm field blind tests is limited
to normal operation conditions. The limited calibration data
surely affect the performance of all the participating models.
This impact is arguably the most visible for P4 and P5, where
the same WFFC-oriented platform is utilized. Between P4
and P5, the difference in the comparison for both the up-
stream and downstream power predictions is expected to be
driven by the prior calibration and the final selection of the
parameters for the controlled periods. Specifically, the im-
plemented yaw loss exponents n = 3 for P4 and n = 1.88
for P5 (see Table 6) are argued to be the main factor for the
difference observed in the upstream power predictions, espe-
cially compared with the recent field calibration at the same

site under WFFC, discussed in Simley et al. (2021) where
wind-speed-dependent (or indirectly CT) values of n≈ 2.2–
2.3 for wind speeds between 4 and 8 m s−1, n≈ 1.3–1.35 for
8–12 m s−1, and n≈ 0.36 for 12–14 m s−1 are reported. In
that regard, Fig. 12 highlights the sensitivity of the widely
adopted WFFC-oriented models to the employed parameters
and the importance of comprehensive calibration data and
process. It also shows the significance of clear parameter de-
scriptions for overall reproducibility of the results.

2.4.2 Binned quantities of interest: energy ratio and
power gain

To analyse the effect of wake steering on the two-turbine
wind farm (SMV6 as upstream, SMV5 as downstream),
a similar methodology to that described in Fleming et al.
(2019) is followed. Accordingly, both the observed power
and the estimations by the participating models are dis-
tributed over ±0.5 m s−1 wind speed and ±2.5◦ wind direc-
tion bins. Per bin, the energy ratio, REnergy, is calculated via
Eq. (2) with weighted summation, where N is the total num-
ber of wind speed bins per sector, ωi represents the weights
per bin, PWF

i is the mean of the total wind farm power per
bin (either the normal operation/baseline power or power
under wake steering WFFC) and for the single-wake case
PWF
i = P SMV6

i +P SMV5
i , and PRef

i is the gross production
averaged per bin, i.e. the power of the wind farm without the
wake losses (PRef

i = 2 ·PSMV6 for single-wake case).

REnergy =
6Ni=1ωiP

WF
i

6Ni=1ωiP
Ref
i

(2)
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Figure 12. SMV wind farm (WF) field data, single wake under wake steering power comparison per participant. Upstream (top row)
turbine power under wake steering control of −13.3◦ misalignment, downstream (bottom row) turbine power under the steered wake – field
observations vs. participating model predictions. Representative layout with corresponding yaw control set point is illustrated at the upper
right corner.

The weights per wind speed bin, ωi , aim to compensate
for the non-equivalent number of samples within the “yaw
misalignment” and “baseline” periods (see Fig. 11) in energy
ratio estimation. Accordingly, they are assigned via the rela-
tive density of the samples within the respective bins. There-
fore, the wake observed under normal operation (referred to
as “Normal Wake : baseline”) and the gross production PRef

have identical weights (both sampled under baseline period),
where the observed and estimated wakes under WFFC have
higher weights to compensate for a shorter yaw misalignment
period in the data set. As an indication of uncertainty around
the energy ratios, the standard deviation of the total power
per wind speed bin is propagated, assuming the numerator
and denominator of Eq. (2) are uncorrelated. Detailed de-
scription of the weighting strategy and the energy ratio cal-
culation as well as the simplified uncertainty propagation can
be found at the post-processing notebook published at the
open-access FarmConners benchmark repository (Göçmen
et al., 2021). It should be underlined that the resulting distri-
bution of the model results considers only the variance in the
time-series samples within the bin and is therefore simplistic
and potentially conservative. A comprehensive analysis in-
cluding input and model (parameter) uncertainties and their
propagation is left as future work.

Figure 13 shows the energy ratio, REnergy, during the nor-
mal operation (or baseline) as well as under wake steering
WFFC as observed on the field or estimated by the partici-
pating models (P4, P5, P6, P16, P17), per wind direction bin.
Especially in the close-to-perpendicular wind sector, where
wind direction ∈ 207◦± 5◦, it can be seen that the steered
wake is observed and estimated to be more energetic (i.e.
higher REnergy), indicating a positive energy gain. The be-
haviour and the scale of the observations are in line with
the recent field test results from the same SMV wind farm
(Simley et al., 2021). For the participating models, the agree-

ments are significantly better in the close sector. However,
the variations notably increase at the wake border around
215◦. For the first wind sector centred around 200◦, all the
models are seen to overestimate the energy ratios compared
to the observations. The overall agreement becomes much
better closer to the wake centre at the 205◦ bin, where P16
has a slight over-estimation. In line with the power scatter
plots in Fig. 12, P4 notably underestimates the energy ratio
for the remaining two sectors, where P5 and P6 have simi-
lar and overall very good agreement with the observations,
and P16 has mostly good agreement except of the significant
under-estimation around the wake border at 215◦. Note that
for P17, where only the pre-binned quantities of interest were
submitted, Fig. 13 includes only the mean REnergy. Based on
the mean quantities, P17 is observed to slightly overestimate
the energy ratios for almost all the sectors analysed.

The power gain observed at the field and estimated per par-
ticipant in the blind test is then calculated following Eq. (3),
where the energy ratio computed in Eq. (2) during normal
operation,RTest = Normal Operation

Energy is subtracted from the energy
ratio under wake steering flow control RTest = WFFC

Energy . The un-
certainty around the power gain is quantified via propagating
the uncertainties of RWFFC

Energy and RNormal Operation
Energy estimated in

Eq. (2).

PGAIN =
(
RWFFC

Energy−R
Normal Operation
Energy

)
· 100 (3)

Figure 14 compares the power gain under wake steering
WFFC observed at the SMV wind farm and estimated by the
participating models in the blind test. The boxplots show that
for the close wake sector, i.e. wind direction ∈ 207◦± 5◦, a
positive power gain with 13–14◦ yaw control at the upstream
turbine has above 75 % likelihood. In fact, the likelihood of
more than 5 % gain in power exceeds 50 % in the same wind
sector. However, around the borders of the wake, for the bins
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Figure 13. SMV WF field data, single wake under wake steering – energy ratio comparison under wake steering control with −13.3◦

upstream misalignment. Representative layout with corresponding yaw control set point is illustrated at the upper right corner.

centred at 200 and 215◦, loss of power is equally as likely
as a potential gain, indicating the importance of uncertainties
for the risk assessment of WFFC implementation, also as un-
derlined in Hulsman et al. (2020). Observably, the participat-
ing model behaviours for the power gain estimations follow
the discussions on REnergy for Fig. 13. However it should be
noted that P17 power gain now has a variation around its es-
timation, driven from the standard deviation of the energy ra-
tio for the normal operation, RNormal Operation

Energy in Eq. (2). With
that, the over-estimation trend is down-scaled, and a better
agreement can be argued for larger sectors > 200◦.

2.5 Multiple-wake results

For the multiple-wake case, the estimated and observed per-
formance of the SMV6–SMV1 downstream turbines is inves-
tigated within a larger wind sector starting from 180◦ up to
215◦, so that effects of the wake steering at SMV6 can also
be observed at the turbines further downstream of SMV5.
Due to the imperfect alignment of the farm layout, it must be
noted that this does not correspond to a multiple full wake ef-
fect; instead it is most probably a combination of overlapping
partial wakes. Furthermore, for wind directions close to 180◦,
the misaligned turbine SMV6 is in the wake of SMV7. Given
the uncertainty in the evaluation data set, mainly driven by
the layout of the wind farm, the multiple-wake results of the
wind farm field data blind tests are presented in Appendix A.

2.6 Summary of the wind farm field data blind test

Although it is the key priority for advancing wind farm
control technology (van Wingerden et al., 2020), the field
test and validation for WFFC-oriented models are signifi-
cantly challenging due to the stochasticity, non-stationarity,
high variability, and overall uncertainty. Specifically for the
FarmConners benchmark, the highlights of the participating

model performance for the wind farm field data blind test can
be summarized as below.

– Similar models, disparate behaviour. In this blind test,
several participants implemented similar models to re-
solve the wake behaviour behind a steered turbine (as
listed in Table 3). However, even for the same frame-
work utilized by P4 and P5, the results are seen to no-
tably differ. This indicates high model sensitivity to the
employed parameters and emphasizes the importance of
the calibration procedure, as also analysed for another
wind farm by van Beek et al. (2021). It also underlines
the significance of clear methodology description and
parameter listing for reproducible and credible estima-
tions of the potential benefits of the technology.

– Importance of the calibration data set. In the wind farm
field data blind test, the calibration data were confined
to the normal operation periods. This was mainly due
to the limited availability of the controlled operation,
which is typically the case for the majority of the oper-
ating wind farms. However, the blind test results show
how crucial the information regarding the power loss
at the controlled turbine(s) and basic downstream be-
haviour is to be able to customize the low-cost, control-
oriented models under low observability of inflow con-
ditions and turbine response.

– A better wake steering implementation at the field.
Given the high sensitivity of the parameters on the pre-
diction of the gains observed, it can be concluded that
the wake steering solution in practice would/should not
be designed solely based on normal operation data.
It would/should rather follow an iterative process in
which a priori strategy can be developed and imple-
mented based on normal operation tuning or standard,
recommended, or off-the-shelf parameter values. After
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Figure 14. SMV WF field data, single wake under wake steering – power gain comparison under wake steering control with−13.3◦ upstream
misalignment. Representative layout with corresponding yaw control setting is illustrated at the upper right corner.

a certain period of data collected (e.g. a few months),
the model parameters could be updated and a posteri-
ori strategy (with a new set of optimal yaw control set
points) can then be defined. Such a process could con-
tinue until a satisfactory agreement is reached between
the model results and the observations.

3 Blind test 3: CL-Windcon LES

This blind test builds upon a set of high-fidelity simulations
performed in the context of the European R&D project CL-
Windcon (CL-Windcon, 2016). They were performed with
NREL’s open-source SOWFA simulation package (NREL,
2012), which is a set of computational fluid dynamics (CFD)
solvers based on OpenFOAM (2013), boundary conditions,
and turbine models represented through the OpenFAST sim-
ulation tool (Jonkman, 2017). The scenarios consist of two
different layouts (see Fig. 15), for the 10 MW INNWIND.EU
reference turbine (INNWIND.EU, 2013): (i) three turbines
with a 3× 1 configuration (3WT) and 5 D distance among
turbines where the third turbine has 0.5 diameters (D) lateral
displacement with respect to the flow, and (ii) nine turbines
with a 3× 3 configuration (9WT) and 7 D distance among
the turbines. The numerical verification tests are presented
in Doekemeijer et al. (2018), and further details on the sim-
ulation setup can be found in Gomez-Iradi et al. (2019) and
Doekemeijer et al. (2019).

For the whole data set, combinations of three wind speeds,
turbulence intensities, and roughness lengths were applied
together with varied wind turbine control settings. However,
for the specific blind test in FarmConners benchmark, an in-
flow corresponding to an average wind speed of 7.7 m s−1,
turbulence intensity of 5.39 %, and roughness length of
0.001 m was selected (referred to as A4 in the original
database CL-Windcon, 2019). The CL-Windcon LES blind
test is among the most diverse and comprehensive in terms of

the wake steering control strategies applied within the Farm-
Conners benchmark. The yaw misalignment was varied in
the range of ±30◦ for the first and/or the second row of tur-
bines; see Table 7 for particular control settings among the
3WT and 9WT scenarios. The direction for the yaw con-
vention, as well as the distribution of the control set points
among the turbines, is illustrated per investigated case in the
presentation of the results later in Sect 3.2 and 3.3.

Targeted test cases explore a single full wake and multi-
ple wakes under wake steering WFFC. Available data cover
power production, hub-height, and/or rotor effective wind
speeds at the turbines, as well as several structural loading
variables, namely flap-wise root bending moment, total shaft
bending moment, and total tower bottom bending moment.
However, the load channels are excluded from the analysis in
this study, and the participating models are evaluated based
on the reported power production with and without WFFC.

3.1 Participating models

Within the FarmConners benchmark, the CL-Windcon LES
blind test has had four participating models in total
(IDs=P11, P12, P16, P19). Two steady-state and two (quasi-
)dynamic models have been utilized for the exercise, cover-
ing a wide range of model fidelity. Table 8 lists their main
characteristics for an easy comparison, especially for the
lower-fidelity models. Further details of the implemented
models are presented in the following sections.

3.1.1 P11

P11 uses PyWakeEllipSys (DTU Wind Energy, 2021), which
consists of the elliptic Reynolds-averaged Navier–Stokes
(RANS) solver EllipSys3D (Sørensen, 1995). The numer-
ical setup is similar to the one in Larsen et al. (2020),
where the wake deflection was also studied. The turbines
are modelled by Joukowsky actuator disks (no nacelle or
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Figure 15. CL-Windcon LES layouts: (a) 3WT scenario and (b) 9WT scenario.

Table 7. Yaw misalignment control settings for the calibration and blind test for CL-Windcon LES cases. Yxxx: the downstream turbines
are not misaligned where xxx [◦] indicates the yaw misalignment of the upstream turbine(s) (WT1 for 3WT scenario; WT1, WT4, and WT7
for 9WT scenario). Yxxx_Yyyy: upstream and the first downstream turbines are misaligned, where xxx [◦] and yyy [◦] indicate the yaw
misalignment of the upstream and downstream turbines respectively. For 9WT scenario, xxx or yyy=−123 indicates −10, −20, and −30◦

yaw setting at turbines WT2, WT5, and WT8 respectively.

3WT scenario

Calibration Y000 Y000_Y-20 Y020 Y-20 Y-20_Y-10 Y-20_Y-20 Y-20_Y-30
Blind Y000_Y-10 Y000_Y-30 Y010 Y030 Y-10 Y-30 Y-10_Y-10 Y-30_Y-10 Y-10_Y-20 Y-30_Y-20 Y-10_Y-30 Y-30_Y-30

9WT scenario

Calibration Y000 Y-20_Y123
Blind Y-123 Y-10_Y-123 Y-30_Y123

tower is modelled), and the disc-averaged normal velocity
is used to control each turbine using 1D momentum the-
ory. The wind turbine data needed for the AD model, i.e.
CT(UH,∞), CP (UH,∞), and TSR(UH,∞), are taken from the
DTU 10 MW report by Bak et al. (2013).

Turbulence is modelled with the k− ε− fP closure of
van der Laan et al. (2015), and the inflow follows neutral
atmospheric surface layer profiles. These profiles are pre-
scribed to match the free-stream velocity and total turbulence
intensity at hub height: UH,∞= 7.7 m s−1 and IH,∞ =5.4%
(the “A4” wind case of the CL-Windcon campaign used in
the FarmConners benchmark).

3.1.2 P12

The parametric WFFC model used for this benchmark study
by P12, also detailed in Becker et al. (2022a) and Becker
et al. (2022b), will be referred to as FLORIDyn (FLOw Redi-
rection and Induction Dynamics model). The central idea of
FLORIDyn is to approximate the dynamic wake behaviour
of wind turbines in a wind farm with low computational cost

by piece-wise updating the steady-state flow field with a new
steady-state description which fits the new states. This up-
date from the precursor FLORIS model (see Doekemeijer
et al. (2020)) is driven by observation points (OPs), which
are created and updated at the rotor plane for each time step.
They represent the influence of the turbine state travelling
downstream. Within FLORIDyn, the steady-state wake is
modelled via FLORIS (NREL, 2021), which is then prop-
agated through the wind farm, instantly affecting turbines
downstream. For instance, when the yaw angle of the tur-
bine changes, the new generation of OPs will copy the new
angle while old OPs still travel according to the previous an-
gle. In the case of overlapping wakes, an OP travels into the
wake of another turbine. It locates the closest upstream and
downstream OPs from the foreign wake and interpolates their
reduction factor at its location. The calculation of CT and CP
is based on the lookup table generated via SOWFA (NREL,
2012) high-fidelity simulations for the reference turbine in
the blind test. For the current benchmark study, the statistical
properties of the wind field are matched (mean wind speed
and turbulence intensity); however, no specific calibration to
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Table 8. Overview of the participating WFFC-oriented models, CL-Windcon LES blind test. a Sørensen (1995). b Becker et al. (2022a) and
Becker et al. (2022b). c Bastankhah and Porté-Agel (2016). d Bastankhah and Porté-Agel (2014). e Crespo and Hernández (1996). f Shao
et al. (2019). g Frandsen (2007) – IEC 2019 standard. h van den Broek (2021). i van den Broek and van Wingerden (2020) and van den Broek
et al. (2022).

match to the CL-Windcon LES wake data was performed.
Calibration using uncertainty quantification is intended to
form part of a future publication.

3.1.3 P16

For the P16 results, the same in-house wake modelling tool
as described in Sect. 2.2.4 is used. It consists of a Gaussian-
based wake model (Bastankhah and Porté-Agel, 2016) with a
quadratic single-wake superposition model. Based on the cal-
ibration data provided, the wake model parameters ka,kb,αd ,
and βd are also optimized with the SGA optimizer of the
“pygmo” library (Biscani and Izzo, 2020) and the same loss
function, i.e. the sum of the average quadratic differences be-
tween the calibration states power and simulated power at
every turbine of the wind farm. However, the optimization
procedure is different compared to the SMV wind farm field
data blind test. Instead of using a single global wake model
parameter for all turbines, here each turbine has independent
wake model parameters which are determined by the opti-
mizer. The power loss and the dependency of CT on the yaw
angle are modelled by factors (cos9)n, with the same val-
ues for n= 1.88 as described in Sect. 2.2.4 and Eq. (1). For
the power and thrust curves a lookup table that was derived
from the BEM model of the 10 MW DTU reference turbine
is used.

3.1.4 P19

The dynamic WFFC model used for this benchmark study
by P19, currently under development (van den Broek, 2021),
will be referred to as FRED (Framework for wind farm flow
Regulation and Estimation with Dynamics). For the sake of
brevity, a concise description is presented here, and inter-
ested readers may refer to van den Broek and van Wingerden
(2020) and van den Broek et al. (2022). The model is based
on Navier–Stokes equations that are discretized in time and a
finite-element method that is used for spatial discretization
with the Taylor–Hood element (Wieners, 2003). Dirichlet
boundary conditions (Givoli and Keller, 1989) prescribe the

inflow velocity. The inflow boundaries are dynamically cho-
sen based on the wind direction. For example, for the current
blind benchmark case where the wind flows from the south-
west direction, the south and west boundaries are marked
as inflow. The other boundaries are given Neumann condi-
tions (Givoli and Keller, 1989), by default. The model is ini-
tialized with a uniform flow field given by initial velocity and
a constant pressure. A generalized mixing length (Morgan
et al., 1977) model is used to model the sub-grid-scale eddy
viscosity. The wind turbine forcing on the flow is approxi-
mated using an actuator disc model. For the current bench-
mark study, the statistical properties of the wind field are
matched (mean wind speed and turbulence intensity); how-
ever, no specific calibration to match to the CL-Windcon LES
data was performed. Calibration is intended to form part of
our future works.

3.2 Single-wake results

To have a generic comparison for both the single and
multiple-wake results for two time series and two steady-
state results submitted, exclusively the mean quantities of in-
terests estimated by the participating models are presented
in the CL-Windcon LES blind test results. Accordingly, the
mean power per turbine, PTi, submitted by the participants
under WFFC and normal operation are used to calculate the
power difference per turbine, 1PTi, and power gain, PGAIN,
by Eqs. (4) and (5) respectively:

1PTi = P
WFFC
Ti −P

Normal Operation
Ti , (4)

where P is the power and Ti is the turbine ID within the wind
farm configuration (T0 for upstream, T1 for downstream in
the single-wake case).

PGAIN =
(6PTi)WFFC

(6PTi)Normal Operation − 1 (5)

Figure 16 shows 1PTi and PGAIN for a single wake with
5 D spacing where the upstream turbine, T0, is misaligned
+10◦ (Y010), −10◦ (Y-10), +30◦ (Y030), and −30◦ (Y-30).
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For PGAIN in Fig. 16, the boxplots represent the distribution
of the reference high-fidelity simulations at each control set-
ting, where the mean PGAIN estimated by the participating
models is illustrated on top. For ±10◦ misalignment at T0,
CL-Windcon LES shows that the likelihood of power loss (up
to more than 5 %) is higher than the gain for the investigated
two-turbine configuration. This is relatively well captured by
P11, P16, and P19, where P12 overestimates the potential of
the control strategy. However, for larger upstream misalign-
ment, the agreement between the participating models and
the validation data set generally declines. For +30◦ steering
at T0 (clockwise rotation), the low likelihood of the power
gain is closely estimated by P16, and P11 and P19 indicate
over-estimation of the wake losses, and the general trend of
high-gain predictions from P12 continues. The asymmetry
in the wake behaviour is significant when investigating the
−30◦ steering set point, which is likely to be caused by wake
rotation and/or wind veer combined with the upstream mis-
alignment. This is, although less pronounced, also observ-
able for ±10◦ and not represented by the participating mod-
els for either of the control settings. For the −30◦ upstream
steering, the potential of the power gain exceeds 5 % in CL-
Windcon LES results, which is relatively well captured by
P12 and significantly underestimated by the other models.
These rather pessimistic gains reported at −30◦ steering can
be further analysed by 1PTi in Fig. 16. There, it is seen that
the upstream power loss is represented fairly well by all the
participating models (within ±1 standard deviation bounds),
but the wake losses behind a misaligned turbine are overesti-
mated by the majority of the models, except for P12. This can
potentially be explained by the less wake deflection produced
by the models, as e.g. studied previously for P11 (Larsen
et al., 2020). The same trend is visible in the other high-
fidelity simulations within the benchmark as well, as can be
seen in the TotalControl LES blind test in Sect. 4.2, for high
degrees of upstream misalignment in P11 and P16 results.

Figure 17 investigates 1PTi and PGAIN for a single wake,
this time for the 9WT scenario with 7 D spacing where the
upstream turbine, T0 is misaligned −10◦ (Y-10), −20◦ (Y-
20), and −30◦ (Y-30). It should be noted that the control
settings presented here in the 9WT single-wake cases are
the subset of the Y-123 settings under the blind tests re-
ported in Table 7, based on each row of turbines in Fig. 15.
PGAIN in Fig. 17 shows an interesting trend where −10 and
−30◦ upstream misalignments result in positive power gain
but−20◦ indicates a potential power loss for the investigated
two-turbine configuration in the reference CL-Windcon LES
results. Compared to 5 D spacing in Fig. 16, −10◦ upstream
misalignment produces more power at the 7 D downstream
turbine, hence the positive power gain which is slightly un-
derestimated by the participating models. The agreement for
−20◦; however is significantly better for the majority of the
models, which could be due to the same upstream control set-
ting in the calibration data set, though the downstream yaw
setting(s) are different (i.e. Y-20_Y123 in Table 7). The up-

stream power loss due to misalignment is more than com-
pensated for by the −30◦ yaw setting in CL-Windcon LES
results, as also seen in 1PTi behaviour. However the down-
stream power gain is significantly underestimated by all the
models, as also observed and discussed for 5 D spacing in
Fig. 16 as well as under similar upstream control settings ap-
plied in TotalControl LES in Sect. 4.2 where P11 and P16
also participated.

3.3 Multiple-wake results

Similar to the single-wake results, the mean power esti-
mated by the participating models is compared with the
CL-Windcon LES blind test database for the multiple-wake
cases. Accordingly, the power difference per turbine and the
wind farm level power gain via Eqs. (4) and (5) are presented
in Figs. 18 and 19. The turbine IDs for multiple-wake cases,
however, are WT1, WT2, and WT3 for the three-turbine con-
figuration and WT1, WT2, . . ., WT9 for the nine-turbine con-
figuration. The representative layouts as well as the turbine-
specific control settings within the investigated wind farm
configuration are illustrated on the x axes of Figs. 18 and
19.

Figure 18 shows 1PTi and PGAIN for three turbines with
5 D spacing (where WT3 is laterally 0.5 D apart) for several
upstream and (first) downstream yaw control settings for the
CL-Windcon blind tests listed in Table 7. For the investi-
gated configuration, Fig. 18 indicates that the power gain is
mainly driven by the control setting applied at the upstream
turbine, WT1, where the misalignment of WT2 has a rela-
tively lower impact. This is in line with other LES studies
that investigate multi-turbine wake steering (e.g. Archer and
Vasel-Be-Hagh, 2019). Especially with the lateral spacing of
WT3, all the control cases where WT1, is misaligned indicate
positive power gain up to more than 20 % in CL-Windcon
LES runs. For all the participating models except P12, this
trend is highly underestimated, and the agreement gets grad-
ually worse with higher wake deflection. P12, however, es-
timates the behaviour relatively well, especially when WT2
is also misaligned. This can potentially be attributed to the
high levels of wake deflection embedded in P12 model pa-
rameters. 1PTi enables a closer look at the power difference
at the individual turbine level for the highest degrees of con-
trol settings at WT1 and WT2, −30◦ each. There, similar to
the single-wake analyses, it can be seen that the upstream
losses observed in reference CL-Windcon LES at WT1 are
relatively well represented by the participating models, but
potential gain at the controlled downstream turbine (WT2)
is underestimated by the majority. In addition to the under-
representation of the wake deflection compared to the CL-
Windcon LES, the difference in the power yaw loss expo-
nent, n in Eq. (1), for the misaligned turbine in the wake can
also play a role here, as demonstrated in Liew et al. (2020b).
For the laterally spaced most downstream (WT3) turbine,
the overall behaviour in the power performance is seemingly

https://doi.org/10.5194/wes-7-1791-2022 Wind Energ. Sci., 7, 1791–1825, 2022



1810 T. Göçmen et al.: FarmConners benchmark results

Figure 16. CL-Windcon LES blind tests, single wake under wake steering for the three-turbine configuration (3WT) with 5 D spacing.
(a) Power difference (mean) in absolute values (MW) per upstream (T0) and downstream (T1) turbine, when T0 is −30◦ misaligned (Y-30).
(b) Power gain (mean) for the two-turbine subset of the wind farm (T0+T1). Boxplots represent the distribution of the reference CL-Windcon
LES time series per control setting where T0 is steered +10◦ (Y010), −10◦ (Y-10), +30◦ (Y030), and −30◦ (Y-30). Representative layouts
with corresponding yaw control settings are illustrated along the x axes.

Figure 17. CL-Windcon LES blind tests, single wake under wake steering for the nine-turbine configuration (9WT) with 7 D spacing.
(a) Power difference (mean) in absolute values (MW) per upstream (T0) and downstream (T1) turbine, when T0 is −30◦ misaligned (Y-30).
(b) Power gain (mean) for the two-turbine subset of the wind farm (T0+T1). Boxplots represent the distribution of the reference CL-
Windcon LES time series per control settings where T0 is misaligned −10◦ (Y-10), −20◦ (Y-20), and −30◦ (Y-30). Representative layouts
with corresponding yaw control settings are illustrated along the x axes.

captured by all the participating models. However, signifi-
cantly higher fluctuation in the expected power gain at WT3
should also be noted with approximately ±1 MW.

Figure 19 illustrates 1PTi and PGAIN for the nine-turbine
configuration with 7 D spacing in a regular layout consisting
of three rows with WT1, WT4, and WT7 as upstream tur-
bines. Similar to the previous results of the CL-Windcon LES
blind test, the highest yaw control setting at the upstream tur-
bines (Y-30_Y123) is observed to produce the highest PGAIN
in the validation data set, up to 15 % for the nine-turbine lay-
out. Again, PGAIN is underestimated by all the participating
models except for P12, this time at higher discrepancies with
up to 20 % less in the mean values. 1PTi illustrates the dis-

agreements in the power difference per turbine for that con-
trol setting, and the upstream power loss at −30◦ steered
turbines WT1, WT4, and WT7 is reproduced well. The er-
ror in the most downstream power predictions, however, is
significantly higher for all except P12 at the turbines WT3,
WT6, and WT9. This is also in line with the behaviour previ-
ously discussed for the other configurations in the blind test
where the upstream yaw setting is −30◦. As opposed to P12,
the wakes behind less steered turbines (Y-10_Y-123 and Y-
123_Y000) are better captured by P11, P16, and P19, with
overall less sensitivity to the yaw setting at the second tur-
bines in the rows WT2, WT5, and WT8. This also implies an
overall stronger wake deflection reported in the CL-Windcon
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Figure 18. CL-Windcon LES blind tests, multiple wake under wake steering for the three-turbine configuration (3WT) with 5 D spacing.
(a) Power difference (mean) in absolute values (MW) per turbine, when WT1 and WT2 are both −30◦ misaligned (Y-30_Y-30). (b) Power
gain (mean) per control setting in the three-turbine wind farm. Boxplots represent the distribution of the reference CL-Windcon LES time
series per control setting listed in Table 7. Representative layouts with corresponding yaw control settings are illustrated along the x axes.

Figure 19. CL-Windcon LES blind tests, multiple wake under wake steering for the nine-turbine configuration (9WT) with 7 D spacing.
(a) Power difference (mean) in absolute values (MW) per turbine, for the control case Y-30_Y123 as shown in Table 7. (b) Power gain
(mean) per control setting in the nine-turbine wind farm. Boxplots represent the distribution of the reference CL-Windcon LES time series
per control setting listed in Table 7. Representative layouts with corresponding yaw control settings are illustrated along the x axes.

LES reference data set than the majority of the participating
models.

3.4 Summary of the CL-Windcon LES blind test

Due to its capability of representing significant features of
wind-farm flows, LES is an ideal choice for proof-of-concept
studies regarding WFFC strategies. In that regard, with many
control settings included, the CL-Windcon LES blind test
provides a broad overview for the initial comparison of par-
ticipating models. The highlights can be summarized as fol-
lows.

– Higher steering, higher disparity. Although −20◦ up-
stream misalignment was in the calibration data set for
the CL-Windcon LES blind tests, the overall partici-
pating model agreement is seen to be better for −10◦

upstream steering than −30◦. Further analysis indicate
the main cause of this disparity to be due to deflected
wake modelling rather than the upstream power loss at
the controlled turbine(s). As the reference LESs suggest
a higher likelihood of power gain for those control set-
tings, the need for better deflection models and/or (even)
a more comprehensive calibration data set with higher
deflection angles should be considered.
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– Most upstream misalignment is the main driver for the
expected power gains. Within the FarmConners bench-
mark, the CL-Windcon blind test provides a unique op-
portunity with its diverse control settings, including the
misalignment of the downstream turbine(s). For the in-
vestigated layouts with 3× 1 and 3× 3 turbine config-
urations, however, it is seen that the misalignment of
the second row of turbines has a relatively lower impact
on the expected power gains, compared to the most up-
stream. Similar results are reported in other LES studies
with multi-turbine yaw misalignment (e.g. Archer and
Vasel-Be-Hagh, 2019).

– Take all the conclusions with a grain of salt. As in-
dicated earlier, high-fidelity simulations are very well
suited for the proof-of-concept studies. Although it has
many advantages, one of the main drawbacks of the ref-
erence CL-Windcon LES data set is its limited simula-
tion period of 10 min. The impact of steering reported
here and the overall model comparison (especially for
the steady-state models), therefore, should be read as an
initial comparison, not a comprehensive validation. Fur-
ther discussion on the code comparison based on high-
fidelity simulations is provided in the next section with
the TotalControl LES blind test results.

4 Blind test 4: TotalControl LES

This blind test is based on an extension of high-fidelity sim-
ulations performed as part of the Horizon2020 project To-
talControl (TotalControl, 2018). The high-fidelity simula-
tions have been performed using EllipSys3D (Michelsen,
1992, 1994; Sørensen, 1995), which is a finite-volume
Navier–Stokes solver. The wind turbines are modelled using
the actuator line method (Sørensen and Shen, 2002; Sørensen
et al., 2015), which is fully coupled to the aeroelastic tool
Flex 5 (Øye, 1996).

TotalControl defined a virtual reference wind farm (An-
dersen et al., 2018), which consists of 32 DTU10MW tur-
bines (Bak et al., 2013) in an 8×4 grid with every other row
offset in the streamwise direction. LESs were performed for
different atmospheric conditions and wind directions, and a
subset of the data is publicly available (Andersen and Trold-
borg, 2020). The selected case corresponds to a conven-
tionally neutral boundary layer with a geostrophic wind of
G = 12 m s−1, a roughness length of z0 = 2× 10−3 m, and
a Coriolis parameter of fc = 10−4 s−1, which represents a
latitude of 43.43◦; see additional details in Andersen et al.
(2019). The resulting mean velocity at hub height is approx-
imately 10.4 m s−1.

The wind farm layout for the two blind tests is shown in
Fig. 20, where the turbine spacing is marked in red and the
intentionally yawed turbines are marked in green boxes.

An additional simulation was performed for the FarmCon-
ners blind test by intentionally yawing turbines WT29 and

WT32 under the exact same inflow conditions. All simula-
tions have been run for a total of 4500 s, where the initial
900 s of transient has been removed to have 3600 s of opera-
tion for the blind test.

Figure 21 shows a comparison of the power production
during normal operation (in black) and steering (in red) for
the two turbines in the single-wake scenario corresponding
to a wind direction of 90◦. Clearly, the power production is
reduced on the upstream turbine, when steering, while the
power production increases for the downstream turbine op-
erating in the steered wake. It is also evident how the normal
operating turbines frequently reach rated power. Hence, this
scenario is particularly challenging for a blind test as it is
close to rated wind speed of the turbine of 11.4 m s−1, where
correct representation of the turbine control is essential.

4.1 Participating models

Within the FarmConners benchmark, in total five models (P8,
P10, P11, P16, P20) have participated in the TotalControl
LES blind test. The participating models cover a range of
fidelities for both the flow modelling and the turbine repre-
sentation. The participating models and their calibration pro-
cesses are briefly described in this section, where Table 9
summarizes the main characteristics of the models.

4.1.1 P8

The P8 methodology uses a preliminary version of
HAWC2Farm to perform dynamic wind farm simulations on
the blind test case. HAWC2Farm leverages the aeroelastic
wind turbine software HAWC2 (Larsen and Hansen, 2007;
Madsen et al., 2020) with the dynamic wake meandering
(DWM) model (Larsen et al., 2008; Madsen et al., 2010).
While HAWC2Farm typically uses HAWC2 as the underly-
ing wind turbine software, this preliminary implementation
uses HAWCStab2 data (Verelst et al., 2018) to synthesize a
dynamic turbine model, from which the dynamic rotor in-
duction is fed into the DWM model to generate the wakes. A
flexible version of the DTU10MW is used to calibrate the ro-
tor induction model to ensure the wake deficit is not overesti-
mated, as described by Liew et al. (2020a). The wake passive
tracers advect in all spatial directions based on large-scale
turbulence. Wake deflection is modelled using a modified
version of the DWM model, using a Hill’s vortex method to
simulate the lateral wake deflection. This method has shown
good agreement with other wake deflection models as well
as full-scale experiments (Larsen et al., 2020). The added
wake turbulence model as defined by Larsen et al. (2008)
was not activated in this investigation due to the absence of
turbine loads; however, the wake dissipation model was ad-
justed continuously based on a windowed turbulence inten-
sity sensor with a length of 500 s. Wake summation is per-
formed by using only the dominant wake (i.e. largest wake
deficit) at any point in space, followed by a further adjust-
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Figure 20. Layout of the TotalControl reference wind farm with a wind direction of 90◦. Green squares mark yawed turbines. The turbine
IDs are referred to as WT1, WT2, . . ., WT32 throughout the rest of the section.

Figure 21. Power time series for the single-wake scenario in the TotalControl LES blind test for the four turbines: WT32–WT28 and
WT29–WT28. Black corresponds to normal operation, while red is power production during wake steering.

ment which was calibrated using the blind test data:

Ũ (x,y,z)= U (x,y,z)−α(N )min(1U1,1U2, . . .,1UN ), (6)

where Ũ (x,y,z) and U (x,y,z) are the adjusted and unad-
justed longitudinal wind speeds at location (x,y,z) respec-
tively; α(N ) is a calibrated factor as a function of the number
of upstream turbines, N ; and 1Ui is the wind speed wake
deficit of the ith turbine.

4.1.2 P10

The P10 model consists of wind turbine models based on
the work of Neilson (2010), augmented with an individ-
ual blade model based on the work by Gala-Santos (2018).
The wind turbine model is validated against DNV Bladed in
Gala-Santos (2018). As an input, the wind turbine requires

rotor-averaged effective wind speeds, which can be gener-
ated from input criteria of mean wind speed and turbulence
intensity. The requirement for an effective wind speed rather
than a point-wise wind speed means that the wind data are
not identical as a time series to that used by the TotalControl
LES results. However, the statistical properties of the flow
are matched. A lateral wind speed is also generated that in-
forms the meandering of wakes (see Poushpas, 2016). Whilst
previous work involving the P10 model has used the Frand-
sen wake model (Frandsen, 2007), the wake modelling was
recently updated using a the Gaussian wake model of Bas-
tankhah and Porté-Agel (2014, 2016), adapted for effective
wind speed modelling (including load impacts) via a simi-
lar methodology to the wind shear and tower shadow mod-
elling in Gala-Santos (2018). Further additions are made to
account for wake steering effects, though these use an empir-
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Table 9. Overview of the participating WFFC-oriented models, TotalControl LES blind test. a Larsen et al. (2008) and Madsen et al. (2010).
b Larsen et al. (2020). c Bastankhah and Porté-Agel (2016). d Poushpas (2016). e Niayifar and Porté-Agel (2016). f Frandsen (2007) – IEC
2019 standard. g Calaf et al. (2010), Allaerts and Meyers (2015), and Munters and Meyers (2018). h Sørensen (1995).

ical method. It is assumed that the reduction in power from
a wake is cos1.9(φ) based on Simley et al. (2020) (where φ
is the yaw misalignment). In order to model this change in
power via wind speed, an adjustment to the wind speed of
cos |φk| with k = 1.25 is applied. Though crude, this method
has good agreement with the cos1.9 power adjustment up to
yaw angles of between 20 and 30◦. Beyond ensuring that the
statistical properties of the wind field are matched (the same
turbulence and mean wind speed), no specific calibration to
match to the TotalControl LES data was performed. Note that
the new wake model is intended to form part of a future pub-
lication.

It should also be noted that the controller used for the wind
turbine differs from the DTU controller typically used for this
turbine. Compilation issues prevented the DTU controller
from being used, and so the turbine control strategy and ba-
sic controller detailed in Recalde-Camacho et al. (2020) are
used instead.

4.1.3 P11

The numerical model, code, and turbine data are the same as
described in Sect. 3.1.1. Free-stream velocity and total tur-
bulence intensity at hub height used UH,∞ = 10.5 m s−1 and
IH,∞ = 5.0%. These values are based on time and plane av-
erages of the LES data in the region upstream of the wind
farm. To save computational time and simplify the simula-
tion, the whole TotalControl reference wind farm was not
simulated (32 turbines as seen in Fig. 20), but only the rel-
evant row of turbines (WT2, WT3, and WT8 respectively,
depending on the case); hence lateral blockage effects are
neglected in our simulations.

4.1.4 P16

For the P16 results, the calibration procedure is identical to
the procedure described in Sect. 3.1.3 for the CL-Windcon
results. More details on the wake models can be found in
Sect. 2.2.4. The mean value of the time-series wind speed
was used as input to our model, and the TI was derived from
the mean and standard deviation.

4.1.5 P20

The P20 model is SP-Wind, an in-house large-eddy simula-
tion code built on a high-order flow solver developed over
the last 15 years at KU Leuven (Calaf et al., 2010; Allaerts
and Meyers, 2015; Munters and Meyers, 2018). SP-Wind
solves the three-dimensional, unsteady, and spatially filtered
Navier–Stokes momentum and temperature equations, with
wind turbines contributing to the forcing terms in the equa-
tions. Spatial discretization is performed in the horizontal
and span-wise directions by using pseudo-spectral schemes
while vertical fourth-order energy-conservative finite differ-
ences are used in the vertical direction. The equations are
marched in time using a fully explicit fourth-order Runge–
Kutta scheme, and grid partitioning is achieved through a
scalable pencil decomposition approach. The turbines in the
flow domain are parameterized using the aeroelastic actuator
sector method (AASM) (Vitsas and Meyers, 2016). Subgrid-
scale stresses are modelled with a standard Smagorinsky
model with Mason and Thomson wall damping (Allaerts and
Meyers, 2015).

Wind farm simulations are run for a period of 75 min,
which includes a 15 min start-up period for the settling of
initial transients. A previously developed inflow database
(Munters et al., 2019a, b, c, d) is utilized to provide the in-
flow conditions for the wind farm through the concurrent pre-
cursor method (Stevens et al., 2014; Munters et al., 2016),
and the entire wind farm is rotated in the flow domain to
simulate different wind directions. The structural and aero-
dynamic properties of the DTU 10 MW turbine tower and
blades and the DTU Wind energy controller are used to sim-
ulate the turbine operation (Bak et al., 2013).

4.2 Single-wake results

For the single-wake case within TotalControl LES blind tests,
the model performances are compared for two-turbine sub-
sets of the TotalControl reference wind farm in Fig. 20, with
WT32–WT28 and WT29–WT25 for 90◦ incoming wind di-
rection. In these two-turbine subsets, the upstream turbines
WT32 and WT29 are misaligned for 20 and 30◦ anticlock-
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wise respectively. The blind tests include 1 h simulations
where the wake loss reduction, 1u in Eq. (7), and power
gain, PGAIN in Eq. (8), are compared among the participat-
ing models. Note that both 1u and PGAIN are evaluated per
model via the submitted controlled (WFFC) and normal op-
eration results of the participating models.

1u=

∑
(Uup−Udown) Normal

Operation
−
∑

(Uup−Udown)WFFC

Uup
, (7)

whereU is either the hub height or rotor effective wind speed
that represents the spatially averaged wind speed over the ro-
tor at the upstream, Uup, and downstream turbine(s), Udown.

Pratio =

(∑n
i=1Pi

)
WFFC(∑n

i=1Pi
)

Normal
Operation

and PGAIN = Pratio− 1, (8)

where P is the power and i is the turbine ID in the inves-
tigated subset of the layout (two turbines for single-wake
and eight turbines for multiple-wake analysis behind the con-
trolled turbines WT29 and WT32 in Fig. 20).

Figure 22 shows the wake loss reduction for both WT32–
WT28 and WT29–WT25 turbine pairs with −20 and −30◦

upstream misalignment (anticlockwise) respectively. The
time series on the left is illustrated at the frequency of the
wind speed signals for all the (quasi-)dynamic models, in-
cluding the validation data set TotalControl LES. Notably
high fluctuations are seen for both of the control settings
in the validation data set, which are very well captured by
P8 with 5 s resolution. P20 is also in relatively good agree-
ment, where the observed dynamics in the validation data set
is closely followed. For P10, the rotor effective wind speed
is used throughout the model, resulting in much lower fluc-
tuations compared to other dynamic models due to spatial
averaging of the point-wise wind speed variation. Figure 22
boxplots indicate that all the models, including steady-state
P11 and P16, suggest a better recovery when the upstream
turbine is −30◦ yawed compared to −20◦, with up to 40 %
reduction in median wake losses relative to normal operation.
The uncertainty, however, should also be noted with large
fluctuations in the dynamic simulations with WFFC in the
two-turbine configuration with 5 D spacing.

The transition from the wake loss reduction to the power
gain comparison is highly affected by the turbine represen-
tation and the controller implementation of the participating
models. Figure 23 highlights that clearly, especially consid-
ering the higher sensitivity of the power surface to the inves-
tigated wind speed interval around the rated region (as illus-
trated in Fig. 21). Although the wake recovery is captured
very well by P8 as seen in Fig. 22, the positive reduction in
wake losses does not translate to positive power gains for ei-
ther of the control settings. Similar to P10, the power loss at
the upstream turbine due to misalignment exceeds the power
gain observed at the downstream turbine. The trend is fur-
ther emphasized for higher-degree steering and potentially

reinforced by under-representation of the power curve under
normal operation downstream (shifted to the right). Here, it
should be underlined again that the controlled settings were
not included in the calibration data set distributed to the par-
ticipants, and the mismatch in the upstream power loss can
partially be attributed to that. See Appendix B for further
analysis and illustration of the power difference per upstream
and downstream turbine.

Figure 23 also shows that the only participating LES, P20,
predicts similar levels of power gain overall with TotalCon-
trol LES, for both of the control scenarios. Although the re-
duction of the wake losses is underestimated in comparison,
it is compensated for by lower power losses estimated at the
controlled turbine upstream (see Fig. B1 in Appendix B for
further details). The time series in Fig. 23 also indicate a
faster controller response in P20, which results in a much
larger spread around the reported PGAIN.

The steady-state results from P11 and P16 are in relatively
good agreement for the lower degrees of misalignment at
−20◦, but they underestimated the power gain likelihood for
higher steering. This is indeed in line with their behaviour for
similar control scenarios under CL-Windcon LES blind tests
discussed in Sect. 3.2, where less wake deflection is produced
by the models at higher steering as also observed in the wake
loss reductions results in Fig. 22 above.

4.3 Multiple-wake results

Similar to the single-wake cases, 20 and 30◦ anticlockwise
upstream yaw misalignment control scenarios for 90◦ incom-
ing wind direction are investigated for the multiple-wake re-
sults in TotalControl LES blind tests. This time, eight-turbine
subsets with 5 D spacing within the TotalControl reference
wind farm are analysed, namely the rows WT29, WT25, . . .,
WT1 and WT32, WT28, . . ., WT4 in Fig. 20. The layouts of
these subsets as well as the corresponding control settings are
illustrated in the presented results, i.e. the x axes in Fig. 24.

Figure 24 shows the power gain, PGAIN, of the eight-
turbine, 5 D spacing wind farms under 20 and 30◦ anticlock-
wise upstream yaw misalignment WFFC scenarios. Com-
pared to the single-wake results in Fig. 23, the fluctuation
is seen to be much larger in the validation data set for mul-
tiple wakes, reaching up to 30 %. However, the trend in the
median is similar with positive power gains for both of the
WFFC scenarios, indicating higher likelihood under −30◦

upstream misalignment. This is closely captured by the other
LES, P20, with highly correlated time series. Conversely, the
other (quasi-)dynamic models underestimate the power gain,
with a larger discrepancy for the higher steering. At least
for P8, the overestimated power loss at the controlled tur-
bine is argued to be the underlying reason, as also observed
in the comparison of the single-wake results in Sect. 4.2
and Appendix B. Similarly for the steady-state models P11
and P16, the under-estimation of the power gain perseveres.
However, the difference is less prominent as the effect of
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Figure 22. TotalControl LES blind tests, wake loss reduction, 1u, for single wake under wake steering for two-turbine configurations with
5 D spacing (WT32–WT28 with 20◦ yaw and WT29–WT25 with 30◦ yaw at the upstream turbines). (a) Time series of 1u, illustrated at the
submitted frequency by the participants, for both control scenarios. (b) The distribution of the1u within the 1 h blind test period for both 20
and 30◦ anticlockwise yaw misalignment WFFC scenarios.

Figure 23. TotalControl LES blind tests, power gain, PGAIN, estimations for single wake under wake steering for the two-turbine configu-
rations with 5 D spacing (WT32–WT28 with 20◦ yaw and WT29–WT25 with 30◦ yaw at the upstream turbines). (a) Time series of PGAIN,
illustrated at the submitted frequency by the participants, for both control scenarios. (b) The distribution of the PGAIN within the 1 h blind
test period for both 20 and 30◦ anticlockwise yaw misalignment WFFC scenarios.

under-represented upstream wake deflection fades out with
an increasing number of turbines along the row.

4.4 Summary of the TotalControl LES blind test

With additional participants, longer time series, simpler lay-
outs, and focused control scenarios, the TotalControl LES
blind test provides interesting comparison and supplemen-
tary discussion for model performance. Its highlights can be
summarized as below.

– Similar trends in the high-fidelity models. The Total-
Control LES blind test hosts a unique comparison of
two separate LES frameworks developed in different
institutes. As stated earlier, comparison of lower-cost
models against such tools (often referred to as numerical

validation) is seen as a pre-requisite for their implemen-
tation in the field. Therefore, it is reassuring for the fur-
ther adoption of the WFFC technology to have relatively
good agreement with correlated dynamics between the
two methodologies, as was observed in the TotalCon-
trol blind test, especially for the power gain results with
different control scenarios in single and multiple-wake
analysis.

– Turbine representation and controller implementation.
The TotalControl LES blind test showcases the sensi-
tivity of the results to the turbine representation and the
implementation of the controller. This was particularly
emphasized via the translation of potential wake loss re-
duction to the power gains under WFFC. A prior study
to compare (and calibrate if relevant) the power surfaces
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Figure 24. TotalControl LES blind tests, power gain estimations, PGAIN, for multiple wakes under the upstream wake steering for the eight-
turbine configurations with 5 D spacing (WT32–WT4 with 20◦ yaw and WT29–WT1 with 30◦ yaw at the upstream turbines). (a) Time series
of PGAIN, illustrated at the submitted frequency by the participants. (b) The distribution of the PGAIN within the 1 h blind test period, for
both 20 and 30◦ anticlockwise upstream yaw misalignment WFFC scenarios.

and controller operation under uniform flow is recom-
mended for similar blind tests or numerical validation
studies in the future.

– Uncertainties and risk. Although it has longer time se-
ries compared to CL-Windcon LES blind tests, the To-
talControl LES also replicates the conventionally neu-
tral boundary layer. It does not include severe variabil-
ity that might be observed in the field (e.g. Göçmen
et al., 2020b) and corresponding uncertainties particu-
larly for the wind direction. For the investigated sce-
narios, higher likelihood of benefits via wake steering
control is estimated by the majority of the models in
the blind tests. However, in particular the high-fidelity
models indicate significant risk of inducing additional
losses, given the probability of the power gain based
on instantaneous values. Such trends are also discussed
in Kheirabadi and Nagamune (2019), and their implica-
tions to operational risks under WFFC should be further
evaluated by the end-users of the technology.

5 Conclusion

Here in this article we present Part I of the results of
the FarmConners benchmark for code comparison under
controlled operation. The benchmark brought together four
data sets generated under several European WFFC projects:
(1) SMV wind farm field data, (2) CL-Windcon wind tun-
nel experiments, (3) CL-Windcon LES, and (4) TotalControl
LES databases, where data sets 1, 3, and 4 focusing on the
large rotors are investigated in this study. The wind tunnel
experiments are the focus of Part 2 of the series.

Although the original benchmark included more control
strategies (i.e. axial induction) and quantities of interest (i.e.

load channels), the analysis presented here is limited to wind
speed and power behaviour under wake steering WFFC.

The results from 11 participating models in total are then
presented separately under these three blind tests. The high-
lights of the blind test exercises are summarized individually
in their corresponding sections through the article. A compi-
lation of the observations/reference simulations and partici-
pating model trends for the overall benchmark is listed below.

– Customizable WFFC-oriented models. The overwhelm-
ing majority of the participating models in the Farm-
Conners benchmark are parametric, typically modular
frameworks, indicating their popularity within the field.
Using similar approaches to resolve the wake behaviour,
the main difference among them is the calibration pro-
cedure. Accordingly, the importance of variety in terms
of control set points in the calibration data set is un-
derlined in all the blind tests. Similarly, a clear descrip-
tion of the calibration procedure with a list of parame-
ters when disseminating the results is crucial for repro-
ducible and credible assessment of the potential gains
via WFFC.

– Beyond flow modelling. The FarmConners benchmark
also highlights the importance of turbine representation
and controller implementation in realizable power gains
via wake steering WFFC. A separate comparison and
calibration of the power surfaces and controller opera-
tion for isolated cases are recommended prior to field
implementation, as well as future blind tests or valida-
tion studies.

– Overall a good agreement. Especially for well-
calibrated models with a relatively good representation
of the dynamics, the participating model agreement to
the observations/reference simulations is seen to be rea-
sonable for all the blind tests. This is particularly the
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case for smaller yaw control set points and lower (tem-
poral and/or spatial) fluctuations in the inflow. Within
the benchmark, two separate LES frameworks devel-
oped in different institutes are also compared, and high
correlation observed in their results is found to be re-
assuring for the technology readiness level (TRL) of
WFFC where high-fidelity simulations are considered
to be the key enabler for further field implementation.

Although an already extensive analysis, the presented
FarmConners benchmark results are limited in the applied
control strategy and the investigated quantities of interest.
It should therefore be read as the first step on which other
benchmarks can be built. With increasing availability of field
tests, wind tunnel experiments, and reference high-fidelity
simulation databases, future work should include larger wind
farms, different control strategies, and other control objec-
tives such as potential load alleviation and profit maximiza-
tion.

Appendix A: Wind farm field data blind test –
multiple-wake results

As discussed in Sect. 2.5, the multiple-wake cases for the
SMV wind farm blind test results are deemed to be inconclu-
sive. The main difficulty is the wind farm layout orientation
and several partial wake scenarios included in the wider sec-
tor behind the controlled turbine. Nevertheless, the analysis
is presented here for the interested parties, where the main
outcomes in terms of the participating model performances
are in line with the single-wake analysis of the same blind
test presented in Sect. 2.4.

Due to its wider wind direction sector, the filtered data set
for wake steering consists of 579 10 min data points (includ-
ing the 216 points already used for the single-wake case),
while the normal operation data set used to calculate the
baseline wake effect is made of 1849 10 min data points (841
recorded in June and July 2017, 1008 recorded in October
and November 2017).
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A1 Time-series comparison

Figure A1. SMV WF field data, multiple wake under wake steering WFFC with −13.3◦ upstream misalignment – power comparison.
Representative layout with corresponding yaw control setting is illustrated at the upper right corner.

A2 Binned quantities of interest: energy ratio and power
gain

Figure A2. SMV WF field data, multiple wake under wake steering WFFC with −13.3◦ upstream misalignment – energy ratio comparison.
Representative layout with corresponding yaw control setting is illustrated at the upper right corner.
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Figure A3. SMV WF field data, multiple wake under wake steering WFFC with −13.3◦ upstream misalignment – power gain comparison.
Representative layout with corresponding yaw control setting is illustrated at the upper right corner.

Appendix B: TotalControl LES blind test – power
difference per turbine for single-wake cases

In order to analyse the participating model behaviours fur-
ther, power difference, 1P in Eq. (4), per turbine is com-
pared for upstream (WT32 and WT29) and downstream
(WT28 and WT25) turbines and is illustrated in Figs. B1
and B2 below respectively. They show the differences in the
representation of the controlled and normal operation turbine
power surface, where the former was not included in the cal-
ibration data set. This analyses supports the discussions car-
ried out under Sect. 4.2 and aims to distinguish the underly-
ing reasons of the model behaviours in terms of power gain,
particularly in Fig. 23. It further highlights the differences
in the controller implementation and turbine representation,
given the sensitivity of the results to the blind test. It should
also be noted that P10 submitted the time series for Pratio di-
rectly and is therefore excluded in the illustrations below.

Figure B1. TotalControl LES, single wake under wake steering power difference, 1P , comparison for the upstream turbines WT32 (−20◦

yaw) and WT29 (−30◦ yaw). (a) Time series of 1P at the upstream turbines illustrated at the submitted frequency by the participants.
(b) The distribution of 1P within the 1 h blind test period. For both 20 and 30◦ anticlockwise yaw misalignment WFFC scenarios.
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Figure B2. TotalControl LES, single wake under wake steering power difference, 1P , comparison for the downstream turbines WT28
(behind −20◦ yawed turbine) and WT25 (behind −30◦ yawed turbine). (a) Time series of 1P at the downstream turbines illustrated at the
submitted frequency by the participants. (b) The distribution of 1P within the 1 h blind test period. For both 20 and 30◦ anticlockwise yaw
misalignment WFFC scenarios.

Code availability. The notebooks for the blind test results, in-
cluding data snippets, can be obtained via the public repos-
itory of the FarmConners benchmark (Göçmen et al., 2021,
https://doi.org/10.5281/zenodo.5786988).

Data availability. All the data used in FarmConners benchmark
blind tests can potentially be made available for non-commercial
purposes. Please contact us (per blind test data set) using the de-
tails provided under the FarmConners benchmark wiki page https:
//farmconners.readthedocs.io/en/latest/contact_us.html (Göçmen et
al., 2022).
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