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We choose to go to the Moon in this decade, and do the other things,
not because they are easy, but because they are hard.

John F. Kennedy
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SUMMARY

Current aircraft maintenance ensures safe and reliable flight operations based on in-
spections repeated at fixed time intervals. The time interval between inspections is often
much shorter than the average life of aircraft components, in an effort to timely detect
potential failures. While this approach successfully prevents most potential failures, it
is not the most efficient since airlines frequently need to ground aircraft for visual in-
spections. Furthermore, most inspections do not find any fault; thus, nothing is actually
repaired after these frequent inspections.

Predictive aircraft maintenance (PdAM) is a newly emerging approach to mainte-
nance which is expected to be more efficient, while providing the same or higher levels
of reliability. PdAM uses the data produced by the plethora of on-board sensors installed
on modern aircraft to monitor the health condition of aircraft components, without the
need to ground these aircraft for visual inspections. These health condition data are an-
alyzed to predict the Remaining-Useful-Life (RUL) of aircraft components. The core idea
of PdAM is to plan maintenance tasks based on the estimated RUL. PdAM is currently not
fully implemented in practice, however. Regulatory bodies have only recently started to
discuss the integration of aircraft health monitoring (AHM) systems into aircraft main-
tenance process.

This dissertation aims to identify and address the challenges in implementing PdAM.
The first challenge is the lack of mathematical models to assess the performance of
PdAM. Before implementing PdAM in actual aircraft, the expected performance needs
to be quantified to understand the impact on reliability and cost-efficiency. Although
a few studies have proposed aircraft maintenance models, these studies only consider
cost as a single performance metric. However, it is clear that aircraft maintenance should
also be evaluated in terms of reliability and other key performance indicators (KPIs) rep-
resenting the various (and often conflicting) interests of all stakeholders involved. In
this dissertation, we construct a mathematical model of PdAM to evaluate the balance
in maximizing various KPIs altogether. Our model captures the stochastic degradation
and failure of aircraft components, and the interactions between stakeholders during
the maintenance decision making process.

The second challenge for PdAM is the lack of optimization frameworks to plan PdAM
considering RUL prognostics. In the last decades, most researchers have focused on pre-
dicting the RUL of aircraft components, but only a few studies address the question of
how to actually integrate RUL prognostics into maintenance planning. Aircraft mainte-
nance planning is a very complex process that should consider different aircraft com-
ponents, a fleet of aircraft, their flight schedules, the limited hangar availability, tight
safety margins, and strict regulations. Considering all these together in a single opti-
mization framework is overly demanding. Hence, in this dissertation, the optimization
of the PdAM planning is performed at three levels: component level, fleet level, and strat-
egy level.

ix



x SUMMARY

At the component level, we propose probabilistic RUL prognostics and a deep rein-
forcement learning (DRL) approach for predictive maintenance planning. The proba-
bilistic RUL prognostics estimate the probability distribution of RUL, instead of a point-
estimation. This approach quantifies the uncertainty associated with RUL prognostics.
Based on the estimated RUL distribution, the DRL approach determines the optimal mo-
ment to replace an aircraft component. In the case study for the maintenance of air-
craft turbofan engine, the proposed DRL approach reduces the total maintenance cost
by 29.3% and prevents 94.3% of unscheduled maintenance, compared to the case when
the point-estimation of RUL is used.

At the fleet level, PdAM is planned by simultaneously considering a fleet of aircraft
having multiple components. The main interest of fleet-level PdAM is to integrate RUL
prognostics and operational requirements, such as the flight schedules and the limited
hangar availability. We formulate these in an integer linear programming problem that
minimizes the cost of fleet-level PdAM. This approach reduces the usage of hangars by
grouping the schedule of maintenance tasks when the RUL of the components are sim-
ilar. Considering the maintenance of aircraft landing gear brakes for a fleet of aircraft,
the total maintenance cost is reduced by 20% compared to the traditional maintenance
strategies.

At the maintenance strategy level, we optimize the design parameters of PdAM, such
as safety margins and thresholds of RUL, considering multiple objectives: cost-efficiency
and reliability. Since this multi-objective optimization problem is computationally in-
tensive, we propose an efficient search algorithm using Gaussian process (GP) learning
models to identify Pareto optimal design parameters of PdAM. Compared to other state-
of-the-art multi-objective optimization algorithms, the proposed GP learning-based al-
gorithm identifies more Pareto optimal solutions within the same computational time.
The identified Pareto front shows that PdAM using RUL prognostics dominates tradi-
tional maintenance strategies by achieving the beneficial balance between efficiency
and reliability indices. With only a 1% reduction in the efficiency index, the Pareto opti-
mal PdAM strategy achieves a 95% improvement in the reliability index.

The three optimization frameworks at the three different levels of PdAM are pro-
posed and illustrated for case studies on the maintenance of aircraft engines and landing
gear brakes. These case studies show three main benefits of PdAM: 1) the maintenance
cost is minimized by scheduling maintenance tasks only when necessary; 2) failures and
unscheduled maintenance are prevented by considering RUL prognostics; and 3) Pareto
optimal performance is achieved considering the balance between reliability and effi-
ciency.

Finally, this dissertation identifies the emerging challenges associated with the in-
troduction of PdAM. Such challenges are often attributable to the introduction of new
technologies, such as aircraft health monitoring systems, RUL prognostics algorithms,
and decision support systems to plan PdAM. Based on structured brainstorming ses-
sions with domain experts and end-users, three major challenges of future PdAM are
identified: 1) the (often unknown) reliability of new technologies, 2) the timeliness and
accuracy of communication between the stakeholders of the new PdAM, and 3) the end-
users’ trust in the new technologies.

Throughout this dissertation, we have focused on decision support systems of PdAM,



SUMMARY xi

in the form of optimization frameworks. These frameworks provide substantial support
for the implementation of PdAM in practice. Even so, it remains future work to build
users’ trust in PdAM, to integrate it into strict aviation legislation, and to adopt PdAM at
the business level. The strongest support for trust, legislation, and business regarding
PdAM should be based on mathematical models and optimization frameworks. There-
fore, this dissertation is a starting point for an informed discussion on the future of pre-
dictive aircraft maintenance.
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1
INTRODUCTION

1.1. RESEARCH CONTEXT
Aircraft maintenance is crucial for safe and reliable flights. To ensure its safety and re-
liability, strict regulations and manuals guide the aircraft maintenance program (AMP),
which is a list of tasks [1]. Most tasks of the AMP are inspections of aircraft components,
which need to be performed at fixed time intervals. For instance, the brakes of aircraft
landing gears must be checked after every N flight cycles. The engines must be inspected
after every T flight hours. Based on the inspection results, further tasks such as lubrica-
tion, servicing, restoration, or replacement are performed. This maintenance approach,
relying on the tasks being repeated at fixed time intervals, is referred to as time-based
maintenance (TBM).

Under time-based aircraft maintenance, the time intervals between tasks are often
short to timely detect potential failures. For example, the inspection interval of landing
gear brakes (around 30-50 flight cycles) is generally much shorter than the average life
of the brakes (around 1,000-1,200 flight cycles) [2]. Although such frequent inspections
effectively identify potential failures, the associated maintenance cost is high as aircraft
are frequently grounded for inspections. Moreover, most inspections do not find any
fault, leading to no further tasks. In fact, around 90% of the scheduled maintenance
results in no-fault-found [3]. In other words, a large portion of the maintenance cost is
spent to ground the aircraft and perform inspections, but nothing is actually repaired.
Therefore, it is of interest to study whether maintenance costs can be reduced.

Current aircraft maintenance can be more efficient if aircraft components are con-
tinuously monitored and if their failures can be predicted. Nowadays, new aircraft are
equipped with aircraft health monitoring (AHM) systems that continuously monitor the
condition of aircraft components without the need to ground the aircraft and perform
inspections [4]. For example, in the case of a Boeing 787, the remaining thickness of
landing gear brakes is automatically measured every flight cycle [5]. For more sophis-
ticated aircraft components, such as the aircraft engines, on-board sensors generate
around 20 terabytes of condition data per flight hour [6]. The large amount of condition
data are analyzed to predict the expected time left until component failure, the so-called

1
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Remaining-Useful-Life (RUL) [7]. The predicted RULs of aircraft components and the
increasing availability of condition data provide experts with insights into the degrada-
tion of these components and support them in making decisions about aircraft main-
tenance. This new maintenance approach using AHM systems and RUL prognostics is
called predictive maintenance [8]. Predictive aircraft maintenance (PdAM) is expected to
contribute to increase both reliability and efficiency by reducing inspections, predicting
potential failures, and planning more efficient maintenance [7].

However, in practice, PdAM is not fully implemented. Current regulations only allow
using condition monitoring data and RUL prognostics results for a few limited mainte-
nance actions [1]. For example, the landing gear brakes of Boeing 787 are still replaced
based on visual inspections performed every N flight cycles, without using the sensor
measurements of the brakes. Only recently, regulatory bodies and aviation industries
initiated discussions on integrating AHM systems into aircraft maintenance [9]. Given
this context, the main goal of this dissertation is to support the transition from current
time-based aircraft maintenance to predictive aircraft maintenance.

1.2. RESEARCH GAPS
Whereas predictive maintenance for aircraft is a relatively new concept, the basic idea
of using RUL prognostics for maintenance planning has been applied to other systems
such as batteries, rolling machines, wind turbines, and trains. Here, predictive mainte-
nance has significantly reduced system downtime and safety incidents [10, 11]. However,
the potential benefits of using RUL prognostics for aircraft maintenance has been vali-
dated only for a few cases. Therefore, further research is required to address the following
two research gaps.

UNDERSTANDING THE PROCESS OF PREDICTIVE AIRCRAFT MAINTENANCE

First, a clear understanding of the process of predictive aircraft maintenance (PdAM) is
needed. PdAM cannot be tested in a real environment due to strict regulations and high
costs. Thus, mathematical models are needed to model and quantify the performance
of PdAM [12]. Such a mathematical model of PdAM should consider state-of-the-art
RUL prognostics algorithms [13] and the interactions of multiple humans and machines
involved in the aircraft maintenance [14]. Also, the model should be generic and ex-
tendable to facilitate the implementation of PdAM for various components/systems. Al-
though some studies have proposed aircraft maintenance models [12, 13, 14], there is a
lack of models to assess the performance of various advanced PdAM approaches.

Moreover, multiple stakeholders of aircraft maintenance, such as airlines, regula-
tory bodies and manufacturers, consider different key performance indicators (KPIs) for
PdAM. These KPIs often conflict with each other, and a deterioration of one KPI might
be necessary to improve another KPI. For instance, typical KPIs of landing gear brake
maintenance are maintenance costs and the number of brake failures. If the brakes are
inspected more frequently, the cost increases, but the probability of having a brake fail-
ure decreases. This shows a clear trade-off between cost and reliability. However, many
existing studies assume cost as a single objective [15, 16]. Thus, a multi-objective analy-
sis identifying the KPIs and their trade-offs, is a prerequisite to implementing PdAM that
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properly reflects the interests of all stakeholders.

INTEGRATING RUL PROGNOSTICS INTO MAINTENANCE OPTIMIZATION

The second research gap is the lack of optimization frameworks to plan PdAM based on
RUL prognostics results. In the last decades, academia and industry have focused on
data collection using AHM systems and the development of data-driven RUL prognos-
tics algorithms [5, 6, 7]. However, not many studies have considered how to actually
plan aircraft maintenance using these advanced RUL prognostics. A few studies that
optimize predictive maintenance planning assume simple degradation trends, such as
Wiener processes [17] and Poisson processes [18]. To utilize the full potential of RUL
prognostics, decision support frameworks are needed to plan maintenance by consider-
ing RUL prognostics.

RUL prognostics can be used for aircraft maintenance planning at various levels. In
the simplest case, the RUL of a single aircraft component can be used to determine a
deadline to replace it, i.e., component-level PdAM. Here, it is important to note that RUL
prognostics are subjected to uncertainty originating from models and data [19]. Thus,
setting a deadline exactly at the predicted RUL can be deceptive; instead, the associated
uncertainty should be considered in component-level PdAM.

At the next level, maintenance is simultaneously planned for multiple components
and multiple aircraft [13], i.e., fleet-level PdAM. At the fleet level, PdAM should be planned
considering operational requirements such as flight schedules and the availability of the
maintenance hangar [13, 20]. These operational requirements, together with the dead-
lines of tasks, make the fleet-level PdAM a complex optimization problem with multiple
constraints.

Ultimately, the current aircraft maintenance program (AMP) needs to be updated
to predictive maintenance strategies, i.e., strategy-level PdAM. To switch to PdAM, new
parameters need to be optimized, such as thresholds of RUL and safety margins. For
instance, under PdAM, a component is replaced when its RUL is smaller than a threshold
A, or a component is repaired when its failure probability is larger than a safety margin B .
Optimizing such parameters for multiple objectives (KPIs) is computationally intensive.
Thus, an efficient multi-objective optimization algorithm is required to optimize the new
parameters of PdAM strategies.

IDENTIFYING EMERGING CHALLENGES

In addition, PdAM adopts new technologies (e.g., AHM systems, and data-driven RUL
prognostics algorithms) and changes some roles of maintenance stakeholders, which
also introduces emerging challenges and risks. Existing studies discussing the challenges
and risks of aircraft maintenance are outdated [21, 22], as these were performed before
the first discussion on the introduction of PdAM in 2018 [9]. Hence, the emerging chal-
lenges of PdAM should be investigated based on updated PdAM models.
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1.3. RESEARCH OBJECTIVES
From the Research Gaps the following research objectives are derived:

Obj.1 Construct mathematical models of predictive aircraft maintenance
and assess its performance.

Obj.2 Identify the key performance indicators (KPIs) of
predictive aircraft maintenance, and analyze their trade-offs.

Obj.3 Integrate RUL prognostics into predictive aircraft maintenance planning.

Objective Obj.3 considers the model of PdAM constructed in Obj.1 and the KPIs identi-
fied in Obj.2. Obj.3 is further divided into three levels, namely component-level, fleet-
level, and strategy-level PdAM.

Obj.3.1 Optimize a predictive maintenance plan for an aircraft component based on
RUL prognostics and associated uncertainty (Component-level PdAM).

Obj.3.2 Optimize a predictive maintenance plan for a fleet of aircraft with multiple
components, considering operational requirements (Fleet-level PdAM).

Obj.3.3 Design a predictive maintenance strategy by optimizing parameters such as
thresholds of RUL, considering multiple objectives (Strategy-level PdAM).

The last research objective is to identify emerging challenges based on the updated
models of PdAM:

Obj.4 Identify emerging challenges of predictive aircraft maintenance.

1.4. RESEARCH METHODOLOGY
The Research Objectives are addressed following the research methodology illustrated
in Figure 1.1. It consists of three phases.

PHASE I: MODELING THE PROCESS OF PDAM
Phase I addresses research objectives Obj.1 and Obj.2. First, a formal model of generic
process of predictive aircraft maintenance (PdAM) is constructed (Obj.1). The aircraft
maintenance process involves complex interactions between multiple agents who mon-
itor and analyze the health condition of components to make decisions on maintenance
tasks. These agents and their interactions are identified through a literature survey in-
cluding regulations and aircraft maintenance manuals. The monitoring of health con-
ditions of components and their degradation processes are modeled by stochastic pro-
cesses, which is validated using actual condition monitoring data. The flow of informa-
tion and decision making procedures are modeled using Petri nets. The final model is
validated through interviews with field experts from airlines, aircraft maintenance, and
regulatory bodies.

Next, the key performance indicators (KPIs) of PdAM are identified (Obj.2). To op-
timize PdAM, it is essential to set objectives that represent the perspectives of multiple
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Figure 1.1: Research methodology of the dissertation.
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stakeholders involved in PdAM. Based on the literature study and expert interviews, the
KPIs of the stakeholders of aircraft maintenance are identified. Using the model of PdAM
developed in Obj.1, the correlations and the trade-offs between these KPIs are analyzed.
This preliminary analysis derives a set of objectives of PdAM, which will be used in the
next phase of this research.

PHASE II: OPTIMAL INTEGRATION OF RUL PROGNOSTICS INTO PDAM
Phase II addresses objective Obj.3, the optimization of PdAM. First, the component-level
PdAM is considered (Obj.3.1). In particular, the predictive maintenance of an aircraft
engine is considered since it is a crucial component for safety. For these engines, data-
driven RUL prognostics are developed to estimate the probability distribution of RUL
(probabilistic RUL prognostics). Unlike a point-estimation of RUL, the estimated RUL
distribution contains the information of uncertainty, which is not straightforward to in-
terpret for humans. Thus, a deep reinforcement learning approach is introduced to plan
predictive maintenance based on the estimated RUL distributions. As a result, a frame-
work to optimize component-level PdAM considering probabilistic RUL prognostics is
proposed.

Second, the fleet-level PdAM is considered (Obj.3.2). The predictive maintenance is
planned simultaneously considering a fleet of aircraft, where each aircraft is equipped
with 8 brakes. The RULs of the brakes are estimated using Bayesian regression based on
the sensor monitoring data. These RUL prognostics, flight schedules, and the limited
hangar availability are formulated into integer linear programming (ILP). By solving the
ILP problem, optimal maintenance is planned for a fleet of aircraft with multiple com-
ponents.

Finally, the optimization of PdAM is considered at the strategy-level (Obj.3.3). A pre-
dictive maintenance strategy is defined by a set of design parameters such as thresholds
of RUL and safety margins. These parameters need to be optimized considering multiple
objectives. An efficient algorithm is proposed to explore the high dimensional space of
the design parameters of PdAM strategies. Here, Gaussian process (GP) learning models
are used to adaptively sample new design parameters and to identify the Pareto optimal
design parameters. This novel algorithm is illustrated using two case studies on pre-
dictive maintenance for landing gear brakes. The first case study shows the benefit of
predictive maintenance compared to other traditional maintenance strategies, includ-
ing time-based maintenance. The second case study optimizes a PdM strategy that inte-
grates probabilistic RUL prognostics.

PHASE III: IDENTIFYING EMERGING CHALLENGES OF PDAM
In Phase III, the emerging challenges of PdAM are identified (Obj.4). Since predictive
maintenance has been introduced fairly recently and only for a few tasks, operational
data to identify the challenges of PdAM are not enough. Thus, a structured brainstorm-
ing is conducted with maintenance experts to reveal emerging challenges for PdAM [23].
Here, the model of PdAM developed for Obj.1 is used to facilitate and guide the brain-
storming. The brainstorming results and the lessons from past accidents/incidents are
analyzed together to identify key challenges for future PdAM.
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1.5. OVERVIEW OF DISSERTATION
For ease of navigation, this dissertation is divided into 8 chapters. The overview of the
dissertation is given in Figure 1.2. Chapters 2 and 3 correspond to Phase I of the research
methodology. Chapters 4 to 6 address Phase II of the research methodology, and form
the core of this dissertation. Chapter 4 optimizes the PdAM at the component level, con-
sidering the maintenance of an aircraft engine. Chapter 5 optimizes the PdAM at the fleet
level, considering the maintenance of landing gear brakes for a fleet of aircraft. Chapter
6 designs Pareto optimal PdAM strategies considering multiple objectives. Phase III of
the research methodology is covered in Chapter 7. Finally, Chapter 8 reviews the findings
and novelty of this dissertation and provides an outlook on future work.

Figure 1.2: Overview of the dissertation.
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2
STOCHASTIC PETRI NETS TO MODEL

PREDICTIVE AIRCRAFT MAINTENANCE

In this chapter, we model predictive aircraft maintenance (PdAM) and assess its impact on
reliability and cost-efficiency. The model of PdAM formulates the interactions between the
stakeholders of aircraft maintenance using stochastically and dynamically colored Petri
nets (SDCPNs). Using Monte Carlo simulation of this model, key performance indica-
tors (KPIs) showing reliability and cost-efficiency of PdAM are evaluated. As a case study,
we consider the maintenance of aircraft landing gear brakes. This case study shows that
applying predictive maintenance reduces the number of inspections, while ensuring reli-
ability. The model constructed in this chapter is used throughout this dissertation.

Parts of this chapter have been published in the following research articles:

J. Lee and M. Mitici, “An integrated assessment of safety and efficiency of aircraft maintenance strategies us-
ing agent-based modelling and stochastic Petri nets,” Reliability Engineering and System Safety, vol. 202, p.
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J. Lee and M. Mitici, “Predictive aircraft maintenance: modeling and analysis using stochastic Petri nets,” in
Proceedings of the 31st European Safety and Reliability Conference, pp. 146-153, Angers, France, September
19–23, 2021.
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2.1. INTRODUCTION
Aircraft maintenance is crucial for safe and efficient operations of aircraft, and thus, air-
lines spend almost 9.5% of their operational costs for maintenance [1, 2]. While striving
for cost-efficient maintenance, safety remains a priority for aircraft operators. However,
attaining safety and efficiency in aircraft maintenance is not straightforward, especially
due to the complexity of the maintenance process. Some of the drivers of the mainte-
nance complexity are the large number of stakeholders and the necessary cooperation
between them, the inevitable human-machine interaction, the high costs with unsched-
uled maintenance, the dependency between systems, and the strict and specific main-
tenance regulations [3, 4, 5, 6].

Given the criticality and complexity of the aircraft maintenance process, stakehold-
ers often make use of conservative maintenance strategies. Here, a maintenance strategy
implies a set of procedures and rules to follow in order to generate, plan, and execute
maintenance tasks. In practice, many maintenance tasks are performed at fixed time
intervals, i.e., following a time-based maintenance (TBM) strategy [7, 8]. Under TBM
strategies, shorter time intervals of tasks increase the chance to detect severe degra-
dation/failures. Thus, shorter time intervals contribute to safety. On the other hand,
shorter time intervals require more frequent maintenance tasks, increasing the cost of
maintenance. As such, many studies on TBM optimize the maintenance time intervals
[9, 10, 11]. Recently, condition-based maintenance (CBM) strategies have been pro-
posed to further decrease the number of maintenance tasks while preserving safety [12,
13]. CBM strategies specify the moment of maintenance by utilizing component/system
condition data collected by sensors. Furthermore, predictive maintenance (PdM) strate-
gies have been proposed to use Remaining-Useful-Life (RUL) prognostics in mainte-
nance planning. In this line, many studies propose optimal CBM/PdM strategies to
achieve a minimum maintenance cost [3, 12, 13, 14, 15, 16, 17].

Yet, only a few studies consider the safety of maintenance, and even here the authors
use indirect metrics such as high penalties for system failure [3, 14, 15], system avail-
ability [16], and reliability constraints [17]. Using such indirect metrics makes it hard to
distinguish the safety aspects from the efficiency aspects, especially if the improved ef-
ficiency compensates for the reduced safety. A clear distinction between these metrics
should be made so that the impact on safety and efficiency can be explicitly quantified.

The simulation of maintenance models provides direct quantification of the safety
and efficiency of maintenance strategies. In particular, Monte Carlo simulation can cap-
ture the impact of uncertainties involved in maintenance, such as stochastic degradation
of components, errors in inspection, etc. Thus, several studies perform Monte Carlo sim-
ulation for their maintenance models [18, 19, 20, 21, 22, 23, 24].

Methods generally used to model maintenance systems are Petri nets or agent-based
modeling (ABM). Petri nets provide a formal visualization for mathematical models of
discrete event systems [25, 26]. This method has been used to model the maintenance of
complex systems such as railway [18, 19], bridges [20], wind turbines [21, 22], and a fleet
of aircraft [23]. However, these models focus on events and processes, without consid-
ering the interplay between stakeholders. Because aircraft maintenance involves mul-
tiple stakeholders, their interaction needs to be explicitly considered. ABM is another
technique to represent maintenance systems, focusing on the interplay between stake-
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holders [27, 28]. ABM has been used to model interactive maintenance systems such as
production lines [24], and repair service companies [29]. While ABM is effective in for-
malizing the interaction between multiple stakeholders, the comprehensibility of ABM
can be further improved by graphical representations such as Petri nets. This synergy
between Petri nets and ABM is used in other domains such as air traffic management
[30, 31], but has not been used in the above studies on maintenance. Thus, the synergy
between Petri nets and ABM can be used to achieve a comprehensive multi-agent model
of aircraft maintenance.

In this chapter, an integrated framework is proposed to assess the safety and ef-
ficiency of various aircraft maintenance strategies. An ABM of an end-to-end aircraft
maintenance process is developed, where the main maintenance stakeholders are con-
sidered. This ABM is formalized by means of stochastically and dynamically colored
Petri nets (SDCPNs). Based on the SDCPN formalization of the ABM, Monte Carlo sim-
ulations are conducted for several maintenance strategies. This framework is illustrated
for the maintenance of the aircraft landing gear brakes. Here, the degradation of the
brakes is modeled by means of a Gamma process. As maintenance strategies for the
brakes, a sensor-driven CBM strategy, a prognostic-driven PdM strategy, and two TBM
strategies are proposed. Safety and efficiency indicators for these strategies are evalu-
ated using this framework. Overall, this framework is generic in that it supports a safety
and efficiency analysis of various aircraft maintenance strategies. Most importantly, our
framework supports the assessment of novel strategies, ahead of their implementation
in practice.

The remainder of this chapter is organized as follows. Section 2.2 describes the air-
craft maintenance process and identifies the agents involved in this process. Section
2.3 formalizes the agent models by means of SDCPNs. A brief explanation of SDCPNs
is given first. Then, detailed SDCPN models for each agent are developed. Section 2.4
presents a case study on the maintenance of aircraft landing gear brakes. Finally, Sec-
tion 2.5 provides conclusions and recommendations for future work.

2.2. PREDICTIVE AIRCRAFT MAINTENANCE PROCESS:
AGENT-BASED MODELING APPROACH

We model the predictive aircraft maintenance process by means of agents and interac-
tions between these agents [27]. An agent is defined as an independent entity that makes
decisions based on a set of rules, interacts with other agents and has its own goals [27,
28]. We identify the agents considering the following four properties [28]: a) an agent is
identifiable, having its own characteristics, decision-making rules, and physical or con-
ceptual boundaries that the others can distinguish (Modularity), b) an agent can inde-
pendently make decisions to change states and to take actions (Autonomy), c) an agent
has states that determine its autonomy and that vary over time (Conditionality), and d)
an agent interacts with other agents (Sociality).

Among multiple stakeholders involved in the predictive aircraft maintenance pro-
cess, we focus on the maintenance organization and the aircraft operator. The main-
tenance organization is a company that keeps the airworthiness of aircraft by means of
maintenance, repair, and overhaul. The aircraft operator is a commercial airline which
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flies with the aircraft according to a flight schedule. These two stakeholders are repre-
sented by several agents. Considering the four properties of an agent mentioned above,
we identify the following six key agents that are representative for a maintenance orga-
nization and an aircraft operator:

i) Aircraft (AC)

ii) Data Management team (DM)

iii) Task Generating team (TG)

iv) Task Planing team (TP)

v) Mechanics team (ME)

vi) Flight Crews (CR)

Figure 2.1 shows the agents involved in the predictive aircraft maintenance process and
the interactions between them. The boxes denote the agents and the arrows denote the
interactions between these agents.

Figure 2.1: Main agents of the predictive aircraft maintenance process.
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AIRCRAFT (AC)
Aircraft (AC) is a central agent in the maintenance process, given that the purpose of the
aircraft maintenance is to ensure the airworthiness of the aircraft during its operation [1].
Here, we assume that an aircraft operates in terms of flight cycles (see Figure 2.2). A flight
cycle is defined as the time period between a departure and the subsequent departure.

After the aircraft has departed from a gate at time τdep
i , we say that the agent AC is in state

in-flight. Flight-time is the period of time between gate departure at time τdep
i until the

arrival time τarr
i at the gate. When the aircraft stops at the gate, we say that the agent AC

is in state on-ground. The time between the arrival τarr
i , and the subsequent departure,

τ
dep
i+1 is referred to as ground-time. A set of flight cycles is called a flight schedule. The

agent AC is operated by flight crews, following a given flight schedule.

Figure 2.2: Flight cycle of an aircraft.

An aircraft consists of multiple components. These components degrade as the air-
craft is in use. When the degradation of a component is significant, malfunctions or
failures occur, which renders the aircraft un-airworthy. Airworthiness is sustained by
maintenance tasks such as operational checks, inspections, lubrication, restoration, re-
placement, or discard [1, 32]. Maintenance Steering Group-3, which provides guidelines
for aircraft maintenance, suggests four main types of tasks [32]: 1) Inspection, which is
the task to find failures or degradation; 2) Lubrication, which is the task that maintains
the inherent design capability; 3) Restoration, which is the task to return a system to a
specific standard in order to avoid failure, and 4) Replacement, which is the task to dis-
card a component currently in use and install a new one. Inspections, lubrication and
restoration tasks are executed by mechanics, while operational checks are executed by
flight crews.

Modern aircraft are equipped with sensors that monitor the condition of compo-
nents [33, 34]. The data collected during condition monitoring is delivered to the data
management team for further analysis and maintenance decision support.

DATA MANAGEMENT TEAM (DM)
Data management team (DM) is an agent who playing a key role under a PdM strategy.
The agent DM collects the sensor data on the condition of a component, and analyze



2

16 2. STOCHASTIC PETRI NETS TO MODEL PDAM

these data to estimate the RUL of a component. Considering the estimated RUL and the
sensor data, the agent DM alerts the tasks generating team to trigger necessary mainte-
nance tasks.

TASK GENERATING TEAM ( TG)

Task generating team (TG) is an agent that specifies which maintenance tasks need to be
performed and at which intervals of time. The agent TG takes into account maintenance
regulations, manuals and guidelines provided by aircraft manufacturers, as well as feed-
back from flight crews, mechanics, and sensor data. Using such inputs, the agent TG
generates a task by specifying the target component, the type of task, the interval of time
at which this task must be executed, and the procedure required to execute the task. The
process of task generation reflects the type of maintenance strategy adopted. Under a
TBM strategy, the agent TG keeps generating the same tasks at fixed time intervals. Un-
der a PdM strategy, the agent TG generates tasks based on the estimated RUL and sensor
data transferred from the agent DM. In this case, the generated tasks are specified with
a deadline. The deadlines under a PdM strategy and the intervals under a TBM strategy
are specified in the form of flight cycles (FCs), flight hours(FHs), and/or calendar days
(DYs). The generated tasks and corresponding maintenance intervals/deadlines are fur-
ther delivered to the task planning team.

TASK PLANNING TEAM ( TP)

Task planning team (TP) is an agent that receives generated tasks from the agent TG
and plans these tasks in time. The agent TP receives as input a) the flight schedules,
and b) the tasks with their associated intervals/deadlines. Based on the flight sched-
ules, the agent TP evaluates the availability of the aircraft for maintenance. Finally, the
agent TP plans maintenance tasks during aircraft ground-time, while making sure that
the specified intervals/deadlines for task execution are not exceeded. We refer to this as
a scheduled task.

MECHANICS TEAM (ME)

Mechanics team (ME) is an agent that executes the scheduled tasks. Once a task is exe-
cuted, the agent ME may decide whether additional tasks are necessary. If this is the case,
the agent ME addresses it immediately by executing unscheduled tasks. If the mainte-
nance strategy and the regulations allow, the agent ME can also postpone the execution
of additional tasks and just report them to the agent TP or TG.

FLIGHT CREW (CR)

Flight crew (CR) is an agent that operates the aircraft, following a flight schedule. The
agent CR checks the condition of the aircraft components before and/or after a flight.
We call this activity an operational check. If the agent CR observes a component/system
failure, then the agent CR reports this to the agent TG.
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2.3. FORMALIZATION OF THE AGENT-BASED MODEL OF

PREDICTIVE AIRCRAFT MAINTENANCE PROCESS USING

STOCHASTIC PETRI NETS
In this section, we formalize the agent models of the aircraft maintenance described
in Section 2.2. Stochastically and dynamically colored Petri nets(SDCPNs) are used to
graphically model the behavior of the agents [25]. In Section 2.3.1, we introduce the
concept of SDCPNs. Then, five agents are modeled by means of SDCPNs in Section 2.3.2.
Finally, in Section 2.3.3 we explain how to assess maintenance strategies by means of
simulation of agent-based modeling (ABM).

2.3.1. STOCHASTICALLY AND DYNAMICALLY COLORED PETRI NETS

SDCPNs are extension of Petri nets that allow for the modeling of stochastic and dynamic
systems [25]. More precisely, SDCPNs are graphs that consist of two sets of nodes: places
(P) and transitions (T ), as well as a set of arcs (A). These arcs connect the nodes. In
addition, SDCPNs may have tokens in a place.

Figure 2.3 shows a graphical representation of SDCPN elements. The places repre-
sent the possible states of a SDCPN. The location of a token defines the current state of
the SDCPN. When additional information is needed to describe the current state, a color
is assigned to a token. The color of a token can be a continuous or a discrete variable or
a set of variables. The locations of the tokens are changed when a transitions fires, i.e.,
a transition updates the status of a SDCPN. We consider three types of transitions. The
immediate transitions (TI) fires immediately if there is at least one token in each input
place connected by an incoming ordinary arc (Ao) and each enabling place connected
by an enabling arc (Ae ), and there is no token in each inhibitor place connected by an
inhibitor arc (Ai ). Figure 2.4 shows some examples of transitions in a SDCPN. In Figure
2.4, the immediate transitions in (a), (c), and (e) fire immediately. The transition in (b)
does not fire because one of its input places has no token. The transition in (d) does
not fire because its enabling place has no token. The one in (f) does not fire because
its inhibitor place has a token. The delay transitions (TD) require the same conditions
as discussed above, but they fire after a stochastic delay time, as shown in (g) of Figure
2.4. The guard transitions (TG) fire only if the colors of the tokens in the input places and
the enabling places satisfy its guard function (G). For instance, in (h) and (i) of Figure

Figure 2.3: Graphical representation of SDCPN elements.
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Figure 2.4: Transitions in SDCPN.
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2.4, if token 1 renders the guard function false and token 2 renders it true, only the guard
transition in (i) fires. When a transition fires, it removes one token from each of its input
places, but not from the enabling places (see (a), (c), and (e)). Especially in the case of
guard transitions, the token satisfying the guard function is removed (see (i)). Also, a new
token is generated in each output place that is connected by an outgoing ordinary arc.
The color of the new token is determined by the firing function (F ) of the transition.

In order to make the agent models consistent and comprehensible, we consider the
following analogy between an agent and a SDCPN. The possible states of the agents are
represented by places. The actions and interactions between agents are represented by
transitions and arcs. The places and the transitions needed to model a specific role of
an agent are grouped together. This group is called a local Petri net (LPN). A LPN is
constructed in such a way that the number of tokens residing in the LPN is not directly
changed by another LPN [25]. The interactions between LPNs are modeled by enabling
arcs (Ae ) or inhibitor arc (Ai ), which do not change the number of tokens. We also model
interactions between LPNs using interaction Petri nets (IPNs), which consist of places
and transitions that do not belong to any LPN [25].

As an example, a SDCPN formalization of two agents is given in Figure 2.5. Agent
A has two states (places), P-1 and P-2, and it can take two actions (transitions) T-1 and
T-2. Agent B has two roles modeled by two LPNs. The guard transition T-1 is fired when
the color of the token in P-3 satisfies its guard function, i.e., agent A takes action T-1 if
a certain condition of agent B is satisfied. By T-1, the state of agent A becomes P-2. T-3
cannot fire when its inhibitor place P-2 has a token, i.e., agent B cannot take action T-3
while agent A is in P-2. The delay transition T-2 fires after a stochastic delay, returning
agent A to P-1. T-2 also fires a token in P-5, and then T-4 immediately fires, which removes
the token in P-5 and updates the color of the token in P-4, i.e., agent B immediately takes
action T-4 each time agent A takes action T-3. Place P-5 does not belong to any LPN, and
it is called an IPN.

Figure 2.5: Example of SDCPN formalization of two agents.
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Table 2.1: LPNs of agents for the aircraft maintenance process

Agent LPN
i) Aircraft (AC)

Operation
Component-ξ
Sensor-ξ

ii) Data Management Team (DM)
Prognostics
Alert System

iii) Task Generating Team (TG)
Task Generation

iv) Task Planning Team (TP)
Task Planning

v) Mechanics Team (ME)
Task Execution

vi) Flight Crew (CR)
Operation

2.3.2. FORMALIZATION OF THE AGENTS USING SDCPNS
Based on the aforementioned analogy and definition of LPNs, in this section, we model
the five agents introduced in Section 2.2 using SDCPNs. Table 2.1 lists the LPNs of each
agent considered for the aircraft maintenance process.

AIRCRAFT (AC)
The agent aircraft (AC) is operated by the agent flight crew (CR), following a flight sched-
ule. When the agent CR triggers a departure, the aircraft is pushed back from the gate,
i.e., off-block. This changes the state of the agent AC to in-flight. The in-flight state in-
cludes the taxi, take-off, cruise, and landing phases of the operation of an aircraft (see
Figure 2.2). When the agent AC arrives at the gate, i.e., on-block, the state of the aircraft
from this moment on is on-ground.

The LPN AC Operation in Figure 2.6 models the operation of the agent AC. Two places
In-flight and On-ground represent the two operational states of the aircraft. The transi-
tion Off-block changes the state of the aircraft immediately from On-ground to In-flight,
when the place Trigger off-block gets a token. This token is generated when the agent
CR performs a departure. The transition Off-block also fires a token to the place Use of
component-ξ. The color of this token accounts for u(∆τ), which is the amount of time
that the component is used during the flight-time ∆τ. This token triggers the degra-
dation of the component. Depending on the characteristics of the component, u(∆τ)
can be represented in different formats. For example, the amount of use of an aircraft
engine can be represented as flight-time, i.e., u(∆τ) =∆τ. On the other hand, the num-
ber of flight cycles better represents the amount of use of aircraft landing gear brakes,
i.e., u(∆τ) = 1. The transition On-block works in a similar way as the transition Off-block.



2.3. FORMALIZATION OF THE ABM OF PDAM USING STOCHASTIC PETRI NETS

2

21

Figure 2.6: LPN: Operation of the agent AC.

When the agent CR completes a flight, the place Trigger on-block gets a token. Then, the
transition On-block moves the token from the place In-flight to the place On-ground. We
model the degradation of a component as a stochastic process. Here, we assume that
aircraft components degrade during in-flight, while the degradation during on-ground
is assumed to be negligible. Let Z (t ) be the degradation level of a component at time
t . Modeling the degradation process {Z (t )} should consider different degradation trends
for different types of components. However, considering the nature of the degradation,
we require the following properties of {Z (t )}. Firstly, Z (t ) = 0 if the component is new
and has no degradation. Secondly, Z (t ) is monotonically increasing unless maintenance
is performed, and thus Z (t ) ≥ 0. This is based on the fact that degradation is never re-
covered spontaneously without maintenance. Thirdly, there is an unacceptable level of
degradation, η. If Z (t ) > η, the component is regarded as an unsafe or failed. Finally, we
consider the following increment of the degradation process {Z (t )}:

Z (t +∆t )−Z (t ) ∼ fZ (Z ;u(∆t ),Θ) (2.1)

where ∆t > 0, fZ is the probability density function of the degradation increment, andΘ
is the set of parameters of fZ .

The LPN AC Component-ξ in Figure 2.7 models the condition of component-ξ changed
by degradation, replacement, restoration and lubrication. The place Condition of component-
ξ has a token describing the degradation process of component-ξ, i.e., the token is col-
ored by SC:

SC =
(
ξ, Z ξ(t ),Θξ

)
(2.2)

where ξ is the identifier of the component, Z ξ(t ) is the degradation level of component-ξ
at time t , andΘξ is a set of parameters describing the degradation process of component-
ξ. The transition Degrade fires when the operational state of the aircraft is In-flight and the
place Use of component-ξ got a token from the transition Off-block in Figure 2.6. The tran-
sition Degrade updates Z ξ(t ) of the color of the token in place Condition of component-ξ,
following Equation (2.1). The transition Degrade also fires a token to the place Trigger
sensor-ξ, which triggers sensor-ξ to start monitoring the component-ξ.
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Figure 2.7: LPN: Component-ξ of the agent AC.

On the other hand, maintenance tasks such as replacement, restoration, and lubrica-
tion change the degradation level of the component Z ξ(t ) and/or the trend of the degra-
dation Θξ. After a replacement, Z ξ(t ) is updated to be the degradation level of the new

component, Z ξ
new. If the new component is faultless, then Znew = 0. If the new com-

ponent already has a level of degradation for some reason, Znew can be modeled as a
constant (0 ≤ Znew < 1) or a random variable with a certain distribution. Restoration
tasks update Z ξ(t ) to a specific standard, Z ξ

res, which can be assumed to be a constant or
a random variable. We consider lubrication as a task that changes the rate of the degra-
dation process. Thus, lubrication updates Θξ, the parameters of the probability density
function in Equation (2.1).

All these tasks are executed by the agent ME, following a maintenance schedule given
by the agent TP. In Figure 2.7, the transitions, Replacement, Restoration, and Lubrication
fire when there is a token in the places Trigger Replacement, Trigger Restoration, and Trig-
ger Lubrication, respectively. These places get a token when the agent ME executes the
corresponding maintenance task on component-ξ. These three transitions update the
color SC of the token in the place Condition of component-ξ.

The LPN AC Sensor-ξ in Figure 2.8 models the sensor-ξ that monitors the condition

Figure 2.8: LPN: Sensor-ξ of the agent AC.
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of component-ξ. When the sensor is working, the place Sensor-ξ working has a token
colored by SS:

SS =
(
ξ, Z̃ ξ(t )

)
, (2.3)

where Z̃ ξ(t ) is the degradation level of component-ξ monitored by sensor-ξ. The tran-
sition Monitor is triggered by the token in the place Trigger sensor-ξ. Assuming real-time
monitoring, the place Trigger sensor-ξ gets a token every time the transition Degrade
fires (see Figure 2.7). The token in the place Condition of component-ξ is needed for the
transition Monitor. The transition Monitor updates the color SS of the token in the place
Sensor-ξ working. Specifically, Z̃ ξ(t ) is updated as follows:

Z̃ ξ(t +δS) = Z ξ(t )+ϵS, (2.4)

where δS ∼ Exp(δ̄S) is the time spent by the sensor to collect the data, and ϵS is the mea-
surement error of the sensor. The transition Monitor also fires a token to the place Trigger
Estimate RUL, which enables the agent DM to estimate the RUL of component-ξ.

DATA MANAGEMENT TEAM (DM)

Under PdM strategies, the agent DM estimates using condition data. We consider RULξ

as the remaining time until the moment when the degradation level of component-ξ
reaches a predefined level η [35]. Thus, RULξ = min{t ′|Z ξ(t + t ′) ≥ η} where t is the cur-
rent time and Z ξ(t + t ′) is the degradation level after time t ′. We estimate Z ξ(t + t ′) using
prognostics algorithms run on the condition data set {Z̃ ξ(t )}.

Figure 2.9: LPN: Prognostics of the agent DM.

The LPN model of the DM for RUL prognostics is given in Figure 2.9. The prognostics
are triggered by a token in the place Trigger Estimate RUL, which is generated by the
transition Monitor of the agent AC (see Figure 2.8). Thus, it is assumed that prognostics
are immediately updated each time new data is available. The transition Estimate RUL
of component-ξ requires a token colored by SS on the place Sensor-ξ working. A token in
the place Prognostics is colored by SP defined as:

SP =
(
RULξ, {Z̃ ξ(t )}

)
(2.5)

The transition Estimate RUL of component-ξupdates RULξ and {Z̃ ξ(t )} based on the given
prognostics algorithm. If the estimated RULξ meets a predefined condition, feedback is



2

24 2. STOCHASTIC PETRI NETS TO MODEL PDAM

generated by the guard transition Alert TG based on RUL of component-ξ. The new token
is generated in the place Feedback from DM, which enables the agent TG to generate a
new task (see Figure 2.11).

Figure 2.10: LPN: Alert system of the agent DM.

In addition, the agent DM may alert directly based on sensor data. The LPN model
of the DM for alert system is given in Figure 2.10. When the alert system is activated, a
token is located in the place Alert activated. When Z̃ (t ) of the token in the place Sensor-ξ
working satisfies the guard function GAlert, the transition Alert fires a token in the place
Feedback from DM. The transition Alert also fires a token from the place Alert activated to
the place Alert deactivated, preventing triggering multiple feedback. The guard function
GAlert of the transition Alert is defined based on the maintenance strategy. For example,
the function GAlert(Z̃ (t )) = 1(Z̃ (t ) ≥ ηA) is specified for a given strategy, and defines the
moment when a new task is generated to prevent degradation.

The transition Activate is fired if its guard function GActivate is satisfied. When the
place Alert activated has a token, the alert system checks the sensor data. In this case,
the transition Remove unnecessary tasks may remove some task tokens that satisfies its
guard function, from the place Task to execute. Removal of maintenance tasks is only
applicable if the maintenance strategy allows it.

TASK GENERATING TEAM ( TG)
The agent Task Generating team (TG) determines the tasks to be performed based on the
maintenance strategy and the feedback from other agents. The procedures to consider
the feedback are specific to the maintenance strategy. In particular, the maintenance
strategy defines the conditions under which a specific type of task needs to be executed,
the specific component and the interval to perform this task. In SDCPN formalization, a
task is represented as a token colored by ST, which is defined as:

ST =
(
ξ,ν,Φν,d , t sch, t exe, i0

)
(2.6)

where ξ is the target component of the task, ν is the type of the task and Φν is a set of
parameters describing the task, d is the interval of the task, t sch and t exe are scheduled
time and the actual execution time of the task, and i0 is the index of the first flight cycle
after task execution. The agent TG specifies ξ, ν,Φν, and d , while the other variables will
be specified by the agent TP and the agent ME.
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Figure 2.11: LPN: Task generation of the agent TG.

The LPN in Figure 2.11 models how the agent TG generates tasks. A token in the
place Generating tasks represents that the agent TG is working, and it is required for all
transitions in this LPN. The three transitions generate tasks based on RUL prognostics
and alerts from the agent DM (see Figures 2.9, 2.10), feedback from the agent ME (see
Figure 2.13), and complaints from the agent CR (see Figure 2.14). Firing functions of
these transitions determine ξ, ν, Φν, and d of the task token colored by ST of Equation
(2.6). This new task token is put on the place Task to plan and delivered to the agent TP.

TASK PLANNING TEAM ( TP)
The agent task planning team (TP) plans the time to execute the tasks. The agent TP
takes the input of the agent TG as the time intervals at which tasks must be executed.
Another input for the agent TP is the aircraft flight schedule that specifies the ground-
time when tasks can be executed. Then, the agent TP finds the latest, feasible time for the
tasks to be executed such that the task execution intervals are not exceeded. Formally,
this scheduled time t sch is given to the task token colored by ST in Equation (2.6).

Figure 2.12: LPN: Task planning of the agent TP.



2

26 2. STOCHASTIC PETRI NETS TO MODEL PDAM

The LPN of the agent TP is shown in Figure 2.12. A token in the place TP working
shows that the agent TP is ready to plan a task. The transition Plan task requires a token
in the place CR waiting of the agent flight crew. This token has a color representing flight
schedules, SF:

SF =
(
I , {τdep

i }i∈I , {∆τi }i∈I

)
(2.7)

where I is a set of index of flights cycles, and {τdep
i }i∈I and {∆τi }i∈I are the set of departure

times and the block times of the flight cycles. When a task token colored by ST is given
in the place Task to plan, the transition Plan task fires a task token to the place Task to
execute. The firing function of this transition determines t sch the color ST based on the
given task planning algorithm. As a result, the place Task to execute gets a task token
with the execution time t sch.

MECHANICS TEAM (ME)
The agent mechanics team (ME) executes the tasks given from the agent TP. When t ≥
t sch, the agent ME prepares to execute the task. The agent ME executes a given task
when the aircraft is in the state On-ground. Depending on the type of the task, the agent
ME inspects, replaces, restores, or lubricates a target component. Especially after the in-
spection, the agent ME decides whether there an additional unscheduled task is needed.
The decision is based the observed degradation level Ẑ ξ(t ) and the given maintenance
strategy. Such an unscheduled task is executed right away. After completing the task, the
agent ME reports to the agent TP.

Figure 2.13 shows the LPN of the agent ME. A token colored by ST is used in this LPN,
representing the task allocated to the agent ME. The token is placed in the place Waiting
when there is an available agent ME to execute the given task. This LPN is triggered by
the new task token ST in the place Task to execute, which is generated from the LPN of
the agent TP in Figure 2.12. The guard transition Prepare task has the guard function
GPrepare task = 1(t ≥ t sch), which fires the given task token to the place Starting. Depend-
ing on the type of the task ν, specified in the token color ST, the relevant task transition
fires. For example, if the given task is a replacement, the guard transition Replace fires
the token to the place Replacing. Since the aircraft must be available during the task ex-
ecution, the task-related transitions are enabled by the places On-ground and Condition
of component-ξ (see Figure 2.6 and 2.7). When the delay transition Replace fires, mean-
ing that the agent ME completed the task, the task token is fired to the place Completing.
Here, the delay δrep ∼ Exp(δ̄rep) models the time spent on a replacement. As soon as the
delay transition Replace fires, a new token is generated in the place Trigger Replacement.
This new token enables the immediate transition Replacement in the LPN of the com-
ponent in Figure 2.7. The same process is used for the restoration and the lubrication
tasks. The transition Report fires the token to the place Waiting, meaning that the agent
ME is ready for the next task. If the completed task needs to be repeated later, the tran-
sition Report fires the task token to the place Feedback from ME, making the agent TG to
generate it again.

For the inspection task, the delay transition Inspect does not fire a token to the trigger
places because the inspection does not change the condition of the target component.
The color of this token has an additional color variable, i.e., the observed degradation
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Figure 2.13: LPN: Task execution of the agent ME.

level of the component Ẑ (t ).

Ẑ (t +δins) = Z (t )+ϵins (2.8)

where ϵins is the error of the inspection, and δins ∼ Exp(δ̄ins) is time spent to inspect the
component or the delay of the transition Inspect. Then, instead of firing a token to the
place Completing, the delay transition Inspect fires a token in the place Deciding which is
an intermediate place. Then, the guard transitions Complete and Generate unscheduled
task check Ẑ (t ). The given maintenance strategy specifies their guard functions. For
instance, a restoration can be scheduled if the observed degradation level Ẑ (t ) is greater
than a predefined threshold ηins, i.e., GGenerate unscheduled task = 1(Ẑ (t ) ≥ ηins). Based on
the maintenance strategy, the transition Generate unscheduled task fires a new task token
to the place Task to execute. For this task token, t sch = t .

FLIGHT CREW (CR)
The agent flight crew (CR) operates the aircraft based on a flight schedule and conducts

operational checks. The agent CR departs at t ≥ τdep
i , if the aircraft is not under mainte-

nance. After ∆τi hours of flights, the agent CR arrives at the destination airport. During
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Figure 2.14: LPN: Operation of the agent CR.

the ground-time, they can check the condition of the aircraft components, i.e., opera-
tional check. The result is reported to the agent TG, which may generate a new task.

Figure 2.14 shows the LPN of the agent CR. This LPN uses a flight schedule token
colored by SF in Equation (2.7). Initially, the token is placed in the place CR Waiting,
meaning that there is an available flight crew. The guard transition Depart has a guard

function, GDepart =1(t ≥ τdep
i ) where i ∈ I1 is the next flight cycle. This is disabled if there

is a token in one of the places Restoring, Replacing, Lubricating, and Inspecting, meaning

that the departure can be delayed if the agent ME is executing a task at τdep
i . The tran-

sition Depart fires a token in the place Trigger off-block, triggering the transition Off-block
of the LPN AC Operation in Figure 2.6. It also moves the token from CR Waiting to CR
Flying. After completing a flight, the guard transition Arrive fires according to its guard

function GArrive = 1(t ≥ τ
dep
i +∆τi ). A token is fired to the place Trigger on-block by the

guard transition Arrive, triggering the transition On-block of the LPN AC Operation in
Figure 2.6. The transition Arrive also fires a token to CR Waiting.

The agent CR may conduct operational checks for a certain aircraft components de-
pending on the maintenance strategy. As in the case of the inspection of the agent ME, a
guard transition Check and a delay transition Check is used for the operational check of
the the component condition. The degradation level of the component observed by the
agent CR, ẐCR is updated as below:

ẐCR(t +δCR) = Z (t )+ϵCR, (2.9)

where δCR ∼ Exp(δ̄CR) is the time spent for the operational check, and ϵCR is the error in
the operational check. The result is reported to the agent TG, when the delay transition
Check fires a token to the place Feedback.
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2.3.3. ASSESSMENT OF MAINTENANCE STRATEGIES USING SIMULATION OF

AGENT-BASED MODEL
With the formalization of the ABM in Section 2.3.2, we assess safety and efficiency indi-
cators of maintenance strategies of interest.

As a first step, we implement the maintenance strategy of interest to the ABM by ad-
justing the transitions, the initial location of the tokens, and the LPNs. For the delay
transitions, the parameters are estimated based on, for instance, maintenance manu-
als specific to the given maintenance strategy, historical data on the execution of the
task, etc. For the guard transitions, the guard functions are also specified based on the
given maintenance strategy. For example, for the agent DM, the guard function GAlert of
the transition Alert, and its parameter ηA are specified based on the given maintenance
strategy (see Figure 2.10). Similarly, the firing functions of the transitions of the agent
TG also need to be specified based on the maintenance strategy (see Figure 2.11). For
instance, if the maintenance strategy requires to replace the component when an alert
is triggered by the agent DM, the firing function of the transition Generate task using
feedback from DM is set to generate a replacement task token. (see Figure 2.11).

Next, we mark the location of the initial tokens in the LPNs in Section 2.3 (see Figures
from 2.7 to 2.14). For the colored tokens, the initial colors are set as follows. The initial
degradation level Z ξ(0) of the component-ξ is represented in the color SC of a token in

the place Condition of component-ξ (see Figure 2.7). The flight schedule I , {τdep
i }i∈I and

{∆τi }i∈I is represented the color SF of a token in the place CR Waiting (see Figure 2.14).
Lastly, we can add and/or remove additional LPNs, according to the maintenance

strategy. For instance, when we consider a system of multiple aircraft components, we
add the LPN in Figure 2.7 to the agent AC. When the given maintenance strategy does not
require part of the agents, we remove the unnecessary LPNs. For example, if prognostics
are not used under the given maintenance strategy, then we remove the LPN in Figure
2.9 from the agent DM.

Following the adjustment of the ABM according to the given maintenance strategy,
we define safety and efficiency indicators to assess this maintenance strategy. Let E be a
safety/operations event that we analyze using Monte Carlo simulation. For example, the
release of un-airworthy aircraft is considered as a safety event. Similarly, the execution of
maintenance task is seen as an operations event. We propose generic safety/efficiency
indicators to evaluate the occurrence of the event E as follows. Let TE ( j ) be the j th oc-
currence time of event E . Let NE (t ) be the number of occurrences of event E by time
t > 0. Then, P [TE ( j ) ≤ t ], and E(NE (t )) represent the probability to have the event E
before time t and the expected number of event E by time t , respectively. These two
indicators are estimated by conducting Monte Carlo simulations of the ABM.

2.4. ASSESSMENT OF MAINTENANCE STRATEGIES FOR

AIRCRAFT LANDING GEAR BRAKES
In this section, we illustrate the framework proposed in Section 2.2 and Section 2.3 for
the maintenance of aircraft landing gear brakes. In Section 2.4.1, we describe the main-
tenance of aircraft landing gear brakes. In Section 2.4.2, we introduce a degradation
model of the brakes. In Section 2.4.3, we describe two TBM strategies derived from prac-
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tice and two novel CBM and PdM strategies that we propose. In Section 2.4.4, the safety
and efficiency indicators are introduced. In Section 2.4.5, the estimation of the model
parameters is discussed. In Section 2.4.6, we present the simulation results. Finally, we
discuss the obtained results in Section 2.4.7.

2.4.1. PROBLEM DESCRIPTION

We consider the maintenance of landing gear brakes of a wide-body aircraft (see Figure
2.15). The aircraft is equipped with 8 breaks equally distributed on both sides (see Figure
2.16). Over time, the thickness of a brake disc reduces due to wear [7]. The remaining
thickness of a brake disc is measured by a visual inspection (see Figure 2.17a). When the
thickness of a brake disc is thinner than a threshold, the brake is replaced (see Figure
2.17b), to ensure aircraft airworthiness.

Currently, the maintenance of the landing gear brakes is performed under time-based
maintenance (TBM) strategies [7, 8, 9]. Specifically, two maintenance tasks are used:
brake inspections at fixed time intervals and replacements. If, upon an inspection, a cer-
tain amount of degradation is observed, a brake replacement is scheduled. In general,
the interval of inspection is much shorter than the expected life cycle of the brakes, for
safety reasons. As shown in [9], under such a fixed-interval inspection strategy, short in-
tervals reduce the probability to have undesired incidents, but the increased number of
inspections leads to additional costs with the maintenance. Also, many of these inspec-
tions are redundant as they do not lead to further actions such as replacement. On the
other hand, in spite of the frequent brake inspections, the degradation of some brakes
can still exceed the desirable threshold. In this chapter, we consider two TBM strategies,
with medium and high frequency of inspections.

For a better trade-off between frequent inspections (high costs) and unexpected brake
degradation levels, monitoring the condition of the brakes using sensors is considered
promising [13, 33, 34, 36]. We propose a condition-based maintenance (CBM) strategy to
use sensor measurements in determining the moment of inspections. We also propose
a predictive maintenance (PdM) strategy to use brake RUL prognostics to determine the
moment of replacement. We compare the CBM and PdM strategies against the medium
and high frequency TBM strategies, with respect to safety and efficiency indicators.

For our assessment, we simulate the maintenance process of a wide-body aircraft
that is operated according to a flight schedule for a period of 10 years. The flight schedule

has nFC flight cycles, where flight cycle i is defined by the moments of departure (τdep
i )

and arrival(τarr
i ), i ∈ {1, · · · ,nFC} (see Figure 2.2). We assume that the condition of the

aircraft brakes degrades over time according to a stochastic process. We also assume
that the maintenance tasks for brakes can be executed in all destination airports. As a
safety indicator, we define a brake-related safety incident, and evaluate its frequency.
As efficiency indicators, we assess the number of required tasks, associated with these
maintenance strategies, and the remained thickness of the brake discs at the moment of
replacement.



2.4. ASSESSMENT OF MAINTENANCE STRATEGIES FOR LANDING GEAR BRAKES

2

31

(a) (b)

Figure 2.15: (a) A landing gear of Boeing 787 aircraft. (b) A brake of a landing gear.
Image sources: https://www.safran-group.com/products-services/

Figure 2.16: Position of the 8 brakes of a wide-body aircraft with their position index.

https://www.safran-group.com/products-services/
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(a) (b)

Figure 2.17: (a) Landing gear brake inspection. (b) Landing gear brake replacement.
Image source (a): https://www.youtube.com/watch?v=ki6BJt--e3k
Image source (b): https://www.youtube.com/watch?v=RSrTX1Oi2hc

2.4.2. DEGRADATION MODEL OF THE AIRCRAFT LANDING GEAR BRAKES
We model the continuous degradation of an aircraft brake using a Gamma process [9, 15,
37]. During a flight cycle (see Figure 2.2), the brakes are used: after take-off to stop the
wheels before retraction, during landing to decelerate, and during taxi to stop or to make
turns. These phases are shorter compared to the entire flight-time. Thus, we assume that

the brakes are used the same amount of time in each flight cycle, i.e., u(τarr
i −τdep

i ) = 1 in
Equation (2.1).

Let the degradation level of a brake at the beginning and the end of the flight-time of

flight cycle i be Z (τdep
i ) and Z (τarr

i ), respectively. Then, we model the brake degradation
increment during flight-time i as follows (i.e., Equation (2.1) becomes):

Z (τarr
i )−Z (τdep

i ) ∼ Gamma(α,β), (2.10)

where α> 0 is the shape parameter and β> 0 is the scale parameter of the Gamma dis-
tribution. We also assume that the degradation is negligible during ground-time.

We consider two maintenance tasks: inspection and replacement of the brakes. Fol-
lowing an inspection during the ground-time of flight cycle i , the degradation level re-
mains the same, i.e.,

Z (τarr
i ) = Z (τdep

i+1). (2.11)

Following a replacement at the ground-time of flight cycle i ,

Z (τdep
i+1) = 0, (2.12)

which indicates that the brake is new and has no degradation at the beginning of flight
cycle i +1.

For simplicity, when no brake replacement occurs during flight cycle i , we denote
the degradation level at the end of the flight-time i as:

Zi = Z (τarr
i ) = Z (τdep

i+1) (2.13)

https://www.youtube.com/watch?v=ki6BJt--e3k
https://www.youtube.com/watch?v=RSrTX1Oi2hc
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Then, using this in Equation (2.10), (Zi+1 − Zi ) ∼ Gamma(α,β). Thus, during the time
between flight cycles i1 and i2, (i2 > i1), given that there is no brake replacement, the
degradation Zi follows a Gamma process with the linear shape function α(i2 − i1):

Zi2 −Zi1 ∼ Gamma
(
α(i2 − i1),β

)
. (2.14)

If a brake is replaced during the ground-time of flight cycle irep, then Zirep+1 = 0, and
we restart the Gamma process from the flight cycle irep +1.

Lastly, we consider a predefined degradation threshold η. Once Zi ≥ η, the brake is
assumed to be inoperative. Without loss of generality, under a proper scaling, we con-
sider η= 1.

Figure 2.18: A realization of the degradation process following Equation (2.14).

Figure 2.18 shows an example of the degradation process {Zi } following Equation
(2.14) whereα= 2,β= 0.01. Here, we consider 100 flight cycles and a degradation thresh-
old η = 1. The degradation level increases until the brake is replaced at the flight cycle
i = 40. A new degradation process is restarted from flight cycle i = 41 with Z41 = 0. As a

result, Equation (2.13) does not hold for i = 40, i.e., Z (τarr
40 ) ̸= Z (τdep

41 ). In the flight cycles
i ≥ 98, Zi ≥ η, which implies that the aircraft is released with the brake degraded more
than the acceptable level.

We construct the LPNs of the 8 brakes in the agent AC as shown in Figure 2.19. Each
LPN AC Brake-ξ shows the LPN of brake-ξ, where ξ = {1,2, . . . ,8} (see also Figure 2.16).
Each LPN is made by taking only two necessary transitions for degradation and replace-
ment of brakes from the LPN of a general aircraft component in Figure 2.7. Each LPN
uses tokens whose color is given by the parameters of the degradation process. For ex-

ample, the token in the LPN AC Brake-ξ has color (ξ, Z ξ
i ,αξ,βξ), where Z ξ

i is the degra-

dation level of the brake-ξ at the end of the flight cycle i ,αξ and βξ are the shape and the
scale parameters of the degradation process of brake-ξ, defined in Equation (2.14). Each
transition Replacement brake-ξ has the corresponding input places Trigger replacement
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Figure 2.19: LPNs : Brakes of the agent AC.

brake-ξ. Each transition Degrade brake-ξ has its own input place Use of brake-ξ, but has
a common enabling place In-flight because the operational state of the aircraft applies to
all brakes.

2.4.3. MAINTENANCE STRATEGIES FOR AIRCRAFT LANDING GEAR BRAKES
We consider four aircraft landing gear brake maintenance strategies, which we refer
to as TBM-CI, TBM-FI, CBM, and PdM. TBM-CI is a time-based maintenance strategy
that uses fixed time intervals (flight cycles) at which visual inspections are conducted
by mechanics. Such time-based maintenance strategies are often used in practice. In
this chapter, we consider TBM-CI to be a baseline strategy. The TBM-FI strategy is a
time-based maintenance strategy that requires more frequent inspections compared to
TBM-CI, i.e., it uses shorter inspection interval. The CBM strategy uses sensor data such
that inspections are triggered only after the sensor data indicates a high level of degra-
dation. The PdM strategy uses sensor data to estimate the RUL of the brakes. In turn,
using the RUL, the moment for brake replacements is decided. Unlike the other three
maintenance strategies, PdM does not rely on visual inspections conducted by the me-
chanics, instead, utilizes the sensor data and RUL estimation. Below we specify these
four maintenance strategies

TBM-CI STRATEGY

TBM-CI strategy requires periodic brake inspections at fixed intervals of flight cycles.
Under TBM-CI, we assume that the brakes are inspected every 50 FCs, i.e., d TBM-CI

ins =
50 FCs. Upon an inspection, if Ẑ ξ

i the observed degradation level of brake-ξ exceeds a

replacement threshold ηrep = 0.97, but is not larger than η= 1, i.e., ηrep ≤ Ẑ ξ
i ≤ η, then a

replacement of brake-ξ is scheduled within 20 FCs. We call such a replacement a sched-
uled replacement. If Ẑ ξ

i ≥ η, then brake-ξ is replaced immediately, before the next flight
cycle. We call such a replacement an unscheduled replacement.
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Under the TBM-CI strategy, the agents are modeled as follows. The agent TP gen-
erates a task token for scheduled inspections of the eight brakes in every d TBM-CI

ins . The
agent ME executes inspections and replacements of the eight brakes. The LPN Task Ex-
ecution of the agent ME is given in Figure 2.20. For simplicity, Figure 2.20 shows two
tasks: Replacing brake-ξ and Inspecting brake-ξ, which are applied in the same way for all
eight brakes, ξ ∈ {1,2, · · · ,8}. After an inspection, the agent ME has three possible actions,
based on the inspected condition of the brake Ẑ ξ (see Figure 2.20) in the form of three
guard transitions connected to the place Deciding:

i) If Ẑ ξ
i < ηrep, the transition Complete moves the token from the place Deciding to the

place Completing, without generating new task tokens.

ii) If ηrep ≤ Z ξ
i < η, the transition Request scheduled replacement fires a new task

token to the place Task to plan, so that the agent TP can schedule a replacement within
20 FCs.

iii) If Z ξ
i ≥ η, the transition Generate unscheduled replacement fires a new task token

to the place Task to execute. This unscheduled replacement is executed immediately,
before the next departure of aircraft.

For the agent AC, because TBM-CI does not use sensor data, we do not have tokens
in LPN AC Sensor-ξ (Figure 2.8), and do not consider the agent DM. For the agent TG,
TP and CR, the agent models in Section 2.3 are used.

TBM-FI STRATEGY

The TBM-FI strategy is similar to TBM-CI, but now we consider twice as many inspec-
tions, i.e., d TBM-FI

ins = 25 FCs.

CBM STRATEGY

The CBM strategy utilizes Z̃ ξ
i , the sensor data on the condition of the brakes, to decide

the moment of brake inspections. As soon as Z̃ ξ
i ≥ ηCBM

ins with ηCBM
ins = 0.75, we schedule

inspections every 50 FCs, i.e., d CBM
ins = 50. When considering the CBM strategy, we dis-

card early inspections required under TBM-CI and TBM-FI strategies. In particular, we
are interested in discarding early inspections, when the degradation level of the brake is
low.

Under the CBM strategy, agent models of AC and DM are modified, in comparison
to the TBM-CI strategy, as follows. The agent AC has additional LPNs, representing the
sensors. For the 8 brakes, We have 8 sensor LPNs as shown in Figure 2.8. In each LPN of
sensor-ξ, transition Monitor has its own input place Trigger sensor-ξ and enabling place
Condition of brake-ξ. Also the LPN Alert System of the agent DM is adjusted from the
general LPN Alert System (see Figure 2.10) for the 8 brakes as shown in Figure 2.21. The
transitions Alert and Activate have 8 enabling places for 8 sensors, i.e., Sensor-ξ working
for ξ ∈ {1,2, · · · ,8}. The transition Alert is fired if ∃ξ ∈ {1,2, · · · ,8} such that Z̃ ξ

i (t ) ≥ ηCBM
ins .

The transition Activate is fired if Z̃ ξ
i (t ) < ηCBM

ins for ∀ξ ∈ {1,2, · · · ,8}. Then, the agent TG
generates periodic inspection tasks using the token in the place Feedback from DM (see
Figure 2.11).
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Figure 2.20: LPN : Task execution of the agent ME for the aircraft landing gear brake maintenance.

Figure 2.21: LPN : Alert system of the agent DM for the landing gear brake maintenance.
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PDM STRATEGY

Lastly, the PdM strategy schedules brake replacements based on a data-driven estima-
tion of the RUL (prognostic) of the brakes. We define RULξ as the predicted number
of remaining flight cycles until the degradation level of brake-ξ becomes unacceptable,

Z ξ
i ≥ η. Under PdM, the sensors monitor the condition of the brakes in every flight cycles

and the data on the condition of the brakes, {Z̃ ξ
i }, is stored.

Using a linear regression to analyze the sensor data, we estimate the degradation

level of the brakes in the upcoming flight cycles. Let Z̃ ξ
(i+ j ) be the degradation level after j

flight cycles when i is the latest completed flight cycle at the moment of RUL estimation.

In other words, we have data for {Z̃ ξ
0 , · · · , Z̃ ξ

i } and we estimate the degradation at flight
cycle i + j .

We consider the following linear regression model:

Z̃ ξ
(i+ j ) =ω

ξ
0 +ωξ1 · j , (2.15)

where we estimate the coefficientsωξ0 andωξ1 by the ordinary least squares method. Then
we have that:

RULξ = min{ j ∈Z+|ωξ0 +ωξ1 · j ≥ η}. (2.16)

Using this approach, we estimate RULξ every flight cycles for eight brakes. Now, if RULξ ≤
30 FCs, then brake-ξ is replaced after RULξ FCs.

The agent DM under PdM is specified by adding the LPN Prognostics in Figure

2.9 and giving a token in the place Prognostics. The agent DM receives the data Z̃ ξ
i

from the token in the enabling places Sensor-ξ working. The transition Estimate RUL
of component-ξ stores the data set {Z̃ ξ

i } and estimates RULξ, updating the token SP in the
place Prognostics. The guard transition Alert TG based on RUL of component-ξ fires a
token to the place Feedback from DM, if RULξ ≤ 30 FCs. Then, the agent TG generates a
task token to replace brake-ξ, using the LPN Task Generation (see Figure 2.11).

2.4.4. SAFETY AND EFFICIENCY INDICATORS OF MAINTENANCE FOR

AIRCRAFT LANDING GEAR BRAKES
In this section we define indicators that show the safety and efficiency of the mainte-
nance strategies for aircraft landing gear brakes. To assess the safety of the maintenance
strategy, we define a safety incident, which is an undesirable event considering the safety
of the aircraft operation. The aircraft is designed to be safe even with some inoperative
brakes whose degradation level is greater than threshold, i.e., Z (t ) ≥ η. The master min-
imum equipment list (MMEL) specifies the minimum number of operable brakes to dis-
patch an aircraft safely. For example, in the case of Airbus A350 and Boeing B787, MMEL
specifies that the aircraft can be dispatched if it has more than three operable brakes on
each side [5, 6]. In line with the MMEL, if we dispatch an aircraft with more than one
inoperative brakes on at lest one side, we regard it as a brake-related safety incident. A
formal definition is as follows:

Definition 1 (brake-related safety incident) We say that there is a brake-related safety
incident at flight cycle i , if the incident indicator function I(i ) = 1, where I(i ) is defined as
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follows:

I(i ) =1
(( ∑
ξ∈L

[
1(Z ξ

i ≥ η)
]≥ 2

)
∨

( ∑
ξ∈R

[
1(Z ξ

i ≥ η)
]≥ 2

))
, (2.17)

where L = {1,2,5,6} and R = {3,4,7,8} are the sets of position indices of the brakes on the
left and right side of the aircraft, respectively. And, 1(·) is an indicator function which is 1
if the given logical expression is true and 0 else.

Based on the brake-related safety incident, we define two safety assessment indica-
tors, TInc( j ) and NInc(t ) as below:

Definition 2 We say that if I(i ) = 1 for flight cycle i , the brake-related safety incident oc-
curs at the arrival time τarr

i . TInc( j ) is the time when the j th brake-related safety incident
occurs, which is defined as follows:

TInc( j ) = min
{
τarr

i , i ∈ I
∣∣(I(i ) = 1) ∧ (τdep

i > TInc( j −1))
}
, (2.18)

with TInc(0) = 0.

Definition 3 Let NInc(t ) denote the number of brake incidents that occur by time t > 0,
which is defined as follows:

NInc(t ) =
∞∑

j=1
1
(
TInc( j ) < t

)
. (2.19)

Following Definitions 2 and 3, we denote by TInc(1) the time the first brake incident
occurs and by NInc(tH ) the total number of brake incidents occurred by the time horizon
of simulation tH > 0. These two indicators are used to understand the safety of brake
maintenance strategies. For instance, P[TInc(1) ≤ t ], the probability to have an incident
by time t , is used to understand how risk evolves over time under a particular mainte-
nance strategy.

To assess the efficiency of the maintenance strategies, we consider i) the number of
maintenance tasks executed in a period tH , and ii) the degradation level of brakes at the
moment of replacement.

Definition 4 We denote by NTask(tH ) the total number of maintenance tasks, both inspec-
tions and replacements, that occur in a period of time tH . Similarly, NRep(tH ), NSch(tH ),
and NUns(tH ) implies the number of all replacements, scheduled replacements, and un-
scheduled replacements that occur in a period of time tH .

Definition 5 We denote by Zirep the degradation level of brakes at the moment of replace-
ment, given that the brake is replaced after flight cycle irep

In general, as long as safety is maintained, a low number of maintenance tasks is
preferred. This is because a large number of maintenance tasks generally implies higher
maintenance cost. The maintenance strategies given in Section 2.4.3 use two types of
maintenance tasks, i.e., inspection, and replacement. Inspection is generally less ex-
pensive task compared to replacement. There are two types of replacement tasks, i.e.,
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scheduled replacement and unscheduled replacement. Unscheduled replacements are
not desired because they may cause unexpected ground-time with a high chance, espe-
cially when maintenance resources such as spare components, mechanics, or hangars
are not available [3].

Also, if Zirep ≥ η, the replacement is performed after the brake is degraded beyond
the threshold η. On the other hand, Zirep < η implies that the operable brake is replaced
before the threshold η. This may be a waste of resources in the sense that we replace the
brake that can be used more. Considering both safety and efficiency of the maintenance,
it is desired to have Zirep as large as possible, but not exceeding η.

2.4.5. ESTIMATION OF THE MODEL PARAMETERS
First, we estimate the parameters of the brake degradation model in Section 2.4.2. The
parametersα andβ of the Gamma process in Equation (2.14) are estimated based on the
sensor data recording the thickness of the brake discs. This data is collected from a fleet
of wide-body aircraft, where aircraft have been in operation for a period of 6 months up
to 3 years.

The disc thickness data is scaled such that it indicates the degradation level Zi of a
brake following Equation (2.14). The thickness of a brand new brake disc is scaled to be
Zi = 0. The thickness of a brake disc that needs to be replaced is scaled to be Zi = 1, in
line with our replacement threshold η= 1.

Figure 2.22 shows the degradation level data obtained from brake-1, {Z̃ 1
i }. Each line

indicates the recorded degradation data between two consecutive replacements. The x-
axis shows the number of the flight cycles since the brake is replaced. Some data sets
start from the non-zero degradation level because some degraded brakes are initially
installed in practice to avoid the case when multiple brakes become inoperative at the
same time.

Figure 2.22: Degradation level data of the aircraft brake-1.

We first estimate the parameters α and β of the Gamma process in Equation (2.14)
from the recorded degradation level data sets {Z̃i }, using the maximum likelihood es-
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timation (MLE) method as follows. Let ∆i be the number of flight cycles between two
successive data points Z̃i and Z̃i+∆i . Thus, the increment of the brake degradation level
between flight cycle i and i +∆i follows a Gamma distribution:

Z̃i+∆i − Z̃i ∼ Gamma(α∆i ,β) (2.20)

We now apply the MLE method to estimate the parameters α and β of the gamma distri-
bution in Equation (2.20) following the method proposed in [38, 39, 40].

Table 2.2: Estimation of the parameters of the aircraft brake degradation model Gamma(α,β). In the first
column, L and R indicate the brake is on the left and right side, respectively.

Brake position Parameters KS test
ξ α̂ β̂ rejection rate

1 (L) 3.350 2.063e-4 0.23%
2 (L) 4.146 1.836e-4 3.28%
3 (R) 3.546 2.217e-4 0.40%
4 (R) 3.390 2.171e-4 4.82%
5 (L) 4.667 1.715e-4 1.43%
6 (L) 4.100 1.856e-4 0.11%
7 (R) 3.068 2.329e-4 0.07%
8 (R) 2.583 2.852e-4 0.45%

Table 2.2 shows the estimated parameters α̂ and β̂ for each of the eight brakes. The
difference in the parameters among brake positions can be explained by, for instance,
the layout of the airport which requires the aircraft to perform a different number of left
and right turns while taxiing at an airport.

Next, we conduct a Kolmogorov-Smirnov (KS) test to verify the following null hypoth-
esis:

H0: {Zi } follows a gamma process with shape parameter α̂ and scale parameter β̂.
Since our Gamma process data points are not equally spaced, i.e., each data Z̃i+∆i −

Z̃i follows a different Gamma distribution, we cannot directly apply KS test. To address
this, based on the original data {Z̃ }, we resample an equally spaced Gamma process data
{Z̃i ′ }i ′∈I ′ such that I ′ is an equally spaced flight index set [41]. The data Z̃i ′ is re-sampled
using the interpolation between two consecutive available data points Z̃il < Z̃ir and by
constructing a Gamma bridge as follows [41]:

Z̃i ′ − Z̃il

Z̃ir − Z̃il

∼ Beta
(
α(i ′− il ),α(ir − i ′)

)
, (2.21)

where Beta(α(i ′− il ),α(i ′r − i )) is a Beta distribution with two shape parameters α(i ′− il )
and α(i ′r − i ).

Figure 2.23 shows a part of the recorded, original brake data {Z̃i } which has unequal
intervals ∆i , and the equally spaced data {Z̃i ′ } that is re-sampled from the original data
{Z̃i }, as shown in Equation (2.21).

Because this approach is based on sampling from a Beta distribution, we repeat the
KS test with different realization of the resampling and determine the average rejection
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Figure 2.23: Degradation process data example – unequally spaced data points Z̃i , and equally spaced data
points Z ′

i , after resampling.

rate[41]. Table 2.2 shows the rejection rate for 104 KS tests with a significance level of
0.05.

Apart from the brake degradation model, we also assume that the inspection error
ϵins in Equation (2.8), follows a normal distribution, i.e., ϵins ∼ N (0,σ2

ins). Here, σins =
7.53× 10−5 is assumed based on the minimum scale of the degradation measurement
during visual inspection.

Lastly, we estimate the sensor accuracy ϵS in Equation (2.4) by comparing the sen-
sor data and the detailed brake inspection reports conducted by the manufacturer of
the brakes. Assuming that the detailed inspection is accurate enough, we estimate ϵS =
Z̃i −Zi , the error between the sensor readings and the detailed inspection results, which
has a mean and standard deviation of 0.000327 and 0.0204, respectively. We assume that
ϵS follows a non-biased Gaussian distributionN (0,0.02042). We further test our assump-
tion by means of a KS test with the null hypothesis:

H0: ϵS ∼N (0,0.02042).
The p-value of the KS test is 0.4493, and, thus, the null hypothesis is not rejected.

2.4.6. MONTE CARLO SIMULATION RESULTS
We conduct Monte Carlo simulations to evaluate the four maintenance strategies by in-
tegrating the brake degradation model (Section 2.4.2), the agent models following the
maintenance strategies (Section 2.4.3), the safety and efficiency indicators (Section 2.4.4),
and the estimated parameter (Section 2.4.5).

We simulate the maintenance of the landing gear brakes for a period of 10 years, i.e.,
tH = 10 years. We generate flight cycles based on an actual flight schedule of a aircraft
operated during 2015-2019 by an European airline. We initialize the degradation levels of
the brakes with the observed degradation level at a random moment in the recorded data
sets. This is due to the fact that, in practice, not all the eight brakes are installed as new
at the same time, in order to avoid the case when all the eight brakes reach a maximum
degradation level at the same time. For each maintenance strategy, 104 Monte Carlo
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Table 2.3: Number of brake-related safety incidents in tH = 10 years of operations.

TBM-CI TBM-FI CBM PdM

E[NInc(tH )] 0.8248 0.0470 0.8377 0.0386
95% confidence interval
Upper bound 0.8804 0.0558 0.8936 0.0460
Lower bound 0.7692 0.0382 0.7818 0.0312

Table 2.4: Probability to have at least one brake-related safety incident by tH = 10 years.

TBM-CI TBM-FI CBM PdM

P[TInc(1) ≤ tH ] 0.1169 0.0154 0.1215 0.0148

simulation runs are conducted.

Firstly, we consider the number of brake-related safety incidents by tH , i.e., NInc(tH )
defined in Equation (2.19). Table 2.3 shows E[NInc(tH )], the expected number of inci-
dents by tH , under the four maintenance strategies and the 95% confidence intervals
of E[NInc(tH )]. Under the baseline maintenance strategy, TBM-CI, 0.8248 incidents are
expected to occur by tH . When we inspect the brakes twice often, under TBM-FI, the
expected number of incidents decreases to 0.0470. Thus, this significantly improves the
safety indicators at the cost of double the number of inspections. Under CBM, if we start
the periodic inspections after the sensor indicates 75% wear of the brakes, then the ex-
pected number of incident are comparable to the case TBM-CI. Finally, under PdM, if we
replace the brakes based on the RUL estimation, it is expected to have 0.0386 incidents.
This indicator is significantly smaller than in the case of TBM-CI, and similar to the case
of TBM-FI.

Another safety indicator is TInc(1), the time when the first brake-related safety inci-
dent occurs (see Equation (2.18)). Table 2.4 shows the probability to have at least one
brake-related safety incident in 10 years of aircraft operation, i.e., P[TInc(1) ≤ tH ]. Un-
der TBM-CI, P[TInc(1) ≤ tH ] is 0.1169 . Under TBM-FI and PdM, P[TInc(1) ≤ tH ] is 0.0154
and 0.0148, respectively, which are significantly smaller than the case TBM-CI. Under
CBM, P[TInc(1) ≤ tH ] is slightly higher than TBM-CI. Thus, compared to TBM-CI, Table
2.3 shows that the use of TBM-FI or PdM significantly improves the safety indicators of
the brake maintenance in a similar degree, while CBM does not improve the safety indi-
cators significantly.

Figure 2.24 shows the empirical cumulative distribution function (CDF) of TInc(1),
i.e., P[TInc(1) ≤ t ]. The CDF of TInc(1) significantly increases, approximately every 3
years. This shows that the brake-related incidents are concentrated in a short interval
of time. This is because the degradation of brakes reaches η after 1250-1400 FCs, which
is approximately the number of flight cycles made in 3 years. By comparing the different
maintenance strategies, we observe that the jumps of P[TInc(1) ≤ t ] occurs at similar t .
Thus, Figure 2.24, shows that the moment of brake-related safety incident is less affected
by the maintenance strategies.
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Figure 2.24: Empirical cumulative distribution function of TInc(1).

Table 2.5: Average number of maintenance tasks executed in tH = 10 years.

TBM-CI TBM-FI CBM PdM

Inspections 632.0 1272.0 402.8 -
Scheduled replacements 18.5 23.50 18.3 23.2
Unscheduled replacements 4.8 ≤ 10−4 4.9 ≤ 10−4

For the analysis of efficiency, Table 2.5 shows the expected number of tasks in tH = 10
years under the four maintenance strategies. Here, we consider three types of tasks:
inspections, scheduled replacements, and unscheduled replacements. Under TBM-CI,
632.0 inspections, 18.5 scheduled replacements, and 4.8 unscheduled replacements are
expected to be carried out in 10 years of aircraft operation. TBM-FI uses twice as much
inspections, 1272.0 but needs almost no unscheduled replacements. In this case, addi-
tional costs with inspections are expected, while the costs with the unscheduled replace-
ments are expected to decrease. Thus, TBM-FI is expected to be more cost efficient com-
pared to TBM-CI if 640 additional inspections are cheaper than 4.8 additional unsched-
uled replacements. Because CBM starts the routine inspections later, it requires only
402.8 inspections, i.e. with 33% less inspections than TBM-CI. The amount of scheduled
and unscheduled replacements remain the same as in the case of TBM-CI. Thus, CBM is
expected to be more cost efficient than TBM-CI since it requires less inspections. Lastly,
PdM requires the least amount of tasks since this strategy does not rely on inspections
and unscheduled replacements. The number of scheduled replacements under PdM is
almost the same as the total amount of replacements under TBM-CI. This is because we
need the same number of replacements for a given period of tH , as we are using the same
brakes for the same flight schedule.

We also analyze the degradation level of the brakes at the moment of replacement,
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Table 2.6: Expected degradation level at the moment of brake replacement, tH = 10 years.

TBM-CI TBM-FI CBM PdM

E[Z arr
irep

] 1.00096 0.99487 1.00128 0.99887

95% confidence interval
Upper bound 1.00110 0.99498 1.00144 0.99895
Lower bound 1.00080 0.99475 1.00112 0.99878

i.e., Zirep . Table 2.6 shows the expected value of Zirep under each maintenance strategy.
Here, E[Zirep ] > 1 under TBM-CI and CBM, while E[Zirep ] < 1 under TBM-FI and PdM.
This is in line with the safety indicators of TBM-CI and CBM in Table 2.3. Considering
the 95% confidence intervals,E[Zirep ] of PdM is higher than that of TBM-FI. This implies
that the brakes are used efficiently without exceeding the threshold η under PdM.

SENSITIVITY ANALYSIS

We next analyze the sensitivity of the safety and efficiency indicators with respect to the
key parameters of each maintenance strategy. Again, we consider the indicators of TBM-
CI as a baseline. In the case of TBM-FI, we consider d TBM-FI

ins , the interval of inspection as
a key parameter. Here, TBM-FI with d TBM-FI

ins = 50 FCs is identical to TBM-CI. In the case
of CBM, we vary ηCBM

ins , i.e., the routine inspection is started at different degradation level.
Lastly, in the case of PdM, we consider ϵS, the sensor error as a key parameter since the
sensitivity associated with the sensor accuracy is one of the major concerns in the CBM
strategies.

Figures 2.25-2.26 show the expected number of incidents E[NInc(tH )] and the total
number of tasks under TBM-FI for 20 ≤ d TBM-FI

ins ≤ 80 FCs. Figure 2.25 shows that the
expected number of incidents increases as the interval of inspection (d TBM-FI

ins ) increases
because of the higher chance of missing a critical degradation level. At the same time,
Figure 2.26 shows that the total number of tasks decreases due to the reduced number
of inspections as d TBM-FI

ins increases.

In the case of CBM, Figure 2.27 shows that the expected number of incident (E[NInc(tH )])
remains in the same level even when the routine inspections are triggered later, i.e.,
higher ηCBM

ins . In particular,E[NInc(tH )] stabilizes around 0.8, which is similar to the case
of TBM-CI. Figure 2.28 shows a linear decrease in the total number of tasks. However, in
Figure 2.29, the number of scheduled and unscheduled replacements does not change
significantly as ηCBM

ins increases. This implies that the decrements are mainly attributed
to the reduced number of inspections. The sensitivity analysis results obtained for CBM
show that we can decrease the number of tasks while keeping the same level of safety
indicators if we substitute early routine inspections for the condition monitoring.

Lastly, under PdM, although the expected number of incident E[NInc(tH )] increases
slightly as ϵS increases, the increase is limited in comparison to TBM-CI. Figure 2.30
shows that, even when ϵS is 0.08, only 0.21 safety incidents are expected, which is sig-
nificantly less than the indicator under TBM-CI. Overall, Figure 2.30 shows that PdM
significantly reduces the probability of having brake-related safety incidents when the
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Figure 2.25: Expected number of the brake-related safety incidents under TBM-FI with different dTBM-FI
ins .

Figure 2.26: Expected total number of tasks under TBM-FI with different dTBM-FI
ins .
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Figure 2.27: Expected number of the brake-related safety incidents under CBM with different ηCBM
ins .

Figure 2.28: Expected total number of tasks under CBM with different ηCBM
ins .
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Figure 2.29: Expected number of scheduled and unscheduled replacements under CBM with different ηCBM
ins

sensor accuracy ϵS ≤ 0.8. In the case of the number of tasks, PdM relies only on sched-
uled replacements, and thus the number of tasks of PdM is incompatible to the other
strategies that also make use of routine inspections and unscheduled replacements. For
this reason, Figure 2.31 only shows the number of scheduled replacements, which is in-
dependent of the sensor error.

2.4.7. DISCUSSION

In this chapter, we propose two novel maintenance strategies, CBM and PdM, and assess
them against two TBM strategies, TBM-CI and TBM-FI.

TBM-FI, which uses frequent inspections, has better safety indicators when com-
pared with the baseline TBM-CI. However, it is not cost-efficient if the increment of the
number of inspections is more expensive than the reduced number of unscheduled re-
placements.

For CBM, which replaces early inspections with sensor data analysis, the safety indi-
cators are similar to those for TBM-CI, but the number of tasks, especially inspections,
is reduced significantly.

The PdM strategy has similar safety indicators as TBM-FI, but significantly reduces
the required number of maintenance tasks, since it uses the RUL estimation to schedule
replacements. Moreover, the efficiency indicators of PdM show an improvement relative
to all other strategies. In fact, PdM makes the most use of the breaks. This is shown by
the fact that, under PdM, the brakes are used until their degradation level is very close to
a predefined degradation threshold.

Lastly, following our sensitivity analysis, the safety indicators under CBM are not af-
fected when the start of periodic inspections is delayed. Also, our numerical results show
that the safety indicators under PdM are better than in the case of TBM-CI, even when
considering larger sensor errors.
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Figure 2.30: Expected number of the brake-related safety incidents under PdM with different ϵS.

Figure 2.31: Expected total number of tasks under PdM with different ϵS.
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From a methodology point of view, the basic model proposed in Section 2.3 can be
readily adapted to other aircraft components, maintenance strategies, as well as addi-
tional agents and characteristics of the maintenance process.

2.5. CONCLUSIONS
We propose a framework to assess safety and efficiency of the aircraft maintenance pro-
cess. We develop an agent-based model (ABM) of the end-to-end aircraft maintenance.
The agent models are formalized by means of stochastically and dynamically colored
Petri nets (SDCPNs). Next, we specify the agent models for several aircraft maintenance
strategies. Using a Monte Carlo simulation of the ABM, we assess safety and efficiency
indicators for the considered maintenance strategies.

We illustrate our framework for the maintenance of the aircraft landing gear brakes.
We propose a condition-based maintenance (CBM) strategy and a predictive mainte-
nance (PdM) strategy, and compare them to time-based maintenance (TBM) strategies.
Then the safety and efficiency of these strategies are assessed. Our results show a trade-
off between safety and efficiency. In particular, the strategy based on data-driven prog-
nostics shows improved safety and efficiency indicators compared to TBM strategies.

In conclusion, this framework supports the assessment of novel aircraft maintenance
strategies, ahead of their implementation in practice. As the ABM is designed to be
generic, different aircraft components, or different strategies can be readily analyzed.
Moreover, this framework is expected to be the basis of follow-up research for the design
and analysis of predictive aircraft maintenance considering more realistic interactions
of agents in practice.

As future work, we plan to extend our ABM for aircraft maintenance by considering
heterogeneous components, limited availability of spare parts and hangars, aircraft fleet,
human behaviors, and various error models.
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3
MULTI-OBJECTIVE ANALYSIS OF

PREDICTIVE AIRCRAFT MAINTENANCE

This chapter presents a multi-objective analysis of predictive aircraft maintenance (PdAM).
We define objectives representing various key performance indicators (KPIs) of aircraft
maintenance, such as aircraft reliability, and flight delay. These objectives are evaluated
using Monte Carlo simulation of the model of PdAM developed in Chapter 2. We identify
two groups of objectives representing the reliability and cost-efficiency of aircraft main-
tenance. In general, improving reliability objectives leads to trade-offs of cost-efficiency
objectives. A case study shows that predictive maintenance dominates traditional main-
tenance strategies when considering Pareto optimality. The identified objectives are used
for the optimization of PdAM in the following chapters.

Parts of this chapter have been published in the following research article:

J. Lee and M. Mitici, “Multi-objective analysis of condition-based aircraft maintenance strategies using discrete
event simulation,” in 2021 Annual Reliability and Maintainability Symposium (RAMS), pp. 1–6, Orlando, FL,
USA, May 24–27, 2021.

This paper has been awarded Thomas L. Fagan, Jr., RAMS Student Paper Award 1st Place, Reliability and Main-
tainability Symposium in 2021.
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3.1. INTRODUCTION
With the increasing use of condition monitoring systems, the maintenance of aircraft is
undergoing a paradigm shift where data analysis is central [1, 2]. Traditionally, aircraft
maintenance tasks are executed at fixed time intervals. These strategies are referred to as
time-based maintenance (TBM) [3]. Nowadays, TBM is gradually replaced by condition-
based maintenance (CBM), where sensor data are used to specify when and which main-
tenance tasks to execute. An example of CBM is the case when a maintenance task is
executed as soon as sensor data indicate degradation above accepted levels [4]. Further-
more, predictive maintenance (PdM) analyzes sensor data to estimate the remaining-
useful-life (RUL) of components, and schedules a maintenance task based on the esti-
mated RUL [4, 5]. This estimated RUL is further used to schedule maintenance tasks, in
anticipation of failures.

Transitioning from TBM to PdM requires the consideration of multiple objectives.
One main objective of PdM for aircraft is the reduction of maintenance costs [6, 7]. Addi-
tionally, aircraft maintenance aims to comply with aircraft operational regulations [3, 8],
to limit the need for unscheduled maintenance tasks [9], to reduce aircraft delays due to
maintenance [10], and to utilize the aircraft as much as possible [11]. Given these mul-
tiple objectives, it is of interest to understand how they are impacted by maintenance
strategies, how they are related to each other, and what are the trade-offs between them.

In this chapter, a methodology based on discrete-event simulation is proposed to
analyze the relation between multiple objectives of aircraft maintenance, and to iden-
tify the trade-offs between them. Specifically, a general aircraft maintenance model is
proposed for which a discrete-event simulation is conducted. The aircraft maintenance
model considers the operation of the aircraft, systems of multiple, redundant aircraft
components, and a stochastic degradation model for aircraft components. With this
framework, multiple objectives are analyzed for a sensor-based CBM, a RUL-based PdM,
and, for comparison reasons, a traditional TBM strategy. Then, conflicting objectives are
identified and Pareto fronts are obtained. The resulting Pareto fronts show that the PdM
strategy is located in the attractive Pareto knee region where conflicting objectives are
balanced.

3.2. METHODOLOGY
Multiple objectives of the maintenance of multi-component aircraft systems are ana-
lyzed by means of a discrete event simulation. Below we introduce the aircraft mainte-
nance model that is being simulated. This aircraft maintenance model is based on our
study in [4].

3.2.1. MULTI-COMPONENT AIRCRAFT MAINTENANCE MODEL

We model the maintenance of multi-component aircraft systems considering the fol-
lowing events: aircraft operation (aircraft arrival and departure), degradation of compo-
nents, maintenance tasks (component replacement, component inspection, and sensor
monitoring), and degradation incidents when the components reach such a high level of
degradation that the system becomes inoperable.

The aircraft is operated based on a sequence of flight cycles, each cycle i being de-
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fined by a departure and an arrival time (see Figure 3.1). The aircraft departs from the

airport at time τdep
i and arrives at the arrival airport after a flight-time ∆τi , where ∆τi ∼

N (∆τi ,σ2
i ). If an arrival time is τarr

i = τdep
i +∆τi , then the time interval between this ar-

rival and the successive departure is referred to as ground-time. Maintenance tasks are
performed during ground-time. If a task is not completed until the next departure time

τ
dep
i+1, the departure is delayed.

Figure 3.1: Flight cycle, where maintenance tasks can be executed during ground-time.

The aircraft consists of components that degrade during flight-time. Let the degra-
dation level of a component at time t be Z (t ). A new component without degradation
has Z (t ) = 0. We say that the component is inoperable, considering a safety margin of
degradation, if

Z (t ) ≥ 1. (3.1)

We consider components that degrade monotonically and gradually over time, as is
the case of bearings that wear out over time or brake pads that erode over time. For such
components, a Gamma process is shown to model well the degradation [12]. Similarly,
we assume that the degradation increment resulting from flight cycle-i follows a Gamma
distribution [12]:

Z (τarr
i )−Z (τdep

i ) ∼ Gamma(α,β), (3.2)

where, α is the shape parameter, and β is the scale parameter of the Gamma process. It
is assumed that the degradation is negligible during ground-time, i.e.,

Z (τdep
i )−Z (τarr

i+1) = 0. (3.3)

Following Equations (3.2) and (3.3), Z (t ) becomes a piece-wise Gamma process.
Over time, the components undergo maintenance. As for the maintenance tasks, we

consider component replacement, component inspection, and sensor monitoring.
Component replacement: When a component is replaced with a new one at time t ,

the degradation process is reset to be Z (t ) = 0. The time∆tRep spent for the replacement

of this component is modeled as an exponential time, i.e., ∆tRep ∼ Exp(δRep).
Component inspection: When a component is inspected, the degradation level is

known with an error. Let Ẑ (t ) be the degradation level obtained following an inspec-
tion. Then,

Ẑ (t ) = Z (t )+ϵIns, (3.4)
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where ϵIns ∼N (0,σ2
Ins). The inspection time ∆tIns is assumed to follow an exponential

distribution, i.e., ∆tIns ∼ Exp(δIns).
Sensor monitoring: For modern aircraft equipped with condition-monitoring sys-

tems, sensors are used to automatically monitor the degradation level of the component.
Let Z̃ (t ) be the degradation level of the component obtained from sensor monitoring.
Then,

Z̃ (t ) = Z (t )+ϵSen, (3.5)

where ϵSen ∼N (0,σ2
Sen). We assume that the sensor error is larger than the inspection er-

ror, i.e., σ2
Ins ≤σ2

Sen. Compared to other tasks that require an execution time, we assume
that sensor monitoring is instantaneous, i.e., ∆tSen = 0.

Figure 3.2 shows an example of the degradation of a component following Equations
(3.2) and (3.3). The gray regions represent flight-times, while the hatched regions rep-
resent ground-times. Z (t ) jumps after each flight-time following Equation (3.2). During
the 5th ground time, the component is replaced, and after time∆tRep = 2.5, the degrada-
tion level of this component is reset to zero. In this example, this component is replaced
before its degradation level exceeds a level of inoperability η= 1.

Figure 3.2: Example of component degradation over time.

For redundancy, an aircraft system often consists of multiple components. Here, we
say that a multi-component system has k-out-of-n redundancy if the system consists
of n components and needs to have at least k operable components, (0 < k ≤ n). As
soon as more than (n −k) components become inoperable in a system with k-out-of-n
redundancy, we say that a degradation incident occurs. The main objective of aircraft
maintenance is to avoid degradation incidents, and to keep the aircraft systems opera-
ble.

We consider two aircraft systems, each of which consists of 4 components with 3-out-
of-4 redundancy, i.e., a total of 8 components. We assume that the components follow
the same Gamma process with parameters α and β as in Equation (3.2), and that the
degradation of one component is independent of the degradation of the other compo-
nents.
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3.2.2. AIRCRAFT MAINTENANCE STRATEGIES AND PARAMETERS
Maintenance strategies determine the execution of maintenance tasks, i.e., which types
of tasks should be executed, and when should these tasks be executed. In this study, we
consider a TBM strategy named fixed-interval inspection (FII) [13], and a CBM strategy
named sensor-based replacement (SBR), and a PdM strategy named RUL-based replace-
ment (RBR). These strategies are discussed in detail in [4].

FIXED-INTERVAL INSPECTION (FII) STRATEGY

The fixed-interval inspection (FII) strategy is a TBM strategy that schedules component
replacements based on periodic inspections performed by mechanics, without sensor
monitoring [13]. Under the FII strategy, all components are inspected every dIns flight
cycles. If upon inspection it is observed that the degradation of a component exceeds
a threshold (Ẑ (t ) ≥ ηRep), then the replacement of this component is scheduled within
dRep flight cycles. The FII strategy has been widely implemented in traditional aircraft
maintenance [4, 13].

SENSOR-BASED REPLACEMENT (SBR) STRATEGY

The Sensor-based replacement (SBR) strategy is a CBM strategy that utilizes sensor mon-
itoring, instead of inspections performed by mechanics [4]. Under the SBR strategy,
sensors measure the degradation level Z̃ (t ) of components and report this after each
flight-time. If Z̃ (t ) ≥ ηRep, where ηRep is a degradation threshold, then the component is
replaced within dRep flight cycles. Unlike the component inspections in the FII strategy,
sensor monitoring does not cause any delays.

RUL-BASED REPLACEMENT (RBR) STRATEGY

The RUL-based replacement (RBR) strategy is a PdM strategy which uses the sensor data
indicating the level of degradation to estimate the remaining-useful-life of the compo-
nent, RUL [4]. Here, RUL is estimated based on the last sensor monitoring data {Z̃ (t ′)|0 <
t ′ ≤ t◦}, where t◦ is the current time. We consider the following linear model to estimate
the degradation level of a component at time t◦+ t :

Z̃ (t◦+ t ) =ω0 +ω1t . (3.6)

The coefficientsω0 andω1 are estimated after every flight cycle based on the most recent
sensor data using the ordinary least square method. Then, after each flight cycle we
predict RUL as follows [4]:

RUL = min
{

t
∣∣ω0 +ω1t ≥ 1

}
. (3.7)

Finally, if RUL is below a threshold RULmin, a component replacement is scheduled
within dRep flight cycles.

Each of the three maintenance strategies has its own parameters. For instance, the
FII strategy has the parameters dIns, and ηRep; the SBR strategy has the parameter ηRep;
and the RBR strategy has the parameter RULmin. We consider the parameter values given
in Table 3.1. Each parameter has its range, and its value is selected from evenly dis-
tributed l-levels following factorial design [14]. For example, for the values of RULmin,
we consider the range 20 ≤ RULmin ≤ 60 with steps of 1, which leads to a 41-level FD.
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Table 3.1: Maintenance strategies and their parameters .

Strategy Parameter Range Step Level

FII
dIns [20, 80] 10 7
ηRep [0.95, 1.00] 0.002 26

SBR ηRep [0.95, 1.00] 0.001 51

RBR RULmin [20, 60] 1 41

3.2.3. MULTIPLE OBJECTIVES OF AIRCRAFT MAINTENANCE
In general, aircraft maintenance has multiple objectives, i.e., keeping the aircraft systems
operational while minimizing maintenance costs and maximizing the quality of service.
We introduce the following objectives [4, 6, 9, 10].

• NInc : The number of degradation incidents. This directly represents the reli-
ability of a maintenance strategy from the perspective of keeping the aircraft
systems operable [4]. A low NInc implies that it is less likely to have inoperable
systems considering k-out-of-n redundancy.

• NRep : The number of component replacements. Since maintenance tasks re-
quire new components, manpower, and other resources, the number of com-
ponent replacements gives a direct indication of the maintenance cost [6]. A
small NRep is preferred as long as the aircraft systems are kept operational.

• NUns : The number of unscheduled component replacements. Component
replacements are scheduled in advance (before dRep flight cycles) in order to
have time to prepare the necessary resources. When a component replace-
ment is necessary but there is not enough preparation time because the fail-
ure was unexpected, we call this an unscheduled component replacement.
Because unscheduled replacements involve higher costs and delays [9], it is
desired to minimize NUns.

• TD : Aircraft delay caused by maintenance tasks. Among many causes of air-
craft delay, maintenance is the second most likely cause of delays longer than
one hour [10]. Thus, it is of interest to complete the maintenance tasks before

a next departure time τdep
i+1. This is achieved by scheduling maintenance tasks

only when enough ground-time is available.

• MCTR : The mean number of flight cycles to component replacement. This
measures the exploitation time of the components. A high MCTR implies
that the maintenance strategy utilizes the component efficiently and does not
waste the useful life of the component [4]. Thus, it is desired that MCTR is
maximized.

The goal is to minimize (or maximize) all these objectives by selecting a maintenance
strategy with proper parameter values. However, some objectives may conflict with oth-
ers. Therefore, their relation and trade-offs are analyzed next.
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3.2.4. DISCRETE EVENT SIMULATION OF AIRCRAFT MAINTENANCE

Based on the aircraft maintenance model in Section 2.1, we conduct a discrete event
simulation of 10 years of aircraft operations, to estimate the objective values of different
maintenance strategies and parameters. A maintenance strategy and specific parameter
values are referred to as a case. Specifically, a case is defined as a tuple of (strategy, pa-
rameter), e.g., (the RBR strategy, RULmin = 30). Considering the ranges and levels of the
parameters in Table 3.1, we simulate 7×26 cases for the FII strategy, 51 cases for the SBR
strategy, and 41 cases for the RBR strategy, which results in a total of 274 cases. For each
case, we run the discrete event simulation 104 times and estimate the objectives using
Monte Carlo methods.

3.3. SIMULATION RESULTS: MULTI-OBJECTIVE ANALYSIS
Using simulation, the objective values of the 274 cases are obtained. Again, each case
corresponds to a maintenance strategy and its specific parameter values. Below we
present the results obtained.

3.3.1. RELATION BETWEEN MULTIPLE OBJECTIVES

Figure 3.3 shows
(5

2

)
pairs of objective. Circle, triangle, and square markers denote the

objective values of cases with the FII, SBR, and RBR strategies, respectively. Except for
MCTR, all objectives are considered for minimization.

Each plot in Figure 3.3 shows the relation of a pair of objectives, where some pairs
of objectives are conflicting (plots (2) – (7)), while other pairs of objectives are improved
together (plot (1), plots (8)-(10)). Some relations (whether conflicting or not) can be ex-
pected before simulations. For example, it is expected that as MCTR increases, NRep

decreases (see plot (1)). However, since their trend and trade-off are not trivial, the sim-
ulation results can be analyzed further to obtain an in-depth understanding of the char-
acteristics of these objectives and the maintenance strategies considered. For example,
in plot (1), the relation between MCTR and NRep is neither linear nor inversely propor-
tional. Rather, when NRep = 2.4, MCTR suddenly drops from 1,200 to 1,250. This is be-
cause MCTR can be significantly different depending on the moment when components
are replaced, even if the same number of component replacements are performed.

More interesting relations between conflicting objectives are shown in Figure 3.3,
plots (2) – (7). For example, in plot (6) it is shown that fewer degradation incidents oc-
cur (low NInc) when components are replaced often (high NRep), i.e., there is a trade-off
between NInc and NRep. However, the trade-off is unclear under the SBR strategy where
there are nearly zero degradation incidents but different numbers of replacements. This
shows that in some cases of the SBR strategy, the components are replaced unnecessar-
ily often. A similar trade-off is shown between NUns and NRep in plot (5). The similarity
between plots (5) and (6) is because NInc and NUns are positively correlated, as shown in
plot (8).

The analysis based on Figure 3.3 is reinforced by the analysis of the correlation be-
tween the considered objectives using the Pearson correlation coefficient (see Table 3.2).
The Pearson correlation coefficient quantifies the linear correlation between two objec-
tives. A positive coefficient between two objectives implies that they are likely to be im-
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Figure 3.3: Pairwise objectives of the aircraft maintenance for the FII, SBR and RBR strategies.
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Table 3.2: The Pearson correlation coefficient of objectives for 274 cases of maintenance strategies and pa-
rameters.

Group 1 Group 2
MCTR NRep NUns NInc TD

Group 1
MCTR - 0.69 −0.77 −0.76 −0.80
NRep 0.69 - −0.40 −0.47 −0.50

Group 2
NUns −0.77 −0.40 - 0.90 0.73
NInc −0.76 −0.47 0.90 - 0.70
TD −0.80 −0.50 0.73 0.70 -

proved together, while a negative coefficient implies that they conflict with each other.
For example, the Pearson coefficient between TD and MCTR is −0.80, which represents
the trade-off shown in plot (4) of Figure 3.3.

Based on the Pearson correlation coefficient values, we categorize the objectives into
two groups such that the objective pairs within the same group have positive coefficients
(see Table 3.2). Group 1 is {MCTR, NRep}, and Group 2 is {NUns, NInc,TD}.

MCTR and NRep in Group 1 are positively correlated as both of them measure the ex-
ploitation time of a component. Since the exploitation of components is directly related
to the cost of maintenance, these objectives imply an economic benefit of the mainte-
nance. On the other hand, NUns, NInc, and TD in Group 2 measure the number of un-
desired events, i.e., unscheduled maintenance, degradation incidents, and aircraft de-
lay due to maintenance. In other words, these objectives represent the reliability of the
maintenance. The conflict between Group 1 (Cost) and Group 2 (Reliability) shows the
general trade-off between the reliability and the cost of aircraft maintenance.

Although aircraft maintenance has various objectives, it is useful to analyze the main-
tenance strategies based on a small number of representative objectives [15]. To con-
sider both reliability and economic aspects, we analyze the aircraft maintenance based
on two objectives, one chosen from Group-1 and one from Group 2. In particular, we
choose MCTR from Group 1 since it better represents the economic value because the
variance of NRep is very small compared to that of MCTR (see the scales of NRep and
MCTR in plot (1) of Figure 3.3). For the objective representing reliability (Group 2), NInc

or TD are chosen. NUns is not chosen because it is strongly correlated with MCTR (coef-
ficient 0.9 in Table 3.2), and therefore NUns is improved together with MCTR.

3.3.2. TRADE-OFF BETWEEN AIRCRAFT MAINTENANCE OBJECTIVES
Following the analysis in Section 3.1, in this subsection we analyze the trade-offs be-
tween Group 1 objective MCTR and Group 2 objectives NInc and TD. Pareto fronts are
generated for {MCTR, NInc} and {MCTR,TD} by collecting non-dominated cases from the
total 274 cases (the FII, SBR, or RBR strategy with their parameter values, see Table 3.1).

Figure 3.4 shows the Pareto front for the objectives MCTR and NInc. Since these two
objectives are conflicting, no single solution achieves a maximum MCTR and a mini-
mum NInc simultaneously. Rather, we should trade-off MCTR for NInc. For instance, the
number of degradation incidents can be minimized (NInc ≤ 10−4) if we accept a small
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Figure 3.4: Pareto front considering MCTR and NInc.

Figure 3.5: Pareto front considering MCTR and TD.

MCTR ≤ 1,235. Or, if we want to extend MCTR ≥ 1,250, then NInc is increased to 0.02.
The Pareto front in Figure 3.4 also provides insight into the maintenance strategies

considered. In all cases, the SBR strategy is dominated by the FII or RBR strategies, thus
not shown in the Pareto front in Figure 3.4. This means that the RBR or FII strategies are
preferred when considering MCTR and NInc. More interestingly, the cases considering
the RBR strategy are located in the middle, or in the extruded region of the Pareto front,
which is called the knee region [16]. The non-dominated solutions in the knee region are
generally preferred because they provide a balanced solution, i.e., both objectives are
moderately optimized. Outside of the knee region, an objective is significantly deterio-
rated to achieve a slight improvement in the other objective, which is less preferred for
aircraft maintenance [16, 17]. By comparing plot (3) of Figure 3.3 and Figure 3.4, it can
be seen that the FII strategy cases in this knee region are dominated by the RBR strategy
cases. In Figure 3.4, the non-dominated FII strategy cases cause either a large number of
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degradation incidents NInc ≥ 0.04 or a low MCTR ≤ 1,240, but the non-dominated RBR
strategy cases achieve a small NInc ≤ 0.04 and a moderate MCTR ≥ 1,240. This indicates
that PdM using RUL prognostics (the RBR strategy) is beneficial when we aim to improve
both MCTR and NInc.

Figure 3.5 shows the Pareto front between MCTR and the delay TD. Unlike the Pareto
front in Figure 3.4, the SBR strategy is visible in the lower-left corner of the Pareto front in
Figure 3.5. These non-dominated SBR strategy cases have a low delay (TD ≤ 0.1) but they
are not cost-effective (MCTR ≤ 1,230). The RBR strategy, on the other hand, is located
in the middle of the Pareto front, where 0.105 ≤ TD ≤ 0.115 and 1,230 ≤ MCTR ≤ 1,250.
In this region, many FII strategy cases are dominated by the RBR strategy cases (com-
pare plot (4) of Figure 3.3 and Figure 6). Thus, when both objectives are considered with
similar importance (knee region), the introduction of the RBR strategy improves both
objectives.

Overall, these results show that PdM using RUL prognostics (the RBR strategy) has a
benefit in improving both the reliability (NInc, TD) and cost (MCTR) of aircraft mainte-
nance.

3.4. CONCLUSION
We have conducted a multi-objective analysis of aircraft condition-based maintenance
strategies, using discrete event simulation. Our aircraft maintenance model covers the
general features of the maintenance of multi-component aircraft systems, such as air-
craft operations, stochastic degradation of aircraft components, redundancy of aircraft
systems, and maintenance strategies.

We have considered as objectives the minimization of the mean number of flight cy-
cles to component replacement (MCTR), the number of replacements (NRep), the num-
ber of degradation incidents (NInc), the number of unscheduled replacements (NUns),
and the delay due to maintenance (TD). Based on their correlation and trade-off, we
chose two pairs of conflicting objectives to represent the reliability and cost of aircraft
maintenance. We constructed Pareto fronts between these conflicting objectives under
condition-based maintenance strategies (the SBR and RBR strategies), and a traditional
time-based maintenance strategy (the FII strategy). The results show that the advanced
PdM strategy (the RBR strategy) dominates the other strategies in the knee region of
the Pareto fronts. This suggests that the introduction of PdM in aircraft maintenance
achieves a balance between the reliability and the cost of maintenance.
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4
PREDICTIVE AIRCRAFT MAINTENANCE

AT COMPONENT LEVEL

USING RUL PROGNOSTICS AND

DEEP REINFORCEMENT LEARNING

In this chapter, we propose a framework to optimize predictive aircraft maintenance (PdAM)
at the component level. The framework consists of two parts: the development of proba-
bilistic Remaining-Useful-Life (RUL) prognostics, and predictive maintenance planning.
The probabilistic RUL prognostics estimate the probability distribution of RUL using a
convolutional neural network with Monte Carlo dropout. The estimated RUL distribution
is used to plan component replacements using a deep reinforcement learning (DRL) ap-
proach. DRL approach minimizes the long-term cost with predictive maintenance plan-
ning, balancing the risk of component failure and the wasted life of the component. This
framework is illustrated for the maintenance of a turbofan engine.

Parts of this chapter have been published in the following research article:

J. Lee and M. Mitici, “Deep reinforcement learning for predictive aircraft maintenance using probabilistic
Remaining-Useful-Life prognostics,” Reliability Engineering and System Safety, 2022.
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4.1. INTRODUCTION
Modern aircraft are equipped with multiple sensors that generate large volumes of health
monitoring measurements for aircraft systems and components. For example, for a Boe-
ing 787, approximately 1,000 parameters are continuously monitored for the engine,
amounting to a total of 20 terabytes of data per flight hour [1]. Such data are the ba-
sis for Remaining-Useful-Life (RUL) estimations [2] and predictive aircraft maintenance
planning [3].

Many studies have focused in the last years on developing RUL prognostics for air-
craft components and systems [4]. For example, RUL prognostics for aircraft landing
gear brakes are developed using stochastic regression models [5]. The RUL of aircraft
cooling units are estimated using particle filtering [6]. RUL prognostics for electro - me-
chanical actuators are obtained using a Gaussian process regression [7]. Several RUL
prognostics for turbofan engines have been developed using convolutional neural net-
works (CNNs) [8], deep convolutional neural network (DCNN) [9], multi-scale DCNN
[10], and CNN with pooling [11, 12]. All these studies, however, predict RUL as a point
estimate, i.e., a single value of RUL. Yet, quantifying the uncertainty associated with the
estimated RUL is seen as a pre-requisite for predictive maintenance [13]. In this line, we
develop probabilistic RUL prognostics, where the distribution of the RUL is estimated.

Most existing studies develop either RUL prognostics only, or propose advanced main-
tenance planning models but make simple assumptions about the degradation of sys-
tems/components. For instance, the degradation of systems are often assumed to fol-
low stochastic processes such as Gamma processes [5, 14], Wiener processes [15], non-
homogeneous Poisson processes [16], or Markov process [17, 18]. Very few studies inte-
grate data-driven RUL prognostics into maintenance planning. In [19], for example, the
replacement of aircraft brakes is scheduled taking into account data-driven RUL prog-
nostics. In [8], RUL prognostics for aircraft engines are obtained. Based on these prog-
nostics, alarms are triggered and maintenance actions are specified. In [20], component
inspections are scheduled based on the epistemic uncertainty of the estimated RUL. In
[21], the crack size of airframe panels is estimated using extended Kalman filter. These
panels are further replaced based on these estimates. Similarly, we propose an integrated
framework for maintenance planning where data-driven RUL prognostics for turbofan
engines are used to specify the moment of engine replacement. However, these studies
above integrate RUL prognostics into maintenance planning using fixed thresholds, i.e.,
one fixed threshold is used to trigger maintenance of all same-type components, irre-
spective of the estimated degradation of each individual component. For instance, in [8]
all engines are replaced as soon as their RUL is estimated to be 44 days or less. In [21], the
replacement of airframe panels is triggered by a fixed threshold of 47.4 mm crack size.
In contrast, we propose an adaptive approach that schedules maintenance taking into
account the trends of the RUL prognostics, without using any fixed threshold.

In this chapter, we propose a deep reinforcement learning (DRL) approach for pre-
dictive maintenance that adaptively schedules maintenance considering probabilistic
RUL prognostics. The overview of the proposed framework is shown in Figure 4.1. Based
on sensor measurements, the probability distribution of RUL is estimated using CNNs
with Monte Carlo dropout. These RUL estimates are updated periodically over time, as
more sensor measurements become available. We further develop a DRL approach that
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Figure 4.1: Overview of proposed predictive maintenance framework using probabilistic RUL prognostics and
DRL.

uses these probabilistic RUL prognostics to plan maintenance. The probabilistic RUL
prognostics directly specify the states of the DRL. Using DRL, maintenance actions are
triggered adaptively, without relying on fixed thresholds. We illustrate our approach for
maintenance planning of aircraft turbofan engines.

The main contributions of this chapter are as follows:

• An integrated framework for predictive maintenance is proposed, where prob-
abilistic Remaining-Useful-Life (RUL) prognostics and deep reinforcement learn-
ing (DRL) are used to plan the maintenance of aircraft engines. Here, proba-
bilistic RUL prognostics (the estimated RUL distribution) are directly used to
construct the states of the DRL.

• Probabilistic RUL prognostics are obtained using Convolutional Neural Net-
works (CNNs) and Monte Carlo dropout. Using probabilistic RUL prognostics,
we show that the number of unscheduled maintenance is lower than when
using point-RUL estimates. This shows the benefit of quantifying the uncer-
tainty of RUL estimates for maintenance planning.

• We pose the problem of predictive maintenance planning as a DRL problem.
This approach adaptively proposes maintenance actions based on the trends
of the estimated RUL prognostics.
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The remainder of this chapter is organized as follows. In Section 4.2, we propose
probabilistic RUL prognostics using CNN with Monte Carlo dropout. In Section 4.3, we
formulate a DRL problem for predictive maintenance planning taking into account the
probabilistic RUL prognostics. In Section 4.4, we illustrate our DRL approach for the
maintenance of turbofan engines. In Section 4.5, we compare our DRL approach against
other maintenance strategies. Finally, we provide conclusions in Section 4.6.

4.2. ESTIMATING THE DISTRIBUTION OF RUL USING CNN
WITH MONTE CARLO DROPOUT

In this section, we obtain probabilistic prognostics of RUL of aircraft engines using multi-
channel convolutional neural networks (CNNs) and Monte Carlo dropout. These RUL
prognostics are updated after every flight cycle as new degradation data become avail-
able.

4.2.1. DATA DESCRIPTION AND PRE-PROCESSING

We consider the degradation data of aircraft turbofan engines obtained by NASA using
the Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) [22]. Figure
4.2 shows the simplified diagram of the turbofan engine simulated in C-MAPSS [23]. This
data set consists of data subsets FD001, FD002, FD003, and FD004, each considering a
specific number of fault modes and operating conditions (see Table 4.1) [24]. The train-
ing instances of the subsets have run-to-failure data of sensor measurements, while the
testing instances have sensor measurements up to some moment prior to failure. Each
instance consists of time-series data of 21 sensor measurements per flight cycle. Follow-
ing [8, 9], we select for our analysis 14 non-constant sensor measurements. We discard
the remaining 7 sensor measurements since these are constant across all flight cycles.

Figure 4.2: Simplified diagram of the engine simulated in C-MAPSS [23].
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Table 4.1: C-MAPSS data sets for turbofan engines [24].

FD001 FD002 FD003 FD004

Training instances 100 260 100 249
Testing instances 100 259 100 248
Operating conditions 1 6 1 6
Fault mode 1 1 2 2

We pre-process the raw data as follows. First, using the clustering of operational set-
tings proposed by [25], 6 operating conditions are identified. Let ok denote the operating
condition of an engine during kth flight cycle, ok ∈ {1, ...,6}.

We also consider the history of operating conditions. Let ho,k denote the number of
cycles that an engine has been operated under operating condition o, up to kth flight
cycle.

Next, the measurements of sensor s ∈ {1, ...,14} are normalized with respect to oper-
ating condition o as follows [8, 11]:

ms,k =
2(mo

s,k −mo
s,min)

mo
s,max −mo

s,min

−1, (4.1)

where ms,k is the normalized measurement of sensor s at kth flight cycle; mo
s,k is the raw

measurement of sensor s at kth flight cycle that is performed under operating condition
o; and mo

s,min and mo
s,max are the minimum and maximum measurement of sensor s

under operating condition o, respectively. In total, nF = 21 features are considered (the
current operating conditions ok , the history of the 6 operation conditions ho,k , and 14
types of sensor measurements ms,k ).

Finally, nF features for a time window of nW flight cycles are considered as the input
x of the CNN, i.e.,

x =

 o1 h1,1 ... h6,1 m1,1 ... m14,1
...

...
...

...
...

onW h1,nW ... h6,nW m1,nW ... m14,nW ,

 . (4.2)

Here, nW is selected based on the number of cycles available for the shortest test in-
stance in each data subset [8]. We use nW = 30 cycles for FD001 and FD003, nW = 21 for
FD002, and nW = 19 for FD004.

4.2.2. ARCHITECTURE OF THE MULTI-CHANNEL CNN WITH MONTE

CARLO DROPOUT
To obtain probabilistic RUL prognostics, we propose a neural network architecture com-
bining multi-channel convolutional layers, linear layers, and Monte Carlo dropout (see
Figure 4.3 and Table 4.2).

In contrast to [8], where a common 1D kernel is applied for for all features, we ap-
ply one 1D kernel per each time-series of a feature, i.e., each column of the input x is
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Figure 4.3: Proposed multi-channel CNN architecture. The blue lines visualize how multiple channels are
convoluted into the next layer (see Equation (4.3)). The red lines visualize a forward pass of a linear layer (see
Equation (4.4)).

Table 4.2: Architecture of the proposed CNN, where nC and nK are the number of output channels and the
length of the kernel of Conv1D layers, respectively, and nN is the number of output neurons of Linear layers. A
dropout rate ρ = 0.5 is used for all layers.

Layer Type Layer parameters

1 Conv1D nC = 128, nK = 10
2 Conv1D nC = 64, nK = 10
3 Conv1D nC = 32, nK = 10
4 Conv1D nC = 16, nK = 5
5 Conv1D nC = 8, nK = 5
6 Linear nN = 256
7 Linear nN = 128
8 Linear nN = 1

convoluted with different 1D kernels. Such multi-channel 1D convolutional layers are
shown to be effective for multi-variate time-series data [26], which is also the case of the
C-MAPSS data set. Since an independent kernel is used for time-series of each feature,
convolutional layers are able to learn patterns of each feature.

A multi-channel 1D convolutional layer is defined by the size (length) nK of the ker-
nel, and the number of output channels nC . Let the l th convolutional layer get input
x(l−1) from (l −1)th layer, where x(l−1) has n(l−1)

C channels. Then, the output of channel c

of l th convolutional layer is obtained as follows:

x l
c = g l

bl
c +

n(l−1)
C∑

c ′=1

κl
c,c ′ ∗x(l−1)

c ′

 for c ∈ 1, ...,nl
C , (4.3)

where ∗ is the convolutional operator, κl
c,c ′ is the kernel for input channel c ′ and output

channel c, bl
c is the bias of output channel c, and g l (·) is the activation function of the

convolutional layer. Here we use the rectified linear unit (ReLU) activation function.
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We use 5 convolutional layers. For the first convolutional layer, the input x0 is x
defined in Equation (4.2), and the number of input channel n0

C is equal to the number of
features nF = 21. Table 4.2 shows the number of output channels (nC ) and the size of the
kernels (nK ) of all convolutional layers. For all convolutional layers we use zero padding
to ensure the same size of the outputs.

After the convolutional layers, we apply two intermediate linear layers, and one out-
put linear layer with a single neuron without activation (see Figure 4.3). Let the l th linear
layer get (flattened) input x(l−1). Then, its output is obtained as follows:

x l = g l
(
bl +w l x(l−1)

)
, (4.4)

where w l is the weight matrix, bl is the bias, and g (·) is the ReLU activation function. We
denote the number of output neurons of the linear layers as nN (see Table 4.2).

Using the Adam optimizer [27], we optimize the kernels κl
c,c ′ and the bias bl

c of the

convolutional layers, as well as the weights w l and the bias bl of the linear layers. The
loss function considered here is the mean-squared-error. We train the network using a
fixed learning rate of 0.001, a mini-batch of 256 samples, and a maximum of 103 training
epochs.

MONTE CARLO DROPOUT

Typically, Monte Carlo dropout is used only during training to prevent overfitting [28].
We use Monte Carlo dropout i) during training to prevent overfitting of the model, and
ii) during testing to obtain the probability distribution of the RUL [29]. We apply Monte
Carlo dropout after each layer, using a dropping rate of 0.5.

4.2.3. RESULTS: PROBABILISTIC RUL PROGNOSTICS FOR TURBOFAN

ENGINES

We first compare the accuracy of our results against other RUL prognostics models [8,
9, 10, 11, 12]. These models estimate RUL only as a point estimate, while our results are
the estimated distribution of RUL. To be able to compare our results with these studies,
we consider the Root Mean Squared Error (RMSE) between the mean of the estimated
distribution of RUL and the true RUL. Table 4.3 shows the RMSE obtained for the testing
instances of each data subsets. In general, the RMSE of subset FD002 and FD004 are
higher than that of FD001. This is due to the multiple operating conditions considered in
FD002 and FD004 (see Table 4.1). Also, FD002 and FD004 have the shortest time window
of the input data compared to FD001 and FD003 (nW = 21 for FD002 and nW = 19 for
FD004)

Table 4.3 shows that our multi-channel CNN with Monte Carlo dropout outperforms
several other studies that employ CNNs for RUL prognostics. In fact, we obtained the
lowest RMSE for subsets FD002 and FD004. For subsets FD001 and FD003, only MS-
DCNN achieves a slightly smaller RMSE compared to our approach [10]. In general, the
accuracy of our prognostics is higher or comparable to other existing studies.
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Table 4.3: RMSE of the RUL predictions of the C-MAPSS data subsets using the proposed architecture of multi-
channel CNN with Monte Carlo dropout and the other studies.

FD001 FD002 FD003 FD004

Multi-channel CNN with MC dropout, 11.70 14.24 11.87 17.78
proposed in this chapter

Single-channel CNN with MC dropout [8] 12.22 15.07 12.47 18.10
DCNN [9] 12.61 22.36 12.64 23.31
MS-DCNN [10] 11.44 19.35 11.67 22.22
CNN with pooling [11] 18.45 30.29 19.82 29.16
CNN with pyramid pooling [12] 12.64 25.92 12.39 26.84

ESTIMATING THE DISTRIBUTION OF RUL
We are interested in quantifying the distribution of the engines’ RUL, with the ultimate
goal of informing maintenance decisions. Using Monte Carlo dropout, we generate the
distribution of the RUL. We update the RUL distribution after every cycle, as new degra-
dation data become available.

We illustrate the probabilistic RUL prognostics for three turbofan engines in testing
instances of subset FD002. Figure 4.4 shows the evolution of the estimated RUL distri-
bution over time, as more sensor measurements become available. Figure 4.5 shows the
estimated RUL distribution of the three engines after they are operated for 136, 96, and
107 flight cycles, respectively. For Engine 148 (Figure 4.4a), the distribution of RUL is
tightened across a sequence of flight cycles. After 136 flight cycles (Figure 4.5a), the error
between the mean-estimated RUL and the true RUL is small (1.00 cycles), and the RUL
distribution is concentrated around the true RUL (the standard deviation is 6.31 cycles).

For Engine 173 (Figure 4.5b), the RUL distribution is right-skewed and the error be-
tween the mean-estimated RUL and the true RUL is small (2.87 cycles). Although the
error of the estimated point (mean) of RUL is small, having the distribution of RUL
provides additional support in maintenance decisions. Should we consider for Engine
173 only the mean prediction of RUL (16.87 cycles) to schedule a replacement, then we
would be inclined to schedule a replacement close to 16 cycles. However, this main-
tenance decision would lead to an engine failure since the true RUL of Engine 173 is
14 cycles. Should we consider the estimated distribution of RUL for Engine 173 (Figure
4.5b), then we would observe the high probability (more than 45%) that Engine 173 fails
in less than 14 cycles. In fact, the probability of Engine 173 failing at 12th cycle is highest
(8.0%). Observing the RUL distribution we would be inclined to replace the engine close
to 12 cycles, and we can avoid an engine failure.

For Engine 021 (Figure 4.5c), the error between the mean RUL prediction and the
true RUL is large (26.93 cycles), and the RUL distribution is wide (standard deviation of
11.44). This is also informative for maintenance decision making, i.e., the accuracy of
the RUL prognostic is low. In fact, the RUL distribution is wide across a sequence of
flight cycles (see Figure 4.4c), leaving maintenance decision making conservative about
the moment of engine replacement.

As shown in Figures 4.5 and 4.4, the distribution of RUL prognostics provides valu-



4.2. ESTIMATING THE DISTRIBUTION OF RUL USING CNN WITH MC DROPOUT

4

75

(a) FD002 Testing Engine 148

(b) FD002 Testing Engine 173

(c) FD002 Testing Engine 021

Figure 4.4: Evolution of the RUL distribution over time. (a) The mean-estimated RUL gets closer to the true
RUL, and the variance decreases. (b) The mean-estimated RUL gets closer to the true RUL, and the variance
decreases though it is skewed. (c) Neither the error of the mean-estimated RUL nor the variance decrease.
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(a) FD002 Testing Engine 148

(b) FD002 Testing Engine 173

(c) FD002 Testing Engine 021

Figure 4.5: Probabilistic RUL prognostics. (a) The error between the mean-estimated RUL and the true RUL is
small, and the RUL distribution is narrow and centered around the true RUL. (b) The mean-estimated RUL is
slightly larger than the true RUL, and the RUL distribution is right-skewed. (c) The error between the mean-
estimated RUL and the true RUL is large, and the RUL distribution is wide.
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able information that can lead to more efficient maintenance decisions. In the next sec-
tion, we propose a deep reinforcement learning approach to specify the moment of en-
gine replacement based on the estimated distribution of RUL.

4.3. PLANNING PREDICTIVE AIRCRAFT MAINTENANCE USING

DEEP REINFORCEMENT LEARNING AND PROBABILISTIC

RUL PROGNOSTICS
In this section, we propose a deep reinforcement learning (DRL) approach for predic-
tive maintenance of turbofan engines taking into account probabilistic RUL prognostics
(estimated RUL distribution). These probabilistic RUL prognostics are updated periodi-
cally, as more measurements become available.

4.3.1. SCHEDULING ENGINE REPLACEMENTS CONSIDERING UPDATED

PROBABILISTIC RUL PROGNOSTICS

The maintenance schedule of aircraft engines is updated every D flight cycles. In other
words, every D cycles, we need to decide whether to replace an engine during the next D
cycles (a decision step). Some existing studies assume that maintenance schedules can
be updated every 1 cycle/day (D = 1) [17]. However, this assumption would be unre-
alistic for the maintenance of aircraft engines because it needs to be scheduled several
cycles/days in advance to prepare required equipment [8]. Thus, we assume D > 1 and
make predictive maintenance plan for the next D cycles.

Our aim is to minimize the total maintenance cost while avoiding engine failures and
minimizing the waste of useful life of engines. If an engine is replaced too late and as a
result this engine fails before the scheduled replacement, then we have to perform a very
costly unscheduled replacement [19]. On the other hand, if we schedule a replacement
too early, we waste the useful life of this engine. The long-run maintenance cost also
increases when engines are replaced often. Our goal is to propose an approach to op-
timally schedule engine replacement taking into account probabilistic RUL prognostics
(estimates of the RUL distribution).

Figure 4.6: Maintenance planning at t th decision step.
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Figure 4.6 illustrates the maintenance planning at a decision step t . At the start of
decision step t , we make use of sensor measurements xt available up to this decision
step t . Using xt , we estimate the distribution of the engine RUL using a CNN with Monte
Carlo dropout (see Section 4.2). Let pk,t denote the estimated cumulative probability
that the RUL of the engine is less than k cycles, given the available sensor measurements
xt . Formally,

pk,t = P (Rt ≤ k|xt ), for k ∈ {1, ...,D} (4.5)

where Rt is the hidden, true RUL of the engine at the start of decision step t . Based
on pk,t , at decision step t we decide whether to schedule an engine replacement after
k cycles (k ∈ {1, ...,D}), or do nothing within the next D cycles. If we do not schedule
any replacement in the next D cycles, then we only collect further sensor measurements
during these cycles. At the beginning of the (t +1)th decision step, these measurements
are used, together with a CNN, to update the estimated distribution of RUL, pk,(t+1).

For example, at the start of decision step t , we need to decide when to schedule re-
placement based on pk,t given in Figure 4.7. Figure 4.7 is the estimated RUL distribution
for FD002 Testing Engine 148 of the the C-MAPSS data set. This cumulative probability
pk,t is estimated after 136 cycles of usage. Our prognostics model predicts that the prob-
abilities that this engine will fail within 10 and 15 cycles are 37% and 82%, respectively. In
fact, the true RUL of this engine at this moment is 11 cycles, and our prognostics model
predicts that this engine will fail within 11 cycles with probability 48%. The distribution
in Figure 4.7 contains information of uncertainty useful for optimal maintenance plan-
ning, but it is not straightforward to be used by a human without enough experience and
knowledge. Therefore, we propose a deep reinforcement learning approach to make an
optimal replacement schedule using the distribution of RUL.

Figure 4.7: Estimated cumulative probability pk,t for FD002 Testing Engine 148 after it is operated for 136
cycles.
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4.3.2. FORMULATING PREDICTIVE MAINTENANCE PLANNING AS A DEEP

REINFORCEMENT LEARNING PROBLEM
We formulate the predictive maintenance planning for an engine as a deep reinforce-
ment learning (DRL) problem (see Figure 4.8). The hidden state of the engine is Rt , the
true RUL of the engine at decision step t , but this is not observable. Instead, the observed
state st of the engine is the RUL distribution estimated by the sensor measurements and
the prognostics using CNN. Given this observation st , an agent (decision-maker) takes
an action at ∈A based on the policy. Then, a reward rt is given based on the hidden state
Rt and the action at . Finally, the system transits from state st to st+1 at the next decision
step (t +1). We formalize our DRL problem as follows.

Figure 4.8: Illustration of states, actions, rewards and transitions of the DRL problem for predictive mainte-
nance planning.

The observed state st is the estimated distribution of the RUL pk,t for the next D
cycles, i.e., k ∈ {1, ...,D}. Formally,

st =
[
p1,t , ... , pD,t

]
, (4.6)

where pk,t is the probability that the RUL of the engine is less than k cycles (see Equation
(4.5)).

Given the state st , the agent choose an action at : either schedule a replacement of
the engine at cycle k (k ∈ {1, ...,D}), or Do nothing. Formally,

at =
{

k, 0 < k ≤ D Schedule replacement at cycle k,

M , M > D Do nothing
, (4.7)

where at = M > D implies that we do not schedule replacement in the next D cycles and
postpone the engine replacement to the next decision step (t +1).
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The reward rt obtained at decision step t is defined for 4 cases considering the action
at and the hidden state Rt : (1) a replacement is scheduled earlier than the engine failure;
(2) a replacement is scheduled later than the engine failure; (3) we decide to do nothing
in the next D cycles, but the engine fails within the next D cycles; and (4) we decide to
do nothing, and the engine does not fail in the next D cycles. Formally,

rt =


−csch(k) if (k −1) < at ≤ k and Rt > k

−cuns if (k −1) < at ≤ k and Rt ≤ k

−cuns if at > D and Rt ≤ D

0 if at > D and Rt > D

. (4.8)

Here, csch(k) denotes the cost of a scheduled replacement at cycle k (k ∈ {1, ...,D}), which
is defined as follows:

csch(k) = c0 − c1k, (4.9)

where c0 is a fixed cost of replacement and c1 is the cost that depends on the scheduled
cycle k. We assume that the replacement scheduled earlier is expensive because we need
less time to prepare the required equipment, i.e., c1 > 0 [19]. Also, c0 − c1D > 0. In Equa-
tion (4.8), cuns denotes the cost of unscheduled replacement, where we assume cuns > c0

because unscheduled replacement is generally more expensive [19]. Figure 4.9 plots the
costs of scheduled and unscheduled replacements when c0 = 1, c1 = 0.01, and cuns = 2.

The goal of the DRL agent is to choose an optimal moment to schedule a replacement
such that the expected rewards are maximized (or the expected costs are minimized).
When scheduling an engine replacement, the agent takes into account the estimated
probability of having an engine failure in the next D cycles (probabilistic RUL prognos-
tics).

In the example in Figure 4.9, if we schedule an engine replacement at cycle 25 and
this engine does not fail until then, then the engine replacement cost is 0.75. However,

Figure 4.9: Cost model of scheduled and unscheduled replacements. We assume c0 = 1, c1 = 0.01, cuns = 2,
and D = 30.
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there is a risk of having this engine fail before 25 cycles, which leads to unscheduled
replacement at a higher cost of 2.0, instead of 0.75. In the case of Engine 148, the prob-
ability that this engine fails before 25 cycles is more than 97% (see Figure 4.7). On the
other hand, if we schedule a replacement at cycle 5, the cost will be 0.95. Although this
cost is higher than a replacement scheduled at cycle 25, this maintenance action reduces
the risk of an expensive engine failure. In the case of Engine 148, the estimated failure
probability is less than 7% at cycle 5. In general, it is not trivial to choose an optimal
moment to replace an engine, given the estimated RUL distribution (Figure 4.7) and the
cost model (Figure 4.9).

Once the DRL agent chooses an action, the hidden state (true RUL) and the observed
state (RUL distribution, st+1) are updated accordingly. If the engine is replaced at de-
cision step t , then the next decision step considers a new engine from the C-MAPSS
dataset, with its initial sensor measurements and initial true RUL. Otherwise, we further
obtain sensor measurements during the next D cycles and update the distribution of the
RUL (the next state st+1) by generating new RUL prognostics using a CNN with Monte
Carlo dropout.

4.3.3. TRAINING DRL AGENT FOR PREDICTIVE MAINTENANCE PLANNING
The DRL agent chooses action at (maintenance decision) for a given state st (estimated
distribution of RUL) based on a policy π(at |st ) : S ×A→ [0,1], which is the probability
to choose action at for a given state st . The optimal policy π∗ is defined as a policy that
maximizes the expected reward defined as follows:

J (π) =∑
t
E(st ,at )∼ρπ

[
γt rt (st , at )

]
, (4.10)

where γ is a discount factor, and ρπ(st , at ) is the state-action trajectory distribution in-
duced by a policy π [30].

SOFT-ACTOR-CRITIC ALGORITHM TO TRAIN THE DRL AGENT FOR

PREDICTIVE MAINTENANCE PLANNING
We train the DRL agent using a Soft-Actor-Critic (SAC) algorithm [30]. The SAC algo-
rithm is an actor-critic algorithm where a policy (actor) is trained to choose actions that
maximizes the estimated state-action value (critic). Compared to traditional actor-critic
algorithms, the SAC uses a stochastic policy and maximizes a soft objective to explore
new policies.

We consider a stochastic policy πφ(at |st ) to determine the mean f µ
φ

(st ) and the stan-

dard deviation f σφ (st ) of action for a given state st , where φ is the trainable parameters

of f µ
φ

and f σφ . Then, an action at is chosen as follows:

at = f µ
φ

(st )+ϵt · f σφ (st ), (4.11)

where ϵt is sampled from a spherical Gaussian.
The considered soft objective includes the expected entropy of the policy πφ. For-

mally,
J (π) =∑

t
E(st ,at )∼ρπγ

t [rt (st , at )+αH (π(·|st ))] , (4.12)
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where α is the temperature parameter determining the relative importance between the
entropy term and the reward term. Thus, the SAC algorithm simultaneously maximizes
the expected reward and the entropy of the policy, allowing the exploration of new poli-
cies.

Considering the soft objective in Equation (4.12), the state-action value (Q function)
is modified as the soft Q function Q :S×A→R. This soft Q function is then obtained by
iteratively applying the following modified Bellman backup operator T π [30] :

T πQ(st , at ) = rt (st , at )+γEst+1∼p [V (st+1)], (4.13)

where p is the distribution of st+1, given st and at , and V (st ) is the soft state value func-
tion V :S →R defined as follows:

V (st ) = Eat∼π
[
Q(st , at )−α logπ(at |st )

]
. (4.14)

In the SAC algorithm, we train three functions: the policy (π), the soft Q function (Q),
and the soft value function (V ). We model these functions by means of three deep neural
networks, πφ, Qθ , and Vψ, where φ, θ, and ψ are the trainable parameters of each neural
network. During training, we collect the replay buffer D = {(st , at ,rt , st+1)} based on the
current policy πφ. Then, we update the trainable parameters to minimize the following
loss functions.

The policy net πφ is updated using the Kullback-Leibler (KL) divergence, which guar-
antees the improvement of the policy in terms of its soft value [30]. We minimize the
expected KL divergence as follows:

Jπ(φ) = Est∼D

[
DK L

(
πφ(·|st )

∣∣∣∣∣
∣∣∣∣∣exp( 1

αQθ(st , ·))

Zθ(st )

)]

= Est∼D,at∼πφ

[
logπφ(at |st )− 1

α
Qθ(st , at )+ log Zθ(st )

]
,

(4.15)

where Zθ(st ) is the partition function that does not contribute to the gradient with re-
spect to φ, and at is sampled from the current policy πφ using Equation (4.11).

For the value net Vψ, we minimize the residual of the value function calculated based
on the critic net Qθ :

JV (ψ) = Est∼D
[

1

2

(
Vψ(st )− V̂ (st )

)2
]

, (4.16)

with

V̂ (st ) = Eat∼πφ
[
Qθ(st , at )−α logπφ(at |st )

]
. (4.17)

For the critic net Qθ, we minimize the modified Bellman residual:

JQ (θ) = E(st ,at )∼D
[

1

2

(
Qθ(st , at )−Q̂(st , at )

)]
, (4.18)

with

Q̂(st , at ) = rt (st , at )+γEst+1∼p [Vψ̄(st+1)]. (4.19)
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Algorithm 1 Soft-Actor-Critic algorithm for predictive maintenance planning.

1: Initialize parameters φ, ψ, ψ̄, θ1, θ2.
2: for each episode do
3: Initialize observation s0.
4: for each decision step t do
5: Choose action at (Equation (4.11))
6: Get reward rt (Equation (4.8))
7: Get next state st+1 (Equation (4.6))
8: Update replay buffer D←D∪ {(st , at ,rt , st+1)}
9: for each learning step do

10: Sample mini-batch D̂ from replay buffer D
11: ψ←ψ−λV ∇ψ JV (ψ)
12: θq ← θq −λQ∇θq JQ (θq ) for q ∈ {1,2}
13: φ←φ−λπ∇φ Jπ(φ)
14: ψ̄← τψ+ (1−τ)ψ̄
15: end for
16: Update st

17: end for
18: end for

Here, we use the target value net Vψ̄, where ψ̄ is an exponentially moving average of the
value net parameters [31]. Also, we adopt the double Q-learning approach: we simulta-
neously train two critic nets (Qθ1 and Qθ2 ), and we use Qθ(st , at ) = min{Qθ1 (st , at ),Qθ2 (st , at )}
[32]. Both the target value net and double Q-learning approach are known to stabilize
the training process [31, 32]

The gradients of the loss functions in Equations (4.15), (4.16), and (4.18) are obtained
by backward propagation. Given the gradients of the corresponding objectives, the pa-
rameters φ, ψ, and θ are updated using the Adam optimizer with learning rates λπ, λV ,
and λQ , respectively.

We train the DRL agent for predictive maintenance for aircraft engines using the SAC
algorithm (see Algorithm 1). We first initialize the parameters of the neural network
models, φ, ψ, ψ̄, θ, θ1, and θ2 (line 1). We train these networks for nE episodes (line
2). An episode is initialized with observation s0, which is the initial distribution of RUL
of an engine sampled from a training data set of the DRL agent (line 3). Here, the RUL
distribution is estimated using the CNN that is already trained based on an independent
training data set. The episode continues for nT decision steps (line 4). At each decision
step t , for the observed state st , we sample the action at using the policy net πφ(at |st )
(line 5). Based on this action, we obtain a reward rt and the next state st+1 (line 6-7).
We add (st , at ,rt , st+1) into the replay buffer D (line 8). Then, for each learning step, we
sample mini-batch D̂ from replay buffer D (line 9-10), and use this to calculate the loss
functions in Equations (4.15), (4.16), and (4.18). We next update the policy net, the value
net, and the critic nets such that the corresponding objectives are minimized (line 11-
13). Here λπ, λV , and λQ are the learning rates of each network. Also, the parameters of
the target value net ψ̄ is updated with an exponential moving average of ψ, where τ is a
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smoothing factor (line 14). For the next decision step, we update the current state (line
16).

DESIGNING THE ARCHITECTURE OF THE NEURAL NETWORKS

We design the neural network architecture for the policy net πφ, the value net Vψ, and
the critic net Qθ as shown in Figure 4.10 and Table 4.4.

The policy net πφ has input st , which is a vector of size D , and returns two scalar
values corresponding to the mean of action f µ

φ
(st ) and the standard deviation of action

Table 4.4: Architecture of the deep neural network models for policy net πφ, value net Vψ, and critic net Qθ .
(see also Figure 4.10)

Policy net πφ
Layer Type Number of neurons nN

Input (State st ) - D
Shared hidden layer 1 Linear nN = 256
Shared hidden layer 2 Linear nN = 128
Hidden layer 1 for µ Linear nN = 64
Hidden layer 2 for µ Linear nN = 32
Output µ ( f µ

φ
(st )) Linear 1

Hidden layer 1 for σ Linear nN = 64
Hidden layer 2 for σ Linear nN = 32
Output σ ( f σφ (st )) Linear 1

Value net Vψ
Layer Type Number of neurons nN

Input (State st ) - D
Hidden layer 1 Linear nN = 256
Hidden layer 2 Linear nN = 128
Output (State value V (st )) Linear 1

Critic net Qθ

Layer Type Number of neurons nN

Input (State st , action at ) - D +1
Hidden layer 1 Linear nN = 256
Hidden layer 2 Linear nN = 128
Output (Q value Q(st , at )) Linear 1
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(a) Policy net (πφ)

(b) Value net (Vψ)

(c) Critic net (Qθ )

Figure 4.10: Architecture of neural network models for DRL. (a) Policy net (πφ). (b) Value net (Vψ). (c) Critic
net (Qθ). (see also Table 4.4)
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f σφ (st ). These two outputs f µ
φ

(st ) and f σφ (st ) are used to sample action at for the given

state st (see Equation (4.11)). We consider hidden layers shared by f µ
φ

(st ) and f µ
φ

(st ) to
facilitate learning from the shared features (see Figure 4.10a). Following these shared
hidden layers, we consider separated hidden layers for each of f µ

φ
(st ) and f σφ (st ).

The value net Vψ has input st and returns a scalar value Vψ(st ). We consider two
hidden, fully-connected layers. The same architecture is used also for the target value
net Vψ̄.

The input of critic net Qθ is a vector of size (D+1), which is the augmentation of state
st and action at . Its output is a scalar value Qθ(st , at ). We consider two hidden, fully
connected layers (see Table 4.4). As we use a double Q-learning approach, we consider
two critic networks Qθ1 and Qθ2 having the same architecture but different parameters
θ1 and θ2.

4.4. RESULTS: DRL FOR PREDICTIVE AIRCRAFT MAINTENANCE

WITH PROBABILISTIC RUL PROGNOSTICS

4.4.1. TRAINING DRL AGENT

We consider the maintenance of a turbofan engine whose degradation measurements
are given in subset FD002 of the C-MAPSS data set. From the 260 training instances of
FD002, we randomly sample 130 engines as training set for RUL prognostics (see Section
4.2 for our CNN with Monte Carlo dropout to estimate the RUL distribution of engines).
The remaining 130 engines are used as training set for the DRL agent (see Section 4.3 for
our DRL approach that considers RUL distributions to plan engine replacements).

We train the DRL agent for nE = 5000 episodes, where each episode consists of max-
imum nT = 100 decision steps. Each decision step considers D = 30 flight cycles (see
Figure 4.6 for the definition of a decision step). As a reward (cost) model, we assume
cuns = 2, c0 = 1, and c1 = 0.01 for the cost parameters defined in Equations (4.8) - (4.9)
(see also Figure 4.9 for the cost model). The hyper-parameters of the SAC algorithms
are as follows: discount factor γ = 0.9, temperature parameter α = 0.01, learning rates
λφ = 10−5, λψ = 10−4, λθ = 10−4, smoothing factor of target value net τ= 10−3, the maxi-

mum size of replay buffer |D| = 106, and the size of mini-batch |D̂| = 4096.

Figure 4.11 shows the learning curve of the DRL approach, illustrating the total re-
ward per episode. The total reward rapidly increases during the first 500 episodes and
converges to around −18 after 1000 episodes. After 1000 episodes, the total reward of
each episode varies because the considered DRL problem is stochastic, i.e., the initial
value of true RUL is random and the probability distribution of RUL is estimated by
Monte Carlo dropout of the CNN model. However, the moving average of the total re-
ward stabilizes during 1000-5000 episodes. Moreover, 5 independent training curves
show the same trends. Thus, the training is stopped after 5000 episodes.

4.4.2. PREDICTIVE MAINTENANCE USING DRL
Following training, we evaluate the trained DRL agent for 1000 episodes. During evalua-
tion, the DRL agent chooses an action at for a given state st from the mean action f µ

φ
of
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Figure 4.11: Learning curve of the DRL approach during 5000 episodes. The thin grey lines are 5 learning
curves, and the solid lines are the moving average of 100 episodes of each learning curve.

the trained policy πφ. Formally,

at = f µ
φ

(st ). (4.20)

Below we discuss the benefits of our DRL approach for predictive maintenance, by
presenting some decision steps (the estimated RUL distributions and the associated
maintenance actions made by the DRL agent).

MAINTENANCE DECISION BASED ON UPDATED RUL DISTRIBUTION

The estimated RUL distributions are updated at every decision step t (D cycles), as more
sensor measurements become available. This ensures that the maintenance decision is
always based on the most recent RUL prognostics. Figure 4.12 shows 2 consecutive de-
cisions steps (t = 80 and 81) for the maintenance of Engine 247, FD002 of C-MAPSS data
set. At decision step t = 80, the engine has been operated for 149 cycles. Our CNN model
predicts the probability that the engine will fail within 30 cycles to be p30,80 = 0.005. The
entire distribution pk,80 for k ∈ {0, ...,30} is given in Figure 4.12a. Such a distribution
quantifies the uncertainty of the RUL prognostics, and provides basis for maintenance
decisions of the DRL agent. The DRL agent observes the RUL distribution and decides
to do nothing, i.e., do not schedule replacement in this decision step t = 80. Since no
replacement is scheduled for the next D = 30 cycles, the engine is operated continuously
until the next decision step t = 81, and more sensor measurements are collected. Based
on the new sensor measurement, we update the distribution of the RUL again using the
CNN with Monte Carlo dropout (see Figure 4.12b). At decision step t = 81, the probabil-
ity that the engine will fail within 30 cycles is estimated to be p30,81 = 0.807. Given the
updated distribution of the RUL, the DRL agent schedule a replacement after 7 cycles
(see the blue vertical line in Figure 4.12b). The probability that the engine will fail within
7 cycles is p7,80 = 0.091. In fact, the (hidden) true RUL is 18 cycles at decision step t = 81,
i.e., the DRL agent schedules a replacement 11 cycles before the engine fails.
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(a) Decision step t = 80, replacement is not scheduled.

(b) Decision step t = 81, replacement is scheduled after 7 cycles.

Figure 4.12: Estimated RUL distributions and replacement schedules for Engine 247 during 2 consecutive de-
cisions steps (t = 80 and 81).

ADAPTIVE MAINTENANCE DECISION USING DEEP NEURAL NETWORK

Using a deep neural network model (policy net), our DRL agent adaptively considers the
updated RUL distribution of individual engine, instead of relying on one fixed thresh-
old for all engines. As a result, our DRL agent can identify optimal moment of engine
replacement taking into account different trends of RUL distributions. For example, Fig-
ure 4.13 shows distinctive RUL distributions of three engines, estimated during different
episodes. In Figure 4.13a, there is a very high chance that the engine will fail within the
next 30 cycles (p30,t = 0.896). In this case, the DRL agent schedules a replacement af-
ter 5 cycles when the probability that the engine will fail within 5 cycles is estimated to
be p5,t = 0.113. In Figure 4.13b, the estimated pk,t increases from p1,t = 0.011 to p30,t =
0.748, and the DRL agent schedules a replacement after 9 cycles when p9,t = 0.073. In the
last case in Figure 4.13c, the probability that the engine will fail within 30 cycles is smaller
compared to the two previous cases (p30,t < 0.15), but the trend rapidly increases. In this
case, the DRL agent schedules a replacement after 18 cycles when p18,t = 0.011, effec-
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(a) Replacement is scheduled after 5 cycles when p5,6 = 0.113

(b) Replacement is scheduled after 9 cycles when p9,69 = 0.073

(c) Replacement is scheduled after 18 cycles when p18,68 = 0.011

Figure 4.13: Three different RUL distributions and adaptive maintenance decisions of the DRL agent.
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tively preventing the engine failure.

In contrast to our DRL approach, existing predictive maintenance approaches often
consider fixed thresholds for all same-type of components to trigger maintenance. For
example, in [8], an alarm is triggered when the estimated RULs of engines are below a
threshold (44 days). Similarly, in [21], airframe panels are replaced when the predicted
crack size is larger than a threshold (47.4mm). Since a fixed threshold value is applied
for all components, differences between individual RUL prognostics results may not be
considered.

The benefit of our adaptive maintenance planning using deep neural network is evi-
dent when trying, unsuccessfully, to find one fixed threshold that is optimal for all three
cases in Figure 4.13. Let us assume that we use a fixed threshold 0.11 and always schedule
an engine replacement after k cycles if pk,t > 0.11, irrespective of the RUL distribution.
Using such a fixed threshold of 0.11 will effectively prevent the failure for the first case
(Figure 4.13a). Using the same threshold for Figures 4.13b and 4.13c, engine replace-
ments are scheduled after 12 and 28 cycles, respectively. However, in both cases, the
engine replacements are later than the true RUL (11 and 21 cycles, respectively), leading
to unscheduled replacements at higher cost. In the same line, let us assume that we set a
much lower fixed threshold of 0.01, i.e., we always schedule an engine replacement after
k cycles if pk,t > 0.01. Using this threshold will avoid an unscheduled engine replace-
ments in the last case (Figure 4.13c). However, with such a low threshold, replacements
are scheduled too early for the other two cases in Figures 4.13a and 4.13b, wasting the
useful life of the engines. This example shows that fining one fixed threshold that is
optimal for all cases is challenging. In contrast, our DRL agent adaptively consider the
different trends of RUL distributions, without using fixed thresholds. As a result, our
approach leads to less unscheduled maintenance.

Figure 4.14: Wasted life of engines at the moment of replacements under our DRL approach.
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SCHEDULING REPLACEMENTS WITH SMALL WASTED LIFE OF ENGINES
Using updated RUL distributions and adaptive maintenance decision, our DRL agent
schedules engine replacements without wasting useful lives of engines. Figure 4.14 shows
the distribution of the wasted life of engines at the moment of replacement, when using
our DRL approach. On average, replacements are scheduled when the true RUL of an
engine is 12.81 cycles. This is only 6% of the average life of the engines in subset FD002.
Also, more than 82% of the engines are replaced when their wasted life is less than 20
cycles.

4.5. PREDICTIVE AIRCRAFT MAINTENANCE USING DRL VS.
OTHER MAINTENANCE STRATEGIES

In this section, we compare the performance of our DRL approach for predictive main-
tenance against three other traditional maintenance strategies:

PREDICTIVE MAINTENANCE AT MEAN-ESTIMATED RUL
This strategy schedules engine replacements at the mean RUL predicted by the CNN
model in Section 4.2. This strategy uses a point estimation of the RUL, while our DRL
approach uses a distribution of the RUL. Considering this strategy, we aim to evaluate
the impact of using the distribution of RUL for maintenance planning, rather than just a
point estimation of the RUL.

CORRECTIVE MAINTENANCE

This strategy replaces engines as soon as they fail. Under this strategy, we always perform
unscheduled replacements, which is the most undesirable case.

IDEAL MAINTENANCE AT TRUE RUL
This strategy assumes that the true RUL is known in advance by an Oracle, and engines
replacements are scheduled exactly at this true RUL. Under this strategy, there are no
unscheduled maintenance tasks and the wasted lives of engines are always zero, i.e., an
ideal maintenance strategy.

Table 4.5 shows the performance of these traditional maintenance strategies vs. our
DRL approach using three following performance indicators:

i) The total cost: this is the cost of both scheduled and unscheduled replacements
during 3000 cycles of engine operations (i.e., 100 decision steps). The cost (reward)
model is given in Equations (4.8)-(4.9).

ii) The number of unscheduled replacements: this is a direct metric for maintenance
reliability. We aim to minimize the number of unscheduled engine replacements.

iii) The total number of replacements: this is the number of both scheduled and
unscheduled replacements during 3000 cycles of engine operations. Since we consider
a fixed period of cycles, a lower number of total replacements implies that we utilize the
engines for a longer duration.

Table 4.5 shows that our DRL approach using RUL distributions outperforms the
other maintenance strategies, especially in terms of the total maintenance cost and the
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Table 4.5: Comparison of the proposed DRL approach using RUL distribution, and other maintenance strate-
gies. Percentage in parenthesis indicates the relative ratio to the corrective maintenance.

Total cost Number of Total number of
unscheduled replacements replacements

DRL approach 17.84 (-36.3%) 0.62 (-95.6%) 14.89 (+6.4%)
using distribution of RUL

Predictive maintenance 25.23 (-9.8%) 10.87 (-22.3%) 14.00 (0.0%)
at mean-estimated RUL

Corrective maintenance 27.99 (0.0%) 13.99 (0.0%) 13.99 (0.0%)

Ideal maintenance 16.10 (-42.5%) 0.0 (-100.0%) 13.95 (-0.3%)
at true RUL

number of unscheduled replacements. Our DRL approach saves 36.3% of the total costs
compared to corrective maintenance. Moreover, it also achieves a more reliable mainte-
nance planning by preventing 95.6% of unscheduled replacements. Also, the total num-
ber of replacements (both scheduled and unscheduled) is slightly (6.4%) larger for our
DRL approach since engines are replaced earlier than their end-of-life to prevent un-
scheduled replacements. However, this slight increase in the total number of engine re-
placements is balanced out by a large economic efficiency (large cost savings) and main-
tenance reliability (lower number of unscheduled replacements) that our DRL approach
achieves.

The benefit of using probabilistic RUL prognostics instead of point-RUL estimates is
evident when comparing our DRL approach against predictive maintenance at mean-
estimated RUL (see Table4.5). Both strategies make use of RUL prognostics obtained
using a CNN (see Section 4.2). But our DRL approach uses probabilistic RUL prognos-
tics (estimated RUL distribution) to plan engine maintenance. As a result, predictive
maintenance based on the mean-estimated RUL reduces only 9.8% of total costs and
22.3% of unscheduled replacements, while our DRL approach further reduces the total
cost (36.3%) and unscheduled replacements (95.6%).

The cost savings obtained by our DRL approach are further explained in Figure 4.15.
Since we assume 2 times higher costs for unscheduled replacements (see the cost model
in Figure 4.9), even a small number of unscheduled replacements can take a large por-
tion of the total cost. Due to this reason, all maintenance strategies performed a similar
number of total replacements, but the total maintenance costs are significantly differ-
ent. In the case of predictive maintenance at the mean-estimated RUL, 85% of the total
cost is associated with unscheduled replacements. In contrast, for our DRL approach,
only 7% of the total cost is associated with unscheduled replacements.

4.6. CONCLUSIONS
In this chapter, we propose a deep reinforcement learning (DRL) approach to plan pre-
dictive maintenance for aircraft engines. This maintenance planning takes into account
the estimated distribution of the engines’ Remaining-Useful-Life (RUL).

We first estimate the RUL distribution of engines using Convolutional Neural Net-
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Figure 4.15: Cost of scheduled/unscheduled replacements of the proposed DRL approach and other mainte-
nance strategies.

works with Monte Carlo dropout. These estimates are periodically updated, as more
sensor measurements become available. Such estimates of the RUL distribution pro-
vide useful information about the uncertainty associated with the RUL prognostics and
enables more effective maintenance planning.

With the estimated RUL distribution, we schedule maintenance for turbofan engines
using DRL. Maintenance actions are specified adaptively, based on the trends of the RUL
prognostics. In contrast to existing studies, we do not use fixed thresholds to trigger
maintenance actions. Thus, our DRL approach enables adaptive and flexible, threshold-
free maintenance planning.

The results show that our DRL approach with probabilistic RUL prognostics leads to
lower maintenance costs and fewer unscheduled maintenance events, when compared
to several other maintenance strategies. Compared to maintenance planning at mean-
estimated RUL, our DRL approach reduces the total maintenance cost by 29.3%. More-
over, it prevents 95.6% of unscheduled engine replacements. The engines are replaced
just before their end-of-life, with an average wasted lives of only 12.8 cycles. Overall, our
DRL approach outperforms the several other traditional maintenance strategies in terms
of costs and number of unscheduled maintenance events.

Overall, this chapter proposes a generic framework to integrate data-driven, proba-
bilistic RUL prognostics into predictive maintenance. This framework is readily applica-
ble for other aircraft components whose health is continuously monitored.

As future works, we plan to expand the proposed DRL approach for predictive main-
tenance of multiple components. In addition, we consider more realistic inputs and
constraints of aircraft maintenance such as limited space of hangar, logistics of spare
parts, and dynamic flight conditions.
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5
PREDICTIVE AIRCRAFT MAINTENANCE

AT FLEET LEVEL

USING RUL PROGNOSTICS AND

INTEGER LINEAR PROGRAMMING

This chapter proposes a framework to optimize fleet-level predictive aircraft maintenance
(PdAM). For PdAM at the fleet-level, the Remaining-Useful-Life (RUL) of multiple compo-
nents provides deadlines for replacements. The maintenance plan should satisfy opera-
tional constraints such as flight schedules and hangar availability. In particular, we are
interested in minimizing maintenance costs including the cost of wasted RUL, the penalty
cost of overdue replacements, and the setup cost for hangar visits. We formulate the fleet-
level PdAM as an integer linear programming (ILP). The solution of the ILP provides an
optimal maintenance plan that groups the replacements of components taking into ac-
count their RULs. A case study for a fleet of aircraft shows the benefit of predictive mainte-
nance grouping for landing gear brakes.

Parts of this chapter have been published in the following research article:

J. Lee, I. de Pater, S. Boekweit, and M. Mitici, “Remaining-Useful-Life prognostics for opportunistic grouping
of maintenance of landing gear brakes for a fleet of aircraft,” in Proceedings of the 7th European Conference of
the Prognostics and Health Management Society 2022, pp.278-285, Turin, Italy, July 6–8, 2022.

This paper has been awarded Best Paper Award 2nd Prize, European Conference of the Prognostics and Health
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5.1. INTRODUCTION

Remaining-useful-life (RUL) prognostics are regarded as a key enabler for predictive air-
craft maintenance [1]. Using RUL prognostics, predictive maintenance aims to perform
maintenance tasks in anticipation of failures of aircraft components. The expected im-
pact of predictive maintenance is to reduce unexpected failures, increase system avail-
ability, and reduce overall maintenance costs [2].

Several studies have proposed algorithms for RUL prognostics for various aircraft
systems. For example, Mitici and de Pater develop prognostics for aircraft cooling units
using particle filtering [3]. Lee and Mitici propose a regression model to characterize
the degradation of aircraft landing gear brakes [4]. Eleftheroglou et al. present the data-
driven prognostics for batteries of unmanned aerial vehicles [5]. De Pater, Reijns, and
Mitici predict the RUL of aircraft engines using a convolutional neural network and the
C-MAPSS data set [6, 7].

Despite the increasing number of RUL prognostics for aircraft systems, few studies
integrate these prognostics into actual maintenance planning frameworks to prescribe
RUL-driven maintenance tasks [8, 9, 10]. Such integration is particularly complex since
aircraft maintenance planning should consider, apart from RUL prognostics, additional
factors such as the flight schedule, the limited availability of the hangar where aircraft
are maintained, the cost of different maintenance tasks, and the management of spare
parts [9].

Moreover, when considering multiple components, it is desirable to group mainte-
nance tasks to reduce maintenance setup costs [11, 12]. The approach of grouping main-
tenance tasks is referred to as opportunistic maintenance (OM). Several studies have
proposed OM for various applications, especially for the maintenance of wind turbines
[13, 14, 15]. However, existing studies are not readily applicable for predictive mainte-
nance of a fleet of aircraft because they consider neither RUL prognostics [13], nor the
limited availability of critical resources such as hangars [14], nor the fact that the flight
schedule of aircraft restricts the planning of maintenance [15]. Thus, these critical con-
straints need to be considered for the OM for a fleet of aircraft.

In this chapter, we integrate RUL prognostics of aircraft components into oppor-
tunistic maintenance (OM) for a fleet of aircraft. Our approach groups maintenance
tasks for aircraft components based on their RUL prognostics. The goal of grouping the
maintenance of the components is to reduce maintenance setup costs, i.e., the costs
needed to initiate maintenance. We illustrate our approach for landing gear brakes of a
fleet of aircraft. We first propose a Bayesian linear regression model to predict the RUL
of aircraft landing gear brakes. The obtained RUL prognostics are validated against sen-
sor measurements obtained during the actual operation of the aircraft. Then, taking
into account these RUL prognostics, we propose an integer linear programming model
to opportunistically plan maintenance for the brakes. Our model considers the limited
availability of hangars where maintenance can be performed, as well as realistic flight
schedules. The result shows that the proposed RUL-driven OM reduces by 20% the ex-
pected total maintenance cost for the brakes of a fleet of aircraft compared to traditional
maintenance approaches.
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5.2. RUL PROGNOSTICS FOR AIRCRAFT LANDING GEAR

BRAKES

5.2.1. MAINTENANCE OF AIRCRAFT LANDING GEAR BRAKES
We consider the maintenance of landing gear brakes of wide-body aircraft. A wide-body
aircraft is equipped with 8 landing gear brakes, 4 on each side of the wings. The carbon
disks of the brakes are worn out when the aircraft decelerates. As soon as the remaining
thickness of a braking disk is below an operational threshold, it needs to be replaced
before the aircraft can perform another flight.

According to current maintenance practice, aircraft landing gear brakes are inspected
periodically [4]. Every d flight cycles, mechanics measure the remaining thickness of the
brakes. If the remaining thickness is below a pre-defined threshold, then the brake is
replaced with a new one. In order to ensure a high reliability, the inspection interval d
is often short, i.e., frequent inspections. Using RUL prognostics, predictive maintenance
aims to reduce the wasted life of brakes due to too-early replacements, while limiting the
cases when the degradation of a brake may unexpectedly exceed an operational thresh-
old.

5.2.2. CONDITION MONITORING OF AIRCRAFT LANDING GEAR BRAKES
New aircraft are equipped with brake condition monitoring systems that measure the
thickness of the brake disks. The thickness of a disk is a direct measure of the degradation
level of a brake. Formally, let us denote the degradation level of a brake after φth flight
cycle as Zφ. We normalize this degradation level so that Zφ = 0 when the brake is new.
As soon as Zφ > η, where η= 1 following normalization, the brake needs to be replaced.
As soon as Zφ > η, we say that the brake becomes inoperable.

In this study, we analyze the actual brake degradation data collected from a fleet of
aircraft. These aircraft have been in operation for a period of 6 months up to 3 years.
Figure 5.1 shows the normalized degradation data recorded for several aircraft. The x-
axis is the number of flight cycles (φ) during which a brake was used, and the y-axis
is the degradation level (Zφ) of the brakes. The line segments of different colors repre-
sent different brakes. Figure 5.1 shows that the degradation of a brake continuously and
stochastically increases over time.

Under predictive maintenance, the goal is to use the information provided by RUL
prognostics to replace brakes just before their degradation reaches an operational thresh-
old (η = 1). In Figure 5.1, the end of a line segment is the moment when the brake is
replaced under the current practice. We note that in current practice, RUL prognostics
are not yet utilized to plan maintenance. Often, brakes are preventively replaced before
their degradation level reaches threshold η, wasting the useful life of the brakes. Using
RUL prognostics, the aim is to achieve a higher utilization of the brakes while minimizing
maintenance costs.

5.2.3. RUL PROGNOSTICS OF AIRCRAFT LANDING GEAR BRAKES
Given the brake degradation data recorded for a fleet of aircraft, we use a Bayesian linear
regression (BLR) to predict the remaining-useful-life (RUL) of the brakes. For the brake
degradation data in Figure 5.1, its linearity allows the BLR model to achieve accurate RUL
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Figure 5.1: The degradation data of landing gear brakes.

predictions compared to advanced non-linear models such as artificial neural networks
[16]. The input of the BLR model is the number of flight cycles φ, and the output is the
(predicted) degradation level of a brake after this flight cycle Ẑφ. Formally, we consider
the following probabilistic model:

P
(

Ẑφ
∣∣∣φ,ω,σ

)
=N

(
Ẑφ

∣∣∣φω,σ2
)
, (5.1)

where ω is the coefficient of the linear model, and σ2 is the variance of the Gaussian
model. The prior of the coefficient ω is assumed to be zero-mean Gaussian, i.e., P (ω) =
N (ω|0,λI). Here, λ and σ2 are the hyper-parameters of the model, and we consider
a Gamma distribution as their prior. Finally, the parameters ω, λ, and σ2 are jointly
optimized by maximizing the log marginal likelihood [17].

Then, given that a brake is already operated for φ flight cycles, its RUL is the number
of remaining flight cycles until the probability that the degradation level exceeds η is
larger than a threshold ζ, i.e.,

RU L(φ) = min
δ

{
δ : P

(
Ẑφ+δ ≥ η

∣∣Zφ
)≥ ζ}, (5.2)

where ζ is a given reliability threshold.

The RUL prognostics of the brakes are updated after every flight cycle, taking into
account the most recently available degradation data collected from the on-board con-
dition monitoring systems.

A result of RUL prognostics of a brake in the actual data set is shown in Figure 5.2.
We predict the RUL of this brake after it has been operated for 748 flight cycles. Given
the degradation, the degradation level is expected to exceed η = 1 after 40 flight cycles
with probability ζ= 0.5, and thus, the predicted RUL is RU L(φ) = 40. Given the true RUL
RU L∗ = 44, the error of the RUL prediction is −4 flight cycles.
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Figure 5.2: Result of RUL prognostics obtained for a brake in the data set. The predicted RUL is 40 cycles and
true RUL is 44 cycles.

5.2.4. PERFORMANCE OF THE RUL PROGNOSTICS
The performance of the proposed RUL prognostics using BLR is validated based on the
actual degradation data collected from a fleet of aircraft. We consider the sensor mea-
surements of 40 brakes of a fleet of aircraft which have been operated in real-life condi-
tions. Each of these 40 brakes have been operated for φ∗ flight cycles until these brakes
become inoperable, i.e., Zφ∗ = η. Their recorded degradation data are used as a test set
for our BLR model since we know the true RUL of the 40 brakes.

We apply BLR at several moments during the operation of the brakes: at 200, 100,
50, and 25 flight cycles before the brakes become inoperable, i.e., the true RUL at these
moments in time is RU L∗ ∈ {200,100,50,25} flight cycles. We predict the RUL of 40 test
brakes at these moments, and plot the box plots of the error (RU L−RU L∗) in Figure 5.3.
We also determine the mean-bias-error (MBE) and root-mean-squared-error (RMSE) as
follows:

MBE = 1

K

K∑
k=1

(ρk −ρ∗
k ), (5.3)

RMSE = 1

K

√√√√ K∑
k=1

(ρk −ρ∗
k )2, (5.4)

where K = 40 brakes considered. Table 5.1 shows the MBE and RMSE of the proposed
RUL prognostics.

The error of the RUL prognostics is smaller when true RUL is smaller, i.e., the accu-
racy of the prognostics increases as we approach the time of failure. In particular, MBE
is smaller than 2 flight cycles when the true RUL is 100 flight cycles (see Table 5.1). Con-
sidering the fact that an aircraft makes 2 flights per day on average, the bias of the prog-
nostics is roughly 1 day only. Moreover, the RMSE decreases to 5.4 flight cycles, which is
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Figure 5.3: Error of the RUL prognostics for the brakes in the data set.

Table 5.1: Performance of the proposed RUL prognostics for the brakes in the data set.

True RUL (RU L∗) [Flight cycles] 200 100 50 25

MBE [Flight cycles] 8.4 1.7 -0.5 -1.7
RMSE [Flight cycles] 41.3 12.4 6.0 5.4

very small considering the average useful life of the brakes in our model (approximately
1250-1450 flight cycles) [2]. Based on this performance of the BLR, we conclude that our
prognostics are reliable to be used for maintenance scheduling.

5.3. INTEGRATION OF RUL PROGNOSTICS INTO

OPPORTUNISTIC MAINTENANCE SCHEDULING
We propose a RUL-driven opportunistic maintenance planning (RUL-driven OM) for a
set of generic aircraft components whose degradation is monitored over time and whose
RUL is updated over time. We propose an integer linear programming (ILP) model to
group maintenance tasks for these components considering their RUL prognostics.

5.3.1. PROBLEM DESCRIPTION

Our goal is to schedule the maintenance of multiple components of a fleet of aircraft,
while minimizing the total maintenance cost. We consider M aircraft (i ∈ I = {1, . . . , M }),
each equipped with N components ( j ∈J = {1, . . . , N }). The aircraft perform a sequence
of flights according to a flight schedule. Figure 5.4 shows an example of a historical
flight schedule. The components are used during flight-time when their degradation
evolves stochastically over time. Based on the flight schedule, we define maintenance
slots, which are time periods when the aircraft is on-ground at an airport with a hangar.
The aircraft can undergo maintenance only at the hangar. Due to the limited space and
resources at the hangar, at most H aircraft can be maintained at the same time in the
hangar.
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Figure 5.4: An example of flight schedules for 5 aircraft for a week.

The cost of aircraft maintenance consists of i) the setup cost and ii) the component
replacement cost. The setup cost Cset is the cost to prepare the maintenance of an air-
craft in the hangar. This cost can be reduced if multiple maintenance tasks are grouped
and performed together during one hangar visit.

Over time, components are scheduled for replacement several weeks in advance. The
cost of a scheduled replacement for a component is Csch. If, however, this component
becomes inoperable unexpectedly before the moment of the scheduled replacement,
we perform an unscheduled replacement for this component at cost Cuns. In general,
we assume Cuns >Csch [18].

5.3.2. ROLLING HORIZON FOR RUL-DRIVEN OM
We consider a sequence of time windows that move forward, using a rolling horizon ap-
proach (see Figure 5.5). The r th time window is the time period [T r

0 ,T r
1 ]. At the beginning

of each time window, we update the RUL prognostics using the most recent degradation
data collected until time T r

0 . In addition, we know the maintenance slots available for
the fleet of aircraft during this time window, and the availability of the hangar H . Tak-
ing into account this information, we optimize the maintenance schedule for the time
window [T r

0 ,T r
1 ] (see Section 5.3.3).

Having obtained a maintenance schedule for time window [T r
0 ,T r

1 ], we roll forward∆

Figure 5.5: Rolling horizon approach.
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days. The maintenance schedule for the time period [T r
0 ,T r+1

0 ] is fixed, T r+1
0 = T r

0 +∆. If
during [T r

0 ,T r+1
0 ] a component becomes inoperable before its scheduled maintenance,

then we perform unscheduled maintenance. We next optimize the maintenance sched-
ule for the new time window [T r+1

0 ,T r+1
1 ], updating the RUL prognostics.

5.3.3. INTEGER LINEAR PROGRAMMING OF RUL-DRIVEN OM
DECISION VARIABLES
We define the following two decision variables xi , j ,t and yi ,t :

xi , j ,t =


1 if component j of aircraft i is scheduled

for maintenance at time slot t

0 otherwise

(5.5)

yi ,t =


1 if aircraft i is scheduled for maintenance

at time slot t but not at time slot (t −1)

0 otherwise

(5.6)

Here, xi , j ,t is a binary variable indicating the maintenance schedule, and yi ,t is a bi-
nary variable indicating the hangar visit of an aircraft. If an aircraft is scheduled for the
maintenance of more than 2 components in consecutive time slots, we regard this as one
hangar visit, which requires the setup cost once. Thus,

∑
t∈Ti

yi ,t is the number of hangar
visits of aircraft i .

OBJECTIVE FUNCTION
We consider the following objective function:

min
∑
i∈I

∑
t∈Ti

(
Cset yi ,t +

∑
j∈Ji

Cschxi , j ,t +
∑

j∈Ji

ci , j ,t xi , j ,t

)
, (5.7)

where the first term is the setup cost for hangar visits, and the second term is the cost for
scheduled replacements.

The third term of the objective in Equation (5.7) penalizes component replacements
that are scheduled too early or too late relative to its predicted RUL. Specifically, the
penalty ci , j ,t is defined as follows:

ci , j ,t =
{

c1t − c2ρi , j ,t 0 ≥ ρi , j ,t

c3t 0 < ρi , j ,t
. (5.8)

Here, ρi , j ,t is the estimated RUL of component j of aircraft i at time slot t . This RUL is
estimated using the prognostics model introduced in Section 5.2. Also, we assume that
0 < c1 < c2 < c3.

An example of a penalty ci , j ,t in Equation (5.8) is shown in Figure 5.6. If time slot
t is before the moment when component j is expected to become inoperable, i.e., if
ρi , j ,t ≥ 0, then the penalty decreases after each flight cycle. Thus, this penalty incen-
tivizes solutions that schedule replacements when RUL is small, i.e., small wasted useful
life. When two time slots t1 and t2 have the same RUL (ρi , j ,t1 = ρi , j ,t2 ), the first term
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in Equation (5.8), c1t , leads to lower penalties for a replacement scheduled at an ear-
lier time slot. On the other hand, if time slot t is after the moment when component j
is expected to become inoperable, i.e., if ρi , j ,t < 0, then the penalty rapidly increases by
c3t . Thus, with this RUL related penalty ci , j ,t , our model avoids scheduling a component
replacement at a later time then its predicted RUL.

Figure 5.6: An example of penalty parameter ci , j ,t in Equation (5.8).

CONSTRAINTS
The following constraints are considered:∑

t∈Ti

xi , j ,t = 1 ∀i ∈ I ,∀ j ∈Ji , (5.9)∑
i∈I

∑
j∈Ji

xi , j ,t ≤ H ∀t ∈ Ti , (5.10)∑
j∈Ji

xi , j ,t ≤ 1 ∀i ∈ I ,∀t ∈ Ti (5.11)∑
j∈Ji

xi , j ,t = 0 ∀i ∈ I ,∀t ∈ T : t ∉ Ti , (5.12)

∑
j∈Ji

xi , j ,t −
∑

j∈Ji

xi , j ,(t−1) ≤ yi ,t ∀i ∈ I . (5.13)

Constraint (5.9) ensures all components whose RUL is within the time horizon ( j ∈ Ji )
are scheduled for replacements exactly once. Constraint (5.10) ensures that no more
than H aircraft are maintained in the hangar at the same time. In addition, constraint
(5.11) ensures that only one component of an aircraft can be maintained during a time
slot t . This constraint (5.11) is necessary only if H > 1. If H = 1, then constraint (5.10) is
sufficient. Constraint (5.12) prevents scheduling maintenance outside of available main-
tenance slots (t ∉ Ti ).

Lastly, constraint (5.13) ensures that the variable yi ,t satisfies its definition given in
Equation (5.6). In particular, constraint (5.13) provides a lower bound of yi ,t . So, yi ,t ≥ 1
if the aircraft is brought to the hangar at time slot t , i.e., it is scheduled for maintenance
at time slot t , but not at time slot (t −1). On the other hand, yi ,t ≥ 0 if the aircraft is at the
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hangar at both time slots t and (t −1), or if the aircraft is not at the hangar at both time
slots t and (t −1). Since we are minimizing the objective and Cset > 0 (see the objective
in Equation (5.7)), the optimal value of yi ,t is its lower bound.

5.4. RESULTS: RUL-DRIVEN OPPORTUNISTIC MAINTENANCE

OF AIRCRAFT LANDING GEAR BRAKES

5.4.1. ILLUSTRATION OF RUL-DRIVEN OM STRATEGY

The proposed RUL-driven OM is applied to the maintenance of aircraft landing gear
brakes. A wide-body aircraft has 8 brakes (N = 8), We consider a fleet of 10 wide-body air-
craft (M = 10), and assume that at most 1 aircraft can be maintained in a hangar (H = 1)
at the same time. Using the rolling horizon approach (see Section 5.3.2), we simulate 10
years of maintenance. The actual degradation of the brakes is shown to follow a Gamma
process whose parameters have been estimated in [4, 19].

An example of a maintenance schedule generated by our proposed RUL-driven OM
is shown in Figure 5.7. We predict the RUL of components every 2 weeks (the grey verti-
cal lines). The short black vertical lines indicate the moment when the RUL is predicted,
the triangles indicate the moment when the component is expected to become inoper-
able (see Equation (5.2)), and the horizontal line segments indicate the length of RUL.
Squares indicate the scheduled time of replacements. The optimal solution always allo-
cates the aircraft to maintenance slots within the predicted RUL, i.e., squares are always
on the horizontal line segments. The vertical red lines indicate the grouped mainte-
nance tasks. For example, aircraft 1 replaces 6 components with only 3 hangar visits due
to grouping: components 5 and 3, components 6 and 2, and components 8 and 4 are
grouped together for maintenance. For aircraft 3, component 2 is replaced strictly at

Figure 5.7: An example of optimal maintenance schedule generated by the proposed RUL-driven OM.
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RUL without grouping because the closest group of tasks scheduled in November is too
early for it, i.e., the benefit of grouping is small.

5.4.2. BENCHMARKS: TRADITIONAL MAINTENANCE STRATEGIES
The performance of the proposed RUL-driven OM is compared with respect to 3 tradi-
tional maintenance strategies shown in Table 5.2. Their schedules are optimized using
the ILP in Section 5.3.3 with modified objective functions, as follows.

Table 5.2: Comparison of benchmark strategies.

Strategy Replacement Considering
based on hangar setup cost

PM Fixed-interval No
OM Fixed-interval Yes
RUL-driven M RUL-prognostics No
RUL-driven OM RUL-prognostics Yes

PREVENTIVE MAINTENANCE (PM)
Under preventive maintenance (PM), the brakes are replaced at fixed time interval, with-
out making use of the updated condition data or RUL prognostics. Thus, the PM sched-
ule is obtained by modifying the penalty parameter ci , j ,t in Equation (5.8) as follows:

ci , j ,t =
{

c1t − c2(di , j −φi ,t ) φi ,t ≤ di , j

c3t φi ,t > di , j
. (5.14)

Here, di , j is the deadline to replace brake j of aircraft i , and it is assumed to be the
mean-cycles-to-failure of the brakes estimated in [4]. Also, we set Cset = 0 in the objective
function in Equation (5.7) since the setup cost is not considered under PM.

OPPORTUNISTIC MAINTENANCE (OM)
Opportunistic maintenance (OM) also replaces components at fixed time intervals, but
it does consider the grouping of maintenance tasks to minimize the setup cost. Thus,
for OM, we consider a nonzero Cset in the objective function in Equation (5.7), and the
penalty parameter ci , j ,t defined in Equation (5.14).

RUL-DRIVEN MAINTENANCE (M)
RUL-driven maintenance (M) schedules all component replacements at the predicted
RUL, but without grouping these components. The objective function of RUL-driven M
has the same penalty parameter ci , j ,t defined in Equation (5.8). However, grouping is
not performed as setup cost at hangar is not considered, i.e., Cset = 0.

5.4.3. RUL-DRIVEN OM VS. BENCHMARK MAINTENANCE STRATEGIES
We perform Monte Carlo simulation to evaluate the expected long-run cost of the main-
tenance strategies in Table 5.2. The long-run cost is defined as:

C =CsetNhv +CschNsch +CunsNuns. (5.15)
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Here, Nhv, Nsch, and Nuns are the number of hangar visits, the number of scheduled re-
placements, unscheduled replacements, per year per aircraft, respectively. These values
(Nhv, Nsch, and Nuns) are evaluated by Monte Carlo simulations (103 runs). Also, Cset,
Csch, and Cuns are the setup cost of a hangar visit, the cost of a scheduled replacement,
and the cost of unscheduled replacement, respectively (see Section 5.3.1) for unsched-
uled replacements). The parameters Cset, Csch and Cuns depend on the cost model of an
aircraft operator. For this case study, we assume Cset = 1, Csch = 1, and Cuns = 2.

The simulation results in Figure 5.8 and Table 5.3 show the benefit of utilizing RUL
prognostics and considering component grouping, i.e., the benefit of the proposed RUL-
driven OM. Figure 5.8 shows that the RUL-driven OM results in the lowest expected cost
per aircraft per year. The results show that RUL-driven OM leads to 20% lower costs than
PM, which is the traditional maintenance strategy.

Table 5.3 shows two reasons why the RUL-driven OM achieves the lowest expected
cost. First, it has the smallest number of unscheduled replacements because it optimizes
the moment of replacements using RUL prognostics. Second, the RUL-driven OM results
in the smallest number of hangar visits, saving the setup cost. Compared to the OM
that minimizes the setup cost without considering RUL prognostics, the RUL-driven OM
further reduces the number of hangar visits.

In Table 5.3, it is also interesting to see that the total number of scheduled and un-
scheduled replacements are roughly the same for all strategies, e.g., Nsch +Nuns ≈ 0.47.
This implies that the best maintenance strategy does not reduce the total number of
replacements, but rather optimizes the timing of the replacements so that there is suffi-
cient time to prepare tasks in advance, and reduce the setup cost.

Figure 5.8: Expected cost and its 95% confidence interval.

Table 5.3: Performance of benchmarks.

PM OM RUL-driven M RUL-driven OM

Maintenance cost C 1.078 0.919 1.042 0.858
Scheduled replacements Nsch 0.255 0.327 0.291 0.370
Unscheduled replacements Nuns 0.223 0.154 0.186 0.111
Hangar visits Nhv 0.377 0.285 0.379 0.266
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5.5. CONCLUSION
In this chapter, we integrate Remaining-Useful-Life (RUL) prognostics for aircraft com-
ponents into opportunistic maintenance planning that groups the maintenance of mul-
tiple components. First, the RULs of aircraft landing gear brakes are estimated based on
a Bayesian regression model and the actual degradation data collected from a fleet of air-
craft. Then, these prognostics are integrated into a maintenance planning optimization
- opportunistic maintenance. With this, we group replacements of several brakes to re-
duce the setup cost for hangar visits. The proposed maintenance planning is applied for
a long time horizon using a rolling horizon. Finally, the numerical results show that our
proposed RUL-driven opportunistic maintenance planning results in a 20% reduction of
total costs compared with several traditional maintenance strategies.
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6
MULTI-OBJECTIVE OPTIMIZATION OF

PREDICTIVE AIRCRAFT MAINTENANCE

AT STRATEGY LEVEL

USING GAUSSIAN PROCESS LEARNING

For practical implementation of predictive aircraft maintenance (PdAM), we should for-
mulate PdAM strategies that guide maintenance decisions based on RUL prognostics. PdAM
strategies are specified by several parameters, such as thresholds of RUL and safety mar-
gins. These parameter values should be optimized considering the objectives identified in
Chapter 3. Since aircraft maintenance is a complex process, identifying Pareto optimal
parameters is a computationally-intensive problem. A Gaussian process (GP) learning
model is proposed to efficiently explore the design space of the PdAM parameters. This
new algorithm efficiently generates Pareto optimal designs of PdAM strategies. This chap-
ter presents two case studies. The first case study illustrates the benefit of PdAM strategies
against traditional time-based maintenance strategies. The second case study optimizes
PdAM using probabilistic Remaining-Useful-Life (RUL) prognostics.
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6.1. INTRODUCTION
Aircraft maintenance is key for efficient and reliable aircraft operations, with airlines
spending approximately 9.5% of the total operational costs for maintenance [1]. Cur-
rently, aircraft maintenance is designed based on Maintenance Steering Group-3 (MSG-
3) [2], according to which critical aircraft components with respect to safety, economics,
or operations are maintained at fixed time intervals. This strategy is referred to as time-
based maintenance (TBM) [3]. TBM often relies on short time intervals (high-frequency)
of maintenance tasks, in order to timely detect severe degradation of critical compo-
nents, ensuring high reliability of aircraft. However, this high frequency of tasks may
lead to higher costs with maintenance, or equivalently, to a decrease in maintenance
efficiency.

To further improve the efficiency of aircraft maintenance, novel technologies such
as on-board sensors and aircraft condition monitoring systems have been increasingly
utilized. These systems provide (semi) real-time condition monitoring data for aircraft
components. These new technologies and datasets promote condition-based mainte-
nance (CBM) and predictive maintenance (PdM) strategies. Under CBM, maintenance
tasks are scheduled based on the monitored health condition of components [4]. Under
PdM strategies, the health condition data of components are further analyzed to predict
their Remaining-Useful-Life (RUL), and to specify optimal maintenance schedules [5, 6].
CBM and PdM are expected to improve the reliability and efficiency of aircraft mainte-
nance, as shown in [7, 8] for aircraft engine condition monitoring. Given these successes,
the aviation industry is working towards the integration of CBM and PdM in the design
of next-generation aircraft maintenance [9].

To justify the integration of CBM and PdM strategies in the maintenance of aircraft,
their performance needs to be analyzed relative to existing and/or promising mainte-
nance strategies. However, many existing studies limit themselves to optimizing only
one specific maintenance strategy (e.g., either a PdM strategy, a CBM strategy, or a TBM
strategy). For instance, in [10], a genetic algorithm is used to optimize the design vari-
ables of a CBM strategy, but the dominance of this CBM strategy is not demonstrated
against other maintenance strategies. Also, in [11, 12, 13], only traditional TBM strate-
gies are explored with the aim of optimizing the inspection intervals. Even when studies
compare the performance of their proposed maintenance strategies against benchmark
strategies, the quantity and diversity of these explored maintenance strategies are lim-
ited. For example, in [14, 15, 16], benchmark maintenance strategies are limited to only
a simple TBM strategy that replaces components at fixed intervals. In the context of
designing the next-generation aircraft maintenance, it is necessary to analyze the dom-
inance of novel strategies relative to other existing and/or promising TBM, CBM, PdM
strategies.

At the same time, aircraft maintenance is inherently a multi-objective problem with
two main, conflicting objectives: 1) to reliably operate the aircraft without incidents re-
lated to maintenance, and 2) to minimize maintenance cost [2, 17]. Strict maintenance
regulations ([18, 19]) and system redundancy are in place to ensure system reliability,
while intelligent scheduling of maintenance tasks aims to reduce the cost with mainte-
nance. However, most existing studies focus on optimizing maintenance only from a
monetary cost perspective, neglecting maintenance reliability. For example, in [15, 16],
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costs of component inspections and replacement are minimized. Some studies model
reliability as a penalty cost: the cost of stopping system to prevent failure [14], the down-
time cost during maintenance [20, 21], the penalty cost of operating failed components
[22], the unavailability cost due to a failed systems [23, 24]. Ultimately, these reliability-
related costs are integrated in a single cost objective [14, 20, 21, 22, 23, 24]. However,
such a single-objective approach hides the potential trade-offs between reliability and
monetary costs [25]. In general, existing studies lack a multi-objective approach for the
design of (aircraft) maintenance, where both reliability and cost metrics are explicitly
evaluated.

The main challenge in analyzing the multi-objective dominance between mainte-
nance designs is the computational cost required, which increases significantly when
considering many types of maintenance designs. Especially when the computational
cost needed to evaluate the objectives of each design is significant, it is important to effi-
ciently select for analysis only those designs that are expected to be dominating. This is
known as a design space exploration problem [26]. Well-known approaches for this prob-
lem are meta-heuristic algorithms such as Non-Dominated Sorting Genetic Algorithm-
II (NSGA-II) [27, 28]. NSGA-II iteratively selects designs to be analyzed, using operators
specific to genetic algorithms such as mutation and crossover. More efficient, novel de-
sign space exploration algorithms utilize surrogate models to rapidly pre-estimate the
objectives of the designs. For instance, Response Surface-based Pareto Iterative Refine-
ment (ReSPIR) considers surrogate models such as linear regression and radial-basis-
functions [29]. Gaussian process (GP) learning models are also often used for an efficient
design space exploration [30, 31]. For example, Efficient Global Optimization (EGO) uti-
lizes GP models to calculate some infill-criteria, and select for analysis those designs that
maximizes these infill-criteria [32, 33]. However, the global maximum of infill-criteria is
often hard to find because of many local maxima, which may not result in the most ef-
ficient selection of new designs to be analyzed [34, 32]. As such, further algorithmic im-
provements are needed to be able to efficiently select designs to be explored for aircraft
maintenance.

In this chapter, we propose a framework to design multi-objective aircraft main-
tenance with an emphasis on the trade-off between maintenance reliability and cost-
efficiency. Our framework considers various types of maintenance strategies, and iden-
tifies Pareto optimal aircraft maintenance designs by adaptively exploring the design
spaces of the considered maintenance strategies. For this, we construct a generic air-
craft maintenance model that is used to evaluate multiple objectives related to the cost-
efficiency and reliability of aircraft maintenance designs by means of Monte Carlo simu-
lation. Since this simulation-based evaluation of maintenance designs is computation-
ally expensive, we propose an adaptive design space exploration algorithm that itera-
tively identifies Pareto optimal maintenance designs using Gaussian process learning
models and a novel adaptive sampling method. This adaptive sampling method uses
Gaussian process learning models to pre-estimate the objectives of the designs. Using
these pre-estimations, we select for further exploration only those designs whose pre-
estimated objectives are not dominated by the currently available Pareto front.

Our framework is applied for the maintenance of aircraft landing gear brakes, which
is a multi-component aircraft system with k-out-of-n redundancy. We show that the
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RUL-based PdM design achieves the most beneficial balance between cost-efficiency
and reliability objectives, the maximization of the utilization of components being a
cost-related objective, and the minimization of the expected number of degradation in-
cidents being a reliability-related objective. The results show that across the domain of
the aircraft maintenance design problem, there are both TBM, CBM and PdM strategies
that are Pareto optimal, i.e., Pareto optimality is not achieved only by one type of strat-
egy. The results also show that the RUL-based PdM design is located in the knee region of
the Pareto front, where the most beneficial trade-off between the considered objectives
is achieved.

The main contributions of this chapter are as follows:

• We explicitly consider reliability-related objectives of aircraft maintenance,
which are often neglected in existing studies on (aircraft) maintenance, or in-
directly considered in cost metrics. Using a multi-objective approach, we an-
alyze the trade-offs between reliability and cost-efficiency metrics of aircraft
maintenance.

• We are able to design maintenance by exploring a wide spectrum of types of
maintenance strategies, ranging from TBM, CBM, to PdM. With our approach,
we show that the reliability vs cost-efficiency Pareto front of aircraft mainte-
nance consists of a mix of the TBM, CBM and PdM strategies, rather than re-
stricting Pareto optimality to only one type of strategy. The PdM strategies,
however, dominate other maintenance strategies in the knee region where
conflicting objectives are balanced.

• We propose an efficient algorithm to explore the design space of aircraft main-
tenance using a Gaussian process (GP) learning model and a novel adaptive
sampling method. Our algorithm is shown to outperform existing design space
exploration algorithms in terms of the number of Pareto optimal designs gen-
erated.

• Our framework is expected to support decision-makers to quantitatively an-
alyze novel maintenance strategies from both a reliability and cost-efficient
perspective, and ultimately to facilitate a discussion on the integration of such
novel maintenance strategies into the current paradigm of aircraft mainte-
nance design.

The remainder of this chapter is organized as follows. In Section 6.2, we formulate
the problem of multi-objective aircraft maintenance design. In Section 6.3, we propose
a framework to address this problem and an algorithm to adaptively explore the design
space of aircraft maintenance. In Section 6.4, we design the maintenance of landing gear
brakes, and discuss the benefits of novel predictive maintenance designs. In Section 6.5,
we compare the performance of our proposed algorithm for the aircraft maintenance
design problem, against several algorithms commonly used for multi-objective design
problems. In Section 6.6, we design an advanced predictive maintenance strategy using
probabilistic RUL prognostics. Conclusions are provided in section 6.7.
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6.2. PROBLEM FORMULATION: MULTI-OBJECTIVE DESIGN OF

AIRCRAFT MAINTENANCE
We consider the multi-objective aircraft maintenance design problem, i.e., we are in-
terested in identifying those maintenance designs that optimize a set of objectives. For-
mally, an aircraft maintenance design is specified by a tuple (s,xs ), where s is the strategy
type and xs is its associated design variables. As an example, consider two types of main-
tenance strategies A and B where:

• according to strategy type A, a component is replaced with a brand-new one
every DRep flight cycles.

• according to strategy type B : a component is inspected every DIns flight cy-
cles. Upon inspection, the component is replaced if its degradation level ex-
ceeds a threshold ηRep.

The strategy type s ∈ {A,B} specifies the rules according to which maintenance tasks
are executed, and xA = [DRep] and xB = [DIns,ηRep] are the vectors of design variables
associated with strategy type A and B , respectively. In this example, the set of considered
strategy types is s ∈S = {A,B}, and the domains of the design variables are xA ∈X A =Z+
and xB ∈X B =Z+×R. We define the design space D of aircraft maintenance by the set of
maintenance strategy types considered (s ∈ S), and the domain of the design variables
of strategy type s (xs ∈X s ), i.e.,

D = {(s,xs )|s ∈S ,xs ∈X s }. (6.1)

Here, xs ∈ X s consists of both continuous and integer variables, while s ∈ S is a non-
numerical variable.

We explore the design space of aircraft maintenance to identify those maintenance
designs (s,xs ) that result in an optimal maintenance performance. Here, the mainte-
nance performance is defined in terms of M > 1 objectives. The vector of M objectives
for a specific maintenance design (s,xs ) is denoted as follows:

f(s,xs ) = [ f1(s,xs ), ..., fM (s,xs )]. (6.2)

For our study, f consists of reliability-related objectives and cost-related objectives. Some
of these objectives are potentially conflicting.

Then the design space exploration to identify those aircraft maintenance designs that
optimize the set of M objectives is formalized as follows:

min/max fm(s,xs ),m ∈ {1,2, ..., M }

subject to (s,xs ) ∈D (6.3)

Since we have multiple objectives, the following Pareto dominance relations apply
[35]. For simplicity, in the definition below, we assume that all objectives are minimized.
We say that a maintenance design (s1,xs1 ) dominates another design (s2,xs2 ), denoted by
f(s1,xs1 ) ≻ f(s2,xs2 ), if and only if(∀ m ∈ {1, . . . , M }, fm(s1,xs1 ) ≤ fm(s2,xs2 )

)
∧ (∃ m ∈ {1, . . . , M }, fm(s1,xs1 ) < fm(s2,xs2 )

)
.

(6.4)
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We say that a maintenance design (s,xs ) is Pareto optimal , if and only if

Ø (s′,xs′ ) ∈D such that f(s′,xs′ ) ≻ f(s,xs ). (6.5)

Let D∗ ⊂D denote the set of Pareto optimal maintenance designs, where

D∗ =
{

(s,xs ) ∈D
∣∣∣Ø(s′,xs′ ) ∈D such that f(s′,xs′ ) ≻ f(s,xs )

}
. (6.6)

Also, the Pareto front F∗ is defined as a set of objective vectors of the Pareto optimal
maintenance designs, with

F∗ =
{

f(s,xs )
∣∣∣(s,xs ) ∈D∗

}
. (6.7)

The set of Pareto optimal maintenance designs D∗ and the Pareto front F∗ are the
solutions of the multi-objective design space exploration problem in Equation (6.3).

6.3. FRAMEWORK FOR MULTI-OBJECTIVE DESIGN OF

AIRCRAFT MAINTENANCE
The design of reliable and cost-efficient aircraft maintenance, given in Equation (6.3) is
a complex problem since there are potentially conflicting objectives. Also, a large num-
ber of maintenance designs (s,xs ) from the design space D need to be analyzed. In this
section, we propose a framework to adaptively explore a wide variety of maintenance
strategies and their design variables, and identify Pareto optimal aircraft maintenance
designs. Figure 6.1 shows the overview of our framework.

Figure 6.1: Framework of multi-objective aircraft maintenance design.
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6.3.1. AIRCRAFT MAINTENANCE MODEL
To analyze the reliability and efficiency of an aircraft maintenance design, we first pro-
pose a generic aircraft maintenance model [17]. This model considers the operation of
aircraft (aircraft arrivals and departures according to a flight schedule), the degradation
process of aircraft components, and the manner in which maintenance tasks are per-
formed to address the gradual degradation of components.

AIRCRAFT OPERATION
An aircraft is operated based on a sequence of flight cycles. As shown in Figure 6.2, each

flight cycle i is defined by a departure time τ
dep
i , and a flight-time ∆τi , where ∆τi ∼

N (∆τi ,σ2
i ). After the flight, the aircraft arrives at a destination airport at τarr

i = τdep
i +∆τi .

The time between an arrival and the next departure [τarr
i ,τdep

i+1] is called ground-time.
During ground-time, maintenance tasks can be performed. If a maintenance task is not

completed until the next scheduled departure time τdep
i+1, then the aircraft departs only

after the task is completed, with a delay.

Figure 6.2: Operation of an aircraft.

STOCHASTIC DEGRADATION OF AIRCRAFT COMPONENTS
In this study, we focus on the maintenance of aircraft components whose condition de-
grades over time due to a gradual damage monotonically accumulating over time in a se-
quence of tiny increments. In general, various degradation processes follow such degra-
dation processes, e.g., wear, erosion, fatigue, corrosion, crack growth, degrading health
index [36].

We model such a degradation process using a Gamma process [36]. Let Z (t ) be the
degradation level of a component at time t , which follows a Gamma process. Then, the
degradation of component during flight cycle i is:

Z (τarr
i )−Z (τdep

i ) ∼ Gamma(α,β), (6.8)

with α the shape parameter and β the scale parameter of the Gamma process.
During ground-time, if no maintenance task is performed, then the degradation level

of the components remains the same since the components have not been in use, i.e.,

Z (τdep
i+1)−Z (τarr

i ) = 0. (6.9)

For a brand-new component, Z (t ) = 0. If, however, the degradation level exceeds a
threshold η, i.e., Z (t ) ≥ η, we say that the component is inoperable.



6

120 6. MOO FOR PDAM AT STRATEGY LEVEL USING GP LEARNING

Figure 6.3: A realization of the degradation of a component.

Following Equation (6.8) and (6.9), Z (t ) becomes a piece-wise Gamma process. A
realization of Z (t ) for 10 flight cycles is shown in Figure 6.3. The degradation level in-
creases during flight-time, and it remains the same during ground-time. During the 5th
ground-time, maintenance is performed, the component is replaced with a brand-new
one, and the degradation level is reset to zero.

Remark 1: In [17], we have conducted a data-driven analysis of the degradation
of aircraft landing gear brakes based on actual measurements, and have shown that
this degradation follows a Gamma process. Brake disks of landing gears erode during
landing/take-off due to the heat and friction generated. As a result, the thickness of
the brake disks reduces gradually over time. The thickness of the brake disks is a direct
indicator of the degradation of the brakes. If the thickness of a brake becomes thin-
ner than a threshold, then the brake is replaced with a new one. Figure 6.4 shows the
degradation level of multiple brakes, where the Y-axis is the scaled degradation level of
the brake, with Z (t ) = 0 indicating a new brake and Z (t ) = 1 indicating that the brake
needs to be replaced (η= 1). Based on this data, we apply maximum likelihood estima-
tion (MLE) to estimate the parameters α and β of the Gamma distribution in Equation
(6.8). A Kolmogorov-Smirnov (KS) test verifies our hypothesis that the degradation of the
brakes follows a Gamma process.

MAINTENANCE TASKS

We consider two types of maintenance tasks: component replacements and component
inspections [17]. These maintenance tasks are performed based on a given maintenance
design, i.e., the maintenance design specifies the type (replacement/inspection) and the
time when the tasks need to be executed.

Replacements: When a component is replaced with a new one at some time t , the
degradation process is reset to Z (t ) = 0. For example, in Figure 6.3, the component is
replaced after flight cycle 5. The time spent for a component replacement ∆tRep is mod-
eled as an exponential distribution with mean tRep, which is the average time spent for a
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Figure 6.4: Degradation level data of an aircraft brake [17].

component replacement, i.e., ∆tRep ∼ Exp(tRep).
Visual inspections: When a component is visually inspected, the degradation level is

observed with a certain level of error. Let Ẑ (t ) be the degradation level observed upon
an inspection. Then,

Ẑ (t ) = Z (t )+ϵIns, (6.10)

where ϵIns ∼N (0,σ2
Ins) is the inspection error. The time spent for an inspection ∆tIns is

assumed to follow an exponential distribution with mean tIns, which is the average time
spent for an inspection, i.e., ∆tIns ∼ Exp(tIns).

Condition monitoring using sensors: For those aircraft equipped with condition mon-
itoring systems, sensors are used to monitor the degradation level of components. Let
Z̃ (t ) be the degradation level of a component obtained from sensors at time t . Then,

Z̃ (t ) = Z (t )+ϵSen, (6.11)

where ϵSen ∼N (0,σ2
Sen).

SUPPLY MANAGEMENT OF PARTS
In our model, for a scheduled replacement, a component is replaced with a brand-new
one from the repair shop. We assume that the new component is ordered in advance for
this task [37, 38]. Let DPlan be the time needed to order a new component, i.e., the supply
lead time. Then, an order is placed at least DPlan flight cycles before this scheduled task.

If, however, there is not enough time to order the new component in advance due
to, for instance, an unscheduled maintenance, then a new component is leased. An un-
scheduled maintenance occurs when a severe degradation (Ẑ (t ) ≥ η) is observed during
an inspection and the component needs to be promptly replaced in accordance with rel-
evant regulations/manuals [18, 19]. In this case, the operator leases a new component
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with an additional leasing cost and maintenance-related delay [39]. We assume that the
time to lease ∆tRep,L follows an exponential distribution.

6.3.2. THE DESIGN SPACE OF AIRCRAFT MAINTENANCE: STRATEGY TYPES

AND ASSOCIATED DESIGN VARIABLES
Maintenance tasks are scheduled, and executed based on a given aircraft maintenance
design, which is defined by a strategy type s and the design variables xs associated with
this strategy type, i.e., D = {(s,xs )|s ∈S ,xs ∈X s }. In general, our framework can consider
any finite number of strategy types, and any range for the design variables. We focus on
three types of maintenance strategies that are often used for the maintenance of critical
components: time-based maintenance (TBM) strategy types [3], condition-based main-
tenance (CBM) strategy types [4], and predictive maintenance (PdM) strategy types [5].

Under TBM strategies, maintenance tasks are performed at fixed time intervals. For
example, an inspection of the aircraft landing gear brakes is performed every 50 flight
cycles. The time interval at which an inspection is performed is the design variable of this
strategy type [11, 13, 20]. In this example, the TBM strategy with the choice of performing
an inspection every 50 flight cycles defines a maintenance design.

Under CBM strategies, the moment to perform maintenance tasks is determined
based on the observed health condition of the components [23, 24]. This health con-
dition is identified either using visual inspections and/or using on-board sensors. For
example, under CBM, an inspection of the aircraft landing gear brakes is performed
only when on-board sensors indicate that the degradation level of the brakes exceeds
a threshold of 90% degradation. In this example, the CBM strategy with the choice of
performing an inspection once a 90% degradation threshold is exceeded defines a main-
tenance design.

Under PdM strategies, the Remaining-Useful-Life (RUL) of components is predicted
using sensor data analytics. With this information, maintenance tasks are performed in
anticipation of a failure [16, 21]. For example, under PdM, an aircraft brake is replaced
at a moment indicated by a function of RUL. Also here, the function of RUL is the design
variable of this maintenance strategy [15].

For our analysis, we consider 6 types of maintenance strategies: a fixed-interval re-
placement (FIR) and a fixed-interval inspection (FII) strategy, which are time-based main-
tenance strategies; a variable-interval inspection (VII), a sensor-based inspection (SBI),
and a sensor-based replacement (SBR), which are condition-based maintenance strate-
gies; and a Remaining-Useful-Life-based replacement (RBR) strategy, which is a predic-
tive maintenance strategy. Thus, S = {FIR, FII, VII, SBI, SBR, RBR}. For each strategy type
s ∈ S , the design variables xs and their domains are summarized in Table 6.1. Below we
discuss in detail each of the six strategy types considered.

FIXED-INTERVAL REPLACEMENT (FIR)
The fixed-interval replacement (FIR) strategy replaces components at fixed time interval
of DRep flight cycles. This strategy type uses neither inspection, nor condition monitor-
ing.

The design space of FIR strategy is defined by one design variable DRep, i.e., xFIR =
[DRep]. We consider the domain of DRep as 1200 ≤ DRep ≤ 1500 based on the expected
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Table 6.1: Summary of the maintenance strategy types (s) and their design variables (xs ) considered in the
framework.

Maintenance strategy type (s) Design variables (xs
i ) Range of xs

i

TBM1
Fixed-interval replacement (FIR) xFIR

1 = DRep Interval of replacement (FC) [1200, 1500]

Fixed-interval inspection (FII)
xFII

1 = DIns Interval of inspection (FC) [20, 400]
xFII

2 = ηRep Degradation threshold to replace [0.9, 1.0]

CBM2

Variable-interval inspection (VII)
xVII

1 = aIns Parameter of function DIns(Ẑ ) [1, 880]
xVII

2 = bIns Parameter of function DIns(Ẑ ) [0.9, 1.0]
xVII

3 = ηRep Degradation threshold to replace [0.9, 1.0]

Sensor-based inspection (SBI)
xSBI

1 = ηIns Degradation threshold to inspect [0.7, 0.9]
xSBI

2 = DIns Interval of inspection (FC) [20, 400]
xSBI

3 = ηRep Degradation threshold to replace [0.9, 1.0]

Sensor-based replacement (SBR) xSBR
1 = ηRep Degradation threshold to replace [0.9, 1.0]

PdM3 RUL-based replacement (RBR) xRBR
1 = ρRep RUL threshold to replace [0, 50]

1 Time-based maintenance (TBM), 2 Condition-based maintenance (CBM), 3 Predictive maintenance (PdM)

life cycle of aircraft landing gear brakes. The expected life cycle of a component following
the Gamma process in Equation (6.8) is estimated as 1/(αβ). In [17], we have estimated
the expected life cycle of an aircraft landing gear brake to be approximately 1249 – 1446
flight cycles. Thus, a maintenance design (FIR,[DRep]) consists of the FIR strategy and a
specific value for DRep.

FIXED-INTERVAL INSPECTION (FII)

The fixed-interval inspection (FII) strategy relies on periodic inspections. The moment
of component replacement is based on the degradation level Ẑ (t ) observed during an
inspection [13, 17, 20]. The components are inspected every DIns flight cycles. If Ẑ (t ) ≥
ηRep, then the replacement of the component is scheduled after DPlan flight cycles. Here,
DPlan is the time required to supply required parts. In this study, we assume DPlan = 20
flight cycles, which is the average number of flight cycles for an aircraft in 10 days [1].

The design space of FII strategy is defined by design two variables DIns and ηRep, i.e.,
xFII = [DIns,ηRep]. We assume that DIns ≥ DPlan flight cycles since maintenance tasks
need to be scheduled DPlan flight cycles ahead of its execution. The upper bound of DIns

is set to 400 flight cycles, so that we can plan to inspect a brake at least 2 times during its
average life cycle (1249 – 1446 flight cycles) [17]. In the case of ηRep, its maximum value
is η = 1, which is a scaled degradation threshold of inoperable component (see Section
3.1), and its minimum value is 0.9 assuming a 10% safety margin for replacements. Thus,
a maintenance design (FII, [DIns,ηRep]) consists of the FII strategy and specific values for
DIns and ηRep.

VARIABLE-INTERVAL INSPECTION ( VII)

The variable-interval inspection (VII) strategy is proposed to reduce the number of in-
spections when the degradation level of a component is low [24]. The moments of in-
spections are decided based on the degradation level Ẑ (t ) observed during the last in-
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spection. Then, the next inspection interval DIns(Ẑ (t )) is determined as follows, [24]:

DIns(Ẑ (t )) = 20+max

(
(aIns − aIns

bIns
Ẑ (t )),0

)
, (6.12)

where aIns determines the first inspection interval (20+aIns flight cycles), and bIns is the
degradation threshold to perform periodic inspections with the minimum interval (20
flight cycles). Figure 6.5 illustrates an example of DIns, given Ẑ (t ). When Ẑ (t ) ≥ bIns,
inspections are scheduled at minimum interval, which we assume to be 20 flight cycles,
or 10 days [1]. Upon inspection, if Ẑ (t ) ≥ ηRep, the VII strategy schedules a component
replacement after DPlan flight cycles, similar to the FII strategy.

Figure 6.5: The next inspection interval DIns(Ẑ (t )) is defined as a function of the last inspection result Ẑ (t )
under VII strategy [24], aIns = 180, bIns = 0.9.

The design space of VII strategy is defined by three design variables, aIns, bIns, ηRep,
i.e., xVII = [aIns,bIns,ηRep]. The lower bound of aIns is set to be 1 since the VII strategy
with aIns = 0 is identical to the FII strategy with DIns = 20 flight cycles. The upper bound
of aIns is set to be 880, which renders the VII strategy to perform the first inspection af-
ter 1000 flight cycles from its replacement. This is lower than the expected life cycle of
aircraft landing gear brakes (1249–1446 flight cycles [17]), and ensures that at least one
inspection takes place before a brake becomes inoperable. For bIns and ηRep, we explore
the range [0.9,1] considering a maximum 10% safety margin for inspections and replace-
ments. Thus, a maintenance design (VII, [aIns,bIns,ηRep]) consists of the FII strategy and
specific values for aIns, bIns, and ηRep.

SENSOR-BASED INSPECTION (SBI)
The sensor-based inspection (SBI) strategy uses sensor monitoring data Z̃ (t ) to substi-
tute a part of the inspections by sensor monitoring and reduce the number of inspec-
tions [17, 23]. Unlike FII and FIR strategies, SBI strategy starts the periodic inspections
based on the sensor data Z̃ (t ) obtained after every flight cycles. If the sensor data is
below a threshold ηIns, i.e., Z̃ (t ) < ηIns, then inspections are skipped. If Z̃ (t ) ≥ ηIns, a
periodic inspection of fixed interval DIns is started. Upon inspection, if Ẑ (t ) ≥ ηRep, the
component is replaced after DPlan flight cycles.
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The design space of SBI strategy is defined by three design variables ηIns, DIns, and
ηRep, i.e., xSBI = [ηIns,DIns,ηRep]. For ηIns, we explore the range [0.7,0.9], so that peri-
odic inspections start at a degradation level having a 10− 30% safety margin from the
threshold of inoperable components (η = 1). Also, ηRep has a range [0.9,1.0] consider-
ing a maximum 10% safety margin. For DIns, the range [20,400] is considered, similar
to the FII strategy. Thus, a maintenance design (SBI, [ηIns,DIns,ηRep]) consists of the SBI
strategy and specific values for ηIns, DIns, and ηRep.

SENSOR-BASED REPLACEMENT (SBR)
The sensor-based replacement (SBR) strategy determines the moment for component
replacement based on the last sensor monitoring data Z̃ (t ). So, there are no visual in-
spections performed by mechanics under SBR strategy [17]. A component is replaced if
the sensor indicates a degradation level Z̃ (t ) higher than a threshold, i.e., if Z̃ (t ) ≥ ηRep.
Since we assume imperfect measurements Z̃ (t ) with measurement error ϵSen (see Equa-
tion (6.11)), an early replacement may be triggered although the true degradation level
Z (t ) is below a threshold, or a required replacement may be missed even though the true
degradation level Z (t ) exceeds a threshold.

The design space of SBR strategy is defined by one design variable ηRep, i.e., xSBR =
[ηRep]. For this, we explore the range [0.9,1], considering a maximum 10% safety margin
from the degradation threshold of an inoperable component (η = 1). Thus, a mainte-
nance design (SBR,[ηRep]) consists of the SBR strategy and a specific value for ηRep.

REMAINING-USEFUL-LIFE-BASED REPLACEMENT (RBR)
The Remaining-Useful-Life-based replacement (RBR) strategy is a predictive mainte-
nance design that uses prognostics of the Remaining-Useful-Life (RUL) of components
to schedule replacements [16, 17]. The RUL prognostics are determined based on an
analysis of the data collected by sensors on the degradation of the components [5, 6].
The RUL of a component at time t is estimated based on the last available sensor data
{Z̃ (t ′) for 0 ≤ t ′ ≤ t }. The following linear model is considered to estimate the degrada-
tion level of a component at time t +∆t [17]:

Z̃ (t +∆t ) = c0 + c1∆t . (6.13)

The coefficients c0 and c1 are updated after every flight cycle based on the most recent
sensor data using the ordinary least square method [40]. After each flight cycle, the RUL
of the component at time t is estimated as follows [17]:

min{∆t |c0 + c1∆t ≥ η} (6.14)

Finally, if RUL is below a threshold ρRep, the component is replaced after DPlan flight
cycles.

The design space of the RBR strategy is defined by one design variable ρRep, i.e.,
xRBR = [ρRep]. For the lower bound, we consider ρRep ≥ 0. This ensures that we set a
non-negative RUL as a threshold to perform predictive maintenance. The upper bound
of ρRep is set to be 50 flight cycles, considering that a replacement is performed after
DPlan = 20 flight cycles from the moment when RUL is predicted to be below the thresh-
old ρRep, i.e., 30 flight cycles are considered as a safety margin. Here, 30 flight cycles are
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twice the standard deviation of the error of RUL prediction following Equation (6.14).
Thus, a maintenance design (RBR,[ρRep]) consists of the RBR strategy and a specific
value for ρRep.

6.3.3. MULTIPLE OBJECTIVES OF AIRCRAFT MAINTENANCE
We consider the following objectives that have been regarded in literature as a key per-
formance indicators for aircraft maintenance [12, 13, 17, 41, 42].

MAXIMIZATION OF MEAN-CYCLES-TO-REPLACEMENT (MCTR)
Maximizing the utilization time of components is of high interest in aircraft mainte-
nance [12]. The utilization of components is evaluated in terms of the mean-cycles-
to-replacement (MCTR), which is defined as the mean number of flight cycles that a
component is utilized for before it is replaced. Since a large part of the maintenance cost
comes from component replacements, a high MCTR implies that we are exploiting the
component longer and that the cost per unit time is reduced [12].

MINIMIZATION OF THE EXPECTED NUMBER OF MAINTENANCE TASKS (NRep , NIns)
The cost with maintenance is often evaluated as the number of maintenance tasks per-
formed times the cost of individual maintenance tasks [12, 13]. However, the cost of in-
dividual aircraft maintenance tasks is specific to each operator [1], and depends on vari-
ous factors such as the skill of the mechanics that execute the task, the moment when the
task is executes, etc. This makes the estimation of the costs for a specific task challeng-
ing. In this study, we assume that the maintenance cost is represented by the number
of maintenance tasks performed. The goal is to minimize the number of component
replacements (NRep) and component inspections (NIns).

MINIMIZATION OF THE EXPECTED NUMBER OF UNSCHEDULED REPLACEMENTS (NUns)
Unscheduled replacements have a negative impact both on the supply management of
parts and on the flight schedule of the aircraft (see Section 6.3.1). For example, when
there is not enough time to supply a new component to replace, this may need to be
leased at a higher cost [39]. Also, the task will be performed with delay due to additional
time to acquire the leased part [17, 41]. The aim is to minimize the expected number of
unscheduled replacements (NUns).

MINIMIZATION OF THE EXPECTED NUMBER OF DEGRADATION INCIDENTS (NInc)
As an indicator of the reliability of the aircraft maintenance strategy, we consider the
expected number of degradation incidents (NInc) [17]. We consider multi-component
system having a k-out-of-n redundancy, i.e., the system consists of n components and
requires that at least k components are operable (0 < k ≤ n). If a system with k-out-of-n
redundancy has more than (n − k) inoperable components, then we say that a degra-
dation incident occurs. When a degradation incident occurs, the aircraft needs prompt
maintenance before it can perform a next flight.

Aircraft landing gear brakes are an example of a k-out-of-n system. Wide-body air-
craft are equipped with 8 brakes, 4 on each side, as shown in Figure 6.6. According to the
minimum equipment list (MEL) [18, 19], a minimum of 3-out-of-4 brakes on each side
need to be operational for the aircraft to be able to fly.
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(a) (b)

Figure 6.6: An example of multi-component system of aircraft, 8 brakes of wide-body aircraft. (a) Configuration
[17]. (b) A brake of landing gear. Image source: https://www.safran-group.com/products-services/

MINIMIZATION OF DELAY DUE TO MAINTENANCE (TD)
Delays due to maintenance are another key performance indicator for maintenance strate-
gies [42]. Delays due to maintenance occur when the time spent to perform tasks (∆tRep,
and ∆tIns) exceeds the scheduled ground-time (see also Figure 6.2 for the definition of
ground-time), or when a new component needs to be leased and an additional time
∆tRep,L is required to supply this component. The aim is to minimize delays due to main-
tenance.

6.3.4. CRUDE MONTE CARLO SIMULATION OF MAINTENANCE DESIGNS

AND SELECTION OF CONFLICTING OBJECTIVES

In this section, we perform crude Monte Carlo simulation to determine Pareto optimal
maintenance designs and analyze the correlation of multiple design objectives. Based
on this analysis, we select two objectives for the multi-objective design of aircraft main-
tenance.

CRUDE MONTE CARLO SIMULATION OF MAINTENANCE DESIGNS

Using the aircraft maintenance model in Section 6.3.1, the strategy types presented in
Table 6.1 are simulated by means of Monte Carlo simulation. Although the design vari-
ables of each strategy type are defined on continuous ranges, we sample discrete values
for these variables using a l -level factorial design (FD) method [43], with l = 7. Using a
7-level FD, the total number of maintenance designs to be simulated is

∑
s∈S 7N s

, where
N s is the number of the design variables of strategy type s. For our analysis, we consid-
ered 3 maintenance strategies with one design variable (FIR, SBR, RBR), 1 maintenance
strategy with two design variables (FII) and 2 maintenance strategies with three design
variables (VII, SBI), see Table 6.1. This leads to a total of 3 ·71 +72 +2 ·73 = 756 mainte-
nance designs that are simulated.

https://www.safran-group.com/products-services/
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For each sampled maintenance design, the objectives are evaluated by means of
crude Monte Carlo simulation. We simulate each maintenance design NMC = 1000 times,
and evaluate the mean values of the objectives observed during the simulations. Each
design is simulated for a period of 10 years of aircraft maintenance.

ANALYZING THE CORRELATION OF THE DESIGN OBJECTIVES
Following simulation, we analyze the 6 objectives (MCTR, NRep, NIns, NInc, NUns, and
TD), of 756 maintenance designs sampled from different strategy types. Table 6.2 shows
the Spearman’s rank correlation coefficient [44] of these objectives.

Table 6.2: Spearman’s rank correlation coefficients between pairs of objectives.

Group 1 Group 2
Cost-related objectives Reliability-related objectives

−MCTR NRep NIns NUns NInc TD

−MCTR 0.994 0.373 -0.921 -0.939 -0.907
NRep 0.994 0.371 -0.919 -0.939 -0.907
NIns 0.373 0.371 -0.191 -0.532 -0.210

NUns -0.921 -0.919 -0.191 0.876 0.982
NInc -0.939 -0.939 -0.532 0.876 0.877
TD -0.907 -0.907 -0.210 0.982 0.877

Based on the Spearman’s coefficients in Table 6.2, we group the objectives that are
positively correlated: −MCTR, NRep, and NIns (Group 1), and negatively correlated: NUns,
NInc, and TD (Group 2). Group 1 consists of cost-related objectives since the mainte-
nance cost is reduced as we use components longer (high MCTR), and as we perform
fewer tasks (low NRep and NIns). Group 2 consists of reliability-related objectives, where
we aim to minimize the number of unscheduled tasks, degradation incidents , and de-
lays. The cost-related and reliability-related groups of objectives are conflicting.

SELECTION OF CONFLICTING OBJECTIVES
We are interested in maintenance designs that balance cost and reliability objectives. As
such, from each group of objectives in Table 6.2 we select objectives: MCTR and NInc,
i.e.,

maximize f1=MCTR (cost-related objective)

minimize f2=NInc (reliability-related objective)

In general, our proposed framework is not limited to only these two objectives, and
can be readily applicable for any set of objectives.

PARETO FRONT GENERATED USING CRUDE MONTE CARLO SIMULATION
Figure 6.7 shows the Pareto optimal maintenance designs obtained using crude Monte
Carlo simulation of the 756 maintenance designs sampled for the 2 conflicting objectives
f1 = MCTR and f2 = NInc.
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Figure 6.7: Pareto optimal aircraft maintenance designs using crude Monte Carlo simulation.

However, the Pareto front in Figure 6.7 is not generated efficiently. First, this Pareto
front is obtained after sampling only a small number of discrete values of the design
variables, following 7-level FD method. In general, we are interested in evaluating the
entire, continuous range of the design variables in Table 6.1. Moreover, most of the 756
maintenance designs that have been simulated are dominated. In fact, only 66 out of 756
maintenance designs are actually Pareto optimal. This implies that most of the computa-
tional power is wasted to simulate maintenance designs that are dominated. Therefore,
we need an efficient algorithm to obtain Pareto optimal maintenance designs by con-
sidering the continuous ranges of design variables, and by adaptively simulating those
maintenance designs expected to be Pareto optimal.

6.3.5. AN ADAPTIVE ALGORITHM FOR MULTI-OBJECTIVE DESIGN SPACE

EXPLORATION OF AIRCRAFT MAINTENANCE

In this section, we propose an algorithm to Explore the design space D of the multi-
objective aircraft maintenance problem using Gaussian process Learning and adaptive
SAmpling (ELSA). The main merit of ELSA is that it adaptively samples the maintenance
designs that are expected to improve the Pareto front of the aircraft maintenance prob-
lem, and simulates only these sampled maintenance designs. With this, the total num-
ber of simulations that need to be conducted is reduced significantly.

ELSA utilizes Gaussian process (GP) learning models as a surrogate model of the
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objectives. The GP model is a flexible non-parametric model that does not need prior
knowledge on the objectives [30, 31]. Moreover, the GP model not only provides predic-
tions, but also estimates the uncertainty of the predictions, which is used in the adaptive
sampling step to prevent premature convergence of the design space exploration.

Figure 6.8 shows an overview of ELSA. We first sample initial maintenance designs
(s,xs ) (Step 1). Iteratively, we evaluate the objective vectors f(s,xs ) of the sampled main-
tenance designs using MC simulation, and update the Pareto front of the aircraft main-
tenance problem. Gaussian process (GP) learning models are constructed in Step 3,
based on the information acquired in the previous steps. Next, we adaptively sample
new maintenance designs that are expected to be Pareto optimal, using the GP learning
models (Step 4). These newly obtained maintenance designs are then simulated (back to
Step 2). Steps 2–4 are iterated until some stopping criteria are satisfied. Below we discuss
in detail these steps .

Figure 6.8: Overview of ELSA.

STEP 1: INITIAL SAMPLING OF MAINTENANCE DESIGNS

Initial maintenance designs (s,xs ) are sampled as follows. For each strategy type s ∈ S ,
design variables xs are sampled from its domain X s using an l -level factorial design (FD)
method [43]. The FD method initializes ELSA without bias, providing evenly distributed
data points over the domain X s of the design variables [43].

STEP 2: EVALUATE THE OBJECTIVES OF MAINTENANCE DESIGNS, UPDATE

PARETO FRONT AND TRAINING DATA

In Step 2, we evaluate the objectives f(s,xs ) of the sampled maintenance designs (see
Step 1) using MC simulations of the aircraft maintenance model in Section 6.3.1. Let
Dk denote the set of maintenance designs whose objectives have been evaluated during
iterations 0,1, . . . ,k, with Dk ⊂D. LetFk = {f(s,xs )|(s,xs ) ∈Dk } denote the set of objective
vectors that have been evaluated during iterations 0,1, . . . ,k.
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Having obtainedFk for the set of evaluated maintenance designsDk , ELSA identifies
those maintenance designs that are Pareto optimal D∗

k . Thus, the following Pareto front
F∗

k is obtained:

D∗
k =

{
(s,xs ) ∈Dk

∣∣∣Ø(s′,xs′ ) ∈Dk such that f(s′,xs′ ) ≻ f(s,xs )
}

. (6.15)

F∗
k = {f(s,xs )|(s,xs ) ∈D∗

k }. (6.16)

Here, D∗
k and F∗

k are approximations of the true Pareto optimal designs D∗ and the true
Pareto front F∗, as defined in Equations (6.6) and (6.7). By exploring additional mainte-
nance designs (s,xs ) ∈ (D−Dk ) in further iterations, ELSA refines D∗

k and F∗
k .

Also, these sampled maintenance designs Dk and their objective vectors Fk will be
used as training data for Gaussian learning models in Step 3.

STEP 3: CONSTRUCT GAUSSIAN PROCESS LEARNING MODELS

In Step 3, we construct Gaussian process (GP) learning models using the Monte Carlo
simulation results obtained during iterations 0,1, . . . ,k, i.e., Dk andFk . These GP models
are surrogate models that pre-estimate the objective vector of maintenance designs that
have not yet been evaluated using MC simulation of the aircraft maintenance model.
This pre-estimation is faster than using MC simulations. Therefore, this pre-estimation
is further used in Step 4 of ELSA. Below we explain in detail how we construct the GP
models.

We construct a GP model GP s
m for each strategy type s, and for each objective fm .

This GP s
m model assumes that the objective fm of maintenance design (s,xs ), follows a

Gaussian process specified by its mean function and covariance function [30, 31]. As-
suming a zero prior mean function, GP s

m is defined as:

fm(s,xs ) ∼GP s
m

(
0,κs

m(xs ,x′s )
)
, (6.17)

where κs
m is the covariance function, or equivalently a kernel.

At iteration k of ELSA, the training data for GP s
m consist of X s

k and F s
m,k , where X s

k is
the matrix whose rows are xs such that (s,xs ) ∈Dk , and F s

m,k is the vector whose elements
are fm(s,xs ) such that (s,xs ) ∈Dk . For simplicity, in this section we drop the superscript
s and the subscript m and k since the following discussion applies to all strategy types
s ∈S , objectives m ∈ {1, ..., M }, and iterations k = {0,1, ...}.

Having the GP model specified in Equation (6.17), the prior distribution of training
data F and a test output f at a test input x is:[

F
f

]
∼N

(
0,

[
K (X , X ) K (X ,x)
K (x, X ) K (x,x)

])
, (6.18)

where K (·, ·) is the covariance matrix calculated by kernel κ(·, ·). Then, the posterior dis-
tribution of f is [30]:

f |X ,F,x ∼N
(
E[ f ],V[ f ]

)
. (6.19)
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Here, the mean E[ f ] and variance V[ f ] of the posterior distribution are:

E[ f ] = K (x, X )
[
K (X , X )

]−1F, (6.20)

V[ f ] = K (x,x)−K (x, X )
[
K (X , X )

]−1K (X ,x). (6.21)

The kernel should be defined based on the characteristics of the considered prob-
lem [30]. We consider the following two characteristics of aircraft maintenance designs.
First, the objective values of two maintenance designs with similar x are correlated, i.e.,
radial basis correlation. Second, we assume that the training data F contains uncertainty
as they are evaluated by MC simulation of the stochastic aircraft maintenance model.
Based on these two characteristics, we consider the following compound kernel func-
tion:

κ(x,x′) = κRBF(x,x′)+κWN(x,x′), (6.22)

where κRBF is a squared exponential radial basis function (RBF) kernel, and κWN is a
white noise (WN) kernel [30].

The RBF kernel κRBF models the correlation of two vectors of the design variables x
and x′ based on an Euclidean distance as follows:

κRBF(x,x′) =σ2
RBFexp

(
−1

2

N∑
j=1

( x j −x ′
j

l j

)2
)

, (6.23)

where x = [x1, . . . , x j , . . . , xN ], l j is a characteristic length-scale, and σ2
RBF > 0 is a scale

parameter of RBF kernel. Depending on l j , the intensity of the correlation along de-
sign variable x j varies, i.e, κRBF is an anisotropic kernel. This feature allows us to model
the situation when some design variables x j have a larger impact on the objectives than
other design variables [30]. Such an anisotropic correlation is often observed in the sim-
ulation of aircraft maintenance [17].

The WN kernel κWN models the homogeneous noise in the objective values in the
training data F [32]. Formally, κWN is defined as follows:

κWN(x,x′) =
{
σ2

WN, if x = x′

0, otherwise,
(6.24)

where σ2
WN > 0 is a noise level.

In Equations (6.23) and (6.24), l j , σ2
RBF and σ2

WN are hyper-parameters, and are opti-
mized using the maximum likelihood estimation [40].

Finally, we train the GP models GP s
m for all strategy types s ∈ S and all objectives

m ∈ {1, . . . , M }. These GP models are further used to rapidly pre-estimate the objective
vectors in Step 4 (adaptive sampling) of ELSA.

STEP 4: ADAPTIVE SAMPLING OF MAINTENANCE DESIGNS
In Step 4, we select new maintenance designs that can potentially improve the Pareto
front F∗

k obtained in Step 2, using the GP models constructed in Step 3. These newly se-
lected maintenance designs will be simulated in a next iteration (k +1). In general, this
selection of new points (maintenance designs) to explore is done by solving infill-criteria
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maximization problems with genetic algorithms [32]. However, these infill-criteria max-
imization problems are often hard to solve because of many local maximums and a high
computational cost of the infill-criteria [32, 34]. Moreover, this approach rarely iden-
tifies new designs that are Pareto optimal in some applications [45]. To address these
issues, we propose a novel approach to select new maintenance designs using adaptive
sampling as follows.

We first randomly sample xs ∈X s for all s ∈ S based on two approaches: i) some are
sampled from the entire domain X s uniformly at random (global sampling), and ii) the
others are sampled near the already available Pareto optimal xs (local sampling). Global
sampling contributes to the exploration for new designs, while local sampling exploits
the current Pareto optimal solutions to generate additional Pareto optimal maintenance
designs.

For global sampling, ELSA chooses xs independently of the training data obtained
up to the current iteration (exploration). Specifically, we sample nG vectors of the design
variables xs from X s , uniformly at random. Using global sampling, ELSA explores the
entire domain X s even when the Pareto optimal solutions are clustered in a small area,
as seen in Figure 6.9.

Local sampling is based on the idea that a Pareto optimal design variable xs is likely
to be located in the vicinity of other Pareto optimal design variables (exploitation). We
sample two vectors of design variables xs

1 and xs
2 of strategy type s, and consider a ran-

dom weight w , such that

(s,xs
1) ∈D∗

k , (s,xs
2) ∈D∗

k , 0 < w < 1. (6.25)

Then, the convex combination of xs
1 and xs

2 with weight w is sampled as:

xs = wxs
1 + (1−w)xs

2. (6.26)

Following this approach, we sample nL vectors of design variables xs from X s . Figure 6.9
shows an example of global and local sampling in a 2-dimensional domain X s .

Figure 6.9: An example of global and local sampling in a 2-dimensional domain X s of strategy type s.
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For all the maintenance designs that have been sampled using global/local sampling,
we rapidly pre-estimate their objective vectors f̂(s,xs ) using the GP models discussed
in Step 3. Here, since this pre-estimation using GP models is much faster than using
MC simulation, ELSA can pre-estimate many more design points sampled by global and
local sampling. Let f̂(s,xs ) = [ f̂1(s,xs ), . . . , f̂M (s,xs )] be the objective vector pre-estimated
by the GP models, where f̂m(s,xs ), 1 ≤ m ≤ M , is the objective value pre-estimated by
the GP model GP s

m constructed in Step 3. For this pre-estimation, ELSA considers both
the mean E[ fm] and the variance V[ fm] of the GP models’ posterior distribution (see
Equations (6.19)-(6.21)). Assuming that we want to minimize fm , we pre-estimate f̂m as
the lower-limit of the confidence interval of the prediction of fm made by the GP model
GP s

m , i.e.,

f̂m(s,xs ) ≃ E[ fm(s,xs )]−υ
√
V[ fm(s,xs )], (6.27)

where υ ≥ 0 is the width of the confidence interval. Since the lower limit of this con-
fidence interval is used, the pre-estimation f̂m is under-estimated relative to the mean
E[ fm]. The larger V[ fm] is, the larger the under-estimation is. Conversely, if we want to
maximize fm , then the upper-limit of this confidence interval is used. In this case, the
pre-estimation f̂m is over-estimated.

Next, based on these pre-estimated objective vectors f̂, ELSA selects only those main-
tenance designs that have been sampled, and that are not dominated by the currently
available Pareto optimal maintenance designs. These selected maintenance designs will
be simulated in the next iteration (k+1), i.e., they are added toDk+1. Formally, a sampled
maintenance design (s,xs ) is selected and added to Dk+1, when:

(s,xs ) ∈Dk+1⇐⇒
(
Ø(s′,xs′ ) ∈D∗

k such that f(s′,xs′ ) ≻ f̂(s,xs )
)

∧
(
Ø(s′,xs′ ) ∈Dk+1 such that f̂(s′,xs′ ) ≻ f̂(s,xs )

)
.

(6.28)

Figure 6.10 shows an example of the adaptive sampling step when considering the
objective space F . Circle-points represent the Pareto optimal objective vectors obtained

Figure 6.10: An example of an objective space F during Step 4 of ELSA.
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during iterations 0,1, . . . ,k. Triangle-points represent the pre-estimated objective vectors
f̂(s,xs ) of the sampled maintenance designs. Among them, those maintenance designs
that are not dominated by the current Pareto optimal designs (circle-points) nor by the
other designs sampled at this step (triangle-points), are selected for simulation in the
next iteration (k +1), i.e., (s,xs ) ∈Dk+1.

This adaptive sampling step enables ELSA to balance between exploration and ex-
ploitation. Here, exploration refers to acquiring more training data and thus reducing
the uncertainty of the GP models. To explore, ELSA selects maintenance designs that
have a high uncertainty V[ fm]. These maintenance designs are often located far from
the already evaluated maintenance designs. Exploitation refers to improving the cur-
rent solutions D∗

k and F∗
k using the available training data set [46]. To exploit, ELSA

selects maintenance designs that are expected to dominate the current Pareto optimal
maintenance designs. During early iterations when the training data set is limited, the
GP models have a high uncertainty V[ fm]. Thus, the pre-estimation f̂m (see Equation
(6.27)) is influenced mainly by the uncertainty term V[ fm] and less by the mean E[ fm].
Therefore, in these early iterations, those maintenance designs with a high uncertainty
are most likely to be chosen. As the amount of training data increases, the uncertainty
of the GP models decreases, and thus the pre-estimation f̂m is influenced mainly by the
mean E[ fm]. If we assume that fm is minimized(maximized), then those maintenance
designs with a small(large) mean E[ fm] are most likely to be chosen. As such, taking into
account the level of the uncertainty of the GP models, ELSA balances between explo-
ration and exploitation.

STOPPING CRITERIA AND QUALITY INDICATORS
At the end of each iteration, ELSA is terminated if one of the following stopping criteria is
satisfied. First, we consider the computational cost, i.e., ELSA is terminated when a pre-
defined computational time is exceeded, or when a predefined number of simulations is
exceeded. Second, ELSA is terminated when the quality of the solution is satisfactory or
converges. Here, we consider the following two quality indicators for ELSA:

1) HYPER-VOLUME INDICATOR.
The hyper-volume indicator Vk is the hyper-volume in the objective space F covered
by a reference point and the available Pareto front [47, 48]. Figure 6.11 provides a vi-
sualization of the hyper-volume indicators Vk and Vk+1 for a 2-dimensional space F of
objectives. The black/blue circle-points denote the Pareto optimal objective vectors ob-
tained after iteration k and (k +1), respectively. The star-point in the upper-right corner
is the reference point. The hyper-volume is monotonically increasing as the number of
iterations increases, i.e., Vk ≤Vk+1, because new Pareto optimal objective vectors always
increase the hyper-volume [47]. Also Vk is bounded from above by the hyper-volume in-
dicator of the true Pareto front V∞, i.e., Vk ≤V∞ [48]. Thus, Vk monotonically converges
to V∞ as the approximated Pareto front at iteration k (F∗

k ) approaches the true Pareto
front (F∗).

2) THE NUMBER OF PARETO OPTIMAL MAINTENANCE DESIGNS.
We count the number of Pareto optimal maintenance designs obtained after k iterations,
i.e., |D∗

k |. A large |D∗
k | implies that the generated Pareto front is densely populated. Un-
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Figure 6.11: A visualization of hyper-volume indicator V at iteration k and iteration (k +1).

like Vk , |D∗
k | is not monotonically increasing. For example, when a newly identified

Pareto optimal maintenance design dominates many solutions of the previous Pareto
front, then |D∗

k | will actually decrease from iteration k to iteration (k +1).
We say that Vk represents the degree of exploration of the domains, while |D∗

k | repre-
sents the degree of exploitation. This is because Vk is sensitive to a new objective vector
far from the current Pareto front, while |D∗

k | can be increased by a large number of ob-
jective vectors close to the current Pareto front. For example, in the upper left corner of
Figure 9, four new solutions are found, but these do not significantly increase Vk com-
pared to the increment made by a single new solution in the lower right corner of Figure
6.11.

6.4. CASE STUDY I: DESIGNING MAINTENANCE FOR LANDING

GEAR BRAKES
In this section, we apply our proposed framework to explore the entire design space of
aircraft maintenance, i.e., considering both TBM, CBM and predictive maintenance de-
signs, for landing gear brakes.

6.4.1. MODEL PARAMETERS
Aircraft landing gear brakes are a k-out-of-n multi-component system. A wide-body air-
craft has 8 landing gear brakes, 4 on each side of the wings (see Figure 6.6). 3 out of 4 on
each side need to be operable during flights to satisfy the manuals/regulations [18, 19].
After each take-off and landing, the brake disks degrade, i.e., the thickness of the brake
disks reduces. In [17], it is shown that this degradation process follows a Gamma pro-
cess, and the parameters α and β are estimated using the maximum likelihood estima-
tion (MLE) based on the degradation data of landing gear brakes of a fleet of aircraft (see
Table 6.3). As soon as the thickness of a brake reduces to half of its original thickness,
i.e, as soon as the degradation level exceeds a threshold η = 1, it is required to replace
this brake. In this case, the brakes do not completely lose their functionality, but they are
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Table 6.3: Parameter values of Gamma process for the aircraft brake degradation model Gamma(α,β) [17]. L
and R indicate whether the brake is on the left or right side of the wing.

Brake position Side Shape parameter α Scale parameter β

1 L 3.350 2.063e-4
2 L 4.146 1.836e-4
3 R 3.546 2.217e-4
4 R 3.390 2.171e-4
5 L 4.667 1.715e-4
6 L 4.100 1.856e-4
7 R 3.068 2.329e-4
8 R 2.583 2.852e-4

required to be replaced.
As maintenance tasks for landing gear brakes, we consider replacements, visual in-

spections, and condition monitoring using sensors (see Section 6.3.1). Following inter-
views with maintenance experts, we assume that the mean time spent for a brake re-
placement is 3 hours (tRep = 3hrs). For unscheduled maintenance, we assume an addi-
tional time tRep,L = 6hrs is needed to supply the required component. A visual inspection
requires 2 minutes on average (tIns = 2min), with σIns = 0.0075 [17]. For the condition
monitoring systems, the sensor error σSen is assumed to be 0.0204 [17].

6.4.2. PARETO FRONT OF AIRCRAFT MAINTENANCE DESIGNS

We consider the maximization of the mean-cycles-to-replacements, i.e., max f1 = MCTR,
which is a cost-related objective. For the reliability-related objective, we minimize the
expected number of degradation incidents of multi-component systems with k-out-of-
n redundancy, i.e., min f2 = NInc. The explored design space consists of 6 maintenance
strategies (see Section 6.3.2). The ranges of their design variables are shown in Table 6.1.

Using ELSA, 195 Pareto optimal designs are identified after simulating 1035 main-
tenance designs during 19 iterations, i.e., |D∗

19| = 195, and |D19| = 1035. The process of
iteratively generating Pareto optimal maintenance designs using ELSA is shown in Figure
6.12. Each point in Figure 6.12 represents the objective vector f(s,xs ) of one maintenance
design (s,xs ) ∈Dk , where s is the strategy type and xs are the associated design variables.
The large circles represent the Pareto optimal maintenance designs ((s,xs ) ∈D∗

k ), while
the small dots represent the dominated maintenance designs. The cross-points corre-
spond to the maintenance designs adaptively sampled for the next iteration k +1, with
their objective vectors being pre-estimated using the GP models.

At the initial iteration k = 0, a sparse Pareto front is generated, which consists of 19
Pareto optimal maintenance designs. This front is obtained after simulating 85 initial
maintenance designs, i.e., |D∗

0 | = 19, and |D0| = 85. As an example, in Figure 6.12 the ob-
jective vector f = [1361.4,0.2590] is annotated as MD0, which corresponds to the main-
tenance design specified by the strategy s = FII and its design variables xs = [147,0.9667].
This means that when using the maintenance design MD0, the aircraft components are
expected to be utilized for 1361.4 flight cycles on average, and 0.2590 degradation inci-
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Figure 6.12: Development of Pareto front in the first 4 iterations (k = 0,1,2,3) of ELSA.

dents are expected to occur.

Now, the GP models GP s
m are trained with the training data obtained at iteration k =

0. Using these updated GP models, ELSA adaptively samples new maintenance designs
(s,xs ). Their pre-estimated objective vectors are shown as cross-points at iteration k = 0
in Figure 6.12. Here, these pre-estimated objective vectors include the uncertainty of
the GP models (see Equation (6.28)), which is high at iteration k = 0 due to the small
training data sets. Thus, the pre-estimated objective vectors are located far from the
current Pareto front.

For these maintenance designs selected at iteration k = 0, MC simulations are con-
ducted at iteration k = 1. As a result, ELSA finds additional Pareto optimal maintenance
designs, especially in the region where the GP models predict new Pareto optimal solu-
tions. As such, the Pareto front is pushed towards the lower-right corner as shown for
k = 1 in Figure 6.12. ELSA repeats the same steps of training the GP models, adaptive
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sampling, and simulation, for the next iterations k = 1,2,3, ...,19. During the following
iterations, the Pareto front is gradually improved, identifying new maintenance designs
that dominates the old maintenance designs. For example, after iteration k = 2, MD0
that was Pareto optimal at k = 0,1 is dominated by other maintenance designs identified
at k = 2. Also, it is noted that the gap between the current Pareto front and the pre-
estimated objective vectors decreases as the uncertainty of the GP models is reduced
by the increased training data sets in iteration k = 1,2,3. Finally, after simulating 1035
maintenance designs during 19 iterations, ELSA is stopped as the predetermined total
number of simulations is reached.

In Figure 6.13, the final Pareto front generated by our framework shows a clear trade-
off between cost-related objective (MCTR) and reliability-related objective (NInc). In the
lower-left part of the front, there are maintenance designs that have nearly zero degrada-
tion incidents (low NInc), but achieve this by replacing the components quite early (low
MCTR), wasting the useful life of the components. Such maintenance designs achieve
high reliability in terms of minimizing NInc, but utilize the components inefficiently
(small MCTR). On the other hand, the maintenance designs in the upper-right corner
of Figure 6.13 may result in some degradation incidents (high NInc), but the compo-
nents are utilized for a longer time (high MCTR). Between these two maintenance de-
signs, there are maintenance designs that balances reliability and cost, i.e., having mod-
erate NInc and MCTR. Such a trade-off is often the consideration of aircraft maintenance
decision-makers.

6.4.3. SELECTING RELIABLE AND COST-EFFICIENT AIRCRAFT

MAINTENANCE DESIGNS
With the knowledge of which maintenance designs are dominating in terms of reliability
and cost, decision-makers are expected to select a Pareto optimal design that reflects
best their preferences. Below we discuss the selection of a Pareto optimal maintenance
design.

EXTREME AIRCRAFT MAINTENANCE DESIGNS
From the Pareto front in Figure 6.13, there are two extreme maintenance designs that
only maximize MCTR or only minimize NInc. These two extreme maintenance designs
are annotated as MD1 and MD4 in Figure 6.13 and Table 6.4. MD1 has the highest MCTR
(1446.2 flight cycles), but its NInc is worst among all Pareto optimal designs. Design MD1
results in the highest cost-efficiency by utilizing the components for the longest time,
but leads to the lowest reliability as the expected number of degradation incidents is
highest. At the other extreme, MD4 is the most reliable but the least cost-efficient main-
tenance design, having the smallest NInc and the shortest MCTR. If the sole purpose of
maintenance is to reduce the expected degradation incidents regardless of MCTR, then
design MD4 is a suitable choice. However, neither MD1 nor MD4 is usually preferred.
Rather, a balance between the two objectives is desirable.

PREFERENCE-BASED MAINTENANCE DESIGNS
In practice, aircraft maintenance is often expected to satisfy a certain level of reliability,
e.g., the expected number of degradation incidents should be smaller than a threshold.
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Figure 6.13: Pareto optimal designs of aircraft maintenance strategies obtained by the proposed framework.

Table 6.4: Examples of 5 Pareto optimal maintenance designs (s,xs ) and their objective vectors f = [ f1, f2]. The
table is sorted by the descending order of MCTR( f1). The objective vectors are also annotated in the Pareto
front in Figure 6.13.

Annotation Strategy Design vector Objective vector Selected under
type (s) (xs ) MCTR ( f1) NInc ( f2) the following preference

MD1 FII [399, 0.9999] 1446.2 0.7387 Maximize MCTR
MD2 SBI [0.9, 200, 0.9982] 1401.1 0.4978 Maximize MCTR while NInc ≤ 0.5
MD3 VII [874, 0.9985, 0.9978] 1346.7 0.0985 Maximize MCTR while NInc ≤ 0.1
MD-Knee RBR [22.86] 1334.1 0.0049 Knee point
MD4 RBR [29.19] 1327.7 < 10−4 Minimize NInc

When such a threshold-based preference for one of the objectives is known, then multi-
objective decision making is straightforward. From the available Pareto optimal main-
tenance designs, we choose the one with the largest MCTR while having NInc below this
threshold. For instance, if the decision-maker’s preference is to keep NInc ≤ 0.5, then
the optimal maintenance design is MD2, which has the largest MCTR among the Pareto
optimal designs having NInc ≤ 0.5 (see Figure 6.13 and Table 6.4). Similarly, we annotate
the optimal maintenance designs MD3, when the preferences are NInc ≤ 0.1.
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KNEE POINT-BASED MAINTENANCE DESIGNS

If preferences with respect to the objectives are not known or cannot be specified, then
the knee region of the Pareto front is recommended for decision-makers [49, 50]. The
knee region is a convex region of the Pareto front with a strong curvature. The non-
dominated solutions in the knee region are generally preferred because they provide the
most beneficial trade-off, i.e., an objective is improved significantly at the cost of a slight
deterioration of the other objective. Outside of the knee region, an objective is signifi-
cantly deteriorated to achieve a slight improvement in the other objective.

The knee region of the Pareto front in Figure 6.13 is occupied by maintenance de-
signs using the RBR strategy. In this knee region, the RBR strategy dominates other types
of strategies. This shows that the RBR strategy balances MCTR and NInc, which are con-
flicting objectives.

Figure 6.14: Knee point defined by the bend angle.

The point that achieves the maximum trade-off in the knee region is known as the
knee point, and is defined as follows. Given a Pareto front, two extreme points f1 and f2

are obtained. Then, for a Pareto optimal point f, the angle between two lines L1(f1, f) and
L2(f2, f) is defined as the bend angle of f. The Pareto optimal point having the maximum
bend angle is defined as the knee point [50, 49]. Figure 6.14 visualizes this definition of
the knee point.

Figure 6.13 shows that the knee point MD-Knee is also obtained using the RBR strat-
egy with ρRep = 22.86, i.e., a replacement is scheduled when the estimated RUL is smaller
than 22.86 flight cycles. Under the maintenance design MD-Knee, the components are
utilized for 1334.1 flight cycles on average, and 0.0049 degradation incidents are ex-
pected. Compared to MD3, MD-Knee has a slightly shorter MCTR (99% of MD3), but
a significantly smaller number of degradation incidents (5% of MD3). Thus, the MD-
Knee shows that the RBR strategy enables the most beneficial performance with respect
to MCTR and the number of incidents.
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DISCUSSION ON THE BENEFIT OF NOVEL PREDICTIVE STRATEGIES FOR

AIRCRAFT MAINTENANCE

The analysis of the Pareto front shows that novel predictive strategies such as the RBR
maintenance strategy has benefits in balancing the reliability (NInc) and cost-efficiency
(MCTR) of aircraft maintenance. In fact, the RBR maintenance strategy results in a max-
imal trade-off between reliability and cost-efficiency, when compared with TBM strate-
gies (FIR, FII) and CBM strategies (VII, SBI, SBR). Figure 6.13 shows that the maintenance
designs using the RBR strategy dominate all other strategies in the knee region of the
Pareto front.

This performance of the RBR strategy can be explained by the fact that the use of
sensors and data-driven RUL prognostics algorithms leads to a higher exploitation of
components (MCTR) without generating additional degradation incidents. In contrast,
TBM strategies such as FII and CBM strategies such as VII, SBI, and SBR rely less on
data analytics to plan component replacements, affecting the exploitation time of the
components. This performance of the RBR strategy is obtained even after we assumed
that sensor monitoring is less accurate than visual inspections (σSen >σIns).

Maintenance designs based on the RBR strategy (MD-Knee and MD4) show a high
performance also for other reliability and cost-related objectives. Figure 6.15 shows that

Figure 6.15: Multiple objectives of the Pareto optimal designs shown in Table 6.4.
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design MD-Knee outperforms the other Pareto optimal maintenance designs (see Table
6.4) in terms of NUns, NInc, and TD. MD-Knee reduces 99% of unscheduled replacements
compared to MD1. Thus, most replacements are scheduled in advance under MD-Knee,
which provides early demand information for the supply management of parts. This is
achieved only with a small increase in the cost-related objectives, e.g., NRep of MD-Knee
is just 1.3% higher than that of MD3.

6.5. QUALITY OF THE PARETO FRONT
In this section, we analyze the quality of the Pareto front generated by ELSA, and com-
pare its performance against other state-of-the-art optimization algorithms.

6.5.1. THE QUALITY OF THE PRE-ESTIMATIONS MADE BY THE GP MODELS

ELSA relies on the pre-estimation of the objectives f̂m(s,xs ) made by the GP model GP s
m

during Step 4: adaptive sampling (see Section 6.3.5). At the end of iteration k, we obtain
the objective values of the adaptively sampled maintenance designs fm(s,xs ) by means
of Monte Carlo simulation. With this, we determine the root-mean-square-error (RMSE)
between fm(s,xs ) and the pre-estimation f̂m(s,xs ), i.e.,

RMSE =
√

E
Dk−D(k−1)

(
f̂m(s,xs )− fm(s,xs )

)2
, (6.29)

where the set Dk −D(k−1) denotes the designs that are selected for simulation at iteration
k.

Figure 6.16 shows the RMSE obtained for objectives MCTR and NInc during several it-
erations of ELSA. Overall, the RMSE is small compared to the scales of the two objectives
shown in the Pareto front in Figure 6.13. This shows that the GP models provide reliable
pre-estimations in the adaptive sampling step of ELSA. In addition, the RMSE decreases

Figure 6.16: RMSE of the pre-estimation made by the GP model at each iteration.
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further in later iterations as the GP models are updated with more training data.

6.5.2. THE QUALITY OF THE PARETO FRONT OBTAINED USING ELSA
Figure 6.17 shows the hyper-volume Vk and the number of Pareto optimal designs |D∗

k |
obtained using ELSA. Here, Vk indicates the level of exploration achieved by ELSA, while
|D∗

k | indicates the level of exploitation achieved.
The results show that the exploration of the design space of aircraft maintenance

is largely achieved in the first iteration (see Figure 6.17a). At the initial iteration k = 0,
V0 = 0.437. At iteration k = 1, the hyper-volume is increased to V1 = 0.461, which is 43%
of the total improvement of Vk during the 19 iterations. This improvement can also be
seen in Figure 6.12.

In contrast to the rapid increase of the hyper-volume in the first iterations, the ex-
ploitation of the design space is gradual, as shown in Figure 6.17b. ELSA starts with
19 non-dominated maintenance designs, i.e., |D∗

0 | = 19. During the following 19 itera-
tions, |D∗

k | increases gradually to a total of 195 maintenance designs that are Pareto op-
timal. This continuous and gradual increase of |D∗

k | in the later iterations is explained
by the fact that ELSA generates many new Pareto optimal maintenance designs with
slightly different design variables. For example, ELSA generates maintenance designs
(SBI, [0.8034,169,0.9997]), (SBI, [0.8033,169,0.9997]), and (SBI, [0.8053,169,0.9999]) as Pareto
optimal solutions at the iteration k = 16,17,19 respectively, which are all very similar
Pareto optimal maintenance designs.

As more training data Dk and Fk are available, ELSA shifts from more exploration
in the early iterations to more exploitation in the later iterations. This shift is shown
in Figure 6.17c. During early iterations k = 1,2,3, ELSA selects those new maintenance
designs that can improve Vk significantly (exploration). In the later iterations k ≥ 5, ELSA
selects those new maintenance designs that can improve |D∗

k | (exploitation), rather than
Vk . For example, at iteration k = 9, ELSA identifies 13 new Pareto optimal designs, but
the increase of Vk is modest. This behavior of ELSA is explained by the fact that the pre-
estimation in the adaptive sampling step considers both the mean and the uncertainty
of the GP models (see Section 6.3.5).

6.5.3. PERFORMANCE OF ELSA VS. OTHER ALGORITHMS
The performance of ELSA is compared against the performance of three state-of-the-
art algorithms used to solve multi-objective optimization problems: NSGA-II [27, 28],
ReSPIR [29], and EGO [32, 33].

NSGA-II is an evolutionary algorithm often used to solve multi-objective optimiza-
tion problems [27, 28]. As like traditional genetic algorithms, NSGA-II iteratively im-
proves the Pareto front of the considered problem. At each iteration, NSGA-II evaluates
the non-dominated rank of the current Pareto optimal solutions. Then, new mainte-
nance designs are generated using the typical operations of genetic algorithms: selec-
tion, crossover, and mutation. The objectives of these newly generated maintenance
designs are evaluated, and the Pareto front is updated accordingly. Unlike ELSA where
GP models is used to rapidly pre-estimate the objectives, NSGA-II does not rely on any
surrogate models for the selection of new designs. Thus, NSGA-II selects new designs
without prior knowledge of their objective vectors.
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(a)

(b)

(c)

Figure 6.17: (a) Hyper-volume indicator (Vk ) at iteration k. (b) Number of Pareto optimal maintenance strate-
gies (|D∗

k |) at iteration k. (c) The balance between exploration (Vk ) and exploitation (|D∗
k |).
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ReSPIR is an algorithm that iteratively generate a Pareto front using a surrogate model
[29]. Similar to ELSA, at every iteration, ReSPIR 1) simulates several designs, 2) con-
structs a surrogate model using radial-basis-functions (RBF), 3) uses this surrogate model
to pre-estimate the objectives of the designs that have not yet been explored, and 4)
among the designs evaluated in step 3, it selects those designs whose pre-estimated ob-
jectives dominate the current Pareto optimal designs. Although ReSPIR uses a RBF as a
surrogate model, the uncertainty of this surrogate model is not considered. Because of
this, ReSPIR may not explore enough the design space, and may converge prematurely
to a certain area of the design space. In addition, ReSPIR requires to pre-estimate the ob-
jectives of all possible designs, which is not feasible in the case of aircraft maintenance
design where an infinite number of designs exists due to the fact that there are contin-
uous design variables. In contrast, ELSA explicitly considers the uncertainty of the GP
learning models, and is able to handle continuous design variables since it adaptively
samples a finite number of maintenance designs.

EGO is also a surrogate-model-based algorithm that iteratively updates the Pareto
front [32, 33]. Similar to ELSA, EGO uses GP models as surrogate models. However,
while ELSA uses an adaptive sampling step to select new designs to further explore, EGO
selects new designs that maximize an infill-criteria. This infill-criteria is evaluated using
GP models. For our case study, EGO is implemented using an expected-improvement-
matrix-based infill-criteria, which has been shown to require the least computational
time when compared with other infill-criteria [32, 33]. Maximizing this infill-criteria is
done using a typical genetic algorithm. As a last step for EGO, only those maintenance
designs that maximize this infill-criteria are actually simulated in the next iteration.

For comparison, NSGA-II, ReSPIR and EGO are used to solve the multi-objective air-
craft maintenance design problem formulated in Equation (6.3). Figure 6.18 shows that
ELSA outperforms EGO, ReSPIR and NSGA-II by generating a larger hyper-volume Vk

and by identifying a larger number of Pareto optimal aircraft maintenance designs |D∗
k |.

Here, the number of maintenance designs that are simulated |Dk | is used as a metric for
the computational cost of the algorithms.

Figure 6.18a shows that all four algorithms improve Vk rapidly in their early itera-
tions, but ELSA improves Vk the fastest. ELSA achieves V3 = 0.479 after simulating only
235 designs, while EGO, ReSPIR, and NSGA-II achieve the same hyper-volume after sim-
ulation many more designs (770, 614, and 485, respectively). This is explained by the fact
that ELSA explicitly considers the uncertainty of the GP models in the selection of new
designs to be simulated (see Section 6.3.5). Also, the final Vk obtained by ELSA is the
largest, which shows that ELSA explores the design space the most. In fact, EGO, ReSPIR,
and NSGA-II achieve around 98% of the Vk achieved by ELSA.

Figure 6.18b shows that ELSA also outperforms the other three algorithms by gener-
ating the most Pareto optimal maintenance designs. Specifically, 195 Pareto optimal de-
signs are identified by ELSA, while EGO, ReSPIR and NSGA-II identify only 112, 156, 125
Pareto optimal designs, respectively. Thus, the other algorithms generates only 57−80%
of the Pareto optimal maintenance designs generated by ELSA. Compared to the per-
formance difference in Vk (exploration), the difference in |D∗

k | is larger in general. This
is due to ELSA’s adaptive sampling step which enables the exploitation of maintenance
designs that are close to the other Pareto optimal solutions. In the case of NSGA-II, for
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(a)

(b)

Figure 6.18: The performance of ELSA relative to benchmark algorithms EGO, ReSPIR and NSGA-II.

example, new designs are often significantly different from the already evaluated designs
because of crossover and mutation operations. In the case of EGO, since the infill-criteria
measures the level of exploration only, the selection of new maintenance designs may
not aim to increase the number of Pareto optimal designs.

6.6. CASE STUDY II: PREDICTIVE MAINTENANCE FOR

LANDING GEAR BRAKES

In this section, we apply our proposed framework to explore the design space of pre-
dictive maintenance for landing gear brakes using probabilistic Remaining-Useful-Life
(RUL) prognostics.
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6.6.1. PROBABILISTIC RUL PROGNOSTICS FOR LANDING GEAR BRAKES
We apply a Bayesian linear regression (BLR) to estimate the distribution of RUL of the
brakes [51]. The input of the BLR model is the degradation data of the brake observed
up to current flight cycle i1, Z = {(i , Z̃i )|i0 ≤ i ≤ i1}, where Z̃i = Z̃ (τarr

i ) is the degradation
level of the brake obtained from the sensor after flight cycle i . We estimate the degrada-
tion level after flight cycle i as:

Z̃i ∼N (ω0 +ω1i ,σ2
BLR ) (6.30)

where ω0 is the intercept, ω1 is the coefficient of the linear model, and σ2
BLR is the vari-

ance of the Gaussian model. The prior of the coefficient ω1 is assumed to be zero-mean
Gaussian, i.e., P (ω1) = N (ω1|0,λI). Here, λ and σ2 are the hyper-parameters of the
model, and we consider a Gamma distribution as their prior. Finally, the parameters ω1,
λ, andσ2 are jointly optimized by maximizing the log marginal likelihood. The intercept
ω0 is the mean bias of the model in the input data Z , i.e., ω0 =∑

(i ,Z̃i )∈Z [Z̃i −ω1i ]/|Z |.
Given that a brake has already been used for i flight cycles, its RUL ρ(i ) is the number

of remaining flight cycles until the probability that the degradation level exceeds η, is
larger than a reliability threshold ζ, i.e.,

ρ(i ) = min
∆i

{
∆i : P

(
Z̃i+∆i ≥ η|Z

)≥ ζ} . (6.31)

The RUL prognostics ρ(i ) of the brakes are updated after every flight cycle, taking
into account the most recently available degradation dataZ collected from the on-board
sensors.

6.6.2. PREDICTIVE MAINTENANCE USING PROBABILISTIC RUL
PROGNOSTICS

We propose a predictive maintenance strategy that schedules brake replacements based
on probabilistic RUL prognostics proposed in Section 6.6.1. Specifically, a brake replace-
ment is scheduled after

(
ρ(i )−µ)

flight cycles, where ρ(i ) is the RUL prognostics of the
brake obtained after the brake has been used for i flight cycles, and µ is a safety margin.
So, we schedule a brake replacement µ flight cycles earlier than the estimated RUL ρ(i ).

Our predictive maintenance strategy has two design parameters to be optimized:

• µ: the safety margin based on which a replacement is scheduled,

• ζ: the reliability threshold used when determining the RUL ρ(i ).

These two design parameters are selected from the continuous ranges µ ∈ [µmin,µmax]
and ζ ∈ [ζmin,ζmax].

The goal is to efficiently search in the the design space X = [µmin,µmax]× [ζmin,ζmax]
for those values ζ and µ that optimize the cost-related objective ( f1 = MCTR) and the
reliability-related objective ( f2 = NInc) (see Section 6.3.4 for the selection of objectives).

6.6.3. MODEL PARAMETERS
We consider 2 aircraft landing gear systems, one on each side of the wing. Each landing
gear system has 4 brakes with 3-out-of-4 redundancy. The degradation of the brakes
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are assumed to follow a Gamma process with parameters α= 0.8 and β= 0.001. Sensors
monitor the degradation of the brakes. The measurement error of the sensors is assumed
to be normally distributed with mean zero and σs = 0.0204. [17]

The design space X is defined by the range of the two design parameters µ (safety
margin used when scheduling maintenance) and ζ (reliability threshold used to deter-
mine RUL). We explore the following ranges:

µ ∈ [µmin,µmax] = [0,30],

ζ ∈ [ζmin,ζmax] = [0.01,0.99].

6.6.4. GENERATING PARETO FRONT OF PREDICTIVE MAINTENANCE

DESIGNS
Figure 6.19 shows the exploration of the design space during iterations k = 1 and 2. Here,
the Pareto optimal parameter values x ∈X ∗

k are marked with green squares in the design
space (X ), and their objective vectors f(x) are marked with green circles in the objective
space (F ). At iteration k = 1, we conducted Monte Carlo simulations of 12 parameter
values x ∈ X1, i.e., |X1| = 12. Among them, seven parameter values were identified as
Pareto optimal solutions, i.e., |X ∗

1 | = 7.
Next, we trained the GP models using the training data obtained by the Monte Carlo

Figure 6.19: Pareto optimal parameter values in objective space F and design space D during iterations k = 1
and 2.
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simulation, i.e., {(x, f(x)) | x ∈X1}. Based on the adaptive sampling approach, we selected
five new design parameters x to be simulated in the next iteration k = 2, i.e, |X2| = 5.
These x ∈ X2 are marked with yellow diamonds in the design space (k = 1), and their
objective vectors f̂(x) predicted by the GP models are marked as yellow triangles in the
objective space (k = 1). For example, see x1,x2 ∈X2 in the design space (k = 1) in Figure
6.19.

At iteration k = 2, we conducted Monte Carlo simulations for the selected parameter
values x ∈X2. Given their objective vectors assessed by Monte Carlo simulation, we up-
dated the Pareto optimal solutions X ∗

2 . For instance, x2 was identified as Pareto optimal
solution and was included to X ∗

2 . On the other hand, x1 was dominated by solutions
already obtained at iteration k = 1, and thus it was excluded from X ∗

2 . We repeated these
steps until iteration k = 19.

PARETO OPTIMAL PREDICTIVE MAINTENANCE

The final design for the predictive maintenance using probabilistic RUL prognostics is
shown in Figure 6.20. Two design parameters, the safety margin µ and the reliability
threshold ζ are optimized considering two objectives representing cost and reliability of
landing gear brake maintenance. Using the proposed ELSA algorithm, we have simu-
lated 102 parameters during 19 iterations, and identified 55 Pareto optimal parameters.
For example, x3 in Figure 6.20 corresponds to the parameter values µ= 28 and ζ= 0.58,
and it leads to NInc = 0.0003 and MCTR = 1228. This is a dominated solution because if
we choose parameter values µ = 0 and ζ = 0.26 (x4), then NInc is reduced to 0.0002 and
MCTR is increased to 1233. In other words, we can improve both objectives. Thus, x4 is
a Pareto optimal solution, while x3 is not.

The Pareto front in Figure 6.20 shows a trade-off between reliability ( f 2 : NInc) and
cost-efficiency ( f1 : MCTR). To increase the reliability of maintenance by reducing NInc,
there must be a reduction in MCTR or a decrease of cost-effectiveness. The choice among
the Pareto optimal solutions depends on the preference of decision makers. For in-
stance, if the expected number of incidents is preferred to be below 0.05, then an optimal
choice of parameters are µ= 23 and ζ= 0.84 (x5 in Figure 6.20). This choice of design pa-
rameters lead to NInc = 0.046 and MCTR = 1254. Since x5 is a Pareto optimal solution,
there is no other solution that leads to a higher MCTR while maintaining NInc ≤ 0.5.

QUALITY OF THE PARETO FRONT

The quality of the Pareto front obtained in Figure 6.20 is evaluated based on two indi-
cators: the hyper-volume indicator Vk of the Pareto front, and the number of Pareto
optimal parameters |X ∗

k |. Vk shows the level of exploration, while |X ∗
k | shows the level

of exploitation (see Section 6.3.5). Figure 6.21 shows these quality indicators at itera-
tion k, where its x-axes are the number of simulated parameters |Xk | representing the
computational cost used until iteration k.

Based on Figure 6.21, we conclude that the identified Pareto front is satisfactory since
the improvement of Vk (exploration) was slowed down. On the other hand, the number
of Pareto optimal parameters |X ∗

k | (exploitation) still increased significantly until the last
iteration. This improvement of |X ∗

k | was achieved by finding the Pareto optimal param-
eters that lead to very similar objective vectors f(x). This is clear in the final Pareto front
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of Figure 6.20, where many Pareto optimal objective vectors are similar.
The different trends of Vk and |X ∗

k | in Figure 6.21 show that our approach balances
exploration and exploitation automatically. Large improvements of Vk during early it-
erations show that the ELSA algorithm first focused on exploration. For example, 78%
of total improvements were made in k ≤ 5. In the later iterations, however, the ELSA al-
gorithm focused on the exploitation of the design space to identify more Pareto optimal
parameters. Such a balancing is achieved by the utilization of both the GP models and
our adaptive sampling approach.

6.7. CONCLUSION
In this chapter, we have proposed a framework to design multi-objective aircraft main-
tenance, considering the objectives representing cost and reliability. For this, we con-
struct a generic aircraft maintenance model that accommodates a variety of types of

Figure 6.20: Final result for the design of brake maintenance. (Up) The Pareto optimal parameters in the design
space. (Down) The Pareto front in the objective space.
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Figure 6.21: Quality indicators at iteration k with respect to the number of simulated parameters.

maintenance designs. To efficiently select those maintenance designs to be analyzed,
we propose a design space exploration algorithm using Gaussian process learning mod-
els and a novel adaptive sampling method (ELSA). We illustrate the proposed framework
for the maintenance design of multi-component aircraft systems with k-out-of-n redun-
dancy. First, we explore 6 different maintenance strategy types which range from tradi-
tional time-based maintenance strategies to predictive maintenance strategies. Second,
we propose a novel predictive maintenance strategy using probabilistic RUL prognos-
tics, which considers the safety margin and the reliability threshold. With our proposed
approach, we identify Pareto optimal predictive maintenance designs for landing gear
brakes.

The first case study shows that the RUL-based predictive strategy is beneficial in bal-
ancing reliability and cost of maintenance. In particular, this RUL-based strategy domi-
nates other maintenance strategies in the knee region of the Pareto front where conflict-
ing objectives are balanced. This result also provides decision-makers with arguments
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for transition to novel predictive maintenance strategies.
The second case study shows that our proposed framework is readily applicable for

a novel predictive maintenance strategy using probabilistic RUL prognostics. The ob-
tained Pareto front of predictive maintenance provides multiple Pareto optimal solu-
tions, clearly visualizing the trade-off between the conflicting interests (cost-efficiency
and reliability). Based on this Pareto front, the stakeholders of aircraft maintenance can
choose a preferable solution considering their interests. Hence, this framework can sup-
port multi-objective optimization of generic predictive aircraft maintenance.

In addition, we also show that ELSA outperforms other state-of-the-art algorithms by
generating a Pareto front with the most non-dominated designs and the largest hyper-
volume. This is due to the fact that adaptive sampling method of ELSA balances between
exploration and exploitation of the design space.

As future work, apart from the two objectives considered for the maintenance of
the brakes, we plan to further explore the predictive maintenance strategies by con-
sidering additional objectives that reflect the interests of the decision-makers such as
reliability-related objectives considering different severity levels of the degradation in-
cidents, and cost-related objectives that explicitly integrate airline-specific cost models.
Furthermore, we aim to apply our proposed aircraft maintenance model for other air-
craft systems and structures. In these cases, we plan to investigate the functional depen-
dency of k-out-of-n redundant systems, and the impact of operational conditions on the
degradation process.
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7
EMERGING CHALLENGES OF

PREDICTIVE AIRCRAFT MAINTENANCE

Finally, we identify emerging challenges of predictive aircraft maintenance (PdAM) fol-
lowing the adoption of data-driven Remaining-Useful-Life (RUL) prognostics. Experts
representing maintenance stakeholders, such as maintenance planners and pilots, dis-
cuss the emerging challenges of PdAM in a structured brainstorming session. During this
session, the agent-based model of PdAM introduced in Chapter 2 is used to facilitate and
guide the brainstorming. The brainstorming results identify three main challenges: 1) the
reliability of data-driven technologies (e.g., condition monitoring systems, RUL prognos-
tics algorithms, and decision support systems), 2) the timely and accurate communication
between stakeholders, 3) and the stakeholders’ trust in these new technologies.

Parts of this chapter are under review for publication:

J. Lee, M. Mitici, H. A. P. Blom, P. Bieber, and F. Freeman, “Identification of emerging hazards for the data-driven
predictive aircraft maintenance process,” submitted to Safety Science in 2021 (under review).
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7.1. INTRODUCTION
The increasing use of on-board sensors, aircraft condition monitoring systems (ACMS)
and data-driven predictive algorithms are dramatically changing the aircraft mainte-
nance process. Traditionally, the aircraft maintenance process consists of periodic tasks
performed by mechanics at pre-determined, fixed time intervals, i.e. time-based main-
tenance (TBM) [1]. In the last years, however, aircraft maintenance has increasingly
made use of data-driven predictive algorithms to increase the level of automatization
of the aircraft maintenance process. For example, on-board sensors and ACMS are used
to continuously monitor the health condition of aircraft systems. As a result, mechanics
need to perform less inspections and checks [2]. Also, data-driven algorithms are de-
veloped to detect damages (diagnostics) and predict Remaining-Useful-Life of aircraft
systems (prognostics) [3]. Using such predictive algorithms, maintenance tasks are gen-
erated only when needed. We refer to this process of using sensor data and predictive al-
gorithms to generate maintenance tasks as data-driven predictive aircraft maintenance
(PdAM).

However, the use of data-driven technologies for aircraft maintenance poses novel
challenges. On one hand, the retrieval, storage, processing and utilization of sensor data
involves risks such as data loss, data corruption, data transmission delays, lack of ac-
curacy of failure prediction algorithms. On the other hand, new experts handling the
data and algorithms need to be involved in the traditional aircraft maintenance process.
The manner in which these new experts interact with the existing maintenance teams
may lead to new challenges. Thus, to safely implement data-driven PdAM, an analysis
of emerging challenges is required.

To the best of our knowledge, emerging challenges of data-driven PdAM have not
yet been identified and discussed. Existing studies discuss challenges associated with
the traditional aircraft maintenance process, TBM. In [4], the authors use an extensive
safety questionnaire and show that the behavior of the maintenance personnel is a criti-
cal contributing factor to errors in aircraft maintenance. In [5], the authors show that the
manner in which the maintenance personnel interact with each other, and their use of
hardware/software are the main contributing factors to human errors in aircraft main-
tenance. However, these studies are not considering the use of data-driven technologies
for aircraft maintenance. Since 2018 when the EASA1 integrated aircraft health moni-
toring (AHM) into the regulatory basis for aircraft maintenance [6], no studies have dis-
cussed emerging challenges of data-driven PdAM, taking into account the entire main-
tenance process and interactions between maintenance personnel and new data-driven
technologies.

The aim of this chapter is to discuss emerging challenges of the data-driven PdAM,
based on the identification and analysis of new hazards associated with the new data-
driven technologies. Generally, a hazard in aviation is defined as follows:

Definition (Hazard)
Any condition, event, or circumstance which could induce an accident [7]; or
a condition that could foreseeably cause or contribute to an aircraft accident [8].

In this chapter, we consider hazards related to aircraft maintenance. Especially, we focus

1EASA: European Union Aviation Safety Agency
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on the hazards associated with the adoption of new data-driven technologies, and the
hazards related to the interactions between the maintenance personnel involved in new
data-driven PdAM.

Traditional hazard identification methods, such as FMEA2 or HAZOP3, look at indi-
vidual process components. For each such component, potential failure modes, their
causes and effects are identified [9]. However, these methods fail to capture the interac-
tions between process components, and the hazards associated with these interactions
[10, 11]. For the case of aircraft maintenance, the interactions between maintenance
personnel, and the manner in which the personnel interacts with the digital systems,
are important contributing factors to hazards [5]. Moreover, due to the only recent con-
sideration of data-driven technologies for aircraft maintenance, there is a very limited
amount of data and experience of data-driven PdAM.

To address the drawbacks of traditional methods and the lack of data and experience
of data-driven PdAM, we apply a structured hazard identification brainstorming [11, 12,
13]. The brainstorming is especially suited to identify emerging hazards associated with
novel processes [14, 15, 16], as is the case for data-driven PdAM. We facilitate this brain-
storming using an agent-based model of the aircraft maintenance [2], which provides
an intuitive understanding of the interactions between agents. The identified hazards
are validated in the context of maintenance-related aircraft accidents reported between
2008 and 2013. Finally, in the light of the identified hazards, we discuss emerging chal-
lenges for a safe implementation of data-driven PdAM.

The remainder of this chapter is organized as follows. Section 7.2 introduce an agent-
based model showing the stakeholders, digital systems, and their interactions in the
data-driven PdAM. Section 7.3 identifies and discusses the hazards associated with the
data-driven PdAM. Section 7.4 validates the identified hazards in the context of past air-
craft accidents related to maintenance. In Section 7.5, we discuss the emerging chal-
lenges of data-driven PdAM based on the identified hazards. Finally, we provide conclu-
sions in Section 7.6.

7.2. PROCESS IDENTIFICATION OF DATA-DRIVEN PREDICTIVE

AIRCRAFT MAINTENANCE
In this section, we model data-driven predictive aircraft maintenance process (PdAM)
using an agent-based model [2]. Here, an agent is defined as an independent entity that
makes decisions based on a set of rules, interacts with other agents, and has its own goals
[17, 18].

The purpose of this process identification is to facilitate brainstorming for hazard
identification. The agent-based model of data-driven PdAM is first presented to the ex-
perts participating in the brainstorming to provide a solid understanding of this new
aircraft maintenance process, and to trigger ideas about emerging hazards.

Table 7.1 and Figure 7.1 show the main agents of data-driven PdAM process and the
interactions between them, respectively. In particular, we consider PdAM where a new
data management team is introduced to the traditional aircraft maintenance process

2FMEA: Failure Mode and Effects Analysis
3HAZOP: Hazard and Operability Study
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[2]. The main agents identified for PdAM are: i) the task generating team (TG), ii) the
task planning team (TP), iii) the mechanics team (ME), iv) the flight crews (CR), and v)
the data management team (DM). Among them, four agents (TG, TP, ME, and CR) are
involved in both the traditional aircraft maintenance process (TBM) and new aircraft
maintenance process (PdAM), while DM is a new agent specifically supporting PdAM.

Below we characterize the agents of aircraft maintenance process, by describing their
roles and interactions with other agents. In particular, we first elaborate the role and
interactions under traditional TBM, and then describe the changes under new PdAM. A
detailed model for each agent is given in [2].

TASK GENERATING TEAM ( TG)
The role of the task generating team (TG) is to define the type, the due date, and the
method used for a maintenance task. TG generates two types of tasks: periodic tasks
and one-time tasks. The periodic tasks are generated based on the regulations intro-

Table 7.1: Agents of data-driven predictive aircraft maintenance (PdAM).

Agent Name Acronym

Task Generating Team TG
Task Planning Team TP
Mechanics Team ME
Flight Crew CR
Data Management Team DM

Figure 7.1: Interaction of agents in data-driven predictive aircraft maintenance (PdAM) process. The data
management team (DM) is a new agent that supports the transition to data-driven PdAM.
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duced by air authorities such as EASA, the manuals provided by aircraft manufacturers,
and the analysis of airlines’ operation data. TG integrates all this information, and gen-
erates periodic tasks (type, due date, and method). Under TBM, these periodic tasks are
extensively used as the primary measure to prevent failures. Apart from periodic tasks,
one-time maintenance tasks are generated whenever TG receives complaints or findings
from flight crews or mechanics. For example, if flight crews observe an abnormal per-
formance of the aircraft during a flight, then they submit a complaint to TG. Similarly,
during an inspection, if the mechanics observe an issue, then they submit a finding to
TG. Finally, TG analyzes the submitted complaints and findings, and generates neces-
sary tasks to address these issues.

Under PdAM, TG receives additional input such as diagnostics and Remaining-Useful-
Life (RUL) prognostics based on DM’s data analytics with aircraft condition data. This in-
put is verified and analyzed by TG. When needed, TG asks TP to plan necessary one-time
tasks. For example, let the RUL prognostic of a brake indicates that the brake is expected
to wear out within 50 flight cycles. If this is shorter than the remaining number of flight
cycles before a planned periodic replacement for this brake (traditional TBM), then TG
asks TP to reschedule the replacement of the brake earlier (PdAM). In this example, TG
anticipates a maintenance issue before it happens, i.e., the maintenance tasks triggered
by the prognostics are predictive.

DATA MANAGEMENT TEAM (DM)
The data management team (DM) is a new agent specifically introduced to support data-
driven PdAM process. DM is responsible for handling the aircraft condition data and
generating diagnostics and RUL prognostics. DM first collects the condition monitor-
ing data from aircraft condition monitoring systems (ACMS), the sensors installed on
board of the aircraft. Here, DM may also integrate external databases such as weather
data, airport data, and/or data shared by other airlines or maintenance organizations
[2]. Data processing and validation is also part of the role of DM. With such data, DM
generates diagnostics and RUL prognostics for aircraft systems and structures. In this
step, various data-driven algorithms are utilized to generate diagnostics and prognos-
tics, depending on the characteristics of the target system, the inspection/monitoring
intervals, the redundancy of the system [19, 20, 21]. Finally, DM transfers the diagnostics
and prognostics information to TG.

During the entire process, DM uses a digitalized platform to collect, validate, analyze,
and transfer the data and prognostics information. Such platforms to monitor condition
data of an aircraft fleet are, for instance, Skywise of Airbus [22], and Airplane Health
Management of Boeing [23].

TASK PLANNING TEAM ( TP)
The task planning team (TP) schedules in time for the execution of maintenance tasks.
The tasks are given by TG (periodic and one-time tasks), as well as by mechanics (de-
ferred tasks) in case additional issues are observed during inspections. TP finds avail-
able time slots when the aircraft can undergo maintenance, given the flight schedule
of the aircraft, the due dates of each maintenance task, the availability of the mechan-
ics, and the availability of necessary materials and resources. Ultimately, TG generates
a schedule for the maintenance tasks. A scheduled task specifies the aircraft, the target
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system/structure, the maintenance tasks type, and the mechanics that need to execute
the task.

Under PdAM, the role of TP does not change significantly since the tasks generated
by TG using diagnostics and prognostics will be given to TP in a similar format as the
non-data-driven tasks.

MECHANICS TEAM (ME)
The mechanics team (ME) executes the scheduled tasks received from TP. Various types
of maintenance tasks are executed, such as system/structure replacement, restoration,
lubrication, inspection [1]. During an inspection, ME may observe additional issues
such as an unexpected level of degradation in aircraft structure. Based on the manuals,
ME reports such findings. The necessary tasks addressing these findings are executed
on-site (unscheduled tasks), or reported to TG for rescheduling in other maintenance
slots (deferred tasks).

Similar to TP, the role of ME does not change significantly under PdAM since the task
type and the schedules are already specified by TG and TP.

FLIGHT CREW (CR)
The flight crew (CR) includes pilots and cabin crews who actually operate the aircraft.
During a flight, CR monitors the condition of the aircraft using on-board ACMS. CR re-
ports a complaint to TG when any abnormality is noticed. The complaints reported by
CR are analyzed by TG who may generate additional tasks to address these issues.

Given that the operation of the aircraft is not subject to change under PdAM, the role
of CR is not expected to change significantly under PdAM.

7.3. HAZARD IDENTIFICATION FOR DATA-DRIVEN

PREDICTIVE AIRCRAFT MAINTENANCE
In this section we identify emerging hazards associated with data-driven predictive air-
craft maintenance process (PdAM) by means of a structured brainstorming conducted
with the aircraft maintenance agents (see Section 7.2). Thereby, the hazards are identi-
fied from divers perspectives of multiple agents. The obtained hazards are analyzed and
clustered relative to the agents.

7.3.1. METHODOLOGY

BRAINSTORMING FOR HAZARD IDENTIFICATION
Inspired by [11, 12, 13], a structured hazard identification brainstorm has been per-
formed on February 28th 2019. A total of 10 experts in aircraft maintenance participated
at the brainstorming session. Table 7.2 shows the expertise of the participants and their
role in the session. Each participant had at least 2 years of experience in the indicated
domain. During the brainstorming session, they represented one of the agents identified
for data-driven PdAM (see Table 7.1 and Figure 7.1). For the mechanics, their point of
view was delegated to the task generating team since their role is not expected to change
significantly under PdAM, relative to the changes envisioned for the other agents. We
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note that two safety managers represented the overall safety point of view of the aircraft
maintenance process. Finally, the session was conducted by a moderator with exper-
tise in aviation safety and experience with the brainstorming methodology for hazard
identification. During the session, notes were taken by a secretary.

Table 7.2: Participants at the brainstorming session.

Role in Brainstorming Expertise & Experience Number of Attendees

Domain expert Data management team 2
Domain expert Task generating team 4
Domain expert Task planning team 1
Domain expert Flight crew (Pilot) 1
Domain expert Safety manager 2
Moderator Brainstorming method 1
Secretary N/A 1

At the beginning of the brainstorming session, the agent-based model of the aircraft
maintenance process in Figure 7.1 is presented to and discussed with the participating
domain experts. This way it is ensured that each participant knows its own agent role as
well as the agent roles of the other participants during the brainstorm. It is also verified
with each participant if its agent role is correctly presented in the figure. If not then
the agent-based figure has to be adapted prior to starting the brainstorm. The validated
agent-based model in Figure 7.1 is projected throughout the entire brainstorm. This
allows participants to easily express their brainstorm inputs relative to this agent-based
model.

The two main rules used for the brainstorming were i) to obtain as many hazards as
possible, and ii) criticism and analysis during the session is not allowed. These rules are
motivated by cognitive science. The amount of ideas generated are regarded as more
important than the quality of the ideas generated during brainstorming [16, 24]. Criti-
cism has been shown to have a negative impact on the open atmosphere necessary for
productive brainstorming [16, 24]. In order to avoid discussions about the validity of a
hazard, prior to the start of the brainstorm the participants are explained that the brain-
storm is about “wide-sense hazards”, i.e., anything that may influence the operation.
This means that, in later safety analysis, some of the generated hazards may turn out to
pose negligible safety issues and therefore are no true hazards.

During the brainstorming session, the moderator encouraged the participants to
share their ideas, opinions, and to interact with each other. The participants are also
asked to use the cognitive flow that they are accustomed to in their professional work
situations. Once the brainstorm is started each participant easily recognize that in its
own professional cognitive flow to have access to the wealth of their operational knowl-
edge and experience.

During the brainstorm session all inputs generated by the participants are written
down, and presented to the participants. In case of an error or misunderstanding the
contributor of the input can point the need of a correction. To each hazard also the
name of the contributor is noted; this allows to contact the contributor in case of follow-
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up questions during later safety analysis.

POST-BRAINSTORMING DATA PROCESSING

After the brainstorming session, the raw data are post-processed by independent safety
analysts. First, as the generated raw data are “wide-sense hazards”, it is analyzed which
are true hazards, i.e., condition, event, or circumstance in aircraft maintenance which
could cause or contribute to aircraft incident. Second, the terminology and acronyms
used in the formulation of the ideas are unified and, when possible, the terminology used
for the agent-based model in Section 7.2 is used. Third, the repetitions of the same idea
are analyzed. Ultimately, a list of unique ideas is generated, repetitions being discarded.
As a last step, the obtained hazards have been clustered based on whether the hazards
are associated only with data-driven PdAM, or with both TBM and PdAM, based on the
agent primarily involved with the hazards.

As a result, 41 unique aircraft maintenance hazards are obtained. Out of them, 21
hazards are applicable to generic aircraft maintenance, i.e., these hazards can occur un-
der either TBM or PdAM. The remaining 20 hazards are new hazards associated to the
introduction of PdAM, i.e., these hazards can occur only under PdAM. Table 7.3 shows
the number of hazards identified from the brainstorming.

7.3.2. ANALYSIS OF BRAINSTORMING RESULTS

In this section we analyze the obtained hazards relative to each aircraft maintenance
agent, focusing on the 20 new hazards associated with the introduction of data-driven
PdAM.

Table 7.3 shows the number of hazards identified for general aircraft maintenance
(both for TBM and PdAM), and for the data-driven predictive aircraft maintenance only
(PdAM only). The results show that most number of hazards are identified relative to
the task generating team (TG). The main explanation for this result is that TG plays a
key role in aircraft maintenance, determining which tasks need to be planned and exe-
cuted based on the feedback from ME, CR, and DM. The data management team (DM),
a new agent supporting PdAM, is associated with 10 new hazards of data-driven PdAM.
The mechanics team (ME) is associated with 10 hazards out of the 41 hazards, but only
2 of them are the new hazards of PdAM. This is due to the perception that the role of
the mechanics will not change significantly under PdAM because the execution of the

Table 7.3: Number of hazards per involved agent.

Total Both TBM & PdAM Only PdAM

Total number of hazards 41 21 20

Task generating team (TG) 13 5 8
Data management team (DM) 10 0 10
Mechanics team (ME) 10 8 2
Task planning team (TP) 5 5 0
Flight crews (CR) 3 3 0
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tasks is expected to be similar to the execution of tasks under current TBM. Similarly, the
task planning team (TP) and the flight crew (CR) do not have new hazards under PdAM
because they are expected to work in a similar fashion as under current TBM.

Below we discuss and analyze in detail the 20 new hazards of data-driven PdAM,
identified for the three agents: DM (Table 7.4), TG (Table 7.5), and ME (Table 7.6).

HAZARDS ASSOCIATED WITH THE DATA MANAGEMENT TEAM (DM)
The 10 hazards associated with DM are related to i) the performance of the aircraft con-
dition monitoring systems (ACMS), ii) the performance of the data-driven algorithms
used to generate diagnostics and RUL prognostics for aircraft systems and structures, iii)
communication issues between agents, and iv) delay in the knowledge and data transfer
between agents. Their descriptions and IDs are given in Table 7.4.

Four hazards are identified relative to the performance of the ACMS (see hazard H01,
H02, H03, and H04). First, the ACMS itself can be subject to malfunction or become inop-
erable (see hazard H01). In this case, the streams of condition data are no longer avail-
able, and thus DM cannot generate any diagnostics or prognostics. A worse case is when
DM does not notice the malfunction of the ACMS. In this case, the malfunction results in
the ACMS collecting corrupted data, which is used for diagnostics and prognostics. This
is the subject of hazards H02, and H03. Hazard H02 refers to the case when incorrect or in-
accurate condition data is used by DM. In turn, the resulting diagnostics and prognostics
become unreliable. If these unreliable diagnostics and prognostics are transferred to TG
to generate maintenance tasks, then the impact of this hazard is propagated to the en-
tire aircraft maintenance process. Even when the ACMS collects accurate condition data,
this data can still become corrupted during data transfer from ACMS to DM (see hazard
H03). This hazard may trigger additional hazards following the same propagation path
as for hazard H02. Another important aspect is to obtain the condition monitoring data

Table 7.4: Hazards of data-driven PdAM, associated with the Data Management team (DM).

ID Description

H01 DM could not get data because aircraft condition monitoring system is not
functioning, or inoperative.

H02 DM gets incorrect/inaccurate data because aircraft condition monitoring
system is malfunctioning.

H03 DM gets incorrect/inaccurate data that is corrupted during data transfer.
H04 DM gets data too late because of delays in data transfer from aircraft

condition monitoring systems.
H05 DM generates wrong prognostics/diagnostics.
H06 DM uses unreliable algorithm for prognostics/diagnostics
H07 DM does not alert when there is a fault because the threshold is not met.
H08 DM alerts when there is no fault because the monitoring parameter is

above threshold.
H09 DM generates unclear/ambiguous prognostics/diagnostics.
H10 DM generates prognostics/diagnostics too late.



7

168 7. EMERGING CHALLENGES OF PREDICTIVE AIRCRAFT MAINTENANCE

on-time (see hazard H04). Hazard H04 describes a case when DM obtains the condition
monitoring data with delay. Since aircraft are operated under tight and dynamic flight
schedules, timely scheduling of maintenance tasks cannot be sustained if the diagnos-
tics and prognostics are generated with delay.

Four hazards are identified related to the accuracy of the diagnostics and prognos-
tics algorithms and their results (see hazard H05, H06, H07, and H08). During the brain-
storming, erroneous diagnostics and prognostics were identified as the foremost crit-
ical hazards (see hazard H05). If the diagnostics/prognostics are erroneous, then ei-
ther no trigger is generated for necessary maintenance tasks in order to prevent fail-
ures/malfunctions, or triggers are generated for redundant, unnecessary maintenance
tasks. The former case may cause incidents/accidents, while the latter case may cause
additional, unnecessary work and costs [25].

The possible causes of hazard H05 is also identified as hazards, i.e., conditions that
make diagnostics/prognostics results erroneous. The errors in the data is already dis-
cussed as hazards H02 and H03. In addition, the used algorithm itself may be unreli-
able (see hazard H06). In this case, regardless of the quality of the data, the diagnos-
tics/prognostics would be unreliable. Furthermore, two different modes of potential er-
ror of the prognostics result were discussed. The first case occurs when DM does not
provide an alert when there is a fault, i.e., a false negative (see hazard H07). Given a false
negative, a necessary maintenance tasks is not triggered. The second case occurs when
DM provides an alert when there is actually no fault, i.e., false positive (see hazard H08).
Although a false positive may not directly affect the safety of the aircraft, it can reduce the
efficiency of aircraft maintenance [25]. Moreover, in the case of frequent false positives,
the other agents may ignore alerts generated by DM.

Communication issues between agents were also indicated as a hazard during the
brainstorming. Assuming that the prognostics results are reliable, an ambiguous or un-
clear communication between agents about these results was identified as a hazard (see
hazard H09). Hazard H09 outlines various types of miscommunication regarding the di-
agnostics and RUL prognostics: i) information or alerts generated by DM are not con-
sidered by TG because this information is ambiguous or insufficient to determine effec-
tive measurement; ii) the digital platform used for communication between DM and TG
presents the information in a non-intuitive form (ambiguous graphics, unclear metadata
descriptions).

Lastly, the domain experts discussed the delay in obtaining diagnostics and prog-
nostics. If the diagnostics/prognostics results are generated with delay by DM, then the
other agents, and especially TG, do not have enough time to generate necessary tasks
to address the issues raised (see hazard H10). In order to cope with tight aircraft flight
schedules, it is desirable that diagnostic and prognostic results are delivered to TG, TP,
and ME without delay so that necessary tasks can be generated and executed on time.
This hazard is related to hazard H04, because H04 is likely to trigger hazard H10. More-
over, these hazards are expected to be propagated to all agents.

HAZARDS ASSOCIATED WITH THE TASK GENERATING TEAM ( TG)
There are 8 hazards identified for TG under PdAM (see Table 7.5). Among these 8 haz-
ards, 3 hazards are related to the communication with DM, 2 hazards are related to TG’s
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trust in the diagnostics and prognostics generated by DM, and 3 hazards are related to
the process of generating tasks.

Table 7.5: Hazards of data-driven PdAM, associated with the Task Generating team (TG).

ID Description

H11 TG does not notice the alert from DM.
H12 TG misunderstands alerts from DM.
H13 TG does not generate a task due to misunderstanding regarding the

diagnostics/prognostics.
H14 TG does not examine/verify the diagnostics/prognostics.
H15 TG does not rely on diagnostics/prognostics from DM.
H16 TG generates inadequate/ineffective task for a given

diagnostics/prognostics.
H17 TG generates two identical tasks from two triggers.
H18 TG generates a task from prognostics too late.

Hazards H11, H12, and H13 address the issue of misunderstanding and miscommuni-
cation associated with TG under PdAM. Hazard H11 refers to the case when TG does not
notice an alert from DM, and thus necessary maintenance task are not generated. Haz-
ard H12 refers to the case when TG notice the alert from DM, but misread its meaning.
This hazard H12 is likely to happen when DM generates unclear/ambiguous diagnostics
and prognostics (see hazard H09). If either hazards H11 or H12 occurs, TG is likely to not
generate a task as required by the alerts (see hazard H13).

Hazards H14 and H15 discuss the level of trust of TG in the data-driven PdAM tech-
nologies, such as sensors and data-driven diagnostics and prognostics algorithms. Haz-
ard H15 discusses the case when TG does not use the diagnostics and prognostics gen-
erated by DM for task generation due to lack of trust. The trust in the new PdAM tech-
nologies is constructed not only based on numerical results from experiments, but also
based on an accumulated trust over time between the users and the technology [26]. At
the other extreme, hazard H14 addresses the case when TG fully trusts the new technol-
ogy and thus TG does not examine or verify the diagnostic and prognostic results. This
hazard becomes critical when DM transfers erroneous diagnostics and prognostics (see
hazard H05). Using erroneous diagnostics and prognostics, TG may not generate neces-
sary tasks (see hazard H13) or generates inadequate tasks (see hazard H16). Thus, hazard
H14 links the propagation of hazards from H05 to H13 and H16.

Hazards H16, H17, and H18 are related to the case when the generated tasks are not
effective in resolving the issue raised. Hazard H16 addresses the case when inadequate
/ ineffective tasks are generated. In this case, either additional costs are incurred to per-
form additional tasks which are actually not necessary, and inadequate tasks are per-
formed for on the aircraft’s systems/structures. Hazard H17 addresses the case when
TG generates two identical tasks from two different triggers. For example, when an air
conditioning system of an aircraft needs maintenance, this task can be generated as a re-
sponse to a complaint generated by a flight crew, a report filed by the mechanics, and/or
following the prognostics results generated by the data management team (see Figure
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7.1). These three independent sources of feedback ensure that an abnormal system per-
formance is indeed reported. However, if the three sources of feedback are not managed
properly and as a result multiple identical tasks are generated (see hazard H17), then
this leads to confusion in the task generation, task planning, and task execution pro-
cesses. Lastly, hazard H18 discusses the issue of delay in the task generation process. If a
task triggered by the diagnostics and prognostics is generated with delay, then the other
agents such as TP and ME do not have enough time to plan and execute this task. As
such, this hazard is expected to result in missed tasks.

HAZARDS ASSOCIATED WITH THE MECHANICS TEAM (ME)
The two hazards associated with ME under data-driven PdAM are given in Table 7.6.
Here, fewer hazards are identified relative to TG and DM since the role of ME under
PdAM is envisioned to be similar as in the case of the traditional TBM. However, these
two hazards need careful consideration because ME executes the maintenance tasks in
the final stage of the aircraft maintenance process, with direct impact on the aircraft
airworthiness.

Table 7.6: Hazards of data-driven PdAM, associated with the Mechanics team (ME).

ID Description

H19 Data-driven PdAM would cause more maintenance tasks triggered by
diagnostics/prognostics, leading to a higher risk of human error in
maintenance by ME.

H20 ME performs conventional inspection less carefully due to overconfidence
in data-driven PdAM.

The main concern discussed during the brainstorming relative to ME under PdAM
was the quality of the task execution under PdAM. Hazard H19 refers to the case when
the mechanics are potentially overloaded under PdAM due to additional tasks that are
triggered by diagnostics and prognostics algorithms. Also, an overload may occur for the
mechanics if DM provides diagnostic and prognostic results with delay (see hazard H10),
or if TG generates tasks with delay (see hazard H18). Under the pressure of executing
these data-driven tasks, the risk of human error increases [5, 27]. Furthermore, a pre-
mature tasks can be triggered by the prognostics, which increases the chance of having
human errors [28].

Hazard H20 describes the case when ME performs the conventional inspection less
carefully due to overconfidence in PdAM. This is the result of the ME over-trusting the
new PdAM technologies. This hazard is similar to hazard H14 for TG.

7.4. VALIDATION OF THE IDENTIFIED HAZARDS USING

REPORTED AIRCRAFT INCIDENTS
In this section, we discuss past aircraft accidents/incidents as a means to validate the
hazards identified in the brainstorming session. We first outline the chronology of the
events leading to these incidents based on the final, official investigation reports. Using
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these reports, we identify similar hazards as those identified in the brainstorming session
(see Tables 7.4-7.6). This analysis shows that the hazards identified in the brainstorming
session are also observed in the context of past incidents.

NUISANCE FALSE POSITIVE ALERTS LEAD TO AGENTS IGNORING A TRUE POSITIVE ALERT

An aircraft incident reported in 2017 illustrates how the inadequate handling of alerts
from ACMS contributes to the incident [29]. On 29-April-2017 (Day 0), an aircraft was
dispatched while the left air conditioning system (ACS) had been disabled, in accor-
dance with the Minimum Equipment List. During the flight, the cabin pressure was lost
because the right ACS failed while the left ACS was disabled. The incident investigation
established that the component on the right ACS had been changed 11 days before the
day of the incident (Day −11). After the aircraft returned to service at Day −9, the on-
board aircraft health monitoring (AHM) system sent an alert message to the operator’s
AHM ground-based data system and their engineering department4, indicating that a
‘high leakage/low inflow’ of the cabin pressurization system had been detected. The
operator assessed the message and the necessary task was planned at Day +6. There-
after, during all the subsequent flights between Day −9 and Day 0, maintenance alert
messages were sent by AHM, but no further action was taken by the operator.

From the investigation report of this incident, we identify the following hazards that
contributed to the incident. The operator generated an inadequate task with too late due
date (see hazard H16). More importantly, the continuous alert was not taken seriously by
the operator because they regarded this as ‘nuisance’ (see hazard H15).

In addition, an indirect, but crucial hazard is identified — the generated diagnos-
tics results had been frequently faulty in the past (see hazards H05 and H08), and there-
fore the engineering department classified the actually correct alert as faulty (see hazard
H13). Regarding these hazard, we quote from the investigation report [29]:

The operator later stated that the AHM system provides just over 1,200 main-
tenance alerts. From experience, some maintenance alert messages are inad-
vertently triggered, which has led to refinements to improve the robustness of
the system and reduce the level of ‘nuisance’ alerts. The operator had seen alert
message 21-0209-C740 triggered ‘intermittently’ on other aircraft before and
this had caused maintenance staff to question the reliability of this particular
alert message.

This incident shows that it is critical to ensure the reliability of the diagnostics / prog-
nostics algorithms and the alert systems, in order to make the agents trust the new PdAM
technologies.

DAMAGE NOT IDENTIFIED BY SENSORS AND INSPECTIONS

Several incidents are caused by the damage done during hard landings, which was iden-
tified neither by the on-board sensors nor by inspections [30, 31, 32]. Generally, on-
board aircraft condition monitoring systems (ACMS) indicate hard landings to the flight

4Aircraft health monitoring (AHM) ground-based data system and their engineering department perform the
role of DM and TG in Figure 7.1
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Figure 7.2: Curves for the G-load (cyan), altitude (blue), indicated air speed (yellow), and thrust (magenta) pa-
rameters during the hard landing.
Image source: Civil Aviation Accident and Incident Investigation Commission (CAAIC). Incident involving an
Airbus A-321-211 registration D-ASTP, operated by Germania, at the Fuerteventura Airport, Canary Islands,
Spain on 16 July 2016. 2016. [30]

crew. In this case, the pilots and the mechanics conduct inspections to identify and eval-
uate the potential damage, following the manuals.

In 2016, an aircraft damaged by a hard landing was released without addressing the
damage [30]. Although the subsequent flight was completed uneventfully, it was found
later that the aircraft was in an unsafe condition due to the serious damage made by the
previous hard landing.

In the investigation report, it was found that the ACMS did not submit the ‘G-Load’
report to the pilots because the peak load persisted for 1 second only (see Figure 7.2),
while the report is issued when the load persists for at least 2 seconds [30]. Also, the
ACMS sent ‘A15 hard landing report’ to the Maintenance Operation Center (MOC)5, but
the MOC was not able to interpret the report properly (see hazard H12) and on-time (see
hazards H10 and H18). Because the subsequent inspection did not find any damage (see
hazard H20), the aircraft was released back to service.

Two similar aircraft incidents occurred in 2013 and 2008 [31, 32]. In both cases, the
damages to the landing gears were not identified after hard landings. A contributing
factor to these incidents was that the on-board ACMS did not trigger an alert for hard
landing since the predefined load threshold had not been exceeded (see hazard H07).
For the incident in 2008, the engineers reasoned that no inspection was needed because
the recorded parameters had not exceeded a predefined threshold, which is in accor-
dance with the aircraft maintenance manual [32]. For the incident in 2013, inspections
were performed regardless of the ACMS alert, but the damage was not identified (see
hazard H20). According to the investigation, the other contributing factors were the bad
meteorological conditions during the outdoor inspection, and the use of inspection pro-
cedures which were not consistent with the aircraft maintenance manual [31].

These incidents show that the parameters and algorithms used for ACMS need to be

5Maintenance Operation Center (MOC) performs the role of DM and TG in Figure 7.1
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updated continuously based on the actual operation data in order to properly identify
hard landing or other abnormal events (see hazard H07). In addition, the inspections
carried out by mechanics need to be performed carefully, especially when there is a con-
flict between reports submitted by flight crew and aircraft condition monitoring systems
(see hazard H20).

UNIDENTIFIED DAMAGE DUE TO INCOMPREHENSIBLE DATA PRESENTATION

In 2016, a helicopter lost its yaw control during landing [33]. The helicopter has in place
the Health and Usage Monitoring System (HUMS)6, which monitors the condition pa-
rameters such as engine vibration, rotor track balance, engine shaft balance, etc. A day
before the incident (Day −1), during flight, HUMS recorded vibration data including a
series of exceedences related to the tail rotor pitch change shaft (TRPCS) bearing. In
the routine maintenance following this flight, the HUMS data was downloaded and an-
alyzed. During the analysis, an abnormality for the tail rotor gear box bearing was de-
tected, but the exceedence was not identified. During the first flight of the day of the
incident (Day 0), the HUMS recorded further exceedence. However, it was planned to
download and analyze the data only after the helicopter returns to the base. During the
lift-off of the second flight in Day 0, the helicopter went through an uncommanded yaw.
However, this was regarded as the influence of the wind on the helicopter. During land-
ing of the same flight, the helicopter totally lost yaw control and landed expeditiously
and heavily. The root cause of the lost yaw control was identified as the damage on the
TRPCS caused by the failed bearing. The following two contributing factors were dis-
cussed in the investigation report [33]:

Impending failure of the TRPCS bearing was detected by HUMS but was not
identified during routine maintenance due to human performance limita-
tions and the design of the HUMS Ground Station Human Machine Interface.

The HUMS Ground Station software in use at the time had a previously-unidentified
and undocumented anomaly in the way that data could be viewed by main-
tenance personnel. The method for viewing data recommended in the manu-
facturer’s user guide was not always used by maintenance personnel.

For this incident, we identify the hazards related to the unclear communication (see
hazards H09, H11, H12, and H13), and the delayed data/information sharing (see hazard
H18). The damage to TRPCS was properly detected by the HUMS before the incident,
but this was not identified and resolved by the operator 7 (see hazards H11, H12, and
H13). The first contributing factor was the design of the HUMS Ground Station Human
Machine Interface [33]. The information available through this interface needs to be
zoomed in to identify the exceedence (see Figure 7.3), but the two engineers did not
address this (see hazard H09, H11 and H12). As a result, a proper inspections was not
conducted (see hazard H13). In addition, the HUMS data was not shared on-line, rather
the storage card was supposed to be brought back to the base. Thus, the exceedence

6Health and Usage Monitoring System (HUMS) records the status of helicopter to detect or predict defects.
This system performs the role of ACMS for aircraft in Figure 7.1.

7These operators are performing the role of TG in Figure 7.1.
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(a)

(b)

Figure 7.3: Human Machine Interface of the helicopter that had damage on TRPCS.
(a) Time-history chart. The exceedence of the monitoring parameter is shown at the right end of the graph,
but it is not clearly visible.
(b) Time-history chart zoomed to the last flight on 27 December 2016. The exceedence is obvious.
Image source: Air Accidents Investigation Branch (AAIB), Report on the accident to Sikorsky S-92A, G-WNSR
West Franklin wellhead platform, North Sea on 28 December 2016. 2018. [33]
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recorded during the first flight was not reported (see hazard H04). Moreover, the global
support team8 who received the HUMS data of the previous day (Day −1) identified the
exceedence and contacted the operator, but the communication was not done on time
(see hazards H04 and H18) as the incident already occurred by the time the support team
transmitted their report.

This case shows the importance of the digital communication platform for data-
driven PdAM. The digital platform should visualize the data in an intuitive manner and
highlight crucial information to prevent the hazards such as hazards H09, H11, H12, and
H13. In addition, the on-line data sharing is needed to prepare necessary maintenance
tasks in advance (see hazard H18).

With the analysis above, we validate the hazard list identified during the brainstorm-
ing session by revealing similar hazards encountered for actual incidents.

7.5. EMERGING CHALLENGES OF PREDICTIVE AIRCRAFT

MAINTENANCE
In the context of the identified hazards of data-driven PdAM, we discuss its three main
challenges. In Figure 7.4, we group the hazards based on the associated maintenance
agents, and mark each hazard based on the associated emerging challenges.

RELIABILITY OF NEW TECHNOLOGIES

The biggest challenge is to guarantee the reliability of new technologies introduced in
data-driven PdAM, e.g., aircraft condition monitoring systems (ACMS), diagnostics and
prognostics algorithms, and decision support systems of PdAM. 9 out of 20 hazards are
related to the reliability of new technologies (see hazards H01, H02, H03, H04, H05, H06,
H07, H08, and H10). The majority of the maintenance experts perceive the low reliabil-
ity of diagnostics and prognostics algorithms as a main trigger for most of the hazards
associated with data-driven PdAM. Therefore, it is recommended to test the data-driven
diagnostics and prognostics algorithms using multiple operational data sets. After all,
adequate approval procedures for the design and implementation of data-driven PdAM
is needed.

COMMUNICATION BETWEEN THE MAINTENANCE AGENTS

The second challenge is related to communication between the maintenance agents,
which is related to 5 out of 20 hazards (see hazards H09, H11, H12, H13, and H17). In
this light, the maintenance experts emphasize the need for an intuitive and effective
digital platform to support timely communication at all levels of the data-driven PdAM.
Interactive user interfaces and informative visualizations are seen as a means to avoid
missed alerts [34]. However, not enough studies discuss user interfaces on aircraft main-
tenance, although intensive studies are made for other data-driven technologies, such
as self-driving cars [35]. Only a few studies discuss the user interface supporting aircraft
maintenance tasks (agent ME) [36, 37]. Thus, further investigation is necessary to im-
prove the effectiveness of communication between all maintenance agents, especially

8The global support team performs as DM and TG in Figure 7.1.
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Figure 7.4: The identified hazards and the emerging challenges of data-driven predictive aircraft maintenance
(PdAM). The description of hazards associated with the DM, TG, and ME are given in Tables 7.4, 7.5, and 7.6,
respectively.

agent TG who is associated with the most number of hazards related to communication
(see Table 7.5 and Figure 7.4).

TRUST OF THE MAINTENANCE AGENTS

A third challenge for data-driven PdAM is to build the trust of the maintenance agents
in the new data-driven technologies, which is related to 3 out of 20 hazards (see hazards
H14, H15, and H20). The trust in a new technology is based on more than just having
systems and algorithms of high accuracy [26]. In fact, trust is equally based on users’
personal cognition on the reputation of these new technologies (cognitive trusting base),
their understanding that these new technologies benefit them (calculative trusting base)
and their confidence in the human operators behind these new technologies (institu-
tional trusting base), [26]. For the case of aircraft maintenance, the process is even more
complex, with multiple agents who use different data-driven technologies locally and
who interact with each other at the system level. Therefore, we should build trust both
at the level of individual agent, as well as at system-level. At the individual level, trust
needs to be built between each agent and the new technologies that they use. At the
system level, trust needs to be built in the information transferred from one agent to
another.
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7.6. CONCLUSIONS
In this chapter, we identify hazards associated with the introduction of data-driven pre-
dictive aircraft maintenance (PdAM), and discuss the emerging challenges of implement-
ing data-driven PdAM. As a first step, the main agents of data-driven PdAM and their
interactions are recognized. Then, a structured brainstorming for hazard identification
is conducted with aircraft maintenance experts, each representing one of the mainte-
nance agents. We focus on the emerging hazards associated with the adoption of new
technologies, such as aircraft condition monitoring systems (ACMS), data-driven diag-
nostics and prognostics algorithms, and decision support systems for PdAM. As a result,
20 emerging hazards are uncovered for data-driven PdAM. Two agents, the data man-
agement team and task generating team, are associated with the largest number of new
hazards of data-driven PdAM. These hazards are validated in the context of past aircraft
incidents that occurred between 2008 and 2013.

Following the analysis of the hazards, we discuss three main challenges for safe im-
plementation of data-driven PdAM: i) guaranteeing the reliability of new data-driven
technologies of PdAM, ii) designing intuitive communication platforms that can facili-
tate communication between agents under PdAM, and iii) building the agent’s trust in
the new data-driven PdAM process. These challenges guide the future research direction
for the successful implementation of data-driven PdAM.
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8
CONCLUSION

8.1. REVIEW OF RESEARCH OBJECTIVES
The Research Objectives have been addressed over the course of this dissertation, and
are reflected upon in this section.

Obj.1 Construct mathematical models of predictive aircraft maintenance
and assess its performance.

In Chapter 2, I constructed a Petri net model of predictive aircraft maintenance (PdAM).
I focused on the interactions between various agents during aircraft maintenance. Six
agents were modeled: aircraft, data management team, task generating team, task plan-
ning team, mechanics team, and flight crews. Their interactions, such as transferring
condition monitoring data, triggering alarms based on Remaining-Useful-Life (RUL) prog-
nostics, etc., were formulated by means of stochastically and dynamically colored Petri
nets (SDCPNs). This Petri net model also integrated the degradation model of aircraft
landing gear brakes, which was validated based on the operational data collected from
a fleet of Boeing 787 aircraft. I used the Petri net model to simulate the consequences
of PdAM, such as the number of performed inspections and replacements, the wasted
life of components, and the probability of a system failure. Based on these results, the
performance of PdAM was assessed. With this study, the first objective of constructing
mathematical models of PdAM and evaluating its performance, was achieved.

Obj.2 Identify the key performance indicators (KPIs) of
predictive aircraft maintenance, and analyze their trade-offs.

This research objective was addressed in Chapter 3. I identified two sets of key per-
formance indicators (KPIs) representing reliability and cost-efficiency of aircraft mainte-
nance. The KPIs representing reliability are the number of component replacements and
the mean number of flight cycles to component replacements (MCTR). The KPIs of cost-
efficiency are the number of degradation incidents, the number of unscheduled main-
tenance tasks, and the total accrued flight delay due to maintenance. Using the model
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of PdAM, I showed that the KPIs of reliability are all positively correlated, while they
conflict against the KPIs of cost-efficiency. For instance, it was observed that flight de-
lay increases together as the number of degradation incidents increases; but more flight
delays are expected when the number of component replacements is reduced. This ob-
servation suggested that the goal of PdAM should be the simultaneous maximization of
reliability and cost-efficiency.

Obj.3 Integrate RUL prognostics into predictive aircraft maintenance planning.

This dissertation tackled Obj.3 by dividing it into three levels of PdAM: component-
level (Obj.3.1), fleet-level (Obj.3.2), and strategy-level (Obj.3.3). I proposed three op-
timization approaches that best address the main challenges of the three levels. For
component-level PdAM, a deep reinforcement learning approach was used to consider
the uncertainty associated with RUL prognostics (Chapter 4). For fleet-level PdAM, an
integer linear programming (ILP) considered the operational requirements of an aircraft
fleet (Chapter 5). For strategy-level PdAM, a multi-objective optimization was proposed
to efficiently optimize PdAM strategies considering conflicting objectives (Chapter 6).
Finally, this dissertation provided methodologies to integrate RUL prognostics into pre-
dictive aircraft maintenance planning.

Obj.3.1 Optimize a predictive maintenance plan for an aircraft component based on
RUL prognostics and associated uncertainty (Component-level PdAM).

In Chapter 4, I developed probabilistic RUL prognostics for an aircraft turbofan en-
gine. My approach provided the uncertainty information of RUL prognostics by means
of a probability distribution. The estimated RUL distribution was used to schedule en-
gine replacements, using a deep reinforcement learning (DRL) approach. The DRL ap-
proach resulted in optimal replacement schedules that minimize costs while avoiding
unexpected engine failures. This framework successfully addressed one of the biggest
challenges of PdAM at the component-level, which is the maintenance planning consid-
ering the uncertainty of RUL prognostics. The component-level PdAM was illustrated
for aircraft turbofan engines.

Obj.3.2 Optimize a predictive maintenance plan for a fleet of aircraft with multiple
components, considering operational requirements (Fleet-level PdAM).

A framework to plan predictive maintenance for a fleet of aircraft was proposed in
Chapter 5. The fleet-level PdAM integrated RUL prognostics and operational require-
ments such as required flight schedules and limited hangar availability. I formulated
the PdAM at fleet-level as an integer linear programming (ILP) problem, where the op-
erational requirements were given as constraints. The objective of ILP was to minimize
maintenance costs, including the cost of wasted component life, the penalty of overdue
replacements, and the setup cost at the hangar. This approach was illustrated for the
maintenance of landing gear brakes, whose RUL was predicted by a Bayesian regression
model. Compared with traditional time-based maintenance strategies, the proposed
framework reduced up to 20% of maintenance costs.
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Obj.3.3 Design a predictive maintenance strategy by optimizing parameters such as
thresholds of RUL, considering multiple objectives (Strategy-level PdAM).

In Chapter 6, I designed a Pareto optimal PdAM strategy. First, I proposed an effi-
cient algorithm to optimize the parameters of maintenance strategies, using Gaussian
process (GP) learning models. Using this algorithm, I optimized the PdAM strategies
for the maintenance of landing gear brakes. The results showed that the optimal PdAM
strategy Pareto-dominates other strategies by balancing the conflict between reliability
and efficiency. Although the case study considered landing gear brakes only, the pro-
posed methodology can be applied to design multi-objective maintenance of other gen-
eral aircraft components.

Obj.4 Identify emerging challenges of predictive aircraft maintenance.

Challenges of PdAM were identified in Chapter 7. In particular, I was interested in
new challenges associated with introducing aircraft health monitoring (AHM) systems
and RUL prognostics. The main difficulty in achieving this objective was the lack of data
and experience obtained from practice. To overcome this, I had organized brainstorm-
ing sessions with experts in aircraft maintenance. During the brainstorming session, the
model of PdAM developed in Chapter 2 was used to facilitate the discussion. The results
showed that the reliability of new technologies and decision support systems is the fore-
most concern. Other challenges are the timely and accurate communication, and users’
trust in the new technologies and decision support systems.

8.2. CONCLUSIONS
Based on the findings through this dissertation, the following conclusions are drawn:

1. The first steps to design predictive aircraft maintenance are to identify the
interactions of all stakeholders in the aircraft maintenance process, to under-
stand their key performance indicators.

Aircraft maintenance is performed by various stakeholders who exchange information,
make decisions, and take actions (Chapter 2). We should clearly identify their interac-
tions to adequately integrate aircraft health monitoring (AHM) systems and Remaining-
Useful-Life (RUL) prognostics into the existing aircraft maintenance process. Moreover,
the key performance indicators (KPIs) of different stakeholders are often subjected to
trade-offs (Chapter 3). A multi-objective analysis of the KPIs is required to define proper
objectives of predictive aircraft maintenance (PdAM) and to identify their trade-offs.

2. Predictive aircraft maintenance will be most beneficial for expensive and safety-
critical aircraft components.

Throughout the case studies in Chapters 4-6, we have shown that PdAM effectively
prevents component failures and unscheduled maintenance tasks. Such benefits are
maximized when considering components whose failures are critical or whose mainte-
nance is expensive.



8

184 8. CONCLUSION

3. Uncertainty in Remaining-Useful-Life prognostics must be considered when
planning predictive aircraft maintenance.

In order to plan optimal predictive aircraft maintenance, the uncertainty of RUL
prognostics should be taken into account, especially considering trade-offs between too
early and too late replacements, as shown in the case studies in Chapters 4-6.

4. Understanding the mechanism of degradation/failure is essential for Remaining-
Useful-Life prognostics, especially when considering data-driven approaches.

In this dissertation, two data-driven models are proposed for probabilistic RUL prog-
nostics of two aircraft components: deep convolutional neural networks (CNNs) for
turbofan engines (Chapter 4), and Bayesian regression model for landing gear brakes
(Chapters 5-6). Each model is selected based on understanding the degradation trend
and condition monitoring data. For example, because the degradation trend of landing
gear brakes is relatively linear, a Bayesian linear regression model is already effective,
and complex models such as CNNs are not worth the effort.

5. In the design of predictive aircraft maintenance strategy, one should apply a
multi-objective approach.

Reliability and cost are two major objectives of PdAM, which are often in conflict with
each other (Chapter 2). In theory, we can minimize cost while we satisfy a certain level
of reliability given as a requirement (constraint). In practice, however, the required level
of reliability is hardly known before the optimization, especially when considering new
complex systems such as PdAM. Therefore, the design of PdAM should optimize these
objectives simultaneously to identify Pareto optimal designs (Chapter 6).

6. Non-technical challenges such as legislation, business models, and people’s
trust should not be overlooked.

Many of the emerging challenges of PdAM in Chapter 7 are in fact non-technical chal-
lenges. Current academic research on PdAM mostly focuses on how to improve its per-
formance, e.g., in its reliability and efficiency. However, the findings in Chapter 7 suggest
that it is equally important to discuss how to convince the benefit of PdAM to the rele-
vant stakeholders, regulatory body, business owners, and others involved in PdAM.

8.3. NOVELTY AND SCIENTIFIC CONTRIBUTIONS
This section highlights the novelty and scientific contributions of this dissertation. The
main scientific contributions are the frameworks to optimize predictive aircraft mainte-
nance (PdAM), and to integrate Remaining-Useful-Life (RUL) prognostics into mainte-
nance planning. Four main scientific contributions are as follows:

1. This dissertation is the first study to identify all stakeholders in PdAM and
model their interactions using stochastic Petri nets. Furthermore, an inte-
grated framework is proposed to assess both the reliability and efficiency of
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aircraft maintenance simultaneously. The corresponding contribution led to
the following journal publication and conference presentation.

- J. Lee and M. Mitici, “An integrated assessment of safety and efficiency of
aircraft maintenance strategies using agent-based modelling and stochastic
Petri nets,” Reliability Engineering and System Safety, vol. 202, p. 107052,
2020.

- J. Lee and M. Mitici, “Predictive aircraft maintenance: modeling and analysis
using stochastic Petri nets,” in Proceedings of the 31st European Safety and
Reliability Conference, pp. 146-153, Angers, France, September 19–23, 2021.

2. This dissertation is the first study to integrate probabilistic RUL prognostics
into maintenance planning. The probability distribution of RUL of an aircraft
engine is estimated using deep convolutional neural networks and Monte Carlo
dropout. The estimated RUL distribution is used for predictive maintenance
planning based on a deep reinforcement learning approach. This dissertation
provides new methods to quantify the uncertainty of RUL prognostics and to
use this information for optimal maintenance planning. The corresponding
contribution was submitted as the following publication under review.

- J. Lee and M. Mitici, “Deep reinforcement learning for predictive aircraft
maintenance using probabilistic Remaining-Useful-Life prognostics,” Relia-
bility Engineering and System Safety, 2022.

3. This dissertation is the first study to optimize replacement schedules of land-
ing gear brakes of a fleet of aircraft considering RUL prognostics. The pro-
posed approach using integer linear programming provides a basis to opti-
mize predictive maintenance for multiple aircraft and multi-component sys-
tems. The corresponding contribution was presented at the following confer-
ence and was awarded Best Paper Award 2nd Prize, European Conference of
the Prognostics and Health Management Society in 2022.

- J. Lee, I. de Pater, S. Boekweit, and M. Mitici, “Remaining-Useful-Life prog-
nostics for opportunistic grouping of maintenance of landing gear brakes for a
fleet of aircraft,” in Proceedings of the 7th European Conference of the Prognos-
tics and Health Management Society 2022, pp.278-285, Turin, Italy, July 6–8,
2022.

4. This dissertation proposes a new framework to optimize thresholds and safety
margins of PdAM strategies considering conflicting objectives. A novel algo-
rithm using Gaussian process (GP) learning is proposed and illustrated for the
maintenance of landing gear brakes. This framework can be used to design
new PdAM strategies for other aircraft components. The corresponding con-
tribution led to the following journal publication and conference proceeding,
which is awarded Innovation in Transport Applications, European Safety and
Reliability Conference in 2022.

- J. Lee and M. Mitici, “Multi-objective design of aircraft maintenance us-
ing Gaussian process learning and adaptive sampling,” Reliability Engineer-

https://doi.org/10.1016/j.ress.2020.107052
https://doi.org/10.1016/j.ress.2020.107052
https://doi.org/10.3850/978-981-18-2016-8_050-cd
https://doi.org/10.3850/978-981-18-2016-8_050-cd
https://doi.org/10.1016/j.ress.2022.108908
https://doi.org/10.1016/j.ress.2022.108908
https://doi.org/10.36001/phme.2022.v7i1.3316
https://doi.org/10.36001/phme.2022.v7i1.3316
https://doi.org/10.1016/j.ress.2021.108123
https://doi.org/10.1016/j.ress.2021.108123
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ing and System Safety, vol. 218, p. 108123, 2022.

- J. Lee, M. Mitici, S. Geng, and M. Yang, “Designing reliable, data-driven
maintenance for aircraft systems with applications to the aircraft landing gear
brakes,” in Proceedings of the 32nd European Safety and Reliability Conference
(ESREL), pp.25-32, Dublin, Ireland, August 28 – September 1, 2022.

Besides these optimization frameworks, this dissertation builds the foundation for
future research on PdAM as follows:

5. This dissertation is the first study to identify key performance indicators (KPIs)
representing various interests of stakeholders in aircraft maintenance, and
analyzing the trade-offs of these KPIs. Based on this analysis, objectives for
the optimization of PdAM are suggested. The corresponding contribution
was presented at the following conference and awarded Thomas L. Fagan, Jr.,
RAMS Student Paper Award 1st Place, Reliability and Maintainability Sympo-
sium in 2021.

- J. Lee and M. Mitici, “Multi-objective analysis of condition-based aircraft
maintenance strategies using discrete event simulation,” in 2021 Annual Re-
liability and Maintainability Symposium (RAMS), pp. 1–6, Orlando, FL, USA,
May 24–27, 2021.

6. This dissertation is the first study to identify emerging challenges for predic-
tive aircraft maintenance after the regulatory discussion on the integration of
AHM in aircraft maintenance in 2018 1. Based on this, future research direc-
tions are suggested. This result was submitted as the following publication
under review.

- J. Lee, M. Mitici, H. A. P. Blom, P. Bieber, and F. Freeman, “Identification
of emerging hazards for the data-driven predictive aircraft maintenance pro-
cess,” submitted to Safety Science in 2021 (under review).

8.4. LIMITATIONS AND RECOMMENDATION FOR FUTURE

WORK
This dissertation provides novel methodologies to optimize predictive aircraft mainte-
nance (PdAM). Even so, much work remains to be done before we can perform actual
aircraft maintenance using PdAM.

IMPROVING RUL PROGNOSTICS AND OPTIMIZATION MODELS
First of all, Remaining-Useful-Life (RUL) prognostics algorithms need to be further im-
proved to obtain more accurate and realistic maintenance planning.

1. Using future flight schedules and operational conditions.

1International Maintenance Review Board Policy Board (IMRBPB). Aircraft Health Monitoring (AHM) integra-
tion in MSG-3, IP180. 2018, pp. 1–33.

https://doi.org/10.1016/j.ress.2021.108123
https://doi.org/10.1016/j.ress.2021.108123
https://doi.org/10.1016/j.ress.2021.108123
https://pure.tudelft.nl/ws/portalfiles/portal/131839418/Designing_reliable_data_driven_maintenance_for_aircraft_systems.pdf
https://pure.tudelft.nl/ws/portalfiles/portal/131839418/Designing_reliable_data_driven_maintenance_for_aircraft_systems.pdf
https://doi.org/10.1109/RAMS48097.2021.9605761
https://doi.org/10.1109/RAMS48097.2021.9605761
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The RUL prognostics algorithms proposed in this dissertation only use the past condi-
tion data. If the future flight schedules and associated operational conditions are known
in advance, RUL prognostics and predictive maintenance planning can be more effec-
tive. Especially for commercial flights, where flight schedules are already known for a
few weeks in advance, such future operational conditions can be integrated into RUL
prognostics and PdAM.

2. Predicting RUL of multi-component systems.

The current RUL prognostics algorithms mostly focus on the RUL of a component, but
some components compose a multi-component system. For example, an aircraft has 4
landing gear brakes on each side of the wing, and a minimum of 3 brakes is required.
The RUL of this multi-brake system can be predicted by simultaneously considering the
RUL of individual brakes, system redundancy, and associated regulations. Considering
the RUL of multi-component systems and the RUL of individual components together,
PdAM can be more flexible and reliable.

3. Considering additional operational requirements, such as spare part manage-
ment, maintenance crew schedule, etc.

The fleet-level PdAM of this dissertation focused on flight schedule and hangar availabil-
ity, but there are also other operational requirements such as spare part management
and maintenance crew schedule. Some components, such as aircraft engines, are not
always stored in the hangar but are ordered when maintenance is scheduled. The logis-
tics often take a significant time, and might delay the maintenance schedule. Also, the
availability of certified maintenance personnel is limited. The maintenance crew sched-
ule and the predictive maintenance plans should be obtained considering each other.
Although such operational requirements have been studied under current time-based
maintenance, their impact of the new predictive maintenance is rarely investigated.

REMAINING NON-TECHNICAL CHALLENGES
This dissertation focuses on the biggest technical challenges of PdAM, especially the reli-
ability and efficiency of RUL prognostics and PdAM decision support systems. However,
for the full implementation of PdAM in practice, several challenges remain.

4. Building the trust of all people involved in the new predictive aircraft mainte-
nance approach.

Chapter 7 suggests that building trust is the second biggest challenge in adopting PdAM
in practice. Despite all the technical validations and the optimization models proposed
for PdAM, it cannot be successfully adopted if the users do not trust this new approach.
While the trust in new technologies has been extensively studied in other fields such as
self-driving cars, it has not been investigated in-depth for PdAM. For the final approval
of PdAM approaches, it is necessary to build trust, not only technically but also emotion-
ally.

5. Adoption of PdAM from the perspectives of legislation and business.
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Since aircraft maintenance is strictly regulated under law, legal supports are necessary
to implement PdAM. At the same time, it is a business that should make a profit. Thus,
further research is necessary that considers the legislation of PdAM and the business
models of PdAM. Of course, technical improvements provide the strongest support for
the legislation and the business models of PdAM. In this light, this dissertation serves as a
starting point for informed discussions on the future of predictive aircraft maintenance.
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