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Abstract A novel adaptive sampling scheme for efficient global robust optimiza-

tion of constrained problems is proposed. The method addresses expensive to

simulate black-box constrained problems affected by uncertainties for which only

the bounds are known, while the probability distribution is not available. An iter-

ative strategy for global robust optimization that adaptively samples the Kriging

metamodel of the computationally expensive problem is proposed. The presented

approach is tested on several benchmark problems and the average performance

based on 100 runs is evaluated. The applicability of the method to engineering

problems is also illustrated by applying robust optimization on an integrated pho-

tonic device affected by manufacturing uncertainties. The numerical results show

consistent convergence to the global robust optimum using a limited number of

expensive simulations.

Keywords Robust optimization � Kriging � Expected improvement � Efficient
global optimization

1 Introduction

Robustness against uncertainties in a problem is steadily rising as an important

aspect in the field of optimization. Uncertainties can be dealt with in different ways

depending on the level of information available about the problem. If the probability

distributions of all uncertainties are known then the problem is usually addressed

with the so called Stochastic Programming approach (Birge and Louveaux 1997).
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However, often full probabilistic data is not available, but bounds on the

uncertainties can be given. Such uncertainties are denoted as bounded-but-unknown

(Gurav et al. 2005; Elishakoff and Ohsaki 2010). Robust optimization can tackle

problems of this nature. Robust optimization involves the search for the best worst-

case cost, i.e. the minimization of the maximum realizable value of the objective

with respect to the uncertainty set, subject to the non-violation of the worst-case

constraints. Robust optimization of expensive simulation-based problems is

especially challenging since the nested optimization process, when applied to

expensive problems, can potentially be very inefficient.

In this work, we present a novel approach for efficient global robust optimization

of expensive simulation-based constrained problems affected by bounded-but-

unknown uncertainties. The method operates on a surrogate model of the expensive

problem which is iteratively improved based on novel infill sampling criteria

adapted for constrained robust optimization. The present algorithm enables efficient

and accurate determination of the global robust optimum of constrained problems.

Abundant research has been performed in recent decades on robust optimization

of problems affected by uncertainties. However, much of this work has been

focused on solving convex problems. Considerable progress has therefore been

made in robust optimization of linear, convex-quadratic, conic-quadratic and semi-

definite problems (Ben-Tal et al. 2009). In contrast, literature related to robust

optimization of non-convex problems affected by uncertainties is relatively limited.

Bertsimas et al. recently treated robust optimization of non-convex problems with

constraints, but the method is aimed at identifying local robust optima only

(Bertsimas et al. 2010). Additionally, the approach assumes that gradients are

available. In general, however, the availability of gradients cannot always be

guaranteed.

A vast number of practical problems affected by uncertainties is non-convex.

Furthermore, the objective function of such problems is often not explicitly known

and therefore has to be treated as a black-box. Such a scenario is typically observed

when the objective is a result of a computer simulation. An additional difficulty

often encountered is that the inherent simulation is computationally expensive to

perform. This further prevents the application of robust optimization in engineering

practice.

Applying optimization directly on expensive computer simulations is pro-

hibitively expensive. This is especially true in the case of robust optimization, since

robust optimization involves solving a nested min-max optimization problem where

the objective to be optimized is itself a result of an optimization. The problem to be

tackled therefore renders itself suitable to a surrogate-based optimization strategy

where a cheap model is initially constructed via Design of Experiments (DoE) and

thereafter, the model is updated using an infill sampling criterion.

Of the various surrogate-based modeling techniques that exist, for the proposed

method we employ Kriging (Sacks et al. 1989). The statistical framework of

Kriging provides an estimator of the variance of the Kriging interpolator. Using this

potential error, different metrics have been proposed to adaptively sample the

design domain such that the deterministic optimum of an unconstrained problem can

be found efficiently. The metric of Probability of Improvement (PI) and Expected
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Improvement (EI) have been shown to be sound statistical infill sampling criteria.

By constructing an initial metamodel using a suitable DoE (Morris and Mitchell

1995) and then employing EI, Jones et al. showed that the deterministic global

optimum of an unconstrained problem can be found using relatively few expensive

simulations (Jones et al. 1998). Jones et al. used the term Efficient Global

Optimization to refer to this method.

In order to apply deterministic optimization on an expensive simulation-based

problem with constraints, additional surrogates could be constructed for each

constraint. In the Kriging framework, an adaptive sampling scheme for a constrained

problem was first explored by Schonlau (Schonlau 1997). Based on the Kriging

variance, the method suggests a metric of Probability of Feasibility (PF) for each

constraint, analogous to the Probability of Improvement in the objective. The product

of probability of feasibility of the constraints and expected improvement of the

objective can then be used to suggest new sampling locations. Parr et al. (2012a, b)

showed that by employing this approach the deterministic global optimum of a

constrained problem can be found using relatively few expensive function evaluations.

In addition to providing a basis for an adaptive sampling scheme, Kriging also

has the advantage that it generally exhibits superior performance compared to

polynomial models when robustness is taken into account (Stinstra and den Hertog

2008). However, a disadvantage of Kriging is that the correlation matrix it generates

is prone to ill-conditioning, which may require stabilization (Jones 2001).

Moreover, Kriging is also known to underestimate the variance in its interpolation

(den Hertog et al. 2006).

To the best of our knowledge, an infill sampling based approach for surrogate-

based global robust optimization of computationally expensive constrained

problems affected by bounded-but-unknown uncertainties has not been previously

explored. Equivalent work has been done for constrained problems affected by

probabilistic uncertainties (Zhu et al. 2015; Arendt et al. 2013). These techniques

cannot be applied to problems involving bounded-but-unknown uncertainties. Yet,

there is a strong need to address constrained problems affected by bounded-but-

unknown uncertainties since most practical problems are, more often than not,

subject to constraints. The considered uncertainties are bounded-but-unknown and

can affect the design variables of the problem (implementation error) as well as the

parameters that cannot actively be adjusted by the optimizer (parametric

uncertainties). For unconstrained problems affected by bounded-but-unknown

uncertainties, Marzat et al. (2012, 2013) demonstrated algorithms for tackling

expensive simulation-based problems. Similarly, for unconstrained expensive

problems, Ur Rehman et al. also showcased an approach for estimating the global

robust optimum (ur Rehman et al. 2014; ur Rehman and Langelaar 2015).

The primary contribution of this work is to provide a sound criterion for infill

sampling of expensive simulation-based constrained problems such that a feasible

global robust optimum can be found cheaply. We restrict the focus to problems

involving inequality constraints, since equality constraints that are affected by

uncertainty cannot be satisfied in general.

This work builds on the algorithm for unconstrained robust optimization

developed by ur Rehman and Langelaar 2015. The developed approach extends the
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original algorithm (ur Rehman and Langelaar 2015) to encompass computationally

expensive problems that have single or multiple constraints. The metamodels of the

objective and the constraints are built using Kriging. We derive novel infill

sampling criteria for constrained expected improvement in the control variable

space and constrained expected deterioration in the uncertainties space. The

combination of these sampling criteria enables the global robust optimum of the

constrained problem to be estimated using relatively few expensive simulations.

This extension is especially relevant to computationally expensive engineering

problems affected by uncertainties, since engineering problems, in general, involve

constraints. The effectiveness of the proposed algorithm to tackle engineering

problems with constraints is demonstrated by applying it on an integrated optics

device affected by fabrication uncertainties. A feasible robust design, in the

presence of two constraints, is found for an optical filter which is affected by

bounded-but-unknown geometrical variations due to fabrication uncertainties. It is

also shown that the deterministic optimum of the optical filter results in an

infeasible design if the worst-case uncertainties are realized. Using the proposed

approach, users can generate robust designs that provide 100% manufacturing yield

for expensive constrained engineering problems affected by uncertainties. While the

deterministic engineering design may perform better at the nominal parameter

values, the robust design will be superior if the worst-case uncertainties are realized.

In addition to the application of the algorithm on the engineering problem, the

average convergence and mean performance of the method is tested statistically by

applying it 100 times on several numerical problems.

This paper is organized as follows. Robust optimization of problemswith constraints

is introduced in Sect. 2. Section 3 provides a brief description of Kriging as well as

expected improvement and probability of feasibility along with their use in

unconstrained and constrained deterministic optimization. We introduce the proposed

algorithm for efficient global robust optimization of constrained problems in Sect. 4.

Finally, Sect. 5 and 6 contain the results and conclusions, respectively. The method for

efficient global optimization introduced in Sect. 3 is an established and well known

approach in literature for constrained deterministic optimization of expensive problems.

The novel contribution of this work is contained in Sect. 4, which provides the

description of the algorithm for constrained robust optimization of computationally

expensive problems, and Sect. 5, which demonstrates the application of the algorithm

on engineering and numerical constrained problems affected by uncertainties.

2 Robust optimization of problems with constraints

A deterministic optimization problem subject to constraints may be defined as,

min
xc

f ðxcÞ

s:t: hjðxcÞ� 0 8j;
ð1Þ

where xc 2 Xc is the set of design variables, f ðxcÞ is the objective function and

hjðxcÞ is the set of constraints. If the problem is affected by implementation error
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D 2 U, with U as the uncertainty set, then this directly impacts the design variables.

In this scenario, the robust optimization problem is given by,

min
xc

max
D

f ðxc þ DÞ

s:t: max
D

hjðxc þ DÞ� 0 8j:
ð2Þ

The above formulation shows that robust optimization involves minimizing the

worst-case cost instead of the deterministic cost. Let us now assume that the

problem is affected by uncertainties in the problem data only. Examples of problem

data for a physical problem can be parameters such as temperature or humidity.

These parameters are usually uncontrollable factors that could be subject to change

due to uncertainties. These parametric uncertainties can be modeled using a set of

environment variables xe 2 Xe where Xe is the uncertainty set. It should be noted

here that Xc and Xe are compact sets. A robust optimization problem subject to

constraints can then be written as,

min
xc

max
xe

f ðxc; xeÞ

s:t: max
xe

hjðxc; xeÞ� 0 8j:
ð3Þ

Observing the above equation, we note that the worst-case constraints with respect

to the uncertainty set Xe should not be violated in order to find a feasible solution.

Therefore, the global robust optimum would be the location that provides the best

worst-case cost, given that that location does not violate the worst-case constraints.

For some problems, uncertainties could impact both the design variables and the

parameters. In this case, the solution has to be robust against parametric

uncertainties as well as implementation error. The robust optimization problem,

subject to constraints, for this general problem is given by

min
xc

max
xe;D

f ðxc þ D; xeÞ

s:t: max
xe;D

hjðxc þ D; xeÞ� 0 8j:
ð4Þ

The objective function and the constraints are considered to be non-convex.

Furthermore, we assume that the function and the constraints are based on the

response of an expensive computer simulation. Therefore, the ultimate goal of this

work is to estimate a feasible global robust optimum of the constrained problem in

Eq. (4) using a relatively small number of expensive simulations. This is performed

by operating on cheap Kriging models of the objective and constraints instead of on

the expensive computer simulation. The problem is expressed as

min
xc

max
xe;D

F f ðxc þ D; xeÞ

s:t: max
xe;D

Hjðxc þ D; xeÞ� 0 8j;
ð5Þ

where F f is the Kriging model of the objective andHj 8j are the Kriging models of

the constraints. In order to estimate the global robust optimum accurately, the
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surrogate models need to approximate the corresponding reference functions very

well, especially in the neighbourhood of the robust optimum. Extra emphasis needs

to be paid to the metamodel error in the constraint models Hj 8j, since a feasible

robust optimum on the metamodel should ideally also be feasible on the true

function.

In the following section, we will discuss Kriging and its application to the

deterministic optimization of constrained problems. This will provide a basis for the

algorithm proposed in Sect. 4, which strives to solve Eq. (4). The scheme uses infill

sampling criteria based on Kriging that enable Eq. (5) to approximate Eq. (4)

increasingly well in potential regions of interest for global robust optimization of a

given problem.

3 Kriging-based deterministic optimization of constrained problems

3.1 Kriging

A very brief description of the metamodelling technique known as Kriging is

provided herein. For detailed explanation concerning the model construction and

interpolation please refer to Sacks et al. (1989).

Kriging is an interpolation technique that assumes that the function response at

any position in the design domain can be described as a normally distributed random

variable. Appendix 1 provides further details on Kriging. Kriging employs a tunable

Gaussian basis function, Eq. (22)—Appendix 1, to describe the correlation between

any two sample points. Optimal values for the tunable parameters of this basis

function are found by maximizing the likelihood of obtaining the observed data.

Using this tunable basis function, the Kriging prediction, ŷ, is estimated by

maximizing the combined likelihood of the observed data and the predicted value,

Eq. (23). The statistical basis of Kriging provides an estimate of the variance, s2, in

the Kriging interpolator, Eq. (24).

3.2 Deterministic unconstrained optimization

Rather than working with a predetermined and static set of samples, it proves more

efficient to adaptively extend the set of samples to refine the approximation. The

combination of the Kriging interpolator and its variance has been successfully used

to devise adaptive sampling schemes for efficient optimization of black-box

functions. Jones et al. proposed the Efficient Global Optimization (EGO) algorithm

(Jones et al. 1998) for deterministic unconstrained optimization based on the

Kriging framework. Their method used the adaptive sampling criterion of Expected

Improvement (EI).

The EI criterion is developed by assuming that the uncertainty in the predicted

value ŷðxÞ at a position x can be described in terms of a normally distributed random

variable YðxÞ. The Kriging interpolator ŷðxÞ is assumed to be the mean of this

random variable while the variance is assumed to be given by the Kriging mean
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squared error s2ðxÞ. There is a possibility for improving on the current observed

minimum, ymin, if a part of the distribution YðxÞ lies below ymin. Let this

improvement be denoted by I. Finding the expectation of the improvement I, i.e.

E½IðxÞ� ¼ E½maxðymin � Y ; 0Þ�, gives us the expected improvement. A cheaply

computable analytical expression may be derived for the EI (Schonlau and Welch

1996),

E½IðxÞ� ¼ ðymin � ŷðxÞÞU ymin � ŷðxÞ
sðxÞ

� �
þ sðxÞ/ ymin � ŷðxÞ

sðxÞ

� �
ð6Þ

where Uð:Þ is the normal cumulative distribution function and /ð:Þ is the normal

probability density function. A global optimizer can be used to estimate the global

maximizer of EI. The expensive function is evaluated at the maximizer location and

the metamodel is rebuilt with the augmented set of samples and responses. By

iteratively sampling the metamodel using EI the global deterministic optimum of

the problem can be found in relatively few iterations.

3.3 Deterministic constrained optimization

The constraints are also considered to be a result of an expensive computer

simulation. Therefore, a cheap model has to be built for them as well. An option

could be to include each constraint as a penalty term, but for more complex

constraints this approach does not work well (Parr et al. 2012b).

In order to deal with constraints a measure known as Probability of Feasibility

(PF) was developed by Schonlau (1997). The criterion is analogous to the

probability of improvement for the objective. Let the constraint metamodel be

denoted by HðxÞ and the Kriging prediction by ĥðxÞ. To derive the expression for

probability of feasibility, it is again assumed that the uncertainty in the predicted

value ĥðxÞ at a position x can be described in terms of a normally distributed

random variable HðxÞ with mean ĥðxÞ and variance s2hðxÞ. The measure gives the

area of the distribution HðxÞ that is below the constraint limit hmin or P½FðxÞ\hmin�.
For a single constraint the probability of feasibility is given by

P½FðxÞ\hmin� ¼ U
hmin � ĥðxÞ

shðxÞ

 !
; ð7Þ

where FðxÞ ¼ hmin � HðxÞ is a measure of feasibility. Typically, the constraint

expression is rearranged so that the constraint limit hmin ¼ 0. Just like expected

improvement and probability of improvement, the probability of feasibility is an

analytical expression that is cheaply computable. The probability of feasibility is

basically a metric that gives an indication of possible feasible regions in the domain.

The product of expected improvement in the objective and the probability of

feasibility of the constraint can then provide a suitable infill criterion for constrained

problems (Parr et al. 2012a, b),
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EIF ¼ E½IðxÞ�P½FðxÞ\hmin�: ð8Þ

By estimating the global maximizer of the constrained expected improvement, EIF,

a suitable location at which to sample both the objective metamodel and constraint

metamodels can be found. The method can readily be extended to multiple con-

straints by using the total probability of feasibility, which is given by the product of

the individual probability of feasibility of each constraint.

Figure 1 shows the flowchart of the algorithm for deterministic optimization of

constrained problems using Kriging and adaptive sampling. The algorithm is

initialized in Step 1. NT gives the total number of expensive simulations available to

the algorithm, while n is the initial number of samples. �PI and �EI are the minimal

probability of improvement and minimal expected improvement thresholds

respectively. These quantities determine when the algorithm is terminated due to

a lack of sufficient predicted improvement in the optimum value. A suitable Design

of Experiments strategy is used to choose the initial sampling regions in Step 2.

Once the responses of the objective and the constraints are found, the Kriging

models are constructed in Step 4. Thereafter, the global maximizer of EIF is

estimated and this is assigned as the new location to be sampled, xnew. The response
of the objective and the constraints at xnew are computed in Step 6. The process of

constructing the objective and constraint metamodels and adaptively sampling the

domain is repeated until the stopping criterion in Step 7 is reached. A possible

1. Set NT, n, EI, PI
2. Choose initial sam-
ples X = [x1, ...,xn]

3. Compute response
for objective f(x) and
constraints hj(x) ∀j

4. Construct Krig-
ing metamodels
Ff and Hj ∀j

5. Find xnew by
maximizing EIF

6. Append
xnew , f(xnew),
hj(xnew) ∀j to
corresponding

sets, increment n

7. Stopping
criterion reached?

8. Return xbest
yes

no

Fig. 1 Flowchart of deterministic optimization using constrained EI. The algorithm finds the
deterministic optimum of a constrained problem with relatively few function calls of an expensive to
evaluate function
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stopping criterion could be the point at which n ¼ NT. Alternatively, depending on

the sampling criterion used, the algorithm may be stopped when the maximum EIF
falls below �EI. At this stage, the feasible sample corresponding to the minimum

objective value is returned as the solution xbest. This algorithm has successfully been

demonstrated on deterministic constrained problems by Parr et al. (2012a, b). Parr

et al. used EIF as the infill sampling criterion in their work.

4 Efficient global robust optimization of constrained problems

A scheme for Kriging-based deterministic optimization of expensive simulation-

based constrained problems was introduced in the previous section. We now

propose an efficient technique, based on Kriging, for the global robust optimization

of expensive simulation-based constrained problems.

In this section, it is shown how the robust optimum can be found for a problem

affected by parametric uncertainties only, Eq. (3). The basic principle of the

algorithm does not change even if the problem to be solved is affected by

implementation error only, Eq. (2) or is affected by both implementation error and

parametric uncertainties, Eq. (4). For clarity, we focus our discussion on an

algorithm that solves Eq. (3). The separate treatment of implementation error can

result in efficiency improvement. We refer to ur Rehman et al. (2014) for a detailed

discussion of this aspect.

Figure 2 illustrates the steps that are involved in estimating the robust

optimum. The foundation of the method is the same as the one for deterministic

Kriging-based optimization. Both approaches depend on the same initialization

phase, i.e. Step 1 to Step 4 are identical except for the fact that �PI is not defined
in Fig. 2. It is important to point out here, however, that the initial samples in

Step 2 in the flowchart in Fig. 2 are chosen not only in the design variable space

Xc but also in the environment variable space Xe. This is followed by an iterative

surrogate update process where a single new adaptive sample is added in each

iteration.

The significant difference between the two methods is the actual process by

which this new sample xnew is found at each iteration. In deterministic optimization,

the search for xnew simply involved maximizing Eq. (8). However for robust

optimization this process has to be broken down into several steps. A reference

metric for the robust optimum is first required. This is given by the constrained

robust optimum, rK, on the metamodel.

When estimating the robust optimum rK on the metamodel, the effect of the

metamodel error also has to be included. In particular, errors in the constraint

surrogate can result in an infeasible solution being chosen as the robust optimum.

To mitigate the effect of the metamodel error, Stinstra and den Hertog (2008)

suggested a method that makes use of the variance in the Kriging interpolator of the

constraints. The strategy basically involved adding the standard deviation of the

constraint metamodel to the Kriging prediction of the constraint. This would result

in a more conservative constraint metamodel, especially in regions with high
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uncertainty and thereby reduce the chance of obtaining an infeasible solution. The

robust optimum rK is therefore found via

rK ¼ min
xc

max
xe

F f ðxc; xeÞ

s:t: max
xe

Hjðxc; xeÞ þ j sjðxc; xeÞ� 0 8j;
ð9Þ

where sjðxc; xeÞ is the metamodel standard deviation for the jth constraint meta-

model at location ðxc; xeÞ. The parameter j, chosen between [0, 1] is a measure of

how conservative we want to be with respect to the metamodel error. A value of

zero for j means that the metamodel error is not included, while higher values

indicate a more conservative approach.

After locating rK, we divide the search into two parts. First, the optimal sampling

location in the control variable space, Xc, is found and then we search for the

optimal sampling location in the environment variable space, Xe. The adaptive

sampling measures needed to perform this search are also suitably adapted for

estimating regions of interest for locating the robust optimum rather than the

deterministic optimum.

1. Set n, EI, NT
2. Choose initial sam-
ples X = [x1, ...,xn]

3. Compute response
for objective f(x) and
constraints hj(x) ∀j

4. Construct Krig-
ing metamodels
Ff and Hj ∀j

5a. Find robust
optimum rK
on metamodel

5b. Find xnew
c by

maximizing the
best worst-case
constrained EI

5c. Find xnew
e by

maximizing worst-case
constrained ED

6. Append
xnew, f(xnew),
hj(xnew) ∀j to
corresponding

sets, increment n

7. Stopping
criterion reached?

8. Return
xbest = arg rKno

yes

Fig. 2 Flowchart shows the algorithm for efficient global robust optimization of constrained problems.
The steps with the bold borders represent the changes that have been made to the algorithm in Fig. 1 in
order to reflect the fact that we are searching for a robust optimum
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4.1 Optimal sampling location in Xc

The optimal sampling location xnewc 2 Xc should be the infill location corresponding

to the highest expectation of improvement over the current constrained robust

optimum rK, Eq. (9). The search for xnewc is performed in Step 5b of the flowchart in

Fig. 2.

To illustrate how this sampling location is found, we make use of an example

function of a single control variable xc and a single environment variable xe. The

problem has one constraint, which is also a function of both xc and xe. Figure 3a

shows the Kriging metamodel F f of the two dimensional function, based on a set of

initial samples and responses. The plot also contains the constraint boundary of the

constraint metamodel H. The feasible region is also indicated on the plot. The

construction of the Kriging metamodel of the objective and the constraint, Eq. (9),

involves going through Step 1 to Step 4 of the flowchart in Fig. 2.

Figure 3b, on the other hand, shows the worst-case Kriging metamodel ŷmax,

ŷmaxðxcÞ ¼ max
xe2Xe

F f ðxc; xeÞ: ð10Þ

The maximizer of Eq. (10) is denoted by xmaxe . The region where the worst-case

constraint, ĥmax, has a predicted response greater than the constraint limit is indi-

cated in pink in Fig. 3b,

ĥmaxðxcÞ ¼ max
xe2Xe

Hðxc; xeÞ: ð11Þ

The minimum value for ŷmax within the feasible region gives the constrained robust

optimum rK. The process of estimating the robust optimum corresponds to Step 5a

in the flowchart in Fig. 2.

rK

noigerelbisaeFnoigerelbisaeF

x
e

ŷ
m

ax

xc xc

(b)(a)

Fig. 3 Plot a shows a Kriging metamodel of a two-dimensional function constructed using 10 samples
that are marked in white. The constraint boundary of the constraint metamodel is also plotted. The
infeasible region is given by the area covered by the black lines on the top right corner. Plot b shows the
worst-case Kriging metamodel, found via Eq. 10, as well as the worst-case constraint boundary, found via
Eq. 11. The infeasible region in (b) is shaded in pink. The robust optimum location, estimated using Eq.
9, is also indicated on the plot. (Color figure online)
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A constrained expected improvement criterion is required for identifying a

promising location at which to sample in Xc. Following the method described for

deterministic optimization, this would involve obtaining an expected improvement

expression for the objective and a probability of feasibility for the constraint.

To formulate the EI in the objective, it is assumed that the uncertainty in the

worst-case Kriging prediction ŷmax, at any location ðxc; xmaxe Þ, can be described in

terms of a normally distributed random variable Ymax with mean ŷmax and variance

s2ðxc; xmaxe Þ. We can improve over the current robust optimum rK when Ymax\rK. It
was shown by ur Rehman and Langelaar (2015) that the expectation of this

improvement, Ic, is given by

E½IcðxcÞ�|fflfflfflfflffl{zfflfflfflfflffl}
EIc

¼ ðrK � ŷmaxðxcÞÞU
rK � ŷmaxðxcÞ
sðxc; xmaxe ðxcÞÞ

� �

þ sðxc; xmaxe ðxcÞÞ/
rK � ŷmaxðxcÞ
sðxc; xmaxe ðxcÞÞ

� �
:

ð12Þ

The plot in Fig. 4a shows the expected improvement EIc as a function of the control

variable xc. Intuitively speaking, EIc represents a balance between exploration and

exploitation of the control variable space. Here exploration refers to probing parts of

the space where the Kriging error is large. On the other hand, exploitation refers to

sampling locations that could be close to the robust optimum. In Eq. (12) the first

part of the expression on the right pushes sampling in an exploitative manner while

the second portion of the equation pushes samples to be placed in areas that have not

yet been searched.

To come up with the probability of feasibility expression, we again make use of a

normal distribution to model the uncertainty in the worst-case constraint, ĥmax.

Therefore, the uncertainty in the worst-case constraint, ĥmax, at any location

ðxc; xmaxe Þ is treated in terms of a normally distributed random variable Hmax with

mean ĥmax and variance s2hðxc; xmaxe Þ. The probability of feasibility is then given by

xnew
c

E
I c

P
F
c

E
I c

h

xc xc xc

(c)(b)(a)

Fig. 4 Plot a shows the expected improvement, EIc, in the objective for the Kriging model from Fig. 3.
Since EIc is only a function of xc, Eq. (12), the plot is single dimensional. The Probability of Feasibility
of the constraint, which is also only a function of xc, Eq. (13), is plotted in (b). Plot c shows the product of
EIc and PFc, which is computed using Eq. (14). The new control variable location xnewc , given by the

maximum value of this function is also indicated
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the area of the distribution Hmax that is below the constraint limit hmin. The

expression for a single constraint can be written as

P½FcðxcÞ�PFc|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl} ¼ U
hmin � ĥmaxðxcÞ
shðxc; xmaxe ðxcÞÞ

 !
: ð13Þ

The plot in Fig. 4b shows the probability of feasibility PFc as a function of the

control variable xc when hmin is considered to be at the constraint limit.

As in deterministic constrained optimization, a suitable infill criterion in Xc can

be found by maximizing the product of the expected improvement, EIc, in the

objective and the probability of feasibility, PFc, in the constraint

EIch ¼ E½IcðxcÞ� P½FcðxcÞ�: ð14Þ

The new sampling location, xnewc 2 Xc is obtained by determining the global

maximizer of Eq. (14). Multiple constraints are handled by replacing the single

probability of feasibility in Eq. (14) by the product of the individual probability of

feasibility of each constraint. Figure 4c shows a plot of EIch. The new control

variable location xnewc , given by the location of the global maximum, is also indi-

cated. xnewc is determined in Step 5b in the flowchart in Fig. 2.

4.2 Optimal sampling location in Xe

After choosing xnewc , the algorithm searches for the optimal infill sampling location,

xnewe , in the environment variable space Xe. Figure 5a shows the same Kriging

metamodel of the objective and the constraint boundary of the constraint metamodel

along with the feasible region. The location of xnewc is also shown on the plot.

Figure 5b shows the Kriging prediction of the objective at xnewc , corresponding to the

line of plot (a), plotted with respect to xe. The worst-case cost gK is also shown on

the plot. The worst-case is given by

gH

gK

ŷ
( x

n
e
w

c
,x

e
)

ĥ
(x

n
e
w

c
,x

e
)

xe xe

(c)(b)

xnew
c

x
e

xc

Feasible region (a)

Fig. 5 Plot a shows the same Kriging metamodel along with the constraint boundary of the constraint
metamodel and the infeasible region, covered by the black lines. The location of xnewc , based on themaximum

value in Fig. 4c, is also shown. The Kriging prediction at xnewc , corresponding to the response along the red

line, in plot a, is plotted with respect to xe in b. Mathematically this is the response at F f ðxnewc ; xeÞ and the
maximum value, gK is given by Eq. (15) Plot c shows the Kriging prediction of the constraint at xnewc , given

byHðxnewc ; xeÞ. The maximum value gH is given by Eq. (16). (Color figure online)
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gKðxnewc ; xeÞ ¼ max
xe2Xe

F f ðxnewc ; xeÞ: ð15Þ

Figure 5c shows the Kriging prediction of the constraint at xnewc . Again the worst-

case constraint value gH is also shown on the plot. In general, the worst-case

constraint value is given by

gHðxnewc ; xeÞ ¼ max
xe2Xe

Hðxnewc ; xeÞ: ð16Þ

An adaptive sampling criterion is needed in the environment variable space to

suggest xnewe . Choosing xnewe involves finding a location that could potentially give a

higher, i.e. more pessimistic, value than gK and gH. This is the goal since the aim is

to find the most adverse situation in the environment variable space Xe. An

expected deterioration (ED) criterion for the objective should therefore help

identify a location with the highest expected value relative to gK. Similarly, an ED

measure for the constraint should aid in estimating a location with the highest

expected constraint value relative to gH.
In an earlier work (ur Rehman and Langelaar, 2015) the authors have derived the

expression for the expected deterioration in the objective with respect to the

environment variable space. This is given by

E½Deðxnewc ; xeÞ�|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
EDe

¼ ðŷðxnewc ; xeÞ � gKÞU
ŷðxnewc ; xeÞ � gK

sðxnewc ; xeÞ

� �

þ sðxnewc ; xeÞ/
ŷðxnewc ; xeÞ � gK

sðxnewc ; xeÞ

� �
:

ð17Þ

The plot in Fig. 6a shows the expected deterioration, EDe, as a function of the

environment variable, xe. Similar to EIc, the expression for EDe also enables a

balance to be made between exploration of the environment variable space that has

been sampled yet and greedily adding point (exploitation) in regions that could

potentially give the worst-case cost. The first part of Eq. (17) on the right gives

weight to exploitation while the second part biases towards sampling in unexplored

regions.

The expected deterioration in the constraint is completely analogous to EDe in

the objective. The expression is given by

E½Dhðxnewc ; xeÞ�|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
EDh

¼ ðĥðxnewc ; xeÞ � gHÞU
ĥðxnewc ; xeÞ � gH

shðxnewc ; xeÞ

 !

þ shðxnewc ; xeÞ/
ĥðxnewc ; xeÞ � gH

shðxnewc ; xeÞ

 !
:

ð18Þ

In the case of multiple constraints, the total expected deterioration in the constraint,

EDh, can be found by taking the product of the individual ED for each constraint.

The plot in Fig. 6b shows the expected deterioration EDh in the constraint as a

function of the environment variable xe.
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The new sampling location xnewe can be found by determining the maximizer of

the product of the expected deterioration in the objective, EDe, and the expected

deterioration in the constraint, EDh,

EDeh ¼ E½Deðxnewc ; xeÞ� E½Dhðxnewc ; xeÞ�: ð19Þ

Figure 6c shows a plot of the product EDeh along with the location of the new

environment variable location, xnewe . Step 5c in the flowchart in Fig. 2 involves the

search for the new environment variable, xnewe .

4.3 Implementation aspects

Once xnew is identified, the objective and the constraints are evaluated using the

expensive simulation at the new location. Thereafter, if the stopping criterion has

not been reached yet, the metamodel is rebuilt and the process of searching for xnewc

and xnewe is repeated. The algorithm is stopped when the total number of function

evaluations available NT is exhausted. Additionally, the algorithm can also be

terminated if the robust optimum, rK, found over the last few iterations, does not

change significantly. For this purpose, we maintain a history set, Sh, that consists of

the robust optimum found at each iteration.

Apart from its use as a termination criterion, the history set can aid in the search

for the robust optimum. Whenever a new search for the robust optimum rK is

initiated at a particular iteration, the starting points for the search can include the

history set, Sh, of the robust optima locations found in the previous iterations. In this

manner, it is ensured that a possible robust optimum location found in previous

iterations is not missed by the global search in the current iteration. By doing so, we

also systematically reduce the estimation error of the internal global optimizers.

Once the algorithm terminates, the location of the robust optimum, rK, found at

the last iteration is returned as the final solution. The result from the final iteration is

chosen instead of any other iteration since the last iteration includes the most

information about the problem.
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xe xe xe

(c)(b)(a)

Fig. 6 Plot a shows the expected deterioration, EDe, in the objective with respect to the environment
variable for the original Kriging model from Fig. 3a. EDh is plotted in (b) using Eq. (17). Plot c shows the
constrained expected deterioration EDeh found via Eq. (19). The new environment variable location xnewe ,

corresponding to the maximum value in the plot is also indicated
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5 Results

5.1 Testing methodology

In order to test the ability of the algorithm to reliably and efficiently converge to the

global robust optimum, its numerical performance is evaluated on five analytical

test problems and one engineering case study. The test problems are provided in

Appendix 2. The objective functions for the first four problems are well known

benchmark problems which were originally employed as test problems for

unconstrained min-max optimization by Rustem and Howe (2002). The corre-

sponding expressions for the constraints have been chosen such that a feasible

solution exists for all problems while, at the same time, ensuring that the global

robust optimum is not given by a trivial solution.

We assess the ability of the method to find the robust optimum of a constrained

problem by testing it on Problem P1, P2 and P4. All three problems have a single

constraint. To get insight into the capacity of the technique to handle more

constraints, it is tested on Problem P3 and P5, which have two inequality

constraints. Similarly, the ability of the algorithm to deal with different kinds of

constraints is analyzed by choosing some constraints to be nonlinear, e.g. P1 and P2,

while keeping others linear, e.g. P4. Additionally, P3 has both linear and nonlinear

constraints. Another important aspect is the evaluation of the scalability of the

algorithm. To this end, Problem P4, which is a function of 10 dimensions in both the

objective and the constraint, is used as a test case. P1, P2 and P3 are a function of 2

control variables and 2 environment variables, while P10 is a function of 5 control

variables and 5 environment variables. Note that while a problem with 10 variables

may not qualify as a large problem in deterministic optimization, it is substantially

more challenging in the robust case. The nested nature of robust optimization makes

that computational costs increase significantly faster with problem size than in the

deterministic case.

Since the initial sampling, performed via space-filling, is random, the results of

each run may be different. However, the method should be able to converge

regardless of the initial samples. In order to test the repeatability and reproducibility

of the algorithm, it is run 100 times on each test problem and the statistical results

are analyzed. The number of initial samples n are chosen as n ¼ 10� nd , where nd
is the number of dimensions of the problem. The maximum function evaluations

available, NT, is set to 150 for P1, P2 and P3. For the larger problem P4, NT ¼ 450.

The algorithm’s performance is also tested on a polynomial problem proposed by

Bertsimas et al. as a test case for robust optimization of constrained problems

(Bertsimas et al. 2010). The test case, listed as problem P5 in the Appendix, is a 2-

dimensional non-convex problem with two non-linear constraints. The problem is

assumed to be affected by implementation error D ¼ ½Dxc1 Dxc2� such that

Dk k2 � 0:5. The uncertainty set, which takes the form of a circle, is convex. The

maximum function evaluations for P5 is set to NT ¼ 65.

In addition to testing it on analytical benchmark problems, the algorithm is also

applied on an engineering case study. The problem consists of an optical filter based
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on a ring resonator that is fabricated as an optical integrated circuit. The fabrication

is affected by variations. The behavior of the filter is highly sensitive to these

manufacturing uncertainties. Therefore the problem lends itself to evaluation of the

effectiveness of the algorithm in a practical situation.

5.2 Numerical performance evaluation

5.2.1 A typical example

Before discussing the statistical performance of the algorithm, we visually compare

the metamodel and the robust optimum at the final iteration of the algorithm against

the reference function for problem P5. Test problem P5 was used by Bertsimas et al.

to demonstrate their method on robust optimization of constrained problems

(Bertsimas et al. 2010). In this work, we use the problem simply as a benchmark

example. The purpose therefore is not to compare the proposed method against the

approach of Bertsimas et al., since their approach is complementary to this work and

can be integrated with the presented algorithm.

The test problem is nonlinear and non-convex. Therefore, it serves as a

challenging test case to analyze the ability of the proposed algorithm to estimate the

global robust optimum efficiently. Problem P5 is affected by implementation error

D ¼ ½Dxc1 Dxc2� 2 U such that Dk k2 � 0:5. Since the problem has only 2 control

variables that are both affected by implementation error, it is easy to visualize the

function and constraints surface. Figure 7a shows a contour plot of the reference

function and constraints for problem P5. Figure 7b shows the contour plot of the

Kriging prediction of P5 after 45 iterations of the algorithm and 65 expensive

simulations have been performed. On both plots, the location of the global robust

optimum is given by a green circle. The robust optimum is circumscribed by a red

circle in both Fig. 7a, b. The region bounded by this red circle is the 2-norm

uncertainty set, Dk k2 � 0:5. The red square, in the two plots, shows the location of

the best worst-case cost for the objective. On the other hand, the magenta squares, in

both plots, indicate regions with the highest risk of potential constraint violation for

each constraint.

Visually, Fig. 7a, b seem quite similar. The location of the reference robust

optimum as well as the best worst-case cost with respect to the objective also

visually matches on both plots. The sample points are added to the problem in such

a way that the Kriging prediction for the objective and the constraints is trustworthy

in the local region in the neighborhood of the robust optimum. The figure shows that

the algorithm samples the expensive function in such a way that after 65 simulations

it is able to accurately estimate the location of the global robust optimum.

Additionally, the constrained expected improvement criterion ensures that the

whole design domain is explored and a potential solution is not missed due to any

inaccuracy in local regions. In the next subsection it will be shown, based on 100

runs of the algorithm on problem P5, that the proposed approach shows consistent

convergence to the robust optimum.
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5.2.2 Benchmark statistics

The reference robust optima and their corresponding locations for the five numerical

test problems are shown in Table 1. These optima were obtained by direct robust

optimization using the analytical expressions, i.e. without metamodel error. The

number of constraints, nh, is shown in column 2 while the number of total

dimensions of the problem nd is given in the last column. The domain size inXc and

Xe is provided in column 3 and 4, respectively. Column 5 shows the robust

optimum location for xc while column 6 gives the robust optimum location for xe.
The robust optimum objective value is given by f ðxc; xeÞ in the second last column.

It is important to realize that the worst-case location for xe is different for the

objective as opposed to the worst-case value for xe in the case of a constraint. The

locations for xe listed in the table represent only the robust optimum location in Xe.

On the other hand, the maximizer in Xe for each constraint has not been listed.

Table 2 shows the average numerical performance of the proposed approach

based on 100 runs of each test problem. The problem number is given by the first

column. The second and third column provide the mean robust optimum location in

Xc and Xe based on the 100 runs, respectively. The mean and standard deviation of

the objective value at the robust optimum for each function are given in column four

and five, respectively. The average total number of expensive function evaluations

required to achieve this average performance is given in the sixth column. The

second last column gives the number of dimensions of each problem.

The ratio of the mean robust optimum objective value (column 4 in Table 2) to

the reference robust optimum (column 7 in Table 1) is plotted in Fig. 8 for the five
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Fig. 7 Plot a shows contour lines of the reference function and constraints for problem P5 along with the
location of the robust optimum, indicated by the small green circle. Plot b shows contour lines of the
Kriging prediction of the function and constraints along with the location of the robust optimum on the
Kriging surface, (small green circle). The big red circle, in both plots, indicates the extent of the 2-norm
uncertainty set. The red square, in the two plots, shows the location of the best worst-case cost for the
objective. Finally, the magenta squares, in both plots, indicate the worst-case cost with respect to the
constraints. (Color figure online)
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test problems. The error bars indicate the standard deviation around the optimum for

each test problem. The standard deviation varies dramatically from one problem to

another. This difference is a function of the local gradient in the neighborhood of the

robust optimum for the individual problems. Obviously, higher gradients lead to

greater relative deviation even when there is a small change in the design variables.

In this context, the location of the robust optimum and their relative accuracy is also

highlighted. In almost all cases, the numbers compare quite well with the reference

optima locations. Where there are larger local deviations in a particular variable,

this can be attributed to the fact that the objective could be locally very flat with

respect to that variable in the neighborhood of the robust optimum. Additionally, in

some cases two different values of a particular variable can lead to the same robust

optimum. This is the case for xc2 for problem P2. Therefore, the average value for

xc2 for problem P2 is completely different from the reference location.

It is also pertinent to point out that the average locations given in Table 2 are

only meant to show the mean closeness of the result found to the reference location.

Since the locations are averages they cannot be used to evaluate the feasibility of the

final solution. The last column in Table 2 shows the percentage of solutions that

were found to be infeasible when evaluated on the respective functions as a post-

processing step. The results indicate that the number of optimization results that are

feasible on the metamodel but infeasible on the reference function is, in general,

very low.

The most crucial numbers in Table 2 are given in the sixth column. This column

states the total number of evaluations required, on average, to estimate the robust

optimum. We note that the total number of function evaluations is quite small for all

Table 1 Reference results of all the test problems

Problem No. nh Xc Xe xc xe f nd

P1 1 ½�5; 5�2 ½�5; 5�2 �3.9462 0.6251 87.19 4

�2.6972 �0.6247

P2 1 ½�5; 5�2 ½�5; 5�2 �1.1005 0.3051 44.87 4

�1.5803 2.5455

P3 2 ½�5; 5�2 ½�5; 5�2 �0.3502 �0.0509 59.59 4

2.5 5

P4 1 ½�5; 5�5 ½�3; 3�5 �2.0935 1.6765 -0.3866 10

1.8516 1.2508

�1.4695 0.5925

�1.0453 0.6599

0.2691 �0.6599

P5 2 ½�0:5; 3:5�2 – 0.228 – 7.09 2

0.912

The functions are listed in the Appendix. nh represents the number of constraints in the problem. f ðxc; xeÞ
is the optimum objective value. nd gives the total number of dimensions
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five problems. Apart from problem P5, all of the problems require less than 4

samples per dimension. The largest problem, P10, in fact requires much less than 2

samples per dimension, (210 ¼ 1024 samples), to achieve the reported average

performance.

5.2.3 Individual run analysis

Apart from studying the average performance, it is instructive to analyze individual

runs for the different test cases. For problem P1, we compare the effect of choosing

Table 2 The average numerical performance of the algorithm based on 100 runs evaluated on the test

problems provided in the Appendix

Problem no Mean xc Mean xe Mean f SD f Total

evaluations

nd Infeasible

solutions (%)

P1 �3.8042 0.6521 87.11 0.271 77 4 2

�2.6736 �0.6306

P2 �1.0256 0.2655 44.99 1.513 83 4 1

0.1478 2.7550

P3 �0.3497 0.0474 59.65 0.2699 67 4 0

2.5017 5.0000

P4 �2.1160 1.7102 -0.3945 0.0227 392 10 0

1.8492 1.1378

�1.4000 0.5209

�1.0605 0.7449

0.2625 �0.6598

P5 0.2321 � 7.162 0.058 60 2 3

0.9243

The table shows the mean and standard deviation of the robust optimum along with the average robust

optimum locations in Xc andXe. The total number of evaluations on the expensive function is shown and

the number of dimensions nd are also shown
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Fig. 8 Ratio of the mean robust
optimum, found by the
algorithm based on 100 runs, to
the reference robust optimum is
plotted. The error bars show the
standard deviation around the
mean value for each problem
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different number of starting points on the intermediate accuracy of the metamodel at

each iteration as well as on the convergence of the algorithm. To this end, Fig. 9

shows the robust optimum found on the objective metamodel for the problem P1

when the metamodel is initialized with only 10 initial samples. The corresponding

robust optimum location’s objective value on the reference function f ðxc; xeÞ at each
iteration is also plotted. As expected, in the beginning the robust optimum on the

metamodel and the corresponding objective value on f ðxc; xeÞ do not match. But

steadily, the values become closer to each other until by about the 15th iteration

they are almost the same. Figure 10 shows the same plot for problem P1, but now

the number of initial samples is 40. It is interesting to observe that the robust optima

found on the metamodel and the reference function are already indistinguishable

from the first iteration. But this does not automatically guarantee that the algorithm

will converge to the robust optimum faster than for the 10 initial samples, Fig. 9. In

fact, in this particular case, the algorithm converges at the same speed for both runs
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Fig. 9 The robust optimum found on the metamodel at each iteration of the algorithm for problem P1 is
plotted. The metamodel is initially constructed using only 10 initial samples. The plot also shows the
objective value for the robust optimum on the reference function
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Fig. 10 The robust optimum found on the metamodel at each iteration of the algorithm for problem P1 is
plotted. The metamodel is initially constructed using 40 initial samples. The plot also shows the objective
value for the robust optimum on the reference function
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This suggests that having a larger number of samples for the initial space filling step

does not always lead to faster convergence.

Comparison of problem P2 and problem P3 is also enlightening since the two

problems have the same objective function and the same first constraint. Problem P3

has a second linear constraint that is not present in P2. It was mentioned in the

discussion of the average results in Table 2 that xc2 in P2 can attain two values. This

is exhibited by Fig. 11 which shows that while xc1 has attained a constant value by

15th iteration, xc2 sometimes jumps up and down. The algorithm has also converged

to the robust optimum by the 15th iteration. It is easy to observe why this happens

by turning our attention to the function f ðxc; xeÞ in problem P2 in the Appendix. It

can be seen that xc2 appears only once in the objective function and it makes an

appearance as a quadratic term. The domain of xc2 in Xc is ½�5; 5� as shown by

Table 1. The quadratic term and the symmetric domain suggests that as long as the

constraint function does not hinder xc2 from taking both positive and negative

versions of its optimum location, both locations will be equally optimal. Therefore,

xc2 is able to attain a value of 1.58 or �1:58 without affecting the robust optimum

objective value.

The situation changes, however, when the second constraint is taken into account

in problem P3. Figure 12 shows the optimum robust optimum location for xc1 and

xc2. The algorithm has converged to the robust optimum by the 15th iteration for this

run. With the presence of the second constraint, xc2 is not allowed to have a value

below 2.5 which means that we no longer observe the phenomenon exhibited in

Fig. 11.

To investigate how the metamodel accuracy is affected by the number of

dimensions in a problem, we check how the algorithm fares on the 10 dimensional

problem. Figure 13 shows the robust optimum found on the objective metamodel

for the problem P4 when the metamodel is initialized with 100 initial samples.

Again, the corresponding robust optimum location’s objective value on the

reference function is also plotted. From iteration 1 to iteration 50, the objective

values on the metamodel and the reference function are often completely different.
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Fig. 11 The robust optimum location for xc1 and xc2 found on the metamodel at each iteration of the
algorithm for problem P2 is shown. The robust optimum has been reached by the 15th iteration even
though the location of xc2 changes in the following iterations as well
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Steadily, from iteration 51 to iteration 100, the metamodel starts giving a more

accurate picture of the reference function. By the 150th iteration, the two plots are

practically indistinguishable. It is clear that by the 200th iteration, the algorithm has

converged to the robust optimum, and the same result is given by the reference

function, as exhibited by the overlap of the plots.

5.2.4 Comparison with deterministic optimization

In this subsection, the benefit of performing robust optimization over deterministic

optimization for uncertain problems involving constraints is illustrated. The

performance in the presence of uncertainties is shown for the deterministic optimum

for problems P1 and P5. We choose these two problems since P1 is a problem

affected by parameter uncertainties while P5 is affected by implementation error.

The global deterministic optimum is found on the analytical problems P1 and P5.

It would be interesting to find whether the deterministic solution is feasible in the

presence of uncertainties. If the worst-case uncertainties are realized, then the

deterministic solution for both P1 and P5 is always infeasible. However, it could be
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Fig. 12 The robust optimum location for xc1 and xc2 found on the metamodel at each iteration of the
algorithm for problem P3 is plotted. The robust optimum has been reached by the 15th iteration
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Fig. 13 The robust optimum found on the metamodel at each iteration of the algorithm is plotted for
problem P4. The metamodel is initially constructed using 100 initial samples. The plot also shows the
objective value for the robust optimum on the reference function
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argued that the worst-case uncertainties may not always be realized. Then the

question is, what is the yield for the deterministic solution for different realizations

of uncertainties. In order to investigate this aspect, it is assumed that the

uncertainties follow a uniform distribution. Monte-Carlo sampling is performed

with 10000 sample points in the uncertainty space using the uniform distribution.

The feasibility of the deterministic optimum is evaluated for these different

realizations of the uncertainties.

Table 3 shows the results of this investigation. The second column shows the

optimal xc for the deterministic case for Problem P1 and P5. Column 3, shows that if

the worst-case uncertainties are realized then the deterministic solution is always

infeasible. The last column shows the results of performing Monte-Carlo simulation

with 10000 sample points in the uncertainty space using a uniform distribution. For

problem P1, 69:209% of the designs are feasible. This means that the yield for this

problem would be close to 70%. For problem P5, the percentage of feasible designs

are less than 30%, 28:71% to be exact. For this problem, if the global deterministic

optimum is chosen by the designer as a solution, the yield would be less than 30% in

the presence of uncertainties that follow a uniform distribution.

In comparison, as Table 2 showed, for the robust optimum only 2 out of the 100

designs were infeasible even for the worst-case realization of the uncertainties for

problem P1. In the case of P5, only 3% of the solutions found were infeasible in the

worst-case. The rest of the 98 designs for P1 and 97 designs for P2 have 100% yield

when we perform Monte-Carlo sampling with 10000 points using uniform

distribution in the uncertainty space.

This comparison illustrates that, for constrained problems, the yield can be

improved dramatically by incorporating uncertainties in the design process and by

performing robust optimization on the problem. While robust optimization is

inherently more expensive to perform than deterministic optimization, the presented

algorithm mitigates that problem by finding the solution efficiently with the aid of

metamodels and intelligent infill sampling of the original expensive simulation. The

performance of the algorithm is now evaluated on an engineering problem.

5.3 Engineering case study: robust optimization of an optical filter

The algorithm is applied on an engineering problem that is very sensitive to

uncertainties. The problem involves an optical filter that is fabricated as part of an

Table 3 The performance of the deterministic optimum, in terms of feasible designs, is shown for

problem P1 and P5 for the worst-case realization of the uncertainties and in the case of Monte-carlo

sampling with 10000 points using uniform distribution in the uncertainty space

Problem no xc Feasibility in the

worst-case

Percentage of feasible solutions for

Monte-Carlo with uniform distribution (%)

P1 �0.500 Always infeasible 69.209

�0.300

P5 0.2591 Always infeasible 28.7100

1.8112
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optical integrated circuit. A schematic of the integrated device is shown in Fig. 14.

Light is input at the in-port. Light is guided, via the principle of total internal

reflection, in a relatively higher refractive index layer of SiN, black path in Fig. 14,

that is embedded in a lower refractive index medium SiO2. The path through which

the light is guided is known as a waveguide. The device is affected by fabrication

defects that directly impact the geometry of the cross section of the waveguide.

These fabrication defects, in turn, affect the optical performance of the device.

The filter is realized by placing a ring shaped waveguide in between two straight

waveguides. When the waveguides are within a certain proximity, light at particular

wavelengths is coupled from the straight waveguide into the ring-shaped waveguide

and from thereon it couples again into the other straight waveguide. Details related

to the physics and operation of ring resonators may be found in the work by

Bogaerts et al. (2012). The response, Fig. 15 at the drop port shows that the filter

resonates at a certain frequency and drops the power at other frequencies. The

device can basically be described as two couplers separated by a ring section.

Ring-shaped waveguide Straight waveguides

In

Drop

L

g

w

Fig. 14 Top-view schematic of an optical ring resonator. The area occupied by this integrated photonic

device is less than 1 mm2. Reproduced with permission from ur Rehman and Langelaar 2015
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Fig. 15 Spectral response at the drop port of a ring resonator. The Bandwidth (B), Insertion Loss (IL) and
Extinction Ratio (re) of the ring resonator are also indicated on the plot
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There has been previous work on deterministic optimization of integrated optical

filters (Ahmed et al. 2011, 2012). These sets of work have been focused on

performing deterministic optimization of analytical expressions of single or multiple

ring resonators with respect to the coupling ratio instead of the geometrical

parameters of the device. But in order to generate a design that can actually be

fabricated, the geometry needed to realize the coupling ratio has to be simulated

using electromagnetic simulations of the device. Furthermore, for robust optimiza-

tion, we need to perform optimization w.r.t. the explicit geometry of the waveguide

since, in that scenario, the uncertainties in the geometry can also be incorporated.

Therefore, the use of expensive electromagnetic simulations to realize the geometry

is typically unavoidable if the user wants to find a robust optical filter design that

can be fabricated.

In this work, we are interested in optimizing the bandwidth, B, of the filter at

�3dB, Fig. 15. The problem involves two constraints related to the Insertion loss IL

and the extinction ratio re, Fig. 15. A commercial software package (PhoeniX

Software 2014) is used to simulate the optical filter. The cost of a single simulation

in this case is approximately ten minutes. In general, certain expensive simulations

can take much more time, for example, several hours to days for a single response.

The proposed algorithm is also meant to address such problems.

The quantities of interest are very sensitive to deviations caused by fabrication

defects. Therefore, performing robust optimization on the device can lead to

significant improvement in the overall yield. The problem is affected by both

implementation error type uncertainties and parametric uncertainties. The design

variables of the problem are xc 2 ½w g L� where w is the width of the waveguides

while g is the gap between the straight and the ring section, Fig. 14. L is the length

of the straight coupling section in the ring. An implementation error, Dw 2 U affects

both the gap g and the width w. The parametric uncertainty Dt is the uncertainty in

the out-of-plane thickness of the waveguide. The robust optimization problem is

defined as

min
w;g;L

max
Dt;Dw2U

� B;

s:t: max
Dt;Dw2U

� re þ 10 dB� 0

max
Dt;Dw2U

ILþ 20 dB� 0

ð20Þ

where w 2 ½0:9; 1:27�lm, g 2 ½0:9; 1:4�lm and L 2 ½100; 300�lm. The range of the

implementation error uncertainty set U is ½�0:1; 0:1�lm while the parametric

uncertainty set is given by Dt 2 ½�3; 3�nm. The deterministic waveguide thickness

is t ¼ 32nm and the radius of the ring section is 600lm.

The proposed method is applied to identify the robust optimum of the filter. The

result is compared to the deterministic optimum of the problem that is determined

by applying the deterministic optimization using constrained expected improvement

(Parr et al. 2012a). The optimization problem without uncertainties is defined as

S. ur Rehman, M. Langelaar

123



min
w;g;L

� B;

s:t: � re þ 10 dB� 0

ILþ 20 dB� 0:

ð21Þ

Both optimization runs are allowed a total of 225 expensive simulations, equivalent

to 37.5 hours of simulation time. A large number of total simulations is used since

the problem is quite nonlinear. Table 4 shows a comparison of the robust optimum

estimated by the proposed approach with the deterministic optimum found via

constrained expected improvement (Parr et al. 2012a). Both, the deterministic and

the robust optimization algorithms are initialized with n ¼ 10� nd samples chosen

via LHS. It should be noted that n is different for the two algorithms since the total

number of variables (due to the presence of parametric uncertainties) is greater for

the robust optimization algorithm. Columns 2 to 4 provide the optimal locations for

W, g and L for both algorithms. Columns 5 and 6 give the worst-case location with

respect to the objective in DW and Dt. The next two columns show the deterministic

and worst-case bandwidth for the two methods. Apart from the worst-case location

for the deterministic optimum all other solutions were found to be feasible since

neither of the two constraints was violated. The feasibility as well as the actual value

of the bandwidth B for the deterministic worst-case location was found on the

simulator as a post processing step. The deterministic optimum is found at the

boundary of the first constraint, therefore the worst-case bandwidth at the deter-

ministic location turns out to be infeasible.

It is interesting to note that the worst-case location with respect to the objective

for the robust optimum does not occur at the boundary of the set Dw. This shows
that the behavior of the function inside the uncertainty set is non-convex. While the

nominal performance of the robust optimum is suboptimal compared to the

deterministic optimum, the robust solution has the advantage that it remains feasible

even in the worst case.

6 Conclusion

In this work, we have presented a novel technique for efficient global robust

optimization of expensive simulation based problems involving constraints. The

efficiency of the approach derives from the surrogate-based optimization strategy

Table 4 Comparison of the robust optimum found by the proposed approach with the deterministic

optimum for the filter bandwidth. Higher values for B indicated better performance

Optimum w g L Dw Dt Deterministic B Worst-case B Expensive

simulations

Deterministic 1.11 1.259 220.48 �0:1 �0:003 6.16 GHz Infeasible 225

Robust 1.17 1.088 108.70 0 �0:003 3.42 GHz 2.19 GHz 225
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employed. Kriging was chosen as the surrogate due to the availability of an estimate

of the error in the interpolator.

We extended the applicability of the Kriging-based constrained optimization

framework to the non-deterministic case, where the problem was affected by

uncertainties in its parameters. Adapted infill sampling criteria for expected

improvement and probability of feasibility were developed that enabled fast

convergence to the global robust optimum of constrained problems. The proposed

technique provides a viable alternative to fixed Design of Experiments based

approaches. The efficiency of the adaptive sampling scheme is particularly

important for higher dimensional problems, for which typical space-filling

techniques fail to obtain a reasonable solution using a limited number of

simulations. In addition to its robustness against the error arising from parametric

uncertainties, the method was also made robust against metamodel error using the

strategy suggested by Stinstra and den Hertog (2008). It is pertinent to point out here

that the applicability of the method described in this work is not limited to Kriging.

Instead, any interpolation strategy that also provides an error estimate in the

interpolation can replace the Kriging framework employed in the proposed

technique.

Several benchmark problems were used to analyze the numerical performance of

the algorithm. Due to the random nature of the initial sampling, the algorithm was

run 100 times on each test problem and the statistical results were investigated. It

was shown that the algorithm exhibited efficient reliable convergence to the global

robust optimum for all test problems. In addition, the algorithm was also applied on

an engineering problem where the bandwidth of an optical filter was optimized. It

was shown that while the deterministic optimum of the problem gives an infeasible

solution in the worst-case, the robust optimum always remains feasible even when

considering the uncertainties.

While the method was applied on cheap models developed via Kriging, the

approach can equally easily be applied using any other interpolation method that

provides an error estimate in the interpolation. The proposed technique is therefore

widely applicable and presents a novel opportunity to efficiently investigate robust

optimization of different expensive computer simulation based problems affected by

uncertainties.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0

International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, dis-

tribution, and reproduction in any medium, provided you give appropriate credit to the original

author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were

made.

Appendix 1: Kriging

The basis function in Kriging is given by the following Gaussian correlation

function:
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Corr YðxiÞ; YðxjÞ
� �

¼ exp �
Xk
q¼1

hq xiq � xjq
� �2 !

ð22Þ

where xi and xj are any two locations in the domain and k represents the total

number of dimensions of the problem. hq, l and r2 are varied such that the like-

lihood of the observed data is maximized. The Maximum Likelihood Estimate

(MLE) for the prediction ŷ is given by

ŷðxÞ ¼ l̂þ rTR�1ðy� 1l̂Þ ð23Þ

where l̂ is the estimated value for the mean, R is the N � N correlation matrix

between the N sample points, r is the vector of correlations between the observed

data and the new prediction, while y is the observed response. The correlation vector
r and the correlation matrix R may be found via eq. (22).

The Mean Squared Error (MSE) in the Kriging prediction is given by

s2ðxÞ ¼ r̂2 1� rTR�1rþ 1� 1TR�1r

1TR�11

	 

; ð24Þ

The MSE s2ðxÞ is zero at sample point locations because the true function value is

known at these locations.

Appendix 2: Test problems

The following test problems have been used to test the ability of the algorithm to

converge to the global robust optimum. The objective functions, P1 to P4, were
originally used as example problems for unconstrained min-max optimization in

Rustem and Howe (2002).

P1

f ðxc; xeÞ ¼ 5ðx2c1 þ x2c2Þ � ðx2e1 þ x2e2Þ
þ xc1ð�xe1 þ xe2 þ 5Þ þ xc2ðxe1 � xe2 þ 3Þ:

hðxc; xeÞ ¼ �x2c1 þ 5xc2 � xe1 þ x2e2 � 1:

ð25Þ

P2

f ðxc; xeÞ ¼ 4ðxc1 � 2Þ2 � 2x2e1 þ x2c1xe1 � x2e2 þ 2x2c2xe2:

hðxc; xeÞ ¼ 5xc1 � x2c2 þ xe1 þ xe2 � 2:
ð26Þ

P3

f ðxc; xeÞ ¼ 4ðxc1 � 2Þ2 � 2x2e1 þ x2c1xe1 � x2e2 þ 2x2c2xe2:

h1ðxc; xeÞ ¼ 5xc1 � x2c2 þ xe1 þ xe2 � 2:

h2ðxc; xeÞ ¼ �2xc2 þ xe1:

ð27Þ
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P4

f ðxc; xeÞ ¼ 2xc1xc5 þ 3xc4xc2 þ xc5xc3 þ 5x2c4

þ 5x2c5 � xc4ðxe4 � xe5 � 5Þ

þ xc5ðxe4 � xe5 þ 3Þ þ
X3
i¼1

xeiðx2ci � 1Þ �
X5
i¼1

ðx2eiÞ:

hðxc; xeÞ ¼ 5xc1 � xc2 þ xc3 þ xc4

� xc5 þ xe1 � xe2 þ xe3 þ xe4 � xe5:

ð28Þ

P5

f ðxcÞ ¼ 2x6c1 � 12:2x5c1 þ 21:2x4c1 þ 6:2xc1 � 6:4x3c1

� 4:7x2c1 þ x6c2 � 11x5c2 þ 43:3x4c2 � 10xc2 � 74:8x3c2 þ 56:9x2c2

� 4:1xc1xc2 � 0:1x2c2x
2
c1 þ 0:4x2c2xc1 þ 0:4x2c1xc2:

h1ðxcÞ ¼ ðxc1 � 1:5Þ4 þ ðxc2 � 1:5Þ4 � 10:125:

h2ðxcÞ ¼ �ð2:5� xc1Þ3 � ðxc2 þ 1:5Þ3 þ 15:75:

ð29Þ

Problem P5 is affected by implementation error D ¼ ½Dxc1 Dxc2� 2 U such that

Dk k2 � 0:5.
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