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Concealed cars extraction from point clouds data acquired by airborne laser scanning has gained its popularity in recent years.
However, due to the occlusion effect, the number of laser points for concealed cars under trees is not enough. Thus, the concealed
cars extraction is difficult and unreliable. In this paper, 3D point cloud segmentation and classification approach based on full-
waveform LiDAR was presented. This approach first employed the autocorrelation 𝐺 coefficient and the echo ratio to determine
concealed cars areas.Then the points in the concealed cars areas were segmented with regard to elevation distribution of concealed
cars. Based on the previous steps, a strategy integrating backscattered waveform features and the view histogram descriptor was
developed to train sample data of concealed cars and generate the feature pattern. Finally concealed cars were classified by pattern
matching. The approach was validated by full-waveform LiDAR data and experimental results demonstrated that the presented
approach can extract concealed cars with accuracy more than 78.6% in the experiment areas.

1. Introduction

Automatic object extraction becomes amore andmore active
research topic over the last decades [1]. Some researchers
attempt to automatically identify and extract objects from
traditional remote images. However successful scenarios
are limited. Since the radiometric properties of objects are
complicated and dynamic, algorithms that work well with
one set of 3D objects are not suitable for other data sets [2].
Moreover, information of targets under vegetation coverage
cannot be included in imagery.Thus, extraction of concealed
targets cannot be realized based only on images. LiDAR
(Light Detection and Ranging) data has unique properties
for extraction of 3D objects. Because laser pulse can pen-
etrate vegetation to obtain targets information, LiDAR has
irreplaceable superiorities compared to traditional remote
images in extraction of concealed targets under vegetation
coverage [3].Themost common concealed targets under veg-
etation coverage are concealed cars. Concealed cars extrac-
tion from airborne LiDAR data can be potentially applied to
many fields, such as military surveillance, homeland security,

global warming, disaster rescue, emergency road service, and
criminal searching [4].

Some investigations have been conducted on cars extrac-
tion using 3D LiDAR point clouds. Yao et al. [5] presented
a method to extract individual car from common LiDAR
data in urban areas. Firstly, ground level separation was used
to exclude the irrelevant objects and provide the “Region of
Interest.”Then the marker-controlled watershed transforma-
tion assisted bymorphological reconstructionwas performed
on the gridded and filled raster of ground level points to
delineate the single cars. The evaluation of experimental
results showed the high potential of airborne LiDAR in
outlining single cars in urban areas, which allowed accurate
3D point retrieval of single car. To reliably extract car
targets from LiDAR data, Sun et al. [6] proposed a pixel
and object oriented method for car extraction based on
elevation and intensity data after filtering. The experimental
results demonstrated the feasibility of the method. Borcs
and Benedek [7] proposed a novel two-level MPP (Marked
Point Process) model for the extraction of cars and traffic
segments in airborne laser point cloud data. The efficiency of
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the approach was evaluated with LiDAR data. However, these
methods were applied to extract cars on bare ground.Though
all bare ground point extraction algorithms performed well
on LiDAR point clouds from smooth rural landscapes, they
produced errors in rough terrain with vegetation canopy.
Chang et al. [8] built a system to detect cars underneath
canopy in forested terrain from LiDAR point clouds. They
developed an automatic canopy removal algorithm and a
novel bare-earth extraction algorithm to reveal the LiDAR
points underneath forest canopy and filter ground points,
respectively. All obscure cars underneath tree canopy were
revealed as demonstrated. It showed that the state-of-the-
art airborne LiDAR system can provide valuable data which
can effectively support the occluded car extraction in forest
terrain. However, only the elevation and intensity features
were used to extract the concealed cars in the method.

Since the traditional LiDAR records only several returned
echoes and acquires limited information of objects, only
range and intensity information can be used to extract
the concealed cars. Due to the reflection from canopy, the
intensity of points from concealed cars under vegetation is
not distinguishable from that of their neighborhood points
[9]. Thus, it is difficult to extract the concealed cars under
vegetation using traditional discrete LiDAR point cloud data.
Unlike traditional discrete LiDAR,waveform features charac-
terizing the inherent attributes of targets can be extracted by
processing full-waveform LiDAR data [10, 11]. The features,
including number of peaks, Full Width at Half Maximum
(FWHM), energy of the returned waveform, and backscat-
tering cross section, can be extracted for targets classification
[12–15]. Moreover, compared to the points directly obtained
by LiDAR systems, point density can be improved to a certain
extent by employing waveform features [11]. In this way, the
vertical structure information of targets can be obtainedmore
accurately. Therefore, the performance of target extraction
can be improved by using the point cloud data affiliated
with waveform features. In this study, the full waveform data
was first applied to the concealed target extraction which
was in line with the current development trend of the target
extraction.

Influenced by many factors, such as environment and
characteristics of concealed targets, the number of backscat-
tered waveform from concealed targets is less than that of
uncovered targets, which results in inadequate waveform
features of concealed targets. Therefore, VFH (Viewpoint
Feature Histogram) descriptors combined with waveform
features were used for concealed cars extraction. VFH [16]
is a global descriptor for 3D point cloud data that encodes
geometry and viewpoint. Alhamzi et al. [17] have used state-
of-the-art 3D descriptors to recognize the objects and eval-
uated their relative performance. Based on the experimental
results, the VFH had the best performance to recognize the
objects among other global descriptors. Ceron and Prieto
[18] evaluated different combination of three descriptors that
are suitable for object recognition and classification: Spin
Images, VFH, and NARF (Normal Aligned Radial Feature).
The two experiments showed that the VFH outperformed
other 3D Shape Descriptors when used alone. Because VFH
has high recognition performance and fast computational

properties, it has beenwidely used for objects recognition and
classification [16, 19–21]. In this paper, the VFH of the point
cloud data affiliated with waveform features was calculated
and employed for concealed cars extraction. The approach
was verified using full-waveform LiDAR data. The results
showed that concealed cars extraction can be realized using
the approach.

2. Theoretical Background

The objective of this study is to extract concealed cars based
on full-waveform LiDAR data. Considering the waveform
characteristics of the concealed cars, spatial statistical analysis
method was introduced for 3D point cloud segmentation. 3D
geometry features and waveform features were combined for
points classification.

2.1. Spatial Statistical Analysis. Due to the influence of terrain
and environment, the spatial distribution of the waveform
echo index from different targets varies. The waveform echo
index denotes the position of the echo in the backscattered
waveform [22].The obtainment of such waveform echo index
requires a preprocessing step. By waveform decomposition, a
number of echoes can be extracted, and then waveform echo
index can be obtained.The aim of this step is to extract all (or
most of the) relevant peaks in order to generate a dense 3D
point cloud [11].

In this paper, the concealed cars refer to the cars under
the coverage of vegetation. In general, the echo index value of
vegetation area is bigger than that of ground area.Thus spatial
statistical analysis of echo index can be used to determine
the vegetation areas. The spatial autocorrelation [23], which
is one of the most important concepts in spatial statistics, is
used to describe the correlation for echo index in different
locations.The spatial autocorrelation has two indices, named
global index and local index, respectively. The global index
[24] is used to detect the spatial autocorrelation of the entire
study area. A single value is used to outline the degree of spa-
tial autocorrelation for the entire study area. The local index
[25] assesses the extent to which observations of similar and
nonsimilar values are clustered for each individual location.
Currently the widely used global and local spatial autocorre-
lation indices are Moran index and 𝐺 coefficient [23, 26, 27].
Compared with the global Moran index which can only find
the similarity value (positive correlation) or nonsimilarity
values (negative correlation) in spatial aggregationmodel, the
global 𝐺 coefficient is capable of detecting whether the unit
belongs to high value aggregation or low value aggregation of
echo index in spatial distribution pattern [23]. The detecting
ability for spatial clustering of local Moran index and local
𝐺 coefficient also has significant differences. The Moran
index can roughly detect the cluster center but is unable to
discriminate whether a pattern is dominated by high values
or low values. But 𝐺 coefficient can accurately detect the
cluster [26]. The vegetation areas are isolated regions; thus
the local 𝐺 coefficient is used for spatial statistical analysis
on the waveform echo index of concealed cars areas in this
work.
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The local 𝐺 coefficient [24] measures local concentration
by calculating the ratio of the sums of attribute values between
local neighborhood and the entire region. The calculation
formula of local 𝐺 coefficient is [26]

𝐺
𝑖 (𝑑) =

∑
𝑛

𝑗=1
𝑊
𝑖𝑗 (𝑑) 𝑥𝑗

∑
𝑛

𝑗=1
𝑥
𝑗

, 𝑗 not equal to 𝑖, (1)

where 𝑥
𝑗
denotes the echo index value of the 𝑗th point; {𝑊

𝑖𝑗
}

is a symmetric one/zero spatial weight matrix with ones for
all links defined as being within distance 𝑑 of a given point 𝑖;
all other links are zero including the link of point 𝑖 to itself.
The numerator is the sum of all 𝑥

𝑗
within 𝑑 of 𝑖 but not

including 𝑥
𝑖
. The denominator is the sum of all 𝑥

𝑗
within

the entire region under investigation not including 𝑥
𝑖
. The

standardization of local 𝐺 coefficient is [26]

𝑍 (𝐺
𝑖
) =

𝐺
𝑖
− 𝐸 (𝐺

𝑖
)

√VAR (𝐺
𝑖
)

, (2)

where 𝐸(𝐺
𝑖
) is the value of expectation and VAR(𝐺

𝑖
) is the

variance.𝐴 large positive𝑍(𝐺
𝑖
) implies that points with high

echo index are within 𝑑 of point 𝑖. A large negative 𝑍(𝐺
𝑖
)

means that low echo index points are within 𝑑 of point 𝑖
[24, 26].

2.2. Description of 3D Point Features. As mentioned, the
number of backscattered waveforms from concealed targets
is less than that of uncovered targets. Less waveform features
of concealed targets are obtained. Especially for concealed
cars, even less waveform features can be acquired due to the
small size. In order to more effectively extract the concealed
cars, not only the waveform features but also the 3D point
features were utilized. The Point Feature Histograms (PFH)
descriptor [28, 29] is a 3D feature descriptor, the purpose
of which is to encode the local neighborhood’s geometrical
properties by generalizing the mean curvature at a point 𝑃

𝑞

using a multidimensional histogram of values. In its most
basic form, the computation of PFH at a point 𝑃

𝑞
relies on

the presence of 3D coordinates and estimated surface normals
[30]. The computation steps are as follows: (i) For each point
𝑃
𝑞
, all of 𝑃

𝑞
’s neighbors enclosed in the sphere with a given

radius 𝑟 are selected (𝑘-neighborhood). (ii) For every pair
of points 𝑝

𝑖
and 𝑝

𝑗
(𝑖 ̸= 𝑗) in the k-neighborhood of 𝑃

𝑞

and their estimated normals 𝑛
𝑖
and 𝑛
𝑗
, a Darboux 𝑢𝑛V frame
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𝑖
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) × 𝑢, 𝑤 = 𝑢 × V) is defined and the

angular variations of 𝑛
𝑖
and 𝑛
𝑗
are computed as follows:
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(3)

These three features are measurements of the angles
between the points’ normals and the distance vector between
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Figure 1: The influence region diagram for a PFH calculation.
The query point 𝑃

𝑞
(red) and its 𝑘-neighborhood (blue) are fully

interconnected in a mesh.

them. The histogram collects these three angles between
every pair of normals on a surface patch [28].

The influence region in the calculation of PFH for the
query point𝑃

𝑞
is shown in Figure 1 [30].The query point𝑃

𝑞
is

marked with red in the middle position of a circle (sphere in
3D)whose radius is 𝑟, and all its 𝑘-neighborhood (points with
distances smaller than the radius 𝑟) is fully interconnected in
a mesh [30]. When all possible pairs of points are considered,
the computational complexity for 𝑘-neighborhood is 𝑂(𝑘2).
Thus the theoretical computational complexity of the PFH for
a given point cloud with n points is 𝑂(𝑛 ⋅ 𝑘2) [29], where 𝑘
is the number of neighbors for each query point in a point
cloud.

In order to simplify the calculation of PFH, the Fast Point
Feature Histogram (FPFH) is introduced. The calculation
complexity of FPFH is reduced to𝑂(𝑛𝑘), but it still preserves
most of the discriminative ability of PFH [16]. The specific
calculation steps for FPFH are as follows:

(i) For each query point 𝑃
𝑞
, the relationships (see (3))

between 𝑃
𝑞
and its neighbors are only calculated. The

first step is called Simple Point Feature Histograms
(SPFH).

(ii) The 𝑘 neighbors for each point are redetermined,
and the neighboring SPFH values are used to weight
the final histogram of 𝑃

𝑞
(called FPFH); the specific

formula is

FPFH (𝑃
𝑞
) = SPFH (𝑃

𝑞
) +

1

𝑘

𝑘

∑

𝑖=1

1

𝑤
𝑘

⋅ SPFH (𝑃
𝑘
) , (4)

where the weight 𝑤
𝑘
means the distance between the

query point 𝑃
𝑞
and its neighbor point 𝑃

𝑘
in a given

metric space.

Viewpoint Feature Histograms (VFH) descriptor is
derived from FPFH and is mainly used in 3D object recog-
nition and classification [16]. The VFH adds a viewpoint
variance while retaining its invariance to scale, as shown
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Figure 2:The schematic diagramof viewpoint direction component
calculation between the view direction and the normal.

in Figure 2 [20]. Thus VFH descriptor consists of two
parts: a viewpoint direction component and surface shape
component comprised of an extended FPFH [16]. To compute
the first part, the centroid of the object is found, which is
the point that results from averaging the three coordinates
of all points. Next, the vector between the viewpoint and the
centroid is computed and normalized. Finally, for all points in
the cluster, the angles between this vector and their normals
are calculated. The result is represented by a histogram. Note
that it does not mean the view angle to each normal as this
would not be scale invariant. Instead, it means the angle in
the central viewpoint direction translated to each normal.The
second part is computed like the FPFH. The resulting four
histograms (one for the viewpoint component and three for
the extended FPFHcomponent) are concatenated to build the
final VFH descriptor [17].

2.3. Waveform Feature Extraction. By decomposing the
returned waveforms, waveform features, which are used for
concealed cars 3D point cloud segmentation and classifica-
tion, can be extracted.The extractedwaveform features in this
paper include distance, intensity, pulse width, backscattering
cross section, and echo index. The distance feature indicates
the distance from laser transmitter to the target which
is determined by estimating the waveform echo position
[11]. Ideally, the peak position is considered as component
position to calculate the distance. Intensity is not yet a clearly
defined term.The echo amplitude is most commonly referred
to as intensity [31]. The return intensity is a function related
to the reflective capability of the targets.The waveform width
denotes the depth extension of waveform in the laser incident
direction, which is closely related to the geometry of targets,
terrain slope, and targets material [10]. The backscattering
cross section delineates the backscattering ability of the
targets and is a comprehensive indicator of distance, intensity,
and waveform width. It is not a practical geometric area, but
the equivalent area that scatters laser pulse back to receiver
after the transmitted laser pulse illuminates a target. It can
be obtained by the laser energy transmission equation after
calibration [32]. 𝐺 coefficient and echo ratio (ER) can be
calculated based on echo index. 𝐺 coefficient was introduced
in Section 2.1. Echo ratio refers to the ratio between the total
number of points in a sphere with the radius of 𝑟 and the
total number of points in a cylinder with the radius of 𝑟 [33].
The most suitable value of 𝑟 is two times the average distance
between two points.

Extraction of points in the concealed cars area 
using G coefficient and echo ratio

Points with waveform features

Extraction of ground points 

Points selection based on elevation 

Points segmentation

Potential concealed cars

Figure 3: Flowchart of 3D point cloud segmentation.

Some factors, such as angle of incidence, atmospheric
correction, range, and surface characteristics, have influence
on thewaveform features.Therefore, these features can hardly
be used without radiometric calibration [34]. Toweaken such
influence and further improve the effectiveness of waveform
features for concealed cars extraction, this paper has made
a comprehensive correction on the extracted waveform fea-
tures. The detailed methodology was introduced in [35].

3. Concealed Cars Extraction Approach

3.1. 3D Point Cloud Segmentation. Using the characteristics
of high value aggregation of the waveform echo index for the
concealed cars areas, spatial autocorrelation𝐺 coefficient and
the echo ratio were introduced to determine the concealed
cars area. Considering the differences of waveform features
between ground and nonground points, ground information
of concealed cars area was extracted firstly. Then the points
within the elevation range of concealed cars were segmented.
The workflow is illustrated in Figure 3.

3D point cloud segmentation consists of three steps:

(1) Waveform features were first extracted through the
decomposition of backscattered waveforms. Next 𝐺
coefficient and echo ratio were calculated. Then 𝐺
coefficient and echo ratio were combined to classify
points so that the points in the concealed cars area can
be extracted.

(2) Ground point information in the concealed cars area
was extracted using a split-and-merge segmentation
algorithm based on an octree structure proposed by
Wang and Tseng in [36]. Consecutively, the points
within the elevation range of concealed cars were
extracted. Considering the characteristics of the cars,
the elevation range was set to 1m–4m from the
ground. This reduced the influence of uninterested
points on 3D point cloud segmentation.

(3) The features for each extracted 3D point (one
echo) were combined to form a feature vector
(𝑋, 𝑌, 𝑍, 𝐴,𝑊,CS, 𝐺,ER), where𝑋,𝑌, and𝑍were 3D
coordinates of the points and 𝐴, 𝑊, CS, 𝐺, and ER
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were intensity, waveform width, backscattering cross
section, 𝐺 coefficient, and echo ratio, respectively.
The distance between the feature vectors of different
points was calculated. Then KD-tree [37] which was
an index structure for storing a finite set of points
from a 𝑘-dimensional space was used for nearest
neighbor search in accordance with the distance. For
a query point 𝑝, radius searching was performed. All
its neighbors that were within radius 𝑑 were put into
a cluster. The same procedure was conducted for the
searched neighborhood points until there was no new
point that could be put in the cluster, or the number of
points in the cluster reached threshold value. In this
paper, the distance d was set to 1.5 times the average
distance between two points of the experiment data.
The minimum number of points for a cluster was set
to 40 according to the actual experiment data. In this
way, the points that remained after the second step
could be clustered.

3.2. Classification. Due to the small size of concealed cars,
only a few points on concealed cars can be captured. To
classify concealed cars more effectively, more point cloud
features reflecting the attributes of cars were required. In
this paper, waveform features (distance, intensity, waveform
width, and backscattering cross section) andVFHdescriptors
were combined for classification of point clusters. First,
sample data was used for training and KD-tree was built.
Then the nearest neighbor searching for the input cluster data
was implemented based on the built KD-tree. The distances
between the objects in the sample data and input cluster
data were obtained and sorted. Then the matching result
was determined according to the minimum distance. If the
minimumdistance was less than the threshold, then the input
cluster data was classified as concealed car.Thewhole process
consists of training stage and classification stage.

Theflowchart of the training stage is given in Figure 4.The
detailed steps are as follows: (1)Collect the full waveformdata
of different types of cars. Mean, variance and maximum and
minimum values of waveform features and VFH descriptors
were calculated. The points of concealed cars containing the
waveform features and VFH were used as sample data for
training. (2)The features of each sample were stored as point
cloud feature files and added to a sample library. (3) Based on
the traversal of point cloud feature files in the sample library,
a KD-tree index was built and saved for subsequent use.

The flowchart of classification stage is shown in Figure 5.
This procedure consists of three steps: (1) The point cloud
feature files generated in training stage were loaded, and then
the KD-tree index was rebuilt. (2)The clusters in Section 3.1
were set as target sets for classification. Mean, variance,
and maximum and minimum values of waveform features
and VFH descriptors were calculated. (3) Nearest neighbor
searching was conducted using the waveform features and
VFH descriptors based on KD-tree built in step (1). The
sample data were searched, and feature distances between
samples and target sets were calculated. (4) One determined
whether the minimum distance of features between the

Statistical analysis and VFH 
descriptor calculation 

Save results as feature file

Traverse feature file and build KD-tree 

KD-tree index based on 
samples’ feature

Training samples of 
concealed cars

Figure 4: Flowchart of concealed car samples training.

sample and target set was less than a preset threshold, which
was determined by the variance of the features. If so, then
the target set was classified as a concealed car. Otherwise the
target set was classified as other targets, such as the dense
thickets or bare cars. Finally the classification results were
output.

4. Experiment and Results Analysis

4.1. Data Description. The data used in this paper was
acquired by airborne small-footprint full-waveform LiDAR
system LMS-Q560 fromRiegl.The flight height is 700meters,
the wavelength of the laser is 1550 nm, the divergence angle of
laser beam is 0.5mrad, and the range measurement accuracy
is 0.15meters.The point cloud density is 4 points/m2. Figure 6
shows an example of concealed cars and the corresponding
point cloud. Figure 6(a) is a photograph of cars under
vegetation and Figure 6(b) is a side view of the original point
cloud data of the same area. Three different experiment areas
with different vegetation coverage and targets distribution,
which were named as experiment area I, experiment area II,
and experiment area III in Miyun in Beijing, were selected
to test the presented concealed cars extraction approach.The
CCD image and original point cloud data which is colorized
by elevation are, respectively, shown in Figures 7(a), 7(b),
8(a), 8(b), 9(a), and 9(b). In order to show the position of
concealed cars clearly, the point cloud data of concealed cars
are visualized using the highlight red color, as shown in
Figures 7(c), 8(c), and 9(c).There are 15, 15, and 20 concealed
cars in experiment areas I, II, and III, respectively.

4.2. Experiment. The results of concealed cars areas are
illustrated in Figures 10, 11, and 12. It shows that the 𝐺
coefficient can be used to extract the big area of trees and
the echo ratio can be used to extract the boundary of the
trees.Thenpointswithin the elevation range of concealed cars
in the concealed cars areas were segmented, as illustrated in
Figures 10(c), 11(c), and 12(c). A total number of 96, 28, and
82 potential concealed cars were segmented, respectively, for
experiment areas I, II, and III. The concealed cars were all
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Statistical analysis and VFH 
descriptor calculation 

KD-tree index based on 
samples’ feature Potential concealed cars 

Load KD-tree and rebuild KD-tree 
index 

Nearest neighbour searching and feature distance calculation 

Distance < threshold?

Concealed cars Other targets

Output results

Yes No

Figure 5: Flowchart of concealed cars classification.
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(b) The side view of original point cloud data

Figure 6: Concealed cars under trees.

(a) CCD image
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(b) Original point cloud data (c) Position of concealed

cars

Figure 7: The CCD image, original point cloud data, and position of concealed target cars in experiment area I.

(a) CCD image
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(b) Original point cloud data (c) Position of concealed cars

Figure 8: The CCD image, original point cloud data, and position of concealed target cars in experiment area II.
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(a) CCD image
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(b) Original point cloud data (c) Position of concealed cars

Figure 9: The CCD image, original point cloud data, and position of concealed target cars in experiment area III.
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(a) Results of concealed cars areas using 𝐺 coefficient
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(b) Results of concealed cars areas using echo ratio

(c) Points segmentation results in concealed cars areas

Figure 10: Segmentation results of experiment area I.

segmented, which were marked by numbers in Figures 10(c),
11(c), and 12(c).

In order to verify the effectiveness of waveform features
on concealed cars classification, comparative classification
experiments were performed on the potential concealed cars
shown in Figures 10(c), 11(c), and 12(c). First the classification
experimentwas conducted usingwaveform features andVFH
descriptors. The other experiment was carried out with only
the VFH descriptor.

The classification results using waveform features (inten-
sity, waveform width, and backscattering cross section) and
VFH descriptors for experiment area I, experiment area II,
and experiment area III are, respectively, shown in Figures
13(a), 14(a), and 15(a). The classified cars numbered 2, 3, 4, 5,
6, 7, 8, 10, 11, 12, 13, and 14 in Figure 13(a), numbered 1, 2, 4,
5, 6, 7, 8, 10, 11, 12, and 14 in Figure 14(a), and numbered 1, 2,
3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 15, 16, 18, 19, and 20 in Figure 15(a)
are the true concealed cars; the remaining classified cars are
the wrong targets. The classification results with only VFH
descriptors are, respectively, shown in Figures 13(b), 14(b),

Table 1: Confusion matrix of binary classification problem.

Confusion matrix Classified types
Concealed cars Other objects

Real types
Concealed cars TP FN
Other objects FP TN

and 15(b). The classified cars numbered 1, 2, 3, 4, 5, 6, 8, 11,
12, and 15 in Figure 13(b), numbered 1, 2, 4, 5, 6, 8, 11, 12, and
15 in Figure 14(b), and numbered 1, 6, 10, 11, 12, 14, 15, 16, 18,
19, and 20 in Figure 15(b) are the true concealed cars, while
other classified cars are the wrong targets.

The classification in this paper is a binary classification
problem and the confusion matrix of binary classification
problem is shown in Table 1. Suppose ALL is the total number
of clusters obtained in segmentation step and𝐶 is the number
of true concealed cars in the clusters. TP (True Positive) is
the number of concealed cars that are correctly classified as
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Figure 11: Segmentation results of experiment area II.
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Figure 12: Segmentation results of experiment area III.

(a) Concealed car classification results with waveform
features and VFH descriptors

(b) Concealed car classification results with only VFH
descriptors

Figure 13: Concealed car classification results in experiment area I. (a) Concealed car classification results with waveform features and VFH
descriptors. (b) Concealed car classification results with only VFH descriptors. Each cluster in the figure was classified as a concealed car, and
only the numbered cars were true concealed cars.
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(a) Concealed car classification results with wave-
form features and VFH descriptors

(b) Concealed car classification results with only
VFH descriptors

Figure 14: Concealed car classification results in experiment area II. (a) Concealed car classification results with waveform features and VFH
descriptors. (b) Concealed car classification results with only VFH descriptors. Each cluster in the figure was classified as a concealed car, and
only the numbered cars were true concealed cars.

(a) Concealed car classification results with wave-
form features and VFH descriptors

(b) Concealed car classification results with only
VFH descriptors

Figure 15: Concealed car classification results in experiment area III. (a) Concealed car classification results with waveform features and VFH
descriptors. (b) Concealed car classification results with only VFH descriptors. Each cluster in the figure was classified as a concealed car, and
only the numbered cars were true concealed cars.

Table 2: Confusion matrix of the classification results with wave-
form features and VFH descriptors in experiment area I, area II, and
area III (area I/area II/area III).

Area I/area II/area III Classified types
Concealed cars Other objects

Real types
Concealed cars 12/11/17 3/4/3
Other objects 9/2/10 72/11/52

concealed cars. FP (False Positive) is the number of other
objects (such as thickets beside the trees and bare cars beside
the trees) that are falsely classified as concealed cars. TN (True
Negative) is the number of other objects that are correctly
classified as other objects. FN (False Negative) is the number
of concealed cars that are falsely classified as other objects.

Table 3: Confusion matrix of the classification results with only
VFH descriptors in experiment area I, area II, and area III (area
I/area II/area III).

Area I/area II/area III Classified types
Concealed cars Other objects

Real types
Concealed cars 10/9/11 5/6/9
Other objects 19/3/18 62/10/44

The confusion matrix of the classification results with
waveform features and VFH descriptors in experiment area
I, area II, and area III is shown in Table 2.

The confusion matrix of the classification results with
only VFH descriptors in experiment area I, area II, and area
III is shown in Table 3.
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Table 4: Evaluation of concealed cars classification results.

Results Evaluation indices
Recall Precision Accuracy

Results with waveform features and VFH descriptors
Area I 80% (12/15) 57.1% (12/21) 87.5% (84/96)
Area II 73.3% (11/15) 84.6% (11/13) 78.6% (22/28)
Area III 85% (17/20) 63.0% (17/27) 84.1% (69/82)

Results with only VFH descriptors
Area I 66.7% (10/15) 34.5% (10/29) 75% (72/96)
Area II 60% (9/15) 75% (9/12) 67.9% (19/28)
Area III 55% (11/20) 37.9% (11/29) 67.1% (55/82)

(a) CCD image (b) Side view (c) Data thinning at the rate of 1/2 (d) Data thinning at the rate of 1/4

Figure 16: CCD image and point cloud data before and after data thinning.

To evaluate the classification results, the indices including
accuracy, recall, and precision [38] are most commonly used
and defined as follows:

Accuracy = TP + TN
ALL

⋅ 100%,

Recall = TP
𝐶
⋅ 100%,

Precision = TP
TP + FP

⋅ 100%.

(5)

The evaluation results are shown inTable 4. By comparing
the classification results with and without waveform features,
we can see that, for the classification results using waveform
features and VFH descriptors, the recall rate is improved by
13.3%, 13.3%, and 30% and the precision and the accuracy are
improved by 22.6%, 9.6%, and 25.1% and 12.5%, 10.7%, and
17% for these three experiment areas, respectively.

4.3. Results Analysis. Concluding from the experimented
results, when the number of points of a concealed target is
small, the random error of the features weakens the ability
to distinguish different targets. This will greatly increase the
difficulty of determining concealed targets.The point density
of point cloud data, the target attributes, and the vegetation
coverage factormay affect the number of points for concealed
targets and then affect the concealed target extraction.

4.3.1. The Point Density of the Point Cloud Data. In order to
analyze the influence of point density on concealed target
extraction, different degrees of point cloud data thinning for
concealed cars were applied.The data after data thinning was
used for concealed cars extraction experiments. Figure 16
shows an example of data thinning results for a car.The point
density of the experiment data was 4 points/m2; thus the
average distance between two points was 0.5m. There were
approximately 20–30 points obtained for each car in this case.

Table 5: Effect of point density on the number of cars’ points.

Point density (points/m2) 4 2 1
Number range of points for a car 20–30 10–15 5–7

After thinning at the rate of 1/2 or 1/4, the point density of
the experiment data decreased to 2 points/m2 or 1 point/m2.
The number of points obtained for each car also decreased
as shown in Table 5. Thus the density of point cloud data
influences concealed cars extraction.

4.3.2. The Car Attributes. The size of a car and reflectivity
affect the amount of point data that can be returned. Under
the same condition, the bigger the target size, the more
the points that can be obtained. With the decrease of the
size of the target, the difficulty of target extraction increases
gradually.

The target’s reflectivity also affects the number of points.
The numbers of points for the cars with different colors were
analyzed by statistics, as shown in Table 6. The greater the
reflectivity, the more the points of the target that can be
obtained. The reflectivity of the white car is greater than that
of the black car, and the number of points from white car is
bigger than that of black car.Thus the car attributes influence
concealed cars extraction.

4.3.3. Vegetation Coverage Factor. In order to analyze the
vegetation cover effect on concealed cars extraction, the
vegetation coverage factor was calculated for some concealed
cars as follows:

Vegetation coverage factor =
Vegetation points

Total points
. (6)

From the results, as shown in Table 7, we can see that the
number of points is bigger when vegetation coverage factor is
smaller. It can be drawn that with the same targets’ attributes
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Table 6: Effect of car attributes on the number of cars’ points.

Car number 1 2 3 4 5 6 7 8 9 10 11
Color White White White White White Red Red Red Black Black Black
Number of points 45 34 31 27 19 17 16 15 4 3 3

Table 7: Vegetation coverage factor of concealed cars.

Car number 1 2 3 4 5
Vegetation
coverage
factor

0.44 0.8 0.65 0.59 0.67

Number of
points 4 4 11 34 10

and point density, the smaller the vegetation cover factor is,
the bigger the number of targets’ points is and the more likely
it is to extract the concealed targets.Thus the vegetation cover
factor also influences concealed cars extraction.

Considering these factors as mentioned above, the errors
of the concealed cars extraction were analyzed. The errors
mainly came from two aspects. One issue was that some
concealed cars were missed. That might be because these
concealed cars were black or the vegetation cover factor was
big for these cars; thus the number of points was not enough.
It was difficult to extract the concealed cars with only a few
points. The other issue was that some objects were wrongly
classified as concealed cars, such as the dense thickets beside
the trees or the bare car next to the trees. If the dense thickets
beside the trees happened to have the similar elevation and
waveform features with concealed cars then they might be
classified as concealed cars. If the bare cars were very close to
the trees and had enough points, then theymight be classified
as concealed cars, as shown in Figures 8(a) and 14(a) with the
red rectangles.

In the future, the density of point cloud in the experiment
area can be increased so that more points of the concealed
cars can be obtained. Then the probability of missing the
concealed cars can be decreased. Furthermore, more wave-
form features and geometry features should be extracted for
better distinguish between dense thickets and concealed cars.
In addition, more features can be used to accurately extract
the points in vegetation areas so that the bare cars can be
removed.

5. Conclusion

A concealed cars extraction algorithm was presented in this
study. First 𝐺 coefficient and echo ratio were combined
to determine concealed cars area based on full-waveform
LiDAR data. The elevation distribution of the points in
the concealed cars area was further analyzed to extract the
concealed cars. Then by sample training and pattern match-
ing, the concealed cars classification approach combining
waveform features andVFHdescriptor was presented. Exper-
iments showed that the algorithmcould correctly extract con-
cealed cars, and comparative experiments further indicated

that thewaveform features could improve the accuracy, recall,
and precision for concealed cars classification. However, this
study focuses on concealed cars under trees; whether the
algorithm is feasible to other types of concealed targets needs
to be further investigated.
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