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A B S T R A C T   

Information on crop yield is important for food security, in particular under the conditions of climate change and 
growing population worldwide. We developed a new fully distributed, high spatial resolution, model of biomass 
accumulation and crop yield applicable to a highly heterogeneous desert-oasis agroecosystem. The bulk of 
required input data is obtained by retrieving pixel-wise biogeophysical variables from a suite of very diverse 
satellite data. Both temperature and water stress conditions at field-scale are given full consideration, while the 
model was designed to strike a balance between model applicability and satisfactory characterization of the 
heterogeneous desert-oasis system to estimate field-scale yield. The development of this model relies on three 
main innovations. First, the start and end of the growing season were estimated for each pixel by calibrating the 
high spatial and temporal resolution observations of Normalized Difference Vegetation Index (NDVI) by Sentinal- 
2 (S2) MSI (Multi-Spectral Instrument) against limited local phenological information. Second, to monitor crop 
water stress, account taken of irrigation, a process-based water and energy balance model was applied to esti
mate the actual evapotranspiration (ET). This requires knowledge of soil water availability, which is charac
terized by downscaling the ASCAT (Advanced SCATterrometer) soil moisture data product. To capture the 
dominant features of the eco-hydrological conditions in the desert and oasis agroecosystem, ET was further 
downscaled from the 1 km resolution. Third, likewise the water stress indicator, the air temperature stress in
dicator was mapped after characterizing the thermal contrast and heterogeneity of the desert-oasis system, by 
generating time series of air temperature at 1 km spatial resolution using the MODIS (Moderate Resolution 
Imaging Spectroradiometer) Land Surface Temperature (LST) data product. In the temporal dimension, gaps 
were mitigated by applying time series analysis techniques to reconstruct cloud-free time series of LST, NDVI, 
fAPAR and albedo. These innovations add up to a high resolution characterization of crop response to the 
geospatial variability of weather and climate forcing in the desert-oasis agroecosystem. The model was applied to 
the dominant crops, i.e., spring wheat, maize, sunflower, and melon, in the oases of the Shiyang River Basin 
(northwestern China) characterized by a rather fragmented land use. The high resolution of pixel-wise ecohy
drological parameters, i.e., crop phenology, temperature stress and water stress factors successfully reflect dif
ferences of crops with different phenology and location in the oases. The relative errors for wheat and maize 
yields compared to the census data are less than 5% at district level. At the county level, the relative errors of 
wheat yields of Liangzhou, Minqin, Gulang, Jinchuan, and Yongchang equal to 0.87%, 24.2%, 9.7%, 12.5%, and 
7.2%. For maize, the dominant crop, the error on estimated yields was less than 5%, except in Gulang. The 
relative error on estimated yield for sunflower was less than 10% compared to agricultural census data. The 
relative error on estimated melon yield was 16%. This performance highlights the applicability of the model to 
estimate field-scale yields in agroecosystems characterized by fragmented land use.  
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1. Introduction 

The growing world population applies tremendous pressure on 
agriculture production and natural environmental resources, especially 
in developing regions. The global population is expected to reach 9.8 
billions by 2050 (UNDESA, 2017). To meet the demands of population 
growth and the projected changes in dietary patterns in the future, 
global food production must increase by 70%− 100% (Wart et al., 2013). 
Therefore, given such a dramatic requirement, both expansion of culti
vated land and increased agricultural intensity will be needed, with 
further impact on the natural environment. The changing climate in
tensifies the risks of droughts and floods, which pose a significant threat 
to food production. Information on crop yield under limiting environ
mental conditions, such as due to water availability and quality, is 
therefore important for food security and environmental studies under 
the conditions of climate change and fast-growing population. 

Modeling is a vital tool to obtain crop yield information at regional 
and global scales, especially because it allows to assess the expected 
performance of agroecosystems under changing climate and crop man
agement conditions. The dynamic crop growth models, e.g., DSSAT 
(Decision-Support System for Agro-technology Transfer), WOFOST 
(WOrld FOod STudies), APSIM (Agricultural Production Systems sIMu
lator), and AquaCrop (FAO crop growth model) (Hijmans et al., 1994; 
Jones et al., 2003; Steduto et al., 2008; Holzworth et al., 2014), built 
upon crop biophysical processes, usually can achieve high accuracy in 
reproducing field-scale crop development and estimate yield, provided 
model parameters can be estimated accurately. To describe a specific 
crop or variety, these models require a detailed set of plant parameters 
to model e.g., phenology, assimilation, and partitioning of assimilates, 
which typically must be based on field trials on the crop or variety of 
interest. Applications at the regional/global scale, however, are 
hampered by the limited availability of a wide range of agronomic input 
data needed by such models and uncertainties are also associated with 
the parameterization of biogeochemical processes. Literature docu
ments advances in blending satellite remote sensing data with dynamic 
crop growth models by e.g., data assimilation to improve the regional 
performance (de Wit and van Diepen, 2007; Jin et al., 2018; Huang 
et al., 2019; Liu et al., 2019). However, data assimilation is usually 
designed for only one or two state variables, e.g., soil moisture, leaf area 
index or Land Surface Temperature (LST), and uncertainty remains 
significant. In addition, when applied to regions with fragmented land 
uses and complex cropping patterns, a high spatial resolution model 
configuration is needed, which requires large computing resources. 

Various satellite remote sensing observations can provide informa
tion reflecting the spatial and temporal features in the crop pattern and 
conditions, e.g., crop type, crop phenology and health condition. An 
alternative way is using a remote-sensing-data-driven model yet with a 
robust bio-physical basis. In these models, biomass accumulation is 
estimated by applying the Light Use Efficiency (LUE) concept, according 
to Monteith (1972), through the crop growing season, while parame
terizations are applied to estimate crop yield from biomass. LUE is 
defined as the biomass produced by photosynthesis per unit of absorbed 
radiant energy. The LUE-based method combines the solar Photosyn
thetically Active Radiation (PAR), the intercepted fraction of PAR 
(fAPAR: the fraction of Absorbed Photosynthetically Active Radiation by 
vegetation) and the PAR utilization efficiency to determine the daily 
biomass accumulation. In theory, the LUE-based method is consistent 
with detailed biophysical models of photosynthesis under the reason
able hypothesis that multiple biochemical processes combine to deter
mine optimal photosynthesis (Haxeltine and Prentice, 1996). 

In practice, the actual PAR utilization efficiency in the LUE-based 
models is expressed as the product of an optimal LUE with a number 
of stress factors. The main difference in the LUE-based models is the 
definition and estimation of the parameters being used to down-regulate 
the optimal biomass accumulation rate to the actual rate, since the bio- 
geochemical controls on LUE are still poorly understood. For example, 

the CASA (Carnegie-Ames-Stanford Approach) (Potter et al., 1993) takes 
into account the variation of LUE with seasons and biomes. Field et al. 
(1995) further improved the LUE-based modeling by considering limi
tations due to temperature and water deficit. The GLO-PEM2 (GLObal 
Production Efficiency Model) and MODIS-PsN (MODIS - Moderate Res
olution Imaging Spectroradiometer, Daily Photosynthesis) adopted 
Vapor Pressure Deficit (VPD) to express the water stress (Goetz et al., 
2000; Zhao et al., 2005). LUE-based models have been implemented as a 
core element of systems for large area monitoring of biomass and crop 
yield estimations taking advantage of remote sensing data (Gower et al., 
1999; Veroustraete et al., 2002; Bastiaanssen and Ali, 2003; Zwart et al., 
2010; Teixeira et al., 2013). Such systems are also being operated in an 
operational context, such as in the MARSOP (Monitoring Agriculture 
through Remote Sensing techniques) system (http://www.marsop.info) 
and in the Global Land component of the GMES (Global Monitoring for 
Environment and Security) Initial Operations (GIO-GL) (Van Hools and 
Eerens, 2015). 

Notwithstanding these successful experiences, challenges still exist 
and were addressed in this study. In a highly heterogenous desert-oasis 
agroecosystem with fragmented land uses and complex crop patterns, 
crop conditions must be characterized as a spatial resolution adequate to 
capture both the heterogeneity within the oases and the contrast with 
the surrounding desert area. Hydrological conditions must be monitored 
at a spatial resolution consistent with such variability to understand the 
crop response to weather and climate forcing. Specifically, this applies 
to crop phenology and related biophysical variables, to soil water 
availability and to thermal conditions. On the other hand, in practice, 
the retrieval of information on hydrological conditions and surface 
temperature obtained from infrared and microwave observations is 
frequently hampered by low spatial resolution. Besides, optical and 
thermal remote sensing observations are often contaminated by weather 
conditions, with considerable impacts on the estimation of fAPAR, 
NDVI, albedo, and land surface temperature (LST). Time series recon
struction is therefore needed to obtain gap-free essential variables to 
estimate crop biomass accumulation at high temporal resolution. 

The innovations we deployed to address these challenges add up to a 
high resolution model characterizing the crop response to the geospatial 
variability of weather and climate forcing in the desert-oasis agro
ecosystem. The development of this model relies on three main in
novations. First, the start and end of the growing season were estimated 
for each pixel by calibrating the high spatial and temporal resolution 
observations of NDVI by Sentinal-2 (S2) MSI (Multi-Spectral Instrument) 
against limited local phenological information. The high temporal fre
quency of S2 / MSI makes it possible to retrieve directly the temporal 
evolution of relevant biophysical variables related to crop phenology 
without using an approximate method such as the application of tem
perature sums. Second, to monitor crop water stress, account taken of 
irrigation, we use a process-based water and energy balance model, 
ETMonitor (Hu and Jia, 2015; Cui and Jia, 2021; Zheng et al., 2022), to 
estimate the actual evapotranspiration (ET), which requires knowledge 
of soil water availability, monitored by using satellite observations of 
soil moisture. To mitigate the gap in spatial resolution with the 
field-scale information on crop conditions, soil moisture was estimated 
using the ASCAT (Advanced SCATterrometer) soil moisture data 
downscaled to MODIS LST resolution. The relationship between the 
downscaled soil moisture and the predictors, i.e., LST, NDVI, albedo, 
DEM (Digital Elevation Model), and location, was constructed using a 
machine learning model. To capture the dominant features of the 
eco-hydrological conditions in the desert and oasis agroecosystem, the 
ET was further downscaled from the 1 km resolution. Third, likewise the 
water stress indicator, the air temperature stress indicator was mapped 
after characterizing the thermal contrast and heterogeneity of the 
desert-oasis system, by generating time series of air temperature at 1 km 
spatial resolution using the MODIS LST data product. In the temporal 
dimension, gaps were mitigated by applying time series analysis tech
niques to reconstruct cloud-free time series of LST, NDVI, and albedo. 
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2. Study area and data 

2.1. Study area 

The Shiyang River Basin (SRB) is one of the three inner drainage 
river basins in Hexi Corridor, northwestern China, located between 
101◦41′E and 104◦16′E, 36◦26′N and 39◦27′N (Fig. 1). It originates from 
the cold and semi-arid Qilian Mountains in the south and ends in the 
temperate and arid desert-oasis region in the north, occupying an area of 
41,600 km2. The SRB covers the main areas of Liangzhou, Minqin, 
Jinchang, Yongchang, and Gulang Counties. The river water supply 
primarily comes from rainfall and glacier and snow melting in the Qilian 
mountain area. 

The oases in the SRB play a vital role in the water and food security of 
northwestern China. The growing season is April to October. The annual 
precipitation in the agricultural area varies from 100 to 300 mm, while 
the potential ET is 1200 to 2000 mm (Wang et al., 2012). Thus, local 
agriculture heavily relies on irrigation. To keep the pace with the local 
economic development, the water and land resources have been 
over-exploited mainly for agriculture, which induced a severe ecosystem 
crisis. Water conflicts arose between ecosystem preservation and agri
culture and between different sub-regions (Li et al., 2007; Xue et al., 
2015). The agricultural area of the SRB is characterized by fragmented 
land use and complex cropping pattern (Xue et al., 2015). The dominant 
food crops are spring wheat and maize, and local high-value crops are 
sunflower and melon. Crop yield and ET estimates can provide 

Fig. 1. Location map of the SRB (a), landcover (b) and crop classification (c); examples of full 10 m resolution crop maps (d) and (e).  
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meaningful spatial and temporal information for a comprehensive un
derstanding of the water productivity of the region and support effective 
decision-making. 

2.2. Remote sensing data 

The remote sensing data applied in this study (Table 1) include the 
S2 / MSI surface reflectance (SR) data products, MODIS land surface 
products of LST, NDVI, and albedo, ASCAT surface soil moisture satu
ration products, SRTM (Shuttle Radar Topography Mission) DEM, and a 
predefined crop classification map. 

The S2 mission was launched in 2015 by ESA (European Space 
Agency) to service wide-swath, high spatial and temporal resolution, 
and multi-spectral land monitoring. The MSI can provide observations 
with 10 m spatial resolution in four spectral bands, i.e., the three clas
sical RGB bands and a Near Infra-Red (NIR) band. The S2 system is 
designed for global crop growth monitoring with a 5-day revisiting in
terval. In this study, we specifically adopted the S2 / MSI level-2 Bottom 
Of Atmosphere (BOA) reflectance data product (https://scihub.coper
nicus.eu/) in Band 4 (Red band, with central wavelength ~665 nm) and 
Band 8 (Near Infrared band, with central wavelength ~833 nm) to es
timate NDVI and fAPAR during the growing season of 2019 in the study 
area. 

The MODIS land surface products (http://lpdaac.usgs.gov/), 
including MOD11A1 (Land Surface Temperature), MOD13A2 (NDVI), 
and MCD43A3 (albedo) in 2019 were selected for air temperature and 
ET estimation. The MCD43A3 data were resampled to 1 km by linear 
interpolation to match the other MODIS data products before further 
processing. 

The daily ASCAT dataset (https://land.copernicus.eu/global/prod
ucts/swi) of surface soil moisture saturation at 0.1◦ was also used as 
input to the ET estimation model, i.e., ETMonitor. When applying the 
ETMonitor model, the 0.1◦ ASCAT dataset was first downscaled and 
projected to the same spatial resolution of 1 km MODIS data (see Sect. 
3.5). 

A 10 m crop classification map for 2019 (Fig. 1) was generated by 
applying a machine learning method to the multi-spectral and multi- 
temporal S2 / MSI surface reflectance data. The validation based on 
ground observations shows that the overall classification accuracy is 
90% (Yi et al., 2020). 

2.3. Reanalysis meteorological data 

The gridded daily meteorological data required to estimate ET and 
Absorbed Photosynthetically Active Radiation (APAR) conditions, i.e., 
surface pressure, wind speed, relative humidity, precipitation, down
ward shortwave radiation, and downward longwave radiation, were 
extracted from the ERA5 reanalysis dataset (http://apps.ecmwf.int/ 
datasets/) of ECMWF (European Centre for Medium-Range Weather 
Forecasts). The ERA5 dataset has an original spatial resolution of 0.25◦

and was downscaled to 1 km using SRTM DEM (Stahl et al., 2006; Gao 
and Giorgi, 2008; Hu and Jia, 2015). 

2.4. Ground measurements 

To estimate the temperature stress factors regulating the biomass 
accumulation, we used the daily mean air temperature measured at 
three meteorological ground stations (Table 2) in the oasis. The data 
collected in the period from March to November 2019, covering the 
main growing season of Shiyang river basin, were applied to parame
terize the relationship between LST and the mean daily air temperature. 
The locations of ground sites are shown in Fig. 1c. 

2.5. Agricultural census data 

The agricultural census data on crop yield is officially reported in the 
Gansu Development Yearbook 2020 (Gansu Development Yearbook 
Editorial Committee, 2021). 

3. Methods 

Model overview. In the proposed model to estimate crop biomass 
accumulation, both temperature and water limitations were given full 
consideration to adjust the optimal crop growth rate to the actual rate. 
The timely and spatially detailed biophysical information needed to 
model biomass accumulation and yield formation, i.e., crop type, 
phenological development, APAR, air temperature stress, and water 
stress was retrieved by addressing the challenges identified in the 
Introduction. To this end, a remote sensing data driven framework to 
ingest S2 / MSI at-surface spectral reflectance, MODIS land surface 
products, ASCAT surface soil moisture saturation data, SRTM DEM, and 
ERA5 reanalysis meteorological data was developed. Remote sensing 
multi-spectral information was combined to capture the pixel-wise real 
crop growth status related to crop-specific properties, environmental 
constraints, and the field management. The model was designed to strike 
a balance between model applicability and satisfactory characterization 
of the heterogeneous desert-oasis system to estimate field-scale yield. 

The proposed model (see Fig. 2) to estimate biomass accumulation 
and crop yield at high spatial resolution includes the following elements: 
(1) Time series reconstruction of remote sensing data; (2) Crop 
phenology estimation; (3) APAR estimation; (4) Estimation of air tem
perature stress factor; (5) Downscaling of soil moisture; (6) Estimation of 
ET and Rn and water stress; (7.1) Estimation of biomass by LUE model 
and (7.2) crop yield. 

The following paragraphs describe in detail the seven elements of the 
model. 

3.1. Time series reconstruction of remote sensing observations 

In the proposed method, the pixel-wise crop emergence and harvest 
dates and the fAPAR, were estimated using the time series of S2 / MSI 
NDVI, taking advantage of the high spatial and temporal resolution. The 
daily water stress condition was estimated from the daily ET, which 
requires time series of MODIS NDVI and albedo. The daily air temper
ature stress was estimated from 1 km LST using the method by Alfieri 
et al. (2013), in which time series of MODIS LST is required. 

The NDVI, albedo, and LST derived from satellite observations are 
often contaminated by clouds, which hampers their application to 
observe terrestrial vegetation properties. To obtain a spatially and 
temporally continuous NDVI, albedo, and LST dataset, the method of 
Harmonic Analysis of Time Series (HANTS) was applied to the S2 / MSI 

Table 1 
Remote sensing dataset used in this study.  

Variables Products Temporal 
resolution 

Spatial 
resolution 

BOA reflectance at Band 
4&8 

Sentinel-2 5 days 10 m 

LST MOD11A1 Daily 1 km 
NDVI MOD13A2 16 days 1 km 
Albedo MCD43A3 Daily 500 m 
Soil Moisture ASCAT Daily 0.1 ◦

DEM SRTM – 30 m 
Crop types Crop map Yearly 10 m  

Table 2 
Meteorological ground stations in the oasis area of the SRB.  

Station Latitude N (0) Longitude E (0) Altitude (m) 

Minqin 38.63 103.08 1367.5 
Wuwei 37.89 102.87 1540.2 
Jinchang 38.53 102.20 1508.9  
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NDVI and MODIS NDVI, albedo, and LST products to remove the cloud 
influence (Menenti et al., 1993; Verhoef, 1996; Roerink et al., 2000; 
Hadipour, 2021; Zhou et al., 2021). 

The HANTS method decomposes a time series into several frequency 
components based on the concept of a discrete Fourier transform. 
Considering that albedo and NDVI change gradually driven by vegeta
tion phenology, we applied four frequencies with periods equal to 360 
days, 180 days, 120 days, and 90 days, respectively, in HANTS, to 
capture the seasonal variation of NDVI and albedo in the study area. 
Besides the four frequencies reflecting seasonal variability, to recon
struct the LST time series, we added two more frequencies with periods 
equal to 30 days and 15 days to capture the short-term variability due to 
possible fluctuations of atmospheric/weather conditions. 

Cloud-contaminated observations are identified by HANTS as out
liers and assigned a lower weight prior to a new iteration in the recon
struction of the time series. The analyst needs to specify whether outliers 
are positive or negative anomalies relative to the current reconstruction 
of the time series. Cloud-contaminated observations give negative 
values of NDVI and LST, so outliers in NDVI and LST time series are 
defined as negative anomalies. Given the high albedo of clouds, outliers 
in albedo are defined as positive anomalies and lower weights are given 
to the higher outliers, which is contrary to the situation of NDVI and 
LST. Zhou et al. (2016) evaluated the accuracy of HANTS in the recon
struction of noisy and cloud-contaminated observations in comparison 
with four other methods and documented the generally good perfor
mance of HANTS. 

3.2. Crop phenology estimation 

The crop emergence and harvest dates identify the period of time 
available for biomass accumulation during the growing season and then 
obtain the final yield. In the proposed model, the pixel-wise crop 
emergence and harvest dates, were estimated by applying crop-specific 
thresholds to the gap-free time series of S2 / MSI NDVI. This was made 
possible by the high spatial and temporal resolution. First, local 

knowledge indicated typical emergence and harvest dates applicable to 
the entire area (Table 3). Second, the NDVI values at these typical 
emergence and harvest dates were extracted for each crop from the 
spatially averaged NDVI temporal profiles - NDVI (t) (Fig. 3). Third, 
these NDVI values were applied as thresholds to the pixel-wise annual 
NDVI temporal profile to estimate the emergence and harvest dates for 
each crop and for each pixel. This method considers the specific char
acteristics of different crops and makes effective use of limited local 
phenological knowledge to determine the NDVI thresholds at the 
emergence and harvest dates in the growing season, valid for the entire 
study area. This solution was feasible because of the relative uniformity 
of local climate and of farming practices, i.e., leading to limited vari
ability in the emergence and harvest dates. 

3.3. APAR estimation 

The photosynthetically active radiation absorbed by the vegetation 
APAR (MJ/m2/day), defined as: 

APAR = fAPAR⋅PAR (1)  

where PAR (MJ/m2/day) is the solar irradiance in the spectral range 
between 0.4μm and 0.7μm where the absorption bands of photosyn
thetic pigments are located. We followed the generally accepted 
approximation that on average daily PAR is 48% of the daily at-surface 
downward shortwave irradiance (between 0.4μm and 2.5μm) (McCree, 
1972). The solar energy absorption by leaf pigments in the red band and 
high reflectance in the NIR band make the NDVI an appropriate 

Fig. 2. Workflow of the high resolution modeling system to estimate biomass accumulation and crop yield.  

Table 3 
The typical emergence and harvest dates applied to estimate the phenological 
NDVI thresholds for each crop in the study area.  

Crop type Wheat Maize Sunflower Melon 

Emergence Apr. 5 May 15 May 20 Jun. 1 
Harvest Jul. 25 Oct. 1 Sept. 15 Sept. 20  

Q. Chen et al.                                                                                                                                                                                                                                    
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indicator to estimate fAPAR. A wealth of studies explored the relation
ship between fAPAR and NDVI (Daughtry et al., 1992; Myneni and 
Williams, 1994; Chen, 1996; Gitelson et al., 2014). We use the linear 
equation proposed in Bastiaanssen and Ali (2003) as applicable to 
multiple crops: 

fAPAR = 1.257NDVI − 0.161 (with fAPAR = 0 if fAPAR < 0) (2)  

3.4. Estimation of temperature stress factor 

Air temperature (Ta) is an important parameter influencing the ac
tivity of key enzymes in photosynthesis, which is reflected by the tem
perature stress factor (fT). The temperature stress factor includes two 
terms (fT1 and fT2 ) here: 

fT = fT1 ⋅fT2 (3)  

fT1 = 0.8 + 0.02Topt − 0.0005Topt
2 (4)  

fT2 =
1.1814

1 + exp
(
0.2

(
Topt − 10 − Tmon

))⋅
1

1 + exp
(
0.3

(
− Topt − 10 + Tmon

))

(5)  

where Topt (◦C) denotes the temperature when photosynthetic efficiency 
reaches the maximum value and Tmon (◦C) is the monthly mean air 
temperature. fT1 reduces crop growth rate in very cold and hot habitats, 
and fT2 reflects a seasonal depression of crop growth rate when tem
perature departs from the optimal temperature. Field et al. (1995) 
proposed to estimate Topt as the mean air temperature in the month 
when NDVI reaches the maximum value. 

In a desert and oasis landscape, thermal heterogeneity of the land 
surface and the local variation of air temperature is not negligible. For 
regional-scale applications, the gridded Ta is usually obtained by inter
polating data collected at meteorological ground stations or provided by 
reanalysis datasets (with grid resolution at 0.1 - 0.5◦). Application of 
such data will smooth out the main thermal heterogeneity, given the 
sparseness of the stations and the coarse grid of reanalysis datasets, 
especially for small, fragmented regions like the SRB. In this study, the 
mean daily air temperature at 1 km resolution was applied to estimate 
biomass and yield at 10 m spatial resolution, assuming meteorological 
conditions over 1 km extent did not change dramatically. The 1 km daily 
mean air temperature Ta was estimated based on daily observations of 
LST (MOD11A1, 1 km) using the approach proposed by Alfieri et al. 
(2013). A linear relationship (Eq. (6)) between LST and the daily mean 
Ta measured at ground stations is established and further applied to 
obtain the gridded daily mean air temperature at the same resolution of 
the remotely sensed LST (i.e., 1 km, much higher than that of reanalysis 
datasets), 

Ta = LST⋅m + n (6)  

where m and n are coefficients. For areas within the same climate zone, 
m and n can be applied for an entire region. 

In this study, the gap-free LST time series generated from the MODIS 
LST product and Ta observations from three meteorology stations in the 
oasis area for the whole year in 2019 were used to establish the rela
tionship described in Eq. (6). Thus gap-free daily Ta at 1 km resolution 
were obtained for the entire SRB and aggregated to estimate the monthly 
temperature stress factors fT1 and fT2 . The 10 m fT1 and fT2 were obtained 
through linear interpolation to match the grid size of the other input 
data. 

3.5. Downscaling of soil moisture 

As regards the estimates of ET and the water stress indicator, one of 
the significant uncertainties is the low spatial resolution and discon
tinuous soil moisture data. At present, ASCAT soil moisture dataset is a 
long-term dataset with a relatively high spatial resolution (0.1 Degree) 
and is publicly available. Thus, in this study, a spatially continuous soil 
moisture dataset at high spatial resolution (1 km) was generated by 
downscaling the ASCAT soil moisture data utilizing multi-source remote 
sensing data and the Random Forest (RF) machine-learning model 
(Breiman, 2001). 

The covariance matrix to apply RF machine-learning model includes 
LST, NDVI, albedo, DEM, longitude, and latitude. The spatial patterns of 
the soil moisture in this arid/semi-arid region are mainly driven by 
precipitation and agricultural activities, which are related to the 
geographical location, elevation, temperature, and vegetation charac
teristics. These facts provide a good physical basis to downscale the soil 
moisture by applying the RF machine-learning model with the selected 
covariates. 

First, the 1 km, gap-filled MODIS LST, NDVI and albedo, DEM, 
longitude, and latitude were aggregated to the ASCAT grid scale. Then, 
the RF model was trained to obtain the relationship between the ASCAT 
soil moisture and the covariates. Finally, the trained RF machine- 
learning model was applied to the covariates at high spatial resolution 
(1 km) to obtain a spatially continuous soil moisture dataset with 1 km 
resolution. 

3.6. Estimation of ET and Rn and the field-scale water stress factor 

The indicator of water stress fH2O (dimensionless) is set equal to the 
Evaporative Fraction (EF) which better reflects the water availability to 
crops than vapor pressure deficit (VPD): 

fH2O = EF = λET
/
(Rn − G) (7)  

where λET (W/m2) is the bulk latent heat flux of the soil-vegetation 
unity, λ (J/kg) is the latent heat of ET (mm), Rn (W/m2) is the total 
net radiation flux, and G (W/m2) is the conductive heat flux from soil 
surface to deeper soil layer. 

In this study, a water and energy balance model, ETMonitor (Hu and 
Jia, 2015; Cui and Jia, 2021; Zheng et al., 2022), was used to estimate 
the daily ET. The inputs of ETMonitor include key surface properties, i. 
e., soil moisture, NDVI, albedo, and land cover, and atmospheric vari
ables, i.e., air temperature, wind speed, air humidity, pressure, precip
itation and at-surface downward shortwave and longwave radiations. 
The model equations and detailed description can be found in Hu and 
Jia (2015) and Cui and Jia (2021). 

Retrievals of actual ET by ETMonitor based on remote sensing data 
can capture the effects of irrigation, thus reflecting the actual irrigation 
water depths to some extent when lacking ancillary in-situ data. The 
performance of ETMonitor to derive actual ET over nearby irrigated 
oases of the Heihe river basin, which has a similar climate and land 
cover, had been evaluated based on the eddy covariance data (Hu and 
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Fig. 3. Daily NDVI time series by HANTS for wheat, maize, sunflower, and 
melon in 2019 in the SRB; the vertical lines indicate the emergence and harvest 
dates based on local knowledge (Table 3); the NDVI values at these dates were 
applied to the pixel-wise NDVI(t) to estimate the pixel-wise emergence and 
harvest dates. 
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Jia, 2015). The results show that ETMonitor provides satisfactory ET 
estimates with R2 (the square of the correlation coefficient) and RMSE 
(the root mean square error) equal to 0.92 and 0.59 mm/day, 
respectively. 

The pixel-wise daily Rn was estimated on the basis of the land surface 
radiation balance: 

Rn = SW↓⋅(1 − α) + ε⋅LW↓ − ε⋅δ⋅Ts
4 (8)  

where SW↓ (W/m2) and LW↓ (W/m2) are the at-surface downward solar 
radiation and downward thermal radiation, of which the daily values 
can be calculated by integrating the hourly ERA5 data, α is the surface 
albedo, ε is the land surface emissivity, δ is the Stefan-Boltzmann con
stant (5.67 × 10− 8 W/m2/K4), Ts (K) is the daily mean surface tem
perature, which was assumed equal to the daily mean air temperature 
with soil surface heat flux equal to zero at daily scale. 

In this study, the daily time series of ET and Rn at 1 km spatial res
olution was estimated by applying the ETMonitor model with the 
reconstructed NDVI, albedo, downscaled ASCAT soil moisture, and the 
ERA5 meteorological reanalysis data. 

For a heterogeneous region like the study area, the 1 km EF is still 
insufficient to capture the wetness conditions at the field scale. The ET 
and Rn can widely vary between cropland and the surrounding desert 
and crops with different phenology. Thus, a linear unmixing method was 
further applied to downscale the ET and Rn to 10 m, i.e., at the same 
spatial resolution as the crop map. 

The linear unmixing procedure to downscale ET and Rn is based on 
the 10 m crop classification map. The 10 m classification map is used to 
define the endmembers. The procedure contains three general steps: (1) 
calculate the fractional abundance of each land use and crop (defined as 
endmembers) using the classification in each coarse grid (1 km); (2) 
obtain the ET and Rn of each endmember in the coarse grid data by 
linear unmixing (least square fit) within a moving window including 11 
× 11 coarse grids as the first prediction of the 10 m ET and Rn of each 
endmember; (3) distribute homogeneously the coarse grid residual and 
update the ET and Rn estimation for each endmembers. 

The basic assumption of the linear unmixing method is that the ET 
and Rn of each coarse grid C is the weighted sum of the values of each 
endmember within the same grid: 

ET, Rn =
∑n

i=1
fi⋅ci (9)  

where n is the number of endmembers, fi is the areal fraction of class i 
within a coarse pixel, and ci is the value of class i. This unmixing 
approach captures the general differences in ET and Rn between crops 
and the surrounding desert and among crop types with distinctive 
phenological characteristics, mixed in one coarse grid. On the other 
hand, it ignores the variability within the same crop types within the 11 
× 11 coarse grids applied to solve Eq. (9). In other words, we assume 
that the spatial variability of ET and Rn within the nearby 11 × 11 coarse 
grids is only determined by the spatial variability of the fractional 
abundance of each land cover and crop type. Improvement in the results 
is expected by retrieving LST and estimating ET with satellite data at 
higher spatial resolution, such as Landsat 8/9 TIRS and SDGSAT-1 
thermal infrared images in future work (Hair et al., 2018; Chen et al., 
2022a). 

3.7. Estimation of biomass and yield 

The daily biomass (g/m2/day) production is the result of the effec
tive use of the absorbed solar energy, and limited by temperature and 
water stress: 

Biomass = APAR⋅εmax⋅fT ⋅fH2O (10)  

where εmax (g/MJ) is the maximum light use efficiency for biomass 

production, the value of which can be safely assumed to differ only 
between C3 and C4 crops according to Monteith (1972). In this study, we 
set εmax to 2.5 g/MJ for C3 crops (i.e., wheat, sunflower, and melon) and 
3 g/MJ for C4 crops (i.e., maize), based on literature, summarized in 
Bastiaanssen and Ali (2003). 

The crop yield is formed through the partition of the total accumu
lated biomass of a plant to the marketable (yield related) plant parts. A 
simple description of this conversion is by applying the harvest index 
and the water content of the yield-related component to the estimated 
dry biomass so that the yield can be expressed as: 

yield =
H

1 − θ
∑h

e
Biomass (11)  

where H (dimensionless) is the harvest index, i.e., the fraction of the 
biomass accumulated during the growing season allocated to the yield- 
related plant organ, θ (dimensionless) denotes the water content in the 
yield-related plant organ, e and h represent the crop emergence and 
harvest date, respectively. 

The harvest index and the water content are usually set to crop- 
specific values estimated on the basis of field experiments documented 
in literature (Bastiaanssen and Ali, 2003; Zwart et al., 2010). In this 
study, for spring wheat, maize, and sunflower, the harvest index was set 
to 0.35, 0.36, and 0.30 (Table 4), respectively, based on biomass mea
surements and growth analysis on plant samples conducted in the same 
study area (Chen et al., 2022b). The harvest index of melon was set to 
0.64 based on the study of Huang et al. (2012). The grain water content 
of spring wheat and maize was set to 12.5% and 14%, respectively, 
according to the national moisture content standard for grain storage 
(Standardization Administration of the People’s Republic of China, 
2008, 2018). The local practice is to trade sunflower seeds after drying a 
few days after harvest, when the water content is reduced to around 
25%. The water content of the local melon varieties is more variable 
(85%− 90%) than that of cereals. In this study, the water content of 
sunflower and melon is set to 25% and 87%, respectively, as an 
approximation. 

4. Results 

4.1. Crop phenology at high spatial resolution 

As illustrated in Fig. 3, clear differences exist in the estimated 
emergence and harvest dates of spring wheat, maize, sunflower, and 
melon, while the corresponding NDVI values (Table 5) are rather 
similar. This is, apparently due to the similar fractional ground cover 
associated with emergence and harvest, but attained at different mo
ments in time. Our analysis showed the spatial variability in the NDVI 
temporal profiles for each crop was rather limited, thus supporting the 
method to estimate the NDVI threshold according to the typical emer
gence and harvest dates in the entire area. The north – south pattern in 
Fig. 4 is explained to a large extent by the spatial distribution of the main 
crops. Spring wheat, mainly located on the south of the oasis, shows the 
most distinctive phenology features with the earliest start of the growing 
season. The emergence date of wheat is generally in early April, as 
shown in Table 6. The harvest date for spring wheat is between late July 
to mid-August. For maize and sunflower, the emergence date is gener
ally mid to late May. Maize has a longer growing season and a later 
harvest date than sunflower, which is generally till October. Among the 
four crops, melon, mainly located in the downstream desert-oasis 

Table 4 
The harvest index and the water content of the marketable product.  

Crop type Wheat Maize Sunflower Melon 

Harvest index (-) 0.35 0.36 0.3 0.64 
Moisture content (%) 12.5 14 25 87  
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region, shows the latest emergence date at the beginning of June. This is 
related to the relatively higher temperature requirement for the seed 
gemination of melon plants (Saberali and Shirmohamadi-Aliakbar
khani, 2020). Generally, the spatial variability in the emergence and 
harvest dates of each crop is moderate (Table 6), while the local 
phenological knowledge does not give any spatial variability on crop 
phenology. 

4.2. PAR and fAPAR 

The value of fAPAR is linearly related to NDVI (Eq. (2)) and gradu
ally changes during the growth of vegetation. Fig. 5 displays the fAPAR 
values for the spring wheat, maize, sunflower, and melon on days from 
mid of April to September as an example. For spring wheat, fAPAR 
reaches the maximum value in mid-June. The fAPAR maximum is in 
July for sunflower and August for maize and melon. In the peak month, 
when green vegetative parts are fully developed, fAPAR was around 0.8 
for spring wheat, maize, and sunflower, and 0.6 for melon. The lower 
peak for melon is caused by the lower planting density and limited 
vertical plant development. 

Fig. 6 illustrates the spatially averaged daily PAR estimated using the 
ERA5 meteorological hourly data. The upper envelope of the PAR time 
series (Fig. 6) suggests a potential seasonal trend under clear sky con
ditions. In the middle of the growth cycle, the daily value of PAR under 
clear sky can reach 160 W/m2, equivalent to 13.8 MJ/m2/day. In the 
SRB, in summer, drier air, higher solar radiation, longer sunshine 
duration, and larger daily amplitude of air temperature are favorable 
conditions for high yield agriculture. The troughs in Fig. 6 correspond to 
cloudy conditions, where the value of PAR can decrease to 40 W/m2, 
equivalent to 3.45 MJ/m2/day. Because of such a big gap, daily PAR is 
required to estimate the accumulated biomass and the final yield. 

4.3. Air temperature stress factor 

The daily mean Ta, required to determine fT1 and fT2 , is estimated as 
described in Sect. 3.4. We established a linear relationship between Ta 
and LST for each station separately and for all stations together. The 
results (Table 7) show that MODIS LST and Ta observations are linearly 
related with R (the correlation coefficient) varying between 0.77 to 
0.87. The m, n, and R in Eq. (6) in the relationships for each specific 
station and the ones for all stations did not differ significantly. This 
implies the possibility of using a single equation for the whole study 
area. Adopting the same relationship for the entire area only leads to an 
increment of RMSE on estimated air temperature between 0.3% and 
5.2%, with MAE between 0% and 9.2% (Table 8). Because of these re
sults, the relationship for all stations in Table 7 (m = 0.94 and n =
-13.38) was applied over the whole study area to estimate the pixel-wise 
daily mean Ta. 

As illustrated in Fig. 7, the spatial pattern of Ta with spatial resolu
tion of 1 km successfully reflects the distinctive thermal characteristic of 
different land covers and terrain elevation in the SRB. The cold moun
tain region shows the lowest Ta, i.e., Ta < 10 ◦C even in summer for most 
of the region. Most important, the Ta map captures rather well the finer 
details of the temperature variability within the oases and within the 
desert, in addition to the broad desert-oasis temperature pattern. The 
lower air temperature of narrow irrigated patches is clearly observable 
in the 1 km Ta map. In the desert area, daily mean Ta can be larger than 
35 ◦C. In the oasis region, under the influence of irrigation, Ta is 
significantly lower than the surrounding desert, i.e., between 15 ◦C and 
25 ◦C in the growing season. 

The temperature stress factor fT1 (Eq. (4)) expresses a regulation of 
temperature on plant growth for extremely cold or hot climates. fT1 

varies with the optimal temperature, and does not change with time. The 

Table 5 
NDVI thresholds to determine pixel-wise emergence and harvest dates for spring 
wheat, maize, sunflower, and melon.  

Crop type Wheat Maize Sunflower Melon 

Emergence 0.17 0.17 0.16 0.18 
Harvest 0.36 0.40 0.34 0.31  

Fig. 4. Pixel-wise crop emergence (a) and harvest (b) date in the SRB of croplands in 2019.  

Table 6 
Spatial averages of the emergency and harvest dates (DOY) and their standard 
deviation (days) for spring wheat, maize, sunflower, and melon.  

Crop type Wheat Maize Sunflower Melon 

Emergence 99 (11) 138 (17) 144 (13) 154 (18) 
Harvest 209 (13) 270 (12) 255 (14) 262 (14)  

Q. Chen et al.                                                                                                                                                                                                                                    



Ecological Modelling 475 (2023) 110182

9

results show that the mean fT1 in the cropland in the SRB is as high as 
0.98 – 1.0 with a standard deviation of less than 0.02, which indicates 
that the local climate is suitable for agriculture. The temperature stress 
factor fT2 (Eq. (5)) parameterizes how a plant adapts to the local climate. 
With the application of fT2 , the LUE is reduced when the air temperature 
is either lower or higher than the local optimal temperature. The fT2 for 
wheat, maize, sunflower, and melon during April to September (Fig. 8) is 
always larger than 0.91 (the deviation less than 0.06) with a seasonal 
trend following crop phenology. 

4.4. Water stress factor 

As described in Sect. 3.5, an RF machine-learning model was applied 
to obtain a spatially continuous soil moisture dataset with high spatial 
resolution using the gap-filled MODIS LST, NDVI, and albedo, SRTM 
DEM, longitude, and latitude as covariates. The trained RF model is well 
calibrated with a low RMSE of 0.06 and a high R2 of 0.92. In the original 
ASCAT map (e.g., Fig. 9a), the spatial details of soil moisture are clearly 
blurred. However, the main differences in soil moisture among oases, 

desert, and mountain vegetation are observable. Moreover, the com
parison of Fig. 9a and 9b reveals that the downscaled soil moisture is 
consistent with the details of desert-oasis pattern. Within the south oasis, 
clear differences in soil moisture were observable and explained by the 
crop pattern. ET and Rn were further downscaled based on the method 
introduced in Sect. 3.6 and used to estimate the water stress factor. 
Fig. 9d gives an example of the water stress factor on 16th Aug, indi
cating a range between 0.3 and 1.0. Generally, water stress is more 
serious in the north SRB than the south due to less water availability, as 
indicated by the downscaled soil moisture. In addition, the wheat area 
(refer to Fig. 1c) shows more severe water stress, since, in August, most 
of wheat had been harvested already. The observed differences in 
downscaled soil moisture and water stress indicator between the 
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Fig. 6. The spatially averaged daily PAR time series in the Shiyang river basin 
in 2019. 

Table 7 
Statistics of the linear regression parameters (m, n) and correlation coefficient 
(R) calculated at the available meteorological stations in the SRB.  

Station m n R 

Minqin 0.99 -13.80 0.81 
Wuwei 0.91 -13.45 0.77 
Jinchang 0.92 -12.77 0.87 
All stations 0.94 -13.38 0.81  

Table 8 
RMSE and MAE and their relative increment in the estimates of Ta using station- 
specific linear regressions and a single linear regression.  

Stations Station specific All stations Increment of 
relative error 

RMSE ( 
◦C) 

MAE ( 
◦C) 

RMSE ( 
◦C) 

MAE ( 
◦C) 

RMSE MAE 

Minqin 3.60 2.94 3.79 3.21 5.2% 9.2% 
Liangzhou 3.62 2.93 3.74 3.14 3.3% 7.2% 
Jinchang 2.91 2.31 2.92 2.31 0.3% 0  

Fig. 7. Spatial variability of daily mean Ta in Jul. 14 2019 in the SRB.  
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Fig. 5. Mean fAPAR and its standard deviation in space for spring wheat, maize, sunflower, and melon in the SRB in 2019.  
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northern and southern oasis are consistent with the allocation of irri
gation water, which tends to favor the southern oasis. 

4.5. Accumulated biomass and yield estimation 

Accumulated biomass in the maize-producing region (Fig. 10) ex
hibits higher values compared with the other crops. The biomass of 
wheat (Fig. 11) grows up earlier, consistently with the early growing 
season. The stage of rapid increase in biomass, i.e., higher photosyn
thesis rate, is from May to June for wheat, and June to August for the 
other crops. For C3 crops, i.e., wheat, sunflower, and melon, the mean 
value of accumulated biomass is between 1000–1500 g/m2. The rela
tively lower biomass accumulation of melon, compared with wheat and 
sunflower, is related to its shorter growing season and lower planting 
density. For maize, as a C4 crop type with a higher LUE, the mean 

biomass increases more rapidly and can reach over 2000 g/m2 at the end 
of the growing season. 

By specifying the harvest index and moisture content (see Sect. 3.7) 
for each crop type, the accumulated biomass can be converted to the 
final yield (Fig. 13). At basin level, the estimated yields of wheat and 
maize are 6.87 and 8.53 t/h, respectively, which are very comparable 
with the officially reported data in the Gansu Development Yearbook 
2020. The relative errors for the two main grain crops compared to the 
census data are less than 5% (Table 9). At the county level, the estimated 
wheat yields of Liangzhou, Minqin, Gulang, Jinchuan, and Yongchang 
are 6.07, 5.20, 5.40, 5.55, and 6.95 t/ha, respectively, with relative 
errors equal to 0.87%, 24.2%, 9.7%, 12.5%, and 7.2% (Fig. 12). For 
maize, the estimated yields in Liangzhou, Minqin, Jinchuan, Yongchang, 
and Gulang are 8.86, 7.18, 8.87, 8.25, and 8.22 t/ha. The relative errors 
for maize yield compared with the census data in Liangzhou, Minqin, 
Jinchuan, and Yongchang are less than 5%. In Gulang, the relative error 
is up to 40%. The exact reason for the gap in Gulang has not been found. 
There is no sign that the growth of maize in Gulang county is under 
higher stress from remote sensing signals (e.g., the value of NDVI). The 
Gulang census data for maize yield is more variable during 2014 – 2019, 
ranging from 5.98 to 9.95 t/ha. Accordingly, this gap may be partly due 
to a poorer representativeness of the samples used in the census data and 
the unsuitable setting of the local harvest index in the model. To eval
uate the estimated yield of sunflower, which is missing in the official 
census data, yield data from field interviews in Minqin county has been 
used. These fields have received a better nutrient and water supply. The 
relative error of the estimated sunflower yield (6.38 t/ha) deviates by 
5% from the real yield (6.0 t/ha). Since only the regional total yield of 
melon and other fruits has been recorded in the officially reported data, 

Fig. 9. Original ASCAT soil moisture at 10 km resolution (a), downscaled soil moisture at 1 km (b), the corresponding ET (c) estimated using the downscaled soil 
moisture, and the water stress factor at 10 m (d) in the SRB on Aug. 16th, 2019. 
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Fig. 8. Monthly temperature stress factor fT2 for wheat, maize, sunflower, and 
melon in the SRB based on data in 2019. 
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the validation of melon yield has been done only in the Minqin county, 
where fruits other than melon only account for a very small portion. The 
relative error of the estimated melon yield (52.24 t/ha) is 16%, 
compared with the officially reported yield (44.93 t/ha). 

5. Discussion 

The modeling approach developed in this study was conceived to 
describe the response of highly heterogeneous desert-oasis system to 
climate variability and land and water management. The issues to be 
addressed were: a) the spatial variability in crop phenology; b) the 
spatial variability in crop conditions and their impact on absorption of 
photosynthetic light; c) the larger contrast in thermal conditions be
tween desert and oases and within the oases; d) the spatial variability of 

available soil water and its dependence on irrigation; e) the temporal 
and spatial variability, modulated by soil and growth conditions, of crop 
response to available soil water and f) the relationship between biomass 
and marketable yield. 

5.1. Crop phenology 

In crop-growth dynamic models, the phenology, namely the emer
gence and harvest dates, is usually determined by a set of temperature 
sums (thermal times), associated with each phenological stage (Hijmans 
et al., 1994). To calculate temperature sums, a reference (baseline) 
temperature must be known for each crop, likewise the values of tem
perature sums associated with each phenological stage and each crop. 
This approach is difficult to apply in the case of the desert-oasis agro
ecosystem addressed by this study for a two-fold reason: the extreme 
sparseness of the meteorological stations in the oases and the absent 
knowledge on the baseline temperature and the thermal times. 
Accordingly, we explored an alternate approach: see Sect. 3.2 for a 
detailed description. This method considers the specific characteristics 
of different crops and makes effective use of limited local phenological 
knowledge to determine the NDVI thresholds at the emergence and 
harvest dates in the growing season. The core assumption is the spatial 
variability in the temporal NDVI profiles does not modify completely 
their shape, so that the thresholds estimated on the average NDVI pro
files are applicable to the pixel-wise profiles. If local phenological ob
servations were available, the emergence and harvest dates could be 
estimated on the basis of the temperature sums applying to each 
phenological stage, then the corresponding NDVI values would retain 
the spatial variability of the temperature sums. This would lead to an 
even finer description of crop phenology, avoiding the use of the same 
NDVI threshold in the entire area. 

Fig. 10. Spatial distribution of accumulated biomass in croplands in the SRB in 2019 (a), and (b) and (c) are full 10 m resolution maps of the areas shown in Fig. 1d 
and 1e. 
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Fig. 11. Spatially averaged accumulated biomass for wheat, maize, sunflower, 
and melon during the growing season in the SRB in 2019; the shaded areas 
indicate the spatial variability with a range equal to ± one standard deviation. 
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5.2. Absorption of photosynthetic light (fAPAR) 

The efficiency of the absorption of the PAR is determined by the 
concentration and type of leaf pigments, which vary significantly 

depending on varieties, fertilization, and more in general crop condi
tions. This spatial and temporal variability is hard to capture, without 
the support of multi-spectral remote sensing, although it is an essential 
element of LUE-based modeling of biomass accumulation and crop yield. 
To this purpose, we applied multi-spectral images at high spatial reso
lution. A wealth of studies explored the relationship between fAPAR and 
NDVI (Daughtry et al., 1992; Myneni and Williams, 1994; Chen, 1996; 
Gitelson et al., 2014). We use the linear equation proposed in Bas
tiaanssen and Ali (2003), as applicable to multiple crops including the 
ones in the SRB. Quantitative remote sensing measurements can be 
interpreted with the support of radiative transfer modeling in vegetation 
canopies to obtain generalized relationships between spectral reflec
tance and fAPAR (Goward and Huemmrich, 1992). Field-scale 

Fig. 12. Relative bias on yield (blue bars, left axis) and the fractional areas (black line with dot, right axis) of wheat (a) and maize (b) at county level in the SRB, 
2019; fractional areas are fractions of the total area of each crop in the five counties. 

Fig. 13. Spatial distribution of crop yield in the SRB, 2019 (a), (b) and (c) are full 10 m resolution yield maps of the areas shown in Fig. 1d and 1e.  

Table 9 
Accuracy of the estimated yields of wheat and maize at basin level of the SRB 
compared with the census data.  

Crop 
type 

Estimated yield ±
standard deviation (t/ha) 

Census (t/ 
ha) 

Bias (t/ 
ha) 

Relative 
difference (%) 

Wheat 5.87 ± 1.3 6.11 -0.24 3.9 
Maize 8.53 ± 1.93 8.31 0.22 2.6  
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experiments by Tedeschi et al. (2011) and Tedeschi et al. (2017) showed 
that the melon crop yield under saline-sodic stress, will be reduced due 
to the decreasing leaf area and biomass production. These studies imply 
that the estimation of fAPAR can be further improved by considering 
field-scale soil conditions. 

5.3. Thermal conditions 

In a desert and oasis landscape, thermal heterogeneity of the land 
surface and the local variation of air temperature is not negligible, as a 
consequence of the large variability in hydrological conditions between 
the desert and the oases and within the oases. Proper characterization of 
spatial and temporal variability of thermal conditions is a critical aspect 
of a broad range of ecosystems. For regional-scale applications, air 
temperature is usually interpolated from the meteorological ground 
stations or provided by reanalysis datasets (with grid resolution at 0.1 - 
0.5◦). Neither of these solutions would capture the details of water 
related thermal conditions in the oases of the SRB. Land surface tem
perature is a measure of the local equilibrium in heat fluxes in response 
to water conditions. This leads to using LST as a predictor of air tem
perature, as done in this study. The estimation of air temperature is 
affected by not negligible errors (Table 8), but still relatively small 
compared with the large difference between oases and desert, i.e., 
15–25 ◦C as noted (Fig. 7). Possible improvements in future studies 
include the use of additional periodic components in the HANTS time 
series reconstruction or the use of the different method for this purpose, 
and the use of a denser network of weather stations if available. 

5.4. Available soil water 

In the SRB, as in any irrigated area, the soil water is largely deter
mined by irrigation. Accurate and detailed data on actually applied 
irrigation water are rarely available and the use of remote sensing re
trievals of soil water content is gaining support (Zaussinger et al., 2019). 
In the SRB, serious water conflicts exist between ecosystem preservation 
and agriculture and between different irrigation zones. In the oases, 
water availability varies and irrigation time is different for crops with 
different phenology. Thus, in this study, we applied remotely sensed soil 
moisture to account for the application of irrigation water. The extrac
tion of information from microwave data, capturing the water condi
tions, is frequently hampered by low spatial resolution, i.e., 10 km – 25 
km. Such kind of resolution cannot capture the heterogeneity in soil 
water conditions within the oases and the sharp contrast at the 
oasis-desert boundary. This is then a two-fold problem: a) soil water 
content must be estimated at a spatial resolution consistent with the 
heterogeneity of the irrigated oases and b) the root zone soil water 
content must be estimated. The latter issue is addressed in the next 
paragraph in relation to the ETMonitor system. To address the first issue, 
we first evaluated candidate soil water condition data products to 
conclude that in 2019 only the ASCAT data product could capture the 
main features of the pattern in soil water determined by irrigation in the 
oases (Fig. 10). To downscale the ASCAT data product, we identified 
multiple candidate covariates to develop a multi-dimensional machi
ne-learning model. The covariates are the drivers of the spatial pattern 
of soil moisture, i.e., vegetation, soil surface temperature, albedo, and 
elevation (see Sect. 3.5). As shown in Sect. 4.4, this model could be 
accurately calibrated, and delivers estimates of soil water content at 1 
km spatial resolution, which is sufficient to distinguish soil water con
ditions in the broad irrigated and not irrigated patches within the oases 
(Fig. 9b). 

5.5. Crop response to available soil water 

Soil water availability determines the rapid crop response through 
the regulation on the stomatal conductance and therefore efficiently 
influence the carbon assimilation efficiency. This response is determined 

by soil conditions, canopy characteristics, and the meteorological con
ditions expressed by the difference between actual and potential ET. 
Actual ET was estimated with ETMonitor (Sect. 3.6) using a suite of 
remote sensing observations, including soil available water as described 
above. In this way, actual ET includes the contribution of irrigation 
water, i.e., it reflects the actual irrigation water depths. This is done by 
estimating the root zone soil water content using a parameterization 
based on the top soil water content (see Sect. 3.5) and NDVI (Hu and Jia, 
2015). The accuracy of ETMonitor has been documented against eddy 
covariance measurement of ET at a number of sites worldwide, to yield 
an overall RMSE equal to 0.93 mm/day and R equal to 0.75, applying to 
multiple cropland sites (Zheng et al., 2022). The downscaling procedure 
described (Sect. 3.6) assumes that the actual ET of each crop type does 
not change within each moving window (11 х 11 km2). This notwith
standing, the higher resolution ET captures correctly the differences 
between irrigated and not irrigated patches, as for example between 
wheat and maize fields in the southern oasis on Aug. 16th (Fig. 9d). A 
different solution to obtain high resolution estimates of available soil 
water and actual ET will be offered by a new version of ETMonitor, 
which uses land surface temperature rather than microwave radiometry 
to characterize soil and water conditions. This version makes use of LST 
observations at higher spatial resolution such as Landsat 8/9 TIRS and 
SDGSAT thermal infrared images (Hair et al., 2018; Chen et al., 2022a). 

5.6. Biomass and marketable yield 

Harvest index and the maximum LUE are the most significant cali
bration parameters. For each crop, both harvest index and maximum 
LUE are relatively well known to vary within a certain range (Bas
tiaanssen and Ali, 2003; Zwart et al., 2010). For grain crops, it is usually 
accepted that the harvest index within the same climate zone is fairly 
stable for a specific crop due to the high heritability, unless severe 
stresses from nutrient, extreme weather, and water occur (Hay, 1995). 
The well-simulated wheat and maize yields prove the rationality of the 
fixed harvest index in the study area. For melon, the harvest index is 
more variable between different melon varieties and environmental 
stress can reduce the potential harvest index. Huang et al. (2012), in the 
same study area, showed that the melon harvest index can increase 
significantly with increasing salinity of irrigation water. This influence 
should be further studied. As regards the limitations in growth rate, 
besides temperature and soil water stress, various models integrate the 
dependence on vapor pressure deficit, atmospheric CO2 concentration, 
diffuse radiation ratio, etc. (Running et al., 2000; Veroustraete et al., 
2002; He et al., 2013; Zhang et al., 2016). These models are designed to 
better account for climate forcing, plant physiology, and canopy struc
ture in vegetation productivity but have rather demanding data 
requirements. 

In the SRB, water security depends largely on melt water from the 
Qilian mountains, while food security and sustainable development in 
the region require equitable water allocation between the southern and 
northern oasis. The model described in this study could be useful to 
support monitoring of agroecosystem services towards water and food 
security. 

It should be noted that the issues discussed above apply to a broad 
range of agroecosystems, particularly the fragmentation of land use and 
the resulting heterogeneity of crop and water conditions. The solutions 
we developed and applied in this study of the SRB, therefore, are rele
vant to a broader range of land and water systems than the desert-oasis 
in the SRB. Particularly, the procedures applied to replace detailed local 
data on crop conditions, soil water availability, and crop response to 
water stress are effective solutions to take advantage of the information 
conveyed by remote sensing observations. This concept fits neatly in the 
argument of Jones et al. (2017), who emphasized that data scarcity is 
even more important than theory limitations in agricultural monitoring 
and forecast. 
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6. Conclusions 

The modeling approach developed in this study was conceived to 
describe the response of highly heterogeneous desert-oasis system to 
climate variability and land and water management. The modeling 
system at high spatial resolution is applicable to a broad range of 
agroecosystems, particularly to deal with the fragmentation of land use 
and the resulting heterogeneity of crop and water conditions. The so
lutions we developed and applied in this study of the SRB, therefore, are 
relevant to a broader range of land and water systems than the deser- 
oasis in the SRB. Particularly, the procedures applied to replace 
detailed local data on crop conditions, soil water availability, and crop 
response to water stress are effective solutions to take advantage of the 
information conveyed by remote sensing observations. 

Crop yield estimation in heterogeneous regions is challenging due to 
the gaps in local data. The problems of both data continuity in space and 
time and the scaling issue were considered. In general, the continuous 
change of crop conditions at field scale during the growing season has 
been well captured. As regards soil properties, soil moisture, and envi
ronmental conditions, e.g., the air temperature, the data gaps are miti
gated by applying data fusion and downscaling. The evaluation of 
estimated crop yield against official census data and field interviews 
proves the reliability of the LUE based model and the data processing we 
applied. Knowledge on soil type and conditions, especially on soil 
salinity, would improve the estimation of crop response to water in 
water limited region. 
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