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Abstract—Generating power system states that have similar
distribution and dependency to the historical ones is essential for
the tasks of system planning and security assessment, especially
when the historical data is insufficient. In this paper, we described
a generative model for load profiles of industrial and commercial
customers, based on the conditional variational autoencoder
(CVAE) neural network architecture, which is challenging due to
the highly variable nature of such profiles. Generated contextual
load profiles were conditioned on the month of the year and
typical power exchange with the grid. Moreover, the quality of
generations was both visually and statistically evaluated. The
experimental results demonstrate our proposed CVAE model
can capture temporal features of historical load profiles and
generate ‘realistic’ data with satisfying univariate distributions
and multivariate dependencies.

Index Terms—CVAE, generative model, load profiles, synthetic
data

I. INTRODUCTION

For power system planning and security assessment, it is

of great significance to examine system performance through

abundant scenarios [1], [2]. However, when historical data is

scarce or larger data sets are required for more precise analysis,

it is crucial to building generative models for reproducing un-

limited non-repeating data with similar marginal distributions

and multivariate dependencies to historical data.

Parametric methods, such as hidden Markov models [3] and

Gaussian mixture models (GMM), [4] have been utilized to

describe historical data patterns. Recently, vine-based copula

models have been proposed (e.g., in [5]) to capture marginal

distributions and high-dimensional dependencies of historical

power system states. However, vine-based copula models are

naturally asymmetric and have hard-to-quantify training bias

due to sequential model selection.

With the development of machine learning technologies,

data-driven generative models, such as variational autoen-
coder (VAE) [6], have been proposed to learn features of high-

dimensional historical data and then create ‘unseen’ ones. On

this basis, conditional VAE (CVAE) [7] made it possible to

generate data under specific conditions. In [8], the impact of

the CVAE model’s output noise on its generative performance

This work is supported by the Chinese Scholarship Council.

has been investigated with a use case of learning and generat-

ing snapshots of country-level load states [9]. However, such

snapshots of large load aggregations have limited diversity and

variability.

In this paper, we bridge the gap by investigating the CVAE

model’s capacity to generate synthetic load profiles that are

representative of those from a large variety of individual users.

Compared to [8], this work aims to generate consumption

patterns that are both temporal (instead of spatial) and at a

lower aggregation level, where the loads are more stochastic.

The main contributions of this paper are as follows:

• We analyze the properties of daily load profiles of an

anonymized data set of 5,000 industrial and commercial

customers.

• For better training and generation performance, we in-

troduce data split, month condition, and power exchange

intensity calculation strategies during data processing.

• We evaluate the performance of the CVAE model under

different time (month) and power exchange intensity

conditions with both visual and statistical metrics.

II. DATA GENERATION MECHANISM

In this section, a representative multivariate load state

generation mechanism was described, based on the conditional
variational autoencoder (CVAE). The description summarized

that in [8].

A. CVAE-based generative model

The CVAE is a neural network architecture that is trained

to learn the salient features of historical data by mapping

(encoding) historical system states onto a lower-dimensional

latent space where the latent distribution is approximately

normal - and transforming latent vectors back (decoding)

into a high-dimensional state space [10]. The decoder is

used in conjunction with contextual information c to generate

representative states (which can be omitted to obtain a regular

VAE model). Consequently, the model is able to generate

samples with a similar distribution to the historical data by

transforming normally distributed samples in the latent space

back to the data space. We note that the latent (i.e., hidden)

representation of a data point is used solely to facilitate

reconstruction and synthesis. It does not need to be imbued

with a particular meaning.978-1-6654-8032-1/22/$31.00 ©2022 IEEE
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Fig. 1. Schematic of a CVAE model. (a) The structure of a CVAE model for training. (b) The structure of a CVAE model when it’s utilized as a generator.

In the training process, the specific structure of the CVAE

algorithm is depicted in Fig. 1a. The encoder maps the

d-dimensional input data x to the code z in the lower-

dimensional latent space through k hidden layers He
l , l =

1, . . . , k. Weight matrices W e
l , bias vectors bel and the context

c are utilized in the encoding process as(
μ
σ

)
=

(
Wμ

W σ

)
(a(W e

k (. . . a(W
e
1 (x, c) + be1) . . .) + bek))

+

(
bμ

bσ

)
, (1a)

z =μ+ ε� σ , (1b)

where a represents an element-wise nonlinear activation func-

tion. Vectors μ and σ parameterize an input-dependent normal

distribution in the latent space. The output z is sampled

accordingly, using ε, a vector that is sampled from a standard

normal distribution, and the Hadamard product �. Mirroring

the encoder network, the decoder maps the sampled latent

space code z to the d-dimensional data μ′ and σ′ using

(
μ′

σ′

)
=

(
Wμ′

W σ′

)
(. . . a(W d

1 (z, c) + bd1) . . .) +

(
bμ

′

bσ
′

)
, (2)

where W d
l and bdl denote weight matrices and bias vectors for

decoding, respectively. μ′ and σ′ parameterize a z-dependent

normal distribution in the x space.

After the training process, only the decoder part of the

trained CVAE network is utilized to generate data. Latent

space codes z̃ are sampled from the standard normal distri-

bution N (0, I) (see Fig. 1b). Then, data space samples x̃
are sampled from distribution N (μ′(z̃, c), σ′(z̃, c)) as x̃ =
μ′ + ε� σ′, whose parameters are determined by z̃ and c.

B. Optimization goal

During training, weight matrices W and bias vectors b are

updated iteratively to minimize the loss function [10]

L = LDKL
+ LRe. (3)

The Kullback-Leibler loss LDKL
=

∑
i DKL(qφ(z|xi)||p(z))

is the sum over all training data points xi (assumed i.i.d.)

of the Kullback–Leibler divergence between that point’s pos-

terior distribution qφ(z|xi) and the prior distribution p(z)
(chosen as the standard normal distribution). The recon-
struction loss LRe, representing the negative log-likelihood

of reconstructing the inputs xi via their latent space codes

and the decoder that is parameterized by θ, is written as

−∑n
i=1 EZ∼qφ(z|xi)[logPθ

(xi|Z)]. With a constant nd
2 log 2π

omitted, the LRe is computed as

LRe ≈ 1

2

n∑
i=1

d∑
j=1

((xi,j − μ′
i,j)

2/σ′2
i,j + log σ′2

i,j), (4)

where n denotes the total number of observations used for

training. During training, the full-sample sum in loss func-

tions LDKL
and LRe are replaced by sample batch averages.

Inspired by [8], the sample-dependent output noise parameter

σ′ is co-optimised during training, and the noise ε�σ′(z̃, c) is

used in the generative process. Also, a weighing factor β was

multiplied with LDKL
to adjust the ratio between two losses

in (3) as L = βLDKL
+ LRe [11].

III. STUDY DESCRIPTION

We used the CVAE-based generative model described above

to generate daily load profiles (24 hours) of individual network

connections (i.e., users), conditioned on the month of the year

and power the user typically exchanges with the grid. The

performance of the model was analyzed using a load data

set of 5,000 users. The quality of generations was evaluated

visually as a function of conditioning parameters. In addition,

performance was validated statistically by measuring uni-

variate distributions and multivariate dependencies. Moreover,

an experiment was conducted to test the model capacity of

interpolation.

A. Data source

Anonymized historical electricity consumption/generation

data of 5,000 industrial and commercial electricity users

during 2020 was obtained from Alliander NV [12], a Dutch

distribution network owner and operator. The time resolution

of the data is 15 minutes. It is worth noting that the data set’s

time label is UTC (Coordinated Universal Time). However,

the actual local time for electricity users is CET (Central

Authorized licensed use limited to: TU Delft Library. Downloaded on November 29,2022 at 08:15:23 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 2. Marginal histogram and joint density of historical loads at 10:00 and
21:00 during one year.

Historical data

Week labels Month labels

Test data Training data

Split

Conditions

Strategy1 Strategy2

Power exchange
intensity

Strategy3

Sort and scale

N(0,1)

Data filter Data filter

Data scale Data scale

GenerationTesting Training

Load data flow Extra information flow

Fig. 3. Data processing scheme.

European Time). During standard time and daylight saving

time, their time differences are 1 and 2 hours, respectively. The

energy data was converted from integer kWh values to average

power with multiples of 4 kW. Compared with country-

level load profiles [9], the energy consumption of individual

users involves more variability and less predictability. Fig. 2

illustrates the large variety of daily profiles, by plotting the

marginal histogram and joint density of all historical load

profiles at 10:00 and 21:00. Note the logarithmic density

used, indicating a large concentration around (relatively) small

values. Moreover, data points located in the upper-left and

bottom-right corners stand for users can not only consume

but also generate energy. All these factors above make it

challenging for the CVAE model to capture the load patterns.

B. Data process

The data processing scheme is shown in Fig. 3. The histori-

cal data were split, scaled, and conditioned. Three data process

strategies used in this study are as follows.

Fig. 4. Training process and its failure. (a) Training process of Kullback-
Leibler loss. (b) Training process of reconstruction loss.

1) Strategy I - Data split: The historical data were ran-

domly split into training and test sets as blocks of one week

with a proportion of 4:1. This strikes a balance between

separating individual days (subsequent days are not sufficiently

independent) and separating larger blocks (insufficient cover-

age in the test set).

2) Strategy II - Month Conditions: In this study, one of

the conditions (contextual information) c is the month of the

year. We used the sin (·) and cos (·) values of a month as the

condition of load data. For a specific month m, its condition

was encoded as sin (m12 · 2π) and cos (m12 · 2π). This encoding

reflects the continuity and circularity of this feature.

3) Strategy III - User intensity: After inspecting historical

load profiles, we noticed that some users had relatively regular

load profiles, whereas others had irregular behavior with rare

consumption or generation spikes. Some connections were

only active during a small part of the year. To construct a

conditioning feature that represents the ‘size’ of electricity

users, we calculated the daily average power exchange by

averaging over all non-zero values of the absolute power

(consumption or generation) for each user and each day. For

each customer, this value was averaged over the five days with

the largest daily average power exchange to obtain the user
intensity. The intensity values were used to assign to each

customer as a rank order c ∈ [0, 1]. Due to the large range of

power values present in the data (see Fig. 2) and the relative

scarcity of data with high peak exchange, we trained the model

only on profiles of customers with an intensity up to 100 kW.

Ultimately, 4,049 users remained, with 1,170,110 and 307,720

load profiles in the training and test sets, respectively. The

values were scaled by 1/(100 kW ) for training.

C. Training and Data Generation

The parameters of the generative models were tuned for

optimal performance. The input and output layers had 96

dimensions (24 hours with 15-minute resolution). Accordingly,

96-dimensional daily load profiles were used for training and

generation. The network contained 3 hidden layers in the

encoder with dimensions of 800; the bottleneck layer had

12 nodes (12-dimensional latent vector). The decoder also

Authorized licensed use limited to: TU Delft Library. Downloaded on November 29,2022 at 08:15:23 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 5. 10 randomly sampled historical and generated load profiles and average daily load from customers of various sizes in different months.

Fig. 6. Mean value of historical and generated data in different clusters.

had 3 hidden layers with dimensions of 800. The contextual

condition c consists of a 2-dimensional month condition and

a 1-dimensional per-user power exchange intensity.

The ReLU activation function was used, except for the

generation of μ (μ′) and σ (σ′) leading up to the bottleneck

and output layers. The adaptive moment estimation (Adam)

weight optimizer [13] was utilized with default settings to

iteratively optimize the value of weight matrices W and bias

vectors b. The batch size and learning rate parameter α for

training were 1,280 and 10−5 respectively. The weighting

factor β was set as 8.5. Training and data generation of the

model was conducted in Python using tensorflow on the

Google Colab environment using the GPU option. The training

process is shown in Fig. 4. The Kullback-Leibler loss rapidly

stabilizes during training. However, the reconstruction loss of

the test data set starts to deviate from the training loss and

fluctuates strongly after 1,000 training epochs, which indicates

an overfitting of training data and general training instability.

To find a compromise between loss minimization and gener-

alization capacity of the trained model, 1,000 training epochs

Authorized licensed use limited to: TU Delft Library. Downloaded on November 29,2022 at 08:15:23 UTC from IEEE Xplore.  Restrictions apply. 



were used in this research. During the generation process, the

total, monthly, and per user’s amounts of the synthetic data

are identical to the training set.

IV. RESULTS

A. Comparison of daily load profiles

To validate the generation capacity of our proposed CVAE

model, we first visually inspect the generated contextual load

profiles. We define the customers with the first and last 30% of

per-user intensities as small and large customers, respectively,

and the remaining 40% of users as medium users. In this

experiment, we condition the generation of profiles on the

months of April and July, and the ‘small’ and ‘large’ customer

classes (random sampling of c in their respective ranges).

Fig. 5 shows the mean value of load profiles under each

condition combination (generated versus measured), and 10

randomly sampled load profiles alongside 10 random histor-

ical profiles. The mean generated load under each condition

combination has a similar curve shape to the training data.

Moreover, compared with historical data, the displayed load

generations retain randomness and show a sense of realism,

indicating that the CVAE model captures temporal features of

historical load profiles.

B. Clustering performance

The following experiment compares all historical and gen-

erated daily load profiles for a more elaborate test of the

distribution of generated load profiles. We first split the

training data set into 8 clusters by the K-means algorithm

[14], using the squared Euclidean distance metric. Then, we

assign the generated and test load profiles to the nearest cluster.

The mean values of training, test, and generated loads for each

cluster are depicted in Fig. 6a-h, in decreasing order of training

data volume. The most voluminous cluster has small average

load values. Note that the apparent gap in cluster I is smaller

than the resolution of the data. Some clusters correspond to

larger loads and generators (mainly solar PV). In all cases, the

mean values of profiles assigned to the cluster match well.

C. Marginal distribution comparison

The third experiment compares the cumulative distribution

of historical and generated data via different time scales and

users of various sizes. The experimental results are shown in

Fig. 7; note the discretization of the real measurements, visible

in these graphs. Fig. 7a exhibits the cumulative distribution of

loads in different months. The CVAE model is able to generate

contextual load profiles that follow the monthly distribution

variation of historical loads. The hourly comparison of the

load depicted in Fig. 7b shows that the curves of generations

overlapped with the historical training data, demonstrating

quite similar hourly distributions. Moreover, the comparison

result shown in Fig. 7c stands for a good capture of load

patterns of different customer sizes. Finally, we test the

interpolation capacity of the CVAE model. Specifically, we

use a virtual month condition (11.5) to generate load profiles,

and the result is shown in Fig. 7d. The cumulative distribution

Fig. 7. Cumulative distribution comparison of historical and generated data
via different time scales and for users of various sizes.

of the load profiles with a month condition 11.5 lie between

the distribution of loads in November and December. This

demonstrates that the trained CVAE model can generate data

using nonexistent conditions during the training process. Also,

these profiles have features of data generated using nearby

conditions.

D. Statistical tests

To further test the capacity of the CVAE model to generate

realistic load profiles, non-visual statistical tests are imple-

mented to inspect different aspects of generations. Specif-

ically, in this experiment, the Kolmogorov-Smirnov test,

autoencoder-based test, and energy test are utilized to exam-

ine univariate marginal distributions, point-wise multivariate

dependencies, and multivariate dependencies of population,

respectively. Interested readers can refer to [8] for more

information on these tests. In addition to generations with

noise ε�σ′(z̃, c) added (these were the data used in previous

experiments), we also test the performance of commonly used

noise free generations μ′(z̃, c) (see also the discussion in [8]).

Evaluating the performance on the Kolmogorov-Smirnov

test (Fig. 8a), which assesses the accuracy of the marginal

distributions, shows a small difference between the training

and test sets, and a similar further difference in the distribution

accuracy of the generated data. Comparing the results to

those reported in [8] for country-level data, we see a slight

degradation of the noisy generator. This could be because the

individual load profiles are less smooth than the country-level

snapshots, and a relatively large amount of synthetic noise

ε� σ′(z̃, c) is added to base profiles μ′(z̃, c). This can result
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Fig. 8. (a) Kolmogorov-Smirnov test. (b) Autoencoder-test. (c) Energy test

in the generation of extreme values, which reduces the test

scores.

The autoencoder test trains a separate (regular) autoencoder

on the training data. This permits quantification of the quality

of individual load profiles. The distributions of reconstruction

errors obtained using real and generated data are shown in

Fig. 8b. The training and test patterns show similar distri-

butions, and the ‘noisy’ CVAE generates distributions with

slightly worse reconstruction errors. However, the ‘noise-

free’ variation produces data that is significantly too smooth,

resulting in reconstruction errors that are approximately two

orders of magnitude lower.

Finally, the energy test quantifies the similarities between

high-dimensional distributions of profiles. The results in

Fig. 8c shows a similar performance between the generated

profiles (noisy) and the test data, suggesting good general-

ization performance. Again, the generated data is a lot more

realistic than when no noise is inserted in the output stage

(‘noise free’).

V. CONCLUSION AND FUTURE WORK

In this paper, we have investigated the capacity of the

CVAE-based model to generate contextual load profiles, ran-

domly selected across a mix of customers: pure loads, pure

generators, and mixed load/generators. The load profile gen-

erator was trained on data from more than 4,000 industrial

and commercial customers, and conditioned on the month

of the year and the ‘size’ of the customer, the latter being

based on its power exchange with the grid on days with high

grid usage. The experimental results demonstrate the model

is able to generate visually realistic profiles and perform well

on a number of statistical tests. The results also reconfirm the

importance of explicitly including (trained) noise in the final

stage of the profile generator. In future work, we aim to refine

our model to better control the production of extreme load

values and more complex dependencies between subsequent

moments in time.
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