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A B S T R A C T

For planning of power systems and for the calibration of operational tools, it is essential to analyse system
performance in a large range of representative scenarios. When the available historical data is limited,
generative models are a promising solution, but modelling high-dimensional dependencies is challenging. In
this paper, a multivariate load state generating model on the basis of a conditional variational autoencoder
(CVAE) neural network is proposed. Going beyond common CVAE implementations, the model includes
stochastic variation of output samples under given latent vectors and co-optimizes the parameters for this
output variability. It is shown that this improves statistical properties of the generated data. The quality of
generated multivariate loads is evaluated using univariate and multivariate performance metrics. A generation
adequacy case study on the European network is used to illustrate model’s ability to generate realistic tail
distributions. The experiments demonstrate that the proposed generator outperforms other data generating
mechanisms.
1. Introduction

In order to plan power systems and calibrate operational tools,
it is essential to analyse system performance through a large range
of representative scenarios [1,2]. Historical data is a key source of
such scenarios, but when the available data set is too small for the
desired application or when it cannot be made available for privacy
reasons, it becomes valuable to have a model that can generate rel-
evant data in abundant quantities. The challenge is that generated
scenarios should embody both univariate distributions and multivariate
inter-dependencies of the historical data [3].

A common approach has been to fit parametric probabilistic models
to historical scenarios, especially load states. In [4], Gaussian mixture
models (GMM) have been proposed to augment load data in distribution
networks. Another study has introduced hidden Markov models to
generate house-hold electric loads [5]. More recently, a load generator
has been designed using time-varying queuing models [6]. Due to
the curse of dimensionality, it is especially challenging to use para-
metric methods for generation of high-dimensional states [7, chapter
3]. Copula-based models are one class of generative models that does
scale to higher dimensions, either using the Gaussian copula, or by
‘stacking’ copulas in a vine structure, possibly in combination with
dimension-reduction schemes [3].

✩ This work was supported by the Chinese Scholarship Council.
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E-mail addresses: c.wang-8@tudelft.nl (C. Wang), e.sharifnia@tudelft.nl (E. Sharifnia), z.gao1@uu.nl (Z. Gao), s.h.tindemans@tudelft.nl (S.H. Tindemans),
p.palensky@tudelft.nl (P. Palensky).

As vine-based copula models are highly asymmetric and therefore
prone to bias, it is appealing to investigate ‘native’ high-dimensional
models, such as neural networks. The variational autoencoder (VAE) [8]
is an unsupervised machine learning model based on a deep neu-
ral network architecture. It has been successfully used in generating
electricity load series, such as theft detection [9] and electric vehicle
load profiles [10]. However, the validation of generated data often
remains limited to visual comparisons, which is not straightforward for
snapshots of larger and more complex electricity systems.

Moreover, most VAE implementations do not make full use [11] of
the flexibility permitted by the mathematical framework in [8]. Output
noise tuning and training [12,13] has only recently been considered,
with a focus on image and video data sets. In power system related data
generation applications, the output noise parameter is usually treated
as a hyperparameter (i.e. a preset value that controls the learning
process) [14] and noise is not actually inserted into samples [9,10,15–
17].

This paper bridges those identified gaps by investigating the impact
of output noise and its parameterization, and by analysing generated
data using performance metrics. This is done for the VAE and the con-
ditional VAE (CVAE), in the context of large-scale spatial load patterns
of European countries. This lays the basis for wider applications of this
vailable online 9 August 2022
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Fig. 1. Schematic of the CVAE.

method to synthetic load generation at lower aggregation levels, where
consumption patterns are inherently more variable.

The main contributions of this paper are:

• We show how a sample-dependent output noise parameter can be
co-optimized in the training process and how this noise is used in
the generative process.

• We put forward a set of data quality metrics for generative mod-
els, consisting of three statistical tests for univariate distributions
and multivariate dependencies.

• We introduce a simple multi-area adequacy assessment model
that is used to test tail distributions.

• Through comprehensive experiments, we show the performance
and practicality of VAE- and CVAE-based load generators in com-
parison with Gaussian copula and conditional generative adversarial
network (cGAN) models.

2. Data generation mechanism

In this section, a representative multivariate load state generation
mechanism is proposed, based on the conditional variational autoencoder
(CVAE).

2.1. CVAE-based generative model

The CVAE is a neural network architecture that is trained to learn
the salient features of historical data by mapping (encoding) historical
system states onto a lower-dimensional latent space where the latent
distribution is approximately normal, and transforming latent vectors
back (decoding) into a high-dimensional state space [18]. The decoder
is used in conjunction with contextual information 𝑐 to generate repre-
sentative states (which can be omitted to obtain a regular VAE model).
Consequently, the model is able to generate samples with a similar
distribution to the historical data, by transforming normally distributed
samples in the latent space back to the data space. We note that the
latent (i.e. hidden) representation of a data point is used solely to
facilitate reconstruction and synthesis. It does not need to be imbued
with a particular meaning.

The structure of the CVAE algorithm is depicted in Fig. 1. The
encoder maps the 𝑑-dimensional input data 𝑥 to the code 𝑧 in the lower-
dimensional latent space through 𝑘 hidden layers 𝐻𝑒

𝑙 , 𝑙 = 1,… , 𝑘.
Weight matrices 𝑊 𝑒

𝑙 , bias vectors 𝑏𝑒𝑙 and the context 𝑐 are utilized in
the encoding process as
(

𝜇
𝜎

)

=
(

𝑊 𝜇

𝑊 𝜎

)

(𝑎(𝑊 𝑒
𝑘 (… 𝑎(𝑊 𝑒

1 (𝑥, 𝑐) + 𝑏𝑒1)…) + 𝑏𝑒𝑘))

+
(

𝑏𝜇

𝑏𝜎

)

, (1a)

𝑧 =𝜇 + 𝜖 ⊙ 𝜎 , (1b)
2

where 𝑎 represents an element-wise nonlinear activation function. Vec-
tors 𝜇 and 𝜎 parameterize an input-dependent normal distribution in
the latent space. The output 𝑧 is sampled accordingly, using 𝜖, a vector
that is sampled from a standard normal distribution, and the Hadamard
product ⊙.

Mirroring the encoder network, the decoder maps the sampled
latent space code 𝑧 to the 𝑑-dimensional output data 𝑥̂ using
(

𝜇′

𝜎′

)

=
(

𝑊 𝜇′

𝑊 𝜎′

)

(… 𝑎(𝑊 𝑑
1 (𝑧, 𝑐) + 𝑏𝑑1 )…) +

(

𝑏𝜇′

𝑏𝜎′
)

, (2a)

𝑥̂ =𝜇′ + 𝜖 ⊙ 𝜎′ , (2b)

where 𝑊 𝑑
𝑙 and 𝑏𝑑𝑙 denote weight matrices and bias vectors for decoding,

respectively. 𝜇′ and 𝜎′ parameterize a 𝑧-dependent normal distribution
in the 𝑥 space.

2.2. Training and generation process

In the training stage, the whole structure of the CVAE model is
utilized as Fig. 1. Weight matrices 𝑊 and bias vectors 𝑏 are updated in
an iterative way with the goal of minimizing the loss function [18]

 = 𝐷𝐾𝐿
+ 𝑅𝑒. (3)

The Kullback–Leibler loss 𝐷𝐾𝐿
=

∑

𝑖 𝐷𝐾𝐿(𝑞𝜙(𝑧|𝑥𝑖) ∥ 𝑝(𝑧)) is the sum
over all training data points 𝑥𝑖 (assumed i.i.d.) of the Kullback–Leibler
divergence between that point’s posterior distribution 𝑞𝜙(𝑧|𝑥𝑖) and the
prior distribution 𝑝(𝑧) (chosen as the standard normal distribution).
The posterior distribution 𝑞𝜙(𝑧|𝑥𝑖) is determined by the parameters 𝜙
of the encoder network and represents the mapping of the point 𝑥𝑖 into
a normal distribution in the latent space using (1a) and (1b). As the
Kullback–Leibler divergence between two normal distributions can be
evaluated directly [14], the Kullback–Leibler loss is computed as

𝐷𝐾𝐿
= 1

2

𝑛
∑

𝑖=1

𝑑
∑

𝑗=1
(−1 + 𝜎2𝑖,𝑗 + 𝜇2

𝑖,𝑗 − log 𝜎2𝑖,𝑗 ), (4)

where 𝑛 denotes total number of observations used for training and
(𝜇𝑖, 𝜎𝑖) are evaluated for data point 𝑥𝑖 and condition 𝑐 using (1a).

The reconstruction loss 𝑅𝑒 stands for the negative log-likelihood of
reconstructing the inputs 𝑥𝑖 via their latent space codes and the decoder
that is parameterized by 𝜃. The reconstruction loss is thus computed as

𝑅𝑒 = −
𝑛
∑

𝑖=1
E𝑍∼𝑞𝜙(𝑧|𝑥𝑖)[log𝑃𝜃 (𝑥𝑖|𝑍)] (5)

≈ 1
2

𝑛
∑

𝑖=1

𝑑
∑

𝑗=1
((𝑥𝑖,𝑗 − 𝜇′

𝑖,𝑗 )
2∕𝜎′2𝑖,𝑗 + log 𝜎′2𝑖,𝑗 ) +

𝑛𝑑
2

log 2𝜋,

where the final step involves a single-point approximation of the expec-
tation and (𝜇′

𝑖 , 𝜎
′
𝑖 ) are obtained from the randomly generated latent code

𝑧(𝑥𝑖) and the condition 𝑐 using (2a). During training, the full-sample
sum in loss functions (4) and (5) are replaced by batch-sample averages.
The constant 𝑛𝑑

2 log 2𝜋 of 𝑅𝑒 is omitted.
After the training process, only the decoder part of the trained CVAE

network is utilized to generate data. Latent space codes 𝑧̃ are sam-
pled from the standard normal distribution  (0, 𝐼) (see Fig. 1). Then,
data space samples 𝑥̃ are sampled from distribution  (𝜇′(𝑧̃, 𝑐), 𝜎′(𝑧̃, 𝑐)),
whose parameters are determined by 𝑧̃ and 𝑐 using (2a). We note
that although the amount of available training data determines the
information contained within the model, there is no limit to the amount
of data that can be generated.

In this way, a complex data distribution in the 𝑥 space is constructed
as a continuous superposition of normal distributions that are parame-
terized by the normally distributed coordinate 𝑧. Using the procedure
above, the encoder and decoder networks are trained to adapt any
distribution to this normally distributed latent space. We note that
other distributions besides the normal distribution can be used as the
prior for the latent space coordinate 𝑧 [19,20] – selecting the best latent
space representation for a particular class of problems remains an open
research problem.
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Table 1
Overview of model permutations used in experiments.

Strategy (with 𝛽) Objective function Generation

Auto 𝜎′, Noisy 𝛽𝐷𝐾𝐿
+ 𝑅𝑒  (𝜇′(𝑧̃, 𝑐), 𝜎′(𝑧̃, 𝑐))

Auto 𝜎′, Noise free 𝛽𝐷𝐾𝐿
+ 𝑅𝑒 𝜇′(𝑧̃, 𝑐)

Fixed 𝜎′, Noisy 𝛽𝐷𝐾𝐿
+ ̃𝑅𝑒  (𝜇′(𝑧̃, 𝑐), 𝑠𝐼)

Fixed 𝜎′, Noise free 𝛽𝐷𝐾𝐿
+ ̃𝑅𝑒 𝜇′(𝑧̃, 𝑐)

2.3. Network and output noise co-optimization strategy

It is common for CVAE implementations to generate data 𝑥̃ not by
sampling from  (𝜇′(𝑧̃, 𝑐), 𝜎′(𝑧̃, 𝑐)) via (2b), but by directly using the

ean value 𝜇′(𝑧̃, 𝑐) (the maximum likelihood sample). Moreover, the
tandard deviation 𝜎′ is not co-optimized in the training process of (3),
ut considered a hyperparameter that fixes 𝜎′𝑖,𝑗 = 𝑠 identically in all
imensions, so that (5) can be replaced by

̃𝑅𝑒 =
1
2

𝑛
∑

𝑖=1

𝑑
∑

𝑗=1

(𝑥𝑖,𝑗 − 𝜇′
𝑖,𝑗 )

2

𝑠2
. (6)

n contrast, we investigate the model in which the parameters 𝜎′ of
he output noise distribution are co-optimized as a function of 𝑧 during
raining, as was recently also (independently) proposed in [13]. In
ddition, we explicitly add output noise 𝜖 ⊙ 𝜎′(𝑧̃, 𝑐) to the generated
ata. To compare the different approaches, the quality of the generated
ata is evaluated under all four combinations (Table 1): whether 𝜎′

s co-optimized in the training stage (Auto 𝜎′) or set to a fixed value
Fixed 𝜎′); whether the noise 𝜖⊙𝜎′(𝑧̃, 𝑐) is added to the outputs (Noisy)
r not (Noise free).

.4. Loss function weight tuning strategy

The two loss terms have opposing effects. The Kullback–Leibler
oss 𝐷𝐾𝐿

ensures a good fit with the prior distribution that samples
re generated from, thus suppressing spurious generated points at the
xpense of ‘smoothing’ the output. The reconstruction loss 𝑅𝑒, on the
ther hand, promotes exact reconstruction of the training data. In this
aper, in addition to the output noise, we also study the effect of a
euristic weighting factor 𝛽 [21] for the Kullback–Leibler loss term
𝐷𝐾𝐿

on statistical properties of the generated data.
All aforementioned combined strategies are explicated in Table 1.

heir impacts to the quality of generations will be investigated in the
ollowing sections. Particularly, the settings of standard deviation 𝜎′

nd weight 𝛽 influence the objective function in the training process
nd will ultimately affect the generated data. On the other hand, the
se of output noise, 𝜖⊙𝜎′(𝑧̃, 𝑐), will directly impact the data generation
tage.

. Case study: European load data

In this section, the performance of our proposed CVAE-based gen-
rative model is analysed using a European load data set. This is done
ith three data quality metrics that measure univariate distributions
nd multivariate dependencies. Impacts to the quality of generated data
re investigated under the experimental settings in Table 1, using both
onditional and regular VAEs.

.1. Data source and generation

Historical hourly load data for 32 European countries between
013 and 2017 was obtained from the Open Power System Data
latform [22] (package version 2019-06-05). Columns of AL, CS, CY,
B, TR and UA were dropped for incomplete records. The historical
ata was randomly split into training and test set in blocks of one week
ith the proportion of 4:1 (35,148 training and 8569 test samples). The
3

raining set was min–max normalized before being fed into the CVAE
odel and the inverse transformation was applied to generate samples.
he context information 𝑐 is the hour of day. Both total and hourly
olumes of the generated data are the same with the training data set,
n order to balance them for visual and statistical analysis. However,
e emphasize that the purpose of constructing such a generative model

s to have the ability to generate limitless non-repeating data, e.g. for
educing the risk of overfitting in downstream machine learning tasks.

The parameters of the generative models were tuned for optimal
erformance, for both the VAE and the CVAE. The network contained
hidden layers in the encoder with dimensions of 24 and 16, respec-

ively; the bottleneck layer had 8 nodes (8-dimensional latent vector).
he decoder also had 2 hidden layers with the same dimensions in
everse order. Comparisons against 4-neuron and 16-neuron bottleneck
evealed that a smaller bottleneck results in excessive loss, whereas a
arger bottleneck insufficiently forces the network to learn features. In
he CVAE model, the hourly time-of-day was encoded cyclically using
ine/cosine representation.

The ReLU activation function was used, except for the generation
f 𝜇 and 𝜎 leading up to the bottleneck and output layers. The adaptive

moment estimation (Adam) weight optimizer [23] was utilized with
default settings to iteratively optimize the value of weight matrices 𝑊
and bias vectors 𝑏. The batch size and learning rate related parameter 𝛼
for training was 64 and 10−4 respectively and 20,000 training iterations
were used. Training and data generation of the model was conducted in
Python using tensorflow on the Google Colab environment using the
GPU option. The code used for this paper is available for download [24,
25].

3.2. Data quality metrics

To test a generative model’s ability to reproduce the features of
historical data, especially in high dimensions, statistical tests are re-
quired. Three tests are put forward to examine different aspects of the
generated data set, in comparison with the historical data.

3.2.1. Kolmogorov–Smirnov test for univariate marginal distributions
We used the two-sample Kolmogorov–Smirnov (K–S) test [26] to see

whether the generated data was able to reproduce the marginal load
distributions for each of the countries in the data set. For a given output
dimension (load in a single country), historical and generated data are
compared. Under the null hypothesis that historical and generated data
are drawn from the same model, the 𝑝-values should follow a uniform
distribution. In other words, when the historical data is compared
against itself, the cumulative distribution of 𝑝-values should lie on
the diagonal. Thus, for generative models, the closer the cumulative
distribution of 𝑝-values lies to the diagonal, the higher the similarity
between the two distributions.

Clearly, the models are unlikely to exactly reproduce the historical
distribution, thus large deviations from the ideal curve will show up for
large-sample tests. Nevertheless, to analyse the degree of performance
of various models, we use repeated tests on smaller sample sets that
result in clear differentiation, as in [3]. In this paper, 0.5% of the data
set, i.e. 176 data points out of 35,148, were randomly drawn from
training and generated data set, and then a 𝑝-value was calculated
accordingly. This process was repeated 5,000 times for each country
and a curve was constructed from all 𝑝-values.

3.2.2. Autoencoder-based point-wise test for multivariate dependencies
Autoencoder (AE) neural networks have been proven to be highly

sensitive anomaly detectors [27]. Unlike (C)VAE networks, AEs have
no stochastic layers and only minimize the reconstruction loss 𝑟 =
∑

𝑖 ‖𝑥𝑖 − 𝑥𝑖‖2∕𝑑. An AE learns to compress and decompress the data
based on properties of the training set. As a result, data points with
dependencies that deviate substantially from that in the training set

tend to have higher reconstruction errors.
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Fig. 2. (a) Box plots of the original and generated load values in the Netherlands,
based on 1459 data points at 2:00. Data was generated by CVAE using ‘Fixed 𝜎′,
Noise free’ approach with different 𝜎′. (b) Distribution comparison of the original and
generated load data in the Netherlands, based on 1,459 (2:00), 1,465 (10:00) and 1,465
(21:00) data points, respectively. Data was generated by CVAE using ‘Fixed 𝜎′, Noise
free’ method (𝜎′ = 0.1) and ‘Auto 𝜎′, Noisy’ scheme.

A separate AE network was trained for this test, with hyperpa-
rameters equal to that of the CVAE model, except for the stochastic
layers and objective function. Reconstruction errors of all data points
(historical or generated) are plotted as cumulative distributions for
easy comparison. As a test for overfitting of the autoencoder on the
training data, the autoencoder test was performed on the training and
test data. The two distributions visually overlapped, suggesting this is
not a concern.

3.2.3. Energy test for multivariate dependencies of population
Another two-sample test, the energy test [28], was conducted to

examine whether the multivariate dependencies of the population were
well acquired from the training set. The energy test, computed using the
PyTorch library torch-two-sample [29] uses a user-specified number of
permutations (200 was used) to calculate a 𝑝-value. The same as for the
K–S test, we used random subsets of 0.5% of the generated population
and historical population. We repeated this process 1,000 times to draw
a distribution of 𝑝-values and compare it with the uniform distribution
(which would be expected if the data was drawn from the historical
distribution).

3.3. Results

3.3.1. Visual comparison of univariate distributions
In this experiment, the CVAE with fixed 𝜎′ and no output noise was

used to generate 1459 load demands, conditioned on the time 2:00.
Results for the Netherlands are shown in Fig. 2a, for various values of
𝜎′. As the output noise assumed in training increases, the variability of
the generated points decreases (because noise is not actually added).
When 𝜎′ = 0.1, the distribution of generations is the closest to that of
historical data. This setting will be used for all further experiments with
fixed 𝜎′.1

Fig. 2b further compares data generated using the ‘Fixed 𝜎′’ and
‘Auto 𝜎′, Noisy’ schemes and the training data. Conditioning on 2:00,
10:00 and 21:00 was performed, and results are shown for the Nether-
lands. Both methods are able to qualitatively reproduce the features of
the data.

3.3.2. Multivariate correlations
The top row of Fig. 3 shows the loads of all countries for 10

different snapshots at 2:00, relative to the mean load in those countries

1 Note that we only fix a single parameter in this case. An approximate
isual match of the box plots is a necessary condition for a good overall fit,
ustifying the choice 𝜎′ = 0.1 for this comparison.
4

Fig. 3. (a), (b) and (c) display 10 typical ratios of 32 countries’ historical and generated
data to the historical mean values at 2:00. (d), (e) and (f) demonstrate the Pearson
correlation coefficient matrices of 6 (out of 32) countries’ historical and generated data
at 2:00. The horizontal and vertical dimensions in the matrices are Spain (ES), Croatia
(HR), Iceland (IS), Italy (IT), Luxembourg (LU) and the Netherlands (NL).

at 2:00. Compared to historical data (a) and the noisy generator (c),
samples generated by the noise-free generator clearly show higher
correlations between countries. This is confirmed by the correlation
analysis between six countries in the bottom row of Fig. 3. By omitting
output noise, the noise-free generator generated (too) highly correlated
samples.

Sensitive experiments for the multivariate dependencies will be
conducted in the following sections using the autoencoder-based point-
wise test. The accurate representation of multivariate dependencies will
be important for the analysis of supply shortfalls in Section 4.

3.3.3. Influence of noise generation
In this experiment, the influence of the four strategies listed in Ta-

ble 1 were tested with 𝛽 = 1. Results for the statistical tests described in
ection 3.2 are shown in the first column of Fig. 4. The K–S test results
nd autoencoder results show that the inclusion of output noise is es-
ential to improve marginal distributions (Fig. 4a) and increase output
ariability to the level of the historical data (Fig. 4e). In addition, the
utoencoder and energy tests show that automatic tuning of the noise
trength (Auto 𝜎′) is essential to improve the multivariate dependencies
f the generated samples. Together, this experiment shows that the
‘Auto 𝜎′, Noisy’) generator outperforms the other approaches listed
n Table 1. This was to be expected given the mathematical theory
ehind the CVAE (which includes noise), but is at odds with common
mplementations.

.3.4. Comparison between conditional and regular VAE
In the second column of Fig. 4, the performance of the CVAE and

AE models (with 𝛽 = 1) is compared. The CVAE model slightly
utperforms the VAE model in all categories. One possible explana-
ion is that the CVAE model has access to the context 𝑐 (time of

day), which effectively increases the dimension of the latent space.
Because of its better performance, we continue using the CVAE model
in subsequent experiments, but the results suggest that a VAE model
delivers comparable performance, and may be preferable when no
natural conditioning variable is available.

3.3.5. 𝛽 Sensitivity test
The third column of Fig. 4 shows the impact of 𝛽 (values 1, 3, 10) on

the performance of the CVAE (Auto 𝜎′, Noisy) model. As 𝛽 is increased,
the performance on the K–S test (Fig. 4c) improves, indicating an
improved ability to learn marginal distributions. On the other hand,
performance on the autoencoder test (Fig. 4g) worsens, suggesting that

points ‘outside’ of the training point cloud are generated for large 𝛽.
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Fig. 4. Results of statistical tests. Each column denotes a set of experiments (noise generation, training condition, value of 𝛽 and model family). The three rows depict results for
the three tests described in Section 3.2.
t

Finally, the energy test (Fig. 4k) indicates that a moderate value of 𝛽
can strike a balance between the opposing requirements: the curve for
𝛽 = 3 is closest to the desired result. Nevertheless, depending on the
application, it may be desirable to choose 𝛽 larger or smaller.

3.3.6. Comparison of generative models
In the fourth column of Fig. 4, the quality of data sampled from

different generative models was investigated. The values of 𝛽 for CVAE
and VAE models (both Auto 𝜎′, Noisy) were tuned for optimal perfor-
mance on the energy test (see previous section). In addition, Gaussian
copula [30] and cGAN [31] models were included for comparison. The
basic cGAN model was modified to use Wasserstein losses [32]. Both
its generator and discriminator are deep neural networks; each has
two hidden layers of 256 neurons, all activated with LeakyReLU (𝛼 =
0.2) except in the output layers, where linear and sigmoid activation
functions are used for the generator and discriminator. Weights of the
neurons are optimized with root mean square propagation (RMSprop)
available from python package Keras.

The K–S test shows the outstanding ability of the Gaussian copula
model to reproduce marginal load distributions (a design feature of
copula models [3]). This model also shows competitive performance
on the autoencoder and energy tests. However, it will become clear in
Section 4 that its tail-performance is worse than that of the (C)VAE
models. The cGAN model shows the best performance on the autoen-
coder test, indicative of its ability to generate samples with realistic
features. However, the model significantly underperforms on the K–S
and energy tests, which suggests that the generated samples, though
‘realistic’, are unevenly distributed through the space of possible states.
The optimized CVAE and VAE models are competitive on all three tests,
5

with the CVAE model slightly outperforming the VAE model. o
4. Multi-area adequacy assessment

Next, we investigated the performance of the load generation mech-
anisms by using it for a multi-area adequacy assessment study, based
on the ENTSO-E Mid-term Adequacy Forecast 2020 (MAF2020) [33].
Multi-area adequacy assessment measures the sufficiency of generating
capacity compared with the load on each of the nodes in the power
system under transmission constraints. This can be considered a stress
test of the generative model, as the outcomes are sensitive to high-load
events (tail distributions) and their dependencies between countries.

Monte Carlo simulations were used to estimate Loss Of Load Expec-
ation (LOLE [h/year]) and Expected Energy Not Served (EENS [MWh/

year]). LOLE is the expected number of hours per year during which
the supply does not meet demand. EENS is the expected amount of
energy demand per year that cannot be supplied. Parameters from the
MAF2020 study were used to construct a model for generating capacity
and net transfer capacities between countries. They were combined
with generated and historical load data to define a probabilistic model
for the Monte Carlo simulations. We emphasize that the model thus
constructed is not meant to be an accurate representation of the Euro-
pean grid, but a stylized problem that serves as a comparative testing
ground for the generative models.

4.1. Multi-area adequacy assessment structure

We consider the network as a directed graph (to allow for asymmet-
ric flow limits) where nodes are zones, edges are connections between
zones, and edge capacities are transfer capacities. Each sampled state 𝑤
is represented by the available generating capacity 𝑔𝑤𝑖 and demand 𝑑𝑤𝑖
f each node 𝑖. Based on the flow constraints and dispatching policy,
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Table 2
Calculated risks of selected countries (with and without interconnection) using historical data and all generative models.

Country LOLE (h/y) EENS (MWh/y)

Historical data CVAE VAE Gaussian copula cGAN Historical data CVAE VAE Gaussian copula cGAN

AT 0.03(2) 0(0) 0.18(4) 0.32(5) 0.05(2) 4(2) 0(0) 33(11) 42(10) 10(5)
NL 0.74(8) 0.12(3) 0.80(8) 4.6(2) 3.6(2) 119(17) 33(11) 300(45) 1135(67) 1743(129)
UK 37.8(6) 50.6(7) 54.1(7) 50.2(7) 223.6(14) 5.20(10)⋅104 8.77(15)⋅104 1.16(2)⋅105 7.75(14)⋅104 4.99(4)⋅105

AT (island) 0.74(8) 1.01(9) 0.88(9) 0.80(8) 0.61(7) 221(33) 435(54) 334(45) 273(40) 255(41)
NL (island) 63.8(7) 65.2(8) 69.2(8) 69.4(8) 99.7(9) 4.13(7)⋅104 4.35(7)⋅104 4.73(7)⋅104 4.61(7)⋅104 6.74(8)⋅104
UK (island) 1026(3) 982(3) 884(3) 1033(3) 1965(4) 4.28(2)⋅106 4.24(2)⋅106 3.88(2)⋅106 4.38(2)⋅106 1.078(3)⋅107
the consumed power 𝑝𝑤𝑖 and load curtailment 𝑐𝑤𝑖 for each node can be
calculated, related by

𝑐𝑤𝑖 = max(0, 𝑑𝑤𝑖 − 𝑝𝑤𝑖 ). (7)

We determine 𝑐𝑤𝑖 (and implicitly 𝑝𝑤𝑖 ) by solving a quadratic problem
with variables 𝑐𝑖 (curtailment) and 𝑓𝑖𝑗 (flows), which aims to minimize
the total load curtailments and assumes that curtailments are balanced
between areas [34], relative to the demand in that area:

𝑐𝑤 = arg min
𝑓,𝑐

∑

𝑖∈

1
2𝑑𝑤𝑖

𝑐2𝑖 + 𝑐𝑖 (8)

𝑓𝑖𝑗 ≤ 𝑓𝑖𝑗 ≤ 𝑓𝑖𝑗 , ∀(𝑖𝑗) ∈  (9)

0 ≤ 𝑐𝑖 ≤ 𝑑𝑤𝑖 , ∀𝑖 ∈  (10)

𝑑𝑤𝑖 − 𝑔𝑤𝑖 ≤
∑

𝑗<𝑖
𝑓𝑗𝑖 −

∑

𝑗>𝑖
𝑓𝑖𝑗 + 𝑐𝑖 ≤ 𝑑𝑤𝑖 , ∀𝑖 ∈  (11)

ere,  and  are the sets of connections (from 𝑖 to 𝑗 with 𝑖 < 𝑗) and
reas respectively. Constraints on power flow 𝑓𝑖𝑗 from node 𝑖 to node
are given in (9); (10) limits curtailment and (11) enforces flow and

enerating power constraints. The objective function (8) has positive
efinite structure and the constraints are linear, so this optimization
roblem is strictly convex and has a unique solution. This optimization
roblem was solved using the python package quadprog [35].

.2. Power system model

A European adequacy assessment model was developed, based on
he target year 2025 data from the ENTSO-E MAF2020 [33]. The net
ransfer capacities between countries are defined as the summation
f transfer capacities between their constituent zones, as reported in
he MAF2020. Since details of generators and unit capacities are not
eported in the released dataset, we model the total generating capacity
nd the unit capacities in each country as follows. The assumed generat-
ng capacity of each country is a summation of conventional generating
apacity in its zone(s) plus 5% of nameplate wind power capacity. Unit
izes are set per country as the closest value under 500 MW that is a
ivisor of the generating capacity; a unit availability of 83% is used.
yprus has no connection to other countries, so a unit capacity of 95
W is used to avoid excessive outages.

.3. Multi-area adequacy assessment results

To compare the CVAE, VAE, Gaussian Copula, and cGAN generators,
hey were trained on historical load data from 2017 and 2018 for 35
ountries, retrieved from the Open Power System Data Platform ([22];
olumns for CS, IS and UA were omitted). Each model was used to
enerate 100,000 random load samples. The ‘Auto 𝜎′, Noisy’ setting
as utilized for the CVAE and VAE models, and 𝛽 was set to 10 for

mproved reproduction of the marginal distributions. For each model,
,000,000 Monte Carlo generation samples were drawn and combined
ith random load samples to estimate the LOLE in each country.
ig. 5 depicts the estimated LOLE values for all generative methods
nd historical data. The area of each sector of the disc represents
he LOLE obtained using a particular load states generating model.
umerical results for three countries with low (Austria, AT), medium
6

Fig. 5. Comparison of LOLE estimates using historical load data and generative load.
The area of each sector of the disc represents the LOLE of the corresponding model
(20 h/y shown for scale in legend).

(The Netherlands, NL) and high (UK) risk levels are shown in Table 2.
Standard errors for the least significant digits are shown in parentheses.
Moreover, to investigate the beneficial effect of interconnection – and
therefore the importance of accurate multivariate modelling – risks
for these countries are also reported in the absence of interconnection
(‘island’).

By design, the Gaussian copula reproduces the marginal distribu-
tions of the historical data. Therefore, the calculated risk for islanded
systems is consistent with those for historical data. However, the results
demonstrate that this model tends to overestimate risks for intercon-
nected nodes (countries). The cGAN generative model tends to cause
an overestimation of risks with both islanded and interconnected nodes,
sometimes very significantly (e.g. the LOLE values for the UK and
Ireland). In comparison, both the VAE and CVAE models generate
data that results in risk estimates that are closer to those observed
using historical data, although deviations exist from country to coun-
try. This suggests both models are able to substantially represent the
multivariate tail distribution of the historical data.

The capability of generating load conditioned on hours is an ad-
ditional advantage of CVAE in comparison with VAE in the adequacy
assessment context. Load curtailments usually accrue during high load
hours. So, time of day could be used as a control variable for an
importance sampling Monte Carlo scheme that preferentially samples
load states at high load hours and compensates for the resulting bias
by sample re-weighting.

5. Conclusions and future work

In this paper, we have investigated the performance of CVAE- and

VAE-based models to generate multivariate load states. Our inclusion
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of (1) sample noise in the generator and (2) co-optimized output noise
parameters results in generated samples that show better marginal
distributions and dependencies, when compared with common CVAE
implementations (fixed noise parameter, noise omitted from the gen-
erator). A loss weighting factor 𝛽 (hyperparameter) can be used to
une the performance of the model. Performance was tested using three
tatistical tests and in a Monte Carlo generation adequacy study. The
C)VAE based models significantly outperformed Gaussian copula and
GAN models on at least one of these tests and were competitive on all
thers.

With access to contextual information, the CVAE model slightly
utperformed the VAE model. Moreover, such information can be used
or targeted analysis, e.g. as part of a Monte Carlo importance sampling
cheme that selects specific hours of the day.

In future work, we will further investigate the universality of our
roposed load generation scheme by applying it to lower load aggre-
ation levels, such as household-level data. At this level, the privacy-
reserving nature of synthetic data becomes very beneficial and should
e carefully tested in addition to the distributional aspects.
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