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ABSTRACT 
When working in a group, it is essential to understand each other’s 
viewpoints to increase group cohesion and meeting productivity. 
This can be challenging in teams: participants might be left misun-
derstood and the discussion could be going around in circles. To 
tackle this problem, previous research on group interactions has 
addressed topics such as dominance detection, group engagement, 
and group creativity. Conversational memory, however, remains 
a widely unexplored area in the feld of multimodal analysis of 
group interaction. The ability to track what each participant or a 
group as a whole fnd memorable from each meeting would allow 
a system or agent to continuously optimise its strategy to help a 
team meet its goals. In the present paper, we therefore investigate 
what participants take away from each meeting and how it is re-
fected in group dynamics.As a frst step toward such a system, 
we recorded a multimodal longitudinal meeting corpus (MEMO), 
which comprises a frst-party annotation of what participants re-
member from a discussion and why they remember it. We investi-
gated whether participants of group interactions encode what they 
remember non-verbally and whether we can use such non-verbal 
multimodal features to predict what groups are likely to remember 
automatically. We devise a coding scheme to cluster participants’ 
memorisation reasons into higher-level constructs. We fnd that 
low-level multimodal cues, such as gaze and speaker activity, can 
predict conversational memorability. We also fnd that non-verbal 
signals can indicate when a memorable moment starts and ends. 
We could predict four levels of conversational memorability with 
an average accuracy of 44 %. We also showed that reasons related 
to participants’ personal feelings and experiences are the most 
frequently mentioned grounds for remembering meeting segments. 
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1 INTRODUCTION 
Many things can go wrong when working with a team. If some 
people are more dominant than others, they end up the only ones 
talking and other participants can feel left out. Sometimes people 
think about their own contribution more than listening to others. 
This can be illustrated by the fact that humans remember more of 
the information they said than the information they listened to [10]. 
This is less true for people with better interpersonal skills [15], but 
not everyone has those. For a productive meeting, participants need 
to listen to each other and build on each other’s ideas [9]. Here, 
conversational agents can be of help. Agents giving feedback on 
(non-)verbal context of the meeting already show great promise in 
improving meeting productivity [11, 26]. To further tackle group 
meeting support, such agents need to be able to automatically 
understand which moments are most important, build upon them 
throughout the interaction, and identify the moments of needed 
intervention. To do this, an agent needs to have a conversational 
memory model. Ideally, an agent possessing such a memory would 
use verbal or non-verbal signals received from participants of the 
conversation to identify which moments are most important to 
memorise and refer back to. While studies that focus on the textual 
modality of conversational memory show promising results (e.g. 
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[3, 8, 27, 31]), participants alternate in speaking turn, and therefore 
textual data is sparse. Non-verbal signals, such as gaze, on the other 
hand, can be continuously used to track participants’ involvement 
in conversation with very minor interruptions [18]. In the present 
paper, we pioneer a data-driven approach to conversational memory 
modelling. We analyse a multi-modal corpus of group conversations 
annotated with frst-party reports of most memorable moments 
and provide evidence that group gaze behaviour can serve as a 
predictor of memorable moments in multi-party conversations. 

In the present paper, we defne conversational memory, following 
the accepted classifcation of memory types [2], as explicit (i.e. 
retrievable in a verbal free-recall task), long-term (retained for 
longer than minutes or seconds after the interaction), episodic 
(moments of life rather than semantic knowledge), and specifc to 
moments of conversation. 

2 BACKGROUND 
Capturing what people fnd important and remember is a com-
plex task for several reasons. Humans do not always reveal their 
afective responses and often keep their inner thought processes 
to themselves. Therefore, for an observer, it is difcult to under-
stand which moments are memorable for other participants in the 
interaction. Conversations are particularly challenging to study in 
the context of memory because of a lack of control over the topics 
brought up and missing contextual knowledge of the participant’s 
autobiographic experiences. 

Although there is little research on conversational memory yet, 
it appears that there are multiple factors that can afect what is re-
membered. For example, the relational history of interlocutors with 
one another, as well as their participatory role in the conversation, 
might infuence their conversational memory. Specifcally, partic-
ipants tend to remember conversational information diferently 
from passive observers: participants’ memories are more detailed, 
episode-specifc, and centred around non-verbal communication 
[1, 29]. People also remember more information from conversations 
with friends than strangers [25] and when they have more common 
ground [14]. Participants’ individual traits, such as interpersonal 
skills can also infuence what they remember from conversations 
[15]. People with better interpersonal skills memorise more in-
formation about their conversational partner than the ones with 
poorer communication skills [15]. All these factors (participants’ 
role, personal traits, and relationship between them) are more or 
less static throughout a conversation, but if we are given all these 
variables, it would still be difcult to guess which moments are 
most likely to be remembered. There needs to be a continuous 
measure that can track how salient each moment is throughout the 
interaction. 

One way salience can be tracked in a conversation is by how 
engaged or involved participants are at a particular moment 
[4, 17, 19, 20, 24]. In meeting summarisation, participants’ involve-
ment has been connected to moment importance and has been 
shown to improve the quality of the resulting meeting points [32]. 
Involvement is usually annotated by third-party observers and can 
be predicted via speech, prosody [12, 32] or group gaze behaviour 
[18]. Although the direct connection between group involvement 
and memory has not been investigated, individual attention has 

been known to be a major factor in memorisation on a physiological 
level in the human brain [16, 28, 30]. In a conversational context, a 
study found that participants are more likely to recall the part of 
the conversation in which they were most active [10]. Although 
not on a group level, this indicates once again how non-verbal 
features connected to involvement could potentially be indicative 
of memorable moments. 

Therefore, we hypothesise that it is possible to predict which 
moments will be more memorable for the group using features 
previously connected to group involvement. Our research questions 
are formulated as: 

RQ1: Do humans non-verbally encode moments they are more 
likely to remember? Do features that distinguish between diferent 
levels of group engagement [18] also discriminate for diferent 
degrees of group conversational memory? 

RQ2: Which reasons do participants give for remembering a 
moment? 

RQ3: How can we use these features to predict the memorability 
of conversational moments? 

Based on the literature discussed above we formulate the follow-
ing hypothesis: 

Hypothesis: The signals previously connected to involvement 
and engagement are predictive of conversational memorability. 

Contribution.The present study pioneers a largely unexplored 
topic of conversational memory modelling. This study provides the 
frst step on the path of characterising the multimodal features that 
are predictive of conversational memory. 

3 METHODS 

3.1 Corpus 
3.1.1 General Description. In this study, we are using a multimodal 
group discussion corpus that is part of a larger data collection called 
the "MEMO corpus". The MEMO corpus consists of video-call discus-
sions in groups of 3-6 participants over three consecutive sessions 
distanced 3-4 days apart. Throughout 45 minutes long sessions, 
participants discussed COVID-19 and their experiences in the pan-
demic. To facilitate an active discussion, each group was paired 
with a moderator. We recruited moderators who had experience in 
moderating meetings, facilitating creative sessions, and conducting 
interviews. Moderators were confederates instructed to keep the 
conversation going and encourage participants to express their 
opinions and emotions as much as possible. 

Overall, 53 participants (28 F, 25 M; 18-76 y. o.) and 4 moderators 
(3 M, 1 F; 24-45 y.o.) took part in the data collection. All partici-
pants were fuent English speakers and resided in the UK. Each 
participant and moderator signed a consent form for video, audio 
and survey data collection and flled up a pre-screening survey 
before the experiment. When recruiting participants, we tried to 
maximise the diversity of in-group opinions. For that reason, we 
tried to have representatives from various COVID19-afected demo-
graphics in every group: parents with young children, older adults 
(50+), students, (ex)-business owners. Participants were divided 
into 15 groups assigned with the principles of maximal in-group 
diversity and participants’ scheduling preferences (3-5 participants 
and 1 moderator per group). To control for previous relationships, 
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participants have never met each other or the group moderator 
before the frst discussion. 

The resulting data comprises 34 hours of group discussions (45 
sessions). On average, the sessions were 45 minutes long (with a 
standard deviation of +- 6.6 minutes). Before and after each session, 
participants and moderators flled in a series of surveys. The surveys 
included a wide range of perceptual measures, for conciseness, 
we only mention the ones used in the current analysis which are 
described in the following subsections. 

3.1.2 Memory Labels Calculations. All the feature annotations 
were calculated using 5-second sliding windows. For each time 
window, there was one value for each group feature. This applies 
to memory, gaze, and speaker annotations. 

First-party memory annotation In order to capture memo-
rable moments from the interaction and collect ground-truth labels 
of when they occurred, the memory annotation consisted of two 
stages illustrated by Figure 1: 

(1) Free recall reports in the post-session questionnaire: 
straight after every session participants had to complete 
a survey which started with free-recall memory questions. 
The task description was following: "Recall and describe mo-
ments of the most recent discussion session in as much detail 
as you can remember. Any details are great - for example, 
about the content, other participants, the moderator, you, 
your feelings, the reaction of others, your words, others’ 
words, timing, or anything that happened throughout the 
discussion. Recall at least 3 moments. If you remember more, 
the felds will show up as you go until you leave one of them 
empty." 

(2) First-party timing annotation: After the post-session sur-
vey was completed, participants were asked to annotate the 
memorable moments they described in their free recall de-
scription in the session video recording. Each moment had 
to be indicated by a start and end time. Participants had an 
option of leaving timing blank if the moment could not be 
attached to a particular timestamp (for example, a general 
impression of the entire session). Additionally, we asked 
participants to indicate the reasons for remembering the 
moment. Timing annotations served as ground-truth labels 
for all further analysis. 

We considered individual memorable moments as consecutive 
in case they overlapped in time unless one of the moments lasted 
longer than half of the discussion session. All annotations encom-
passing more than half a session were discarded as they did not 
apply to a particular moment but rather "an overall feeling" of 
discussion. All individual memorable moment annotations of the 
group were brought together for analysis. Overall, there were 633 
memorable moments (mean= 143.5, standard deviation = 183.6 sec-
onds). 

Figure 2 illustrates the process of creating the memory labels 
step-by-step. We employed a 5-second sliding window approach 
and considered the memorable moment as a binary variable. For 
individual memory annotations, each moment was represented 
as an array of the time slice � per participant � . It was 1 if at least 
half of the time slice � was included in the moments remembered by 
the participant � , and it was 0 otherwise. After that, we computed 
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the group-level memory index as the proportion of participants 
that considered each time slice � memorable. We then divided the 
group memory indices into four memorability level labels: zero -
if nobody remembered a slice; low - if > 0 and < 30 % remembered a 
slice; middle - if 30-70% considered a slice memorable; high - >70% 
reported a slice as remembered (see the last line in Figure 2). We 
used these memory level labels in the classifcation and for other 
analyses further on. 

3.1.3 Speaker Activity Identification. From the recorded audio of 
the discussions, we extracted active speaker information using 
Kaldi Speech Recognition Toolkit [23]. After conducting speaker 
diarization, we extracted an active speaker array per time window � 
containing binary values of each participant � speaking at that time 
interval (�� (�)). The value was 1 if the participant � spoke for at least 
half of the slice � and 0 otherwise. We then calculated the active 
speaker index per time window � using the following equation: Í 

�
� 
=1 ��� (�� (�), �� (� − 1), �� (� − 2)) 

� (�) = (1)
� 

Simply put, we calculated the number of individual participants 
(�) that were speaking in each time slice (� ) or in two time slices 
proceeding to it (� − 1 and � − 2) and divided that sum by the overall 
number of participants � in the session. 

3.1.4 Gaze Annotation. Eye gaze target extraction. Point of gaze 
was estimated with GazeSense software [6]. For each participant a 
grid matching the gallery layout was defned based on their pro-
vided screen capture. At the start of each session, a calibration 
stage was performed: participants were required to fx their gaze to 
the screen segment containing the current target participant. We 
estimate the target calibration point of the �-th segment of the grid 
p����,� to be the coordinates in the centre of the segment. Point of 
gaze estimates p���� were then obtained for all remaining frames 
beyond the fnal calibration frame. The fnal gaze target ����� for 
each frame was determined as(

arg min� ∥p���� − p����,� ∥, if p���� detected 
����� = (2)

−1, otherwise 

Because of recording imperfections and problems with some 
screenshots participants uploaded, the resulting gaze data had 40 
participants (14 groups) and 16248 individual time windows ( 23 
hours). 

Group gaze features. [18] has shown a connection between 
group eye gaze behaviour and participants’ conversational involve-
ment. Specifcally, there was a series of group-level eye-gaze fea-
tures that have been shown to correlate with perceived involvement: 
presence, maxGaze, entropy, and symmetry. In this paper, we use 
the frst three of these, since the gaps in data made the symmetry 
feature unreliable. All the features are calculated from the gaze 
matrix � with � × � dimensions: N being the number of partici-
pants with valid gaze data and K - the number of targets (number 
of participants and an additional label for when they look away 
from other participants or the screen). 

Individual gaze matrix �� � consisted of binary measures of gaze 
for each time slice � . It was 1 if participant � looked at participant � 
for at least half of the time window � , it was 0 otherwise. Unlike 
[18], a participant can gaze at themself on the screen, so there are 

96



ICMI ’22, November 7–11, 2022, Bengaluru, India Tsfasman, et al. 

Describe the moment you 
remember.
Moment 1: 

32:15

I started jogging 
during lockdown.

When was moment 1?

Start 32:15

End 34:

Moment 1: 

I remember participant 2 
sharing that he had also started 
exercising during the lockdown.

Free recall task  Timing annotation

Figure 1: First-party memory annotation straight after the discussion session. Free-recall reports on the right and timing 
annotation on the left. The moment mentioned on the screen is an example from the data: "I remember participant 2 sharing 
he had also started exercising during lockdown." 

5 s5 s

M1

M2

M3

M1 M2 M3 M4

1 1 0 0
Individual memory 
annotations

Mid (30-70%) Low (<30%)Memorability level

M1 M2 M3 M4

0 1 0 0

M4

High (>70%)

M1 M2 M3 M4

0 1 1 1

5 s

75%25%50%Group memory index

Figure 2: Memorability level annotation. The blue frames on the top illustrate moments remembered but 4 diferent participants. 
There are 3 consequent time windows on the x axis (5 seconds each). The memorability is considered True (=1) if the moment 
lasts for half or more of the specifc window. Therefore, M3 is 0 for the second window. 

no limitations to the value of ��� in this regard. Nevertheless, since 
each participant could only gaze at one target at a time, following 
equation applies: ∑� �∑ 

�� � (�) = �, ∀� (3) 
�=1 �=1 

The speaker-directed gaze feature �� (�) was calculated to see 
how many participants are looking at the active speaker at any 
time � . It was based on matrix � � (�), which also consisted of binary 
measures - it was 1 id � was an active speaker at that time slice 
� and 0 otherwise. For each participant � and target participant � 
we then computed a speaker-directed gaze value �� � - it was 1 if 
participant � was gazing towards � (�� � (�) = 1) and � was an active 
speaker (� � (�) = 1) at that time slice � : (

1, if � � (� ) = 1 & �� � (�) = 1 
�� � (�) = (4)

0, otherwise 

To compute the fnal speaker-directed gaze feature �� we then com-
puted a fraction of participants looking at the active speaker for 
each time slice � : Í� Í� 

=1 �� � (�)�=1 �
�� (�) = (5)

� 

The gaze presence feature �� (�) from [18] is the proportion of 
participants looking at other participants as opposed to looking 
away: Í� Í� 

=1 �� � (�)�=1 � 
�� (�) = (6)

� 

MaxGaze feature �� computes the maximal number of partici-
pants looking at the same target at a particular time window � : 

��� � ∈[1,� ] 
Í 
�
� 
=1 �� � (�)

�� (�) = (7)
� 
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Entropy measure indicates the probability of each target being 
looked at by all others at each particular time:Í� 

�=1 �� � (�)
� (target = � |�) = (8)

� 
To compute the fnal entropy measure �� (�) the probability is then 
normalised as follows:Í� 

=1 � (target = � |�)���(� (target = � |�)) � 
�� (� ) = (9)

���(�)
Therefore, it is the lowest (�� (�) = 0) when all participants are look-
ing at the same target. It is the highest (�� (�) = 1) if all participants 
are looking at diferent targets. 

3.1.5 Memory reason annotation. After each memory timing an-
notation question, participants were also asked to self-report the 
reason for which they think they remembered each particular mo-
ment. To divide the reported reasons in separate types by their 
content, the dataset was manually annotated by two third-party 
annotators in multiple layers based on the given reason. Figure 3 
shows the multi-layer annotation scheme. To assess the inter-rater 
reliability, we randomly selected 145 samples, and the annotators 
were not given information about the other annotator’s labels. The 
inter-annotator agreement was measured using Fleiss’ kappa statis-
tics, which was found to be 0.60. According to [13], it is considered 
a moderate agreement. 

3.2 Classifcation 
3.2.1 Model architectures. For classifcation of memorability levels, 
we trained various supervised machine learning models: logistic re-
gression, support vector machine (with RBF kernel), random forest 
classifer, and a multi-layer perceptron (MLP or "neural network" 
further). 

The neural network consisted of 1 input, 3 hidden (256,128,32 
neurons) and 1 output layers with 2 drop-out layers (0.2). The 
network was L2-regularised to reduce the efective size of the model. 
The model used cross-entropy loss and Adam optimiser, and ReLU 
activation function. Every iteration of the model was trained over 
300 epochs with early stopping, to ensure that the model trains 
properly and does not overft. The batch size was 32 and the learning 
rate was 0.005. The models were then compared using test and train 
balanced accuracy scores. 

All scripts were written in Python using scikit-learn 0.24.1 [22] 
and pytorch toolkits 1.11.0 [21]. 

3.2.2 Features. For the input features, we used all the speaker 
and gaze features mentioned above. In addition to the features 
calculated for a given time window, we also added features for the 
previous and subsequent two time steps. We included the feature’s 
mean, max and min over the included time steps. The resulting 
input vector consisted of 40 continuous features for each instance. 
The output label was one of four classes of memorability levels: 
zero, low, middle and high. 

3.2.3 Training samples. The train and test sets were divided 80% 
and 20% respectively for all the models, except for MLP. For MLP 
we also had a validation set: 80% train, 10% test, and 10% validation. 
All the models were trained in 20 iterations with diferent random 
samples. 
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Since the class distribution was severely unbalanced (zero: 8501, 
low: 2355, middle: 4865, high: 527 instances), we took an under-
sampling approach. The training set was under-sampled after being 
separated from the test and validation sets to have an equal class 
representation. In order to take into account as much data as possi-
ble, we randomly sampled the data this way 20 times, trained the 
model on each of these samples and approximated all the results 
over these iterations. 

3.2.4 Feature selection and ablation study. In order to understand 
which features were most important for the model’s predictions, we 
computed the permutation importance for the best-performing 
model. We also conducted a feature ablation study for the neural 
network. This included removing the feature sets connected to each 
of the main features (entropy, presence, maxGaze speaker-directed 
gaze, and active speaker index) one at a time and training the 
models on the remaining features. For example, when removing the 
entropy feature, we would also remove all other features connected 
to it: entropy plus-minus 2 time-stamps, entropy min, max, and 
mean. Therefore, the resulting model contained 28 input features 
at a time. We trained these models using the same procedure as the 
main model and using the same architecture and hyperparameters. 
The results were approximated over the same 20 samples as other 
models. We then used balanced accuracy results to compare the 
performance of each ablated model. 

4 RESULTS 

4.1 Memory level Analysis 
This section explores the relationship between the four levels of 
conversational memorability with the gaze features of presence, 
entropy, max-gaze, and speaker activity. Figure 4 illustrates their 
means and confdence intervals. 

The presence feature difered signifcantly across the four levels 
of memorability. According to the Kruskal-Wallis H test, there is 
a signifcant diference between the diferent memorability levels 
(�2(3) = 750.96, p < 0.001). Dunn’s Multiple Comparison post hoc 
test revealed that the presence is signifcantly diferent between all 
the memorability levels (p<0.001). The higher the level of memora-
bility, the fewer people looked at other people. 

Gaze entropy (blue in Figure 4) follows a similar trend as pres-
ence. A Kruskal-Wallis H-test showed a signifcant diference in 
entropy between memorability levels (�2(3) = 420.65, p < 0.0001). 
Dunn’s post hoc test revealed signifcant diferences between all 
memorability levels (p<0.001). The higher the memorability level, 
the lower the entropy. This means participants were more likely to 
look at the same target in moments of high memorability. 

A Kruskal-Wallis H-test revealed that maxGaze (green in Figure 
4) is signifcantly diferent between the diferent memorability lev-
els (p<0.001). A Dunn’s post hoc test revealed that all diferences 
between levels are signifcant except for moments of mid-level mem-
orability to highly memorable (p=0.062) and zero to low (p=0.004). 

A Kruskal-Wallis H-test revealed that speaker-directed gaze pro-
portion (pink in Figure 4) is signifcantly diferent between the 
diferent memorability levels (p<0.001). A Dunn’s post hoc test re-
vealed that all diferent levels except for moments of mid-level mem-
orability to highly memorable (p=0.5) and zero to low (p=0.038). 
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Figure 3: Multi-layer annotation scheme for memorability reasons with corresponding descriptions. "Annotator" is a participant 
for whom the segment was memorable. "Speaker" is the main speaker of the segment. 

zero low middle high
memorability level

0.2

0.3

0.4

0.5

0.6

0.7

fe
at

ur
e features

gaze entropy
gaze presence
max gaze
active speaker index
speaker-directed gaze

Figure 4: The diferences between gaze and speaker features in relation to group memorability levels. On the y-axis: points are 
means of the feature for specifc memorability levels and 95% confdence intervals as bars. On the x-axis: "zero" is for time 
slices that no one in the group recalled after the discussion; "low" are moments remembered by less than 30% of participants in 
the group; "middle" applies to slices remembered by 30-70% of participants; "high" - moments that 70 % or more of participants 
recalled) 

Regarding the active speaker index (orange-red in Figure 4), 
the proportion of active speakers is signifcantly higher in highly 
memorable moments (Kruskal-Wallis H(3) = 124.89 and p < 0.001) 
with a mean active speaker index score of 0.37 for zero memorability, 
0.38 for low memorability, 0.35 for mid-level memorability and 0.42 
for high memorability. Dunn’s post hoc test postulates signifcant 
diferences (p<0.001) for the active speaker index for all pairs of 
levels, except for low vs zero memorability (p = 0.011). The active 
speaker index is signifcantly higher in high memorability moments 
than in middle, low and zero memorability ones. This means that 
there are more active speakers in highly memorable moments than 
in moments of lower memorability. 

4.2 Memory-level Analysis across time 
We also investigated whether any contextual cues might signal a 
memorable moment coming up or some changes that occur directly 
after the moment. For that, we compared how features changed in 
the two time windows before the memorable moment("BM" in Fig-
ure 5), within memorable moments ("M"), two time windows after 
each memorable moment ("AM"), and all other windows outside 
the mentioned groups ("NM"). In this case, a memorable moment is 
a moment remembered by at least one participant. Therefore, the 
comparison between the windows that fall into the categories "NM" 
and "M" was somewhat similar to the results described in Section 
4.1. However, the diference between "NM"/"M" vs "BM"/"AM" is of 
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greater interest, since it sheds some light on whether there might 
be a cue that indicates the start or the end of a memorable moment. 

There were no signifcant diferences in group gaze entropy for 
diferent timing as indicated by the post hoc Dunn’s test (p>0.001). 
For maxGaze and speaker-directed gaze, there was a signifcant 
diference between during vs. before, during vs. after, outside vs. 
within memorable moments (p<0.001 in all three pairs judging 
by Dunn’s test) but there were no signifcant diferences between 
outside vs. before (p=0.2 for maxGaze, p=0.9 for speaker-directed 
gaze) and outside vs. after (p=0.1 for maxGaze, p=0.8 for speaker-
directed gaze). This can mean that while the lower max or speaker-
directed gaze features do indicate memorable moments, there are no 
distinct predictive cues of a beginning or an end of the memorable 
moment within these features. 

For the group presence measure, there was a gradual decrease 
in it from outside to right before the memorable moment and an 
increase from the end of the memorable moment to further outside 
the memorable segments. Although we can see this trend in Figure 
5, the diferences were signifcant only in the following pairs: during 
vs after/before/outside, outside vs after (p< 0.001, Dunn’s post hoc). 
Diferences between outside vs. before are insignifcant (p=0.3, 
Dunn’s post hoc). 

The most promising candidate for being a cue in signalling a 
memorable moment was the active speaker index (fourth subplot 
in Figure 5). In the time window directly preceding a memorable 
moment window, the proportion of active speakers signifcantly 
increases (p>0.001, post hoc Dunn’s test). Although there was also 
a slight increase in the subsequent time window, this increase was 
not signifcant (p=0.006, Dunn’s test). Interestingly, the proportion 
of speakers within the memorable moment did not difer from 
moments further away ("M" vs "NM" p=0.5 ). This fnding might 
serve as an additional indication that, in this case, what matters 
is how many participants are actively involved in the discussion 
directly before the moment becomes particularly memorable. 

4.3 Memory reason analysis 
In addition to the free recall of memorable moments we also asked 
participants to provide the reason why they remembered the mo-
ment. We then annotated the reasons according to an annotation 
scheme we devised and are describing in Table 3 with the inter-rater 
reliability metrics of 0.60 Fleiss’ kappa. 

The distribution of the memory-reason analysis is shown in 
Figure 6a. The most common reason was self-perception (250 of 
633 memorable moments). The next frequent reason-label captured 
facts about other participants in the group (186). Other labels were 
considerably less frequent: shared experience (52), facts about the 
world (46), meta-behaviour of other participants in the group (44), 
time label (31), and cognitive empathy (24). 

The sub-level distribution is shown in Figure 6b. Self-perception 
labels included more sub-labels related to the participant’s feelings 
(199), than life experiences (51 reasons labelled "stories" in Figure 
6b). Fact-about-other label had the majority of moments with the 
"view" sub-label (110 out of 186). This means that the reason for 
remembering the moment was related to the views of other partici-
pants in the group (for example, agreeing or disagreeing with their 

ICMI ’22, November 7–11, 2022, Bengaluru, India 

point of view). The second most frequent sub-label in fact-about-
other reasons was unexpected information (52 out of 186), and the 
least frequent was social facts (52 out of 186). 

4.4 Classifcation 
We used four diferent classifcation methods: logistic regression 
(LogisticRegression in Figure 7), support vector machine with RBF 
kernel (NuSVC), random forest (RandomForest) and a multi-layer 
perceptron neural network (NeuralNetwork). Figure 7 shows bal-
anced accuracy scores aggregated over models trained on 20 ran-
dom samples (see 95% confdence intervals as error bars over these 
iterations). All the models performed better than chance (see a 
random classifer for comparison - "DummyClassifer" in Figure 
7) with mean balanced test accuracy of 32% for logistic regression 
(LogisticRegression in Figure 7), 33% for support vector machine 
with RBF kernel (NuSVC), 43% for random forest classifer (Ran-
domForest) and 44% for a multi-layer perceptron neural network 
(NeuralNetwork). We should note that the low test accuracy of the 
DummyClassifer is connected to it learning the distribution be-
tween classes on the under-sampled training test and when applied 
to the original class distribution in the test set performs considerably 
lower than chance. It should be noted that when dividing groups 
used for training and testing, the prediction accuracy considerably 
decreases (LogisticRegression - train 0.36, test 0.27, NuSVC - train 
0.39, test 0.27; RandomForest train 0.43, test 0.26; NeuralNetwork -
train 0.44, test 0.31). 

Since the random forest and neural network models performed 
the best, judging by train and test accuracy, we analysed feature 
importance for these models to see if there are features that are 
more predictive of memorability level than others. For that, we 
computed the permutation importance of input features for the 
random forest model and conducted a feature ablation study for 
the neural network. For the random forest model, we averaged 
the permutation importance over the primary features (maxGaze, 
speaker-directed gaze proportion, entropy, active speaker index, 
presence). Averaged permutation scores in Figure 8 show that 
all features except maxGaze were important for model prediction -
gaze presence being the most important one, then speaker-directed 
gaze, entropy and active speaker index. We also performed a fea-
ture ablation study on the neural network model to verify the 
inclusion of each feature in the training set for the model. Remov-
ing primary features one at a time showed a slight decrease in test 
accuracy compared to the model trained on all the features (see 
Figure 9). The only signifcant decline in test and train accuracy 
was when removing entropy or speaker-directed gaze (post hoc 
Dunn’s p<0.001). Train accuracy was also signifcantly lower when 
removing the active speaker index feature if compared with the 
model trained on all the features (post hoc Dunn’s p<0.001). 

5 DISCUSSION 
The frst research question (RQ1) we aimed to answer was whether 
humans encode memorable moments in their non-verbal behaviour. 
The overarching hypothesis was that the most remembered mo-
ments are encoded with similar features to high group involvement 
(from [18]) since higher attention has previously been connected 
to better memorisation of information [16, 28, 30]. Specifcally, in 

100



ICMI ’22, November 7–11, 2022, Bengaluru, India Tsfasman, et al. 

NM BM M AM0.3
0.4
0.5
0.6
0.7
0.8

va
lu

e

Gaze entropy

NM BM M AM

Gaze presence

NM BM M AM

MaxGaze

NM BM M AM

Active speaker index

NM BM M AM

Speaker-directed gaze

Figure 5: A comparison of gaze and speaker features in diferent moments in relation to their timing in relation to moments 
remembered by at least one participant in a group. The windows within such memorable moments - "M" on x-axis, two time 
slices before these moments - "BM", two time slices after M intervals - "AM", and all remaining time slices not included in the 
above - "NM". 

(a) Number of memorable moments per label (b) Sub-labels distribution within main reason labels 

Figure 6: Visualisation of reasons label distribution: main label distribution over the whole data set (plot a), and sub-labels 
within the main labels (plot b). Important to note that a "memorable moment" in this context is the entire memorable interval, 
rather than a time slice as in the statistics for the gaze and speaker features. *"people" 
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Figure 7: A comparison of the performance of diferent classifcation models: balanced accuracy averaged over instances trained 
on 20 random samples of data (95% confdence intervals as error bars). 
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Figure 8: Permutation importance for the random forest classifer with 95% confdence intervals over the models trained on 
diferent balanced samples of data. The permutation importance score for each feature shown in the fgure is averaged over 20 
Random forest model iterations trained and tested on diferent random samples. 
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Figure 9: Ablation study results: accuracy of models trained on diferent sets of features with 95% confdence intervals over 
models trained on diferent random samples as error bars. "No features removed" below on the y-axis shows a baseline model 
with all features included. Other labels mean a feature being removed from the training sample. 

previous research [18] higher involvement in the interaction has 
been related to a higher degree of group presence and maxGaze 
and to a lower degree of group gaze entropy. 

The feature of group gaze entropy was in fact lower in highly 
memorable moments than in middle, low-level and non-memorable 
moments. This means that participants had more agreement in their 
gaze targets at moments most remembered by the group. Therefore, 
our hypothesis was confrmed in relation to the entropy feature. 

The hypothesis that group involvement can be connected to 
memorised information was also confrmed in relation to the mea-
sure of speaker activity. A higher proportion of speakers were 
actively involved in the discussion in segments of high memora-
bility. This is also consistent with the previous results of [14] and 
[10] on ego-centric bias in conversational memory. Specifcally, [14] 
showed that speakers remember more of the produced content than 
their listeners. [10] has also shown that people remember better the 
parts of the conversation in which they were most active. Another 
trend we see in our data is that the active speaker proportion is at 
its peak at the moment preceding the remembered interval. This 
fnding might be related to the fact that humans remember the 

reaction in response to their own words better than a reaction to 
other people’s words [33]. 

However, the fndings in the presence and maxGaze features 
were not in line with our hypothesis. In our case, presence and 
maxGaze were lower in highly memorable intervals than in non-
memorable ones. The speaker-directed gaze feature was also 
lower in highly memorable moments. A potential explanation could 
be connected to cognitive load. Higher cognitive load has previously 
been connected to gaze aversion: when asked difcult questions 
people tend to avert their gaze [5] which has also been reported to 
facilitate remembering [7]. For our data, this could mean that mem-
orable moments encourage more deep thinking, which highlights 
those moments over non-memorable ones. 

Our second research question (RQ2) investigated participants’ 
reasons for remembering memorable moments. The most common 
reason was self-perception. This means that people remembered a 
moment because of the feelings they experienced during the remem-
bered moment or because of a view or experience they expressed 
themselves throughout the moment. This goes in line with the 
previous research on ego-centric bias [10] and means that people 
remember things that were personally distinct for them because 
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of their feelings rather than the factual content of the moment. 
The fact-about-world category was assigned less frequently than 
fact-about-other and self-perception. 

The third research question (RQ3) posed explored whether group 
memorability of conversational moments could be predicted using 
our gaze and speaker-related features. The models that performed 
the best were the random forest and the neural network classifers 
with 43-44% test accuracy for a 4-class classifcation of group mem-
orability levels. In other words, the classifcation models were able 
to achieve nearly twice above chance performance (44% accuracy as 
compared to 25% chance of 4-class classifcation), although trained 
solely on gaze and speaker features. This can be considered an in-
dicator of the strong predictive power of the selected features. We 
also wanted to investigate whether individual performance afects 
the model performance. This resulted in a considerable decline in 
the performance of our models, though still showing above chance 
accuracy (31%). This might mean that there are some group-related 
specifcs which infuence the performance and initial memorability 
distribution. The permutation importance scores of the random for-
est classifer identify that the most important features are presence, 
speaker-directed gaze, and entropy. MaxGaze and speaker-directed 
gaze were less important. The feature ablation study showed sig-
nifcant changes in model performance only when removing two 
features - speaker-directed gaze and gaze entropy. Removing other 
features from the training set of the model did not show signifcant 
changes to the original model. This can be an indication that the 
selected features are correlated with each other, which gives the 
neural network enough information about the removed feature 
from the remaining ones. 

Giving a closer look at the examples of correct and incorrect 
predictions of the best-performing model (the neural network), it 
seems that the misclassifcation might be connected to several rea-
sons. First, technical issues in the videos that result in an incorrect 
prediction of eye-gaze behaviour - for instance, participants wear-
ing glasses or not enough lighting on a participant’s face at a certain 
time segment. Second, following a thin-slicing approach, we are 
dividing memorable moments into smaller segments, where each 
segment has the same memorability rating as the other segments of 
that memorable moment. This means, we are treating memorability 
as a constant in each moment annotated as memorable. This is not 
always the case: for example, if there is a pause or a moment of 
hesitation in a longer memorable segment it would also be clas-
sifed as memorable, while the non-verbal signals would indicate 
participants’ disengagement. Last, the neural network might have 
misclassifed some instances because of ambiguities in non-verbal 
signals. For example, a segment where most participants avert their 
gaze would be classifed as memorable, since statistically speaking 
it is a signal indicative of memorability. However, it could also 
be a signal of disengagement and, therefore, the lack of attention 
needed to memorise the moment. In this case, the segment would 
be incorrectly classifed as highly memorable. This highlights the 
need for a wider context for accurate predictions of conversational 
memorability. Specifcally, introducing additional modalities, such 
as speech or prosody, along with constructs such as engagement or 
afect could help to solve these ambiguities. 

Tsfasman, et al. 

6 CONCLUSIONS 
In the present paper, we investigated whether it was possible to 
predict conversational memory from non-verbal multi-modal cues. 
We could show that gaze and speech activity features were able 
to distinguish between 4 levels of memorability on a group level. 
Highly memorable moments were signifcantly diferent from the 
low memorability moments for all the features. In highly memorable 
moments, participants were looking away from other participants 
(lower presence) more, they looked at the same participants (lower 
entropy) to a higher degree, and more speakers actively participated 
in the discussion in comparison to non-memorable segments. An 
important distinction between memorable moments and moments 
of high involvement seems to be gaze aversion (lower presence) 
in highly memorable moments. The memorable moments were 
also preceded and followed by specifc cues. For example, more 
participants were actively speaking before and after the moment 
than within or further away from the remembered moment. The 
most common reasons the participants mentioned for recalled each 
specifc moment were related to participants’ personal feelings 
and experiences. The second most common reason was related to 
information on other participants in the session. This highlights the 
importance of analysis of conversational memory since participants 
did not recall factual information about the world, but rather the 
moments that were important for their social image and knowledge 
about other participants in the group. We could also automatically 
distinguish between 4-classes of memorability with an average 
accuracy of 44 % for the neural network. 

Future research will include investigating the usability of addi-
tional modalities, such as text, prosody, turn-taking, and group-
specifc characteristics to predict conversational memorability. 
Other, more complex signals such as afect could also be an in-
teresting area of future research. Adding a temporal component to 
memorability prediction models could also be promising to further 
investigate how memorable moments unravel in time. Further in-
vestigation of memorability reasons and their relation to non-verbal 
cues could also lead to a deeper understanding of conversational 
memory. 
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