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A B S T R A C T   

Safety analysis according to the spatial distribution characteristics of maritime traffic accidents is critical to 
maritime traffic safety management. An accident analysis framework based on the geographic information 
system (GIS) is proposed to characterize the spatial distribution of maritime traffic accidents occurring in the 
Fujian sea area in 2007–2020 by employing kernel density estimation and spatial autocorrelation techniques. 
The sea area is divided into various grids, and in each grid, the mapping relationships between the number and 
severity of the traffic accidents and the traffic characteristics are established. Machine learning (ML) technology 
is used to assess whether a grid area is an accident-prone area and to predict accident severity in each grid. The 
accident prediction of different ML models, including random forest (RF) model, Adaboost model, gradient 
boosting decision tree (GBDT) model, and Stacking combined model, were compared. The optimality of the 
Stacking combined model was verified by comparing the experimental results of this model with those of 
classical prediction models, convolutional neural network (CNN), long short term memory (LSTM), and support 
vector machine (SVM). According to the results, the maritime accident data set of the entire Fujian sea area 
shows typical clustering characteristics and positive spatial correlation. That is, the kernel density estimation 
indicates that subareas, including the Ningde sea area, Fuzhou sea area, and Xiamen sea area, generally have 
high densities of maritime accidents and the highest risk value within the whole Fujian sea area. High-high 
accident clustering, that is high cluster areas neighbored by other areas of high cluster, is mainly seen in the 
Ningde and Fuzhou sea areas, while the Xiamen, Putian, and Zhangzhou subareas show low-low clustering, 
which are low clusters neighbored by low clusters. Among the ML models, the Stacking combined model shows 
high accuracy, precision, recall, and F1-score values of 0.912, 0.910, 0.912, and 0.904 in predicting whether a 
grid area is an accident-prone area and 0.750, 0.745, 0.750, and 0.746 in predicting the accident severity in the 
grid, indicating its superior maritime traffic accident prediction performance. Based on our analysis of the dis
tribution characteristics and geospatial data, our proposed method demonstrates effective and reliable risk 
prediction.   

1. Introduction 

The size and speed of ships have greatly increased with the devel
opment of science and technology, along with economic globalization. 
Flourishing trade increases cargo transport volume, ship density in sea 
areas, and the intersection of shipping routes, making sailing conditions 

more complex. This has resulted in higher maritime accident risks 
(Dulebenets, 2018). A maritime accident is defined as an event directly 
resulting from the operations of a ship, and it causes any of the following 
consequences: death or serious injury; person missing from a ship; loss, 
presumed loss, or abandonment of a ship; material damage to a ship; 
stranding or disabling of a ship; collision; material damage to marine 
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infrastructure external to a ship that could seriously endanger the safety 
of the ship, other ships or an individual; severe damage or the potential 
for severe damage to the environment brought about by the damage of a 
ship or ships (Maritime Safety Administration of People’s Republic of 
China, 2010). 

Maritime accidents seldom happen in normal scenarios but have 
catastrophic outcomes. Once accidents happen, people could suffer from 
huge losses of life and property, and the ecological environment may be 
irreversibly damaged (Yan, 2020). For example, the container ship 
EVER GIVEN running aground in the Suez Canal blocked the global 
supply chains for nearly a week in 2021, seriously impacting the ship
ping economy worldwide (Luo et al., 2022). It was estimated by the 
American Broadcasting Company that Egypt’s daily economic loss was 
as high as $15 million, and the global trade volume decreased by $9 
billion per day (www.cctv.com). Ships could bring a higher risk of ac
cidents at sea if they carry dangerous goods, such as oil tankers (Nermin 
et al., 2022), because the entire sea area and the marine life there will be 
greatly affected once an accident happens. 

Our research proposes a spatial analysis framework based on 
geographical characteristics for the spatial distribution of accidents in 
the Fujian sea for securing maritime safety. We identified the correlation 
between trajectory characteristics and the distribution of accidents. 
Furthermore, the geographic patterns of accidental events were deter
mined and the geographic characteristics were discussed to predict 
trajectories more accurately. This paper focuses on two methods for 
reducing maritime accidents. First, the spatial distribution characteris
tics of accidents were analyzed using geographic information system 
(GIS) technology. Longitude, latitude, severity, and other data were 
extracted to determine the geographical location of the accidents and 
the distribution of accidents with different severities. The distribution of 
accidents and accident-prone areas were found using kernel density 
estimation. Then, the spatial autocorrelation method was used to 
determine the clustering scenarios of accidents with such a density 
distribution and to further obtain the local distribution characteristics of 
the accidents and specific accident clusters. Second, the characteristics 
of ship traffic flow were extracted from automatic identification system 
(AIS) data to predict accidents that have not yet occurred (Shu et al., 
2017, 2018). As accident prediction is a basis for making a scientific 
safety decision, it is essential for accident prevention. Accident predic
tion is usually conducted by predicting future safety conditions of a 
system based on the past and present safety information of the system 
through a series of scientific methods (Guo et al., 2022). The spatial 
distribution characteristics of maritime accidents and accident predic
tion results can provide maritime authorities a more intuitive under
standing of the traffic safety conditions of ships within their jurisdiction 
so that they can take targeted measures to reduce maritime accidents 
and ensure navigation safety (Wang et al., 2022). 

2. Literature review 

Characterization of the spatial distribution of accidents by using GIS 
technology is widely seen in many fields. Ma et al. (Ma et al., 2021a,b) 
used the density analysis method to identify the areas with high accident 
incidence and high accident severity based on the road traffic data of 
Wales in 2017. Then, they used two types of spatial clustering analysis 
models—outlier analysis and hot spot analysis—to further identify the 
regions with high accident severity and form the spatiotemporal distri
bution of accidents. Zhang et al. (2021) collected maritime accident data 
of 2003–2018 from the Marine Casualties and Incidents (MCI) module of 
the Global Integrated Shipping Information System (GISIS). Kernel 
density estimation and the K-means clustering method were used and 
manipulated, and descriptive analyses were carried out to obtain an 
overview of global maritime accidents. They found distributions of 
maritime accidents by time, initial event, and ship type were diverse in 
different accident classes. Yang et al. (2021) analyzed the spatial char
acteristics of maritime accidents occurring under specific 

meteorological conditions. After converting meteorological and envi
ronmental data and maritime accident data into spatial units, they 
clustered units with similar meteorological environmental conditions 
and compared maritime accident characteristics in each cluster. Wang 
et al. (2022) determined the spatial patterns of maritime accidents in 
terms of accident frequency and severity using the global maritime ac
cident data from 2010 to 2019 by means of density analysis and clus
tering analysis. Their study could guide the relevant maritime 
authorities to improve maritime traffic management. Hammami and 
Matisziw (2021) suggested the possible existence of spatial and/or 
temporal dependencies (i.e., clusters or hot spots) among accidents. 

Along with understanding where and when such spatiotemporal 
dependencies might occur, another important facet to consider is the 
geographic extent or area associated with the hot spots. Better delin
eation and quantification of the morphological characteristics of acci
dent hot spots could provide valuable decision support for planning for 
accident hot spot mitigation and prevention. Misuk et al. (2021) sug
gested that risk factors threatening public safety, such as crime, fire, and 
traffic accidents, had spatial characteristics. Based on Global Moran’s I, 
Local Moran’s I, and Getis-Ord’s G*I methods, they analyzed the spatial 
distribution pattern of the local safety level index and risk factors for 
each sector. Kalantari et al. (2021) proposed an exploratory spatial 
analysis framework for identifying and ranking hazardous locations of 
traffic accidents in Zanjan, one of the most populous and densely 
populated cities in Iran. This framework quantified the spatiotemporal 
association among collisions by comparing the results of different ap
proaches, including the kernel density estimation, natural breaks clas
sification (NBC), and Knox test. Feizizadeh et al. (2022) investigated the 
spatiotemporal trends of urban traffic accident hot spots during the 
COVID-19 pandemic. The severity index was used to determine high-risk 
areas, and the kernel density estimation method was used to identify the 
risk of traffic accident hot spots. This method identified the hot spots of 
urban traffic accidents and evaluated their spatiotemporal correlation 
with land use and demographic characteristics. Rong et al. (2021) pre
sented a spatial correlation analysis method for near-collision clusters 
with local traffic characteristics. The Moran’s I and Getis-Ord Gi* spatial 
autocorrelation methods were used to determine whether near collisions 
showed spatial clustering from global and local perspectives. Crimmins 
et al. (2021) suggested that many studies on traffic crashes considered 
various geometric roadway features; however, ever-evolving urban 
watersheds and climate change increasingly impacted roadway condi
tions. They used kernel density surfaces and local Getis-Ord Gi* statistics 
to identify locations prone to witnessing crashes in wet conditions. Local 
environmental and traffic risk factors were considered for the network 
performance evaluation. Katanalp and Ezgi (2021) conducted micro- 
and macro-level evaluations of pedestrian-vehicle crashes. Macro-level 
findings were obtained with GIS-based density analyzes, and critical 
road segments were determined. They established a converted 
fuzzy-decision model and a revised fuzzy-decision model. The results 
revealed that land use, parking, and peak hour volume greatly affected 
pedestrian safety, and the effects of public transport, speed, and road 
type were the greatest. 

In order to recover or predict the maritime information and best 
mine vessels’ data, the machine learning methods are applied to 
research (Liang et al., 2021; Yuan et al., 2020). Commonly used methods 
for accident prediction at present include Regression Forecast, Scenario 
Analysis, Time Forecast, Markov Chain Forecast, Gray Model, and 
Artificial Neural Networks. Lin and Li (2020) designed a hierarchical 
scheme for sequential prediction by using User-Generated Crowd
sourcing Data (UGCD) for real-time Traffic Accidents Post-Impact 
(TAPI) prediction. The proposed model was validated by embedding 
three machine learning (ML) algorithms, random forest (RF), support 
vector machine (SVM), and neural network (NN). When the assessment 
was conducted under absolute difference conditions, the performances 
of the three models were ranked as follows: NN, RF, and SVM. Li et al. 
(2020) suggested that the fusion of features was an important factor in 
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predicting the duration of traffic accidents. They proposed a deep fusion 
model which could simultaneously handle categorical and continuous 
variables. In this model, a stacked restricted Boltzmann machine (RBM) 
was used to handle the categorical variables, a stacked 
Gaussian-Bernoulli RBM was used to handle the continuous variables, 
and a joint layer was used to fuse the extracted features. The proposed 
model could fully mine nonlinear and complex patterns in traffic acci
dent data and traffic flow data. Chai et al. (2020) aimed to provide an 
efficient way to predict the number of vessel accidents in China. To 
weaken the randomness of the vessel accident number time series, the 
gray processing operation was adopted to generate a new sequence with 
exponential and approximate exponential rules. In addition, an 
extended least-squares support vector machine (LSSVM) model was 
applied in the forecasting of the new sequence. The parameters of the 
LSSVM were optimized by an improved quantum-behaved particle 
swarm (IQPSO). The proposed method proved to be effective in fore
casting the number of vessel accidents in China. 

The lockdown during COVID-19 has resulted in a lack of data on 
highway accidents involving the transportation of dangerous goods, 
thus affecting related research. Li et al. (2021) established the time se
ries of accidents and an autoregressive moving average (ARMA) pre
diction model. The results indicated that the mean absolute percentage 
error (MAPE) between the actual and predicted values of transportation 
accidents was 0.147, 0.315, and 0.29. Therefore, the model met the 
prediction accuracy requirements. In the study of Yuan et al. (2021), the 
empirical probabilities of scenario nodes were obtained through defuz
zification calculation, and the state probability of each scenario node 
was calculated by using the dynamic Bayesian network joint probability 
formula. A consequence prediction model was then established by 
constructing the correlation between the optimized scenario evolution 
path and the accident consequences. The occurrence probability of ac
cident consequences was calculated by using the defuzzification method 
and dynamic Bayesian network. Ali et al. (2021) analyzed and predicted 
road traffic accidents (RTAs) using artificial neural networks (ANNs). 
Their model using the sigmoid activation function and 
Levenberg-Marquardt algorithm outperformed multivariate regression 
models. The model results indicated the estimated traffic accidents 
based on appropriate data were close enough to the actual ones. Xiong 
et al. (2021) summarized the influencing factors of freeway traffic safety 
as human behavior characteristics, vehicle factors, road factors, envi
ronmental factors, and traffic safety factors after a systematic analysis. 
They measured the freeway safety level by using the hierarchical en
tropy method and predicted future traffic accidents in the sample area 
by using the autoregressive integrated moving average (ARIMA) model. 
The average error rate of prediction was only 0.47%, showing a high 
degree of fitting and accuracy. In the study of Kim et al. (2021), several 
ML models were applied to predict accidents at a container port under 
various time intervals. The optimal model was selected by comparing 
the accuracy, precision, recall, and F1 score of different models. The 
deep neural network model and the gradient boosting model exhibited 
the highest performance in terms of all the performance metrics. The 
applied methods could be used in predicting accidents at container ports 
in the future. Kumar et al. (2022) used classification models, specifically 
logistic regression, artificial neural network, decision Tree, K-nearest 
neighbors, and random forest, to predict the accident severity. Their 
study aimed to determine the specific features which could affect vehicle 
accident severity. The decision tree model was found to be the optimal 
model. 

To update the current highway design criteria, Macwdo et al. (2021) 
proposed an accident prediction model for rural roads with single lanes 
by using a geographic information system. The geometric reconstruction 
of the original vector data and the semi-automatic extraction of the 
target road sections from the satellite images were conducted with the 
least statistically significant variables. The homogeneous segments were 
analyzed and classified by using the spatial method (kernel-KDE den
sity). The generalized estimation equation (GEE) model was used to 

model the frequency and severity of accidents. The results revealed that 
expanding slope and radius could increase the frequency of curve acci
dents but reduce their severity. By analyzing the contributing factors 
that affect injury severity to facilitate the prediction of injury severity, 
Ma et al. (2021) developed an effective stacked sparse autoencoder 
(SSAE)-based analytic framework to predict the severity of traffic acci
dent injuries. Based on geographical information, he classified the data 
using an SSAE-based deep learning model to efficiently predict injury 
severity. Yang et al. (2022) proposed the deep neural network (DNN) 
model to accurately predict traffic accident severity risks based on 
Chinese traffic accident data. This paper discusses a multi-task DNN 
framework constructed to predict different levels of injury, death, and 
severity of property loss in traffic scenarios. 

This case study proposes a prediction framework of “AIS data + GIS 
preprocessing + ML prediction” by combining GIS and ensemble ML 
algorithms to predict and analyze “whether a grid area is an accident- 
prone area” and “the accident severity”. The Fujian sea area is taken 
in this case study. The data on maritime accidents there from 2007 to 
2020 are utilized. The training effects of different ML models–RF model, 
Adaboost model, gradient boosting decision tree (GBDT) model, and 
Stacking combined model–are compared. Then the optimal model is 
selected to predict accidents. 

3. Methodology 

Maritime accident data from 2008 to 2020 published by Fujian 
Maritime Safety Administration of China are used for this study. Each 
record includes information on the latitude and longitude, time, type, 
and severity level of the accidents. The original data were preprocessed 
and imported into ArcGIS for spatial pattern analysis (Ye et al., 2022). 
Kernel density analysis was conducted to determine the density distri
bution of these accidents and accident-prone areas. The spatial auto
correlation method was then used to analyze the clustering of accidents 
with such a density distribution. Next, the local distribution character
istics and specific accident clusters were obtained. The above results are 
used as inputs to different ML models. 

The sea area is divided into standardized statistical grids. The traffic 
flow characteristics of different dimensions in each grid area are used as 
inputs for ML to predict accidents. The training and prediction effects of 
different ML models are evaluated and compared to investigate the 
feasibility of the accident prediction ML model. The structure of the 
framework is illustrated in Fig. 1. 

3.1. Density analysis 

Kernel density estimation is used for cluster analysis in this paper. 
The accident spots and their surrounding regions are considered to 
reflect the accident distribution in this area. Density analysis can process 
known values of a phenomenon and spread them across the landscape 

Fig. 1. The structure of the proposed framework.  

Y. Yang et al.                                                                                                                                                                                                                                    



Ocean Engineering 266 (2022) 113106

4

according to the spatial relationship between the values measured in 
each spot and the locations of each value. The kernel density analysis 
calculates the density of point features around each output raster cell. It 
can calculate the density of both point and line features. 

In this study, the studied area is divided into various grids. 
Conceptually, each point is covered by a smoothly curved surface. The 
surface value is the highest at the location of the point and decreases 
with the increase of the distance from the point, reaching zero at the 
search radius distance from the point. Only a circular neighborhood is 
allowed. The volume under the surface equals the Population field value 
for that point, or 1 if the field value is specified as NONE. The density at 
each output raster cell is calculated by adding the values of all the kernel 
surfaces where they overlay the raster cell center. Density is the pre
dicted density of the accident spot, i is the accident spot, popi is an 
optional parameter, disti is the distance between accident spot i and 
other locations of accident spots, and radius is the default search radius. 
The following formulas (Silverman, 1998) define how to calculate the 
kernel density for a point and how to determine the default search radius 
within the kernel density formula. 

Density=
1

(radius)2

∑n

i=1

[
3
π • popi

(

1 −

(
disti

radius

)2
)2]

，for disti < radius

(1)  

SearchRadius= 0.9 ∗ min

(

SD,

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

in(2)
∗ Dm

√ )

∗ n− 0.2 (2) 

The search radius refers to the data range involved in the kernel 
function. A larger search radius means a larger range of data, which 
makes the result more abstract. A smaller search radius contains more 
details, which makes the results more fragmented. Dm is the (weighted) 
median distance from the (weighted) mean center. n is the number of 
points if no population field is used. If a population field is supplied, n is 
the sum of the population field values. SD is the standard distance. min 

means that whichever of the two options, either SD or 
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
in(2) ∗ Dm

√
, that 

results in a smaller value will be used. There are two ways to calculate 
the standard distance, unweighted and weighted. 

The unweighted distance formula can be expressed as: 

SD=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(xi − X2

n
+

∑n

i=1
(yi − Y2

n
+

∑n

i=1
(zi − Z2

n

√
√
√
√
√

(3)  

where xi, yi, and zi are the coordinates for feature i (accident spot); {X,
Y,Z} represents the mean center for the features; n is the total number of 
accident spots. 

The weighted distance formula is: 

SDw =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
wi(xi − Xw)

2

∑n

i=1
wi

+

∑n

i=1
wi(yi − Yw)

2

∑n

i=1
wi

+

∑n

i=1
wi(zi − Zw)

2

∑n

i=1
wi

√
√
√
√
√
√
√

(4)  

where wi is the weight of feature i and {x w, y w, z w} is the weighted 
mean center. 

3.2. Spatial auto-correlation analysis 

The spatial autocorrelation coefficient is often used to quantitatively 
describe the spatial dependence of accident spots. In this paper, Moran’s 
I method is used to explore the spatial autocorrelation between accident 
spots, which reflects the spatial cluster of these spots. In the global 
Moran’s analysis, significant Moran’s I suggests a spatial correlation 
between accident spots in the area. However, in most cases, Local 
Moran’s I (Local Moran index) is needed for an additional explanation 

because the specific accident location in the spatial cluster is not clear. 
Hot spot analysis is used as a supplementary tool for Local Moran’s I to 
analyze accident hot spots, supplementing and verifying the spatial 
distribution of the accident dataset. 

The Spatial Statistics toolbox contains statistical tools for investi
gating spatial distributions, patterns, processes, and relationships. In 
terms of concept and objective, there may be some similarities between 
spatial statistics and non-spatial statistics (using traditional methods). 
However, spatial statistics are unique since they have been developed 
specifically to deal with geographic data. Unlike traditional non-spatial 
statistical analysis methods, spatial statistics incorporate geographic 
space (proximity, area, connectivity, and/or other spatial relationships) 
directly into mathematics. Spatial statistics tools can be used to sum
marize salient accident characteristics (for example, determine the mean 
center or overall direction trend), identify statistically significant spatial 
clusters for accidents (hot/cold spots) or spatial outliers, assess overall 
accident patterns of clustered or dispersed, group accidents according to 
attribute similarities, determine the appropriate analysis scale, and 
explore spatial relationships. 

3.2.1. Global Moran’s I 
Global Moran’s I tool in the Spatial Statistics toolbox is used to 

measure the spatial autocorrelation based on feature locations and at
tributes. The accident dataset is imported into the tool, to evaluate 
whether the pattern expressed is clustered, dispersed, or random. The 
tool calculates the Moran’s I index value, z-score, and p-value to eval
uate the significance of the index. The P-value is the approximation of 
the area under the curve with a known distribution (limited by the test 
statistics). The formulas are presented as follows (Getis and Ord, 2010): 

I =
n
s0

∑n

i=1

∑n

j=1
wi,jzizj

∑n

i=1
z2

i

(5)  

S0 =
∑n

i=1

∑n

j=1
wi,j (6)  

where wi,j is the spatial weight between feature i and j. zi and zj are the 
normalized observed values of the accident spots in space units i and j. n 
is equal to the total number of accident spots. S0 is the aggregate of all 
spatial weights. 

The ZI-score for the statistics is computed as: 

ZI =
I − E[I]
̅̅̅̅̅̅̅̅
V[I]

√ (7)  

where: 

E[I] = −
1

(n − 1)
(8)  

V[I] =E
[
I2] − E[I]2 (9)  

where V[I] and E[I] are the variance and expected value of Moran’s I. 

3.2.2. Anselin Local Moran’s I 
Anselin Local Moran’s I tool can be used to identify statistically 

significant spatial accident clusters with high or low values. The tool can 
be used to determine the sharpest boundaries of accident-prone areas 
and areas with higher accident severity and to determine an unusual 
accident spot. It can also identify whether there are unexpected accident 
spots, and the accident locations of unexpectedly high rates. The for
mulas are given as (Luc Anselin, 1995): 

Ii =
xi − X

S2
i

∑n

j=1,j∕=i

wi,j
(
xj − X

)
(10) 
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S2
i =

∑n

j=1,j∕=i

(
xj − X

)

n − 1

2

(11)  

where xi is the accident level of feature i; X is the mean of the corre
sponding attribute; wi,j is the spatial weight between features i and j; Si is 
the aggregate of all spatial weights. n is equal to the total number of 
accident spots. 

The zIi -score for the statistics are calculated as: 

ZIi =
Ii − E[Ii]
̅̅̅̅̅̅̅̅̅
V[Ii]

√ (12)  

where: 

E[Ii] = −

∑n

j=1,j∕=i
wi,j

n − 1
(13)  

V[Ii] =E
[
I2

i

]
− E[Ii]

2 (14)  

where E[Ii] and V[Ii] are the expected value and variance value. 

3.2.3. Hot spot analysis 
Accident severity is selected as the field. The Getis-Ord Gi* tool can 

be used to determine the location of spatial accident clusters with high 
or low values. The Getis-Ord statistics are used in hot spot analysis (Yang 
et al., 2022) to determine whether a point belongs to the same category 
as its neighbors (Getis and Ord, 2010). A high value of the Getis-Ord 
statistic indicates a cluster of high index values (hot spots), while a 
low value indicates a cluster of low index values (cold spots). The G∗

i 
statistic of Getis-Ord can be determined using the following equation: 

G∗
i =

∑n

j=1
wi,jxj − X

∑n

j=1
wi,j

S

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅[

n
∑n

j=1
w2

i,j −

(
∑n

j=1
wi,j

)2]

n− 1

√
√
√
√

(15) 

The G*i statistic obtained is a z-score. For statistically significant z- 
scores (z-score>1.96 or < –1.96), the larger the z-score is, the more 
intense the clustering of high values (hot spot) would be. Conversely, the 
smaller the z-score is, the more intense the clustering of low values (cold 
spot) (Ord and Getis, 1995) would be. 

3.3. Machine learning models 

Chen et al. established the integrated learning yield prediction model 
to predict the yield of a fruit tree, which had the best prediction per
formance compared with traditional prediction models, such as the 
support vector regression (SVR) model and K-nearest neighbor (KNN) 
model (Chen et al., 2022). Bai et al. used the integrated learning model 
to predict the thermal comfort of building occupants and showed 
through systematic comparison that the prediction performance of the 
integrated learning model outperformed 10 other machine learning 
models trained with different data subsets (Bai et al., 2022). Shan et al. 
proposed a prediction model based on integrated learning to predict 
hourly solar irradiance, compared it with traditional prediction models, 
such as the RF and SVR models, and showed that the integrated learning 
model had the highest prediction accuracy (Shan et al., 2022). Li and 
Song (2022) used the integrated learning model to predict the strength 
of high-performance concrete, which again showed better performance 
compared with other ML models. 

Based on literature review, this study used the integrated learning 
algorithm to assess whether a grid area is an accident-prone area and to 
predict accident severity in each grid. Moreover, we compared different 
integrated learning models, including the RF model, Adaboost model, 

GBDT model, and Stacking combined model. Lastly, the best-performing 
model was selected to predict and analyze accidents, as well as 
demonstrate correlations between the AIS data processed by GIS and the 
accident. The integrated learning model is shown in Fig. 2. 

Different ML models (i.e., RF model, Adaboost model, GBDT model 
and Stacking combined model) are applied to identify “whether a grid 
area is an accident-prone area” and determine “the accident severity”. 
After the training performance being evaluated and compared, an 
optimal model is selected for accident prediction based on the correla
tion between the accidents and the AIS data processed by GIS. 

Each ML model ensembles a set of learning algorithms. High-level 
classification performance was achieved by constructing a strong 
learner from a combination of several weak learners using the following 
two methods:  

① Bagging： 

Bagging is known as bootstrap aggregation. It can be used for 
reducing variance within a noisy dataset. In bagging, a new sample is 
established to represent the distribution of the original sample through 
resampling from a limited number of samples (uniform sampling from a 
given training set data with replacement, that is, every time a sample is 
selected, it is equally likely to be selected again and re-added to the 
training set). 

Bagging algorithm: 

Several independent learners are constructed using a base learner 
algorithm on the basis of bootstrap dataset. These learners are called 
base learners (also known as homogeneous learners) and are commonly 
generated by using the same base learning algorithm. Individual 
learners can be generated in parallel without strong interdependence. 
The classification results of these base learners are summarized or 
averaged through the majority voting mechanism as the final result. 

The Random Forest model is representative of Bagging construction 
and is used to analyze maritime accident data in this paper.  

② Boosting: 

Boosting methods give repeat training to the data and allocating 
different weights to the data to get a number of weak classifiers (also 
known as basic classifiers). These weak classifiers are combined to form 
a strong classifier. The whole process can be divided into two stages: 
continuous repeated learning and a combination of different learners. 

In the first stage, most Boosting methods change the probability 
distribution of training set data (weights of different samples of training 
data) and call the weak classifier algorithm according to the data with 
different probability distributions. 

Typical Boosting-related models include Adaboost and GBDT, and 
they are used for the analysis of maritime accident data in this paper. 

3.3.1. Random forest 
The RF model is an integrated machine learning algorithm con

structed from decision trees. The model has a clear structure, is easy to 
explain, has high stability, and is not prone to overfitting. It is commonly 
used for the classification of applications (Pei et al., 2022). 

RF uses the bootstrapping method. In the given m sample datasets, 
after n times of random sampling, n training sample sets are obtained. 
Each sample set is trained to construct decision trees. At the node of the 
decision tree, a subset of k attributes is randomly selected from the node 
attribute set, among which an optimal attribute is selected for splitting. 
Test samples will be input into each decision tree for classification 
output or regression output after the establishment of the random tree. 
For classification, the final result is determined by voting (Xing et al., 
2021). 

Using averages or majority voting, the probability of judgment error 

Y. Yang et al.                                                                                                                                                                                                                                    



Ocean Engineering 266 (2022) 113106

6

(erfc) for any accident sample can be written as: 

erfc=
∑N

i=n
Ci

Nεi(1 − ε)N− i (16)  

where i represents the number of judgment error; ε is the probability of 
wrong judgment of a tree while (1 − ε) is the probability of correct 
judgment; (N − i) is the total correct judgment times. 

3.3.2. Adaboost 
Adaboost algorithm is a multi-learner enhancement technique based 

on ML. A base learner is an algorithm set composed of one or more ML 
algorithms, and it can be used as a basic unit to judge the maritime 
accident level. The Adaboost algorithm can integrate multiple weak base 
learners (base learners with low accuracy in identifying accident types). 
Weak base learners are combined to form a strong base learner by 
adjusting the weights to the weak base learners. Thereby, the classifi
cation accuracy of the Adaboost algorithm is improved (Li et al., 2022). 

The linear combination of Adaboost algorithm base learners and the 
exponential loss function of these base learners are expressed as: 

H(xi)=
∑T

t=1
αtht(xi) (17)  

Lexp[H(xi|D)] =Exi.∼D
[
e− f (xi)H(xi)

]
(18)  

where ht(xi) represents the base learners; αt is the weight coefficient of 
the base learners. T is the number of base learners; f(xi) is the classifi
cation of parameter xi. D is the parameter distribution. The sign function 
is introduced to minimize the exponential loss function, which can be 
expressed as: 

G(x)= sign(H(xi))= sign

((
∑M

m=1
αtht(xi)

)

(19)  

where G(x) is the final strong classifier. If the value is greater than 0, the 
output of the strong classifier will be 1. If the value is less than 0, the 
output will be − 1. If the value is 0, the output will be 0. 

3.3.3. Gradient boosting machine 
The GBDT model is an emerging ML method that classifies data using 

an additive model (a linear combination of decision trees as basic 
functions) and continuously reduces the residuals generated during 
trainings. It is a Boosting algorithm. Based on the previously built model 
loss function, each time a smaller loss function is taken along the 
gradient descent direction. Thus, an improved learner is established. 
Larger loss function means more mistakes made by the model. Contin
uous decrease of the loss function means an improving model it is 

becoming. The best way to improve the model is to let the loss function 
decrease along its gradient direction. Theoretically, the gradient 
boosting machine can employ different learning algorithms as the base 
learner. 

In GBDT, the decision Tree is used as the base learner for the gradient 
boosting machine. After a decision tree is constructed, the residual 
outputs of the existing model and the actual output from samples are 
used to construct another tree. Through successive iterations, the results 
of all decision trees are taken as the output (Shen et al., 2022). The 
formula is as follows: 

fm =
∑M

m=1
T(x; θm

)

(20)  

where x is the characteristic variable; T stands for the decision tree; θ is 
the parameter of the decision tree; M is the number of trees. 

Root mean square error (RMSE) is used as the evaluation index for 
the generalization ability of the model. The formula is written as: 

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N

∑N

i=1

(
fir − fip

)2

√
√
√
√ (21)  

where fir is the true value; fip is the predicted value; N is the number of 
accident training samples. 

3.4. Deep learning and traditional machine learning algorithms used in 
this study 

Convolutional neural networks (CNNs) are feedforward neural net
works with convolutional computation and deep structure and are one 
of the representative algorithms of deep learning (Gu et al., 2018). CNNs 
have representation learning and shift-invariant abilities to classify 
input information according to their hierarchical structure. Therefore, 
they are also called “shift invariant artificial neural networks” (SIANN) 
(Artyomov and Yadid Pecht, 2005). 

Long short term memory (LSTM) networks are cycle-time neural 
networks specially designed to solve long-term dependency problems of 
general recurrent neural network (RNN). All RNNs have chains of re
petitive neural network modules (). 

The support vector machine (SVM), a traditional machine learning 
method, is a two-group classification model. Its baseline model is the 
linear classifier with the largest interval defined in the feature space. 
SVM learns by maximizing the interval, which can be shown as a 
quadratic convex optimization programming problem. The learning al
gorithm of the support vector machine is the optimal algorithm for 
solving convex quadratic programming (Blanco et al., 2022). 

Fig. 2. Accident prediction process by combined models.  
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3.5. Data description 

3.5.1. Marine accident data of Fujian Province 
The Fujian sea area in Fujian Province, China is selected as the 

studied area. Fujian, or “Min” for short, is located on the southeast coast 
of China. It borders Zhejiang Province in the northeast, Jiangxi Province 
in the west and northwest, Guangdong Province in the southwest, and 
Taiwan Province across the Taiwan Strait in the east. It is an important 
seaport in the Chinese mainland and a window for China to communi
cate with the world. It has the second longest coastline in China, with a 
zigzag coastline of 3751.5 km and a sea area of 136,300 square kilo
meters (Fig. 3). 

3.5.2. Statistical analysis of research data 
The accident data from January 2007 to April 2020 are from Fujian 

Maritime Safety Administration of China. They include a total of 549 
records, mainly including accident location, time, type, severity level, 
and economic loss. The accidents are classified into “minor accident”, 
“ordinary accident”, “major accident” and “serious accident” by severity 
(MSA, 2010, Table 1). They can also be classified into “touch rocks”, 
“stranding”, “collision”, “touch”, “fire and explosion”, “sank”, “opera
tional pollution”, “damage by waves”, “wind” and “others” according to 
the accident type (MSA, 2010, Table 2). 

The severity of maritime traffic accidents is classified through such 
factors as casualties, direct economic losses, or environmental pollution 
of water areas. Minor accidents are accidents below the ordinary level. 
In this study, the accidents are classified based on casualties (Table 1). 
Minor accidents account for the highest proportion, followed by ordi
nary accidents. Major and serious accidents account for a relatively 
small proportion. However, their impacts, like ship accidents, casualties, 
economic losses, and environmental pollution, are far greater than those 
of minor and ordinary accidents. Therefore, the prevention of major and 

serious accidents should be the focus of attention. Table 2 lists ten types 
of maritime traffic accidents in the Fujian sea area, among which 
“collision” (damage caused by a collision between two or more ships) 
account for the highest proportion, followed by “touch rocks” and 
“touch”. The occurrence frequency of accidents caused by “waves” or 
“wind” in this area is relatively low. 

The total number and severity of accidents in cities like Fuzhou, 

Fig. 3. Research area–Fujian Province, China.  

Table 1 
The number of accidents of each severity level.  

S/ 
N 

Accident severity Number Definition (casualties) 

1 Minor accidents 324 No casualties 
2 Ordinary 

accidents 
124 Less than 1–3 people died (including 

missing) 
3 Major accidents 75 Less than 3–10 people died (including 

missing) 
4 Serious accidents 26 Death (including missing) of less than 10–30 

people  

Table 2 
Accident type.  

S/N Accident type Number Frequency 

1 Touch rocks 65 middle 
2 Stranding 41 middle 
3 Collision 249 high 
4 Touch 69 middle 
5 Fire and explosion 29 middle 
6 Sank 56 middle 
7 Operational pollution 3 low 
8 Damage by waves 1 low 
9 Wind 4 low 
10 Others 32 middle  
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Ningde, Putian, Quanzhou, Xiamen, and Zhangzhou are compared. 
Fuzhou witnessed the most accidents, followed by Xiamen, Zhangzhou, 
and Ningde. In Putian and Quanzhou, accidents are fewer. Fuzhou and 
Ningde had the highest proportion of serious accidents. Fuzhou, Ningde, 
and Xiamen have the highest proportion of major accidents. Minor ac
cidents account for the highest proportion in all regions. Serious acci
dents rarely occur in Putian and Zhangzhou (Fig. 4). 

3.5.3. The spatial distribution of AIS data 
The AIS data of the Fujian sea area, a total of 8,340,427 items ob

tained from Shanghai Maritime University, were also used for presenting 
information about ship trajectories and the corresponding times. They 
were used to describe ship behavior and could be applied to fields like 
port traffic flow, port ship network analysis, and ship accident analysis. 
AIS data can reflect the flow and motion of ships effectively and directly. 
After the AIS data are input into GIS software, the framework for ship 
accident prediction is established by combining the maritime accident 
investigation data with other data—ship traffic flow, the average and 
standard lengths and widths of ships, course and speed standard de
viations, and mean values. As shown in Fig. 5, different color blocks 
represent the density of traffic flow in different regions. The darker the 
color is, the higher the density would be. Red blocks mean the highest 
traffic density, followed by yellow ones and then green ones. Subareas 
like the Ningde sea area, Fuzhou sea area, Quanzhou sea area, and 
Xiamen sea area are regions with high traffic density, followed by the 
Putian sea area and Zhangzhou sea area. Fujian with a long coastline, 
vast sea area, and rich marine resources has huge potential for marine 
development and economic growth. The traffic density of this port is 
high in this prosperous sea area in the west of the Taiwan Strait. 

4. Analysis and results 

4.1. Accident spatial distribution 

The visual spatial layout of maritime accident spot distribution and 
accident type distribution in the Fujian sea area is obtained by locating 
maritime traffic accidents in the map layer based on the longitude and 
latitude coordinates and the types of traffic accidents (Fig. 6). The green 
dots in Fig. 6 (A) represent the spatial distribution of all maritime traffic 
accidents in the Fujian sea area. In Fig. 6 (B), the purple dots represent 
grounding accident, the orange dots represent operational pollution 
accident, the blue dots represent wave damage accident, the yellow dots 
represent fire and explosion accident, the red dots represent collision 
accident, the green dots represent sinking accident, the brown dots 
represent touch accident, the light blue dots represent reef accident, the 
dark purple dots represent wind disaster, and the dark green dots 

represent other accident types. 

4.2. Kernel density analysis 

The number of traffic accidents in per unit channel is an important 
index for assessing traffic safety in navigation. The kernel density 
analysis method can be used to determine the spatial distribution of 
traffic accidents in the Fujian sea area and then the navigation section 
with high accident frequency can be identified. Based on the maritime 
traffic accident data in this sea area, the spatial distribution density of 
accident spots can be determined using Equation (1). The kernel density 
values of the elements in the whole analysis area are superimposed to 
calculate the kernel density values of all grids in the area (Fang et al., 
2021). 

The kernel density spatial distribution results calculated from mari
time accidents in the Fujian sea area are shown in Fig. 7. Different color 
blocks represent different densities, and the chroma ranges from light to 
dark. The darker the chroma is, the higher the aggregation and the ac
cident density can be. The accident set shows different clusters to spatial 
distribution and has different cluster centers (with the highest risk 
value). The main cluster centers locate in subareas including the Xiamen 
sea area, Ningde sea area, and Fuzhou sea area. The secondary cluster 
centers are distributed in subareas including the Zhangzhou sea area, 
Quanzhou sea area, and Putian sea area. The areas beyond cluster cen
ters with chroma not so dark indicate that the accident rates are not high 
in these areas. Given the high cluster degree of main cluster centers, the 
situation of the Fujian sea area was analyzed. The situation of Xiamen 
Port is relatively complex: high-risk cluster centers are almost distrib
uted all over the port. Xiamen Port consists of six port areas, and its main 
cluster centers are Xiamen Bay and the west sea area. There are three 
port areas (Houshi Port Area, Zhaoyin Port Area, and Haicang Port Area) 
and four wharves (Haitian Wharf, Youlun Wharf, Haitong Wharf, and 
Songyu Wharf) in the main channel of Xiamen Bay. The secondary 
cluster center of Xiamen Port is located near the east sea area, Xiang’an 
Port Area, Big Kinmen Island, Beidong Waterway, and Huyu Island. 
Results show that Sandu Island near Ningde Port is one of the cluster 
centers bearing the highest risk of accidents, and Dongan Island and 
Leijiang Island are the secondary cluster centers of this port. Fuzhou Port 
has two cluster centers with high value at risk; one is Minjiangkounei 
Port Area, and the other is Songxia Port Area. Dongshan Port Area is the 
high-risk cluster center of Zhangzhou Port. Quanzhou Bay Port Area is 
the high-risk cluster center of Quanzhou Port, and Xiuyu Port Area is the 
high-risk secondary cluster center of Putian Port. 

Fig. 4. Comparison of accident number and severity of each city.  
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4.3. Spatial autocorrelation analysis 

4.3.1. Global Moran’s I analysis 
Table 3 and Fig. 8 show the details of Global Moran’s I analysis in the 

Fujian sea area. After the data are selected, the spatial autocorrelation 
tool in the GIS toolbar is applied: setting the characteristic field as ac
cident severity, the distance threshold value 400. After the numerical 
value is input, the spatial autocorrelation tool will return five values: 
Moran’s I index, expected index, variance, z-score, and p-value. In the 
Moran’s index, p-values and z-scores are used to determine the spatial 
correlation, and the variance reflects the degree of dispersion between 
accident spots. P-values are probability values, and z-scores represent 
multiples of standard deviations. The confidence of spatial autocorre
lation can be obtained by correlating p-values and z-scores with the 
Moran’s index. The confidence interval refers to the estimation interval 
of the overall accident parameters constructed by the accident sample 
statistics. The greater the confidence interval is, the higher the occur
rence probability of outliers can be. Thus, the occurrence probability of 
clustering or outliers in the accident set of the Fujian sea area can be 
determined. Local autocorrelation can be performed if global autocor
relation occurs, because local Moran’s I can locate outliers and cluster 
points. 

Fig. 8 shows that the Moran’s I report presents a significant normal 
distribution and is divided into three parts. The middle part is the 
random distribution, the right part is clustered distribution, and the left 
part is dispersed distribution. In Table 3, its Moran’s index is about 
0.057, and its z-score is about 3.90, which is about 3.90 times the 
standard deviation. The value of Moran’s index being positive indicates 
that the results that are distributed on the rightmost of the normal dis
tribution show a clustered distribution. The p-value is about 0.000095, 
suggesting that the result is entirely not generated by random data and 
the result is reliable. As the probability of randomly generating this 

clustering pattern is less than 1%, it indicates that the data are clustered 
with 99% certainty and the probability of data clustering is greater than 
that of random distribution. Therefore, the spatial distribution of 
maritime traffic accidents in the Fujian sea area show some clustering 
characteristic, and it is a spatial positive correlation pattern. 

4.3.2. Anselin Local Moran’s I 
Based on the spatial autocorrelation analysis results, the accident set 

is internally correlated and featured as clustered distribution, but the 
exact spatial cluster points remain unknown. Local Moran’s I autocor
relation analysis is performed based on Moran’s I analysis to determine 
the exact spatial cluster points (Zhang et al., 2019). The clustering re
sults of traffic accident distribution in the Fujian sea area obtained by 
Local Moran’s I autocorrelation analysis is presented in Fig. 9. The 
selected characteristic field is accident severity. 

In Fig. 9, the gray points indicate not significant difference in acci
dent severity; the pink points represent the high-high cluster, i.e., spots 
around these points have accidents with high severity; the red points 
indicate high outlier, i.e., spots with high accident severity are sur
rounded by those with low accident severity; the blue points represent 
the low-low cluster, i.e., all accidents happening around these points are 
of low severity; the dark blue points indicate low outlier, i.e., spots with 
low accident severity are surrounded by those with high accident 
severity. Spots with high accident severity are mainly located in the 
Ningde Port Area and Fuzhou Port Area. Larger number of accidents 
with high severity in these two ports may form the low outlier as the 
places with low accident severity are almost surrounded by those with 
high accident severity. While minor accidents and ordinary accidents 
are likely to occur in Putian Port, Xiamen Port, and Zhangzhou Port. 
Larger number of accidents with low accident severity in these three 
ports may form the high outlier points since the places with high acci
dent severity are almost surrounded by those with low accident severity. 

Fig. 5. Traffic flow in the Fujian sea area.  
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Fig. 6. The visual spatial layout of maritime accident spot distribution (A) and accident type distribution (B) in the Fujian sea area.  
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Gray points are distributed all along the Fujian sea area, indicating that 
the accident severity around the accident spot could not form high-high 
or low-low clusters. 

4.3.3. Hot spot analysis 
The hot spot analysis can be used to calculate the Getis-Ord Gi* 

statistics (called G-i-asterisk) for each accident in the accident set. The 
obtained z-score and p-value can determine the location of spatial 
clusters of high or low accident severity values. This analysis method 
works by checking each accident element in the immediate accident 
environment. High severity accident elements tend to attract attention 
but may not be statistically significant hot spots. Hot spot with statistical 
significance means that an accident of high severity should have a high 
value and be surrounded by other accidents of the same severity. An 
accident element and its local sum of accident elements are compared 
with the sum of all accident elements. When the local sum is different 
from the expected local sum making it fail to be randomly produced, a 
statistically significant z-score will be produced. Fig. 10 shows the hot 
spot analysis of the Fujian sea area. 

In Fig. 10, the croci, orange, and red points are called “hot spots” and 
represent sites where major accident levels cluster; the inky blue, light 
blue, and light gray points are called “cold spots” and represent sites 
where minor accident levels cluster; gray points represent not significant 
points. Different shades of color correspond to different confidence 
levels, and the darker the color is, the higher the confidence level can be. 
Major accidents usually occur in the subareas including the Ningde sea 
area and the Fuzhou sea area, while minor accidents occur in the sub
areas including the Zhangzhou sea area, Xiamen sea area, and Quanzhou 
sea area. The gray points are distributed in the Putian sea area and part 
of the Fuzhou sea area, indicating that the characteristics of accidents in 
this sea area are not significant. Figs. 9 and 10 suggest that the results of 
the cold/hot spot analysis are consistent with those of the Local Moran’s 

Fig. 7. Spatial distribution of maritime accident kernel density in the Fujian sea area.  

Table 3 
Spatial autocorrelation report.  

Correlation 
value 

Moran’s I 
index 

Expected 
index 

Variance z-score p-value 

Score 0.057867 − 0.001825 0.000234 3.903731 0.000095  

Fig. 8. Spatial autocorrelation report.  
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I. 

4.4. Accident prediction model 

The risk of maritime accidents is closely related to traffic charac
teristics such as the speed, size, and regional flow of ships (Gan et al., 
2014; Zhang et al., 2022). Since there are few accident spots at sea and 
they have obvious dispersed distribution characteristics, in this paper, 
the mapping relationship between the number of accidents and the 
traffic characteristics of small grid areas is established within a grid by 
unifying the grid scale using standardized grid statistics. In this paper, 
we sample characteristic dimensions for accurate results in Fig. 11: a 
represents the characteristics of the ship’s mean length, b represents the 
standard deviation characteristics of the course, c represents the stan
dard deviation characteristics of the ship width, d represents the char
acteristics of the ship’s mean speed, e represents the standard deviation 
characteristics of the ship speed, f represents the standard deviation 
characteristics of the ship length, g represents the characteristics of the 
ship’s mean width, and h represents the characteristics of the ship flow. 
These dimensions were chosen for the following reasons: 

4.4.1. Static scale dimensions 

① The ship’s length and width reflect the static traffic characteris
tics of the ship in the grid. The larger the length and width, the 
more the grid is favored by large ships passing by. Small char
acteristic data indicate that these grids are not on the main route 
of large ship traffic, and the risk of accidents decreases 
accordingly.  

② Standard deviations of ship length and width are the deviations of 
the static characteristics (length and width) of ships in the sta
tistical sampling grid. The larger the characteristic value, the 

more significant the scale deviation of ships. Ships of different 
sizes may have their own unstandardized behaviors; 

4.4.2. Traffic flow dimensions  

① The average speed is the average speed of trajectory in the grids. 
This feature indicates that the grid area is within the main nav
igation channel and that large ships come and go frequently.  

② Standard deviation is the deviation between the ship’s speed and 
the mean value in the statistical sampling grid. The larger the 
standard deviation is, the greater the speed difference is, a trend 
observed in large and small ships;  

③ Flow characteristics describe the size of the flow of ships passing 
through the sampling grid. Larger values indicate habitual travel 
by ships in this area and a possibility of accident risk. 

4.4.3. Convergence risk dimensions 
The standard deviation of the ship’s course is the deviation between 

the course and the mean value in the statistical sampling grid. The larger 
the standard deviation is, the greater the difference between the course 
of ships in the grid area, signifying the convergence of courses.  

(1) A standardized grid is established to divide the maritime research 
area into fine-grained grids.  

(2) As maritime accidents are closely related to the size, speed, 
encounter situation, and flow of ships in the sea area, the grid 
statistical dimensions should include the ship flow through the 
grid, the mean length and width of the ship, the standard length 
and width of the ship, the standard deviation of the course and 
speed and the mean difference, as well as the standard deviation 
of heading and the mean difference. 

Fig. 9. Anselin local Moran’s I.  
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Fig. 10. Getis-Ord Gi* analysis.  

Fig. 11. Traffic flow characteristics and sea area gridding. The specific experimental steps in this paper are as follows.  
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(3) We carry out comparative experiments on the RF model, Ada
boost model, GBDT model, Stacking combined model, CNN 
model, LSTM model, and SVM model, train each model with 
marine accident data, establish binary and multi-classification 
prediction tasks, complete the construction of the prediction 
model, and compare marine accident prediction performance of 
different integrated learning algorithms and classical prediction 
models. 

4.4.4. Binary classification prediction model on “whether a grid area is an 
accident-prone area” 

In this paper, AIS data are used to produce statistics on the traffic 
conditions in this area. A 100*100 standardized statistical grid is 
established in this sea area. The dimensions within the grid are the 
traffic flow in the grid, the mean length and width of the ship, the 
standard length and width of the ship, the standard deviation of the 
course, as well as the standard deviation of the speed and its mean value. 
During the process of training sample selection, the grid of “accidents 
occurred” is marked as the negative sample, and that of “no accidents 
occurred” is the positive sample. An extreme category imbalance be
tween positive and negative samples exists, with the number of negative 
samples being only 295 and positive samples 9705 in 10,000 grids. Some 
positive samples are randomly selected from 9705 pieces of data to 
avoid overfitting of the model to the positive sample data. The ratio of 
positive and negative samples reaches 10:1, which facilitates the 
learning of negative sample features for the model. This part of the data 
is divided into training set and test set with a ratio of 8:2. Finally, the 
data sets are input into the abovementioned models and the prediction 
results of each model on “whether a grid area is an accident-prone area” 
are obtained. 

The receiver operating characteristic curve (ROC) is taken as the 
evaluation index for four models. The ROC curve is commonly used to 
measure the accuracy of classification. The closer the ROC value is to 1, 

the better the model’s classification effect is. The final results of the 
binary classification prediction model are shown in Fig. 12. The ROC 
integral values of the Random Forest model, Adaboost model, GBDT 
model, and Stacking combined model were 0.77, 0.75, 0.77, and 0.77. 
The result indicates that except for the Adaboost model, the results of 
other models have reached a high level of classification accuracy, 
satisfying the need for binary classification prediction of maritime 
accidents. 

In order to verify the optimality of the combined model, this paper 
further compares the experimental results with those of classical pre
diction models (CNN, LSTM, and SVM). Among them, the CNN adopts 
the Resnet18 network model, characteristic of simplicity and practi
cality (Liu et al., 2021). The experimental comparison results are shown 
in Fig. 13. The ROC values of SVM model, LSTM model, and Resnet18 
model are 0.76, 0.59, and 0.75 respectively. Thus, the integrated 
learning combined model is the optimal model. 

For further comparisons, this paper takes accuracy, precision, recall, 
and F1 value as evaluation indexes to determine the optimization model. 
Accuracy is the proportion of positive and negative categories that are 
predicted accurately. Precision indicates the accuracy of the guess. 
Recall represents how many samples that are actually positive are pre
dicted to be positive. F1 value is an evaluation index that can reflect both 
precision and recall. According to Table 4, the prediction effect of the 
Stacking combined model is the best, followed by the GBDT model and 
Random Forest model, and the last is the Adaboost model. Most classical 
prediction models are inferior to ML models. 

Fig. 14 is the predicted grid diagram of “whether a grid area is an 
accident-prone area” in the Fujian sea area. The red grid represents “the 
area where the accident may occur”, and the blank grid represents 
“areas where no accident may occur”. The figure shows that risky areas 
are mostly located in coastal areas and estuaries. According to accident 
prediction results, the distribution of possible accident areas in the 
whole sea area is relatively uniform. 

Fig. 12. Binary classification prediction model–ROC curve.  
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4.4.5. Multi-classification prediction model on “the accident severity” 
This paper used AIS data to make statistics on the traffic conditions in 

this area. The sea area was gridded to 100*100 in the multi-classification 
preprocessing. The dimensions within the grid are the traffic flow in the 
grid, the mean length and width of the ship, the standard deviation of 
the course and speed and the average speed. When multiple labels are 
set, different levels correspond to different severity degrees of maritime 
accidents: 1.0 for minor accidents, 5.0 for ordinary accidents, 10.0 for 
major accidents, and 20.0 for serious accidents. In this paper, 295 pieces 
of accident data with AIS information are collected, among which the 
number of different types of accidents differs, with a ratio of 
146:81:49:19. In order to avoid mistakes for the model learning caused 
by this imbalance, each type of data is interpolated linearly with the 
ratio of each category reaching 1:1:1:1 and 584 pieces of training data 
are obtained. Training set and test set are determined according to those 
data with a ratio of 8:2. Finally, the data sets are input into the above 
mentioned models, and the prediction results of each model are 
obtained. 

Similar to the experimental steps of the two-classification prediction 
model, the final results of the multi-classification prediction model are 
shown in Table 5, Table 6, Figs. 15 and 16. The average ROC curve 
values of the Random Forest model, Adaboost model, GBDT model, 
Stacking combined model, SVM model, LSTM model, CNN model 

(Resnet18) were 0.74, 0.64, 0.67, 0.77, 0.71, 0.58, and 0.76. In addition, 
their corresponding F1 values were 0.725, 0.442, 0.693, 0.746, 0.568, 
0.325, and 0.633, suggesting that the Stacking combined model has the 
best effect and can achieve a higher classification accuracy level, thus 
suitable for predicting the severity of maritime accidents. 

Fig. 17 is the predicted grid diagram of “the accident severity” in the 
Fujian sea area. The green grid represents “minor accidents”, the orange 
grid represents “ordinary accidents”, the blue grid represents “major 
accidents”, and the red grid represents “major accidents”. Obviously, the 
green grid is widely distributed, which can be found in all sea areas of 
Fujian Province, followed by the orange grid. The blue grid is mainly 
distributed in subareas like the Ningde sea area, Fuzhou sea area, and 
Xiamen sea area, while the red grid is in the subareas like the Ningde sea 
area and the Fuzhou sea area. 

The prediction results of “whether a grid area is an accident-prone 
area” and “the accident severity” in the Fujian sea area is obtained. In 
terms of traffic flow characteristics, the whole sea area has heavy traffic, 
dense routes, diverse types of ships with complex route conditions, and 
thus has a higher possibility of accidents than the sea area with sparse 
routes. In terms of the spatial distribution characteristics of accidents, 
the possible accident area is consistent with the distribution of accident 
kernel density and high-high and low-low clusters of accidents. For 
example, the area where a major accident is likely to occur coincides 

Fig. 13. Binary classification prediction model–ROC curve.  

Table 4 
Binary classification prediction model–Evaluation index of the prediction effect.  

Evaluation Index Random Forest Adaboost GBDT SVM LSTM CNN (Resnet18) Stacking combined model 

Accuracy 0.904 0.881 0.901 0.898 0.850 0.893 0.912 
Precision 0.898 0.874 0.906 0.892 0.828 0.885 0.910 
Recall 0.904 0.881 0.910 0.898 0.850 0.893 0.912 
F1 0.898 0.876 0.902 0.892 0.815 0.886 0.904  
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with the area where there is a high risk of accident kernel density. 

5. Conclusion and discussion 

Maritime security in the Fujian Sea is of vital importance because it is 
an important international transport channel. This paper studies the 
geographic characteristics of maritime accidents and the relationship 
between characteristics of normal trajectories and accidents. Our paper 

proposes a GIS-based accident analysis framework to characterize the 
spatial distribution of traffic accidents based on accident data by 
employing kernel density analysis and spatial autocorrelation tech
niques. The correlation between accident occurrence and geographical 
spatial location, as well as the spatial clustering of accidents are 
analyzed. The studied sea area is gridded into several subareas based on 
maritime traffic characteristics using AIS data. Whether a grid area is an 
accident-prone area and the severity of accidents within the grid are 

Fig. 14. The predicted grid diagram of “whether a grid area is an accident-prone area” in the Fujian sea area.  

Table 5 
Comparing the ROC curve value.  

Type Random Forest Adaboost GBDT SVM LSTM CNN (Resnet18) Stacking combined model 

Minor accident 0.68 0.54 0.61 0.58 0.57 0.67 0.66 
Ordinary accidents 0.81 0.57 0.77 0.68 0.62 0.68 0.84 
Major accidents 0.81 0.65 0.78 0.83 0.62 0.78 0.82 
Serious accidents 0.94 0.65 0.91 0.74 0.50 0.90 0.94 
Average ROC curve 0.81 0.68 0.77 0.71 0.58 0.76 0.82  

Table 6 
Multi-classification prediction model–Evaluation index of the prediction effect.  

Evaluation Index Random Forest Adaboost GBDT SVM LSTM CNN (Resnet18) Stacking combined model 

Accuracy 0.729 0.444 0.694 0.579 0.400 0.641 0.750 
Precision 0.723 0.462 0.693 0.572 0.347 0.635 0.745 
Recall 0.729 0.444 0.694 0.579 0.400 0.641 0.750 
F1 0.725 0.442 0.693 0.568 0.325 0.633 0.746  
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Fig. 15. Multi-classification prediction model–ROC curve.  

Fig. 16. Multi-classification prediction model–ROC curve.  
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evaluated and predicted by different ML models. The results of cluster 
analysis can provide richer spatial characteristics of maritime accidents. 
It can offer spatial patterns of accident severity and identify maritime 
accident-prone and high-risk areas with high accident severity, which 
cannot be achieved through traditional statistical analysis. A uniform 
grid scale for the Fujian sea area is established using standardized grid 
statistics. Analysis of the relationship between the number of accidents 
and the traffic characteristics of the grid areas using different ML 
models, including the Random Forest model, Adaboost model, GBDT 
model, and Stacking combined model, is compared with one traditional 
model (SVM) and deep learning models (CNN and LSTM). According to 
the analysis, the Fujian sea area shows typical cluster characteristics and 
a positive spatial correlation. In other words, the kernel density esti
mation indicates that subareas, including the Ningde, Fuzhou, and 
Xiamen subareas, generally have high accident density and the highest 
risk value within the whole Fujian sea area. High-high accident clus
tering occurs mainly in the Ningde and Fuzhou subareas, while the 
Xiamen, Putian, and Zhangzhou subareas have low-low clustering. In 
terms of prediction, the Stacking combined model outperforms the 
others with its high accuracy, precision, recall, and F1-score values of 
0.912, 0.910, 0.912, and 0.904 in predicting whether a grid area is an 
accident-prone area and 0.750, 0.745, 0.750, and 0.746 in predicting 
the accident severity in the grid, indicating its superior maritime traffic 
accident prediction performance. 

From the perspective of management, this paper uses real traffic 
trajectory data to establish an accident analysis and research framework 
based on GIS, and verifies the maritime space distribution 

characteristics and accident prediction conclusions of the Fujian sea 
area. This conclusion not only helps local maritime management 
personnel understand the spatial distribution of maritime accidents but 
can also be implemented in other sea areas for modeling, analysis, and 
prediction of maritime accidents. The new model proposed in this paper 
provides more detailed information to help competent authorities and 
stakeholders in the industry to supervise ship condition management 
and to formulate relevant policies to ensure maritime safety. The results 
can assist maritime administrators in centralizing regulatory forces to 
improve regulatory efficiency. For instance, through the kernel density 
analysis, the Ningde sea area, Fuzhou sea area, and Xiamen sea area are 
found to have high accident density and the highest risk value within the 
whole Fujian sea area. The Ningde port area has a high risk value for 
several reasons: the large area span in the port, the complex terrains, and 
the diverse natural conditions, especially wind, wave, current, and 
siltation. Ningde port is one of the busiest ports in Fujian Province, 
which has a huge daily traffic flow. Moreover, the ship tracks are in
terlaced and complex, and fishing boats are all over, but the channels are 
deep and narrow. The Fuzhou sea has a high risk value because the port 
area is mainly developed for passenger transport to Taiwan, in addition 
to freight, and dense routes and various types of ships complicate the 
transportation environment. The high risk value of the Xiamen sea area 
arises from geographical and environmental factors, hydrometeorolog
ical factors, and the high density of ship traffic. Through the spatial 
autocorrelation analysis method, the marine accident data set of the 
whole Fujian sea can be clustered with a spatial positive correlation 
pattern. High-high clustering occurs in the Ningde sea area and Fuzhou 

Fig. 17. The predicted grid diagram of “the accident severity” in the Fujian sea area.  
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sea area, and low-low clustering of accidents occurs in the Xiamen sea 
area, Putian sea area, and Zhangzhou sea area. Major accidents usually 
occur in the Ningde sea area and the Fuzhou sea area, while minor ac
cidents are more likely to occur in the Zhangzhou sea area, Xiamen sea 
area, and Quanzhou sea area. Grid division can provide specific focuses 
for maritime supervision and reduce the workload of supervisors. The 
results indicate that some grids in the Ningde sea area, Fuzhou sea area, 
and Xiamen sea area have high accident density and high risks for ac
cidents. Maritime administrators need to focus on strengthening the 
monitoring of cruise ships and unmanned aerial vehicles (UAVs) in these 
areas. 

This study reveals potential causal relationships between traffic flow 
trajectories and maritime accidents. Trajectory characteristics were used 
to make predictions using machine learning. Thus, the prediction per
formance is based on the size of the collected data. Without effective 
data collection, it is difficult to achieve accurate predictions with this 
method. Therefore, data volume was a major limitation in this study. 
Substantial maritime trajectory data needs to be available for effective 
predictions. The spatiotemporal distribution characteristics of maritime 
traffic accidents should be investigated based on multi-source data, such 
as fusing occurring time of accidents, in future studies, and spatiotem
poral accident prediction models should be established. 
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