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ABSTRACT
Graph Neural Networks (GNNs) have achieved impressive results
in various graph learning tasks. They have found their way into
many applications, such as fraud detection, molecular property
prediction, or knowledge graph reasoning. However, GNNs have
been recently demonstrated to be vulnerable to backdoor attacks.
In this work, we explore a new kind of backdoor attack, i.e., a clean-
label backdoor attack, on GNNs. Unlike prior backdoor attacks on
GNNs in which the adversary can introduce arbitrary, often clearly
mislabeled, inputs to the training set, in a clean-label backdoor
attack, the resulting poisoned inputs appear to be consistent with
their label and thus are less likely to be filtered as outliers. The
initial experimental results illustrate that the adversary can achieve
a high attack success rate (up to 98.47%) with a clean-label backdoor
attack on GNNs for the graph classification task. We hope our work
will raise awareness of this attack and inspire novel defenses against
it.
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1 INTRODUCTION
Graph Neural Networks (GNNs) have made tremendous progress
in various domains, e.g., drug design [8], fake news detection in
social media [15], recommendation system [9], and even financial
sector [7]. However, similar to Convolutional Neural Networks
(CNNs), it has been demonstrated that GNNs are vulnerable to
backdoor attacks. For instance, in a Bitcoin transaction ego net-
work [4], where nodes are the transactions, and the edge between
two nodes indicates the flow of Bitcoin from one transaction to
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another, the adversary can attack the GNNs to classify an illegal
transaction as a benign one.

Like prior backdoor attacks on CNNs, recent studies about back-
door attacks on GNNs assume the adversary can often introduce
mislabeled inputs to the training dataset [11, 12, 16]. Specifically,
the attacker modifies the training dataset by injecting a backdoor
trigger into some training samples and relabeling these samples
to the chosen target label. Then the backdoored neural network
classifier will output the attacker-chosen label when a trigger is
injected into a testing sample.

However, it has been demonstrated for CNNs that even a fairly
simple filtering process will detect the poisoned samples as out-
liers [6]. More importantly, any subsequent human inspection will
deem these inputs suspicious and thus potentially reveal the at-
tack [6]. To make the resulting poisoned inputs appear consistent
with their labels so that it is more difficult to detect the poisoned
inputs, a clean-label backdoor attack was proposed [6]. In the clean-
label backdoor attack, the adversary only poisons inputs of the tar-
get class without changing the true labels. The backdoored model
aims to predict the testing sample with a trigger into the target
label.

Although graphs are difficult to visualize directly for humans,
unlike images and texts [14], there are still some straightforward
methods to detect poisoned graph samples. For instance, we can ap-
ply the GNN prediction explanation tool, e.g., GNNExplainer [14],
to visualize semantically relevant graph structures that are inter-
pretable for humans. Specifically, we first get explanation subgraphs
for each class, and then for each graph sample, check whether it
contains the corresponding class explanation subgraphs. If a graph
sample in a specific class does not contain the corresponding class
explanation subgraphs, we can consider it an outlier. Therefore, it
is also crucial to study the clean-label backdoor attacks on GNNs.
So far, clean-label backdoor attacks on deep neural networks have
been proposed in various domains, e.g., image classification [6] and
video recognition [17]. Still, to the best of our knowledge, there is
no work on the clean-label backdoor attacks on GNNs. We aim to
bridge this gap. This work explores the clean-label backdoor attack
on GNNs. More specifically, we aim to investigate whether using
clearly mislabeled graphs is necessary for implementing a back-
door attack on GNNs. Can we carry out such backdoor attacks by
insisting that each poisoned graph and its label must be consistent?
Our preliminary results show that a high attack success rate can
be achieved even with a clean-label backdoor attack on GNNs.

2 METHODOLOGY
2.1 Problem Formulation
GNNs take a graph𝐺 = (𝑉 , 𝐸, 𝑋 ) as an input, where 𝑉 , 𝐸, 𝑋 denote
nodes, edges, and node attributes, and learn a representation vector
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(embedding) for each node, 𝑧𝒗 (𝒗 ∈ 𝐺), or the entire graph, 𝑧𝐺 .
Modern GNNs update the representation of a node by aggregating
representations of its neighbors. After 𝑘 iterations of aggregation,
a node’s representation captures both structure and feature in-
formation within its 𝑘-hop network neighborhood. For the node
classification task, the node representation 𝑧𝒗 is used for prediction.
For the graph classification task, the READOUT function pools
the node representations for a graph-level representation 𝑧𝐺 . The
graph classification task aims to predict the class label(s) for an
entire graph using the graph-level representation 𝑧𝐺 .

Given a pre-trained GNN model Φ𝑜 and its training dataset
𝐷𝑡𝑟𝑎𝑖𝑛 = {(𝐺1, 𝑦1), (𝐺2, 𝑦2), . . . , (𝐺𝑛, 𝑦𝑛)} where 𝐺𝑖 and 𝑦𝑖 respec-
tively are the 𝑖-th training graph and its true label, the clean-label
backdoor attack aims to forge a backdoored GNN Φ𝑏 that will
misclassify the testing sample with a specific trigger into pre-
determined labels (i.e., target label 𝑦𝑡 ) without affecting the perfor-
mance on clean data.We assume the attacker can access the training
dataset 𝐷𝑡𝑟𝑎𝑖𝑛 . Unlike prior works [11, 12, 16], which perform back-
door attacks on GNNs by injecting a trigger into a sampled training
dataset and changing their labels to the target label, the attacker
of clean-label backdoor attack samples a subset of training dataset
with target label and injects trigger into them without changing
their labels. Thus, the poisoned samples have plausible labels.

2.2 General Framework
The general framework of a clean-label backdoor attack on GNNs is
shown in Figure 1. In the training phase, as presented in Figure 1a,
the attacker samples data from the original training dataset in the
target class and injects a specific trigger to generate poisoned sam-
ples. The resulting poisoned samples are then utilized to backdoor
the pre-trained GNN model Φ𝑜 to get the backdoored GNN model
Φ𝑏 . Here, we focus on the subgraph-based backdoor attacks on
GNNs for the graph classification task since most graph classifi-
cation tasks are implemented in GNNs by learning the network
structure. The backdoored GNN model is assumed to predict any
testing sample (which can be from an untarget class) with a specific
trigger into the target class, as shown in Figure 1b.

Specifically, the implementation details of our attack are de-
scribed in Algorithm 1. The key point is backdoored dataset gener-
ation. Here, we adopt the Erdős-Rényi (ER) model [2] to generate
trigger 𝑔𝑡 (line 3 in Algorithm 1) as it is fast and more effective
than other random graph generation methods [16]. In particular,
this model outputs a random graph of 𝑠 nodes, and the probabil-
ity of an edge between each pair of nodes in this graph is 𝜌 . We
sample subsets of the original training dataset (with target label)
with proportion 𝑟 , as shown as 𝐷𝑡𝑚𝑝 , and the remaining is saved
as clean training dataset 𝐷𝑐𝑙𝑒𝑎𝑛 . For each sampled graph, we inject
a trigger (by the ER model) into it by sampling 𝑠 nodes from the
graph uniformly at random and replacing their connection with
that in the trigger graph. Under the setting of a clean-label back-
door attack, the attacker does not re-label the sampled data. The
backdoored dataset comprises the dataset with trigger 𝐷𝑡𝑟𝑖𝑔𝑔𝑒𝑟 and
the remaining clean training dataset 𝐷𝑐𝑙𝑒𝑎𝑛 .

...
Trigger ...+

...

...

Original training dataset Backdoored training dataset
Pre-trainedGNN

Φo

Non-target class

Target class
Φb

Backdoored GNNNon-target class

Target class

(a) Training

Backdoored GNN
Target class

Input graph (non-target class) 

+Trigger
G

Gg t Φb

(b) Testing

Figure 1: Clean-label backdoor attack framework.

Algorithm 1: Clean-label backdoor attack for the graph
classification task
Input: Pre-trained GNN model Φ𝑜 , Training set

𝐷𝑡𝑟𝑎𝑖𝑛 = {𝑥𝑖 , 𝑦𝑖 }𝑆𝑖=1, Target label 𝑦𝑡 ∈ [0,𝐶)
Output: Backdoored GNN model Φ𝑏

1 Function CLEAN_LABEL_BACKDOOR_ATTACK():
2 𝐷𝑡𝑟𝑖𝑔𝑔𝑒𝑟 ← ∅
3 𝑔𝑡 ← 𝐸𝑅 (𝑠, 𝜌)
4 𝐷𝑡𝑚𝑝 ← 𝑠𝑎𝑚𝑝𝑙𝑒 (𝐷𝑡𝑟𝑎𝑖𝑛, 𝑟 , 𝑦 = 𝑦𝑡 )
5 𝐷𝑐𝑙𝑒𝑎𝑛 =

{
𝑑𝑎𝑡𝑎 ∈ 𝐷𝑡𝑟𝑎𝑖𝑛 : 𝑑𝑎𝑡𝑎 ∉ 𝐷𝑡𝑚𝑝

}
6 foreach 𝑑 ∈ 𝐷𝑡𝑚𝑝 do
7 𝑑 [𝑥 ] = 𝐼𝑁 𝐽 𝐸𝐶𝑇 (𝑑 [𝑥 ], 𝑔𝑡 )
8 𝐷𝑡𝑟𝑖𝑔𝑔𝑒𝑟 = 𝐷𝑡𝑟𝑖𝑔𝑔𝑒𝑟 ∪ {𝑑 [𝑥 ], 𝑑 [𝑦 ] }
9 end

10 End Function
11 𝐷𝑏𝑎𝑐𝑘𝑑𝑜𝑜𝑟 = 𝐷𝑐𝑙𝑒𝑎𝑛

⋃
𝐷𝑡𝑟𝑖𝑔𝑔𝑒𝑟

12 Φ𝑏 = 𝑇𝑟𝑎𝑖𝑛 (Φ𝑜 , 𝐷𝑏𝑎𝑐𝑘𝑑𝑜𝑜𝑟 )
13 return Φ𝑏

3 EXPERIMENTAL RESULTS
Datasets. We perform experiments with two publicly available
datasets: (1) MUTAG [1] - structure graphs of the mutagenic and
non-mutagenic molecules and (2) NCI1 [5] - chemical compounds
screened for activity against non-small cell lung cancer and ovarian
cancer cell lines. For each dataset, we randomly sample 80% of the
data instances as the training dataset and the rest as the testing
dataset.
Target Models. We choose GCN [3] and GIN [13] as our target
models to be attacked, considering their excellent performance and
widespread adoption [8, 10].
Evaluation. We use the attack success rate (ASR) to evaluate the
attack effectiveness. Specifically, we embed each testing data with
the specific trigger graph and calculate the ASR of the backdoored
GNN model on the poisoned testing dataset. Here, we only embed
the testing dataset of the non-target label with a trigger to avoid the
influence of the original label. The ASR measures the proportion of
trigger-embedded inputs misclassified by the backdoored GNN into
the target class 𝑦𝑡 chosen by the adversary. The trigger-embedded
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inputs are
𝐷𝑡𝑟𝑖𝑔𝑔𝑒𝑟 =

{
(𝐺1,𝑔𝑡 , 𝑦1), (𝐺2,𝑔𝑡 , 𝑦2), . . . , (𝐺𝑛,𝑔𝑡 , 𝑦𝑛)

}
.

Here, 𝑔𝑡 is the graph trigger,
{
𝐺1,𝑔𝑡 ,𝐺2,𝑔𝑡 . . . ,𝐺𝑛,𝑔𝑡

}
is the testing

dataset embedded with 𝑔𝑡 , and 𝑦1, 𝑦2, . . . , 𝑦𝑛 is the label set.
Formally, ASR is defined as:

𝐴𝑡𝑡𝑎𝑐𝑘 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 𝑅𝑎𝑡𝑒 =

∑𝑛
𝑖=1 I(Φ𝑏 (𝐺𝑖,𝑔𝑡 ) = 𝑦𝑡 )

𝑛
,

where I is an indicator function and Φ𝑏 refers to the backdoored
GNN model.

Furthermore, we also use clean accuracy drop (CAD) to evaluate
the attack evasiveness. CAD indicates the classification accuracy
difference between the original GNN model Φ𝑜 and the backdoored
GNN model Φ𝑏 over the clean testing dataset.
Results. We set the number of nodes in the trigger graph to be
20% of the average number of nodes in the dataset. Next, we set
the poisoning rate 𝑟 and edge existing probability 𝜌 to be 10% and
80%, respectively. We set those parameters following the setting
in prior backdoor attacks on GNNs [12, 16]. Table 1 presents the
attack results. We can observe that overall, a clean-label backdoor
attack can achieve high attack effectiveness for both datasets and
models, i.e., with an attack success rate over 84%, especially for the
NCI1 dataset with up to 98.47% ASR. It can also be observed that
in most cases, a clean-label backdoor attack has a low CAD, i.e.,
around 1%, which indicates that a clean-label backdoor attack has
a negligible impact on the original task of the model.

The results in [6] indicate that only poisoning inputs of the tar-
get class (i.e., without changing the true labels) renders the attack
ineffective. The authors argued the main reason for the attack’s in-
effectiveness is that the poisoned samples can be correctly classified
by learning a standard classifier, so the backdoor attack is unlikely
to be successful since relying on the backdoor trigger is not nec-
essary to classify these inputs correctly. On the contrary, here, we
find that without any other improvement, the clean-label backdoor
attack is already successful on GNN models. This may be explained
since the GNN model predicts the input graph by learning infor-
mation of specific structure(s), i.e., explanation subgraph(s) [14],
in the graph. If a graph is injected with a trigger graph, the GNN
model will also try to learn the trigger pattern and add it to the
explanation subgraphs. Once the backdoored GNNmodel is trained,
it will output a target label if one of the explanation subgraphs, e.g.,
trigger graph, appears in the input graph.

Table 1: Attack performance (SD: standard deviation).

Dataset ASR(%) | CAD(%)
Mean (SD)

GCN GIN
MUTAG 87.83(1.03) | 0.16(0.03) 84.86(1.68) | 2.24(0.15)
NCI1 98.47(1.30) | 0.88(0.01) 97.62(2.03) | 1.01(0.07)

4 CONCLUSIONS AND FUTUREWORK
The original backdoor attacks on GNNs [11, 12, 16] crucially relies
on the addition of arbitrary, most mislabeled inputs into the training
set. This raises the risk that the poisoned, mislabeled inputs will

likely be detected by filtering or some GNN explanation tools. We
argue that, for a backdoor attack to be insidious, the attacker must
not rely on inputs that appear mislabeled. Thus, in this work, we
explore a new backdoor attack on GNNs that only poisons inputs
of the target class without changing the true labels. Our method
leverages the GNN model’s redundant learning capability to learn
the trigger pattern. Initial experimental evaluations showed that
a clean-label backdoor attack could achieve a high attack success
rate and low clean accuracy drop. We hope our study highlights
the concern of clean-label backdoor attacks on GNNs, which are
more insidious.

In future work, we aim to explore our method’s effectiveness
against simple filtering techniques mentioned in Section 1. Addi-
tionally, it will be interesting to compare the attack results of former
backdoor attacks and clean-label backdoor attacks on GNNs against
possible defenses.
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