

Delft University of Technology

Label-Only Membership Inference Attack against \\Node-Level Graph Neural Networks

Conti, M.; Li, Jiaxin; Picek, S.; Xu, J.

DOI
10.1145/3560830.3563734
Publication date
2022
Document Version
Final published version
Published in
AISec 2022 - Proceedings of the 15th ACM Workshop on Artificial Intelligence and Security, co-located with
CCS 2022

Citation (APA)
Conti, M., Li, J., Picek, S., & Xu, J. (2022). Label-Only Membership Inference Attack against \\Node-Level
Graph Neural Networks. In AISec 2022 - Proceedings of the 15th ACM Workshop on Artificial Intelligence
and Security, co-located with CCS 2022 (pp. 1–12). (AISec 2022 - Proceedings of the 15th ACM Workshop
on Artificial Intelligence and Security, co-located with CCS 2022). ACM.
https://doi.org/10.1145/3560830.3563734
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1145/3560830.3563734
https://doi.org/10.1145/3560830.3563734

Label-Only Membership Inference Attack against
Node-Level Graph Neural Networks

Mauro Conti
University of Padua & Delft University of Technology

Padova, Italy
conti@math.unipd.it

Jiaxin Li∗
University of Padua

Padova, Italy
jiaxin.li@studenti.unipd.it

Stjepan Picek
Radboud University & Delft University of Technology

Nijmegen, Netherlands
stjepan.picek@ru.nl

Jing Xu
Delft University of Technology

Delft, Netherlands
j.xu-8@tudelft.nl

ABSTRACT
Graph Neural Networks (GNNs), inspired by Convolutional Neu-
ral Networks (CNNs), aggregate the message of nodes’ neighbors
and structure information to acquire expressive representations
of nodes for node classification, graph classification, and link pre-
diction. Previous studies have indicated that node-level GNNs are
vulnerable to Membership Inference Attacks (MIAs), which in-
fer whether a node is in the training data of GNNs and leak the
node’s private information, like the patient’s disease history. The
implementation of previous MIAs takes advantage of the models’
probability output, which is infeasible if GNNs only provide the
prediction label (label-only) for the input.

In this paper, we propose a label-onlyMIA against GNNs for node
classification with the help of GNNs’ flexible prediction mechanism,
e.g., obtaining the prediction label of one node evenwhen neighbors’
information is unavailable. Our attacking method achieves around
60% accuracy, precision, and Area Under the Curve (AUC) for most
datasets and GNN models, some of which are competitive or even
better than state-of-the-art probability-based MIAs implemented
under our environment and settings. Additionally, we analyze the
influence of the sampling method, model selection approach, and
overfitting level on the attack performance of our label-only MIA.
All of those three factors have an impact on the attack performance.
Then, we consider scenarios where assumptions about the adver-
sary’s additional dataset (shadow dataset) and extra information
about the target model are relaxed. Even in those scenarios, our
label-only MIA achieves a better attack performance in most cases.
Finally, we explore the effectiveness of possible defenses, including
Dropout, Regularization, Normalization, and Jumping knowledge.
None of those four defenses prevent our attack completely.

∗corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
AISec ’22, November 11, 2022, Los Angeles, CA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9880-0/22/11. . . $15.00
https://doi.org/10.1145/3560830.3563734

CCS CONCEPTS
• Security and privacy; • Computing methodologies → Ma-
chine learning;

KEYWORDS
Machine learning, Membership inference attack, Graph neural net-
works
ACM Reference Format:
Mauro Conti, Jiaxin Li, Stjepan Picek, and Jing Xu. 2022. Label-Only Mem-
bership Inference Attack against Node-Level Graph Neural Networks. In
Proceedings of the 15th ACM Workshop on Artificial Intelligence and Security
(AISec ’22), November 11, 2022, Los Angeles, CA, USA. ACM, New York, NY,
USA, 12 pages. https://doi.org/10.1145/3560830.3563734

1 INTRODUCTION
Graph Neural Networks (GNNs) are gaining more and more at-
tention for their broad application in analyzing social networks,
recommender systems, and biological networks. Node classifica-
tion, which predicts the label for nodes in the graph, is one of the
popular tasks [7, 11, 27]. During the training of GNNs, the model
recursively updates nodes’ representation from neighbors’ message
and structure information, similar to the convolution operation of
Convolutional Neural Networks (CNNs) on an image. Due to this
message passing way, GNNs achieve a competitive performance
on multiple tasks [21, 31]. Still, GNNs are vulnerable to Member-
ship Inference Attacks (MIAs), which infer the existence of nodes
in the training data of GNNs. In other words, the adversary can
determine which nodes belong to the training data of GNNs with
the implementation of MIAs.

Studies about MIAs against GNNs are dedicated to finding, de-
fending, and understanding such attacks. Researches on MIAs are
critical since they can cause privacy leakage. Let us consider the
example of a GNN whose training data contains the social network
and symptoms of patients infected with COVID-19 for investigat-
ing [17], recognizing, and classifying infection factors. Attacking
this GNN, the adversary can utilize its probability vector output
to predict whether one patient is in the training data or not. If the
adversary can implement MIA with only the prediction label (label-
only) of GNN, it will target more models and lead to more severe
damage. The adversary knows which persons are in the training
data of GNN after attacking with varying MIAs. In the mentioned
target GNN, being in the training data means the person is a patient.

1

https://doi.org/10.1145/3560830.3563734
https://doi.org/10.1145/3560830.3563734

AISec ’22, November 11, 2022, Los Angeles, CA, USA Mauro Conti, Jiaxin Li, Stjepan Picek, & Jing Xu

Therefore, the adversary can obtain a list of infected patients via
MIAs. There is no doubt that the history of the disease is private
information for a patient. Therefore, studying varying MIAs against
GNNs is essential and significant.

There are two types of MIAs: one is classifier-based MIA, and the
other is non-classifier-based MIA. The classifier-based MIA lever-
ages a binary classifier (called attack model), trained with attack
features, to infer whether or not one data point is a member of
training data. In this paper, the attack features are properties of
one data point (or node) for feeding into the attack model. The
non-classifier-based MIA directly or indirectly calculates a metric
value for one data point and compares this value with a thresh-
old for determining membership. The original intuition of MIA is
that the overfitting model will assign a higher probability value
to the training data than the testing data. Hence, previous MIAs
against GNNs utilize the prediction probability vector to act as
attack features or compute metric values. However, they are in-
effective when the model only outputs the input’s label, which
is a label-only condition. Furthermore, previous label-only MIAs
against CNNs and semantic segmentation models are not effective
or challenging to implement while being transferred to GNNs. To
improve the attack performance under the label-only condition, we
propose our label-only MIA against GNNs, which is more efficient
and straightforward than previous methods.

The critical point of our label-only MIA is the attack features
extraction for training the attack model. Under the label-only condi-
tion, the adversary cannot obtain the prediction probability vector
from the target model for the attack feature extraction. Usually, the
adversary has access to a shadow dataset from the same distribu-
tion as the target dataset, which is used for training and testing
the target model. Therefore, the attacker can train a shadow model
with the shadow dataset to mimic the behavior of the target model.
To improve the effect of imitation, the adversary could relabel the
shadow dataset with the target model and train a relabelled shadow
model. Indeed, one previous label-only work (not on GNNs) ac-
quires the prediction probability vector of the relabelled shadow
model as the attack features of the target dataset, called the transfer
attack [14]. Besides, Li et al. [14] and Choquette-Choo et al. [4] pro-
posed to use the distance between the original data point with its
closest adversarial example to implement label-only MIA. However,
finding the adversarial example of a graph is difficult by changing
the connection and nodes’ features under the label-only condition.
Therefore, we put forward our label-only MIA.

Unlike previous methods, we observe a flexible prediction mech-
anism of GNNs, which means that we can obtain the prediction
label of a specific node with or without its neighbors’ features and
connection information fed. Besides, inspired by previous data aug-
mentation methods for obtaining features [4] or reconstructing the
prediction probability vector [18], we utilize feature masking and
step-by-step edge dropping to measure the stability of the predic-
tion label. Specifically, we obtain the attack features of the attack
model from three aspects. The first one is the fixed properties of the
node, including the number of neighbors and the ground truth of
the node. The second one is the prediction correctness of the target
model while only feeding the node’s features into the GNN and
masking the node’s properties with different rates and values. The
last one is putting the node’s features, features of 1-hop neighbors,

and connection information into the GNN. Then, the edges between
the node and 1-hop neighbors are dropped step by step, and the
node’s features are masked with different rates and values to get
the prediction correctness of the node and its 1-hop neighbors. We
obtain the attack features from those three aspects for training our
label-only attack model.

Furthermore, we relax the assumptions that the shadow dataset
is from the same distribution as the target dataset and that the
GNN architecture and type of the shadow model are the same as
the target model. Besides, we explore the influence of the sampling
ways, model selection strategies, and the overfitting level on the
performance of the attack model. Finally, we explore the robustness
of our label-only MIA against several possible defenses.

Our main contributions are:
(1) We propose a label-only MIA, which achieves competitive or

better performance than state-of-the-art probability-based
MIAs.

(2) We relax the assumptions about the shadow dataset and tar-
get model (the GNN architecture and type), which achieves
a better performance in most cases.

(3) We explore the influence of the sampling ways, model se-
lection strategies, and the overfitting level on the attack
performance. Both of them have an impact on the attack
performance.

(4) We analyze the possible defenses against our label-only MIA,
where we find that none of the defenses can prevent our
attack completely.

Our code is available at https://github.com/fight-think/Label-Only_
MIA_for_GNNs.git.

2 BACKGROUND
We introduce some background knowledge about GNN and MIA
for further explanation. In Section 2.1, we first review the general
GNN architectures. Then, we present the implementation of MIAs
in Section 2.2.

2.1 Graph Neural Networks
GNNs utilize the structure information and nodes’ features to up-
date nodes’ representations for prediction. In this section, we inter-
pret the basic notions and general architectures of GNNs.

2.1.1 Notations. A graph𝐺 = (𝑉 , 𝐸) consists of |𝑉 | vertexes and |𝐸|
edges. 𝑉 denotes the set of vertexes {𝑉1,𝑉2, . . . ,𝑉 |𝑉 | } with features
𝑋={𝑋1, 𝑋2, . . . , 𝑋 |𝑉 | }. 𝐸 represents the set of edges {𝐸1, 𝐸2, . . . , 𝐸 |𝐸 | },
each of which connects two nodes in the graph. For node classi-
fication tasks, each node 𝑉𝑖 has a label 𝑌𝑖 . The purpose of node
classification tasks is to predict the label of the node with GNNs.
GNNs leverage the node’s feature and the message passed from the
node’s neighborhoods to decide its label on the node classification
task. We define the l-hop neighbors of node 𝑉𝑖 as 𝑁 𝑙 (𝑉𝑖), which
contains a set of nodes whose distance with node 𝑉𝑖 is equal to or
less than l except node 𝑉𝑖 itself. For convenience, 𝑁 (𝑉𝑖) denotes
1-hop neighbors of node 𝑉𝑖 . Correspondingly, node 𝑉𝑖 , its l-hop
neighbors, connected edges, and relative features make the l-hop
subgraph, denoted as 𝑔𝑙 (𝑉𝑖), of node 𝑉𝑖 .

2

https://github.com/fight-think/Label-Only_MIA_for_GNNs.git
https://github.com/fight-think/Label-Only_MIA_for_GNNs.git

Label-Only MIA against Node-Level GNNs AISec ’22, November 11, 2022, Los Angeles, CA, USA

2.1.2 General GNN Architecture. The successful CNN applications
empirically prove that the local convolution operation can capture
an efficient feature representation of an image for downstream clas-
sification tasks. Taking advantage of a similar idea, GNNs aggregate
and transfer the message of neighbors into the node’s representa-
tion, which also compresses the graph structure information. We
select four commonly used GNNs, including Graph Convolutional
Network (GCN) [13], Graph Attention Network (GAT) [26], SAmple
and aggreGatE (GraphSAGE) [8], and Graph Isomorphism Network
(GIN) [28]. The AGGREGATION and TRANSFORMATION methods
make them distinctive. For each node 𝑉𝑖 , 𝑋

(𝑙)
𝑖

is the representation
at layer l within the iterative convolution, 𝐻 (𝑙)

𝑖
is its hidden state

before the TRANSFORMATION operation. 𝑋 (0)
𝑖

is the original fea-
ture of node 𝑉𝑖 . Thus, the general procedures of convolution are
defined in the following equations.

𝐻
(𝑙)
𝑖

= 𝐴𝐺𝐺𝑅𝐸𝐺𝐴𝑇𝐼𝑂𝑁 ({𝑋 (𝑙−1)
𝑖

, 𝑋
(𝑙−1)
𝑗

, 𝑗 ∈ {𝑁 (𝑉𝑖)}}). (1)

𝑋
(𝑙)
𝑖

= 𝑇𝑅𝐴𝑁𝑆𝐹𝑂𝑅𝑀𝐴𝑇𝐼𝑂𝑁 (𝐻 (𝑙)
𝑖

) . (2)

Here, 𝑁 (𝑉𝑖) is the 1-hop neighbors of node 𝑉𝑖 . The AGGREGA-
TION operation clusters the representations of the current node
with its neighbors to obtain its presentation. The TRANSFORMA-
TION operation is usually a nonlinear conversion. The distinctions
of four GNNs are based on those two operations.

2.2 Membership Inference Attack
The MIA aims to distinguish the training (members) and testing
data (non-members) of the target model. Under the context of the
node classification, the MIA determines which nodes are in the
training data. Generally, there are two types of attack strategies.
One is to train a classifier, with which we can predict the possibility
of being a member or non-member for a specific data point [20, 22].
The other is to directly or indirectly compute the metric about the
data point [4, 14, 15]. Then, the attacker determines the data point
as a member by comparing the metric value with a threshold. The
label-only MIA in our paper belongs to the first type. Here, we
provide more details about the classifier-based MIA.

Classifier-basedMIA. The key of classifier-basedMIA is acquir-
ing the dataset (also called attack dataset) for training the classifier
to distinguish the training and testing data. Usually, the adversary
has access to a shadow dataset with the same distribution as the
target dataset. With this shadow dataset, the adversary trains a
shadow model to mimic the behavior of the target model. Even
though the adversary can only query the target model, the adver-
sary has full knowledge of the shadow model. Then, the adversary
utilizes the prediction of the shadow model and data split of the
shadow model’s training and testing data to construct an attack
dataset. Finally, the attacker will train an attack model based on
the attack dataset for attacking the target model, i.e., distinguishing
the training and testing data of the target model.

3 OUR LABEL-ONLY MIA
GNNs for node classification tasks have two categories, inductive
and transductive. Under the inductive setting, the GNN cannot

access the testing nodes during training. In the transductive en-
vironment, the training set consists of training nodes, unlabelled
testing nodes, and nodes’ connections. In this paper, we do not
consider the transductive setting because the testing data partially
acts as the training materials and is not separated from the training
data, which mismatches with the knowledge of MIA. He et al. [10]
also only focused on the inductive setting. While predicting the
label of a specific node in the graph, the GNN takes its features,
possible neighbors’ features, and connection structure information
for calculation. However, the GNN could also predict the node’s
label if only providing the property of a node without neighbors’
knowledge. We call this way of prediction the flexible prediction
mechanism. The flexible way of prediction brings advantages to
our label-only MIA, which only gets the label from the model. We
formulate our label-only MIA in Section 3.1. Then, we discuss the
threat model and attack methodology in Section 3.2 and Section 3.3.

3.1 Problem Formulation
The goal of the MIA is to determine whether the target node 𝑉𝑡
belongs to the training data (member) or testing data (non-member)
of the target model 𝐹𝑡 . To implement the MIA, the adversary has
some external knowledge E. We formulate our label-only MIA A as
the following function:

𝐴 : 𝑉𝑡 , 𝐹𝑡 , 𝐸 → {1, 0}. (3)

Here, "1" means𝑉𝑡 is in the training data, and "0" otherwise (thus, it
is a binary classification task). In the experiments, we train a binary
classifier to solve this task.

3.2 Threat Model
The target model 𝐹𝑡 is open to the adversary, which means the
attacker can query it for the label of the target node𝑉𝑡 . Considering
flexible prediction mechanism and practical situation, we limit the
query information to the target node’s feature, features of its 1-
hop neighbors 𝑁 (𝑉𝑡), and connection structure 𝐶 (𝑉𝑡). There are
two reasons for selecting 1-hop neighbors. The first one is that
it requires less information than 2-hop neighbors [10] and all the
training or testing data [17] while predicting the membership of one
node. The second reason is that the information of the target node is
finite under the label-only condition. We cannot get enough helpful
distinguishable signals without neighbors’ information. Therefore,
we choose 1-hop neighbors. Besides, we expose the target node’s
true label 𝑌𝑉𝑡 to the adversary.

The adversary has some external knowledge 𝐸. A shadow dataset
𝐷𝑠 , extracted from the same distribution as the target dataset 𝐷𝑡

used for training and testing the target model 𝐹𝑡 , is in the exter-
nal knowledge. We relax this assumption and sample the shadow
dataset from the other distribution in experiments. Furthermore,
the adversary knows the target model’s architecture, hyperparame-
ters, and training algorithm. With that knowledge, the attacker can
train a shadow model 𝐹𝑠 to mimic the behavior of the target model.
Similarly, we relax the assumption that the adversary knows the
GNN architecture and type of the target model within exploration.
The relaxation of those two assumptions tests the limits of our
label-only MIA under stricter conditions and is closer to the attack

3

AISec ’22, November 11, 2022, Los Angeles, CA, USA Mauro Conti, Jiaxin Li, Stjepan Picek, & Jing Xu

in the real world. He et al. [10] and Olatunji et al. [17] also relaxed
those assumptions.

3.3 Attack Methodology
The adversary obtains some external knowledge for the MIA imple-
mentation. Then the question is how to apply our label-only MIA
on GNNs with that knowledge and still satisfy the threat model.
To answer this question, we formulate the final attack model as a
binary classifier to predict whether the node is in the training data
of the GNN or not. Therefore, the acquisition of the attack features
for training the attack model is the crucial point.

3.3.1 General Steps. The overall process is illustrated in Figure 1.
First, the total dataset is split into target and shadow datasets. With
a shadow dataset and knowledge about the training of the target
model, the adversary can train a shadow model to mimic the be-
havior of the target model. The shadow model and membership
situation of nodes in the shadow dataset are transparent to the
adversary. Thus, the attacker generates the attack dataset via data
points’ fixed properties and multiple queries for each data point to
the shadow model, which only outputs the prediction label. The fea-
tures of the data point in the attack dataset are attack features. If the
node is in the shadow model’s training data, the adversary assigns
its attack features with the label "1" and otherwise "0". Then, the
adversary trains the attack model with the attack dataset extracted
from the shadow dataset and model.

Figure 1: The general process of our label-only MIA.

Similarly, the adversary queries the target model with target
nodes from the target dataset to get each target node’s attack fea-
tures with labels, which indicate whether nodes are from the target
model’s training data ("1") or testing data ("0"). Afterward, the at-
tacker feeds the target nodes’ attack features into the attack model
to test the attack performance on the target model. Notably, the
acquisition of the attack features is interpreted in the next section.

3.3.2 Attack Features Acquisition. Under the label-only condition,
the adversary only gets the prediction label of the target node from
the target model. Therefore, obtaining the attack features of target
nodes in the target dataset is crucial. Previous label-only MIAs [14]
(not on GNNs) extract attack features of the target node from the
prediction probability vector of relabelled shadow models, which
are under the adversary’s control. The relabelled shadow model
utilizes the target model to relabel the shadow dataset, which is
different from the shadow model. One previous method feeds the
target node into relabelled shadow models to get the prediction
probability vector as the attack features of this node under the

label-only condition because the target model does not expose the
prediction probability vector. For comparison, we present the result
of this transfer attack under the label-only condition in Appendix A.

Unlike previous methods, we construct target nodes’ attack fea-
tures based on fixed properties of the node, data augmentation, flex-
ible prediction mechanism, and practical situation. The application
of data augmentation obtains inspiration from previous works [4, 5].
We consider the attack features from three aspects: fixed properties,
0-hop query, and 1-hop query. The specified properties, like the
ground truth of the target node in the target model, act as a part of
features in previous attack models [12, 22]. Besides, the adversary
has only access to 1-hop neighbors, which means the attacker could
query the target model with (1-hop query) or without (0-hop query)
information of 1-hop neighbors. Therefore, we extract features from
the three mentioned aspects.

Acquisition with fixed properties. Olatunji et al. [17] men-
tioned that the connection between nodes increases the vulnerabil-
ity of GNN models to privacy attacks. Inspired by this, we count
the number of neighbors (n_num) and signal (w_i_node), which
indicates whether the node is independent of other nodes, as part
of the attack features of the target node 𝑉𝑡 . Notably, the neighbors
could be in the training or testing data of the dataset while counting
the number of neighbors in the target or shadow dataset. Besides,
we include the target node’s ground truth (o_label) into the attack
features, which is the same as the previous MIA [22].

Acquisition with the 0-hop query. The prediction of GNNs is
flexible, which means we can get the prediction label of the node
with or without the features and the connection information of its
neighbors fed into GNNs. For each target node 𝑉𝑡 , we randomly
change different rates of its feature values 𝑋𝑉𝑡 to the largest and
smallest value in the feature space. Then we only input this changed
feature of the target node to the targetmodel and recordwhether the
prediction is the same as the ground truth of the target node. Here,
𝑖_𝑛𝑜𝑛𝑒_𝑚𝑎𝑥_𝑟𝑎𝑡𝑒 and 𝑖_𝑛𝑜𝑛𝑒_𝑚𝑖𝑛_𝑟𝑎𝑡𝑒 are the record results for
each rate in 𝑟𝑎𝑡𝑒_𝑠𝑒𝑡 . The "1" means the prediction of the changed
feature is the same as the ground truth of the target node and the
"0" otherwise.

Acquisition with the 1-hop query. Due to the flexible predic-
tion mechanism of GNNs, we feed the features 𝑋𝑉𝑡 of the target
node 𝑉𝑡 , the features 𝑋𝑁 (𝑉𝑡) of its 1-hop neighbors 𝑁 (𝑉𝑡), and
connection information 𝐶 (𝑉𝑡) between the target node and its 1-
hop neighbors into the target model. At the same time, we apply
two data augmentation strategies simultaneously. One is randomly
changing different rates of feature values to the largest and smallest
value in the feature space. The other is dropping the connected
edges between the target node and its 1-hop neighbors one by one.
Then, we record the prediction accuracy of the 1-hop neighbors
and the identity between the prediction label and the target node’s
ground truth.

Following the previous paragraph, we explain attack features’
names while acquiring with the 1-hop query. Figure 2 consists of
features with a high absolute SHAP value. The𝑛_𝑎𝑐𝑐_𝑎𝑙𝑙_𝑚𝑎𝑥_𝑟𝑎𝑡𝑒
means the accuracy of the neighbors while keeping all the edges and
altering a percentage (rate) of the target node’s feature values to the
maximum value in the feature space. The 𝑛_𝑎𝑐𝑐_𝑛𝑜𝑛𝑒_𝑚𝑎𝑥_𝑟𝑎𝑡𝑒 is
similar except all the edges are removed. The 𝑛_𝑎𝑐𝑐_𝑎𝑣𝑔_𝑚𝑎𝑥_𝑟𝑎𝑡𝑒
is the average accuracy of the neighbors during removing edges.

4

Label-Only MIA against Node-Level GNNs AISec ’22, November 11, 2022, Los Angeles, CA, USA

The 𝑖_𝑎𝑙𝑙_𝑚𝑎𝑥_𝑟𝑎𝑡𝑒 indicates whether the prediction of the target
node’s changed feature is the same as its ground truth while keeping
all the edges. The 𝑖_𝑠𝑡𝑒𝑝_𝑚𝑎𝑥_𝑟𝑎𝑡𝑒 presents the rate of cases where
the prediction of the target node’s changed feature is the same as its
ground truth while reducing edges step by step. The names of attack
features are slightly different while changing the feature value to
the smallest value, i.e., replacing "max" with "min" in the feature
name. Besides, we record the real change percentage 𝑐ℎ𝑎𝑛𝑔𝑒_𝑝_𝑟𝑎𝑡𝑒
of the feature values while randomly select a percentage (rate) of
feature values for altering.

Our label-only MIA combines fixed properties, the result of the
0-hop query, and the result of the 1-hop query as the attack features.
Previous studies [6, 10, 17] obtained the prediction of the target node
with 2-hop neighbors or all nodes in the training or testing data as
the input of the target model. They contain more information than
our label-only MIA while predicting the node’s label. Under the
label-only condition, we cannot get the prediction probability vector
from the target model. However, while dropping edges or altering
its feature values, the target node and its neighbors’ prediction
correctness situation could also provide the signal for distinguishing
the training and testing data.

4 EXPERIMENTS
We first describe datasets in our experiments, followed by describ-
ing models’ architectures and training settings. In Section 4.3, we
introduce evaluation metrics. Finally, we illustrate experimental
steps.

4.1 Datasets
We conduct experiments on four datasets: Cora_ML, CiteSeer, DBLP,
and PubMed [2]. The main reason for selecting those datasets is
that the number of nodes and classes of those datasets varies, which
is beneficial for various experiments. Table 1 describes the statistics
of those four datasets.

Table 1: Statistical information of datasets.

Dataset classes edges nodes length of node feature

Cora_ML 7 16,316 2,995 2,879
CiteSeer 6 10,674 4,230 602
DBLP 4 105,734 17,716 1,639

PubMed 3 88,648 19,717 500

4.2 Model Architectures and Training Settings
The GNN types we consider are GCN, GAT, GraphSAGE, and GIN.
We vary the model architectures and training settings to explore the
influence of the overfitting level on the attack performance. Here,
we discuss model architectures and training settings for target
models with high and low overfitting levels.

Low overfitting level. In this setting, we set four types of GNNs
with three layers (input, hidden, and output layers), with 16 neurons
in the hidden layer. The optimization algorithm of GNNs is Adam,
with a learning rate of 6e-3 and a weight decay of 0.5. The number of
training epochs is 400. Besides, we apply the BatchNorm, Dropout
(0.5), and Jumping knowledge (concatenation) [29] to reduce the

overfitting level. Jumping knowledge (concatenation) concatenates
the output of each layer as the input of the last layer.

High overfitting level. Different from models with low over-
fitting levels, we set the number of layers to 5 (3 hidden layers)
and the number of neurons in the hidden layer to 64. The optimiza-
tion algorithm of GNNs is Adam, with a learning rate of 0.001 and
without weight decay. The number of training epochs is 200. In
addition, we do not apply any strategies to reduce the overfitting
level because we attempt to get the model with a high overfitting
level for comparison.

We decide on the training hyperparameters of models with a high
or low overfitting level by increasing or decreasing the overfitting
level in a reasonable range. Besides, we refer to the settings in
previous works [10, 17].

The attack model is a multilayer perceptron (MLP) with 2 hidden
layers, each of which has 64 neurons. The optimization algorithm is
Adam, with a learning rate of 0.001. The number of training epochs
is 300, and the batch size is 32. We use the Binary Cross Entropy
to guide the training of the attack model. Our attack model’s ar-
chitecture is similar to attack models in previous works [10, 17].
After several attempts, we slightly changed the structure and hy-
perparameters to fit attack features in our label-only MIA. Finally,
we obtained the attack model’s structure and hyperparameters
mentioned before.

4.3 Evaluation Metrics
We train the attack model with the objective function related to the
Binary Cross Entropy. The output of the attack model is the prob-
ability of the input being a member of training data. We evaluate
the attack performance with six metrics: precision, recall, F1 while
the threshold is 0.5, accuracy, AUC, and True Positive Rate (TPR)
while the False Positive Rate is 0.1, which is inspired by the work
of Carlini et al. [3].

4.4 Experimental Steps
The implementation of our label-only MIA is composed of several
steps. First, we divide the total dataset into training and testing data
for target and shadow models, i.e., four sub-datasets. Then, we gen-
erate the attack dataset from the shadow model and shadow dataset
for training and testing the attack model. After extracting features
and labels from the target model and target dataset, we evaluate the
attack performance of the attack model on those features and labels.
Apart from implementing our label-only MIA, we also implement
previous probability-based MIAs under the same environment and
settings. Those settings consist of the same models trained with the
same sub-datasets, the training of the attack models, and the model
selection strategy. Besides, we explore the impact of several factors
on our label-only MIA. Those factors include the overfitting level,
sampling methods, and attack model selection strategies. Further-
more, we attempt to relax two assumptions of training the shadow
model. Finally, we analyze the effectiveness of some defenses.

Previous Probability-based MIAs.We use eight probability-
based MIAs proposed in previous papers [10, 17, 20, 22, 24, 30] to
compare our label-only MIA. Those methods can obtain the predic-
tion probability vector from the target model and extract the attack
features or metrics from the prediction probability vector, which is

5

AISec ’22, November 11, 2022, Los Angeles, CA, USA Mauro Conti, Jiaxin Li, Stjepan Picek, & Jing Xu

Table 2: The attack performance of our label-only MIA after ten repetitions (low overfitting level).

Dataset GNN Used Nodes Test Acc
(target model)

Train Acc
(target model)

Our Attack
(avg acc, pre, rec, auc, f1, low_fpr_0.01_tpr)

Cora_ML

GAT

1,344

0.736 0.883 [0.604, 0.605, 0.618, 0.658, 0.607, 0.059]
GCN 0.763 0.951 [0.613, 0.621, 0.606, 0.666, 0.607, 0.065]
GIN 0.664 0.875 [0.59, 0.624, 0.49, 0.631, 0.536, 0.041]

GraphSAGE 0.73 0.956 [0.602, 0.618, 0.559, 0.65, 0.581, 0.061]

CiteSeer

GAT

3,336

0.793 0.879 [0.598, 0.611, 0.585, 0.647, 0.583, 0.032]
GCN 0.81 0.942 [0.599, 0.622, 0.536, 0.645, 0.569, 0.031]
GIN 0.777 0.921 [0.592, 0.605, 0.563, 0.635, 0.571, 0.032]

GraphSAGE 0.795 0.937 [0.581, 0.571, 0.69, 0.617, 0.621, 0.032]

DBLP

GAT

7,920

0.732 0.83 [0.593, 0.604, 0.586, 0.645, 0.584, 0.048]
GCN 0.746 0.884 [0.593, 0.598, 0.618, 0.644, 0.596, 0.043]
GIN 0.715 0.865 [0.579, 0.59, 0.563, 0.621, 0.564, 0.026]

GraphSAGE 0.739 0.891 [0.579, 0.578, 0.643, 0.618, 0.595, 0.032]

PubMed

GAT

12,300

0.861 0.884 [0.583, 0.573, 0.661, 0.636, 0.61, 0.033]
GCN 0.867 0.907 [0.596, 0.601, 0.58, 0.657, 0.589, 0.059]
GIN 0.852 0.899 [0.568, 0.572, 0.571, 0.611, 0.563, 0.034]

GraphSAGE 0.866 0.923 [0.557, 0.548, 0.665, 0.597, 0.598, 0.033]

impossible under the label-only condition. Four MIAs utilize the
classifier to determine membership. They train the attack model
based on the attack features. Specifically, those four probability-
based MIAs with classifiers use the output of the 0-hop query (top
two probability values), the 2-hop query (top two probability val-
ues), and the query with feeding training or testing data into the
model to predict the label of one node (all probability values). In
our paper, we name four probability-based MIAs with classifiers:
0-hop, 2-hop, the combination of 0-hop and 2-hop, and all probabil-
ity methods. The other four MIAs calculate metrics based on the
prediction probability vector. They leverage prediction correctness
(Gap Attack), probability of ground truth, cross-entropy, and mod-
ified cross-entropy of the prediction to distinguish members and
non-members. Notably, those four methods select thresholds with
the help of shadow models.

Overfitting. As mentioned in the model architectures and set-
tings, we attempt to explore the influence of the overfitting level on
the attack performance. Thus, we train models of different architec-
tures with various settings to expose the impact of the overfitting
level on our label-only MIA.

Sampling Methods. We focus on the node-level GNN in this
paper. The dataset for training GNNs is composed of a graph with
many nodes and edges. As we mentioned, we need to sample four
sub-datasets with equal or approximately equal data points in the
total dataset. However, the number of nodes in each class is not
equal and even has a large gap. Therefore, the sampling cannot
guarantee that each class has an equal number of data points in
each sub-dataset unless decreasing the number of data points in
each sub-dataset. Based on this situation, we take three sampling
methods into comparison. The first is a random sampling of four
sub-datasets with maximum utilization of data points (called the
random sampling method). The second one is a strict class-balanced
sampling approach (called the balanced sampling method), which
guarantees non-overlapping, class-balanced, and fewer data points
in each sub-dataset. The third one is the partially balanced sampling
method, which ensures the class balance in the training data of
target and shadow models and randomly samples data points for
the testing data.

Attack Model Selection Strategies.We train and test the at-
tack model based on the attack dataset. Then, we evaluate the attack
performance of the attack model with attack features. The selec-
tion of the attack model during the training process impacts the
final attack model. Here, we choose the attack model based on five
metrics, including training accuracy (train_acc), testing accuracy
(test_acc), training loss (train_loss), testing loss (test_loss), and eval-
uation accuracy (evaluate_acc). Importantly, the adversary cannot
compute evaluation accuracy in a practical scenario because the
adversary cannot obtain the attack features of the target dataset for
evaluation before selecting the final attack model. We implement
the selection strategy based on evaluation accuracy. Finally, we
analyze the attack performance of those model selection strategies.

Assumptions Relaxation. The assumptions about the shadow
dataset and the target model’s information (GNN type and archi-
tecture) are not always available in real-world settings. Therefore,
we relax those two assumptions alone and together to assess the
attack performance of our label-only MIA.

Defenses. The methods for reducing the overfitting level are
commonly used to prevent MIAs. To evaluate the effectiveness of
our label-only MIA, we apply the Dropout, Regularization, Normal-
ization, and Jumping knowledge to reduce the overfitting level.

5 RESULTS AND DISCUSSIONS
In this section, we provide the results of our experiments and dis-
cuss the findings from the results. Section 5.1 compares the attack
performance of our label-only MIA with eight previous probability-
based MIAs. We interpret the attack model with SHAP values in
Section 5.2. In Section 5.3, we explore the influence of different
factors on the attack performance of the attack model. We relax
two assumptions about the shadow dataset and the target model’s
information in Section 5.4. Finally, we present the effectiveness of
our MIA against four defenses.

5.1 Attack Performance Comparison
As mentioned, the adversary trains the shadow model, which has
the same architecture as the target model, with the non-overlapping
shadow dataset from the same distribution as the target dataset.

6

Label-Only MIA against Node-Level GNNs AISec ’22, November 11, 2022, Los Angeles, CA, USA

Table 2 provides the attack performance of our label-only MIA after
ten repetitions. Repeating each experiment ten times reduces the
impact of the randomness, which is the same as the repetition times
in the previous work [17].

In this table, the number of data points used in each experiment
is related to the balanced sampling method. The overfitting level,
measured by the gap between the training and testing accuracy
of the target model, is relatively low. From the table, we can see
that the attack accuracy, precision, and AUC value are around 0.6
in most experiments, indicating the effectiveness of our label-only
MIA against GNNs.

Table 8 in Appendix A shows the corresponding attack perfor-
mance of four probability-based MIAs with classifiers under the
same environment as Table 2. We highlight the average attack ac-
curacy of each table in bold and red. Comparing the average attack
accuracy of each row in two tables, we can see that our label-only
MIA has higher average accuracy than previous probability-based
MIA in most cases. For instance, our label-only MIA achieves the
average attack accuracy of 0.596, while four previous probability-
based MIAs with classifiers obtain values of 0.506, 0.506, 0.504,
and 0.507 of GCN on the PubMed dataset. Table 9 in Appendix A
presents the attack performance of the transfer attack and four
probability-based MIAs with metrics. Comparing the average at-
tack accuracy (bold and red) of Table 9 and Table 2, we can also
find that our label-only MIA has a higher attack performance than
those MIAs. It reflects that our label-only MIA has a competitive,
even better performance than previous probability-based methods
in most experiments under our environment and settings.

5.2 Attack Model Explanation
We describe the details of acquiring the features for training the
attack model in Section 3.3.2. To better understand the model’s be-
havior and attempt to explain themodel, we calculate the SHAP [16]
value of each feature. The SHAP value implies the contribution or
importance of each feature to the prediction of the model. Figure 2
gives the SHAP values of each feature in the attack model under the
Cora_ML and GCN setting, which has a higher attack performance
for clearly exposing the importance of each feature.

The left column in the figure displays features’ names, ranked
by the absolute SHAP values of each feature over total data points.
In the middle, a large number of colorful points represent total
data points with different feature values and SHAP values in each
row. The x-axis means the SHAP value. The right line implies
the feature values for spots in the middle. We can see that the
feature named "i_all_min_1.0" has the top absolute SHAP value.
This feature presents whether the prediction of the target model
to the target node is the same as the ground truth while keeping
all the edges between the target node with 1-hop neighbors and
changing 100% of the target node’s features to the minimum value.
In addition, we can observe that most features have an apparent
positive or negative impact on model output while being assigned
high or low values. Besides, the features with the prefix "n_acc"
have higher SHAP values than other features, which exposes that
neighboring nodes’ accuracy under various settings is beneficial
for distinguishing the training and testing data.

Figure 2: The SHAP values of attack features (top 15). The left
column indicates the attack features ranked by the absolute
SHAP value. The colorful right line represents the ruler of
features’ values. In the middle, the cluster of points reflects
data points in the dataset. The x-axis shows the SHAP value
of each feature within one data point.

5.3 Influence Factors
This section explores our label-only MIA’s influence factors, in-
cluding the overfitting level, sampling methods, and attack model
selection strategies.

Overfitting. Table 3 shows the attack performance of our label-
only MIA against target models with a high overfitting level. We
compare the results in this table with Table 2 and highlight the
average attack accuracy in bold and red. The average attack accu-
racy could increase as the enlargement of the overfitting level—for
example, the DBLP on GAT and GCN models, from 0.593 and 0.593
(low overfitting level) to 0.6 and 0.599 (high overfitting level). On
the contrary, the increase in the overfitting level could also reduce
our label-only MIA’s attack performance. For instance, the average
attack accuracies move from high (0.604, 0.613, 0.59, and 0.602)
to low values (0.597, 0.596, 0.536, and 0.593) under combinations
of Cora_ML with GAT, GCN, GIN, and GraphSAGE, respectively.
Therefore, the higher overfitting level impacts the attack perfor-
mance, i.e., it could increase or decrease our label-only MIA’s attack
accuracy.We use the models with a low overfitting level to complete
the subsequent exploration.

Sampling Methods. As mentioned in Section 4.4, we explore
the impact of three sampling methods, including the (0) random,
(1) balanced, and (2) partially balanced sampling methods. Table 4
exposes the number of data points in four sub-datasets, including
the training and testing data of shadow and target models under
different sampling methods. In the table, target_train, target_test,
shadow_train, and shadow_test represent four sub-datasets. The
"total" means the number of data points in this sub-dataset. The
"one class" indicates the number of data points in each class of this
sub-dataset. The "-" means uncertainty indicating that the number
of data points in each class is not fixed due to random selection.

7

AISec ’22, November 11, 2022, Los Angeles, CA, USA Mauro Conti, Jiaxin Li, Stjepan Picek, & Jing Xu

Table 3: The attack performance of our label-only MIA after
ten repetitions (high overfitting level).

Dataset GNN
Test Acc
(target
model)

Train Acc
(target
model)

Our Attack
(avg acc, pre, rec, auc,
f1, low_fpr_0.01_tpr)

Cora_ML

GAT 0.658 0.973 [0.597, 0.635, 0.504,
0.652, 0.545, 0.056]

GCN 0.684 0.96 [0.596, 0.605, 0.586,
0.634, 0.586, 0.033]

GIN 0.298 0.577 [0.536, 0.539, 0.525,
0.554, 0.525, 0.022]

GraphSAGE 0.619 0.999 [0.593, 0.602, 0.595,
0.637, 0.59, 0.054]

CiteSeer

GAT 0.748 0.913 [0.592, 0.612, 0.546,
0.641, 0.567, 0.042]

GCN 0.767 0.922 [0.603, 0.62, 0.572,
0.656, 0.586, 0.043]

GIN 0.327 0.578 [0.538, 0.536, 0.569,
0.556, 0.549, 0.029]

GraphSAGE 0.732 0.874 [0.591, 0.618, 0.532,
0.637, 0.557, 0.027]

DBLP

GAT 0.716 0.916 [0.6, 0.617, 0.585,
0.648, 0.582, 0.044]

GCN 0.722 0.917 [0.599, 0.627, 0.549,
0.653, 0.572, 0.062]

GIN 0.428 0.652 [0.555, 0.561, 0.509,
0.583, 0.522, 0.025]

GraphSAGE 0.666 0.856 [0.579, 0.586, 0.593,
0.618, 0.577, 0.029]

PubMed

GAT 0.828 0.912 [0.58, 0.616, 0.477,
0.62, 0.524, 0.033]

GCN 0.838 0.909 [0.596, 0.611, 0.561,
0.653, 0.575, 0.058]

GIN 0.586 0.639 [0.522, 0.52, 0.607,
0.537, 0.542, 0.018]

GraphSAGE 0.836 0.921 [0.561, 0.558, 0.672,
0.594, 0.603, 0.031]

From the table, the uncertainty represents the class imbalance in
the random and partially balanced sampling methods.

Table 4: The number of data points in each sub-dataset under
different sampling methods.

D
at
as
et Sampling

Method

target_train target_test shadow_train shadow_test

to
ta
l

on
e
cl
as
s

to
ta
l

on
e
cl
as
s

to
ta
l

on
e
cl
as
s

to
ta
l

on
e
cl
as
s

Co
ra
_M

L 0 749 - 749 - 748 - 749 -
1 336 48 336 48 336 48 336 48
2 630 90 630 - 630 90 630 -

Ci
te
Se
er 0 1,058 - 1,057 - 1,058 - 1,057 -

1 834 139 834 139 834 139 834 139
2 600 100 600 - 600 100 600 -

D
BL

P 0 4,429 - 4,429 - 4,429 - 4,429 -
1 1,980 495 1,980 495 1,980 495 1,980 495
2 3,200 800 3,200 - 3,200 800 3,200 -

Pu
bM

ed 0 4,929 - 4,929 - 4,930 - 4,929 -
1 3,075 1,025 3,075 1,025 3,075 1,025 3,075 1,025
2 4,500 1,500 4,500 - 4,500 1,500 4,500 -

Table 5 provides the attack performance of different datasets and
GNN models under three sampling methods. From the table, the

third sampling method achieves the best average attack accuracy
in all datasets and GNN models apart from the GIN model on the
CiteSeer dataset, which obtains the highest average attack accuracy
with the first sampling method. From Table 4, we can see that both
first and third sampling methods suffer class imbalance, which im-
plies class imbalance can improve the attack accuracy. Besides, the
difference in average attack accuracy reaches 7% between the sec-
ond and third sampling methods on the GAT model with the DBLP
dataset. It indicates that the sampling method influences the attack
performance via class imbalance and achieves a maximum gap of
7% for average attack accuracy. Olatunji et al. [17] used the par-
tially balanced sampling method, while He et al. [10] leveraged the
random sampling method. We use the balanced sampling method
by default to avoid the disturbance brought by the class imbalance.

Table 5: The average attack accuracy of four datasets andGNN
models under three sampling methods after ten repetitions.

Sampling
Method Dataset GNN Test Acc

(target model)
Train Acc

(target model) Avg Acc

0

Cora_ML GCN 0.68 0.851 0.621
CiteSeer GIN 0.742 0.956 0.613
DBLP GAT 0.653 0.682 0.614

PubMed GraphSAGE 0.871 0.919 0.55

1

Cora_ML GCN 0.749 0.935 0.608
CiteSeer GIN 0.775 0.927 0.591
DBLP GAT 0.732 0.837 0.594

PubMed GraphSAGE 0.87 0.925 0.574

2

Cora_ML GCN 0.777 0.941 0.651
CiteSeer GIN 0.728 0.946 0.568
DBLP GAT 0.771 0.82 0.664

PubMed GraphSAGE 0.866 0.919 0.581

Attack Model Selection Strategies. Section 4.4 explains that
we select the attack model during the training process based on
five metrics, including training accuracy (train_acc), testing accu-
racy (test_acc), training loss (train_loss), testing loss (test_loss), and
evaluation accuracy (evaluate_acc). Table 6 gives the average attack
accuracy of the selected attack model. From the table, we could
observe that selection strategies based on testing accuracy and loss
have a slightly better attack accuracy than those based on train-
ing accuracy and loss with a maximum gap of 1% average attack
accuracy. This paper uses testing accuracy for selecting the attack
model.

Under our environment and settings, previous probability-based
methods with classifiers might not achieve the attack performance
reported in their papers [10, 17]. We attribute this kind of difference
to three influence factors analyzed in this section and the change in
the attack environment, including the model’s architecture, training
process, and hyperparameters.

5.4 Assumptions Relaxation
We design and conduct an ablation study on the relaxation of two
assumptions about the shadow dataset and the target model’s in-
formation. In the first experiment, we utilize shadow datasets from
other distributions. Secondly, we train the shadow model with dif-
ferent types and architectures from the target model. Finally, we
relax those two assumptions together.

Figure 3 shows the average attack accuracy comparison of the
first experiment. We fix the target model and shadow model to

8

Label-Only MIA against Node-Level GNNs AISec ’22, November 11, 2022, Los Angeles, CA, USA

Table 6: The average attack accuracy of four datasets and GNN models with five model selection strategies after ten repetitions.

Dataset GNN Test Acc
(target model)

Train Acc
(target model)

Average accuracy of the attack model selected by different strategies
train_acc test_acc train_loss test_loss evaluate_acc

Cora_ML GCN 0.744 0.943 0.607 0.616 0.603 0.617 0.644
CiteSeer GIN 0.771 0.924 0.585 0.589 0.582 0.596 0.615
DBLP GAT 0.734 0.837 0.582 0.592 0.583 0.589 0.604

PubMed GraphSAGE 0.874 0.924 0.572 0.578 0.565 0.589 0.604

Figure 3: The average attack accuracy after ten repetitions
while the shadow dataset is from the other distribution. The
fixed GNN for shadow and target models is GCN. The x-axis
means the setting of the shadowmodel. The y-axis represents
the setting of the target model.

GCN. While the target models are trained with Cora_ML, CiteSeer,
DBLP, and PubMed (each row in the figure), we obtain the largest
attack accuracy with shadow datasets from PubMed (0.679), DBLP
(0.646), PubMed (0.653), and CiteSeer (0.62), which are not from the
same datasets as the target datasets. Figure 4 shows the result of the
second experiment. We fix the target dataset and shadow dataset
to sample from Cora_ML. The main reason for selecting Cora_ML
is that the average attack accuracy of Cora_ML is relatively higher
than other datasets, which means the change is evident while relax-
ing the second assumption. From the figure, we obtain the highest
attack accuracywhile the target and shadowmodels are GCN (GAT),
GIN (GCN), GAT (GCN), and GraphSAGE (GraphSAGE), most of
which do not have the same model type for target and shadow
models. Figure 5 illustrates the average attack accuracy of the third
experiment. Similarly, the maximum attack accuracy is not from
the settings where the target model is trained with the same dataset
and model type as the shadow model. From those three figures,
we surprisingly find that the relaxation of those two assumptions
will increase the attack performance in most cases, which reflects
on relatively light colors on the diagonal. Even when the attack
performance decreases, the reduction degree is low. Therefore, the
attack performance primarily increases while relaxing the assump-
tions about the shadow dataset and target model’s information.
The possible reason for this phenomenon is that the attack features
of members (or non-members) are similar or are converted to be
alike in the attack model under settings where the shadow model’s
distribution and the target model’s information are different. This
phenomenon is also discussed in previous works [10, 20].

Figure 4: The average attack accuracy after ten repetitions
while the target model’s information is relaxed. The shadow
and target datasets are from Cora_ML.

Figure 5: The average attack accuracy after ten repetitions
while the shadow dataset and the target model’s information
are relaxed together.

5.5 Defenses
Table 7 shows the average attack accuracy of ten repetitions against
four different defenses. The defenses include Normalization (the
BatchNorm), Dropout (0.5), Regularization (the Adam with weight
decay of 0.5), and Jumping knowledge (concatenation). Here, we se-
lect the GCN model on the Cora_ML dataset with a high overfitting
level to investigate the influence of defenses due to its relatively
high attack performance. From the table, we can observe that the
average accuracy decreases when applying Normalization (row 1,
0.586) or Regularization (row 3, 0.573) compared with no defenses
(row 0, 0.596). However, the average accuracy slightly increases
when only using the Dropout (row 2, 0.602) or Jumping knowledge
(row 4, 0.606). Besides, the combinations between four defenses

9

AISec ’22, November 11, 2022, Los Angeles, CA, USA Mauro Conti, Jiaxin Li, Stjepan Picek, & Jing Xu

could raise (row 5, 7, 9, 11, 12, 13, 15) or lower (row 6, 8, 10, 14) the
average accuracy. In addition, Regularization is in four rows (6, 8,
10, 14), where the average accuracy decreases. It does not mean
the average accuracy will be lower with Regularization combined
with other defenses, like rows 11 and 13. The results show that
Regularization and Normalization could slightly decrease the av-
erage attack accuracy while applying alone. Moreover, those four
defenses cannot prevent our label-only MIA completely with higher
average accuracy than 0.5 apart from row 14.

We apply and compare four regular defense mechanisms, all of
which cannot prevent our label-only MIA completely. One solu-
tion is to utilize a defense mechanism combining GNNs’ particular
properties. For example, flexible prediction strategy and unique
connection between nodes and their neighbors. Currently, we do
not find an efficient defense mechanism for our label-only MIA and
leave it as future work.

6 RELATEDWORK
Membership Inference Attacks. In 2016, Shokri et al. [22] pro-
posed MIAs to machine learning models by training the attack
model with attack features through the shadow model and dataset.
Then, Salem et al. [20] relaxed some assumptions from [22] and
achieved competitive attack performance. Recently, membership
inference attacks widely spread to multiple data types and model
categories [1, 9, 19, 23, 32]. The critical point of a successful attack
is distinguishing between the training and testing data. Previous
research suggested feasible keystone metrics, like prediction proba-
bility vector and loss [30]. The intuition is that the model is more
confident in training data points than testing data points because
the model is overfitting. Overfitting is the most acceptable reason
for MIA but not the only factor [25, 30].

Membership Inference Attacks against GNNs. Wu et al. [1]
firstly proposed MIAs to GNNs for classification tasks. Their at-
tack methods utilized the prediction probability vector and metrics
computed based on it. In contrast, He et al. [10] concentrated on
MIAs against node-level GNNs. They detected the node’s existence
with its top two probability scores by feeding it into the model

Table 7: The average attack accuracy after ten repetitions
under different defenses (Cora_ML, GCN).

Row Normalization Dropout Regularization Jumping
Knowledge Avg Acc

0 × × × × 0.596
1

√
× × × 0.586

2 ×
√

× × 0.602
3 × ×

√
× 0.573

4 × × ×
√

0.606
5

√ √
× × 0.609

6
√

×
√

× 0.581
7

√
× ×

√
0.615

8 ×
√ √

× 0.55
9 ×

√
×

√
0.607

10 × ×
√ √

0.52
11

√ √ √
× 0.609

12
√ √

×
√

0.614
13

√
×

√ √
0.618

14 ×
√ √ √

0.497
15

√ √ √ √
0.613

with its 0-hop or 2-hop neighborhood nodes. Olatunji et al. [17] put
the overall training or testing subgraph into the model to simulta-
neously obtain nodes’ prediction probability vectors. Those three
methods are related to the prediction probability vector, which is
infeasible under the label-only condition with just a prediction label
as the output. This paper presents a solution for attacking GNNs
without the prediction probability vector.

Label-only Membership Inference Attacks. Li et al. [14] put
forward two strategies to attack traditional neural networks un-
der the label-only condition. The first method trains a relabelled
shadow model for obtaining the prediction probability vector of
data points in the target dataset. The second method leverage the
distance between the data point and its adversarial example to dis-
tinguish membership. In the meantime, Choquette-Choo et al. [4]
put forward two approaches for MIAs under a label-only environ-
ment. One method uses the prediction correctness situation of a
data point and its augmented versions for membership prediction.
The other method is similar to the second approach proposed by
Li et al. [14]. Those two works inspire our research of label-only
MIAs against GNNs. In addition, Rahimian et al. [18] constructed
the posterior vector of the data point by feeding multiple perturbed
versions to the target model and analyzing the predictions of those
perturbed data of this data point.

7 CONCLUSIONS AND FUTUREWORK
In this paper, we propose a method of implementing MIA against
GNNs under the label-only condition. The average attack accuracy,
precision, and AUC values of our label-only MIA are around 0.6
in most experiments, which are competitive or even better than
previous probability-based MIAs implemented in the same environ-
ment and settings. In addition, we explore the influence factors of
our label-only MIA. The higher overfitting level impacts the attack
performance, i.e., it could increase or decrease our label-only MIA’s
attack accuracy. The sampling method also influences the attack
performance and achieves a maximum gap of 7% on average attack
accuracy. Model selection strategies with testing accuracy and loss
have a slightly better attack accuracy than training accuracy and
loss with a maximum gap of 1% on average attack accuracy. Then,
we consider scenarios where two assumptions about the shadow
dataset and the target model’s information are relaxed. Surprisingly,
the relaxation of those two assumptions will increase the attack
performance in most experiments. Finally, we explore label-only
MIA against four defense methods and their combinations. The
results show that those four defenses cannot prevent our label-only
MIA completely. This paper only focuses on node classification
tasks. We leave label-only MIA against graph-level GNNs as feature
work.

ACKNOWLEDGMENTS
This research is supported by the Chinese Scholarship Council
(CSC). We are grateful to Shaofeng Li for his comments on the early
proposal of this project.

10

Label-Only MIA against Node-Level GNNs AISec ’22, November 11, 2022, Los Angeles, CA, USA

AVAILABILITY
REFERENCES
[1] Wu Bang, Yang Xiangwen, Pan Shirui, and Yuan Xingliang. 2021. Adapting

Membership Inference Attacks to GNN for Graph Classification: Approaches
and Implications. In Proceedings of the 21st IEEE International Conference on Data
Mining, ICDM 2021, Auckland, New Zealand, December 7-10, 2021. IEEE Computer
Society, Los Alamitos, CA, USA, 1421–1426.

[2] Aleksandar Bojchevski and Stephan Günnemann. 2018. Deep Gaussian Embed-
ding of Graphs: Unsupervised Inductive Learning via Ranking. In Proceedings of
the 6th International Conference on Learning Representations, ICLR 2018, Vancouver,
BC, Canada, April 30 - May 3, 2018. OpenReview.net, Amherst, MA, USA.

[3] N. Carlini, S. Chien, M. Nasr, S. Song, A. Terzis, and F. Tramer. 2022. Membership
Inference Attacks from First Principles. In Proceedings of the 43rd IEEE Symposium
on Security and Privacy, IEEE S&P 2022, San Francisco, CA, USA, May 23-25, 2022.
IEEE Computer Society, Los Alamitos, CA, USA, 1519–1519.

[4] Christopher A. Choquette-Choo, Florian Tramer, Nicholas Carlini, and Nicolas
Papernot. 2021. Label-Only Membership Inference Attacks. In Proceedings of the
38th International Conference on Machine Learning, ICML 2021, Virtual Event, July
18-24, 2021, Vol. 139. PMLR, 1964–1974.

[5] Kaize Ding, Zhe Xu, Hanghang Tong, and Huan Liu. 2022. Data Augmentation
for Deep Graph Learning: A Survey. CoRR abs/2202.08235 (2022).

[6] Vasisht Duddu, Antoine Boutet, and Virat Shejwalkar. 2020. Quantifying Pri-
vacy Leakage in Graph Embedding. In Proceedings of the 17th EAI International
Conference on Mobile and Ubiquitous Systems: Computing, Networking and Ser-
vices, MobiQuitous 2020, Darmstadt, Germany, December 7-9, 2020. Association
for Computing Machinery, New York, NY, USA, 76–85.

[7] Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin.
2019. Graph Neural Networks for Social Recommendation. In Proceedings of the
28th World Wide Web Conference, WWW 2019, San Francisco, CA, USA, May 13-17,
2019. Association for Computing Machinery, New York, NY, USA, 417–426.

[8] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive Representation
Learning on Large Graphs. In Proceedings of the Advances in Neural Information
Processing Systems 30, NeurIPS 2017, Long Beach, CA, USA, December 4-9, 2017,
Vol. 30. Curran Associates, Inc., Red Hook, NY, USA.

[9] J. Hayes, Luca Melis, G. Danezis, and Emiliano De Cristofaro. 2019. LOGAN:
Membership Inference Attacks Against GenerativeModels. Proceedings on Privacy
Enhancing Technologies 2019, 1 (2019), 133–152.

[10] Xinlei He, Rui Wen, Yixin Wu, Michael Backes, Yun Shen, and Yang Zhang. 2021.
Node-Level Membership Inference Attacks Against Graph Neural Networks.
CoRR abs/2102.05429 (2021).

[11] Chenyang Hong, Qin Cao, Zhenghao Zhang, Stephen Kwok-Wing Tsui, and
Kevin Y. Yip. 2021. Reusability report: Capturing properties of biological objects
and their relationships using graph neural networks. Nature Machine Intelligence
4 (2021), 222–226. Issue 3.

[12] Bo Hui, Yuchen Yang, Haolin Yuan, Philippe Burlina, Neil Zhenqiang Gong, and
Yinzhi Cao. 2021. Practical Blind Membership Inference Attack via Differential
Comparisons. In Proceedings of the 28th Annual Network and Distributed System
Security Symposium, NDSS 2021, virtually, February 21-25, 2021. The Internet
Society, Reston, Virginia, USA.

[13] Thomas N. Kipf and Max Welling. 2017. Semi-supervised classification with
graph convolutional networks. In Proceedings of the 5th International Confer-
ence on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017.
OpenReview.net, Amherst, MA, USA.

[14] Zheng Li and Yang Zhang. 2021. Membership Leakage in Label-Only Exposures.
In Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communica-
tions Security, CCS 2021, Virtual Event, Republic of Korea, November 15 - 19, 2021.
Association for Computing Machinery, New York, NY, USA, 880–895.

[15] Yunhui Long, Lei Wang, Diyue Bu, Vincent Bindschaedler, XiaofengWang, Haixu
Tang, Carl A. Gunter, and Kai Chen. 2020. A Pragmatic Approach to Membership
Inferences on Machine Learning Models. In Proceedings of the 5th IEEE European
Symposium on Security and Privacy, EuroS&P 2020, all-digital event, September
7-11, 2020. 521–534.

[16] Scott M Lundberg and Su-In Lee. 2017. A Unified Approach to Interpreting
Model Predictions. In Proceedings of the Advances in Neural Information Processing
Systems 30, NeurIPS 2017, Long Beach, CA, USA, December 4-9, 2017, Vol. 30. Curran
Associates, Inc., Red Hook, NY, USA.

[17] Iyiola E. Olatunji, Wolfgang Nejdl, and Megha Khosla. 2021. Membership infer-
ence attack on graph neural networks. In Proceedings of the 3rd IEEE International
Conference on Trust, Privacy and Security in Intelligent Systems and Applications,
TPS-ISA 2021, Atlanta, GA, USA, December 13-15, 2021. IEEE Computer Society,
Los Alamitos, CA, USA, 11–20.

[18] Shadi Rahimian, Tribhuvanesh Orekondy, and Mario Fritz. 2021. Differential
Privacy Defenses and Sampling Attacks for Membership Inference. In Proceedings
of the 14th ACM Workshop on Artificial Intelligence and Security, AISec 2021,
Virtual Event, Republic of Korea, November 15, 2021. Association for Computing
Machinery, New York, NY, USA, 193–202.

[19] Gonzalo Martínez Ruiz de Arcaute, José Alberto Hernández, and Pedro Reviriego.
2022. Assessing the Impact of Membership Inference Attacks on Classical Ma-
chine Learning Algorithms. In Proceedings of the 18th International Conference on
the Design of Reliable Communication Networks, DRCN 2022, Vilanova i la Gelrú,
Spain, March 28-31, 2022. IEEE Computer Society, Los Alamitos, CA, USA, 1–4.

[20] Ahmed Salem, Yang Zhang, Mathias Humbert, Pascal Berrang, Mario Fritz, and
Michael Backes. 2019. ML-Leaks: Model and Data Independent Membership
Inference Attacks and Defenses on Machine Learning Models. In Proceedings of
the 26th Annual Network and Distributed System Security Symposium, NDSS 2019,
San Diego, CA, USA, February 24-27, 2019. The Internet Society, Reston, Virginia,
USA.

[21] Chao Shang, Yun Tang, Jing Huang, Jinbo Bi, He Xiaodong, and Bowen Zhou.
2019. End-to-End Structure-Aware Convolutional Networks for Knowledge Base
Completion. In Proceedings of the 33rd AAAI Conference on Artificial Intelligence,
AAAI 2019, Honolulu, Hawaii, USA, January 27 - February 1, 2019, Vol. 33. AAAI
Press, Palo Alto, CA, USA, 3060–3067. Issue 1.

[22] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. 2017. Mem-
bership inference attacks against machine learning models. In Proceedings of the
38th IEEE Symposium on Security and Privacy, IEEE S&P 2017, San Jose, CA, USA,
May 22-26, 2017. IEEE Computer Society, Los Alamitos, CA, USA, 3–18.

[23] Congzheng Song and Vitaly Shmatikov. 2019. Auditing Data Provenance in
Text-Generation Models. In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, KDD 2019, Anchorage, AK,
USA, August 4-8, 2019. Association for Computing Machinery, New York, NY,
USA, 196–206.

[24] Liwei Song and Prateek Mittal. 2021. Systematic Evaluation of Privacy Risks of
Machine Learning Models. In Proceedings of the 30th USENIX Security Symposium,
USENIX Security 2021, Vancouver, B.C., Canada, August 11-13, 2021, Michael Bailey
and Rachel Greenstadt (Eds.). USENIX Association, 2615–2632.

[25] Stacey Truex, Ling Liu, Mehmet Emre Gursoy, Lei Yu, and Wenqi Wei. 2018.
Towards Demystifying Membership Inference Attacks. CoRR abs/1807.09173
(2018).

[26] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Liò, and Yoshua Bengio. 2018. Graph Attention Networks. In Proceedings of the
6th International Conference on Learning Representations, ICLR 2018, Vancouver,
BC, Canada, April 30 - May 3, 2018. OpenReview.net, Amherst, MA, USA.

[27] Hongwei Wang, Fuzheng Zhang, Mengdi Zhang, Jure Leskovec, Miao Zhao, Wen-
jie Li, and Zhongyuan Wang. 2019. Knowledge-aware Graph Neural Networks
with Label Smoothness Regularization for Recommender Systems. In Proceedings
of the 25th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, KDD 2019, Anchorage, AK, USA, August 4-8, 2019. Association for
Computing Machinery, New York, NY, USA, 968–977.

[28] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2019. How Powerful
are Graph Neural Networks?. In Proceedings of the 7th International Conference
on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net, Amherst, MA, USA.

[29] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi
Kawarabayashi, and Stefanie Jegelka. 2018. Representation Learning on Graphs
with Jumping Knowledge Networks. In Proceedings of the 35th International Con-
ference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden,
July 10-15, 2018, Vol. 80. PMLR, 5449–5458.

[30] Samuel Yeom, Irene Giacomelli, Matt Fredrikson, and Somesh Jha. 2018. Privacy
risk in machine learning: Analyzing the connection to overfitting. In Proceedings
of the 31st IEEE Computer Security Foundations Symposium, CSF 2018, Oxford,
United Kingdom, July 9-12, 2018. IEEE Computer Society, Los Alamitos, CA, USA,
268–282.

[31] Xiaotong Zhang, Han Liu, Qimai Li, and Xiao-Ming Wu. 2019. Attributed Graph
Clustering via Adaptive Graph Convolution. In Proceedings of the 28th Interna-
tional Joint Conference on Artificial Intelligence, IJCAI 2019, Macao, China, August
10-16, 2019. International Joint Conferences on Artificial Intelligence Organiza-
tion, CA, USA, 4327–4333.

[32] Zhikun Zhang, Min Chen, Michael Backes, Yun Shen, and Yang Zhang. 2022.
Inference Attacks Against Graph Neural Networks. In Proceedings of the 31st
USENIX Security Symposium, USENIX Security 2022, Boston, MA, USA, August
10–12, 2022. USENIX Association, Berkeley, CA, USA.

A ADDITIONAL RESULTS
Table 8 indicates the attack performance of four previous probability-
based MIAs with classifiers, including 0-hop, 2-hop, the combina-
tion of 0-hop and 2-hop, and all probability methods. We implement
those four MIAs under the same settings as the results of Table 2.
The settings include the same target and shadow models (a low
overfitting level) trained with the same dataset split, the training
of the attack models, and the model selection strategy. Each result

11

AISec ’22, November 11, 2022, Los Angeles, CA, USA Mauro Conti, Jiaxin Li, Stjepan Picek, & Jing Xu

Table 8: The attack performance of four probability-based attacks with classifiers after ten repetitions.

Dataset GNN probability-based methods with classifiers (avg acc, pre, rec, auc, f1, low_fpr_0.01_tpr)
0-hop 2-hop 0-hop and 2-hop combination all probability

Cora_ML

GAT [0.576, 0.552, 0.634, 0.626, 0.546, 0.076] [0.549, 0.508, 0.457, 0.61, 0.409, 0.033] [0.588, 0.563, 0.62, 0.629, 0.548, 0.088] [0.571, 0.511, 0.493, 0.652, 0.454, 0.078]
GCN [0.691, 0.67, 0.874, 0.765, 0.746, 0.157] [0.633, 0.622, 0.807, 0.685, 0.687, 0.059] [0.693, 0.675, 0.851, 0.765, 0.739, 0.142] [0.635, 0.681, 0.639, 0.723, 0.591, 0.121]
GIN [0.613, 0.611, 0.761, 0.692, 0.655, 0.092] [0.575, 0.577, 0.722, 0.604, 0.609, 0.009] [0.6, 0.58, 0.724, 0.666, 0.629, 0.106] [0.55, 0.587, 0.52, 0.575, 0.51, 0.026]

GraphSAGE [0.627, 0.68, 0.732, 0.747, 0.636, 0.136] [0.626, 0.685, 0.73, 0.762, 0.625, 0.107] [0.639, 0.66, 0.793, 0.74, 0.68, 0.124] [0.61, 0.66, 0.324, 0.637, 0.372, 0.115]

CiteSeer

GAT [0.533, 0.478, 0.329, 0.562, 0.338, 0.013] [0.518, 0.422, 0.436, 0.539, 0.399, 0.009] [0.524, 0.426, 0.467, 0.555, 0.414, 0.014] [0.515, 0.38, 0.281, 0.531, 0.295, 0.01]
GCN [0.555, 0.456, 0.45, 0.567, 0.439, 0.011] [0.559, 0.523, 0.475, 0.6, 0.463, 0.017] [0.551, 0.526, 0.425, 0.575, 0.443, 0.009] [0.528, 0.507, 0.366, 0.525, 0.388, 0.007]
GIN [0.535, 0.48, 0.618, 0.562, 0.508, 0.01] [0.541, 0.535, 0.759, 0.567, 0.601, 0.011] [0.534, 0.534, 0.728, 0.568, 0.581, 0.01] [0.515, 0.498, 0.248, 0.519, 0.266, 0.01]

GraphSAGE [0.522, 0.476, 0.411, 0.534, 0.348, 0.014] [0.54, 0.416, 0.381, 0.551, 0.354, 0.012] [0.53, 0.417, 0.393, 0.569, 0.364, 0.011] [0.519, 0.312, 0.26, 0.523, 0.268, 0.01]

DBLP

GAT [0.516, 0.539, 0.175, 0.547, 0.231, 0.011] [0.514, 0.471, 0.276, 0.539, 0.278, 0.011] [0.517, 0.479, 0.274, 0.54, 0.299, 0.01] [0.503, 0.52, 0.161, 0.521, 0.188, 0.015]
GCN [0.532, 0.545, 0.406, 0.561, 0.415, 0.011] [0.534, 0.548, 0.424, 0.556, 0.419, 0.013] [0.532, 0.543, 0.412, 0.562, 0.421, 0.011] [0.527, 0.524, 0.416, 0.549, 0.432, 0.014]
GIN [0.514, 0.436, 0.325, 0.531, 0.299, 0.012] [0.517, 0.499, 0.373, 0.529, 0.339, 0.006] [0.524, 0.453, 0.358, 0.538, 0.318, 0.006] [0.507, 0.372, 0.277, 0.527, 0.266, 0.006]

GraphSAGE [0.531, 0.53, 0.49, 0.553, 0.465, 0.011] [0.538, 0.537, 0.474, 0.558, 0.463, 0.012] [0.539, 0.548, 0.391, 0.562, 0.423, 0.015] [0.554, 0.557, 0.576, 0.583, 0.536, 0.017]

PubMed

GAT [0.498, 0.415, 0.185, 0.503, 0.198, 0.008] [0.5, 0.341, 0.384, 0.497, 0.306, 0.009] [0.497, 0.442, 0.365, 0.501, 0.352, 0.009] [0.505, 0.464, 0.531, 0.511, 0.456, 0.01]
GCN [0.506, 0.353, 0.217, 0.515, 0.229, 0.009] [0.506, 0.478, 0.291, 0.512, 0.286, 0.009] [0.504, 0.446, 0.203, 0.508, 0.224, 0.008] [0.507, 0.476, 0.342, 0.516, 0.353, 0.007]
GIN [0.502, 0.393, 0.649, 0.508, 0.455, 0.007] [0.502, 0.398, 0.376, 0.508, 0.294, 0.007] [0.501, 0.267, 0.375, 0.504, 0.262, 0.009] [0.499, 0.239, 0.125, 0.497, 0.134, 0.006]

GraphSAGE [0.504, 0.404, 0.273, 0.513, 0.307, 0.008] [0.508, 0.403, 0.295, 0.521, 0.302, 0.009] [0.504, 0.451, 0.293, 0.52, 0.338, 0.009] [0.511, 0.416, 0.334, 0.525, 0.351, 0.008]

Table 9: The attack performance of transfer attack and four probability-based attacks with metrics after ten repetitions.

Dataset GNN
Test Acc
(target
model)

Train Acc
(target
model)

Attack performance
(avg acc, pre, rec, auc, f1, low_fpr_0.01_tpr)

‘_’ means that this setting does not have a corresponding metric
label-only method probability-based methods with metrics

Transfer Attack Gap Attack Probability of
Ground Truth Cross-Entropy Modified

Cross-Entropy

Cora_ML

GAT 0.722 0.855 [0.516, 0.532, 0.288,
0.526, 0.367, 0.02]

0.567, 0.542, 0.855,
_, 0.664, _

[0.506, 0.503, 0.994,
0.731, 0.668, 0.191]

[0.502, 0.4, 0.197,
0.274, 0.138, 0.014]

[0.486, 0.453, 0.813,
0.269, 0.556, 0.007]

GCN 0.753 0.95 [0.628, 0.63, 0.625,
0.685, 0.625, 0.081]

[0.598, 0.558, 0.95,
_, 0.703, _]

[0.51, 0.505, 0.997,
0.818, 0.671, 0.232]

[0.57, 0.623, 0.231,
0.196, 0.24, 0.018]

[0.424, 0.422, 0.774,
0.182, 0.54, 0.001]

GIN 0.673 0.877 [0.515, 0.54, 0.234,
0.521, 0.32, 0.017]

[0.602, 0.566, 0.877,
_, 0.687, _]

[0.51, 0.505, 0.993,
0.726, 0.669, 0.024]

[0.517, 0.259, 0.146,
0.301, 0.132, 0.009]

[0.472, 0.469, 0.861,
0.274, 0.598, 0.003]

GraphSAGE 0.719 0.957 [0.524, 0.551, 0.259,
0.535, 0.35, 0.02]

[0.619, 0.571, 0.957,
_, 0.715, _]

[0.514, 0.507, 0.999,
0.819, 0.673, 0.215]

[0.557, 0.586, 0.265,
0.21, 0.239, 0.021]

[0.429, 0.409, 0.737,
0.181, 0.516, 0.0]

CiteSeer

GAT 0.798 0.895 [0.501, 0.501, 0.492,
0.505, 0.495, 0.009]

[0.549, 0.529, 0.895,
_, 0.665, _]

[0.506, 0.503, 0.996,
0.583, 0.668, 0.006]

[0.513, 0.157, 0.139,
0.434, 0.129, 0.005]

[0.485, 0.481, 0.865,
0.417, 0.606, 0.004]

GCN 0.8 0.936 [0.512, 0.511, 0.521,
0.514, 0.515, 0.011]

[0.568, 0.539, 0.936,
_, 0.684, _]

[0.501, 0.501, 1.0,
0.603, 0.667, 0.008]

[0.498, 0.113, 0.013,
0.422, 0.022, 0.006]

[0.502, 0.501, 0.987,
0.397, 0.665, 0.001]

GIN 0.779 0.915 [0.513, 0.514, 0.521,
0.517, 0.516, 0.011]

[0.568, 0.54, 0.915,
_, 0.679, _]

[0.511, 0.506, 0.998,
0.591, 0.671, 0.004]

[0.502, 0.101, 0.121,
0.437, 0.098, 0.006]

[0.489, 0.464, 0.882,
0.409, 0.601, 0.002]

GraphSAGE 0.794 0.943 [0.509, 0.509, 0.53,
0.512, 0.517, 0.012]

[0.574, 0.543, 0.943,
_, 0.689, _]

[0.51, 0.505, 0.999,
0.617, 0.671, 0.009]

[0.523, 0.227, 0.242,
0.406, 0.224, 0.005]

[0.468, 0.452, 0.762,
0.383, 0.551, 0.001]

DBLP

GAT 0.737 0.828 [0.508, 0.508, 0.523,
0.509, 0.515, 0.011]

[0.546, 0.529, 0.828,
_, 0.646, _]

[0.502, 0.501, 0.996,
0.577, 0.667, 0.01]

[0.505, 0.121, 0.06,
0.44, 0.058, 0.007]

[0.493, 0.494, 0.945,
0.423, 0.644, 0.006]

GCN 0.752 0.886 [0.513, 0.512, 0.552,
0.518, 0.531, 0.011]

[0.567, 0.541, 0.886,
_, 0.672, _]

[0.501, 0.5, 1.0,
0.606, 0.667, 0.008]

[0.499, 0.111, 0.009,
0.423, 0.016, 0.007]

[0.501, 0.5, 0.991,
0.394, 0.665, 0.003]

GIN 0.721 0.863 [0.511, 0.511, 0.507,
0.514, 0.509, 0.012]

[0.571, 0.545, 0.863,
_, 0.668, _]

[0.501, 0.5, 1.0,
0.587, 0.667, 0.005]

[0.498, 0.048, 0.003,
0.457, 0.005, 0.004]

[0.502, 0.501, 0.997,
0.413, 0.667, 0.003]

GraphSAGE 0.733 0.892 [0.511, 0.511, 0.543,
0.514, 0.526, 0.012]

[0.579, 0.549, 0.892,
_, 0.68, _]

[0.506, 0.503, 0.997,
0.624, 0.669, 0.01]

[0.502, 0.24, 0.108,
0.411, 0.085, 0.005]

[0.49, 0.471, 0.898,
0.376, 0.609, 0.002]

PubMed

GAT 0.859 0.885 [0.506, 0.506, 0.539,
0.506, 0.517, 0.01]

[0.513, 0.508, 0.885,
_, 0.645, _]

[0.502, 0.501, 0.987,
0.53, 0.665, 0.008]

[0.503, 0.251, 0.234,
0.477, 0.2, 0.009]

[0.494, 0.489, 0.782,
0.47, 0.571, 0.008]

GCN 0.868 0.905 [0.505, 0.504, 0.61,
0.505, 0.551, 0.01]

[0.519, 0.51, 0.905,
_, 0.653, _]

[0.502, 0.501, 0.994,
0.529, 0.666, 0.009]

[0.503, 0.252, 0.172,
0.482, 0.148, 0.008]

[0.495, 0.491, 0.837,
0.471, 0.596, 0.005]

GIN 0.849 0.895 [0.508, 0.507, 0.575,
0.508, 0.537, 0.01]

[0.523, 0.513, 0.895,
_, 0.652, _]

[0.504, 0.502, 0.989,
0.527, 0.666, 0.006]

[0.502, 0.102, 0.175,
0.488, 0.128, 0.007]

[0.494, 0.484, 0.837,
0.473, 0.583, 0.005]

GraphSAGE 0.867 0.92 [0.507, 0.506, 0.599,
0.508, 0.548, 0.01]

[0.526, 0.515, 0.92,
_, 0.66, _]

[0.504, 0.502, 0.994,
0.547, 0.667, 0.007]

[0.507, 0.234, 0.213,
0.467, 0.194, 0.008]

[0.489, 0.483, 0.794,
0.453, 0.579, 0.004]

row in Table 8 corresponds with the result row under the same
dataset and GNN model in Table 2. For each row, the dataset and
GNN are used to train the target and shadow models. The "0-hop",
"2-hop", "o-hop and 2-hop combination", and "all probability" in the
table indicate the results of four probability-based MIAs with clas-
sifiers. Each result has six values: the average accuracy, precision,
recall, AUC value, F1 score, and TPR under low FPR (0.01) after ten
repetitions. We highlight the average accuracy of each result for a
clear comparison in bold and red.

Table 9 presents the attack performance of the transfer attack (Li
et al. [14]) and four previous probability-based MIAs with metrics.
Four probability-based MIAs with metrics utilize prediction correct-
ness (Gap Attack), probability of ground truth, cross-entropy, and
modified cross-entropy for determining membership by comparing
with a threshold [20, 22, 24, 30]. The evaluation metrics are the
same as Table 8. The "_" in the table means we cannot obtain this
metric because no threshold is related to metric calculation.

12

	Abstract
	1 Introduction
	2 Background
	2.1 Graph Neural Networks
	2.2 Membership Inference Attack

	3 Our Label-only MIA
	3.1 Problem Formulation
	3.2 Threat Model
	3.3 Attack Methodology

	4 Experiments
	4.1 Datasets
	4.2 Model Architectures and Training Settings
	4.3 Evaluation Metrics
	4.4 Experimental Steps

	5 Results and Discussions
	5.1 Attack Performance Comparison
	5.2 Attack Model Explanation
	5.3 Influence Factors
	5.4 Assumptions Relaxation
	5.5 Defenses

	6 Related Work
	7 Conclusions and Future Work
	References
	A Additional Results

