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Understanding human behavior and preventing accidents

Accidents at work come at a major cost including fatalities, disability and economic
burden. The ideas around accident causation have changed over time from describing
accidents as ‘acts of gods’ and as the fault of individual employees, to accidents being
the result of an interaction between organizational, technical and human factors.
Included in the more recent ideas is the notion that organizations have a role and
responsibility in preventing accidents. Prevention can include eliminating error-promoting
factors or adding safety barriers to prevent errors from leading to accidents.

When employees interact with any system in their organization, interventions can be
aimed at employees and at the system. When investigating possibilities to improve the
system, it is important to take into account how employees interact with the system. We
need to be able to predict human behavior and in order to do that, we need to
understand human behavior.

This book about my PhD research contributes to the expansion of knowledge on human
behavior in two manners:

1. New scientific knowledge on human behavior
The probability of human error increases when an employee is exposed to the
same task circumstances in previous days followed by exposure to (visually)
similar task circumstances that require different behavior.

2. Insights into how big data* of actual human behavior (as captured by
sensors) can be used in combination with psychological expertise to
identify and answer other questions about human behavior in the future:
1. Analyzing the data with a focus on identifying discrepancies in the expected
amount of variation in the behavior per factor versus the actual amount of
variation leads to the identification of relevant research questions on human
behavior 2. The task of using big data is itself a complex task which should also
be considered from a Human Factors perspective** to decrease the chance that
errors occur during the use of big data. Theory on cognitive biases and automatic
activation can be used to identify pitfalls in complex tasks such as these. In this
PhD-research, five pitfalls were identified to be aware of.

* Big data: data for which the quantity is too large to collect and process via traditional

** From a Human Factors perspective, human errors are not seen as an indication that there is
something wrong with the individual who made the error but rather as an indication that parts
of the system can be improved. Human Factors experts use the knowledge of human strengths
and limitations, both mental and physical, to improve human-system interaction in such a way
that safety, performance and/or employee satisfaction is enhanced. When trying to investigate
why human errors occur, the first avenue is thus always to consider what factors within the
system contributed to the causation of this error and how the system can be improved to
prevent errors from occurring the future.
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Opportunity for big data research on human behavior thanks to big data
availability and questions within Dutch rail

A wide range of human behavior has been studied within social sciences and within
industry, using different methodologies. Advances in technology make it possible to add
a new methodology: analyzing the actual process related behavior of employees as
captured by sensors that are already present or can be embedded within the task
environment. This type of data is a type of big data, because the quantity is too large to
collect and process via traditional technology.

Using big data within organizations has a lot of potential benefits, but these benefits are
not automatically reaped. Turning the raw data into usable knowledge is not a
straightforward process, especially since the data is often collected for different purposes
than the research goal. Big data is also not commonly applied yet within industry to solve
safety problems. It is possible to analyze big data of actual employee behavior without
using expertise on human behavior to guide the analysis, but this does not necessarily
lead to valuable insights with respect to human behavior that can actually be used to
improve organizational processes and the accompanying level of safety via structural
interventions.

Fortunately, the opportunity arose to use big data within the context of Dutch rail to
study human behavior in a safety context. ProRail, the Dutch rail infrastructure manager,
aims to reduce the amount of SPADs within the Netherlands. SPADs, or Signal Passed at
Danger events, are incidents where a train passes a signal (with a red aspect) without
authorization. Data was available on train driver deceleration behavior.

Five steps were taking that allowed us to identify a relevant research question and obtain
valuable insights on human behavior that can be used in the prevention of accidents
within rail and other industries.

Step 1. Analyzing the discrepancies between expected and actual level of
variation in behavior to identify relevant (human) factors (chapter 5)

To be able to utilize the big data for safety purposes, we had to perform initial analyses
in such a way that it would lead to insights that can be used for deeper analysis. Within
psychology there has traditionally been a strong focus on analyzing differences in
averages (mean or median). However, new causes of errors can be identified and their
impact quantified by examining variation in system performance, rather than focusing on
averages or only on problematic performance.

Examining variation includes asking questions such as: under which circumstances are
there different amounts of variation in system performance (for example demonstrated
as a larger standard deviation or wider curve), and is this difference in variation expected
or not? Such questions are hard to answer with smaller sample sizes, especially when
comparing the amount of variation across different conditions and testing very specific
hypotheses.

Step 2. Decreasing the probability of errors during big data utilization by being
aware of possible cognitive pitfalls in complex tasks such as data verification
(chapter 6)

Human Factors specialists using big data to investigate human factors topics should be
aware that they themselves are also susceptible to making errors. This raises the
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questions: can ‘we’ (Human Factors experts) also use our knowledge of human factors to
decrease the probability of errors during the use of big data?

One of the complex tasks within big data utilization is data verification. This step is
especially important when using data for safety related purposes. Within the safety
domain there is often a higher need for certainty due to high stakes and because it is
often important to understand the causal mechanism to implement the correct
intervention that does not have unwanted side-effects.

Using big data provides unique challenges in identifying data quality problems. It is not
possible to verify every data point within big data, but it is possible to perform data
verification by examining the data on certain aspects, including outliers, impossible
combinations of data values and applying a four-eyes-principle on the methods used to
process the data. Data verification is a task that can be affected by human error. In order
to improve the data verification process, it is important to take cognitive biases into
account.

In this thesis, five cognitive biases are listed that can occur during such data verification
and thereby limit the identification of data quality problems. These biases manifest as
pitfalls that are specified as ‘The good form as evidence-error’, ‘The improved-thus-
correct fallacy’, ‘Situation-dependent-identity-oversight’, ‘Impact underestimation’ and
‘The beaten track disadvantage’ (section 6.3). The verification process can be improved
with specific measures per pitfall to mitigate their effect and increase the probability of
identifying data quality problems. These measures include incorporating specific
checkpoints and questions within the verification process.

It should be noted that there are standards within railways that ensure that safety critical
software is made as safe as possible. The data that was used in this research was not part of
any software with a safety critical component. There are also many different ways in which data
verification can be performed. Chapter 6 gives insight into pitfalls that can be present during
the data verification process of data that is available but does not yet comply to the strict
standards applied that are relevant for safety critical software.

Other big data related tasks such as result visualization and interpretation can also be
examined for the presence of common pitfalls. This is beyond the scope of this
dissertation, but the principles applied in chapter 6 can be used to also inspect other
tasks within big data utilization from a Human Factors perspective.

Step 3. Deciding which (human) factor to investigate further

Analyzing the data as described in step 1 pointed towards incidental learning as a
potential cause of human error. Incidental learning is the non-intentional learning that
automatically occurs during daily interaction with our surroundings.

The potential impact of incidental learning was chosen as an ideal candidate to study as
part of the main research question of this dissertation because it is a factor:

- which has not been investigated yet in the context of human error

- which can be influenced by an organization in line with the Human Factors
perspective of improving systems to reduce the probability of errors and
increase safety, performance and employee satisfaction

- which is difficult to study using other methodologies

- which relates to fundamental human psychology and thus increased
knowledge about this factor is not only beneficial for the railways but for all
industries
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Step 4. Investigating the impact of the factor on the behavior and remaining
safety margins (chapter 2)

The impact of incidental learning was first analyzed using behavioral data as the
dependent variable. This rich data source allowed the testing of nuanced hypotheses.
More details on the analysis itself and the results are listed below in this summary in the
section on incidental learning.

Big data can be analyzed using a ‘bottom-up’ approach where for example machine
learning is used to find the most significant variables. We combined big data with a
‘top-down’ approach guided by content expertise, in this case human factors
knowledge and theory about incidental learning, to:

e Improve the measure of human behavior

e support the data verification by identifying unlikely behavior patterns that
could be caused by data quality problems

e determine which factors to include in analysis

e determine how the factors should be operationalized

e decide which additional factors to include in subsequent analyses (see step 5)

The calculation of multiple factors in the studies described in chapter 2 and 3 required
such a specific combination of variables that it is unlikely to have been found by a big
data analyst or team of analysist without thorough interaction with experts on human
error (Section 7.1.4).

Step 5. Investigating the impact of the factor on incident occurrence (chapter 3)

The knowledge gained in step 4 was used to decide how to design the follow-up research
where incident data was used as the dependent variable. This data source makes it
possible to study whether an error also actually leads to accidents. Multiple factors can
influence whether an error will indeed lead to an incident or could be corrected in time.
To expand the knowledge of incidental learning of error and incident cause, we
considered the role of self-correction. We calculated the ‘opportunity for correction’: the
amount of room present for self-correction by the train driver as influenced by the
infrastructure. More details on the analysis itself and the results are listed below in this
summary in the section on incidental learning.

Summary of the discovered insights around incidental learning as a cause of
human error

Incidental learning is the non-intentional learning that occurs automatically every day. A
specific form of incidental learning is considered, namely the strengthened neural
activation for certain behavior upon perceiving a cue or stimulus.

Whilst learning in itself is generally a positive term, it is hypothesized that this learning
can lead to a ‘usual response bias’ which allows for more efficient responses in familiar
situations, but can also lead to errors in specific situations. If there is indeed a significant
negative influence of incidental learning, this is important to understand as it can
undermine results of explicit training and awareness campaigns (See Figure 1). It is of
course important to train employees (top right of Figure 1), but if incidental learning
teaches employees different behavior (bottom left of Figure 1), then this explicit training
will be partly undone.
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Figure 1. Differences in learning during intentional learning and incidental learning can lead to human
error despite thorough explicit training. The green resembles an employee receiving explicit training on
how he or she should perform according to company standards. The yellow resembles what an
employee actually experiences on a day-to-day basis. If these differ, then human error can occur
despite the employee successfully following the intentional learning sessions.

In the Netherlands, train drivers are exposed to multiple sources of variation in the Dutch
infrastructure, including different distances between signals, but also different signal
aspects. The same signal can for example show a green, yellow or red aspect, but also a
yellow aspect with a number. The following research question was posited:

e To what extent and under which infrastructure related circumstances does
incidental learning have a negative impact on train driver behavior during red
aspect approaches?

A higher frequency of (signal aspect) exposure in combination with a high visual
similarity is expected to increase the probability of an error occurring in situations where
other deceleration behavior is required than the usual response. In Dutch rail, this
situation can occur when a specific signal often shows a yellow+number aspect which
requires relatively low amounts of deceleration (See blue rectangle in Figure 2), but the
exact same signal sometimes also shows a ‘plain’ yellow aspect that requires a higher
amount of deceleration (See red rectangle in Figure 2).

Y,
S )
———
S, e

Figure 2. There can be variation in the signal aspect displayed by the same signal. In the approach at
the top of the figure (in blue rectangle), the first signal has aspect yellow+4 indicating a speed
reduction to 40 km/h because the signal at the station is red and the distance between the last two
signals is insufficient for a green-yellow-red sequence. In the bottom approach (in red rectangle), the
first signal has a yellow aspect because the next signal has a red aspect. The same amount of
deceleration used after yellow+4 as visualized in the blue rectangle, is insufficient if used after yellow.
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Data of actual train driver behavior in the Netherlands was studied. To study the effects
of incidental learning, the train driver behavior was operationalized in two different
manners for passenger trains. First, data of train speed and location during Red Aspect
Approaches (RAAs) was used and transformed in a safety indicator that calculated the
deceleration required to prevent a SPAD (chapter 2). Data on exposure to
yellow+number aspects over the past fourteen days prior to the day of a RAA with green-
yellow-red sequence was therefore used as a measure of incidental learning opportunity.

Subsequently, incident data was used, namely data on SPADs, in combination with data
on the number of RAAs without SPADs (chapter 3). All of this data was already being
recorded, although not immediately in useful formats. No additional sensors or other
methods for data collection were required. The insights gained from the analysis of the
behavior data were used to include an operationalization of the train driver’s opportunity
to correct his or her initial error of insufficient deceleration in the research design of the
subsequent study. This factor was called “the window for correction” and could be
operationalized by using the already available raw data in a different manner.

Various hypotheses with different sets of signals were tested using a simulation approach
and a significance level of 0.05. The study using train driver deceleration behavior
included sample sizes of 3429 RAAs, 1287 RAAs and a relatively small sample size of 415
RAAs when testing the hypothesis for one specific signal. The study using SPAD data
included a sample of 1,139,665 RAAs and 29 relevant SPADs over a period of six years.

The results of both studies indicated a significant effect of previous yellow+number
aspect exposure on train driver behavior and SPADs respectively, supporting the
hypothesis that incidental learning can indeed have a negative impact on train driver
behavior. The significant effects were substantial, including six times more SPADs per
100.000 RAAs for approaches with a high frequency of yellow+number aspects in the
past fourteen days versus when there were no yellow+number aspects in the past
fourteen days.

The study using incident data further showed that, in line with the hypothesis of
incidental learning, the increase in incident probability only applies when the
infrastructure characteristics are such that there is a smaller window for correction. There
were 777,510 RAAs and 0 SPADs for the large window for correction, 319,533 RAAs and
3 SPADs for the medium window and 54,462 RAAs and 17 SPADs for the small window.

These results lead to the conclusion that the impact of incidental learning via previous
exposure is an important factor to consider during accident analysis and, even more
importantly, in system and task analysis. Current and future high-SPAD probability
locations can be identified within Dutch rail if specific questions are answered
affirmatively on possible aspect sequences and frequencies in specific locations, the size
of the ‘window for correction’ as influenced by track speed, signal distance and aspects,
and the presence of other SPAD prevention mechanisms.

Interventions to prevent SPADs can be aimed at preventing the initial error of insufficient
deceleration due to incidental learning, increasing the opportunity for self-correction
and/or implementing intervention mechanisms. Possible interventions include improved
infrastructure design via adjusted signal placement and/or track speed, scheduling
adjustments that impact which signal aspects are shown, adjusted signal aspect design,
increased braking power, increased aspect visibility and technical intervention systems.

Vi
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Whilst many insights were obtained about incidental learning as a contributor to
accidents, there are still unanswered questions, mainly around the exact relation
between exposure frequency and error probability, individual differences and around
other types of contextual similarities than those investigated in this dissertation (See
section 4.1.2.). A specific behavior can for example also be activated by visual
similarities in other locations (e.g. different warehouse, but similar tools and working
environment) or auditory similarities (e.g. similarly sounding alarms).

These questions can be answered in future research to provide new insight into human
behavior and concrete pointers for the rail industry and other industries on how
organizations can improve their processes to support their employees and reduce the
probability of errors and accidents.

Figure 3 displays an oversimplified explanation of incidental learning to help the reader
who is not yet familiar with the topic by proving an overview.

Vii
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Figure 3. Visual summary of incidental learning as error cause.

Section A illustrates under which preconditions incidental learning can lead to an error. Consider
that correct execution of ‘task A’ consists of perception of ‘cue A’, followed by performance of
‘behavior A’, and correct execution of ‘task B’, consists of perception of ‘cue B’ followed by
performance of ‘behavior B’. Incidental learning can lead to an error during task B when ‘behavior
A’ is activated instead of ‘behavior B’ after perception of ‘cue B'.

This can occur IF
o ‘cue B’ and ‘cue A’ are similar and

o perception of ‘cue A’ strongly activates ‘behavior A" as a result of frequent exposure
to and execution of ‘task A’

Section B shows one example of how these preconditions can take place in Dutch rail, using the
example of signal aspect ‘yellow+8’.

The signal aspect yellow+8 is ‘cue A’, with a mild deceleration as ‘behavior A’. The signal aspect
yellow is cue B with ‘behavior B’ being a more stronger deceleration in order to stop in front of the
red aspect.

Section B2 visualizes the similarity between signal aspect yellow+8 and yellow at the same signal
location. Section B1 visualizes the frequency of task A which influences the strength with which
perception of yellow+8 (cue A) activates the mild deceleration (behavior A).

Section Bla gives a simplified example of a train driver being exposed to and executing task A
seven times (approaches 1-5 and 7-8). During approach 9, the yellow aspect (cue B) is present as
part of task B with the correct behavior being a stronger deceleration (behavior B), but mild
deceleration (behavior A) is performed which is an error in this setting.

Section C. shows that the error of insufficient deceleration can either lead to a SPAD or not. A
SPAD can be prevented if the train driver self-corrects upon perceiving the red aspect. Timely self-
correction is only likely IF there is sufficient opportunity for self-correction. The size of the window
for correction is influenced by the infrastructure design (i.e. the task design).

The two blue brackets to the side of section B and C highlight that both the occurrence of initial
insufficient deceleration and self-correction are influenced by infrastructure design (i.e. the task
design).

The insights gained around incidental learning show that the use of big data in
combination with Human Factors expertise can lead to valuable new insights

The application of big data led to a gain in knowledge on incidental learning, specifically
that it can indeed negatively impact employee behavior and that this effect occurs under
specific circumstances that are influenced by the work environment as created by the
organization.

Thanks to the availability and use of big data of actual employee behavior, research on
incidental learning can be expanded to behavior and to considering the potential negative
impact of incidental learning. The field of Human Factors can be expanded by considering
not only whether a task can be performed at a given moment, but also by including
previous exposure in that evaluation. It is recommended to consider a potential role of
incidental learning during accident analysis and during task evaluation and task design
(See section 4.2).

The insights gained thanks to big data research within Dutch rail show that the use of big
data of actual employee behavior can indeed enrich our understanding of human
behavior in new and more detailed ways. By using this type of research, we can expand
the scientific body of knowledge concerning safety, whilst simultaneously crossing the
bridge from academia towards industry. This increases the chance of implementation and
eventual improvements in safety of those performing the work day in, day out.
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Menselijk gedrag begrijpen en ongevallen voorkomen

Ongevallen op het werk kunnen aanzienlijke gevolgen hebben waaronder dodelijke
slachtoffers, verwondingen en economische lasten. De ideeén over het ontstaan van
ongevallen zijn in de loop der tijd veranderd: ongevallen worden niet langer omschreven
als ‘acts of god’ en als de schuld van de individuele werknemer, maar als het resultaat
van een wisselwerking tussen organisatorische, technische en menselijke factoren.
Daarbij wordt de rol en verantwoordelijkheid van organisaties in het voorkomen van
ongevallen erkend. Interventies kunnen bestaan uit het elimineren van factoren die de
kans op fouten verhogen of uit het toevoegen van veiligheidsbarriéres om te voorkomen
dat fouten tot ongevallen leiden.

Aangezien er tijdens werkprocessen een interactie is tussen werknemers en het systeem,
kunnen interventies gericht worden op werknemers en op het systeem. Bij het
onderzoeken van mogelijkheden om het systeem te verbeteren is het belangrijk om
rekening te houden met de manier waarop werknemers en het systeem elkaar wederzijds
beinvioeden. We moeten daarvoor menselijk gedrag begrijpen.

Dit boek over mijn promotieonderzoek draagt op twee manieren bij aan de uitbreiding
van kennis over menselijk gedrag:

1. Nieuwe wetenschappelijke kennis over menselijk gedrag
De kans op menselijke fouten neemt toe wanneer een werknemer in voorgaande
dagen is blootgesteld aan dezelfde taakomstandigheden, gevolgd door
blootstelling aan (visueel) vergelijkbare taakomstandigheden die ander gedrag
vereisen.

2. Inzichten in hoe big data* van daadwerkelijk menselijk gedrag (zoals
gemeten door sensoren) kunnen worden gebruikt in combinatie met
psychologische theorie om in de toekomst andere vragen over menselijk
gedrag te identificeren en te beantwoorden:

1. Relevante onderzoeksvragen over menselijk gedrag kunnen geidentificeerd
worden door de data te analyseren met een focus op discrepanties in de
verwachte hoeveelheid variatie in gedrag per factor versus de werkelijke
hoeveelheid variatie in gedrag voor die factor. 2. Het gebruik van big data is een
complexe taak op zichzelf die ook vanuit een Human Factors perspectief **
bekeken kan worden om de kans te verkleinen dat er fouten optreden tijdens het
gebruik van big data. Theorie over denkfouten en automatische activering kan
worden gebruikt om valkuilen in complexe taken als deze te identificeren. In dit
promotieonderzoek zijn vijf valkuilen geidentificeerd waarop met moet letten
tijdens de verificatie van big data.

* Data van te grote kwantiteit om via traditionele technologie te verzamelen en te verwerken.

** Vanuit het Human Factors perspectief worden menselijke fouten niet gezien als een
aanwijzing dat er iets mis is met het individu dat de fout heeft gemaakt, maar eerder als
aanwijzing dat delen van het systeem kunnen worden verbeterd. Human Factors experts
gebruiken de kennis van de sterke en zwakke punten van de mens, zowel mentaal als fysiek,
om de interactie mens en systeem zodanig te verbeteren dat de veiligheid, de prestaties en/of
de tevredenheid van de werknemers worden verbeterd. Wanneer men probeert te onderzoeken
waarom menselijke fouten optreden, moet men dus altijd eerst nagaan welke factoren binnen
het systeem hebben bijgedragen tot het ontstaan van deze fout en hoe het systeem kan
worden verbeterd om fouten in de toekomst te voorkomen.




Samenvatting

Kansen voor onderzoek naar menselijk gedrag met big data dankzij big data
beschikbaarheid en vraagstukken binnen het Nederlandse spoor

Menselijk gedrag wordt binnen de sociale wetenschappen en binnen de industrie
onderzocht aan de hand van verschillende methodes. Vooruitgang in de technologie
maakt het mogelijk om een nieuwe methode toe te voegen: het analyseren van
daadwerkelijk procesgerelateerd gedrag van werknemers dat gemeten wordt door
sensoren die al aanwezig zijn of kunnen worden ingebed in de taakomgeving. Dit soort
data is een vorm van big data, omdat de kwantiteit te groot is om via traditionele
technieken te verzamelen en te verwerken.

Het gebruiken van big data binnen organisaties om meer te leren over menselijke gedrag
heeft veel potentiéle voordelen, maar deze voordelen worden niet automatisch benut.
Het omzetten van de ruwe data in bruikbare kennis is geen rechttoe-rechtaan proces,
vooral omdat de data vaak voor andere doeleindes dan het onderzoeksdoel wordt
verzameld. Big data wordt momenteel ook nog niet vaak ingezet door de industrie om
hun veiligheidsvraagstukken op te lossen. Het is mogelijk om big data van daadwerkelijk
werknemersgedrag te analyseren zonder psychologische theorie te gebruiken om de
analyse te sturen, maar dit leidt niet noodzakelijkerwijs tot waardevolle inzichten die ook
daadwerkelijk kunnen worden gebruikt om organisatieprocessen en het bijbehorende
veiligheidsniveau te verbeteren via structurele interventies.

Er deed zich gelukkig de gelegenheid voor om big data binnen de context van het
Nederlandse spoor te gebruiken om menselijk gedrag in een veiligheidscontext te
bestuderen. ProRail, de Nederlandse spoorinfrastructuurbeheerder, wil het aantal STS-
passages binnen Nederland verminderen. STS-passages, of StopTonend Sein passages,
zijn incidenten waarbij een trein zonder toestemming een sein (met een rood seinbeeld)
passeert. Data was beschikbaar over het remgedrag van machinisten richting
stoptonende seinen.

In vijf stappen konden we een relevante onderzoeksvraag identificeren en waardevolle
inzichten verkrijgen over menselijk gedrag die gebruikt kunnen worden bij de preventie
van ongevallen binnen de spoorwegen en andere industrieén.

Stap 1. Analyseren van de discrepanties tussen verwacht en werkelijk niveau
van variatie in gedrag om relevante (menselijke) factoren te identificeren

Om big data voor veiligheidsdoeleinden te kunnen gebruiken, moesten we de eerste
analyses zodanig uitvoeren dat ze zouden leiden tot inzichten die gebruikt kunnen
worden voor diepere analyses. Binnen de psychologie is er traditioneel een sterke focus
op het analyseren van verschillen in centrummaten (gemiddelde of mediaan). Nieuwe
oorzaken van fouten kunnen echter worden opgespoord en hun impact gekwantificeerd
door de variatie in systeemprestaties te onderzoeken, in plaats van zich te richten op
gemiddelden of alleen op problematische prestaties.

Het onderzoeken van variatie omvat vragen als: onder welke omstandigheden zijn er
verschillende hoeveelheden variatie in de systeemprestaties (bijvoorbeeld aangetoond als
een grotere standaardafwijking of bredere curve), en is dit verschil in variatie te
verwachten op basis van hoe het systeem beoogt te werken? Dergelijke vragen zijn
moeilijk te beantwoorden met kleinere steekproefgrootten, vooral wanneer de
hoeveelheid variatie in verschillende omstandigheden wordt vergeleken en zeer
specifieke hypothesen worden getest.
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Stap 2. De kans op fouten bij het gebruik van big data verkleinen door zich
bewust te zijn van mogelijke cognitieve valkuilen bij complexe taken zoals
dataverificatie

Human Factors experts die big data gebruiken om human factors onderwerpen te
onderzoeken moeten zich ervan bewust zijn dat zij zelf ook vatbaar zijn voor het maken
van fouten. Dit roept de vraag op: kunnen 'wij' (Human Factors experts) onze kennis van
menselijke factoren ook gebruiken om de kans op fouten bij het gebruik van big data te
verkleinen?

Een van de complexe taken binnen het gebruik van big data is de verificatie van data.
Deze stap is vooral belangrijk bij het gebruik van data voor veiligheidsgerelateerde
doeleinden. Binnen het veiligheidsdomein is er vaak een grotere behoefte aan zekerheid
vanwege de hoge inzet en omdat het vaak belangrijk is het causale mechanisme te
begrijpen om de juiste interventie uit te voeren die geen ongewenste neveneffecten
heeft.

Het gebruik van big data zorgt voor unieke uitdagingen bij het opsporen van problemen
met de datakwaliteit. Het is niet mogelijk om elk datapunt binnen big data te verifiéren,
maar het is wel mogelijk om data te verifiéren door de data te onderzoeken op bepaalde
aspecten, waaronder uitschieters, onmogelijke combinaties van waarden en het
toepassen van een vier-ogen-principe op de methoden die zijn gebruikt om de data te
verwerken. Dataverificatie is een taak die door menselijke fouten kan worden beinvloed.
Om het dataverificatieproces te verbeteren is het belangrijk rekening te houden met
denkfouten.

In dit proefschrift worden vijf denkfouten opgesomd die kunnen optreden tijdens een
dergelijke dataverificatie en daardoor de identificatie van problemen met de datakwaliteit
beperken. Deze denkfouten manifesteren als valkuilen genaamd ‘De goede vorm als
bewijs-fout’, ‘De verbeterd-dus-goed misvatting’, ‘Situatie-afhankelijke-identiteit-
onzorgvuldigheid’, ‘Impact onderschatting’ en ‘Het gebaande-paden-nadeel’. Het
verificatieproces kan verbeterd worden door specifieke maatregelen per valkuil toe te
passen en zo de kans te vergroten dat aanwezige datakwaliteitsproblemen daadwerkelijk
worden geidentificeerd. Deze maatregelen bestaan uit het inbouwen van specifieke
triggers en werkwijzen in de uitvoer van de verificatie.

Kanttekening: Binnen de spoorwegen bestaan normen die ervoor zorgen dat
veiligheidskritische software zo veilig mogelijk wordt gemaakt. De data die in dit
promotieonderzoek zijn gebruikt, maakten geen deel uit van software met een
veiligheidskritisch component. Hoofdstuk 6 geeft inzicht in valkuilen die aanwezig
kunnen zijn tijdens het dataverificatieproces van data die wel beschikbaar is, maar
nog niet voldoet aan de strenge normen die gehanteerd worden die relevant zijn
voor veiligheidskritische software. Daarnaast zijn er ook veel verschillende
manieren waarop dataverificatie kan worden uitgevoerd. De beschreven manieren
in hoofdstuk 6 zijn niet bedoeld als uitputtende lijst.

Ook andere big data gerelateerde taken, zoals visualisatie en interpretatie van
resultaten, kunnen worden onderzocht op de aanwezigheid van veelvoorkomende
valkuilen. Dit valt buiten het bestek van dit proefschrift, maar de in hoofdstuk 6
toegepaste principes kunnen worden gebruikt om ook andere taken binnen big data-
gebruik vanuit een Human Factors-perspectief te inspecteren.
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Stap 3. Beslissen welke (menselijke) factor verder onderzocht moet worden

Het analyseren van de data zoals beschreven in stap 1 wees in de richting van
incidenteel leren als mogelijke oorzaak van menselijke fouten. Incidenteel leren is het
niet-intentionele leren dat automatisch plaatsvindt tijdens de dagelijkse interactie met
onze omgeving.

De potentiéle impact van incidenteel leren werd gekozen als ideale kandidaat om te
bestuderen als hoofdonderzoeksvraag van dit proefschrift omdat het een factor is

- die nog niet is onderzocht in de context van menselijke fouten

- die door een organisatie kan worden beinvloed in overeenstemming met het
Human Factors perspectief van het verbeteren van systemen om de kans op
fouten te verminderen en de veiligheid, prestaties en werknemerstevredenheid te
verhogen

- die moeilijk te bestuderen via andere methoden

- die verband houdt met de fundamentele menselijke psychologie en dus is meer
kennis over deze factor niet alleen gunstig voor de spoorwegen maar voor alle
bedrijfstakken

Stap 4. Het onderzoeken van de impact van de factor op het gedrag en op de
resterende veiligheidsmarges

Het effect van incidenteel leren werd eerst geanalyseerd met behulp van gedragsdata als
afhankelijke variabele. Deze rijke databron maakte het mogelijk genuanceerde
hypothesen te testen. Meer details over de analyse zelf en de resultaten staan hieronder
in de samenvatting over incidenteel leren.

Big data kan worden geanalyseerd met een 'bottom-up' benadering waarbij
bijvoorbeeld machine learning wordt gebruikt om de meest significante variabelen
te vinden. Wij combineerden big data met een 'top-down' benadering geleid door
inhoudelijke expertise, in dit geval human factors kennis en theorie over incidenteel
leren, om:

e de meting van menselijk gedrag te verbeteren

e de dataverificatie te ondersteunen door onwaarschijnlijke gedragspatronen te
identificeren die zouden kunnen worden veroorzaakt door problemen met de
datakwaliteit

e te bepalen welke factoren in de analyse moeten worden opgenomen

e te bepalen hoe de factoren moeten worden geoperationaliseerd

e beslissen welke aanvullende factoren in latere analyses moeten worden
opgenomen (zie stap 5)

De berekening van meerdere factoren in de in hoofdstuk 2 en 3 beschreven studies
vereiste zo'n specifieke combinatie van variabelen dat het onwaarschijnlijk is dat
deze door een big data-analist of een team van analisten zou zijn gevonden zonder
grondige interactie met deskundigen op het gebied van menselijke fouten.

Stap 5. Onderzoek naar het effect van de factor op het optreden van incidenten

De in stap 4 opgedane kennis is gebruikt om te beslissen hoe het vervolgonderzoek moet
worden opgezet waarbij incidentdata als afhankelijke variabele worden gebruikt. Deze
databron maakt het mogelijk te bestuderen of een fout ook daadwerkelijk tot ongevallen
leidt. Meerdere factoren kunnen van invloed zijn of een fout inderdaad tot een incident
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leidt of tijdig kan worden gecorrigeerd. Om de kennis van incidenteel leren als fout- en
incidentoorzaak uit te breiden, hebben we gekeken naar de rol van zelfcorrectie. We
berekenden de 'gelegenheid tot correctie': de hoeveelheid ruimte die aanwezig is voor
zelfcorrectie door de machinist. Deze aanwezige ruimte wordt beinvloed door de
infrastructuur. Meer details over de analyse zelf en de resultaten staan hieronder in de
samenvatting over incidenteel leren.

Samenvatting van de ontdekte inzichten rond incidenteel leren als oorzaak van
menselijke fouten

Incidenteel leren is het niet-intentioneel leren dat iedere dag automatisch plaatsvindt.
Een specifieke vorm van incidenteel leren is bekeken, namelijk verhoogde neurale
activatie voor bepaald gedrag bij het waarnemen van een cue of stimulus.

Hoewel de term ‘leren’ doorgaans wordt gezien als een positieve term, wordt in deze
dissertatie de hypothese gesteld dat leren ook kan leiden tot een ‘standaard reactie bias’
welke het mogelijk maakt om efficiénter te reageren, maar ook kan leiden tot het maken
van fouten in specifieke situaties. Als incidenteel leren inderdaad een significante
negatieve invloed kan hebben, dan is het belangrijk om hiervan op de hoogte te zijn
omdat het de resultaten van expliciete trainingen en bewustwordingscampagnes kan
ondermijnen (zie Figuur 1). Het is natuurlijk belangrijk om werknemers te trainen
(rechtsboven Figuur 1), maar als incidenteel leren werknemers ander gedrag aanleert
(linksonder Figuur 1), dan zal de expliciete training gedeeltelijk teniet gedaan worden.

@ The infrastructure Intentional learning

=y (e.g., training)
W
ﬁ | requires
cther [ . | certain
behavior W7 behavior.
teaches 7~ %
A Experience
with the
Incidental learning infrastructure

(e.g., daily experiences)

Figuur 1. Verschillen in het geleerde tijdens intentioneel en incidenteel leren kan leiden tot menselijke
fouten ondanks grondige expliciete training. Het groen staat voor de expliciete training die een
werknemer ontvangt over hoe hij of zij een taak moet uitvoeren. Het geel staat voor daadwerkelijke
ervaring van de werknemer met de taak op een dagelijkse basis. Als deze twee verschillen, dan kan
een fout optreden ondanks dat de werknemer de intentionele training succesvol heeft afgerond.

In Nederland worden machinisten blootgesteld aan verschillende bronnen van variatie in
de infrastructuur, waaronder verschillende afstanden tussen seinen maar ook
verschillende seinbeelden. Hetzelfde sein kan bijvoorbeeld een groen, geel of rood
seinbeeld tonen, maar ook een geel seinbeeld met een getal.

De volgende onderzoeksvraag is gesteld:

¢ In welke mate en onder welke infrastructuur gerelateerde omstandigheden heeft
incidenteel leren een negatieve impact op machinistenrijgedrag tijdens een
roodseinnadering?
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De verwachting is dat een hogere frequentie van (seinbeeld)blootstelling in combinatie
met een grote visuele vergelijkbaarheid de kans verhoogt dat een fout wordt gemaakt
wanneer ander remgedrag is vereist dan de standaard reactie. Binnen het Nederlandse
spoor kan deze situatie optreden wanneer een specifiek sein vaak een geel+getal
seinbeeld toont waarbij een relatief lage remvertraging voldoende is (zie blauwe
rechthoek bovenin Figuur 2), maar waar soms ook een ‘gewoon’ geel seinbeeld wordt
getoond waarbij een hogere remvertraging nodig is (zie rode rechthoek onderin Figuur
2).

s, i)
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] |
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Figuur 2. Er kan variatie zijn in het seinbeeld dat getoond wordt door hetzelfde sein. Tijdens de
bovenste nadering heeft het eerste sein het seinbeeld geel+4 wat aangeeft dat een
snelheidsvermindering naar 40 km/h uitgevoerd moet worden. Het seinbeeld is in dit geval geel+4
omdat het sein bij de halte een rood seinbeeld heeft en de afstand tussen de laatste twee seinen
onvoldoende is voor een groen-geel-rood seinbeeldenreeks. Tijdens de onderste nadering toont het
eerste sein het seinbeeld geel omdat het daaropvolgende sein rood toont. De hoeveelheid
remvertraging die voldoende is tijdens de bovenste nadering, is onvoldoende tijdens de onderste
nadering.

Data van daadwerkelijk machinistenrijgedrag in Nederland is geanalyseerd. Om de
effecten van incidenteel leren te onderzoeken is het rijgedrag van reizigersmachinisten
op twee verschillende manieren geoperationaliseerd. Eerst werden data over
treinsnelheid en -locatie tijdens rood seinnaderingen (RSNs) gebruikt en omgezet in een
veiligheidsindicator die de vertraging berekent die nodig is om een STS-passage te
voorkomen (hoofdstuk 2). Data over de blootstelling aan geel+getal seinbeelden in de
veertien dagen voorafgaand aan de dag van de RSN met een groen-geel-rood
seinbeeldenreeks is daarom gebruikt als maat van gelegenheid tot incidenteel leren.

Vervolgens werd incidentdata gebruikt, namelijk data over STS-passages, in combinatie
met data over het aantal RSNs zonder STS-passage (hoofdstuk 3). Al deze data werden
reeds geregistreerd, zij het niet onmiddellijk in bruikbare formaten. Er waren geen extra
sensoren of andere methoden voor dataverzameling nodig. De inzichten die verkregen
waren uit de analyse van de gedragsdata werden gebruikt om een operationalisering toe
te voegen van de ruimte die aanwezig was voor de machinist om diens initiéle fout van
onvoldoende remming te corrigeren. Deze factor wordt aangeduid als ‘correctieruimte’ en
kon berekend worden door de reeds beschikbare ruwe data op een andere manier te
gebruiken.

Het testen van verschillende hypotheses met verschillende selecties van seinen is gedaan
aan de hand van een simulatieaanpak en een significantieniveau van 0.05. De studie met
machinistenremgedrag bevatte samples van 3429 RSNs, 1287 RSNs en een relatief klein
sample van 415 RSNs voor het testen van de hypothese voor één specifieke sein. In de
studie met STS-passage data is data onderzocht van een periode van 6 jaar met daarin
1.139.665 RSNs en 29 relevante STS-passages.
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In beide studies is een significant effect gemeten van eerdere geel+getal
seinbeeldblootstelling op machinistenrijgedrag en de kans op een STS-passage. Deze
bevindingen ondersteunen de hypothese dat incidenteel leren inderdaad een negatieve
impact kan hebben op machinisten rijgedrag. De significante effecten waren substantieel,
waaronder zes keer meer STS-passages per 100.000 RSNs voor naderingen met een
hoge frequentie van geel+getal seinbeelden in de voorafgaande veertien dagen versus
wanneer er geen geel+getal seinbeelden waren in de voorgaande veertien dagen.

De studie aan de hand van incidentdata liet verder zien dat, in lijn met de hypothese
over incidenteel leren, de toename in kans op een STS-passage alleen aanwezig is
wanneer de infrastructuurinrichting dusdanig is dat er weinig correctieruimte is. Er waren
777.510 RSNs en 0 STS-passages bij een grote correctieruimte, 319.533 RSNs en 3 STS-
passages bij een medium correctieruimte en 54.462 RSNs en 17 STS-passages bij een
kleine correctieruimte.

Deze resultaten leiden tot de conclusie dat de impact van incidenteel leren door
seinbeeldblootstelling in voorafgaande dagen een belangrijke factor is om mee te nemen
tijdens ongevalsonderzoek en in systeem- en taakanalyse. Huidige en toekomstige
locaties met een hoge kans op STS-passages kunnen geidentificeerd worden door een set
aan vragen te beantwoorden waaronder vragen over mogelijke seinbeelden en
seinbeeldfrequenties op die locatie, de grootte van de correctieruimte zoals beinvloed
door baanvaksnelheid, seinafstand en seinbeelden, en de aanwezigheid van andere STS-
passage interventiemiddelen.

Interventies om STS-passages te voorkomen kunnen toegepast worden om de initiéle
fout van onvoldoende remming door incidenteel leren te voorkomen, verhoogde
mogelijkheid te bieden voor zelfcorrectie door de machinist en/of het toepassen van
andere corrigerende technieken. Mogelijke interventies omvatten aanpassing van
infrastructuurontwerp via aangepaste seinplaatsing en/of baanvaksnelheid,
dienstregelingsaanpassingen die beinvloeden welke seinbeelden worden getoond,
aangepast seinbeeldontwerp, toename in remvermogen, toename in seinzichtbaarheid en
technische interventiesystemen.

Er zijn nog steeds open vragen rondom incidenteel leren als bijdragende factor aan
ongevallen, namelijk rondom de exacte relatie tussen blootstellingfrequentie en foutkans,
individuele verschillen en rondom andere soorten contextuele overeenkomsten dan
degene onderzocht in deze dissertatie. Een bepaalde gedraging kan bijvoorbeeld ook
geactiveerd worden door visuele overeenkomsten op andere locaties (bijv. ander
magazijn, maar vergelijkbaar gereedschap en werkomgeving) of auditieve
overeenkomsten (bijv. vergelijkbaar klinkende alarmen).

Het beantwoorden van deze vragen in toekomstig onderzoek zal waardevolle inzichten
geven in menselijk gedrag en nog meer concrete handvatten bieden voor de spoorsector
en andere sectoren over hoe organisaties hun processen beter kunnen inrichten zodat
werknemers worden ondersteund en de kans op fouten en ongevallen wordt verkleind.

De verkregen inzichten rond incidenteel leren laten zien dat het gebruik van big
data in combinatie met psychologietheorie tot waardevolle nieuwe inzichten
kan leiden

De toepassing van big data leidde tot meer kennis over incidenteel leren, met name dat
het inderdaad een negatief effect kan hebben op het gedrag van werknemers en dat dit
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effect optreedt onder specifieke omstandigheden die worden beinvloed door de
werkomgeving zoals die door de organisatie wordt gecreéerd.

Dankzij de beschikbaarheid en het gebruik van data van daadwerkelijk gedrag kan
onderzoek naar incidenteel leren uitgebreid worden naar gedrag en uitgebreid worden
naar een negatieve impact van incidenteel leren. Het vakgebied Human Factors kan ook
uitgebreid worden door niet alleen te beoordelen of een taak uitgevoerd kan worden op
een specifiek moment, maar door ook blootstelling in voorafgaande dagen mee te nemen
in de evaluatie van het taakontwerp. Het wordt aanbevolen om de rol van incidenteel
leren ook mee te nemen tijdens ongevalsonderzoek en tijdens het ontwerp van taken en
processen.

De inzichten die zijn opgedaan dankzij het gebruik van big data in het Nederlandse spoor
laten zien dat het gebruiken van data van daadwerkelijk werknemersgedrag inderdaad
onze kennis over menselijk gedrag kan verrijken op nieuwe en meer gedetailleerde wijze.
Door dit soort onderzoek toe te passen, kunnen we de wetenschappelijke literatuur
rondom veiligheid uitbreiden en tegelijkertijd een brug bouwen van de academische
wereld richting de industrie. Dit verhoogt de kans dat de opgedane inzichten
daadwerkelijk tot implementatie leiden en vervolgens een verbetering van de veiligheid
van zij die het werk uitvoeren, dag in, dag uit.
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Preface

Preface

Ever since I was a young, I have been tutoring, explaining and presenting. In primary
school, I used to finish my schoolwork fairly quickly and would spend the remaining time
helping classmates or daydreaming, depending on what was allowed. In high school, I
earned some pocket money tutoring in math, physics and chemistry. In university, I
earned some more pocket money tutoring my fellow psychology students in statistics and
eventually I was hired at the university as a statistics teacher during my masters.

What I learned from these experiences is that I love figuring out a way to explain very
complicated information in a more digestible manner and that by doing so, my own
knowledge and understanding increased tenfold, leading to new insights. I also noticed
that psychology students do not tend to love statistics, but I did. I even wrote my
bachelor thesis on a statistics subject and went to one of those information meetings
about the statistics master within psychology. Eventually I chose cognitive psychology as
a master, because I realized that I mainly love data as a tool to tell me something about
a psychological phenomenon and that part of my love for statistics came from being good
at it, which I did not think was a good basis for a great love affair.

Two years after my graduation, I switched from consultancy jobs to an external PhD at
the Technical University of Delft. Here I got the opportunity to combine two things I love:
psychology and data. I also got to combine working within industry and within academia
which allowed me to add my third love into the mix: figuring out a way to explain very
complicated information in a more digestible manner. And finally, there was the fourth
ingredient that I did not know I was missing until I spend two years working full time:
being given the time and space to thoroughly investigate a complicated problem.

In the early phases of my PhD, I had to give a presentation which I thought went pretty
well. My academic audience of two did not think so. The feedback I got was: ‘you are not
a data expert.” What the person was referring to, was that I am a cognitive psychologist
by trade and that this did not become apparent in that particular presentation. In
hindsight, I am grateful for that feedback as it forced me to refocus on writing from my
main strength and passion, without excluding the other elements.

I have learned a lot from both the scientific community and the industry, including that
there are many (sometimes frustrating) differences between the two but that they can
also complement each other beautifully. This research could not have taken place without
either. I have also tried to write this dissertation for both audiences.

To add value to both audiences, I have included both the peer reviewed scientific papers
as well as additional sections. These additional sections might not be typical for a
dissertation because they do not include all the nuances and careful wording that are
included in the scientific papers. However they do add value to industry by including
practical lessons learned and images that help to illustrate the message.!

All of this has led to the book before you. A book that has been written by a social
scientist with characteristics of a data analyst, whilst spending most days within industry
and pursuing answers as one does within academia. I have found tremendous value in
the coming together of these worlds, as I hope you will too.

1 The sections where I have taken more language and illustrative liberties to improve readability
and accessibility for industry colleagues and encourage application of the research: parts of the
main summary, the visual summaries shown in Figure 3, Figure 6, Figure 19 and chapter 7.
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Chapter 1. General introduction: Investigating human error with big data

1.1 This dissertation contributes to the aim of increasing
the scientific knowledge of human behavior via two
paths

I performed my PhD-research within the context of rail, but this dissertation is first and
foremost about human behavior. My goal was to advance the (scientific) knowledge
about human behavior and help prevent organizational accidents, irrespective of the
industry. My PhD-research contributed to that goal via two main gains:

1. New scientific knowledge on human behavior
The probability of human error increases when an employee is exposed to the
same task circumstances in previous days followed by exposure to (visually)
similar task circumstances that require different behavior.

2. Insights into how big data* of actual human behavior (as captured by
sensors) can be used in combination with human behavior expertise to
identify and answer other questions about human behavior in the future:
1. Analyzing the data with a focus on identifying discrepancies in the expected

amount of variation in the behavior per factor versus the actual amount of
variation leads to the identification of relevant research questions on human
behavior 2. The task of using big data is itself a complex task which should
also be considered from a Human Factors perspective** to decrease the
chance that errors occur during the use of big data. Theory on cognitive biases
and automatic activation can be used to identify pitfalls in complex tasks such
as these. In his PhD-research, five pitfalls were identified to be aware of.

* Big data: data for which the quantity is too large to collect and process via
traditional technology.

** From a Human Factors perspective, human errors are not seen as an indication
that there is something wrong with the individual who made the error but rather as
an indication that parts of the system can be improved. Human Factors experts use
the knowledge of human strengths and limitations, both mental and physical, to
improve human-system interaction in such a way that safety, performance and/or
employee satisfaction is enhanced. When trying to investigate why human errors
occur, the first avenue is thus always to consider what factors within the system
contributed to the causation of this error and how the system can be improved to
prevent errors from occurring the future.

In the following sections in this introduction, you will read about the steps I took within
my PhD research in chronological order. Firstly I used big data to identify a relevant
research question on human behavior, secondly I performed the scientific research on
that human behavior topic.

The chapters after this introduction are however in a different order. I will discuss the
scientific research first, followed by the chapters on lessons learned about using big data
of actual human behavior. I have decided to change the order of the chapters because I
noticed that the original (chronological) sequence of chapters lead to too much confusion
about the research question of my PhD and its scope.
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Hopefully now it will be more clear that this is a dissertation on human behavior with two
parts:

- The first part sharing the scientific knowledge gained on human behavior

- The second part sharing lessons learned on how big data can be used in
combination with Human Factors expertise to identify and answer other
questions about human behavior in the future.

1.2 Preventing organizational accidents by increasing the
scientific knowledge of human behavior

Accidents at work come at a major cost including fatalities (estimated over 300,000
annual worker deaths worldwide, 5000 in the European Union), disability and economic
burden [1-3]. Large improvements have occurred over the past decades, with reductions
in the number of accidents and fatalities. For example in aviation worldwide, 2500
fatalities occurred during 64 accidents in 1972, whilst in 2017 there were forty fatalities
during ten accidents, despite a tenfold increase in the number of flights.

1.2.1 Organizations play a role in accident causation

The ideas around accident causation have also changed over time from describing
accidents as ‘acts of gods’ and the fault of individual employees to accidents being the
result of an interaction between technical, human and organizational factors [4]. As
Reason puts it eloquently in his book on organizational accidents published in 1997 [5,

p.2]:

'‘Organizational accidents may be truly accidental in the way in which
the various contributing factors combine to cause the bad outcome, but
there is nothing accidental about the existence of these precursors, nor

in the conditions that created them.’

It is still recognized that an error of an employee at the ‘sharp end’ of the system can
cause adverse effects, but the behavior of the employee is (to quote Reason again) “now
seen more as a consequence than as a principle cause”. The role and responsibility of
organizations in preventing accidents is being recognized. This prevention can include
eliminating error-promoting factors or adding safety barriers to prevent errors from
leading to accidents.

Sometimes accidents are prevented by the proactive, off-the-cuff intervention of
employees. Whilst this shows the strengths and capabilities of employees, organizations
should not solely count on employees to correct their own errors or intervene proactively
to prevent a system malfunction from leading to an accident. There might be scenarios in
which it is not possible for an organization to introduce other measures. In these cases,
the organization should make sure factors are in place that increase the probability of the
intervention behavior occurring, for example by making sure there is time for recognition
and response and by providing training or practice opportunities. Therefore, also from
this perspective, it is important to consider the role of the organization in creating the
environment that reduces accident causation and enables accident prevention.

1.2.2. We need to understand human behavior to improve systems
The previously mentioned reduction in the number of accidents in aviation illustrates that

many improvements have already been made, but one can also use the same numbers
to argue that not enough improvements have been made. We have not reached zero yet.
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One might argue whether the goal of zero accidents is attainable, but as long as
preventable accidents still occur, there is motivation to improve.

As employees interact with the system, interventions can be aimed at employees and at
the system. When investigating possibilities to improve the system, it is important to
take into account how the employees interact with the system and what the employee
behavior is.

But what behavior should we anticipate? When it comes to the behavior and
characteristics of machines and materials we can often identify a number of scenarios
that can occur based on previous knowledge of the parts that something is built from and
based on other machines that were built in the same way. But a human being cannot be
deconstructed or recreated in the same manner.

In many ways, we are comparable to a black box with the additional difficulty that there
is the perception that there is a clear causal mechanism: ‘we do what we want to do’. But
reality and research have proven the matter to be more complicated. Our behavior is not
only influenced by our intention, but also by our environment. These context factors and
their influence is not always obvious. Even in hindsight, it is not automatically clear why
someone behaved the way he or she did. In order to implement successful interventions,
we need to be able to predict human behavior and in order to do that, we need to
understand human behavior.

1.2.3. Analyzing big data of actual employee behavior can lead to
valuable insights into human behavior, if done effectively

The social sciences have studied human behavior in a wide range using different
methodologies including observation, ethnographic studies, grounded theory approaches,
surveys and experiments. Also within industry, multiple methods are being used to
investigate safety related issues, including incident analyses, interviews, expert
judgement, ethnographic studies simulator studies. Each has their own strengths and
weaknesses. The advances in technology, specifically in sensors, data collection, data
storage and data analysis, make it possible to add a methodology: analyzing the actual
process related behavior of employees as captured by sensors that are already present or
can be embedded within the task environment.

Using (big) data of actual employee behavior as captured by sensors has multiple
advantages. Whilst some of the advantages in using this type of big data are not unique
to this methodology, the combination of advantages does provide unique opportunities
for research. Advantages of using big data of actual employee behavior as captured by
sensors includes a natural environment (in contrast to a laboratory setting) and the
ability to investigate very specific hypotheses thanks to the large amount of data.

There are also phenomena that might be nearly impossible to capture with other
methodologies. Asking participants or employees about their behavior is for example less
reliable when it concerns automatic behavior because behavior that requires less
attention tends to be encoded less well in memory. Additionally, large amounts of
exposure might be required to measure an effect whilst this large amount of exposure is
not feasible in an experimental or simulator setting. Finally, this type of data provides the
opportunity to proactively monitor daily operation and the effect of interventions, making
it possible to intervene before accidents occur.

The use of big data within organizations thus has a lot of potential benefits, but these are
not automatically reaped. Big data usage on its own, as with all methods, has its
challenges and using big data to investigate human behavior introduces specific
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challenges. There is often a higher need for certainty with respect to the outcomes of
predictive models and a need for insight into causal mechanisms. There are also often
many factors that can have an influence on human behavior of which some might not be
measured because there is no data on it. Other factors might require a specific
combination of variables which must be included explicitly and thus require in-depth
knowledge about human behavior.

Wang and Wang published an overview paper on big data in safety in 2021 where they
stated: “So far, the data volume of various industries has been very large, but only a few
enterprises or departments have applied big data to solve safety problems.” [6] One of
the limitations the authors identify is the gap between big data as obtained and the
valuable safety information that is needed to obtain safety knowledge. Knowledge and
skills in safety are needed to transfer the big data to valuable safety information. In
order to effectively use big data within safety, big data should not simply be seen as a
method applied to a topic. It is advised to integrate the discipline of big data with safety
science theories to create new safety sub-disciplines [6,7].

1.2.4 Big data from Dutch rail was used in this PhD-research to
obtain safety related insights on human behavior

An opportunity arose to use big data within the context of Dutch rail to study human
behavior in a safety context.

The case: the influence of rail infrastructure on train driver behavior and the
probability of a deceleration error

ProRail, the Dutch Infrastructure Manager, aims to reduce the amount of SPADs within
Dutch rail. SPADs, or Signal Passed at Danger events, are incidents where a train passes
a red aspect without authorization. SPADs receive a lot of attention within the rail
industry because they can lead to severe consequences in the case of a train collision.

In 2019, there were 142 SPADs in the Netherlands [8]. Most SPADs are however not
high-risk events and do not lead to any form of injury or even damage. SPADs that are
non-harmful in terms of injury and damage can however still have direct and indirect
costs [9,10]. But even apart from any negative consequences, SPADs are deviations from
the process as intended and thus it is important for (Dutch) rail as a sector to know why
these accidents occur and how they can be prevented.

New technical systems like the European Rail Traffic Management System (ERTMS) have
been implemented and are expected to provide additional SPAD prevention [11].
However, in the Netherlands, the implementation of ERTMS on a national level may take
up to 30 years and safe implementation can be complex, amongst others due to
instability of specifications and integration issues due to different system versions and
different train and trackside system suppliers [12,13]. At the same time, Dutch rail is
predicted to become busier and busier. The Infrastructure Manager aims to support a
growth in passenger transport of 30% by 2030 and 45% in freight transport by 2030
[14,15]. This increase requires changes to the infrastructure and the timetable.

In order to keep on improving the level of safety and improve overall performance, it is
useful to understand what factors influence train driver behavior and cause SPADs. Whilst
ProRail does not have any trains nor employs any train drivers, the infrastructure
manager does have an influence on train driver behavior via the infrastructure design.
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At the start of this PhD research, ProRail, together with the Netherlands Railways (NS),
had just started using data on train driver deceleration behavior that was available as a
by-product of data recorded for train maintenance purposes.

Step 1. Analyzing the discrepancies between expected and actual level of
variation in behavior to identify relevant (human) factors

One of the avenues to explore was how to perform the initial analyses on the data in
order to develop new insights that would provide the basis for follow-up research. Within
psychology there has traditionally been a strong focus on analyzing differences averages
(mean or median). In chapter 5, the Shewhart perspective is described which advocates
analyzing the data from a variance perspective. This way of exploring the data in
combination with human factors expertise, lead to the identification of our research
question around the influence of previous exposure to signal aspects on deceleration
error.

Step 2. Decreasing the probability of errors during big data utilization by being
aware of possible cognitive pitfalls in complex tasks such as data verification

Human Factors specialists using big data to investigate human factors topics should be
aware that they themselves are also susceptible to making errors. This raises the
questions: can ‘we’ (Human Factors experts) also use our knowledge of human factors to
decrease the probability of errors during the use of big data?

In our research, we encountered one of the common challenges within big data, namely
suboptimal data quality. Improving the data quality was important because we wanted to
use the data to understand the contributing factors to human behavior and use this
information to potentially implement costly interventions, thus requiring a high degree of
certainty. Data verification is a task that can be affected by human error. In order to
improve the data verification process, it is important to take cognitive biases into
account. Chapter 6 describes the cognitive biases that can occur among researchers and
analysts and negatively influence the verification process.

It should be noted that there are standards within railways that ensure that
safety critical software is made as safe as possible. The data that was used in this
research was not part of any software with a safety critical component. There are
also many different ways in which data verification can be performed. Chapter 6
gives insight into pitfalls that can be present during the data verification process
of data that is available but does not yet comply to the strict standards applied
that are relevant for safety critical software.

Other big data related tasks such as result visualization and interpretation can also be
examined for the presence of common pitfalls. This is beyond the scope of this
dissertation, but the principles applied in chapter 6 can be used to also inspect other
tasks within big data utilization from a Human Factors perspective.

Step 3. Deciding which (human) factor to investigate further

Once the data was improved, analyzing the data from the Shewhart perspective (as
described in chapter 5) pointed towards a potential cause of human error that might
otherwise not have been given a lot or any attention, namely the role of incidental
learning or the non-intentional learning that automatically occurs during daily interaction
with the infrastructure. In section 1.2.5. of this introduction, incidental learning is further
introduced.
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The potential impact of incidental learning was chosen as an ideal candidate to study as
part of the main research question of this dissertation because:

- which has not been investigated yet in the context of human error

- which can be influenced by an organization in line with the Human Factors
perspective of improving systems to reduce the probability of errors and
increase safety, performance and employee satisfaction

- which is difficult to study using other methodologies

- which relates to fundamental human psychology and thus increased
knowledge about this factor is not only beneficial for the railways but for all
industries

Step 4. Investigating the impact of the factor on the behavior and remaining
safety margins

The impact of incidental learning was first analyzed using behavioral data as the
dependent variable. This rich data source allowed the testing of nuanced hypotheses. The
specific analysis used in this study is described in detail in chapter 2.

Big data can be analyzed using a ‘bottom-up’ approach where for example
machine learning is used to find the most significant variables. We combined big
data with a ‘top-down’ approach guided by content expertise, in this case human
factors knowledge and theory about incidental learning, to:

e Improve the measure of human behavior

e support the data verification by identifying unlikely behavior patterns that
could be caused by data quality problems

e determine which factors to include in analysis

e determine how the factors should be operationalized

e decide which additional factors to include in subsequent analyses (see
step 5)

The calculation of multiple factors in the studies described in chapter 2 and 3
required such a specific combination of variables that it is unlikely to have been
found by a big data analyst or team of analysist without thorough interaction with
experts on human error.

Step 5. Investigating the impact of the factor on incident occurrence

The knowledge gained in step 4 was used to decide how to design the follow-up research
where incident data was used as the dependent variable. This data source makes it
possible to study whether an error also actually leads to accidents. Multiple factors can
influence whether an error will indeed lead to an incident or could be corrected in time.
To expand the knowledge of incidental learning of error and incident cause, we
considered the role of self-correction. We calculated the ‘opportunity for correction’: the
amount of room present for self-correction by the train driver as influenced by the
infrastructure. The specific analysis used in this study is described in detail in chapter 3.

1.2.5 Incidental learning as a cause of train driver error

Incidental learning is by definition not positive or negative. Incidental learning is the
learning that occurs without explicit intention [16]. It is the on-the-job learning that
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occurs, in contrast to learning during training sessions and courses. In experimental
settings, intentional learning and incidental learning are differentiated by the instruction
that participants are given. During the incidental learning condition, the participants are
not aware of the learning situations and are not instructed as to what they will truly be
tested on [17].

Within research on incidental learning, multiple studies can be found on the topic of
language acquisition (such as [18-21]). Other studies on incidental learning that also
focused on information acquisition use simple cognitive tasks such as word recall and
recognition (such as [22,23]) or self-reported levels of incidental information acquisition
([24]). Models on incidental learning have also been proposed that take a broader,
conceptual view of incidental learning in technology use ([25]) and learning within
organizations (such as [26]). These studies do not describe the effect of incidental
learning on specific behaviors and when focused on behavior in general, they center
around the positive effects of incidental learning.

In this dissertation, incidental learning is examined through the lens of influencing
behavior and influencing it negatively. A specific form of incidental learning is considered,
namely the strengthened neural activation for certain behavior upon perceiving a cue or
stimulus. This can lead to a behavior being performed after perceiving a cue or stimulus
whilst that behavior is in fact erroneous. We can call this ‘the usual response bias’. In the
context of a pedestrian sign, the usual response is to start walking when the sign turns
from red to green whilst the usual response is to stop walking when the sign turns from
green to red (before crossing). Due to the neural adaptation, there is an inclination to
perform the usual behavior upon perceiving a cue, which can be suitable or unsuitable
behavior in a given situation. When the behavior is unsuitable, an error occurs. This can
then be called the ‘usual response bias’ as a negative result of incidental learning. When
the behavior is suitable, this is the positive result of incidental learning.

If there is indeed a significant negative influence of incidental learning, this is important
to understand as it can undermine results of explicit training and awareness campaigns
(See Figure 4). It is of course important to train employees (top right of Figure 4), but
if incidental learning teaches employees different behavior (bottom left of Figure 4),
then this explicit training will be partly undone.

@ The infrastructure Intentional learning

| (e.g., training)
k. s:,,«f'
y requires
other { .~ certain
behavior %" behavior.
teaches . .
A Experience
with the

Incidental learning infrastructure

(e.g., daily experiences)

Figure 4. Differences in learning during intentional learning and incidental learning can lead to human
error despite thorough explicit training. The green resembles an employee receiving explicit training on
how he or she should perform according to company standards. The yellow resembles what an
employee actually experiences on a day-to-day basis. If these differ, then human error can occur
despite the employee successfully following the intentional learning sessions.
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The two main research questions with respect to incidental learning are:

e Can incidental learning negatively influence human behavior?
e If the answer is yes: under which task design circumstances does this occur?

In chapter 2, incidental learning is described in depth and the train driver behavior is
used to test whether incidental learning can indeed negatively influence behavior and
under which frequency of exposure and (visual) similarities. In chapter 3, the results are
validated by examining incidental learning again, but this time by using incident data. An
additional factor is also introduced in chapter 3, namely: what about the train driver's
ability to correct their initial error?

The research described in chapters 2 and 3 adds to the current body of science on
incidental learning which is mainly focused on language acquisition and uses contrived
settings in the research design. Based on the results, we also recommend an expansion
of the field of Human Factors to not only consider what the work-environment of an
employee entails at the moment of performing a task but also what they were exposed to
in the past. Additionally, the data-based approach gives us a firmer grasp on the extent
of the negative influence of incidental learning. When it comes to human behavior, many
behaviors can have an influence. The more relevant question is therefore often not: can

a factor influence human behavior and error occurrence, but to what degree does a factor
increase the probability of human error and under which circumstances?

Specifically for the rail industry, this research on incidental learning provides concrete
do’s and don'ts around infrastructure design to reduce the occurrence of SPADs. A
practical strength of the data-based approach lies in both identifying the infrastructure
and scheduling designs which increase the probability of the driver committing an error,
and in identifying designs which do not increase the probability of the driver committing
an error. Information on which factors or circumstances do not require an intervention is
also important. The data-based approach allows us to zoom in and see where the
problem lies exactly so interventions can be made more specific and in congruence with
other organizational goals such as productivity and quality.
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1.3 Reading notes to each type of reader

To the reader who has affinity with Human Factors and data: We are two peas in a pot.
Whether you work in academia or in industry or a combination of both: I hope this work
will inspire and enthuse you the same way it did me.

To the reader who is head of the safety department in a (high-risk) industry: Reading
this work will show you what is possible when data and psychology expertise are
combined. If you want to reap similar benefits within your own organization, I would
advise:

A. recommending this work to someone within your team that has affinity with
Human Factors and data, or

B. recommending this work to someone who understands the merits of combining
expertise and knows how to build a team that brings these experts together in a
setting where mutual learning is promoted and adopted. Proactive effort is needed
to build a shared bridge between the ‘data minded’ and the ‘psychology minded’.

To the reader who is interested specifically in learning more about incidental learning as
a cause of human error and how to apply this knowledge to prevent accidents: I
recommend chapters 2 through 4, and especially section 4.2: *Concrete application of the
insights on incidental learning’.

To the reader who is interested in SPAD prevention: Chapters 2 and 3 will give you the
information and evidence for one cause of SPADs, namely incidental learning. In chapter
4, questions are listed that can be used during incident investigation to consider whether
incidental learning might have played a role. If you are interested in performing more
research on SPADs using data on train driver behavior, then the information on our
proactive SPAD indicator can also be useful. This information can mainly be found in
chapter 2, with tips to prevent accidental erroneous use in chapter 6, tips on how to
analyze the data to identify other relevant behavior influencing factors in chapter 5 and
additional tips on how this measure can be used within an organization in chapter 7.

Please note that this is a dissertation about human behavior irrespective of the industry.
It is thus not meant as an extensive exploration to the causes of SPADs. Many factors
can be involved in the causation of SPADs including problems with the train, tracks or
signal aspect functioning, communication between train driver and dispatcher,
suboptimal working conditions (within the cabin) and suboptimal signaling design. This
dissertation only focuses on the possible influence of suboptimal signaling design. Within
signaling design, there can also be multiple problems including the topic of this
dissertation but also factors play like visibility and how clearly it is communicated which
signal belongs to which track.

For those who want to read more about other SPAD causes or about other ways to use
big data within railway safety, I have listed some suggested reading in appendix E
although this list is by no means exhaustive.

As a final notes about Dutch rail as a sector: Since I studied human error among train
drivers and the impact of the infrastructure on ‘eliciting’ these errors, my texts focus on
where there is room for improvement within Dutch rail. My work is however by no means
a value judgment on Dutch rail or any of the employees working (directly and indirectly)
to keep the trains running safely and on time. If I were to cast a verdict from a personal
perspective, it would be a positive one. During all the years working with my rail
colleagues I have only encountered people that also wanted to contribute to improving
the railways and made effort to do so.

10
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The identification of incidental learning as a cause of human error
by exploring big data within railway safety

Research order
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Figure 5. Overview of main dissertation chapters showing the difference between chapter/reading
order (blue arrows at bottom) and the order of the research steps when performing Human Factors big
data research (grey arrow at the top). Chapters 2 and 3 will answer the research question of this PhD.
Chapter 4 contains the conclusions and recommendations around incidental learning based on chapters
2 and 3.

Chapters 5 and 6 describe part of the prerequisite steps in order to use big data to gain insights such
as those obtained around incidental learning. Chapter 7 contains additional recommendations around
using big data to improve safety within organizations.

11



Chapter 2. Train driver behavior is influenced by incidental learning

Chapter 2.

Train driver behavior is influenced by incidental learning

Based on the article: Burggraaf J, Groeneweg J, Sillem S, van Gelder P. What Employees
Do Today Because of Their Experience Yesterday: How Incidental Learning Influences
Train Driver Behavior and Safety Margins (A Big Data Analysis). Safety. 2021; 7(1):2.
https://doi.org/10.3390/safety7010002
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Chapter summary

Employee behavior plays an important role in the occurrence and prevention of incidents
by affecting safety margins. Within Dutch rail, train driver deceleration behavior
influences the safety margins with respect to Signal Passed at Danger events (SPADs). In
this chapter and chapter 3, we examine the potential impact of incidental learning on
train driver behavior. Incidental learning is the day-to-day on-the-job learning that
occurs unintentionally. This learning influences which behavior (schema) is more likely to
be activated in the employee’s brain. We focus specifically on the incidental learning that
occurs in the presence of variation in task design.

We posit that:

o if employees are frequently exposed to a task that requires a specific
behavior,

e and there is a different task requiring different behavior but with a
(visually) similar cue,

then the probability of an error due to activation of an unsuitable behavior
increases (See Figure 6).

The Dutch rail system has variation in task design, namely in the yellow aspects shown
at the same signal and in the signal distances. This leads to different behavior being
required at different times with differing levels of (visual) similarity between the task that
require different behavior.

In the study presented in this chapter, we used behavioral data as captured by sensors
on passenger trains in the Netherlands. The train driver deceleration behavior during a
red aspect approach was summarized in an indicator called mDtSPAD. The analysis
included 19 months of data that was already being captured. Human Factors expertise
was used to determine which variables needed to be calculated using the raw data in
order to effectively investigate the impact of incidental learning. For the statistical
analysis we used a variation on piecewise regression to gain more insight into the exact
shape of the relation between frequency of exposure to signal aspects in the previous 14
days and error probability.

The analysis showed changes in behavior when the train drivers had been previously
exposed to different behavior requirements in the same location with a similar yellow
aspect. These results imply that task design can be improved by taking into consideration
what an employee is exposed to during other moments of the shift, and not just during
the execution of the specific task.

13
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Figure 6. Summary of incidental learning with the most important rail related hypothesis
in chapter 2 used as an example. This figure is the same as Figure 3 at the end of the
summary, with only section C blurred. Section C is blurred here because this element is
investigated in chapter 3.

Section A illustrates under which preconditions incidental learning can lead to an error.
Consider that correct execution of ‘task A’ consists of perception of ‘cue A’, followed by
performance of ‘behavior A’, and correct execution of ‘task B’, consists of perception of ‘cue
B’ followed by performance of ‘behavior B’. Incidental learning can lead to an error during
task B when ‘behavior A’ is activated instead of ‘behavior B’ after perception of ‘cue B’. This
can occur IF

o ‘cue A’ and ‘cue B’ are similar and

o perception of ‘cue A’ strongly activates ‘behavior A" as a result of frequent exposure
to and execution of ‘task A’

Section B shows one example of how these preconditions can take place in Dutch rail,
using the example of signal aspect ‘yellow+8’.

The signal aspect yellow+8 is ‘cue A’, with a mild deceleration as ‘behavior A’. The signal
aspect yellow is cue B with ‘behavior B’ being a more stronger deceleration in order to stop
in front of the red aspect.

Section B2 visualizes the similarity between signal aspect yellow+8 and yellow at the
same signal location. Section B1 visualizes the frequency of task A which influences the
strength with which perception of yellow+8 (cue A) activates the mild deceleration
(behavior A).

Section B1la gives a simplified example of a train driver being exposed to and executing
task A seven times (approaches 1-5 and 7-8). During approach 9, the yellow aspect (cue
B) is present as part of task B with the correct behavior being a stronger deceleration
(behavior B), but mild deceleration (behavior A) is performed which is an error in this
setting.

15



Chapter 2. Train driver behavior is influenced by incidental learning

2.1. Introduction

When SPADs occur, sometimes the cause is easy to identify, but on other occasions it
remains unclear what the exact cause was. This is especially the case when SPADs do not
occur because of a technical failure but because a mistake was made in train driver
behavior. Whilst “insufficient deceleration” is often identified as a cause of a SPAD, it is
harder to identify why the train driver did not decelerate sufficiently [27]. In other
words: what factors created the situation that caused the train driver to not decelerate
sufficiently? Different experts have also been shown to regard different factors as having
the greatest influence on the occurrence of the same incident, based on their
interpretation of the same incident report [28,29].

The field of Human Factors looks into the factors that influence human behavior and can
increase or decrease the probability of an error [30]. Human factors research in rail has
become more common since the mid to late 1990s [31].

One factor that is often considered within rail is visibility of signals. Another example of a
factor is signal placement, with a focus on whether it might be confusing for the train
driver to know which signal is for him/her [31-35]. Route knowledge can help to prevent
mistakes as a result of problems in signal visibility or interpretation [36,37]. Another
option is to improve placement and make the infrastructure more logical from the train
driver's perspective.

Improving the placement of signals is a more fundamental solution in contrast to route
knowledge, where there is more variability with respect to its implementation (e.g. when
the driver last drove in that location and the level of knowledge that was gained and will
be sustained under stressful situations)[38]. Infrastructure changes are a more reliable
safety barrier than interventions related to training and awareness. It therefore makes
sense to consider whether the infrastructure can be adjusted to decrease the probability
of human error.

In rail, the infrastructure is an important part of the working environment of the train
driver. We thus advocate improving that working environment. Often, the effect of the
working environment of the train driver at the moment of his/her task execution is
considered. This is a core question within human factors: “which factors (at moment x)
influence the performance at moment x?” And often in incident analysis: “which factors
(at moment x) caused the error at moment x?” But what about the past? Does it matter
what an employee experienced yesterday or last week or last month? In other words:
“do factors (at moment x-At) cause an error at moment x?”

In this chapter, we examine incidental learning as a factor impacting human behavior
[39]. Incidental learning can have a positive or a negative impact. Incidental learning is
the learning that occurs without an explicit intention [16]. In experimental settings, a
distinction between intentional learning and incidental learning is made depending on the
instructions that participants are given. During the incidental learning condition, the
participants are not aware of the learning situations and are not instructed as to what
they will truly be tested on [17].

Incidental learning is part of the on-the-job learning that occurs, in contrast to learning
during training sessions and courses. People learn every day, both intentionally and
incidentally. For skilled work, a lot of learning takes place on the job. A common saying is
“you learn by doing”. This learning does not stop once we are able to perform a skill.
Learning is the creation of new pathways in our brain and also the strengthening of
existing pathways [40].
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Incidental learning is difficult to identify as a cause for changes in human behavior. One
reason for this is that incidental learning can be part of implicit learning. This means that
the employee is not necessarily aware of what he or she has learned or even that he or
she has learned. Implicitly learned knowledge can control action, but the learner himself
is not able to tell others that this is what happened [41-43]. Wang and Theeuwes focus
on implicit attentional bias and show that people quickly pick up on visual changes in the
environment and change their behavior accordingly even though they are not aware of
the changes. They conclude that “people adapt to a changing environment but that there
are lingering biases from previous learned experiences that impact the current selection
priorities” [44].

Another reason that incidental learning can be difficult to identify is that during an
incident analysis, the situation at the time of the incident is analyzed. Whilst the causes
of the situation might also be analyzed, the preceding "normal” situation is often not
analyzed. Thus, what the employee or train driver is exposed to on a daily basis before
the incident is not necessarily considered. Even when it is, it is hard to prove the impact
of previous exposure, i.e., incidental learning. In the case of SPADs, there are simply not
enough incidents to analyze this cause systematically without specific direction and
detailed hypotheses. A third reason for difficulty of detecting incidental learning in the
past may be small effect size.

2.1.1. Incidental Learning Influences the Schemas in an
Employee’s Brain

Incidental learning influences the development and activation of schemas in an
employee’s brain. Schemas embody the procedural knowledge that is needed to carry out
actions [45-47]. Schemas can be described as generalized procedures for carrying out
actions. In novel tasks, when a schema does not yet exist, much attention is needed to
carry out the action. Once schemas are present, these actions can mostly be performed
automatically, i.e., with little attention required. Schemas thus help us perform actions
more efficiently [48]. Actions will be performed correctly if the right schema is activated
at the right time.

Schemas can be activated in a top-down fashion via the intention to perform an action.
This requires attention. Schemas can however also include triggering conditions. If the
environmental conditions match the triggering conditions, then the schema can be
activated without conscious thought. For example, if one has a cup nearby on the desk,
he/she can pick it up and have a sip without explicit intention or even thirst. The mere
sight of the glass can trigger the schema to pick it up (see Ref. [49,50] with respect to
unconscious control of motor action; Ref. [51-54] specifically for hand movement).

An event (a cue) can become a trigger for a schema when it is often paired with the
execution of the schema. The more often they are paired, the stronger the schema
activation will be upon perception of the cue. This linking of a cue to a schema is part of
incidental learning.

Problems occur when the incorrect schema in one’s head is activated. Correct behavior is
then activated, but it is unsuitable for the specific situation. We hypothesize that this is
more likely to occur if there is variation in task design. Specifically, we posit that human
error is more likely to occur if different behavior is required in (visually) similar settings.

An example is crossing the street on foot. In right-driving countries, pedestrians should
look left and right and left again, before crossing. When a pedestrian goes on holiday to a
left-driving country, he or she should look right and left and then right again, but the
pedestrian is inclined to look in the pattern he or she is used to, namely left-right-left.
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This is clearly not caused by a sudden lack of head turning ability, but caused by a
different requirement in a similar situation (crossing a road). It can therefore occur even
if the pedestrian is fully aware of the rules that apply in a given country and wishes to
adhere to them (see e.g., research using the Stroop test for ample evidence of people
erring in the simple task of naming a color because they read the colored word instead

[55]).

The same applies to driving a car. People are perfectly capable of taking a roundabout
clockwise. They are also perfectly capable of taking a roundabout anti-clockwise.
However, going on holiday and driving on the opposite side of the road than one is used
to is very difficult the first few times. When there are other cars around, this is a visual
reminder that one is in a different country and the roundabout should be taken the other
way round. However, when there are no other cars in sight or there are other distracting
traffic situations present, it is easy to veer into the old pattern and take a roundabout the
wrong way round.

2.1.2. Incidental learning in Rail

During a red aspect approach, it is the train diver’s task to decelerate sufficiently to stop
in front of the red aspect. The driver has schemas in his brain for the deceleration
behavior. These schema’s can be activated by the signal aspects along the tracks or
other cues.

The signal aspects along the tracks provide information on which behavior is suitable. A
red aspect in Dutch rail is always preceded by a yellow aspect to inform a train driver
that a red aspect is coming and that he should start to decelerate. In contrast to road
transport, this is necessary because trains have a very long braking distance (e.g., 580
m at 140 km/h and an emergency deceleration of 1.3 m/s?, not taking driver reaction
time, reaction time of the brakes and train-track friction conditions into account).

In the Dutch signaling system, the aspect sequence green-yellow-red is most common,
but other yellow aspects are also used. For example, if the distance between the yellow
and red aspect is not long enough given the speed of the train, then the yellow aspect
will be preceded by another yellow aspect. This yellow aspect can be plain yellow again,
but it is most often yellow in combination with a number.

Yellow+8 for example indicates that the train driver needs to drive 80 km/h at the next
signal, and if that signal shows a yellow aspect, the train driver knows that the following
signal is red and (s)he needs to decelerate to be able to come to a stop in front of the
next signal (see Figure 7).

Figure 7. Red aspect approach preceded by yellow aspects

There are multiple forms of variation in rail task design that can cause incorrect schema
activation after incidental learning. One type of variation is the combination of variation
in permitted track speed and in distance between signals. These cause variation in the
amount of deceleration that is necessary to stop in front of the red aspect. In Figure 8 it
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is illustrated that in the left scenario, a continuous deceleration rate of 0.26 m/s? would
be sufficient to stop in front of the red aspect, while in the situation on the right, a
deceleration rate of 0.59 m/s? is needed. If a driver is more often exposed to the
situation on the left, then the cue “yellow aspect” can trigger the initiation of a schema
resulting in a slower rate of deceleration than required for the situation on the right.

130 km/h

—_—
100 km/h

—

1500 m

Figure 8. here is variation in the necessary rate of deceleration. In the left approach, a continuous
deceleration rate of 0.26 m/s2 is sufficient to stop in front of the red aspect, while the approach on the
right requires a deceleration rate of at least 0.59 m/s?.

The above example illustrates variation in the required deceleration for the same signal
aspect (yellow). In Dutch rail, there is also variation in which signal aspect is present at a
given location. As described in section 2.3, the yellow aspect can be preceded by other
yellow aspects such as yellow with the number four (yellow+4). Figure 9 shows a
location where signal Sx can have signal aspect yellow+4, as part of a yellow+4-yellow-
red sequence. It can also have a yellow aspect as part of a green-yellow-red sequence
as displayed in the bottom scenario with the previous green aspect not shown in the
figure.

Figure 9. There can be variation in the signal aspect at a specific location. In the top approach, the
first signal has aspect yellow+4 because the signal at the station is red and the distance between the
last two signals is insufficient for a green-yellow-red sequence. In the bottom approach, the first
signal is yellow because the next signal is red.

A signal can also have a yellow+number aspect as part of a speed restriction. This kind
of speed restriction is sometimes needed to prevent trains from driving too fast over a
switch (Figure 10). Aspect yellow+4 indicates a speed restriction to 40 km/h by the next
signal, whilst yellow+8 signals a speed restriction to 80 km/h, etc.
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Figure 10. There can be variation in the signal aspect at a specific location. In the top approach, the
first signal has aspect yellow+6 because the switch after the next signal has a maximum permitted
speed of 60 km/h. In the bottom approach, the first signal is yellow because the next signal is red.

In this study, we investigated the effect of the above variations on train driver
deceleration behavior. An additional infrastructure characteristic that was taken into
account was the track speed limit just before the first yellow aspect. We did not expect to
see an effect of incorrect schema activation for those approaches with such low speed
that the train driver could start to decelerate upon sight of the red aspect and still come
to a standstill with mild deceleration. The issue of incorrect schema activation is assumed
to be mostly relevant for those approaches where the train driver needs to decelerate
before the red aspect is visible. This is because automatic behavior can also occur
without the use of schemas. This can occur when the information needed to perform the
action is directly available in the environment [56]. When the driver can see the red
aspect, he can estimate the distance and the best rate of deceleration. When the train
driver has to start decelerating before seeing the red aspect, he needs to rely fully on the
information stored in the schema in his long-term memory.

2.1.3. Previous Research on Incidental Learning and Task Design
Variation

The field of human factors looks at the influence of system or task design on human
behavior [30]. There is however a strong focus on task design at the moment of
performing the task and not on the potential influence of previous exposure to other task
designs. Experience is also mentioned as a positive factor, without the nuance that
experience in combination with task design variation can lead to errors.

Some commonly used taxonomies of human error causes, for example, do not include
this factor. One accident analysis method called the Human Factors Analysis and
Classification System (HFACS) was inspired by Reasons’ popular Swiss Cheese model and
provides a taxonomy of failure across four organizational levels: unsafe acts,
preconditions for unsafe acts, unsafe supervision, and organizational influences [57]. Of
the seven preconditions for unsafe acts, the “technological environment” is most aligned
with the idea of task design. This precondition is further clarified as encompassing “a
variety of issues including the design of equipment and controls, display/interface
characteristics, checklist layouts, task factors and automation” (p.62). The focus is
mostly on the state of the individual at that precise moment, and not the impact of
previous learning.

20



Chapter 2. Train driver behavior is influenced by incidental learning

One human reliability analysis method, the SPAR-H method, estimates error probability
and contains a list of performance-shaping factors (PSFs). The eight PSFs are: available
time, stress/stressor, complexity, experience/training, procedures, ergonomics/human-
machine interface, fitness for duty, and work process. The PSF “experience/training” can
only be scored as poor, nominal, or good (or it can be considered that there is insufficient
information). For this factor, more experience is considered better and reduces the
(calculated) probability of an error [58]. In our research, the hypothesis is that greater
experience can lead to errors, if combined with problems in task design. The PSF
“ergonomics/human-machine interface” comes closest to the idea of task design, but
focuses mostly on the state at that moment and not the impact of previous learning.

In scientific SPAD literature, the role of infrastructure elements is mainly considered with
respect to visibility and interpretability of the signal [33-35]. One study on driver
performance modeling and its practical application included line speed as related to
signal and sign visibility and reading times [32]. One human factors SPAD hazard
checklist contains the following scoring factors: the presence of driver’s personal factors,
driver inattentiveness, signal visibility, the association between the signal and the correct
line, the ability to read signal aspect correctly, the ability to interpret signal aspect
correctly, and the ability to perform correct action [59]. There is no factor for task
variation.

Within the rail industry, there are some recommendations on infrastructure variation. The
Independent Transport Safety and Reliability Regulator in Australia for example
recommends making sure that there are no standard caution or low speed aspect leading
up to the red aspect, because “permanent caution signals, for example, do not provide
drivers with information about the next signal, and can therefore be a SPAD trap” [60].
Incident investigations at the Dutch Rail infrastructure manager ProRail have also led to
the hypothesis that certain types of variation in aspects at the same signal location can
pose a risk. Research including the detailed psychological mechanisms and specifically
the effect sizes has however been missing. Up until recently, there was not enough data
to test these effects rigorously.

The UK Rail Safety and Standards Board (RSSB) conducted a large-scale investigation in
2016, reviewing 257 industry SPAD investigation reports and organizing SPAD workshops
with 60 participants with various job titles from freight operating companies, passenger
operating companies, and the UK Infrastructure manager Network Rail [61]. They
identified 10 risk management areas, such as signal design/layouts and driver
competence management including route knowledge. The recommendations for signal
design/layouts focus mostly on visibility of the signal and design of the signal itself and of
the gantry. The route knowledge was considered as positive in that report. Route
knowledge is also in other countries mentioned as a positive and important factor
[38,62]. Variations in signal aspect shown on the same route are not mentioned.

Balfe, on the other hand, mentions expectation bias as a factor influencing SPADs in her
review of 83 internal investigation reports of SPADs occurring between 2005 and 2015 on
the Irish rail network [63]. The exact link between expectation bias and infrastructure is
not specified. This author does mention the potential for congested networks to result in
single or double yellow aspects being routinely experienced by drivers across a route,
thereby leading to an expectation of continued movement rather than a subsequent stop
signal upon seeing a yellow aspect.

It should be noted that the term ‘expectation’ is not clearly defined in the Dutch railways
despite its use in accident analysis reports. Van den Top (2010) noted that in SPAD
reports it was often written that the accident was caused by the driver *having an
expectancy’. He however argues that it would be more accurate to state that the driver
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had ‘a false expectancy’ and that the focus of causal analysis should be on the system
related course of events that eventually led to both the false expectancy and the lack of
timely correction of that false expectancy. For a more elaborate and nuanced description
of the current and desired use of words such as ‘expectancy’ and ‘attention’ and
‘distraction’ in Dutch SPAD analysis reports, see [38]

2.1.4. Objective of this Study

The objective of this study was to investigate whether incidental learning impacted
employee task performance in the presence of task design variation. We hypothesized
that incorrect schema activation caused lower deceleration rates and thereby smaller
safety margins between trains and red aspects. We focused on similarities in the yellow
aspect and the location as triggers for schema activation. The specific question was:

e Does frequent exposure to certain signal aspects (at certain locations) impact the
behavior in a (visually) similar but deviating situation?

In previous railway research, research questions like this could not be answered due to
small sample size. Thanks to technological developments, we now have different tools
that make it possible to answer questions that could not be answered in the past.

2.1.5. Hypotheses

We hypothesized that incorrect schema activation can cause insufficient deceleration,
potentially resulting in SPADs or near-misses. We identified four situations where this
could occur. The more common signal approach is here referred to as “the standard
approach”. The less common approach is referred to as “the deviating approach”. This
deviating approach is also the safety-critical approach. If the schema of the standard
approach is activated during the deviating approach, then an incorrect schema is
activated. The more often the train driver is exposed to the standard situation, the higher
the chances of incorrect schema activation during the deviating approach.

In Dutch rail, there are two main types of situations where a specific signal is often
yellow and can become “the standard approach”:

e When the scheduling is such that the signal at the train’s stopping location often
has a red aspect. The signal(s) preceding it will have yellow aspects at an equal
frequency. We call this “yellow entrance to the station”. A distinction will be made
below between the ‘yellow+number entrance effect’ and the ‘yellow-yellow-red
(entrance) effect’.

e When that signal often functions as a speed limit indicator in front of a switch.

The ‘standard situation’ is thus the situation where the aspect is commonly yellow
because of the scheduling or as a speed limit. The ‘standard situation”’ and accompanying
aspect sequence is visualized in the below figures in the blue box located at the top of
the figure. The ‘deviating situation’ is then when one signal earlier shows a red aspect. In
the same figures, the ‘deviating situation’ is shown in the red box at the bottom of the
figure. These figures are used to show that, at the same location, there are (visual)
similarities between the standard and deviating situation but the required behavior is
different, because an earlier signal has the red aspect.
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A location where a signal often has a speed restriction is visualized in Figure 112. The
standard, more common situation is shown at the top (blue). Below this is the deviating
situation (red). In this scenario, the location is exactly the same during both approaches
and the signal aspect is visually similar.
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Figure 11. The yellow aspect in the deviating approach (bottom) is at the same location as the
yellow+number aspect during the standard approach because of the upcoming switch (top). For both
approaches the cue is visually similar (yellow vs. yellow+number) and the location is the same.

In the above example, the yellow and yellow+number signal aspects are said to be
visually similar. Visual similarity is defined by the number of shared points or common
features, and the type of difference. Visual similarity is higher with deletion at end points
(such as the number 4 not showing below the aspect) than for differences like deletions
leading to breaks in continuity or mirror image reversals [64]. The signals with yellow
and yellow+number aspects are thus visually similar because they have many visually
identical points with the difference being a deletion at the bottom (Figure 12).

X
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Figure 12, Signals with “yellow+number” and “yellow” aspects are visually similar.

Speed restriction and entrance at yellow can also occur at the same location (Figure
13). While the signal aspects can differ (e.g., yellow+8 and yellow+4), the only relevant
situations are those where both are the same.

2 The figures are simplified visualizations for explanation purposes. In reality other signals can also have a light
box (visualized in the figures by the black rectangle below) to show numbers. In this study the focus lies on the
aspect of the first signal in the figures.
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)

Figure 13. The yellow aspect in the deviating approach (c) is at the same location as the
yellow+number aspect during the standard approach because of the entrance at station and/or the
upcoming switch (a and b). During the standard and deviating approaches, the cue is visually similar
(yellow vs. yellow+number) and the location is the same. Note: Both yellow+number aspects must be

the same during the blue approaches.

It is also possible for entrance at yellow to occur with a yellow-yellow-red sequence (See
Figure 143). In this scenario, the signal aspect and location are exactly the same during
both the standard and deviating approach. These scenarios are interesting from a
theoretical perspective because the aspect at the first signal is exactly the same in both
scenarios. These situations are however not common anymore in the Netherlands and
especially not at locations with high track speeds (for more information on track speed
filters in the analysis, see method section 2.2.2).
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Figure 14. The yellow aspect in the deviating approach (bottom) is at the same location as the yellow
aspect during standard approach towards the station (top). During both approaches, the cue is the
same (yellow) and the location is the same. The station stop is shown by a rectangle with passengers.

The last hypothesis also encompasses the same aspect in both the standard and
deviating situation, but with differences in location. As mentioned previously, the
distances between signals varies during approaches where the red aspect is preceded by
a yellow and green aspect (GR-Y-R approaches). The track speed and signal distance

3 The rectangle with passengers is used in the figures to indicate the scheduled stopping location for the train.
In these yellow-yellow-red scenarios the actual platform is however usually longer and already starts in front of
the second signal with passengers potentially waiting in that location for a different train scheduled to stop

there.
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determine the amount of deceleration that is needed. We call this “theoretical mean
deceleration”. The theoretical mean deceleration does not have the same value across
the Netherlands. The hypothesis is that GR-Y-R approaches with higher theoretical mean
deceleration values are deviating situations in comparison to GR-Y-R approaches with
lower theoretical mean deceleration values (See Figure 15). If the schema of the blue
(left) situation is activated during the red (right) situation, insufficient deceleration is
used.
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Figure 15. During the deviating approach (right), a greater deceleration rate is required than during
the standard approach (left). During both approaches, the cue is the same (yellow aspect) but the
location is different. The two theoretical mean deceleration values (values in bold) are examples. The
theoretical mean deceleration value can be any value below the track speed-dependent maximums.

2.2. Method

2.2.1. The Braking Behavior Measure (Dependent Variable)

The driving behavior is operationalized in one value for each red aspect approach,
namely the mDtSPAD measure. At the start of this PhD, ProRail had already developed a
proactive safety measure called Time-to-SPAD (TtSPAD) in cooperation with Dutch
Railways (NS). During my PhD research, we developed a new safety measure called
Deceleration-to-SPAD (DtSPAD) based on the previous measure. More information on the
benefit of DtSPAD over TtSPAD can be found in section 7.2.3.

The formula to calculate the Deceleration-to-SPAD is

0.5 = current speed of the train?

DtSPAD = distance to the red aspect
where speed is measured in meters per second and distance in meters.
The location and speed of the train are recorded by positioning sensors which are present
on the trains. A deceleration-to-SPAD value can be calculated for every entry of speed
and location supplied by the positioning sensor while the train is approaching a signal
showing a red aspect. The DtSPAD indicates the deceleration rate the train needs to
maintain to be able to stop exactly at the red signal. The maximum value of these is the
mDtSPAD.

The DtSPAD calculation can start after a train has passed a signal showing yellow caused
by a red aspect that is ahead (as start of a situation with a potential for an incident) and
stops when the train is no longer approaching a signal showing either yellow or red. In
these cases, the train driver has received authority to move on further, marking the end
of a situation with potential for the incident.
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In Figure 16 the relationship between DtSPAD and actual deceleration is visible. The
DtSPAD increases during an approach if the actual deceleration is lower than the DtSPAD
value, and the DtSPAD decreases again if the actual deceleration is higher than the
DtSPAD value.
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Figure 16. The risk indicator deceleration to signal passed at danger (DtSPAD), clarified using three
different cross sections of the same red aspect approach. (top) Risk indicator over distance in meters
(m). The DtSPAD reaches its maximum value at 152 m before the red aspect. (middle) Actual
deceleration in meters per squared second (m/s?) over distance. The DtSPAD declines once the actual
deceleration is higher than the DtSPAD. (bottom) Speed in kilometer per hour (km/h) over distance
graph.

The train’s speed and position is needed to calculate the mDtSPAD. For this study, the
information was gathered from Dutch Railways (NS) trains that have Orbit. Orbit is an
auditory SPAD warning system. For this system to work, both the train’s speed and
position are registered, among other data. This data is logged multiple times per second
from the moment the train is within 1000 m of a red aspect. Frequent logging (more than
once per second) made this data source the most suitable. Automatic signals, which
cannot be influenced by traffic controllers, are not monitored by the Orbit system due to
technical limitations.
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In our study we were interested in changes in behavior leading to higher mDtSPAD
values. There is no absolute criterion for what constitutes a high DtSPAD value. In this
study, 0.5 m/s? was chosen as a criterion for two reasons:

1. In previous initial analyses with similar data, the mDtSPAD followed a roughly
normal distribution. The value of 0.5 m/s? was in the right tail of that distribution.

2. The Orbit warning system can alter the behavior of the train driver, and thus its
mDtSPAD value, if the SPAD alarm sounds. For approaches where the Orbit alarm
sounded, the mDtSPAD might have been higher if no warning system had been in
place. In previous research it was noted that during most of the relevant
approaches the alarm did not sound for DtSPAD values below 0.5 m/s2.
Unfortunately, the warning does not sound at a specific DtSPAD value. The
algorithm for the warning system is based on other indicators that are not suitable
for the current study.

Nineteen months of train data were analyzed, starting from 20 August 2018. On this
date, approximately 50% of the trains of the operator NS had been equipped with Orbit
(£300 trains). More trains were equipped with Orbit following this date, and their data
were included as well. All were passenger trains with a brake power of up to 1.0 to 1.4
m/s2. The train drivers were from the Dutch operator NS. The NS employs over 3000
train drivers and has 28 places of employment where train drivers start and end their
shifts [65,66].

The Orbit system employs a quality filter to the GPS data. The warning system is
temporarily shut down when the GPS quality becomes too low. In this study, we only
used the data when the warning system was active. We also only included approaches
where the time between two loggings was always below three seconds.

2.2.2. Inclusion Criteria

Braking behavior was calculated for the approaches falling within the hypothesis criteria
and when:

e For speed: The track speed was higher than 80 km/h according to permanent
traffic signs.

e For speed: The train did not pass a yellow aspect before the red aspect approach
as part of a previous red aspect approach. Previous yellow aspects would have
already resulted in lower train speed.

e For speed: The train was driving before passing the yellow aspect instead of
departing from a station.

e For exposure: The red aspect remained red until standstill of the train or until the
train was within 123 m of the red aspect. At 123 m, the train can still have a high
value on our risk indicator at a speed of 40 km/h. This is the speed train drivers
are instructed to decelerate to after having passed a yellow aspect to be able to
stop for the red aspect.

e For other factors: The red aspect was not at a scheduled stop location. These
approaches were excluded because the train driver would need to stop at these
locations regardless of the aspect color.

e For other factors: The speed at which mDtSPAD was recorded was higher than 10
km/h.
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2.2.3. Measures of Variation (Independent Variables)

The two independent variables were the theoretical mean deceleration and the frequency
of yellow in last 14 days for this train series. Trains have the same train series when they
are scheduled to drive the same route with the same stops. The theoretical mean
deceleration (m/s?) was calculated via 0.5 x track speed (m/s)?/distance between signals
(m). The frequency was calculated by counting the number of times the same train series
passed the “yellow signal” in the last 14 days with a yellow+number aspect. Data from
the Dutch infrastructure manager ProRail were used to calculate the frequency so that all
train approaches could be used, not just those of trains with Orbit.

2.2.4. Tests Overview

An approach can be influenced by different effects. To deal with this overlap, the
following tests were performed:

To test the theoretical mean deceleration effect, approaches were selected where
only the theoretical mean deceleration was a factor (exclusion of yellow entrance
or yellow speed restriction; n = 3478 red aspect approaches).

To test the yellow+number entrance effect, locations with speed restrictions were
included if these speed restrictions had the same aspect. Three types of tests
were done. The first test used all the approaches (n = 3429 red aspect
approaches). The second test used approaches within a specific theoretical mean
deceleration range (n = 2021 red aspect approaches for a high theoretical mean
deceleration range and n = 1287 for a low theoretical mean deceleration range).
The third test used approaches towards one specific signal. Only one signal was
eligible as it had a sufficiently large number of approaches across different
frequencies of entrance at yellow+number (n = 415 red aspect approaches).

To test the speed restriction effect, approaches were selected where there were
speed restrictions via yellow+number and a specific theoretical mean deceleration
range. Locations with entrance at yellow were excluded (n = 509 red aspect
approaches).

To test the yellow-yellow-red effect, all yellow-yellow-red locations were
included where there was no yellow+number speed restriction or yellow+number
station entrance (n = 20 red aspect approaches).

See Table 1 for a visual overview of the tested hypotheses and sample sizes.
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Scenario with Scenario with # Red aspect
incidental learning possibility of error approaches (RAAs)
opportunity due to incidental tested

learning

Theoretical mean
deceleration o)
effect = S S

n = 3478 RAAs

e
Ve

All the approaches:
n = 3429 RAAs

@ Specific theoretical mean
S— deceleration range:

) @ n = 2021 RAAs within the
Yellow+number ) —= ] high theoretical mean
entrance effect ] ) .

-> @ deceleration range and
— n = 1287 within the low
(b) range

One specific signal:
n = 415 RAAs

n = 509 RAAs.

* Insufficient data across
different frequencies in
previous 14 days to examine
this effect separately

Speed restriction o ® —
effect *

| : n = 20 RAAs.
Yellow-yellow-red |_ 3 ® s - ® - ** Insufficient data to
effect ** [ Tl examine this effect
| separately

Table 1. Overview per hypothesis of the performed tests and sample sizes. Displayed here as a visual
reminder of the meaning of each hypothesis.

2.2.5. Statistical Analysis

To test the relation between the binary dependent variable and the (ratio) independent
variables, a logistic regression analysis was considered. It was however not possible to
perform a logistic regression analysis because the data did not fit the required
assumptions of linearity of independent variables and log odds as shown by performing
the assumption checks in the statistical software program SPSS.

Since the checks showed that there was no continuously increasing effect, we wanted to
understand the actual shape of the relation. In order to investigate this shape, we
considered a variation on piecewise regression. In piecewise regression, more than one
line is fitted to the data. Multiple points in the independent variable can be chosen to split
the data. These points of separation are called knots. Choosing the number of knots and
their location is however very difficult. To refrain from using subjective input we decided
to split the data evenly five ways. The first split was in half. The second split was in three
segments, the third in four segments, the fourth in five segments, and the fifth in six
segments.
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The different splits lead to differences in under- and overfitting and in sample size per

segment. Most importantly, insight is provided on the shape of the curve, which can be
difficult with a binary dependent variable. The effect of knot selection is also shown. If

the pattern remains the same across splits this is evidence for an effect.

The p-value* was calculated per segment by comparing the observed number of high
mDtSPAD values with the number of high mDtSPAD values that is expected for the
segment under the HO assumption that there is no difference between segments (with
‘high’ being a mDtSPAD>0.5 m/s?). The analyses were run in R, version 3.6.2. No
additional packages were used for the analyses. The R Code is provided in appendix A.
The steps are clarified with an example in Figure 17.

Total sample
4830 values
175 high, 4655 low

v
Split sample according to dependent variable, e.g., mean brake ranging from

0.22 m/s? to 0.83 m/s2. l
0.22-0.42m/s? 0.42-0.63m/s? 0.63-0.83m/s?
500 values, 5 high 4000 values, 160 330 values, 10 high
high

l

Segment proportion is 0.010 (5/500), which is lower than the expected value
of 0.036 (175/4830) under the assumption that all high values are evenly
distributed.

But is 5 out of 500 actually unlikely if the 175 high values out of 4830 are
distributed evenly?

Randomly draw 500 times (segment size) from a variable with 175 high and 4655
) low values (total sample), without replacement. Is the number of drawn high
Repeat 100,000 times values 5 or less? Then record TRUE: our observed value of 5 is attained under H,
of even distribution of high values. If not, then record FALSE.

]

v

Number of times TRUE divided by 100,000 is
the p-value.

Figure 17. The p-value is calculated per segment by comparing the observed number of high values
with the number expected if the high values are distributed evenly.

In the Results section the exact p-values were recorded when they were below 0.05, and
were listed as p < 0.001 when they were below 0.001. p-values above 0.05 were
recorded as non-significant (N.S.).

4 In statistics, the p-value indicates the probability that the results can occur under the null hypothesis that
there is no difference. A low p-value implies that it is unlikely that there is no difference and that it is more
likely that the result is measured because of an actual effect.
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2.2.6. Signal Effects

It is possible that there are signals which have many approaches with high mDtSPAD
values. If the results are fully attributable to one or a few signals, the results are less
likely to be caused by the investigated variable, i.e. incidental learning. To check whether
the results were not fully attributable to one or a few signals, signals with more than
three high values were identified. These signals are listed in the tables in the Results
section and have been used to interpret the results.

2.3. Results

2.3.1. Theoretical mean deceleration Effect

If incidental learning occurs, we expect a correlation between the percentage of high
values and the theoretical mean deceleration, with higher percentages for higher
theoretical mean decelerations. Table 2 shows the results with the mean rate on the x-
axis. Significant results were found for four out of five splits (i.e., the rows of the table).
In general, the expected pattern was seen, with high percentages for higher theoretical
mean decelerations (See Table 2).

3.49%
55 of 1575
p <.001
1.23% 2.19% 3.47%
5 of 408 64 of 2926 50f 144
N.S. N.S. N.S.
1.36% 3.38% 5.32%*
3 of 220 50 of 1481 5 of 94
N.S. p<.001 p=.048
1.66% 2.56% 1.20% 6.67%*
3 of 181 53 of 2068 1 of 83 50f75
N.S. =.020 N.S. p=.020
1.82% 0.82% 3.49% 3.17% 5.56%
3 of 165 2 of 243 50 of 1431 4 of 126 10f18
N.S. N.S. p <.001 N.S. N.S.
0.22-0.32 m/s? 0.32-0.42 m/s? 0.42-0.53 m/s? 0.53-0.63 m/s? 0.63-0.73 m/s? 0.73-0.83 m/s?
Signal A - 4 high values - 13.79% [theoretical mean deceleration = 0.57 m/s?, speed = 130 km/u]
Signal B - 4 high values - 7.69% [theoretical mean deceleration = 0.73 m/s?, speed = 160 km/u]
Signal C - 9 high values - 6.82% [theoretical mean deceleration = 0.56 m/s?, speed = 130 km/u]

Table 2. Theoretical mean deceleration effect analysis. This table shows the results when the
theoretical mean deceleration is split five different ways. The percentages refer to the percentage of
high values in a segment. The numbers directly below indicate the number of high values and the
total. Orange indicates that the percentage is significantly higher than expected and blue indicates a
percentage significantly lower than expected. White color indicates a non-significant result. The
theoretical mean deceleration value ranged from 0.22 to 0.83 m/s?. The mean percentage was 2.1%.
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Can the effect be caused by an alternative explanation of signal effects? Signal B is
almost solely responsible for the significant cells on the far right, annotated with an
asterisk, contributing four out of five high values. This signal has a track speed of 160
km/h5.

Separate inspection of approaches with track speed of 160 km/h showed that the
percentage around a theoretical mean deceleration value of 0.6 m/s? seemed lower than
those for approaches with track speeds below 160 km/h and a theoretical mean
deceleration value around 0.6 m/s?. It might be the case that approaches at a track
speed of 160 km/h are experienced differently.

Potentially, (a) this highest theoretical mean deceleration segment in fact shows less
behavior change and the effect seen is all due to Signal B with other unknown factors; or
(b) there is learning within 160 km/h where the theoretical mean deceleration value of
0.6 m/s? is experienced as “much space” and only 0.7 m/s? as a “short” distance; or (c)
the speed difference is attributable to chance and the effect on the outermost right cells
is caused by the theoretical mean deceleration effect and not by a signal effect.

The high percentage for the segment between 0.53 and 0.63 m/s? is not attributable to
specific signal effects, since there are 50 high values and only 13 of these are caused by
two signals that have high percentages.

5> The theoretical mean deceleration of 0.6 m/s? is the highest theoretical mean deceleration value
permitted for track speeds up to 140 km/h in the absence of an inclining slope, as required by
ProRail for signal distances. Thus signals with values above 0.6 m/s2? will also have a track speed
above 140 km/h.
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2.3.2. Yellow(+Number) Entrance at Station Effect

2.3.2.1. Yellow Entrance at Station Effect: Analysis 1

The effect of yellow entrance is expected to increase with the frequency of

yellow+number aspects at that location in the previous 14 days (i.e. a positive
correlation between the amount of learning than can have occurred and the effect size).
Table 3 shows that the significant results follow the expected pattern of increasing
percentages. The non-significant outer right percentages are however surprising. Since
the total number of approaches is almost 500 for the outer right cell in the second split
from the top, this percentage is most likely non-significant because it is close to the
mean and is not due low power. The effect on behavior thus seems to taper off, rather

than showing the expected continuous increase.

3.99% 7.23%
107 of 2682 54 of 747
p<.001 p <.001
9.90% 5.06%
41 of 414 25 of 494
p <.001 N.S.
6.73% 9.30% 4.25%
15 of 223 41 of 441 13 of 306
N.S. p <.001 N.S.
6.36% 6.90% 9.67% 3.29%
11 of 173 16 of 232 38 of 393 7 of 213
N.S. N.S. p <.001 N.S.
6.56% 7.45% 11.46% 6.33% 2.47%
8of 112 12 of 161 29 of 253 21 of 332 4 of 162
N.S. N.S. p <.001 N.S. N.S.
0-87 times 88-174 times 175-262 times 263-349 times 350-437 times 438-525 times

Signal D — 27 high values - 22.9% [freq range: 0-3, with 91% of all approaches at 0]
Signal E - 40 high values - 9.6% [freq range: 0-473, with 93% between 200-500]
Signal F — 19 high values - 7.9% [freq range: 0-517, with 69% between 50-200)
Signal G — 14 high values - 5.0% [freq range: 0-465, with 77% between 200-500]

Table 3. Entrance at yellow effect (analysis 1).This table shows the results when the frequency in the
last 14 days is split five different ways. The percentages reflect the percentage of high values in the
segment. The numbers directly below indicate the number of high values and the total. Orange
indicates that the percentage is significantly higher than expected and blue indicates a percentage
significantly lower than expected. White color indicates no significance. The frequency of
yellow+number aspects in the previous 14 days ranged from 0 to 525. The mean percentage was
4.7%.

Can the effect be caused by an alternative explanation of signal effects? A surprisingly
high percentage of 22.9% was found for Signal D. Upon inspection by randomly sampling
some approaches, it was noted that the preceding signal often showed the aspect
yellow+8 as part of a yellow+8-yellow-red sequence. This red aspect was however not
at a station stop, which is why these approaches were not added in the calculation of the
frequency. Despite the presence of this signal in the outer left segments, these segments
are still significant on the lower end. The possible signal effect of Signal D therefore does
not affect the interpretation of the pattern.
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The other signals have a wide range in frequency which would cause any potential signal
effect to be spread out. The signal percentages were not higher than the highest
significant cell percentages, making it unlikely that the pattern was fully caused by signal
effects.

4.3.2.2. Yellow+number Entrance at Station Effect: Analysis 2

The previous analysis contained approaches with different theoretical mean
decelerations. We know there is a significant effect of theoretical mean deceleration.
Therefore, the test was repeated using only approaches in the theoretical mean
deceleration range of 0.5-0.6 m/s?. This segment was chosen because it was significant
in the theoretical mean deceleration analysis (and not potentially explained by a signal
effect like the theoretical mean deceleration ranges above 0.6 m/s?).

Additionally, signal D was removed from this subset because there seemed to be a
frequent yellow+8 aspect at that specific location which was not measured in our current
method for frequency calculation (see Section 3.2.1).

Table 4 shows that the significant results still followed the expected pattern of increasing
percentages. There are in fact more significant values, despite a smaller number of
approaches. The low percentages on the outer right are surprising. The pattern remains
of an effect that tapers off or even has an inverted u-shape.

4.69% 7.37%
61 of 1302 53 of 719
=.009 p =.009
10.65% 4.96%
41 of 385 24 of 484
p <.001 N.S.
4.22% 7.11% 9.86% 3.96%
46 of 1091 15 of 211 41 of 416 12 of 303
p=.002 N.S. p <.001 N.S.
6.51% 7.77% 9.69% 3.30%
11 of 169 16 of 206 37 of 382 7 of 212
N.S. N.S. p <.001 N.S.
6.72% 8.00% 12.34% 6.19%
8 of 119 12 of 150 29 of 235 20 of 323
N.S. N.S. p <.001 N.S.
0-87 times 88-174 times 175-262 times 263-349 times 350-437 times 438-525 times

Signal E — 40 high values - 9.64% [freq range: 0-473, with 93% between 200-500]
Signal F — 19 high values - 7.88% [freq range: 0-517, with 69% between 50-200]
Signal G — 14 high values - 5.00% [freq range: 0-465, with 77% between 200-500]

Table 4. Entrance at yellow effect (analysis 2a). This table shows the results when the frequency in
the last 14 days was split in five different ways for the subset: theoretical mean deceleration value
0.5-0.6 m/s?, without signal D. Percentages reflect the percentage of high values in this segment. The
numbers below indicate the number of high values and the total. Orange indicates that the percentage
is significantly higher than expected and blue indicates a percentage significantly lower than expected.
White color indicates no significance. The frequency of yellow+number aspects in the previous 14 days
ranged from 0 to 525. The mean percentage was 5.6%.
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The prior analysis was repeated for the subset with theoretical mean deceleration smaller
than 0.5 m/s?. None of the splits led to significant cells. There were however relatively
few approaches with a high entrance at yellow frequency (See Table 5). This caused
problems with statistical power, especially because the number of approaches was very
low in the middle section, which showed the highest percentages in the previous
analyses. It is unknown whether there was too little power, or whether the yellow
entrance effect was only present in combination with a higher theoretical mean
deceleration.

1.51% 0%
19 of 1259 0 of 28
N.S. N.S.
1.52% 0% 0%
19 of 1250 0 of 27 0of 10
N.S. N.S. N.S.
1.52% 0% 0% 0%
19 of 1248 0of11 0 of 24 Oof4
N.S. N.S. N.S. N.S.
1.52% 0% 0% 0% 0%
19 of 1247 0Oof3 0 of 25 0of11 Oof1
N.S. N.S. N.S. N.S. N.S.
1.52% 0% 0% 0% 0% 0%
19 of 1247 0of3 0of9 0of 18 0of9 Oof1
N.S. N.S. N.S. N.S. N.S. N.S.
0-83 84-167 168-251 252-335 336-419 420-504

Table 5. Entrance at yellow effect (analysis 2b). This table shows the results when the frequency in
the last 14 days is split five different ways for the subset: theoretical mean deceleration value <0.5.
Percentages reflect the percentage of high values in this segment. The numbers below indicate the
number of high values and the total. Orange indicates when the percentage is significantly higher than
expected and blue indicates when a percentage is significantly lower than expected. White color
indicates no significance. The frequency of yellow+number aspects in the previous 14 days ranged
from 0 to 504. The mean percentage was 1.5%. There were no signals with over three high values and
a percentage above 3.0%.
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4.3.2.3. Yellow+number Entrance at Station Effect: Analysis 3

The final analysis for the entrance at yellow effect contains data from one signal as
described in the method section. Table 6 shows two significant results in the expected
direction. Most approaches were concentrated around the frequency of 300, leading to
many cells with relatively few total approaches. Although the number of significant cells
is underwhelming, the pattern displayed by the percentages is in line with the previous
results.

2.63% 10.34%
1 of 38 39 of 377
N.S. N.S.
3.57% 8.57% 10.64%
1 of 28 9 of 105 30 of 282
N.S. N.S. N.S.
3.57% 0% 13.92%
1 of 28 0of 10 27 of 194
N.S. N.S. p =.005
3.70% 0% 11.54% 11.81% 5.15%
1 of 27 0of2 6 of 52 28 of 237 5 0f 97
N.S. N.S. N.S. N.S. N.S.
3.70% 0% 0% 9.47% 11.16% 8.62%
1 of 27 Oof1 0of 10 9 of 95 25 of 224 5 of 58
N.S. N.S. N.S. N.S. N.S. N.S.
0-78 times 79-157 times 158-236 times 237-315 times 316-394 times 395-473 times
N.A.

Table 6. Entrance at yellow effect (analysis 3).This table shows the results when the frequency in the
last 14 days was split in five different ways for the subset: one signal with theoretical mean
deceleration value of 0.54 m/s?. Percentages reflect the percentage of high values in this segment. The
numbers below indicate the number of high values and the total. Orange indicates that the percentage
is significantly higher than expected and blue indicates a percentage significantly lower than expected.
White color indicates no significance. The frequency of yellow+number aspects in the previous 14 days
ranged from 0 to 473. The mean percentage was 9.6%.

2.3.3. Speed Restriction Effect

Incidental learning was expected to influence driving behavior in locations where the
signal aspect frequently was yellow+number due to speed restrictions. There were 509
red aspect approaches at locations with speed restrictions that were not at a yellow
station entrance location. Unfortunately, 479 of those had a speed restriction frequency
of 0 in the last 14 days. The remaining 30 approaches had a frequency between 1 and
15. There was thus insufficient data to examine this effect separately.

2.3.4. Yellow-Yellow-Red Effect

There were only 20 approaches that fell within the selection criteria. Many more
approaches would have been present if approaches had included where the red aspect
was at the station stop during the “deviating approach”. Unfortunately, looking at these
planned stops creates many methodological issues, including the influence of the
distance between the red aspect and the stopping location.

36



Chapter 2. Train driver behavior is influenced by incidental learning

2.4. Discussion

Can incidental learning contribute to SPAD incidents? In this study we took a step
towards answering that question by first checking whether there was evidence of a
change in behavior as a result of incidental learning. Significant results were found in the
expected direction.

Other factors can however also influence the results, like signal effects. Deceleration
behavior can be different for certain signals, for example because signal approaches
differ in track speed, signal distance, and (early) signal visibility. The “entrance at
yellow” effect was however also seen within one specific signal. That result cannot be
influenced by any static signal effects. Other factors such as weather effects can play a
role but these have no logical link with the frequency of yellow aspects in the previous 14
days and are therefore not likely confounding factors that created a spurious association.

The same result pattern that was seen for the one signal was also seen during the other
“entrance at yellow” tests. The effect was therefore not only present for the one signal.
Unfortunately, there was insufficient data to test whether the effect was also present for
signals with a lower mean rate. It is therefore not yet known whether the “entrance at
yellow” effect is always present, or only for those approaches with a higher mean rate.

It is possible that the approaches with a lower mean rate provide more time for the
driver to correct his or her deceleration behavior before it shows up in our behavior
measure. In theory, low mean rates might “buffer” against problematic situations. In the
Netherlands, the trains are forced to decelerate at a minimal deceleration rate after
passing the yellow aspect. This brings the speed down significantly for approaches with
low theoretical mean deceleration rates in particular.

The shape of the effect was not entirely as expected for the entrance at yellow effect.
The effect seemed to taper off as the entrance at yellow frequency reached very high
values. Given the high frequencies, these were approaches where the train series had
entrance at yellow almost every time.

A potential explanation is that the extreme familiarity with the situation leads to a
heightened awareness when something is different. This is comparable to coming to a
friend’s house occasionally and going there nearly every day. When visiting occasionally
one will recognize the picture on their living room wall. One might not notice when they
change the picture to a comparable one. However, when the individual visits nearly every
day he/she is more likely to notice that they changed the picture despite minimal
changes.

It is of course also possible that there is a hidden factor that happens to be more present
for those entrances with the highest frequency of entrance at yellow. This is unlikely,
because a similar pattern was seen when looking within one signal, but the possibility
cannot be excluded. Further research is needed to see whether the pattern is indeed
caused by this psychological effect or whether it was an artefact of our data.

During the “entrance at yellow” effect, incidental learning occurred because the approach
was in the same location and with a similar cue (e.g., yellow+4 and yellow). We also
obtained evidence of a theoretical mean deceleration effect. In these situations, the
location is different, but the cue is identical (yellow aspect).

The pattern for mean rate was as expected, with higher mean rates leading to higher
percentages. However, the high percentages at the highest mean rates were caused by
one signal and could thus be the result of a signal effect. Even if this is the case, the
pattern remains for the low to medium-high mean rates.
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It would however be jumping to conclusions to say that this pattern was definitely caused
by incidental learning. It could be a conscious choice to always decelerate at for example
0.4 m/s?, which would lead to a mDtSPAD above 0.5 m/s? for approaches with a mean
rate above 0.4 m/s? and to low mDtSPAD values for approaches with a mean rate below
0.4 m/s2.

2.4.1. Limitations and Future Research

In future research, additional factors could be included. One identified factor was the
presence of a frequent yellow+number aspect caused by a red aspect that was not at a
station stop. While the timetable is designed to avoid this kind of approach frequently in
the same place, it is possible for this to occur. Additional involved factors could be line of
sight, with early visibility as a protective factor.

An extra finding was the identification of signals with high percentages. It is clear that
there are behavior-influencing factors that are currently out of scope and unknown.
Whilst they did not interfere with the conclusions of this research, it would be an
interesting avenue to discover what causes these differences between signals.

A limitation of our research was that the exposure frequency was calculated by train
series and not by train driver. Since learning takes place in the mind of an individual, it
would have been preferable to measure how often the train driver had previously
experienced similar situations.

Information about the train driver was not disclosed for privacy reasons. The same train
series was considered the next best alternative under the assumption that a train driver
often drives the same train series.

Another possibility was to simply calculate how often any train was exposed to yellow
aspects at the relevant location. We however assumed that train drivers link their
experiences with the infrastructure to the train series they are in, since their driving
experience is influenced by the present train series. A train driver might for example
drive from Utrecht to Amsterdam, as many trains do, but the train series he is in
determines which stations he has to stop at, what his timetable looks like, and the
continuation of his journey.

Despite this limitation, the research was still possible because it focuses on relative
changes. When a train series has an entrance at yellow frequency of 200 over the past
14 days, the specific train driver probably does not experience a yellow entrance in that
location all 200 times. However, the train driver is likely to have experienced a greater
number of entrances in yellow than in those cases where the frequency was only 100.

The Netherlands has 28 work locations for drivers, with each location having certain work
packages, including some variation in routes but also repetition of routes by the same
drivers [66-68]. Additionally, the authors analyzed Dutch SPAD reports and frequently
noticed train driver statements such as “usually in this location there is aspect xyz”,
further supporting the notion that the Dutch train drivers indeed drive the same routes
repeatedly.

Nonetheless, the research would be improved by replication using driver data. This would
also give more insight into how often an employee needs to be exposed to a certain
situation for incidental learning to occur. Another related avenue for future research
could be individual differences in incidental learning.
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2.4.2. Answering the Question and Using the Answer

Our results indicate changes in train driver behavior when employees have previously
been exposed to different behavior requirements in the same location with a similar
yellow aspect. The results are in line with our expectations of incidental learning. Using
data of actual everyday behavior, we identified a shift in braking behavior in the direction
of a lower safety margin. We thus found evidence for the notion that incidental learning
impacts employee behavior and thereby safety margins.

It is possible that the effects of incidental learning results in SPADs in certain situations.
Further research can test whether the effects of incidental learning are indeed also visible
using data of actual SPADs. A commonly known disadvantage of using incident data for
quantitative analysis is that there is usually a small amount of data since there are
relatively few (large) incidents.

This is especially the case in the Netherlands when looking at nuanced causes. There are
for example multiple SPADs with aspect sequence green-yellow-red, but fewer with that
specific aspect sequence and entrance at yellow. There are even fewer incidents within
that segment with various frequencies of entrance at yellow (29 SPADs over 6 years as
measured during the follow-up study described in chapter 3) . The results of this study,
based on data of driving behavior, can be used to determine more exactly what aspects
to investigate with incident data and in which manner. The follow-up study we performed
using incident data is described in chapter 3.

The results of our study using deceleration behavior data can also be used as an input for
decision-making on desired interventions. Crude measures, such as no longer using a
specific signal aspect, are not necessary to eliminate certain behaviors or increase safety
margins. We see that specific effects add up to create the locations with the highest
percentages. Figure 18 gives a simplified overview of how one signal approach can lead
to different behavior depending on the theoretical mean deceleration, entrance at yellow
frequency, and presence of speed restriction.
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Figure 18. A simplified illustration that different factors need to be considered to predict differences in
behavior.

In a general sense, organizations can reevaluate their task designs by taking the
presence of incidental learning into account. Organizations often focus on making sure
that the task design for a specific task helps the employee to perform the task
successfully. This is important but does not address the whole story. To further improve
task design, one should not only consider what the employee is exposed to during the
execution of the specific task, but also what he or she has been exposed to during other
moments of his shift. ‘Yesterday’ matters, especially if it is visually similar.
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Chapter 3.

From error to incident and the window for correction in
SPAD causation

Based on the article "What Employees Do Today Because of Their Experience Yesterday:
Previous exposure to yellow+number aspects as a cause for SPAD incidents” by Julia
Burggraaf, Jop Groeneweg, Simone Sillem and Pieter van Gelder
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Chapter Summary

In chapter 2 it was shown that train driver deceleration behavior is influenced by
exposure to less restrictive and visually similar signal aspects in the same location in the
previous 14 days. Initial insufficient deceleration does not lead to a SPAD if the train
driver adjusts the deceleration in time. In this chapter we will see that previous exposure
to yellow+number aspects indeed only corresponds with a statistically significant increase
in SPAD incidents if there is a small window for correction available to drivers (see
Figure 19).

2, Self-correction
opportunity

Infrastructure
characteristics

}

Size of window
for correction

f I) d%if.I
1. Scenario with insufficient Self correction

deceleration due to
incidental learning

Incident
: prevented
- Insufficient
deceleration
e ? (behavior A) for - ] Sl
[ it current situation Initial error can '
(task B) lead to an incident

Figure 19. The error of insufficient deceleration can lead to a SPAD. Train drivers can however also
self-correct the error upon perceiving the red aspect IF there is a large enough window for correction.
The size of this window is influenced by the infrastructure design.

This figure is part of the larger figure presented in the dissertation summary (Figure 3) and the
chapter 2 summary (Figure 6). This part of the larger figure is displayed here in the summary of
chapter 3 to highlight that chapter 3 investigates the step from error to incident and the window for
correction.

The size of the window in which train drivers can correct their initial insufficient
declaration is influenced by infrastructure factors such as the permitted track speed and
signal distance.

To test the role of incidental learning and the window for correction in accident causation,
incident data was used. We used six years of SPAD incident data and red aspect
approaches in the Netherlands for the analysis.

The results provide evidence for previous exposure as a cause for SPADs. Despite the
significant and large effect of incidental learning on SPADs in combination with a small
window for correction, there were only 13 SPADs where: A) the yellow+number

frequency was larger than 150 and B) there was a small window for correction. This is

42



Chapter 3. From error to incident and the window for correction in SPAD causation

because there are relatively few RAA’s with such high exposure frequencies and a small
window for correction®.

This chapter contains all the details on the specific infrastructure and timetable design
situations for which an increased SPAD probability is identified so this data can be used
to identify all locations in the Netherlands where this specific combination of
circumstances occurs. Even more importantly, this knowledge can be used when
designing new infrastructure to ensure that:

> these types of error-promoting infrastructure designs are not implemented
> or, if they must be used for other reasons, are implemented in combination with
other safety barriers

This chapter thus provides concrete insights to be used within Rail, but even more
importantly it provides insights in human-task interaction and the role in accident
causation. When the task is not designed by taking the effect of incidental learning into
account and the opportunity for self-correction, then the probability of an accident can
increase.

6 To put it into context: In six years, there were 141 thousand RAAs with a frequency over 150 and
a small window for correction, while there were 13 million RAAs in the same period (both are RAA
subsets of only RAAs without scheduled stop and without Orbit and passenger trains only). Thus
only 1.07% of RAAs had a high exposure frequency and a small window for correction.
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3.1 Introduction

In chapter 2 we saw that train driver behavior is indeed affected by the type of yellow
aspect that was present in that location over the previous 14 days [69]. It is important to
understand whether those measured changes in behavior can cause SPADs, in which
situations and to what extent.

Balfe and Doyle analyzed a multi-SPAD signal in Ireland using the RSSB SPAD Hazard
Checklist. The SPADs were preceded by a yellow aspect at a signal which usually showed
a double-yellow aspect. The double-yellow aspect which shows in the standard situation
indicates a red aspect at the end of the nearest platform, two signals further, whilst the
yellow aspect (present during the SPADs) indicates that the next signal has a red aspect.

During all three SPAD events at the signal in front of the platform, the drivers reported
that they understood the previous signal to be showing double yellow while it had in fact
shown a single yellow aspect. Balfe and Doyle therefore identify the fact that the aspect
is frequently double-yellow in that specific location as a potentially contributing factor to
the SPADs [70]. The hypothesis is that a specific aspect (yellow in the above example)
activates the behavior belonging to a different aspect (double-yellow in the above
example). If the signal that showed the single yellow aspect during the SPAD event
would have shown a green aspect on most previous approaches instead of the double-
yellow aspect that was shown frequently, the SPADs might not have occurred.

In Dutch rail, double-yellow aspects are not used anymore, but other yellow aspect
variations are common as we have seen in chapter 2. The section below explains why the
initial error of insufficient deceleration may or may not lead to a SPAD. The train driver’s
“window for correction” is introduced, followed by the methods section, results,
conclusion and discussion.

3.1.1 When wrong schema activation leads to a SPAD

In order for a SPAD to occur because of wrong schema activation in the brain, four
elements should be present:

1. The train driver performs the deceleration behavior suitable in previous situations
There is a non-negligible difference in the current required behavior and the
previous required behavior

3. The train driver does not correct his or her behavior in time

4. Technical (warning) systems do not intervene to correct the behavior

3.1.1.1. The train driver performs the past behavior

The previous behavior will be performed if it is activated sufficiently due to visual
similarity and frequent past exposure (bottom-up) and the behavior is not prevented top-
down by our “will” via our supervisory attentional system [71].

In chapter 2 it was shown that during the red aspect approach as part of the green-
yellow-red sequence (last approach in Figure 13), the train driver behavior was indeed
affected if the same train series had often passed a yellow+number aspect in the same
location in the previous 14 days [69]. A higher frequency in the previous 14 days led to
an increase in the change of behavior. This effect decreased after the frequency of a
yellow+number aspect in the previous 14 days exceeded 400 times. This research
indicated that train driver behavior is indeed affected by previous yellow+number aspects
during yellow-red approaches.
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3.1.1.2. There is a non-negligible difference in the required behavior and past
behavior

Wrong schema activation will not cause a SPAD if a slight deceleration is sufficient during
both previous and present approaches (for example, a deceleration of 0.31 m/s? is
required in the previous scenario and 0.32 m/s? in the current approach). This minimal
difference can occur when the track speed is low and/or the distance between the signals
is large.

3.1.1.3. The train driver does not correct his/her behavior in time

A SPAD can be prevented if the train driver corrects his or her behavior in time. The
theory of wrong schema activation predicts an initial insufficient deceleration after
passing the yellow aspect. The train driver can realize the mistake and start to decelerate
forcefully upon seeing the red aspect. Factors that increase or decrease the probability
that a driver will be able to correct his or her behavior in time are expanded upon in
section 3.1.2

3.1.1.4. Technical (warning) systems do not intervene to correct the behavior

A SPAD can also be prevented if other preventative interventions are present. The
previously mentioned auditory warning system Orbit is designed to prevent SPADs by
warning the train drivers with an auditory message when they approach a red aspect at a
higher speed than desired. This warning system is not yet installed on all trains, nor
operational for all signals. ERTMS can also provide preventative intervention but is not
nationally implemented yet in the Netherlands. [11]

3.1.2 Investigating element three: The train driver does not
correct his/her behavior in time

The four elements that need to be present for wrong schema activation to cause a SPAD
have been described above. In chapter 2 we have seen that there is an effect of past
yellow aspect exposure and thus the presence of element one. The risk of a SPAD is
limited to those locations where there is a difference in past and current required
behavior (element two), otherwise the past behavior is not erroneous, and where there
are no technical (warning) systems that can intervene (element four). The remaining
question is whether train drivers are able to correct their own behavior in time (element
three) and prevent the wrong schema activation from actually causing a SPAD.

Whether the train driver will still be able to stop in front of the red aspect depends on the
moment at which the train driver sees the red aspect, the braking distance as affected by
the train’s deceleration power and the track conditions, and the size of the window for
correction. The concept of ‘window for correction’ will be illustrated by calculating the size
of the window for correction for an infrastructure scenario example displayed in Figure
20.

The top of Figure 20 shows a situation where the track speed is 130 km/h and the
aspect at the first signal is often yellow+8, indicating a speed reduction to 80 km/h. The
distance between the first and second signal is 1095 meters. In order for the train to
drive at 80 km/h at the next signal, as is required, the train must decelerate continuously
at 0.37 m/s2.

At the bottom of Figure 20 we have the hypothetical situation where the train passes a
yellow aspect and decelerates at 0.37 m/s?, as is commonly suitable in this location.
However, since the aspect is yellow and not yellow+8, a continuous deceleration of 0.37
m/s? is insufficient to stop in front of the red aspect.
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In this hypothetical example, the train driver sees the red aspect at 300 meters. He or
she then attempts to correct his or her initial insufficient deceleration. If the train is able
to continuously decelerate by at least 1.19 m/s? from that point onwards, then a SPAD
can be prevented. Given that the emergency brake power of most passenger trains is
around 1.2 m/s? and the train driver needs to initiate the emergency brake after
perceiving the red aspect, this situation is one where there is a very small window for
correction, assuming correct perception of the red aspect at 300 meters.
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Figure 20. Hypothetical example where the standard situation with a deceleration of 0.37 m/s? is
sufficient. If the train driver employs the same amount of deceleration during the green-yellow-red
approach, then this insufficient deceleration can be corrected if, upon seeing the red aspect at 300
meters, the train can decelerate by at least 1.19 m/s? continuously.

It is unknown how often a train driver perceives a red aspect at 300 meters. The Dutch
rail infrastructure manager ProRail has directives on the minimal distance at which a
signal needs to be visible. The minimal visibility distance is 200 meters at track speeds
below 80 km/h. At 100, 130 and 140 km/h the minimal visibility distances are
respectively 250, 325 and 350 meters to maintain visibility for nine seconds per speed
[72].

Even if the signal is theoretically visible, this does not necessarily mean that the train
driver sees the red aspect and perceives it correctly. Seeing and perceiving the red
aspect in time can also be influenced by a train driver’s previous experience.
Summerfield and Egner state in their review on visual cognition that visual detection and
recognition are guided by one’s prior knowledge of what is likely to occur [73].

Other factors can also influence early detection and recognition of the red aspect, like the
visual conspicuity of the signal and aspect, weather conditions and situations where it is
not immediately clear which signal belongs to one’s track.
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3.1.3 Research question and hypotheses

To further increase our knowledge of causes of SPADs, we investigate the following
research question:

Does the frequency of a yellow+number aspect in the previous 14 days increase the
probability of a SPAD if the window for correction is small?

This research question is answered for green-yellow-red aspect approaches where: the
yellow aspect is in the same location as the yellow+number aspect, there is a difference
between the previous required and current required deceleration behavior, and there are
no technical systems present to correct the behavior.

We hypothesize that train drivers are able to correct their behavior and prevent a SPAD,
if the infrastructure provides a large window for correction. However, when the window
for correction is small, we hypothesize that wrong schema activation can contribute to
SPAD causation.

Even though it is unknown when the train driver perceives the red aspect, it is possible to
compare signal locations on the size of window for correction by comparing how much
deceleration is necessary at a specific distance in front of the signal. Categorization as
“small”, *medium” and “large” windows for correction is discussed in section 3.2.4. This
research will therefore also give more insight into which sizes of window for correction
are large enough to provide the opportunity for self-correction.

3.2. Methods and materials

To answer the research question, we investigated whether there were more SPADs by
passenger trains in the Netherlands between 2014-01-01 and 2019-12-31 than can be
expected based on the number of red aspect approaches. This data included approaches
by passenger trains of all operators. Six years of data were used to have as much data
as possible in manageable quantities. Data from 2020 was not used because the
timetable adjustments during the COVID-19 pandemic led to a large difference in the
number of red aspect approaches.

For each SPAD and red aspect approach falling within the inclusion criteria, the frequency
was calculated of a yellow+number aspect in the previous 14 days in the same location
for the same train series and the size of the window for correction was calculated.

3.2.1 Data

Two main data sources were used: 1. SPAD incidents, and 2. Red aspect approaches. A
list of SPAD incidents was provided by ProRail. Data of red aspect approaches was also
provided by ProRail. When a train passes a signal, and the next signal is red at that point
in time, it is recorded as a red aspect approach. The point in time at which a signal turns
red or not-red is recorded for many of the signals on the Dutch rail network. For some
signals, this point in time is not recorded, but can be deduced based on the moment that
a train enters sections between signals. For some signals, this data is absent and
therefore both SPADs and red aspect approaches at these locations were not included.

Whilst train kilometers are easier to obtain and therefore historically used more often,
red aspect approaches are a better measure for the opportunity of SPAD occurrence
[74,75]. The red aspect approach data also provides the additional details needed to test
the hypotheses.
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3.2.2 Types of SPADs

SPADs can occur for a multitude of reasons. This research focuses on driver error as a
cause of SPADs and not on technical causes. The SPAD incident list was therefore filtered
on SPADs that did not have a technical cause, or where the signal was put on red by the
train traffic controller after the train had already passed the preceding signal. These
SPADs could be excluded by only selecting the SPADs categorized as “non-technical -
other”.

The SPAD list did not include sufficient information in easily accessible format and was
therefore enriched with data from the Red Aspect Approaches (RAA) dataset. The data
was automatically matched based on date, train number and signal number. Only 47% of
the selected SPADs could be matched with the RAA dataset. Upon inspection of the cases
that were not matched, there were valid reasons why the match could not occur:

e The SPAD did not occur at a signal but at a sign

e The SPAD occurred when the train left the station whilst the departure signal was
red, thus being a departure through red aspect and not a red aspect approach

e The SPAD did not occur with a passenger train but a road rail crane

e The SPAD occurred during shunting

The above situations are all outside the scope of this investigation. There were twelve
SPADs that could not be matched because they were at a signal of which the red aspect
time is not automatically recorded and could not be deduced. The twelve SPADs were at
six different signals with six SPADs having occurred at one signal. These SPADs were
within the scope, but not included in the analysis because they could not be matched.
Including these SPADs manually was not an option, since the accompanying red aspect
approaches should then also be added, which was not feasible.

3.2.3. Inclusion criteria for SPADs and red aspect approaches

The SPADs and red aspect approaches were included if they fit the criteria below.
Criteria to only select SPADs and red aspect approaches that are part of the hypothesis:

e The red aspect was part of a green-yellow-red aspect sequence

e The train was expected to approach with a speed higher than 80 km/h. The effect
of exposure to past yellow+number aspects was only tested at speeds above 80
km/h because at low speeds the difference between past and required
deceleration behavior tends to be small. Speed above 80 km/h is filtered in via 1)
The track speed was higher than 80 km/h according to permanent traffic signs. 2)
The train did not pass a yellow aspect before the red aspect approach as part of a
previous red aspect approach. Previous yellow aspects would have already
resulted in lower train speed. 3) The train was driving before passing the yellow
aspect instead of departing from a station.

Criteria to avoid other effects influencing the analysis:

e The red aspect was not at a scheduled stop location. These approaches were
excluded because the train driver would need to stop at these locations
regardless of the aspect color.

e The above criteria related to speed excluded situations where two platforms were
situated directly behind each other, thereby excluding situations where the red
aspect was at the first platform whilst the train driver usually stops at the second
platform.
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e The yellow aspect was near a station stop as defined by being part of a red
aspect approach to a scheduled stop at least once.

e The auditive warning system Orbit was not present or operating on the train.
Since not all trains or all signals are protected by Orbit yet, it is still relevant to
understand whether previous exposure to yellow+number aspects can contribute
to SPADs when this warning is system is not present or operating correctly.

e For the statistical analysis which did not include the window for correction, only
SPADs and red aspect approaches with a theoretical mean deceleration above 0.5
m/s? were included because the study described in chapter 2 showed a difference
in driver behavior for these approaches [69]. For the statistical analysis which
included the window for correction, the filter on theoretical mean deceleration is
replaced by categorization based on the size of the window for correction.

3.2.4. Independent variables

The two independent variables were: A. the frequency of yellow+number aspect in the
last 14 days for this train series and B. the window for correction. The frequency was
calculated by counting the number of times the same train series passed the
yellow+number signal in the last 14 days. Approaches are counted if (per train series) all
have the same yellow+number aspect or if they do vary in yellow+number aspects with
different numbers but the highest aspect frequency in the previous 14 days is above 100
and the other aspect frequencies are below 5.

The window for correction was calculated by taking into account what the yellow+number
aspect was in the previous 14 days, what the distance was between the signals, and the
permitted track speed. Since we do not know exactly what deceleration behavior the
train driver usually employs, we calculate what the sufficient continuous deceleration is

2 .2
Vtrack speed 17(7.spect speed limit We
2xdistance between signals

then calculate how fast the train should decelerate at 300 meters from the red aspect, if
the train has been continuously decelerating with this deceleration level up until that

during the yellow+number approach. This is calculated via

vtzmck speed —sufficien continuous decelerationx2x(distance between signals—300)

. We call this value

point, via 57300

“required deceleration upon 300 meters”. In the example that was depicted in Figure 20
with a track speed of 130 km/h (36.1 m/s), aspect speed of 80 km/h (22.2 m/s) and a
signal distance of 1095 meters, the sufficient continuous deceleration is 0.37 m/s? and
the required deceleration upon 300 meters is 1.19 m/s?.

We categorized a required-deceleration-upon-300 meters value of less than 0.6 m/s? as a
large window for correction, since this deceleration value is easily attained and very
common. A value between 0.6 and 0.8 m/s? is categorized as a medium window for
correction. A value above 0.8 m/s? is categorized as a small window for correction. This
categorization is relative rather than absolute. It distinguishes locations with a larger
window for correction from those with a smaller window for correction, rather than
defining “large” and “small”.

3.2.5. Analyses overview

Two analyses were run. The first one was performed to test whether the results in our
study using deceleration behavior data could be replicated using incident data [69]. In
this test, the window of correction was not included and the criterion for theoretical mean
deceleration was included. The sample included 29 SPADs and 1,139,665 red aspect
approaches.

49



Chapter 3. From error to incident and the window for correction in SPAD causation

The second analysis included the window for correction measure, which divided the
SPADs and red aspect approaches into large, medium and small windows for correction.
The window for correction could not be calculated for those approaches where there was
no yellow+number aspect in the previous 14 days. These approaches were therefore not
included in this test. A test was performed per window for correction to test the
hypothesis that the relationship between frequency and probability of a SPAD only exists
when there is a small window for correction. The samples included 0 SPADs and 777,510
red aspect approaches for the large window for correction, 3 SPADs and 319,533 red
aspect approaches for the medium window and 17 SPADs and 54,462 red aspect
approaches for the small window.

3.2.6. Statistical analysis

To test the effect of the yellow+number aspect frequency in the previous 14 days on the
SPAD frequency, the same statistical method was used as used in chapter 2 to be able to
see the exact shape of the relation between frequency and SPAD occurrence [69].

The bin sizes were based on the results of the study using driver behavior. Due to
technical reasons and due to the large amount of data, it was necessary to select bins
beforehand. It was therefore not possible to leave the frequency as an interval variable,
which could potentially have been tested with a logistic regression. This was not
considered a major issue since other testing is available and our previous study using
driver behavior instead of SPADs showed assumption violations to perform the logistic
regression anyway.

Since the relation between the yellow+number aspect frequency and train driver
behavior showed a slightly inverted u-shape in our previous study and there were many
approaches in the bins of lower frequencies, the following frequency bins were chosen: 0
times a yellow+number aspect in the last 14 days (only for the first analysis), 1-50
times, 51-150 times, 151-250 times, 251-350 times, 351-450 times, 451-550 times,
>550 times.

The p-value was calculated per bin by comparing the observed number of SPADs with the
number of SPADs that is expected for the bin under the HO assumption that there was no
difference between bins. The analyses were run in R, version 3.6.2. No additional
packages were used for the analyses. The R Code is provided in Appendix B. The steps
are clarified with an example in Figure 21.
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Total sample

1,600,000 approaches

29 SPADs

v

Split sample according to pre-defined bins of frequency in past fourteen days.

0 times 1-50 times 51-150 times 151-250 times 251-350 times 351-450 times 451-550 times >550 times
900,000 510,000 55,000 40,000 25,000 37,000 31,000 2000
approaches, 13 | approaches, 5 approaches, 0 approaches, 2 approaches, 0 approaches, 5 approaches, 4 approaches, 0
SPADs SPADs SPADs SPADs SPADs SPADs SPADs SPADs

v
Segment proportion is 0.98*10-" (5/510,000), which is lower than the expected
value of 1.8*10° (29/1,600,000) under the assumption that all SPADs are
evenly distributed.

But is 5 out of 510,000 actually unlikely if the 29 SPADs out of 1,600,000 are
distributed evenly?

Randomly draw 510,000 times (segment size) from a variable with 29 SPADs and
1,6000,000 red aspect approaches, without replacement. Is the number of drawn
SPADs 5 or less? Then record TRUE: our observed value of 5 is attained under H,,
of even distribution of SPADs. If not, then record FALSE.

Repeat 100,000 times

v
Number of times TRUE divided
by 100,000 is the p-value.

Figure 21. The p-value is calculated per segment by comparing the observed number of SPADs with
the number of expected SPADs if the SPADs are distributed evenly.
In the Results section the exact p-values were recorded when they were below 0.05, and
were listed as p < 0.001 when they were below 0.001. p-values above 0.05 were
recorded as non-significant (N.S.).

Since there are relatively few SPADs, it is possible to have zero SPADs in a bin. If that
bin is not significant, it is possible that: A. there is no difference in SPAD probability, B.
the probability in that bin is lower but the result is not significant due to low power, or C.
the probability in that bin is in fact higher but due to a low number of red aspect
approaches in the given bin, no SPADs occurred.

If the average proportion, for example, is 1*10> SPAD per red aspect approach, then a
bin with zero SPADs per 200,000 red aspect approaches is more likely to be non-
significant due to option A or B since 1/200,000 is 0.5*107>. A non-significant bin with
zero SPADs per 30,000 red aspect approaches is more likely to be non-significant due to
option C since 1/30,000 is 33*10-°. Non-significant bins with zero SPADs should therefore
not be interpreted as low-risk.

Multiple two proportion z-tests or Fisher Exact tests were not used because the desired
comparison was not to test whether two bins deviated, but whether a bin could be from
the overall average, including that bin, violating the assumption of independence. A chi-
square test for independence was considered as an overall test before the described test,
but was not possible because of the violation of the assumption that the expected value
per cell should be 5 or more in at least 80% of the cells, and no cell should have an
expected value of less than one. The Fisher Exact test provided an out-of-workspace
error in R due to the large number of variables and number of red aspect approaches.
Other avenues to be able to perform the Fisher Exact test were not explored, since the
statistical test for bin testing would already provide the desired answers, regardless of a
preceding overall test.

Therefore, a simulation approach has again been used to test the above hypotheses.
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3.3. Results

3.3.1 Yellow+number effect irrespective of window of correction

Table 7 shows that the number of SPADs is significantly higher for those approaches

where the “yellow sigha

III

was passed with a yellow+number aspect over 350 times and

less than 550 times in the last 14 days. The bins with a frequency of 0 and 1-50 have
the largest number of red aspect approaches and a SPAD percentage of respectively
2.00*%10°3 and 1.55*10°3. The two significant bins have a SPAD percentage of 13.80*103

and 13.44*1073, indicating not only a significant but also a large effect.

The absence of SPADs in the bin with frequency 251-350 is not in line with the
hypothesis, but not surprising, given the relatively low number of red aspect approaches

in this bin.
# times 1} 1-50 51- i51- 251- 351- 451- >550
in 150 250 350 450 550
previous
14 days
# SPADs | 13 5 0 2 0 5 4 0
# RAA 649,738 | 323,313 | 48,057 | 31,053 | 20,082 | 36,227 | 29,752 | 1,443
% * 103 | 2.00 1.55 0 6.44 0 13.80 13.44 0
p-value N.S. N.S. N.S. N.S. N.S. 0.002 | 0.006 N.S.

Table 7 SPAD percentage is significantly higher for a frequency of yellow+number aspects between
351 and 550 times in previous 14 days.

3.3.2 Yellow+number effect in combination with size of window of
correction

Table 8 shows that the number of SPADs is significantly higher for those approaches
where the “yellow signal” was passed with a yellow+number aspect over 350 times and
less than 450 times in the previous 14 days and the window for correction was small.

Window | Frequen 1-50 51-150 | 151- 251- 351- 451- >550
for cy 250 350 450 550
Correc-
tion
Large #SPADs | 0O 0 0 0 0 0 0
(<0.6 #RAA 544,037 | 103,675 | 45,036 38,098 29,311 17,002 351
m/s2) %* 103 |0 0 0 0 0 0 0
p-value N.S. N.S. N.S. N.S. N.S. N.S. N.S.
Medium #SPADs 2 0 0 0 0 1 0
(0.6-0.8 #RAA 245,326 | 30,958 13,325 7,996 13,654 8,063 211
m/s?) %* 103 | 0.81 0 0 0 0 12.40 0
p-value N.S. N.S. N.S. N.S. N.S. N.S. N.S.
Small #SPADs | 4 0 3 1 6 3 0
(>0.8m/s | #RAA 345,537 | 61,080 40,157 24,695 39,520 34,545 1,928
2) %* 1073 1.16 0 7.47 4.05 15.18 8.68 0
p-value 0.001 N.S. N.S. N.S. <0.001 N.S. N.S.

Table 8 SPAD percentage is significantly higher for a frequency of yellow+number aspects between
351 and 450 times in previous 14 days and a small window for correction.
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The SPAD percentage of 15.18*103 for the combination of frequency 351-450 and small
window for correction is similar to the SPAD percentage in the previous analysis for the
bin with the same 14-day frequency.

In the current sample, the bin with a frequency of zero in the past 14 days was not
included, leading to a higher average SPAD percentage, potentially contributing to why
the bin with frequency 451-550 is not significant in this analysis, apart from a lower,
albeit still high, SPAD percentage. The higher average SPAD percentage can also explain
why the SPAD percentage of 1.16*1073 in the bin with a frequency of 1-50 is now
significantly lower, whilst in the previous analysis it was also lower than average but not
statistically significant.

No SPADs were measured in the category of approaches with a large window for
correction. Only three out of twenty SPADs occurred in the category of a medium window
for correction, but it should be noted that the number of red aspect approaches was low
for this category and a 14-day frequency above 250.
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3.4 Conclusions and discussion

The results indicate a significant and large effect of exposure in the previous 14 days in
combination with a small window for correction. This evidence supports the hypothesis
that incorrect schema activation is a significant contributor in SPAD causation if there is a
small window for correction.

A limitation of this research was that the exposure frequency was calculated by train
series and not by train driver. This limitation was also present in the previous study and
expanded upon in section 2.4.1. Replication of this study using data with driver details
would give more insight into how often an employee needs to be exposed to a certain
situation for incorrect schema activation and execution to occur, which would give better
guidelines for SPAD prevention.

In Dutch rail, locations with a higher probability of a SPAD can be identified if the
following questions are all answered with “yes”:

e Are there situations where yellow+number-yellow-red aspect sequences can also
be yellow-red in the same location?

e Is the yellow+number aspect frequently present for that location?

e Is there a small window for correction, i.e., is there a large difference between the
required deceleration during the yellow+number-yellow versus the yellow-red
approach?’

e Are there no other SPAD prevention mechanisms present such as the auditory
warning system?

Interventions to prevent SPADs can be aimed at preventing wrong schema activation,
increasing the opportunity for self-correction and/or implementing intervention
mechanisms.

To prevent the possibility of the wrong schema activation leading to an error, the
infrastructure design can be improved via adjusted signal placement and/or track speed
to make sure there are no locations where the yellow+number-yellow-red aspect
sequence can also be yellow-red in the same location and there is a small window for
correction.

When this is not possible for a given location, the probability of wrong schema activation
can be reduced by a) decreasing the frequency of yellow+number aspects or b)
increasing the dissimilarity between the yellow and yellow+number signal aspects.

To increase the opportunity for self-correction when wrong schema activation cannot be
prevented, a) the window of correction can be increased, b) measures can be taken to
increase the probability that the red aspect is perceived from afar (e.g. visibility and line
of sight), and c) the braking power of the trains can be increased. Another option is

7 ProRail has requirements for minimum distance between signals per speed and speed reduction. In the case
of a zero percent slope and a track speed of 80 km/h, the size of the window for correction is 0.71 m/s? for the
shortest possible distance in combination with a yellow+6 aspect. When the automatic train protection system
ATB-EG is present in the tracks, the signal distance must be larger and the size of the window for correction is
0.62 for the shortest possible distance in combination with a yellow+6 aspect. The size of the window for
correction is 0.51 m/s? or 0.46 m/s? for the shortest possible distance in combination with a yellow+4 aspect
without and with ATB-EG presence respectively. At a zero percent slope and a track speed of 60 km/h, the size
of the window for correction is 0.45 m/s? or 0.39 m/s? for the shortest possible distance in combination with a
yellow+4 aspect without and with ATB-EG presence respectively. Thus, at a track speed of 80 km/h, the size of
the window for correction is either large (<0.6 m/s?) or medium (0.6-0.8 m/s?) and at a track speed speeds of
60 km/h the size of the window for correction is always large (<0.6 m/s?).
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employing other SPAD prevention methods such as an auditory warning system or
automatic intervention by technical systems.

The Dutch Railways started implementing the Orbit warning system in 2018. Initial
results of in-company research projects within ProRail and NS have shown indications
that Orbit has helped to prevent SPADs, although future research is needed to provide
evidence that an auditory warning system such as Orbit can also prevent SPADs in which
wrong schema activation occurred.

Nonetheless, understanding the causes of unsuitable deceleration behavior remains
important even when Orbit is also a useful safety barrier in preventing these types of
SPADs. Orbit simply does not cover all red aspect approaches because it is not
implemented in all trains yet and is not designed to cover all signals. Technical failures
are also possible. As is common within safety, we advocate the presence of multiple
safety barriers, first of all by supporting the train driver to drive as desired by improving
the infrastructure design.

Another reason that this research remains relevant despite technical advances is that it
touches upon a larger topic, namely the need to take previous exposure into account for
optimal task design:

> If (visually) similar situations often require one type of behavior and sometimes
require different behavior, then the occurrence of an error should be considered.

> Employees can correct their own initial error if it is possible for them to perceive a
clear signal (such as a red aspect) in time.

It is plausible that the incidental learning not only apply to the interaction between the
train driver and signal aspects along the tracks, but also to the interaction between the
train driver and on-board systems.
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4.1. Incidental learning as an important avenue for
interventions and future research on human error

Incidental learning has been identified as one of the possible contributors to the
occurrence of accidents via human error. The findings show the importance of not only
evaluating task design by looking at the feasibility to perform a task at a given moment,
but also how feasible it is to perform a task given what an employee is exposed to over
time. Ideally, tasks are designed in such a way that incidental learning is unlikely to lead
to errors. When this is not possible, situations can be identified where incidental learning
is likely to lead to errors and measures can be implemented in order to prevent the
errors from leading to an accident.

4.1.1. Relationship between frequency of exposure and error
probability

Our research focused on a vital task within rail, namely the approach of a red aspect.
Both the study using behavioral data and the study using accident data showed an effect
of aspect exposure in the past fourteen days. The study using behavioral data showed an
inverted-u shape between frequency and train driver behavior.

The largest effect was between frequencies of 260 to 350 yellow+number aspects in the
past fourteen days. This inverted u-shape was seen for all relevant signals (both with and
without theoretical mean deceleration filter) and for the one specific signal that was
analyzed separately. The study using accident data showed a different relationship for all
relevant signals with a high theoretical mean deceleration, namely an increasing and
finally flattening relationship with the largest effect visible between frequencies of 350 to
550 yellow+number aspects.

There were differences in approaches between the study using behavioral data and the
study using accident data. These differences are caused by differences in data availability
and methods and by new insights and new research questions. An overview of the
differences can be found in appendix C. The most important addition in the study using
accident data was the calculation of the window for correction. The analysis that took
window for correction into account did show the same relationship as was seen in the
behavioral data study, namely an inverted u-shape relationship between frequency and
SPADs.

As discussed in the discussion of chapter 2 on the behavioral study, this inverted u-shape
could be caused by other factors than incidental learning. Theoretically, it is possible that
the approaches with the highest frequencies also have a different characteristic. Many of

the possible differences in type of approach are however unlikely to explain the findings,

since the same shape was visible when looking at one specific signal.

One of the remaining options is that the approaches with the highest frequency in the
past fourteen days were also accompanied by relatively more unplanned green-yellow-
red approaches, creating more exposure to the high-risk situation and thereby
moderating the effect of exposure to the yellow+number-yellow-red approaches. In that
case, the underlying mechanism is still incidental learning but different exposure leads to
different learning.

There is however no reason to structurally expect more unplanned green-yellow-red
approaches at the highest frequency of yellow+number approaches in the past fourteen
days in contrast to those approaches with a lower frequency. We also performed a brief
check on a possible indication of a positive correlation between yellow+number frequency
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and yellow frequency by randomly sampling eight time periods. For these eight time
periods we looked at red aspect approaches towards the signal that was also separately
analyzed in chapter 2. We looked at two different train series to reduce the possibility of
a train series effect. Examining this data qualitatively gave no indication of a positive
correlation between yellow+number frequency and yellow frequency and thus no support
for this explanation. See appendix D for more information.

Alternatively, it is possible that the u-shape is inherent to incidental learning. Incidental
learning could lead to the highest probability of wrong schema activation at moderate to
high exposure, and less at very high exposure. As mentioned in the discussion of chapter
2, it might be easier to recognize that a situation is different than usual when there is a
very high consistency in exposure. This idea is in line with the findings of Buttle and
Raymond (2003) that high familiarity aids in change detection for face stimuli in
comparison to merely familiar faces, even after an additional training period with the less
familiar faces [76]. They use the term “superfamiliarity effect”.

Future research could shed more light on how the frequency of exposure exactly relates
to the probability of an error occurring, both during the task of driving towards a red
aspect as during other tasks (in other industries).

4.1.2. Future research on circumstances

The current research gives rise to the question under which other circumstances
incidental learning can also lead to errors, like other types of similarities during other
tasks and within other industries. There are many factors which can potentially influence
the probability of an error due to incidental learning. Further research on these factors
will provide more insight into the exact mechanics and give more information for
practical applicability in various settings.

4.1.2.1. Type of visual similarity

The findings indicate that the visual similarity between yellow and yellow+number signals
is sufficient to lead to incidental learning. Additional research is needed to investigate
what level of visual similarity is sufficient to lead to incidental learning in other scenarios
or industries. In the current research, the main stimulus (the aspect) varied in terms of
end-point deletion. In other words, there was either an additional number present or
there was not. Other variations in visually similar stimuli are also possible, for example a
mirror image reversal (e.g. ‘3" and ‘€’) or mid-point deletion(e.g. '|" and '}") [64].
Different types of similarity might lead to different probabilities of error due to incidental
learning.

4.1.2.2. Other types of similarity

Another important open question is the role of the location. During the red aspect
approaches, the two visually similar stimuli (the yellow aspects) were in the exact same
location leading to: 1. a high visual similarity around the aspect and 2. a similarity in
location. In other scenarios or industries, similar stimuli might not be in the same
location. For example, a certain tool might be operated by turning to the left, whilst a
different, but (visually) similar tool in a different location needs to be turned to the right.
Or there might be a certain stacking rule in one warehouse, whilst a different warehouse
might have a different stacking rule. What is the probability of an error occurring in those
situations and for which levels of similarity? The role of auditory similarity can also be
examined.
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4.1.2.3. Variation in exposure

A component that was not investigated in the studies on train driver behavior, was the
distribution between different types of exposure. In the rail studies, the independent
variable was how often the yellow+number aspect was present in the past fourteen days,
for a location where there was currently a yellow aspect. This gave no information about
how often that specific signal was yellow (followed by a red aspect) in the past fourteen
days.

In general, the yellow+number aspect as part of a scheduled approach is more
frequently present at a given location than the unscheduled approach with a yellow. This
gave rise to the labeling of yellow+number as the ‘standard’ approach and the ‘yellow’
approach as the ‘deviating approach’. It was however not explicitly taken into account
how often train drivers are exposed to the deviating approach in addition to the exposure
to the standard approach.

When this information is taken into account in future research, it could also be relevant
to include the sequence of exposure. A train driver might be exposed to the standard
approach during 90 approaches and to the deviating approach during 10 approaching,
but does it matter if the train driver is exposed to all 90 in a row before being exposed to
a deviating approach versus for example 10 standard approaches followed by 1 deviating
approach followed by a number of standard approaches and then a deviating approach
again?

Especially when including the latter variable, data on train driver level rather than on
train series level is recommended.

In the example of the warehouse, the effect of incidental learning might be different
depending on whether the employee works 60 shifts in warehouse A and 20 shifts in
warehouse B, versus 75 shifts in warehouse A, and 5 shifts in warehouse B. Additionally,
the probability of an incidental learning effect might be higher during the first shift in
warehouse B after multiple shifts in warehouse A, then on the fifth shift in warehouse B.

4.1.2.4. Opportunity for correction

The theory behind wrong schema activation predicted that the train driver makes an
initial error of insufficient deceleration but can correct his or her behavior upon receiving
new information, i.e. seeing the red aspect. The findings support the notion that the
initial mistake does not necessarily lead to a certain form of tunnel vision, making the
train driver "miss” the red aspect. This conclusion is based on the finding that the SPADs
do not occur if there is considerable opportunity for correction.

Whilst this self-correction by the employee is never used as a sole safety barrier within
railways, it is important to keep the room for correction in mind when adjusting the
infrastructure and when performing research. Near miss situations because of self-
correction might go unnoticed until a change in infrastructure that reduced the window
for self-correction leads to SPADs.

The same heads-up applies to other tasks within railway in other industries: be aware
that a large opportunity for correction might mask problems within the human-task
interaction and that a reduction in opportunity for correction can be followed by an
increase in the number of accidents if the rest of the system is not improved beforehand.
The recommendation is always to 1. improve the human-task interaction to decrease the
probability of an error occurring and increase the chance of processes running as
intended and 2. having additional safety barriers in place that can prevent errors from
leading to accidents which can include but should never solely be, sufficient opportunity
for self-correction.
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4.1.2.5. Value of stimuli

Signal aspects are vital for the train driver to perform his or her job well. The yellow
aspect is especially critical, as it signals the presence of a red aspect at the next signal.
The yellow and the yellow+number aspect are visually similar, but highly different in
meaning. In future research, the meaning of the stimuli can be included. Is the
probability of an error higher if the stimuli have no safety related meaning or does this
have no effect?

4.1.2.6. Variation amongst employees

Another interesting avenue for future research is the variation among employees. Are
certain people more prone to the effect than others and what does this depend on? Is
there an influence of years of experience or of personality aspects? Are there also other
factors that could make one especially prone to errors due to incidental learning, for
example fatigue or beginning or end of the shift?

4.1.3. Problem with perception?

An alternative explanation to insufficient deceleration being caused by wrong schema
activation could be that it is (simply) a matter of incorrect perception. There are however
multiple reasons why incorrect perception is unlikely to be the cause.

Perception error of seeing what is not there?

If our investigated error corresponded with acting according to “yellow” when it was in
fact “yellow+8"”, then the perception error would be more likely with the train driver not
receiving visual input of the number eight or not processing it. This is however not the
case for the tested scenarios. The investigated train driver error occurs when the train
driver acts as if yellow+8 (or another yellow+number) was present, while in fact the
aspect was yellow. If we would regard this in terms of perception, it means that the train
driver perceived an “8” which was not present.

Clear visual input is not enough as demonstrated in the Stroop test

Even if we assume that the train driver could incorrectly perceive the number eight which
was not there, then it still is not necessarily a perception problem. Research using the
Stroop test (briefly mentioned in chapter 2) is a notable demonstration that even in the
presence of clear instructions and clear visual input, the schema that is activated more
strongly, wins.

During the Stroop test, participants have trouble naming the color in which a word is
written if the letters spell a different color. The participant is for example asked to name
the color of the blue letters that the word RED is written in. The correct answer is ‘blue’
in this example and the common error is saying ‘red’. When asked to respond quickly,
participants tend to make mistakes even though the visual stimuli is clearly visible and
participants experience no problems with perception. They “know” the letters are in blue,
but nonetheless respond by reading the word “red” out loud.

The effect is stronger when bilinguals participate in their dominant language than when
they perform the task in their non-dominant language. This effect is attributed to
differences in processing automaticity as a result of exposure and experience rather than
to perception problems [77]. During the red aspect approach, the (visual) input is likely
to activate multiple schema’s within the brain of the train driver, where the strongest
schema wins.
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The complicated relationship between perception and action

What “perception” means and how it relates to action is also not a straightforward
matter. We can see without visual perception and we can act before we consciously
perceive or even without awareness of what was seen (see for example [78,79]).

There can be a difference between what we see and to what action it leads and what our
brain reconstructs that we have perceived. The potential retro-active conscious naming of
what the train driver has perceived, does not impact the action. The classical view is that
sensory input leads to perception and then to action, but more recent theories show that
action can actually influence early visual processing [80]. For more information see
research on embodied cognition, such as [81,82].

Vision is not the only input for action

Finally it is important to realize that action is also activated by other modalities than just
visual input. During the red aspect approach one could say: “the train driver responded
as if having seen yellow+8", but one could also say: “the train driver responded as if
being in this exact location”.

In other scenarios, action might be triggered by visual and auditory and spatial input or
even by previous action. Visual input does not solely determine our actions. Reducing the
errors made by the train drivers to “they did not perceive the signal correctly” is an
unrealistic simplification which, in worst case scenario, can lead persons to conclude that
train drivers should simply “look closer” or “pay more attention”, which is a
counterproductive notion.
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Reflections for future research: Considering findings from a road
traffic study on change detection from an incidental learning perspective

The study described below is a simulator study into car driver behavior and driver
response to the addition of a “no entry” sign at a road that was previously accessible.
This type of variation in task design (addition of a “no entry” road sign) is far less
common in everyday life than the presence of different aspects at a specific signal,
whether on the road or within rail. This study is therefore more about behavioral
response to environmental change than the incidental learning in the workplace where
variation in stimuli and accompanying required different responses are part of an
employee’s every-day job. Nonetheless, the study results provide an interesting case
to think about familiarity and exposure from a broader, incidental learning perspective
rather than the more specific change detection perspective.

Martens (2018) used a simulator study to investigate whether people were less able to
respond correctly to a “no entry” stop sign at an intersection when it was placed there
after driving the same route eighteen times [83]. Of the participants that were
confronted with the “no entry” sign on the nineteenth drive after eighteen identical
drives without the sigh, 30% entered the “no entry” road on the nineteenth.
Interestingly, in the condition where the “no entry” sign was present on the first drive,
40% of the participants entered the “no entry” road. In the condition where the “no
entry” sign was present after eighteen identical routes but with different scenery, 56%
entered the “no entry” road on the nineteenth drive.

It should be noted that there were few participants, with only ten participants in the
first two conditions and nine participants in the last condition. Nonetheless, it is
interesting to note that multiple participants drove through the “no entry” sign even on
the first drive. The authors attribute this to the road lay-out which was not in line with
typical “no entry” locations. This explanation is supported by the fact that in conditions
with (generic) warnings, there were zero to one participant driving through the “no
entry” sign. In the conditions where there was a (generic) auditory warning before the
intersection, there were no participants driving into the “no entry” road and in
conditions where there was a sign with a generic warning about changed traffic
situation before the intersection, there was only one participant driving into the “no
entry” road for both the condition where the “no entry” sign was present during the
second or the nineteenth drive.

The suggestion that road lay-out is more important than specific road exposure is
interesting. In terms of familiarity, one could say that the condition with the “no entry”
sign on the first drive had a certain level of exposure to the road lay-out based on
everyday experience. The condition with same route but different scenery has a higher
level of similar exposure and the condition with the same route and same scenery has
the highest level of similar exposure. Here, we do see the same inverted-u shape: 40%
error, 56% error, 30% error.

The exposure in this study consisted of only eighteen drives in a simulator during one
afternoon and might not be representative of driving home every day on the same
route. There were few participants and change detection was used rather than a
stimulus that naturally varies as part of task design. However, this study does highlight
some important factors to consider during research:

- Varying situations in terms of scenery whilst keeping required behavior identical

- Behavior triggers based on increasing exposure during the study

- Behavior triggers based on familiar road lay-out / task lay-out
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4.2. Concrete application of the insights on incidental
learning

We have seen that incidental learning can play a substantial role in causing human error
in specific situations. We can build on the insights around incidental learning to provide
recommendations for accident analysis, task design and research.

4.2.1. How to investigate incidental learning as part of an accident
analysis

The main goal of analyzing accidents is to prevent future accidents by learning from the
previous accidents. In order for effective learning, it is important to not only know what
happened, but also why and what factors allowed for the accident to occur. There are
multiple accident methods and models available and used worldwide. The methods differ
in complexity and scope, ranging from ‘asking ‘why’ five times’ to drawing non-linear
models which include factors outside the organization.

Part of all methods is identifying why a human error occurred (e.g. in the ‘five-times-
why’ method) or what the context was that increased the probability of a human error
occurring (e.g. Tripod, HFCAS) [84]. Some methods, like HFCAS, provide taxonomies of
error contributing factors. These taxonomies provide guidance for the incident
investigators [85]. Accident analysis is a complex cognitive task. It has been found to be
susceptible to cognitive biases [86]. Providing lists of possible error contributing factors
can help incident investigators to systematically evaluate whether they have considered
multiple options.

The Dutch Safety Board created an evaluation checklist for accident analysis methods.
The questions included: ‘Does the method stimulate discussion between the team of
investigators?’, ‘Can the method be taught easily?’ ‘Does the method stimulate
investigators to identify a broad range of factors (minimizing tunnel vision)’, ‘does the
method discourage pointing towards a culprit?’ [84]

We believe that adding incidental learning as a factor to consider, would improve the
accident analysis method on these aspects, regardless of which method is being used.
For methods such as HFCAS which already have taxonomies, it is recommended to add
incidental learning to the list of possible contributing factor.

4.2.1.1. Four incidental learning questions to ask during accident analysis

The generic recommendation for accident analysists is thus to consider whether an
accident could have been caused by incidental learning. One can go about this by asking
a set of questions. These questions are listed below with example answers given for an
accident in rail based on the research in this dissertation, an aerospace example inspired
by an actual aerospace accident in the Netherlands [87], an inland shipping example
inspired by an actual accident in the Netherlands [88] and medical example inspired by
an actual accident in the UK [89].

Please note that, although these examples are based on actual accidents, they are
simplifications of the actual situations that occurred. Assumptions were also made about
the processes within the respective industries which might not be entirely correct (e.g.
how often certain tasks are performed) but were made for illustration purposes.
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¢ Q1: What was the task where a human error occurred? What was the
behavior that was the human error?

Rail example: The train driver approached a red aspect. The train driver decelerated
insufficiently.

Aerospace example: The pilots positioned the plane on the runway for lift-off. The pilots
positioned the plane incorrectly at the edge of the runway instead of the center.

Inland shipping example: A tanker sails towards a closed barrage using radar due to
heavy fog. The captain sails the tanker into the closed barrage.

Medical example: A nurse administered intravenous medication to a patient after a
pacemaker had been fitted. Administration of the penicillin was an error because the
patient had a known penicillin allergy.

e Q2: Is it a type of behavior which can be performed by the employee with
relatively little attention / with high automation? This is for example the
case if it is commonly performed behavior. The behavior should not require
looking up in @ manual how to do it or asking someone else, nor should it require
thinking pauses to consider how to perform the next (manual) action.

Rail example: Decelerating the train towards a signal is a key behavior for train drivers
and very common. They are likely to be able to perform it with little attention/high
automation. Conclusion: yes.

Aerospace example: Positioning the plane on the runway is a very common behavior.
Pilots are likely to be able to perform the manual task of steering and decelerating and
accelerating with little attention/high automation. Conclusion: yes.

Inland shipping example: Because of the fog, the captain had to sail based purely on
radar which is very hard and requires a lot of attention. It is also far less common to sail
for long periods in closed fog using radar than it is to be able to sail with visibility. It is
unlikely that the captain could behave with little attention/high automation. Conclusion:
no.

Medical example: The error lies in the choice to administer penicillin rather than in the
manual steps of administering medication. Whilst this error thus does not typically
revolve around behavior, one can say that the cognitive step from ‘patient who has just
had a pacemaker fitted’ to ‘I should administer penicillin’ is one which can be performed
with high automation in the sense that little explicit thinking effort is required.
Conclusion: yes.

e Q3: What did the employee see, hear, smell, feel or had just done at the
moment of behavior execution? Was what they saw, heard, smelled, felt
or had just done similar to what they see, hear, smell, feel or do in other
situations where the performed behavior is in fact suitable and not an
error?

Rail example: The train driver saw a yellow signal at a specific location. In other
situations, the train driver can see a similar signal aspect (yellow+8) in the exact same
location. The lower amount of deceleration which was an error during the accident, is
suitable behavior in the situation with the yellow+8 aspect. Conclusion: Yes.
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Aerospace example: During the incident, it was dark outside and there were runway edge
lights which were on. There was no taxi center line lighting. Visually, there was therefore
one line of lights. This is visually similar to other situations where there is one line of
lights at the center of the runway. Positioning the plane in front of the line of lights was
an error during the accident, but is suitable behavior in the situations where there is only
a taxi center line lighting. Conclusion: Yes.

Inland shipping example: The captain could not look outside due to heavy fog. It is
possible that the visual cue of the radar is similar to other times when he sailed on radar
in the same location, but heavy fog is not that common. Additionally, the barrage at the
specific location is hardly ever open so the behavior of continuing to sail would be an
error during both the accident and during the similar situation. There might be some
elements within the radar that were similar to other situations where continuing to sail is
suitable, but in this scenario that was not the case. Conclusion: No.

Medical example: Intravenous penicillin is the usual antibiotic used following a
pacemaker being fitted. Insufficient details were provided on what the visual similarities
were in the situation with this patient with the known allergy and the generic situation of
other patients without a known allergy. However, there was no clear record of the allergy
in the medical notes, so it is likely that there were visual similarities within the notes
between the patient who could not have penicillin administered and those who can. The
patient’s allergy band was covered with a bandage for an intravenous drip, so there was
no visual differentiation on the patient’s body. Conclusion: Yes.

e Q4: Is the similar situation in which the behavior is in fact suitable,
commonly present per employee? If there is data available on the frequency,
then this is very useful, but otherwise more qualitative questions can be asked,
like: at the very least, does it ever occur in a month?

Rail example: Some signals can have a different, but similar signal aspect at the same
location, while others cannot. For those signals that can have different, but similar signal
aspects, those that are near a station are more likely to have frequent yellow aspects
than others. In our example, the signal that was yellow can also display the aspect
yvellow+8 and is likely to do so frequently because it is near a station stop. Conclusion:
yes.

Aerospace example: Pilots commonly fly during the dark on runways which have only taxi
center line lighting and therefore often see the one line of lights and have to often
position the plane in front of it. Conclusion: yes.

Inland shipping example: Not relevant given the no at the previous question.

Medical example: Administering intravenous penicillin to patients who have had a
pacemaker fitted is common behavior for nurses. Conclusion: yes.

e Conclusion

If question two, three and four are answered with ‘yes’, then incidental learning is likely
to have played a role. If any question is answered with '‘no’, then incidental learning is
unlikely to have played a role.

However, the most important function of above questions is to inspire incident
investigators to consider whether there are similar situations whose previous exposure
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could have increased the probability of an error due to similarities in how the situation
looks/sounds/feels/tastes and the required performance of automated behavior.

As a final note, be aware that it is not fruitful to directly ask the employee involved in the
incident whether he or she was influenced by incidental learning. As discussed
previously, when schema’s are present, one can perform actions with less attention.
Attention is an important component of encoding memories which is why behavior
performed with less attention is less likely to create a memory [90,91]. This is the reason
many of us find ourselves rushing home to check whether we have turned off the stove,
closed the window or locked the door, when we have already done so. The common
behavior of turning off the stove or locking the door does not create a vivid memory in
our minds.

4.2.2. How to investigate incidental learning as part of task
evaluation and task design

Tasks are the specific activities of an employee which are needed to achieve functions
and thereby goals [30]. Whilst there can be varying degrees of freedom in how an
employee performs a task, there is usually a (physical) system that the employee needs
to interact with and a set of procedures or rules on how the task should be performed.

Both the system and the procedures can be designed in multiple ways. Here we refer to
the design of the system and the procedures involved in the execution of a task as the
‘task design’. Ideally, a task is designed in such a way that the probability of an error is
as low as possible. Alternatively, safety barriers can be incorporated in the task design to
ensure that errors do not have significant undesirable consequences if the errors cannot
be provided by improved task design.

When it comes to the evaluation of both existing and new tasks, involvement of
(prospective) users is often advised. Usability testing, in which users interact with the
system to identify design flaws overlooked by designers, can be a useful way to evaluate
and consequently improve task design [30].

However, when it comes to the effects of incidental learning, these issues might be
overlooked during usability testing because of relatively low error probability, insufficient
previous exposure for learning to occur in the test setting and increased attention of the
users in the artificial setting. Heuristic evaluation can also be performed, which refers to
a systematic evaluation of the design to judge compliance with human factors guidelines
and criteria [30]. Similar to the recommendation for accident analysis, we advise the
inclusion of incidental learning as a factor to evaluate upon during heuristic evaluation.

4.2.2.1. Six incidental learning questions to ask during task evaluation

When a task design is evaluated on the effects of incidental learning, the following
questions can be asked:

e Are there any tasks where human error can lead to an accident? For such a task:

e What is the cue for the employee to perform the behavior? What does he or she
see or hear or has to do previously (or even smell or feel) that elicits the
behavior? List ‘cues A’ and ‘behavior A’

e Are cues A similar to the cues that are present in other situations where different
behavior is required? List ‘cues B’ and ‘behavior B’

e What happens if behavior B is performed during the task where behavior ‘A’ is
required? Does this lead to a problematic error? If yes, continue answering the
questions. If no, consider whether the design can be accepted.
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e Is behavior B more commonly performed by an employee than behavior A? If yes,
continue answering the questions. If no, there is less chance of a problem,
although errors with high consequences should still be taken considered.

e Is there an opportunity for correction? Is the employee triggered by a system
which detects the error or does the employee have to detect the error on his or
her own? If the employee acts correctly upon detection of the error, will this still
be in time to prevent the error from leading to an accident? Depending on the
answer and the severity of the error consequences, consider improving the task
design.

Above questions can be asked for the functioning of the system as designed. Another
element to consider is that employees also learn from exposure to suboptimal system
functioning. For example, frequent ‘false alarms’ by a system can lead to an increased
probability of responding to the alarm by ignoring it or immediately clicking it away
without further actions as is often experienced to be unproblematic but can lead to an
accident in those situations where the alarm was in fact correct. Such situations can for
example occur for auditive warning system but also for intervening systems such as
automatic emergency brake.

4.2.2.2. Example of tasks where evaluation on incidental learning is useful

One specific type of tasks not yet mentioned in previous examples are those using digital
interfaces and automation. Automation and the use of interfaces is becoming increasingly
prevalent. When employees are exposed to differently designed interfaces which require
different actions upon perceiving similar visual or auditive messages, then problems can
occur. One type of error that can occur within using the same system is the ‘mode error’
where the user assumes that the machine is in one state when it is in fact in another
[92]. Depending on which mode the system is in, the same action might be either
suitable or an error.

Options to consider to improve the task design:

e Prevention: Make the cues that are present in situation A and B more dissimilar

e Prevention: Make behavior B impossible to execute in situation A

e Prevention: Make the execution of behavior B only possible in situation A after
additional action steps

e Preventive safety barriers: Increase the opportunity for error correction by
implementing systems which detect and warn early enough for a corrective action
to not lead to an accident.

e Mitigating safety barriers: Anticipate uncorrected errors and add safety barriers
which ensure that the error does not lead to damage, harm or injury.
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Chapter 5

Research inspiration by analyzing variation: A
Shewhartian view on process safety

Based on the article “"Everything under control, check your variation! A Shewhartian view
on process safety and other applications” by Julia Burggraaf, Frank Guldenmund and Jop
Groeneweqg.
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Chapter summary

Data can be analyzed in many ways. We have found that examination of the variation in
human behavior can help identify relevant human behavior questions for in depth
research. This is especially the case if there is more variation in behavior among certain
tasks while this is not expected based on the characteristics of the tasks.

If organizations are in control of their systems and processes, they will be highly
predictable with little variation. Some level of variation is inevitable: even when someone
attempts to do the same task twice in an identical way, the outcome will always be
slightly different. From a process safety perspective, the relevant questions are: how
much of that variation is acceptable and part of the normal accepted way of working and
what are sources of unwanted variation? This approach was developed by Shewhart: he
placed an emphasis on reducing variation within quality management. High variation,
especially if the source is not known and the occurrence not understood, can be a mark
of lack of control over organizational processes. Incidents in this view are not the result
of special causes but are the extreme cases of normal operations with too much
variation.

We advocate examining, understanding and reducing unwanted and avoidable variation
to improve safety performance and use the amount of variation as indicator whether an
organization is in control over their processes and, hence, its safety. The developments
within technology, including sensors and data analysis, now make it possible to map the
variation of processes and outcomes that are of interest to process safety. Once
processes are measured, comparing variation between processes that are considered to
be similar or considered to be different in variation, can be used to gain a deeper
understanding of such variation. This Shewhartian view on process safety is clarified with
a case that will illustrate the need to take on this approach to increase our understanding
of human behavior and further reduce the number of incidents.

Research order

D
Initial analysis Data verification In-depth research In-depth research
with behavioral with incident data

data

—~——— " O

‘ ’ (PhD-)research prerequisites m
Ava)|

©

Factor selection by
researcher/analyst

Research steps

Psychology

Cch.5

Reading order

Figure 22. Location of chapter 5 with respect to research order and reading order. Chapters 2 to 4
discussed the research question of this PhD. Chapters 5 and 6 discuss the research prerequisites.
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5.1. Introduction

The mathematician Jacob Bernouilli consulted Leibniz on a notion he had: Is it possible to
calculate the probability of a man of twenty outliving a sixty-year-old man, using
gravestone data? Leibniz replied that this might not be possible, as there is no limit to
the sources of variation in nature, i.e. death causes, that will appear in the future [93].
In other words, next to the common causes of variation that will always be present in
any process, hew and unpredictable causes will appear, call them special causes of
variation, which we will never be able to predict in the present, let alone control.

The correspondence between Bernouilli and Leibniz occurred in 1703. Fast-forward to the
'30s of the last century, when production plant managers struggled with significant
amounts of scrap, products not meeting specifications. Quality control at the time was
limited to inspecting finished products, which gave little away of what went wrong and
where. Walter A. Shewhart, born in 1891, addressed this issue within quality
management by focusing on the causes of the variation in outcome. In 1931 he
formulated as his third postulate: “"Assignable causes of variation may be found and
eliminated” ([94], p.14).

Shewhart also developed control charts which are relevant when it comes to monitoring
an in-control-system over time. His control charts are famous, widely used and
beneficial. These charts are used as an early warning system to see, over time, if a
process is going out of control. These control charts take the distribution and variation of
a process into account, based on the idea that values can vary due to the “natural”
variation of a process (common variation), yet values become alarming when they are
outside the expected values given their “natural” variation [94,95].

One of the big challenges organizations face with respect to process safety, is answering
the question: Are we fully in control? The presence of incidents can indicate that the
organization is (partly) out of control, depending of course on the accepted level of risk in
the process. However, the absence of incidents does not equate to being in control. The
field of safety is not the only field concerned with answering the question whether a
process is controlled or not. Insights from the quality domain can be used to increase the
understanding of why incidents occur and identify new ways of reducing them.

Central in Shewhart’s approach is the idea that sources of variation (noise) must be
identified and eliminated [94]. This idea can also be applied to process safety. In the
view of Shewhart, accidents are “just” extreme outcomes of a system that allows for too
much variation and is therefore not in control (Ibid.). This contrasts with the more
traditional approach towards safety: causes of incidents must be identified and
eliminated. Of course, the causes identified via the traditional approach can be sources of
unwanted variation and are interesting targets for improvement. What is added in the
approach of Shewhart is that the amount of variation in the normal way of operating
should also be the target of an investigation.

Discussions within the safety domain on process safety indicators and early warning
indicators show little mention of Shewhart’s control charts and his focus on distributions
and variation (e.g. [96,97]). Best wrote that in 1924, “Shewhart described the first
control chart” in the Hawthorne factory, where in November of the same year, “a series
of research projects began which came to be known as the Hawthorne studies. This body
of work was central to the creation of the fields of the sociology, social psychology, and
anthropology of the workplace.” While both events occurred around the same time at the
same place, these streams of ideas did not become entwined. Shewhart’s notions
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influenced engineering and production management, yet not the social science and
organizational behavior that underly a lot of thinking within safety [98].

Shewhart’s ideas of focusing on variation have been around for a long time. Despite
having proven their merit within quality management, they have not caught on within
safety, so why haul them up now?

The answer is twofold: firstly, the traditional approach within safety have led to many
improvements in domains like aviation, refineries, and railways, but organizations are
now faced with a residual number of accidents that prove to be elusive in their causes,
when investigated via the traditional approach. Secondly, developments within data
theory and data technology have finally advanced sufficiently to make it practically
feasible to implement this notion.

Taking into account the distribution and the variation of pertinent output and process
parameters (or parameters deemed pertinent), requires collecting, storing and analyzing
data of all situations with the potential for an incident, and not just those situations in
which the potential actually turned into an incident. Previously, data was often stored
temporarily and overwritten after a day, week or month, because the amount of data
was simply too much to store and analyze. This still happens, but less often because of
costs or technological constraints, but merely because no one is asking for the data. In
other instances, the data are not stored yet, but they can be, thanks to more easily
implementable and cheaper sensors.

5.2. A Shewhartian view on safety

What does it mean to look from a Shewhartian perspective onto the field of safety? In

the most generic sense it means: 1. measuring the behavior of a process that contains
the potential for an incident, 2. looking at the distribution and variation of that process
and 3. identifying sources of unwanted variation and eliminating them.

1. Measure the behavior of a process that contains the potential for an incident

We have identified SPADs as an incident within the rail industry. When a train is
approaching a red aspect, this is a situation with the potential of the incident, the
SPAD, to occur. When a train is not approaching a red aspect, there is no potential
for this specific incident to occur. As another example, in healthcare, organizations
are concerned with the risk of an infection during surgery. When a surgery is
being performed, this is a situation with the potential of the incident, the infection
during surgery, to occur. When there is no surgery, there is no potential for this
specific incident to occur.

For every situation with the potential of a certain incident, the behavior should be
measured. In the case of risk of a SPAD, we want to measure every approach to a
red aspect and calculate one value per approach that summarizes the behavior.
This can, for example, be the highest value of required deceleration, as will be
explained in more detail below. In the case of risk of infection during surgery, we
want to measure every surgery and calculate one value per surgery that
summarizes that (part of the) process. The number of times the door opens
during surgery is a useful measure, because the number of times the door opens
correlates with the risk of an infection [99].

2. Look at the distribution and variation of that process

When we have this one value per approach to a red aspect and we have measured
500 approaches, we can look at the distribution of these 500 values. The same
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can be done for surgeries, i.e. the amount of times the door opens during one
operation. The distributions will show the variation within the process.

3. Identify sources of unwanted variation and eliminate them

Figure 23a shows incidents as part of the tail of the distribution (i.e. the red
area). Figure 23b shows the same type of distribution with the same mean, but a
reduced variation, leading to a reduction in the amount of incidents. When
variation is unacceptably high, as in Figure 23a, the sources of the variation
should be identified and eliminated to reach a better situation, as in Figure 23b.

Finding sources of variation contrasts with the “traditional” view on investigation
with a focus on the identification of causes of incidents that have occurred. Some
of the factors identified in traditional investigations can be sources of variation,
but the focus on variation takes a broader perspective and also includes factors
that sometimes lead to outcomes better than expected as part of a large
variation. The identification and elimination of sources of variation also provides
additional possibilities for safety interventions other than just adding safety
barriers.

Frequency
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| k 1
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(a) (b)

Figure 23. (a) original variation with incidents in the tail of the distribution (b) reduced variation with
no incidents
Before we elaborate on approaching train driver behavior and SPAD probability via the
Shewhartian perspective, we will first delve deeper into the notion of variation.

5.2.1. Two types of variation, from four perspectives

All processes contain variation. As a neutral example we will use “cooking a dish”. If you
cook the same recipe fifty times, it will never be exactly the same dish. If the same dish
sometimes tastes awful and sometimes delicious, then there is a lot of variation. If the
dish always tastes average to good, then there is a lot less variation. Even in very exact,
machine driven processes, there is always variation if you measure in enough detail. A
piece of metal might always be cut to 1.200 cm by a metal-cutting-machine, but when
the resulting pieces of metal are measured in ten or more decimals, they will not have
exactly the same lengths.

5.2.1.1. Variation aspect: problematic or not

When one cooks the same recipe fifty times, and it always tastes average to good, then
one might consider this process having little variation. However, the same small
differences in dish taste, might be considered a huge variation in a five-star restaurant.
Whether variation is problematic or not, is therefore not only related to the absolute size
of the variation, but also to the context and goals.
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5.2.1.2. Variation aspect: controllable or not

One source of variation in the taste of the sauce we are making, is the amount of water
that is added during cooking. One might add 120 ml one day and 140 ml the other day,
because it is done by hand. One might reduce this variation by using a measuring cup.
Using the measuring cup could reduce the variation in water added to 130 ml on average
and ranging between 125 and 135 ml. The variation is thus controllable. The variation
might be reduced even more by using a more exact measuring cup that can be read
more precisely. Eventually it will no longer be practically feasible to reduce the variation
(e.g. due to fluctuations in temperature affecting the density of the water being
measured).

5.2.1.3. Variation aspect: common or special

Shewhart introduced two types of variation he called chance and assignable, which were
later adopted as common and special. When we cook our sauce on an electric stove at
level 5, then the temperature of the stove will always differ a bit, around an average.
This is common variation. When the stove has an error, the temperature might be
reduced to zero. This variation in temperature is not caused by common variation, but is
considered special variation. Common variation is always present, whilst special variation
is caused by a factor which is not always present. In the previous example, the difference
in water added by hand is usually part of the common variation. When a lot more water
is added one day because someone bumped into the cook, then this is special variation.
One could also argue that the variation itself is not common or special, but its source is.

5.2.1.4. Variation aspect: known or unknown

Both variation and its cause can be either known or unknown.

If, whilst cooking at home, the partner of the cook adds varying amounts of pepper
without the cook knowing he adds pepper at all, this will create variation in the level of
spiciness of the dish. To the cook, the variation will be known when (s)he tastes it, but
the cause of the variation will be unknown to him or her.

If the partner adds pepper every time the recipe is cooked, then it will be common
variation. If the partner is only home occasionally when the recipe is being cooked, then
it will be special variation. In both cases, the variation is known, but the source is not.

If a source of variation has not occurred yet, then both the variation and its source might
be unknown.

It is also possible that a source of variation is known, but because it has not occurred
frequently yet, it is unclear how this variation behaves. For example, if the partner was
only present once and added three twists of the pepper mill at that time, then it is
unknown whether (s)he will also add around three twists every time or whether (s)he
adds six twists one time and only one at another occasion. This makes it difficult to
model and predict the variation in these situations, even when the source of variation is
known.
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Variation known Variation Unknown

Source known Ideal situation Source of variation can be
investigated further to
understand how much and
what kind of variation it

causes
Source unknown The known variation can “We don’t know what we
inspire a search for the don’t know”-situation. Can
source be due to lack of

measurement or due to
infrequently or not yet
occurring sources of
variation

Table 9. The four types of variation one can encounter in processes.

5.2.2. Gaining more insight into your variation

It might be tempting to start the examination of variation with the question whether the
variation is problematic or not. In theory, one might use the distribution characteristics
to calculate what the chance is of obtaining unacceptably high values based on the
observed distribution. However, this type of “black box” approach does not improve our
understanding and the level of safety.

Being in full control over a process does not just mean having a process behaving within
certain boundaries, but also understanding the common and special variation within that
process. In the “black box” approach, minor data oversights and changes within the
process can also easily lead to unexpected risks. We therefore recommend asking the
question whether the variation is problematic or not after the variation and its source are
better understood.

A useful question to summarize an organization’s level of understanding of the variation
is “"Can we account for the variation?” In some cases, there will be clear signs of
unaccounted variation. For example, if a process follows a bimodal distribution, where
one expects a unimodal distribution, more investigation is needed and the data can be
used to guide investigations in the right direction.

In other cases, the data might follow the expected distribution or there might not be a
clear expectation. What should you do in these cases? In these cases, it is recommended
to split the data. Splitting the data can be used to check the assumption that the
variation is the same across groups/categories or to check the assumption that certain
groups/categories have more variation than others. We will first apply this approach to
SPAD risk and afterwards illustrate the application of this approach within health care and
the fire brigade.
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5.3. Trains passing red aspects

During a train drivers formal training, much time is devoted to stressing the importance
of avoiding SPADs. Train drivers are fully aware of the risk of SPADs and also want to
avoid these at all costs. No train driver wants to have a SPAD. Yet these incidents still
occur and measures to prevent them based on “identified causes after an investigation”
have worked in the past, but failed to reduce the number even further. Following
Shewhart, the alternative approach would be to look at the causes of variation in train
driver behavior and treat the SPADs as “extreme outcomes” of a system not optimally
controlled. The first step is to determine what kind of indicator can be used to describe
the behavior of the driver.

As described in section 2.2, ProRail had already developed a proactive safety measure
called Time-to-SPAD (TtSPAD) in cooperation with Dutch Railways (NS) at the start of the
PhD. During the analysis of the measure as part of my PhD research, we developed a
new safety measure called Deceleration-to-SPAD (DtSPAD) based on the previous one.

The DtSPAD or ‘required deceleration’ can be calculated for any train approaching a red
aspect. It indicates the deceleration that the train needs in order to still be able to stop in
front of the red aspect, i.e. the minimal required deceleration that the driver needs to
brake with continuously. There is a clear link between the measure and the incident (a
SPAD), since a required deceleration that is higher than the total available braking power
of the train means that the train will pass the signal at danger (unless the signal clears
before the train reaches it).

The highest required deceleration measured during an approach can be taken to illustrate
the smallest buffer the train driver has before he reaches the red aspect. This maximum
required deceleration (mDtSPAD) is the one summary value per situation with a potential
for the SPAD incident, (i.e. per approach to a red aspect), which we can use to inspect its
distribution, and variation. For more information on mDtSPAD calculation and a graph
showing the relationship between DtSPAD and actual deceleration, see section 2.2.

5.3.1. Examining current variation

The value of our train driving measure is not expected to be the same for every
approach. Some variation is to be expected since train driver behavior can be affected by
multiple factors, like scheduling and time pressure, energy efficient driving and personal
style. We might assume that these kinds of factors are present for every red aspect
approach and thus common variation. Based on knowledge of the rail system and human
factors, we also expect some sources of special variation. A red aspect can, for example,
be positioned immediately after a planned stop at a platform, or not. In the first
situation, the train driver will stop at that location regardless whether the aspect is red or
not, whilst in the latter situation the train driver will have to decelerate to standstill solely
because the aspect is red. We expect different levels of variation for these two types and
therefore split the overall distribution into two distributions according to that factor.

An additional factor of interest is which yellow aspects are shown before a red aspect. In
Dutch rail, multiple different yellow+number aspects are used (Yellow+8, Yellow+8
Flashing, Yellow+6, Yellow+6 Flashing, etc. See section 2.1.2. for more on information
on these aspects). Although there are some differences between these various yellow
aspects and the accompanying infrastructure, in general the same amount of variation in
behavior is expected per aspect. In other words, the signaling system is not meant to
create large differences in our measure. We check this assumption by splitting the
previously split data further into yellow aspect categories. The results showed that the
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distribution and the variation of our train driving measure is not the same for each type
of yellow aspect, which is contrary to what might be expected from the signaling design
perspective and design intentions. There was one yellow+number aspect in particular,
that correlated with a lot more variation.

Multiple theoretical explanations are possible as to why this particular yellow aspect
generates more variation in DtSPAD. Delving further into the distribution by splitting it
according to additional theoretically relevant factors (permitted track speed at location of
yellow+number aspect and yellow-red distance), we discovered that this type of yellow
aspect only showed (a lot) more variation in DtSPAD when certain other elements were
also present.

The fact that there was a subset within the distribution of this deviating yellow aspect
that showed little variation in our measure, made some of the hypotheses less likely as
to why this yellow aspect might be problematic. Inspecting those situations with little
variation was interesting in itself and provided insight into what train drivers are exposed
to and, therefore, what they can get used to. When employee behavior is involved,
learning can occur during situations which they experience often. If the situation changes
slightly, different behavior might be required, but the learned behavior is nevertheless
activated, as our data-splits seem to indicate.

By splitting DtSPAD according to the type of yellow variants, and adding other factors,
we identified new potential SPAD-causes related to the sources of variation in the current
way of driving and we could exclude others.

5.3.2. Examining change and whether it is problematic

To examine whether a process remains in control, Shewhart’s control charts can be used.
Alternatively, when a process innovation is tested over a period of time, one can compare
the distribution of the output before and after the change to see whether it has resulted
in a change in the distribution of the output.

It should be noted that not all changes are problematic. For example in the case of
approaches to red aspects, higher values in required deceleration are not per definition
problematic. In fact, very low values indicate that trains approach signals at much lower
speeds than possible within the rail infrastructure and this potentially hampers capacity,
whilst a somewhat higher speed is not necessarily less safe. When the entire distribution
moves to the right (i.e. the average required deceleration increases), but the variation
does not increase or only a little, it is a valid question whether this change is problematic
or not.

Because an increase in our measure does not linearly relate to an increase in the
probability of a SPAD, it is useful to identify a threshold for what indicates a
problematically high value. To detect a change in the probability of a SPAD we can then
monitor both:

1. Whether there is an increase in the amount of actual measurements with a
value above the threshold.

2. Whether there is an increase in the theoretical probability of obtaining values
above the threshold, based on the distribution parameters.

Option two is especially useful when there are not a lot of measurements or the
probability of a high value is low, but still of interest. This approach does require
knowledge of the distribution and variation in order to extrapolate.
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5.4. Exploring some more applications

The principle of splitting variation into meaningful bits and deliberating whether we want
that extra variation or not can also be applied to other domains than rail. Here we will
present two hypothetical examples: infection during surgery and fire brigade turnout
time.

5.4.1. Infection during surgery

Any surgery that causes a break in the skin can lead to an infection. These infections are
called surgical site infections (SSIs). Healthcare organizations are concerned with the risk
of SSI's as a result of exposure to bacterial clusters. One of the factors contributing to
the growth of bacterial clusters is laminar air flow as a result of opening doors during
surgery [99-101]. It is of course not possible to determine exactly which door opening
caused the growth of a bacterial cluster. Neither is it possible to completely eliminate
door openings. What is possible, is to determine what the variation is in the number of
times a door is opened during surgery and identifying sources of the variation. The level
of variation in the number of door openings is actually quite high, even for the same type
of surgery, and as such forms a promising target for improvement [102].

A hospital can count the amount of times the door opens per surgery as an outcome
measure. The resulting distribution of door opening frequency can be split into categories
that the hospital staff expect to have the same variation or categories that they expect to
have differing variation. The distribution can for example be split according to different
hospitals or rooms, where one might expect the variation to be the same. In this
manner, causes such as room design, poor planning or equipment failure might be
identified or intrapersonal variations of behavior [103].

Mears, Blanding, and Belkoff show that the longer the surgery, the higher the number of
door openings [104]. Duration of the surgery can also be taken as an outcome measure
and variation in duration of the surgery can be examined. If the same type of surgery
varies a lot in duration time, then identifying the sources of that variation can indirectly
help in identifying sources of variation in amount of door openings.

5.4.2. Fire brigades’ turnout time

When there is an emergency, the response time is the time between the moment a call
comes in, to the moment the emergency services arrive on site. This response time can
vary a lot and consists of multiple stages. In case of an emergency requiring the fire
brigade, part of the response time consists of the turnout. The turnout time is the time
between the moment the fire station receives the notification and the moment the
firefighters depart from that station [105].

For each response, we can calculate the turnout time. The National Fire Protection
Association, in their 2010 version of the NFPA 1710 standards, recommend a turnout
time objective of 80 seconds (for fire and special operations response only) [106]. The
Fire Protection Research Foundation (FPRF) reports that "The time actually required and
recorded for turnout of 90% of the calls was 123 seconds for fire” ([107] , p.17).

A fire station commander might consider 170 seconds too long and measure turnout
times for two months. After two months, no values over 170 seconds have been
measured. Given the distribution of the turnout times, we can calculate what the
theoretical probability is of a value above 170 seconds as a result of the variation. This
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calculation can indicate a too high or sufficiently low probability, but it is more interesting
to consider the variation of the turnout times.

Reglen and Scheller state that the time of day has a large impact on the turnout time,
with turnout times being longer during the so-called graveyard shift [108]. The
graveyard shift is defined in their study as midnight to 6 a.m. Splitting the distribution
into daytime shift and graveyard shift could reveal whether this effect is also present in
the station of our commander and whether only the average is higher during the night
with the same variation or with a difference in variation.

To examine the variation in more detail, the fire station commander might expect that
the variation in turnout time is the same for different team compositions. The distribution
can be split according to team compositions and the assumption checked whether the
amount of variation is indeed the same. Differences in variation should, however, not be
used as direct evidence that certain employees, teams, or situations are “worse” than
others. The distributions are split to account for the variation and look for gaps in the
knowledge about turnout practices. Differences between two teams can appear to be
present when they differ in other aspects as well; for example, when one team has more
graveyard shifts. The variation caused by time of day should be taken into account, as
well as the possibility for other differences.

5.5. Checking your variation: some afterthoughts

5.5.1. Similarities to other approaches

The approach of splitting is very similar to the testing of hypotheses in statistical
procedures like ANOVA. Differences are that there is a focus on variation and not means,
which is often the case. Especially in comparison with more advanced prediction models,
there is a focus on understanding the data, so that it can inspire identifying new potential
incident causes. It will also lead to more informed decision making. For example, if a
specific subset correlates with higher risk values, then it will be unwise to increase the
occurrence of this subset, without first addressing the cause, whilst increased occurrence
of a different subset with lower risk scores might be a better choice to attain certain
business goals without compromising safety. “Split”, or subset distributions can also be
used for better early warning indications, as used in the control charts by Shewhart, if
they differ from the overall distribution.

5.5.2. Criticism on Shewhart'’s statistical process control applied
outside of quality management

5.5.2.1. Criticism: Not all variation is controllable

Shewhart advocates a reduction in variation, but variation might not always seem
controllable, especially when it comes to situations with human behavior. Whilst it is true
that not all variation is controllable, this is not a reason to ignore the variation that is
controllable or possible to influence. Much human behavior is, for example, not fully
controllable, but (physical) circumstances have been shown to have a large impact on
human behavior [30]. Influencing these circumstances can lead to a reduction in
variation in human behavior.

Even if a source of variation turns out to be beyond control, knowledge of this
uncontrollable variation can still be useful, because if we can account for that variation, it
can reveal remaining unaccounted variation that is controllable. Additionally, even if a
factor causing variation is uncontrollable, implementing the process is still a choice and
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one might choose to downscale or not upscale if that factor is prevalent. Knowledge of
the uncontrollable variation can also be a reason for implementing additional protective
measures.

5.5.2.2. Criticism: It is not just about variation, but also about the mean

Within the Shewhart approach, the focus lies on influencing the variation with the mean
taken, either implicitly or explicitly, as a given. From the perspective that incidents are
extreme values of the normal distribution, it is a valid point that the mean should not be
forgotten. In fact, all parameters that make up the distribution (a distribution could also
be binominal), are relevant. The Shewhart approach advocated here does not exclude
influencing the mean, but proposes examination of the variation and distribution first,
whilst more traditional approaches tend to put the mean first and forget or
underemphasize the other distribution parameters. After all, when there is a lot of
variation, the mean gives us very little information, yet when the variation is low, the
mean gives us a lot of information.

Examining variation can also be a step towards influencing the mean. Once sources of
variation are identified, it will also become clearer which factors or circumstances lead to
better outcomes. For example, team size can be a source of variation in our outcome
measure with small teams having better performance outcomes than large teams. The
organization can use this knowledge to change the mean of its performance, in this case
by using smaller teams more often.

5.5.2.3. Criticism: It should not be about variance, but about incident potential

This chapter focuses on the probability of an incident occurring, when there is incident
potential. One might argue that it is a more thorough approach to eliminate the incident
potential. For example, in the case of the risk of a SPAD, one might wish to reduce the
number of red aspect approaches instead of reducing the risk of a train driver passing a
red aspect when it is present.

Reducing incident potential is not always possible, though. To prevent a leak, an
organization might theoretically stop storing products, but this might put them out of
business. An additional aspect to consider is that reducing the number of situations with
incident potential can affect the remaining situations with incident potential, as
employees are no longer trained on the job on how to deal with these situations. This can
be compensated by creating similar situations without the risk, like fire drills or training
in simulators, but this might not be feasible or effective. It is therefore worthwhile to
examine both possibilities in the organization’s attempts to reduce incidents.

5.5.3 Taking the Shewhartian approach another step further

5.5.3.1. From “right” and “"wrong” to “deviations”

The main focus of this chapter is on measuring processes and examining their variation.
The core notions of Shewhart’s take on variation can also be taken a step further, outside
the realm of numbers. Taking the Shewhartian approach means that the focus will shift
to any kind of deviations from the intended process, either “too bad” or “too good”. In
essence, there is a shift in focus from the question “what is right and what is wrong” to
“why are there differences? Why are there deviations from the expected?”

In this perspective, even positive outcomes can be a reason for investigation, because
the very existence of the variation is a cause of concern, although the outcome might
occasionally be positive. If a job takes on average 30 minutes but for some worker it
takes an hour, this would probably raise concerns about the competency of the worker
and the quality of the work. If the same job is done in only five minutes the reaction is
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likely to be “that’s fantastic!”, while it should be: “that’s worrying”. Any deviation is
considered worth reporting and investigating because it shows a lack of control and that
is a cause of concern.

Rather than stimulating employees to report only on “what is wrong?” the scope would
be expanded to “what is different from the expected?”. Suppose a nurse detects that a
piece of equipment is missing. In the “traditional” approach, it would first be considered
whether the absence of this particular tool is safety critical and whether the increase in
risk warrants action. Only after the answer is affirmative, the absence is reported.
According to Shewhart’s approach, the absence is a deviation from the intended process
and will create avoidable variation, and that is a reason to take action. Sammer, Lykens,
Singh, Mains and Lackan state in their review study on patient safety culture that in a
“good” safety culture: “standardization to reduce variation occurs at every opportunity”
([109], p.157).

5.5.3.2. Boring jobs?

It may seem that the aim to reduce variance and deviations makes working life boring
and reduces the need for craftmanship, but that is not necessarily true. Being able to
detect deviations is a task that requires craftsmanship and which, if the reporting is
positively reinforced, can create extra job satisfaction. In most organizations, there is
also enough “uncontrollable variation” that requires craftmanship to deal with. For
example, there is a bewildering range of characteristics of patients in hospitals that
cannot be controlled: young, old, obese, not obese, male, female etc. They all have
slightly different symptoms and a wide range of expertise is necessary to treat them all.
What a surgeon (and the patient) does not need is extra variation as a result of poor
communication, absent or broken equipment and organizational disorder. So, although
medical professionals have been very good at compensating for these kinds of
deficiencies and save patients from serious harm, this is an unsustainable situation in the
long term. Organizations should not need “heroes” to save the day; they should provide
their employees with predictable processes that allow them to make optimal use of their
craftmanship.

5.6. Conclusion

One of the big challenges organizations face with respect to process safety, or any other
type of safety, is answering the question: Are we in control? The presence of incidents
indicates that the organization might be partly out of control. The absence of incidents,
however, does not equate to being in control. We advocate a stronger emphasis on the
identification and elimination of pertinent process variations as the next step in
improving operational and safety performance.

Some organizations might feel overwhelmed and lack the infrastructure to process this
kind of information and take the necessary actions. The short-term investments should
not be underestimated but in the long term the effects of such an approach are
substantial and in a high-risk industry like hospitals and railways, unavoidable. Both in
trying to understand and account for the variation, followed by potentially reducing the
variation and taking it into account during monitoring for early warnings. The technology
is ready for these kinds of implementations for (process) safety purposes. The next step
is to create organizational support to take this approach on board to help reduce the
number of incidents even further.
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Chapter summary

Using big data effectively is not a straightforward process. There are many decisions that
have to be made about topics including data collection, data (sub)selection, data
verification, data analysis methods and parameters and output visualization and
presentation to support the data interpretation. Human Factors specialists using big data
to investigate human factors topics should be aware that they themselves are also
susceptible to making errors. This raises the question: can ‘we’ (human factors experts)
also use our knowledge of human factors to decrease the probability of errors during the
use of big data?

In this chapter we look at the task of data verification. Depending on the initial data
quality and the approaches available, data verification can vary in complexity. During my
own research, the data verification process consisted of checking and judging the data.
This was a cognitively complex task. Within cognitively complex tasks, cognitive biases
are likely to occur and can lead to errors. These errors can cause analysists to
overestimate the quality of the data and safety experts to base their decisions on data of
insufficient quality.

Cognitive biases describe generic error tendencies that arise because people tend to
automatically rely on their fast information processing and decision making, rather than
their slow, more effortful system. This chapter describes five biases that were identified
in the verification of our behavioral indicator mDtSPAD. The insights and
recommendations in this chapter can help improve data verification processes.

The additional message is that there is also value in examining the use of big data from a
Human Factors perspective. In this chapter we only look at the data verification but other
tasks such as the visualization and interpretation of big data results could also benefit
from examining them from a Human Factors perspective and improving the employee-
task interaction for researchers and analysists as well.
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discussed the research question of this PhD. Chapters 5 and 6 discuss the research prerequisites.

82



Chapter 6 HF perspective on big data tasks: Identifying cognitive pitfalls in the verification step

6.1. Introduction

The field of safety and incident prevention is becoming more and more data based.
Organizations and institutions gather and analyze more data than ever before.
Representatives from many different professional domains seek the benefits of the
technological developments. Most are already implementing (big) data methods ranging
from the traditional statistical analysis to state-of-the-art artificial intelligence and deep
learning. Within the field of safety, new safety indicators can be used to find more
detailed incident causes and effective solutions.

The field of safety however tends to have a constraint that is not shared by all fields: The
data quality needs to be high. Decisions that are made can literally mean the difference
between life and death. When the stakes are high, certainty is a well sought-after
commodity, sometimes leading to overconservative choices. Data can help support
decision making to create a better bridge between safety and innovation. This can be
done by finding the common ground of overall improved execution of the core business,
but only if the data can be, is and should be trusted.

Many examples unfortunately show that good data quality is not a given. Problems of
faulty input data or algorithms can go undetected even when they occur frequently, like
the following two bugs in software programs: “A programmatic scan of leading genomics
journals reveals that approximately one-fifth of papers with supplementary Excel gene
lists contain erroneous gene name conversions” [110] and “we found that the most
common software packages for fMRI analysis (SPM, FSL, AFNI) can result in false-
positive rates of up to 70%"” [111].

There are multiple estimates available of the number of software bugs per number of
lines of codes. Whilst the exact ratio estimates vary, it is generally accepted that there is
such a ratio and when the number of lines of code increases, so do the number of bugs
[112]. Some of these bugs might not affect the outcome significantly, while other
software bugs can have large consequences, like the infamous and expensive bug in the
software of the Ariana 5 rocket leading to a disintegration of the rocket 40 s after launch
[113].

Besides software problems, unreliable information or input can also lead to the
publication of incorrect results. Medical investigators have later learned that the cells
they studied were from a different organ than expected. Such basic specification
problems are not solved by having larger sample sizes [114]. Out-of-date documents can
be a cause of errors, for example if a stop sign is moved but the documents are not
updated to include the new location. Errors can also occur at a later stage, for example
during data integration. Data integration has become more difficult due to a larger range
of different data sources containing different data types and complex data structures
[115].

The impact of low data quality can be very high, depending on the use case. If
emergency services are sent to an incorrect location, the consequences can be negative
and immediate. If incorrect data is used as a basis for performance indicators, the effects
might not be immediately visible but can still be negative. When the indicators are used
for safety related decision making, unsafe situations might appear safer than they are.
On the other hand, safe situations can appear problematic, leading to unnecessary or
even counterproductive measures. Especially in the era of Big Data, there is increased
potential to draw erroneous conclusions based on little other than volume of data [116].
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6.1.1. Verification Is Complicated

The above examples show the value of successful verification. Checking and judging data
is however a complex task. Quality is a multi-dimensional concept including, amongst
others, accuracy (both noise and errors), consistency and completeness [115]. At the
moment, more data of varying quality is being collected and used than before [117].
Additionally, data consumers used to be (directly or indirectly) the data producers in
many cases, whilst currently the data consumers are not necessarily also the data
producers. This is because of the large range in different data sources that are used.

The large data volume is also a challenge, both in amount of data per variable and in the
high number of variables that can be integrated. When variables are being computed
based on multiple sources, then verifying the quality of the individual sources is not
sufficient. Verifying the computed variables alone is also not sufficient as problems can
become less visible after sources are combined. Overall, verification can be a complex
task for many reasons. Section 6.2.2 gives an overview of verification activities
performed for the DtSPAD measure.

6.1.2. Cognitive Biases as Problem

In this chapter it is hypothesized that successful verification of data is hampered by the
occurrence of cognitive biases. Cognitive biases are systematic errors in judgment [118].
This type of bias causes people to err in the same direction in the same information
judgment task. The existence of cognitive biases during complex judgment tasks has
been confirmed multiple times within numerous different experiments [119]. Cognitive
biases have also been identified specifically within the domain of risk management,
namely in incident investigation reports [86] and during process hazard analysis studies
[120].

A lot of research has been done into cognitive biases since the pioneering work by
Kahneman and Tversky in the early 1790’s [121-123]. Early research often consisted of
experiments in which college students were presented with contrived questions they had
to answer. As a result, it has been hypothesized that cognitive biases are an
experimental artefact [124]. Research has however continued in more realistic settings
and within a vast amount of topics (e.g., [125]). There is for example research on
cognitive biases in specific health-compromised groups (e.g., persons with depression),
different types of decision making (e.g., medical diagnosing), the negotiation process,
project management and the military.

6.1.2.1. Preventing Cognitive Biases

Research on cognitive biases in specific domains can be very useful, because it is difficult
to apply generic knowledge about cognitive biases to prevent errors. There are several
reasons why this is difficult. First, it is not efficient to try to eradicate all cognitive biases
in human cognition. The “slow” information processing which counteracts cognitive biases
can come at a substantial cost. Our brains for instance consume 20% of our oxygen at
rest and even greater proportions of our glucose, despite taking up only 2% of our body
weight [126,127]. Trimmer [122] hypothesizes from an evolutionary perspective that
cognitive biases arose for two reasons: (1) To reach optimal decision making in favor of
evolution, and; (2) to reach a balance between decision quality and internal cost.
Kahneman’s explanation [119] of cognitive biases in terms of two systems for cognition
highlights the subjective experience of effortlessness belonging to the system responsible
for cognitive biases. The subjective experience of the other system is one of significant
effort.
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Secondly, cognitive biases cannot be prevented by simply telling people about their
existence. People tend to think they are less susceptible to biases than other people,
which is called the bias blind spot. Pronin and colleagues [128] found that the bias blind
spot was still present even after the participants read a description of how they
themselves could have been affected by a specific bias. This bias blind spot is specifically
related to recognizing our own biases, while people tend to recognize and even
overestimate the influence of bias in other people’s judgment [129]. Whilst extensive
training in recognizing one’s own cognitive biases is possible, the effectiveness is unclear
and the training could be very expensive.

Another option is to redesign the person-task system to inhibit the bias that interferes
with the task (Fischoff, 1982 as in [123]). Planning poker is for example an estimation
technique which has been specifically designed to prevent anchoring bias. Participants
independently estimate for example “required time” or “cost” for a task and then
simultaneously reveal their estimates. In this way, there is no anchor to be influenced by
as there would have been if a number was spoken out loud by one person before others
had made their estimates [130].

In the previous example, the problem of incorrect estimations in project planning was
traced to being (in part) caused by a cognitive bias and debiasing action was undertaken.
It is of course not always known which problematic errors are present within an
organization or department. Errors might not be reported or recorded and especially in
the case of errors as a result of cognitive biases, they might not even be noticed.
Cognitive bias theory can be used to predict which errors might occur in specific tasks
and thus help identify errors that are likely to reoccur. Both knowledge of cognitive
biases and the specific tasks can then be used to redesign the person-task system.

Research on cognitive biases in specific domains can thus be very useful. A search in the
web of science database yielded few articles about both cognitive biases (or human
factors) and big data. On the other hand, there has been some research on cognitive
biases in software engineering. While this field is obviously not the same as big data, it
does contain some tasks with parallels to the verification process, specifically the testing
of the code. The review by Mohanani and colleagues [123] provides interesting insights:
The earliest paper of cognitive biases in software engineering was published in 1990,
followed by one or two papers per year until an increase in publications as of 2001.
Mohanani and colleagues found that most studies employed laboratory experiments, and
concluded that qualitative research approaches like case studies were underrepresented.
Most studies focus on the knowledge area software engineering management, whilst
many critical knowledge areas including requirements, design, testing and quality are
underrepresented.

The next sections of this chapter describe the method we used in our study and the
identified biases. The remainder of this introduction will first be used to explain what
cognitive biases are and what the generic mechanism is behind this specific type of
errors. Knowledge of this mechanism helps to understand the chosen methodology and
the five cognitive biases that will be discussed in the results section.

6.1.2.2. Cognitive Biases: System 1 and System 2

Burggraaf and Groeneweg [86] (pp. 3-4) clarify the mechanism behind cognitive biases
as follows: “According to the dual-system view on human cognition, everyone has a
system 1 (fast system) and a system 2 (slow system), also known as the hare and turtle
systems. Our system 1 generates impressions and intuitive judgments via automatic
processes while our system 2 uses controlled processes with effortful thought [118].
System 1 is generally operating, helping you get around and about quickly and without
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effortful thought. Questions like "1 + 1 = ...?” or “"The color of grass is...?” can be
answered without a lot of effort. The answers seem to pop up. When our system 1 does
not know the answer, our system 2 can kick in [119]. System 2 requires time and
energy, but can be used to answer questions like “389 times 356 = ...?" The switch
between system 1 and system 2 based on necessity, is an efficient approach. The
problem is however that system 1 often provides an answer, even though the situation is
actually too complex. We often think the answer from system 1 is correct, because it is
difficult to recognize the need for system 2 thinking when system 1 answers effortlessly,
but this is actually when a cognitive bias can occur. The main problem leading to
cognitive biases is therefore not that people cannot think of the right solution or
judgment (with system 2) but that people do not recognize the need to think effortful
about the right solution. This lack of recognition also explains why making cognitive
biases is unrelated to intellectual ability [131].

6.1.2.3. System 1: Automatic Activation

One of the mechanisms underpinning system 1 is the automatic spreading of activation
that occurs within the neural networks of our brain. The spreading activation theory
postulates that whenever a concept is activated, for example after seeing it or talking
about it, this activation automatically spreads out towards the other information that the
particular concept is related to [132]. This automatic spreading of activation can lead to
cognitive biases when irrelevant information is activated and/or not enough relevant
information is activated [118]. This follows the description of judgement biases “as an
overweighting of some aspects of the information and underweighting or neglect of
others” ([118], p. 1).

Information or knowledge is not stored randomly in the brain but in meaningful
networks, with related concepts close to each other. The information that is more closely
related to the concept becomes activated more strongly than the information that is less
closely related to the concept. When information is activated in the brain, the chance of
thinking about it is increased [132]. We can for example activate the concept of the
animal sheep in your brain by talking about sheep and how they walk around, eat grass
and bleat. If we would now ask you: “Name materials from which clothing can be made,”
we can predict that you will think of wool first, before thinking of other materials,
because it was already slightly activated along the concept of sheep. Some other
materials might come into your mind via system 1 quite quickly as well, while you will
have to search effortful with system 2 to think of final additional options.

The mechanism of automatic activation in the context of cognitive biases is clarified
further below by taking the confirmation bias as an example. The confirmation bias
describes the process in which people search for, solicit, interpret and remember
information that confirms their hypotheses and discount or ignore information that
disconfirms them.

The confirmation bias is caused by information processes that take place more or less
unintentionally, rather than by deceptive strategies [133,134]. When testing a
hypothesis, the activation of the hypothesis increases the accessibility of information in
memory that is consistent with the hypothesis [135].

For example, when one considers the folk wisdom that opposites attract, multiple
examples of couples of two different people are automatically activated, and the person
judges the folk wisdom as true indeed. Or multiple examples are activated of how you
and your partner are different and yet so good together. However, when one considers
the folk wisdom that birds of a feather flock together, multiple examples of couples of
two similar people (perhaps even the same couples as before, but now with respect to
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different parts of their personality) are automatically activated, and the person judges
the folk wisdom as true indeed. Counterevidence for each piece of folk wisdom is not
automatically activated, because it is not close to the activated concept in the network of
activation. To activate counterevidence, one must actively think of counterevidence and
thus use his or her system 2.

The enhanced activation of confirming information also influences the perception of other
confirming information, which is then easier to process and activate. One can for
example read an article with two consistent pieces of information and two inconsistent
pieces of information and yet feel that the author’s hypothesis is supported as the
consistent information is processed and remembered more easily, without the need for
effortful thought [136].

A countermeasure is to think of alternative scenarios, alternative hypotheses and a good
old-fashioned dose of effortful thought. Multiple experiments on biases have shown that
the instruction to retrieve incompatible evidence did indeed alter judgment, while
instruction to provide supporting evidence which was already automatically activated, did
not alter judgment [118].

6.1.2.4. Relation between System 1 and System 2

For explanation purposes, the terms “system 1” and “system 2” were used. It is
important to note, that in this dissertation, they are not considered as separate
independently operating systems. The automatic spreading of activation as part of
system 1 is a core functioning of the brain and shall always occur. It might not always be
sufficient to lead to a direct answer, but the mechanism is present. Preventing cognitive
biases is therefore not a matter of trying to switch off system 1 thinking, but of adding
system 2 thinking, which means activating other relevant knowledge apart from the
automatically activated concepts.

It is not possible to suppress the automatically generated activation. The two images
below are meant to illustrate this. Both images (see Figure 25) contain the capital letter
A. When seeing only Figure 25a, it tends to be hard to see this letter. More noticeable
are other patterns like the clustering of yellow on the bottom left and the wrinkly line
through the middle. In Figure 25b, containing the exact same ordering of the circles, it
is very easy to see the letter A. When people know the “correct answer” after

viewing Figure 25b, they are able to see the letter A in 19a, but still find it quite hard to
suppress the other patterns. These other patterns tend to “compete” while one tries to
see the letter A. It is very hard to ignore the irrelevant information, even when you know
it is irrelevant.
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Figure 25. (a) Image containing capital letter A; (b) Image containing capital letter A.
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This is one of the key elements in identifying cognitive biases. The first cue is that they
are errors which we tend to make repeatedly. When we are capable of giving the correct
answer, it is not because we are able to prevent the thought that feels intuitive, from
occurring, but are able to correct it with a more reasoned thought. It is this pattern of
being tempted to give an incorrect answer, which is characteristic to these types of
errors.

So far, we have talked about generic cognitive biases which occur across domains. The
mechanism behind these biases can also lead to more specific errors. These more specific
errors are the result of the general mechanism in combination with specific knowledge
about a domain, or domain-specific associations. The domain-specific manifestations of
the biases will be called “cognitive pitfalls” from this point on. The hypothesis is that
there are cognitive pitfalls present in the verification process. The accompanying question
is: which cognitive pitfalls can occur during the verification of data (for a quantitative
safety indicator)?

6.2. Materials and Methods

Mohanani and colleagues [123] state in their review on cognitive biases in software
engineering that qualitative research approaches like case studies are underrepresented,
with most empirical studies taking place in laboratory settings. For the current research,
the case study method was used. Yin [137] wrote in his book on case study research: “In
general, case studies are the preferred strategy when “how"” or “why” questions are
being posed, when the investigator has little control over events, and when the focus is
on a contemporary phenomenon within some real-life context.” (p. 1) He goes on to say
that “the case study allows an investigation to retain the holistic and meaningful
characteristics of real-life events—such as individual life cycles, organizational and
managerial processes, neighborhood change, international relations, and the maturation
of industries.” (p. 3)

The case study method makes it possible to cover the contextual conditions, which are

essential for the current study [137]. One of the seminal ideas that emerged from case
studies includes the theory of groupthink from Janis’ case on high-level decision making
[138].

In the current study, participation-observation and informal interviews were used to
collect information and identify errors during the verification of a safety indicator. The
identification of cognitive pitfalls was guided by theoretical propositions, specifically
several criteria.

6.2.1. Method of Pitfall Identification

The method of identifying cognitive pitfalls consisted of (1) identifying errors, (2)
checking whether the errors were possibly caused by system 1 thinking and (3)
identifying the common ground between errors independent of the specific context, but
within the verification process and (4) explaining the error in terms of system 1
automatic activation.

1. Identifying errors

The word “error” here refers to having held an incorrect belief. In order for an error to be
recognized, one must realize and believe that his previous statement was not true. In
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other words, an error has occurred when a person retracts their statement saying they
no longer believe it is true.

2. Check whether the errors were possibly caused by system 1 thinking without system 2
compensation

Three cues were used to check whether the error could have been caused by system 1
thinking. A or B should occur and C.

A. Tendency to have the exact same incorrect belief again by the same person,
despite having been aware of its incorrectness.

Cue A corresponds to the hard-wired nature of system 1 thinking and reduces the chance
of the specific error manifestation being the result of randomness. For example, when
there is a different error inducing factor, like time pressure, this can cause errors in a
wide range of tasks and the resulting error, error A, could just as easily have occurred as
error B. When error A only occurs once, this is not necessarily a reoccurring error that we
as humans are vulnerable to due system 1 thinking.

B. Other people have the same incorrect belief (or had it cross their mind before
correcting themselves).

This cue corresponds to the characteristic of cognitive biases being person independent,
and, like cue A, reduces the chance of the specific error manifestation being the result of
randomness.

C. The person had/could have had access to the correct information via system 2
thinking.

A false belief is not caused by system 1 thinking if the person simply did not have access
to the correct information. For example, if a person was told that it takes three hours for
a certain type of tank to fill up and he or she believes this until finding out it actually
takes four hours, this person had an incorrect belief, but not because of system 1
thinking/a cognitive pitfall.

However, consider the following scenario: there are two trains approaching a signal
showing a red aspect, and both trains have the same required deceleration to still be able
to stop in front of the red aspect, but train A is closer to the red aspect than train B.
Given that all other factors are equal, which train is at the highest risk? In this scenario
someone might now answer “train A, because it is closer”, but after discussion say: “In
my first answer I did not consider that train B must have a higher speed than train A,
therefore I don't think it is train A anymore, but train B”. The rejected belief in this
example can be the result of system 1 thinking, because the person did not hear any new
information, only used already known information in answering the question, which he or
she had not done before.

False assumptions are also a candidate for system 1 thinking. For example, one might
assume that a sensor is gathering the correct data. If it later turns out that the gathered
data was incorrect, then the previous incorrect assumption could have been a system 1
error. The argument “but we did not know the sensor was faulty”, does not change the
fact that the persons in theory did have access to the correct information. By thinking
about the quality of the sensor, they could have realized that the quality was in fact
unknown and could be bad. This is in contrast to for example being asked what the
capital is of a country. If you have never heard or read what the capital of the country is,
no amount of thinking will lead to the correct information.

3. Identifying cognitive pitfalls
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When the same type of error manifestation occurs within different topics, for example
with respect to different data sources, then the common cognitive pitfall is identified.

4. Explaining pitfall in terms of system 1 automatic activation

As a final step, it should be possible to explain the occurrence of the pitfall in terms of
system 1 automatic activation. The explanations listed among the results in section 6.3
sometimes include schematic representations of knowledge structures and the automatic
activation. These visualizations are not empirically proven within this study but included
to illustrate how the theory of automatic activation can explain the occurrence of the
cognitive biases. Even though it is not yet clear how exactly information is stored in our
brains, being able to explain errors in terms of system 1 thinking and the automatic
spreading of information is an indication that interventions tailored specifically to
cognitive biases could have more effect than other error prevention approaches.

6.2.2. Verification of the Deceleration-to-SPAD

As discussed in section 5.3, the DtSPAD measure was developed to investigate SPAD
probability. A DtSPAD that is higher than the total available braking power of the train
means that the train will pass the signal at danger unless the signal clears before the
train reaches it. Besides DtSPADs higher than 100% of available braking power, high
DtSPADs can also be interesting for safety monitoring as they indicate small buffers. The
maximum DtSPAD can be taken to illustrate the smallest buffer the train driver had per
red aspect approach. The distribution of maximum DtSPADs can then be used to monitor
train driver behavior and effects of interventions on behavior.

Variables that were used to calculate DtSPAD include:

o distance from GPS sensor to head of the train (inferred via the driving direction of
the cabin with the sensor and train-type dependent possible sensor positions);

e location of the signal in longitude and latitude;

e signal aspect at given times;

e longitude and latitude of GPS sensor;

e speed of the train;

e for combining data: Train number, train type and time;

e originally needed for time calibration because of non-synchronous clocks: Time
the train passed a signal according to hardware in the tracks and according to
GPS sensor.

The data was gathered from existing systems from ProRail and NS, pertaining to the
whole of the Netherlands. None of these systems were specifically designed or chosen
with the goal in mind of calculating the DtSPAD indicator. The GPS sensors that were
initially used were installed by the organization performing the maintenance of the trains
with the aim to find the location of the trains due for maintenance. There were other
sources monitoring train location at the time (2014-2016), but the data from these
sensors was chosen because of the higher logging frequency compared to other systems
providing data at the time.

One of the use cases for the DtSPAD was to identify factors that correlate with higher or
lower DtSPAD values. Potentially correlating factors were therefore also verified in
addition to the DtSPAD variable and the variables used for its computation.
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Both qualitative and quantitative verification methods were used as recommended by Cai
and Zhu [115]. The examination of the variables was done in the following manner:

Where possible, quantitative variables were compared to a reference value. For
example, the distance traveled between two points according to the GPS data was
compared with the distance traveled according to the time between the two points
and the speed.

Variables were also checked for impossible or improbable values (e.g., higher
speed or deceleration than the trains are capable of) or impossible combinations
(e.g., low risk value, but negative distance to red aspect). Identified problematic
values were not simply removed. The individual cases were examined in a
qualitative manner to determine the cause and to fix the cause.

Patterns were also examined for oddities (e.g., when 99% of the values follow a
curve and some do not) and the deviating red aspect approaches investigated.

We analyzed the data in the programming language and software environment “R”, using
our own code. The data that was used for verification covered periods of one month up to
a year. The exact period varied due to the iterative nature of the verification process in
which improvements to the data source or code could sometimes not be implemented
retrospectively. As a result, data from the last update up to the day of analysis was used.

Apart from examination of the variables, qualitative verification of the code itself was
also performed occasionally, as will become evident in Section 6.5.

The cognitive pitfalls framework was applied to the verification process from the start of
the verification in March 2016 until October 2016.
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6.3. Results

Five cognitive pitfalls were identified during the verification process: “the good form as
evidence”-error, the “improved-thus-correct” fallacy, “situation-dependent-identity-
oversight”, “impact underestimation” and “beaten path disadvantage”. These pitfalls will
be clarified by an example, explanation of the pitfall and examples from the case study,
after which the implication of the pitfall is discussed. It is noted that this list of five is not
necessarily exhaustive. It is possible that there are other cognitive pitfalls relevant for a
given verification process that are not in this list because they did not occur during this
specific case study or did not lead to salient errors.

6.3.1. Pitfall 1

6.3.1.1. Example

In this example we are looking at a variable which we expect, based on theory, to follow
a normal distribution. We check the actual distribution of the real data as a means to
check the quality of the data. The image below, Figure 26, is the result. What conclusion
do we draw with respect to the quality of the data?
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Figure 26. Example of data distribution.

A typical response would be that the data is approximately normally distributed. The data
looks “about right; quite good”, etcetera. Generally, this is seen as a reassurance that
the data is correct and we can proceed.
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6.3.1.2. The Good Form as Evidence-Error

The images in Figure 27 roughly show all three situations which can occur when
visualizing the data: (A) the data follows the distribution perfectly, (B) the data
distribution looks about right and (C) the data looks awful in the sense that it does not
meet expectations at all.

(a) ' (b} ' (©)

Figure 27. Types of data distributions (a) perfect; (b) good form; (c) ugly.

In the first case, the conclusion typically is: “That is too good to be true. This is proof
that something is not right. We need to check this.” As mentioned before, the conclusion
in the second case typically is: “"Approximately fits the distribution. This is proof that the
data is correct.” As well, in the third case: “This does not look at all like expected. This is
proof that something is probably not right. We need to check this.”

Whilst the first and third conclusion are correct and lead to the desired behavior of
further verification, the second conclusion is not correct. This type of visual
representation is not proof that the data is correct, since this distribution can occur as
the result of correct, but also as the result of incorrect data. We tend to underestimate
the chance that the underlying data is incorrect when we see this kind of “good form”
visualization. Incorrect data here refers to either faulty data sources or erroneous
algorithms. The actual probability of the data being incorrect when we consider the
evidence of “good form” can be calculated via Bayes’ theorem:

P(good formlincorrect data)P(incorrect data)

P(incorrect data |good form) =
P(good form)

The actual probability includes (1) base rates of incorrect data and of good form and (2)
the estimated probability of incorrect data leading to good form. In probability estimates
like these, people tend to rely on representativeness and not include the base rate. This
fallacy is called the base rate neglect, previously described by Tversky and Kahneman
[121] as “insensitivity to prior probability of outcomes”. This is possibly part of why we
underestimate the presence of incorrect data in the face of “good form”.

Another part of the reason can be our association between appearance and quality. We
have a deep-rooted association between “bad” and “ugly” or “too perfect”. Villains tend
to be depicted as physically ugly persona’s or too perfect persona’s, usually con artists.

The strength of this association is underscored by the surprise we feel when confronted
with something that does not fit this association. During the verification of the DtSPAD,
we looked at a distribution of the DtSPAD variable which resembled the “good form” as
previously displayed. Even after knowing that the displayed data was incorrect (because
an error in the code was identified), we were still inclined to draw conclusions based on
the data we saw. The notion that bad data could look like good data remained
counterintuitive, while the intuitive association automatically gets activated: “but it is
good looking data, so good quality data.”
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In reality, it is possible that bad data looks good. Even though we do not know the
numbers to the base rates or relations, we can enter hypothetical data in Bayes’ theorem
to get a feel for the actual probability of incorrect data when visual inspection shows
“good form”.

P(incorrect data |good form)
P(good form |incorrect data) P(inccorect data)

- P(good form |incorrect data) P(incorrect data) + P(good form|correct data)P(correct data)

In the first draft of an indicator, let's assume that the base rate of incorrect data is high,
say 0.7. When incorrect data leads to good form with a chance of 0.3 and correct data
leads to good form with a chance of 0.95, the probability is:

=0.3 x 0.7/(0.3 x 0.7 + 0.95 x (1 — 0.7)) = 0.21/0.495 = 0.42

This example indicates that it is actually highly likely that data is incorrect, even though
it looks good.

Even when we assume that incorrect data only leads to good form in 10% of the cases,
the probability of the data being incorrect in the face of “good form” is still relatively high
(0.20).

6.3.1.3. Implication

Visual inspection of the data, for example by looking at the distribution, is an essential
part of the verification process. It can be an efficient way to verify problems after
detecting for example outliers or a deviation in distribution. However, once the data has
improved in such a way that its form no longer shows any worrisome elements, this
should not be used as proof that the data is now correct. At this point in the process,
other methods are needed to proof that the data quality is good (enough).

One method is to compare a variable with another variable which is supposed to measure
the same thing. In our verification project we for example compared time passed
according to the time stamp with time passed according to distance travelled divided by
the speed. This led to the discovery that the time stamp was not accurate even though
the DtSPAD data looked good upon form inspection. In our case, the time stamp in the
dataset was not the actual time logged by the GPS sensor but the time that the logging
took place of the GPS signal once it arrived at a server where the time of the server was
taken. Due to differing latency times this led to cases in which the timestamp indicated
that two seconds had passed while in fact, given the distance travelled and the speed,
zero to seven seconds had passed. This varying time deviation was problematic for our
indicator because it can lead to relevant data points not being included (still approaching
a red light but data no longer included).

While the use of a different timestamp than the GPS time might seem strange, it made
sense to the persons who had set up the system. The alternative time was what they
called “the train time” and this time made it easy to combine different measurements
because they all had the same “train time” and the time latency was not a significant
issue for their usage. It just never occurred to them that it might be a problem for the
DtSPAD project, just as it did not occur to us before verification that there could be
another “time” than the actual (GPS) time.

To further improve verification, Van Gelder and Vrijling [139] highlighted the importance
of extending visual inspections and statistical homogeneity tests with physical-based
homogeneity tests. By considering whether the data can be split in subsets based on
physical characteristics of the individual data points, it can be prevented that the variable
as a whole seems homogeneous, while it is in fact a combination of two or more different
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distributions that could, by chance, look like one homogeneous distribution when put
together.

6.3.2. Pitfall 2

6.3.2.1. Example

For the DtSPAD indicator we created a categorizing variable indicating whether a yellow
aspect was planned or not planned. This variable was not always correct. We discovered
that sometimes a yellow aspect was characterized as “unplanned” while it was in fact
part of a planned arrival. It turned out that short stops of trains were not yet included as
planned stops. A bug fix was done to include the short stops. What is now our view on
the quality of the indicator?

6.3.2.2. The Improved-Thus-Correct Fallacy

The intuitive response is to think the planned/not-planned indicator is now correct. This
is called the “improved-thus-correct” fallacy. In reality, the quality of the indicator is not
necessarily good after improvement. The improvement can have caused new problems,
especially in coding where bug fixes can create new bugs. However, even if the
improvement was implemented correctly, there can still be problems within the data
which are not fixed by this specific improvement.

These are straightforward notions, yet we tend to forget them which leads to the
improved-thus-correct fallacy. This fallacy can present itself by someone saying an
indicator is correct after it has been improved without knowing the actual quality, but
more often the fallacy will result in someone not explicitly stating the quality is now
good, but forgetting the need to recheck the quality.

This phenomenon can be clarified by thinking of the structure of knowledge in our brain
and the automatic activation of associations. Imagine the concepts “Algorithm” and
“Improvement” being present in our brains. In the situation as stated by the example,
we are aware that something is wrong with the algorithm and thus it is associated with
“something is wrong” and not yet with “improvement”. Activation of “algorithm” will now
also automatically activate “something is wrong”, while activation of “improvement”
activates other positive concepts like “"good” and “solution” (See Figure 28).

Solution

Good

Something
iswrong

Figure 28. Associations and automatic activation before fix.
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After the bug fix, the notion of “something is wrong” changes to “something was wrong”
and “algorithm” is now also associated with “short stop was not included” and
“improvement”, which both share “addition of short stop” (See Figure 29).
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Figure 29. Associations after bug fix.

The activation of “algorithm” will now also activate “improvement” and “good”. The
aspect “something was wrong” will still be activated as well, but this enhances what was
wrong “missing short stop” and then the solution which again is connected to
“improvement”. At the same time, the idea that there might have been other causes as
to why something was wrong with the algorithm is not automatically activated as it is not
connected (See Figure 30). During the process there was no learning and thus no
reason for neurons to connect between “something is wrong” and any other cause which
does not have a concrete representation yet, unlike for example “short stop was missing”
which can be vividly activated. That is to say, other possible causes “do not have a face”
and therefore are not automatically activated while other concepts are, providing a
system 1 answer that is easy to accept.
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Figure 30. Associations and activation after bug fix.

In our verification project it was noticeable that when the generic status of the
planned/unplanned indicator was questioned, the answer was: “there was a bugfix with a
high impact two weeks ago to include short stops”. While it was then not explicitly said
that the indicator was now correct, the effect of the fallacy was noticeable in the fact that
we tended to forget to check the current quality of the indicator. Even though it was part
of the to-do list, it needed explicit reminding, otherwise it was simply overlooked. Even
when the indicator was checked, the implicit assumption was that it would now be
correct, noticeable by the sense of surprise when discovering new problems. This sense
of surprise also occurred for another indicator which was improved and a new check was
done in the sense of “just a formality”, which to our surprise exposed the need for more
improvement.

6.3.2.3. Implications

This fallacy highlights that people tend to overlook the need to check something again
(e.g., an algorithm) after improvements. Therefore, it is important to create an explicit
step within the verification process to perform a quality check after every improvement.
Additionally, it is important to phrase the current quality not in statements of last
improvements, but in a number or unit, like % unknown or % error, or even something
more qualitative, like “checking for 5 h did not lead to the discovery of new errors”. Even
if the current quality cannot yet be specified, the empty field will indicate the need to
(re)do a quality check.

6.3.3. Pitfall 3

6.3.3.1. Situation-Dependent-Identity-Oversight

When thinking about the quality of an object, two problems occur. One is that it is hard
for us to imagine all factors that can influence the quality. Examples include human
factors issues, like things that can go wrong during installation, or the influence of
human behavior on the collected results.
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Discovering that the quality is very different than expected because of an unforeseen
factor is usually followed by the phrase: "I did not think of that”. While this can be a
serious problem, the inability to think of such factors is not a system 1 problem.

In fact, it is a problem that remains, even when we use our system 2 thinking, since it is
more a matter of the knowledge we have, our previous experiences and creativity. Being
aware of our inability can help us to collect more information or choose different
approaches, like performing verification measurements on the sensor once it has already
been installed.

This is however where the actual system 1 problem, the cognitive pitfall comes in: we
have the tendency to overlook the fact that objects actually have differing identities or
differing qualities in different situations. We do not think in terms of “this object = x in
situation A and the same object = y in situation B”. Instead we just say “this object is x".
For example, when I ask you, what color do the leaves of an oak tree have? Your answer
will be “green”. Anyone will accept this answer as true. Anyone will agree that indeed the
leaves of an oak tree are green. We collectively accept this truth, even though all of us
also know that the leaves are not always green. The fact that, even though the oak trees’
leaves are orange or yellow or brown in the fall, we still say the leaves are green,
provides some inside in the way knowledge is structured in our brains. Figure 31 shown
below illustrates a hypothetical structure. The concept “tree” is linked to many other
elements, including “has leaves”, which is connected to “except in winter” and to “color
green”, which is connected to “except autumn” which is connected to “color
red/yellow/orange”.
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Figure 31. (a) Hypothetical knowledge structure A; (b) hypothetical knowledge structure B.

A model that incorporates a situation-dependent-identity would look more like Figure
31b above. The model on the right needs a lot more nodes to hold the same information.
The structure of the model on the left makes it possible to get to a first answer quickly
and efficiently (via automatic activation), with the possibility to obtain the rest of the
knowledge when thinking more about it (system 2).
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The advantage of the model on the right however is that it is more noticeable when you
do not know the answer in a specific situation, for example the color of leaves in fall,
since there will be a blank node connected to that situation. In the model on the left, on
the other hand, when you do not know the color of the leaves in fall, the bottom of the
model will simply fall off and you can still answer the question "what color do leaves of
trees have?” without any empty spaces (see Figure 32).
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Figure 32. Saliency of missing information in both structures.

6.3.3.2. Example

A hypothetical big data project uses temperature as one of the variables to calculate the
final indicator. The used digital temperature sensor has been tested in the lab and logs
the temperature every 30 s with an accuracy of 0.3 °C. For this project, an accuracy of
£0.5 °C or better is sufficient. Is the data quality of the sensor sufficient for this project?

The intuitive answer is yes. However, additional relevant questions are: Is the sensor
installed correctly and in the correct place when used for the project? Has it been
calibrated (repeatedly)? Does it work in the used context? The impact and vibration
caused by trains driving over the tracks might disturb measurements after the sensors
are installed on tracks. Does the sensor have the same accuracy over the whole range of
measured temperatures? Are human acts needed to turn on/off the sensor? Are there
any other context factors of the implemented sensor that could impact its accuracy or the
logging frequency?

6.3.3.3. Cases

During the DtSPAD project, the tendency to think in terms of one (situation independent)
description was for example noticeable with respect to the GPS-sensor. We had seen
plots of the GPS locations of a train and noticed that these follow the tracks. When asked
about the quality of the GPS sensor, we were therefore inclined to answer: “fairly good
based on initial observation”. Sometimes we forgot to include the phrase “but the quality
is very bad when the train is located in a train shed or under a platform roof”. As well, we
tended to forget the possibility of other factors impacting the quality as part of our check
list. Even though these elements can come up when time is devoted to this specific topic
and people are in system 2 thinking mode, they might be overlooked at other times,
especially during (verbal) handovers to other people or in the interpretation by other
people based on written handover.

Another example of this pitfall occurred during the analysis of an error with the previous
version of the indicator, the Time to SPAD. This previous version looked at the remaining
time available in seconds, before an emergency brake needed to be applied, instead of
the required deceleration. In the dataset, we discovered trains with a negative time,
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indicating that they would pass a red aspect, followed by a positive time, which should
not have been possible. This suggested a problem in the calculation of the minimal
braking distance. The minimal braking distance was calculated taking the parameters into
account related to the safety brake/quick-acting brake (see Figure 33).8

Braking
train

Fastest
braking

With
safety
brake

Figure 33. Knowledge structure minimal braking distance.

Repeated checks of the execution of the formula did not lead to any further insight.
Eventually it was noticed that using the safety brake only leads to the shortest possible
braking distance when the train is driving at a certain speed or faster. At very low
speeds, the braking distance is shorter with the regular brake. The conceptual validity of
the formula had been checked before as part of the verification but not considered as the
problem. Only after other issues with respect to its execution were scrutinized and
deemed well, was the conceptual validity checked again as part of the same verification
and the problem found. This example again shows that thinking in terms of situation-
dependent deviation is not a first intuitive approach, especially since the question (‘what
is the fastest braking/minimal braking distance’) can already be answered (‘with safety
brake/ this formula’) (See Figure 34).
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Figure 34. Relevant knowledge comes after the initial answer in the model.

8 The wording in this paragraph and the next paragraph implies that there are different types of
braking systems. This is not the case. The safety brake or quick-acting brake that is referred to
here, is in fact a suboptimal translation of the Dutch word ‘snelremming’ which more literally
translate as ‘fast braking’ and refers to putting the normal brakes on with full force in combination
with shorter application times of the brakes thanks to values which can speed up the drop in air
pressure in the main brake pipe. I have added this footnote instead of adjusting the main body of
the text since the original texts more accurately reflects the thought processes as they occurred at
the time and which are the main topic of this chapter.
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6.3.3.4. Implication

To prevent oversight of factors influencing the quality, it is important to include in the
description of the quantification of the quality (accuracy and loggings frequency) for
which situation this quality is applicable. For example, for the temperature sensor it could
say: an accuracy of 0.3 °C when installed correctly and calibrated in a lab environment
whilst measuring temperatures ranging from =10 °C to 40 °C. For other elements, it can
be useful to include details about software package and expected human behavior in
operation. Since it is difficult to oversee all possible factors influencing the quality it can
be useful to test the quality whilst in the actual operation mode used for the project,
check in a number of different ways, like with other software packages or other types of
code, and to learn from other projects about which factors had an (unforeseen) effect.

6.3.4. Pitfall 4

6.3.4.1. Example

We calculate a DtSPAD value for a train on every moment a GPS location is logged. What
is the influence on the DtSPAD indicator if the logging frequency would be reduced from
once per two seconds to once per three seconds? Does this have a problematic impact on
the quality of the DtSPAD indicator?

Based on this information, it is very hard to answer the question in detail. An exact
answer does not come to mind, but system 1 immediately provides a response like “it is
not really a problem”. We can however simply not know at this moment, regardless of
our hunch that it is not very problematic. For demonstration purposes let’s consider the
case of lowered logging frequency in more detail.
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The top left image in Figure 35 displays the ideal situation with continuous logging in
which three variables are combined to create the indicator. In the situation on the right,
some values are not logged leading to lower coverage in the indicator.
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Figure 35. Complicated relation between logging frequency and indicator.

In the second situation (middle pane of Figure 35), there is not only lower logging
frequency, but because the different variables are not logged at the same time, they
need to be matched leading to lower coverage in the indicator and deviation from the
actual indicator value.

In the final example (bottom pane Figure 35), the actual indicator is a selection from
the data, like in our project we are interested in the maximum DtSPAD. In this case,
there is deviation from the actual indicator value because a different data point is
selected.

6.3.4.2. Impact Underestimation

The above example is meant to illustrate how complex the relation can be between one
variable and the indicator and how difficult it is to oversee the impact of changes in a
variable on the indicator. When we are confronted with questions like the one in the
example, we actually do not know the answer, until we thoroughly analyze it. Yet, such
questions do not trigger a sense of panic, because of two reasons (1) even without an

102



Chapter 6 HF perspective on big data tasks: Identifying cognitive pitfalls in the verification step

exact answer we still have a rough idea that it probably does not have that much impact
and (2) within humans, a sense of danger arises at the presence of signs of dangers and
not by the absence of signs of safety. The former reason can be explained again by
automatic activation. The small number related to the variable installs the idea of a small
effect. This is a manifestation of the anchoring bias in which a specific number influences
someone’s numerical estimate to an unrelated question [118,121].

6.3.4.3. Implication

The impact underestimation can cause small deviations in quality of a variable to,
unwarrantedly, fly under the radar. When the quality of the indicator is critical, it is
important to substantiate the impact of the given quality of each variable on the
indicator. This requires thorough analysis and system 2 thinking whilst disregarding the
system 1 feeling that there probably is not a problem.

6.3.5. Pitfall 5

6.3.5.1. The Beaten Track Disadvantage

When verifying data, texts, theories, code or formula’s, some persons prefer to take the
“blank slate” approach and first view the to-be-verified element and then judge. This is in
contrast with first thinking of your own version of the data/text/theory/code/formula and
then comparing it with the to-be-verified element. The beaten track disadvantage entails
the tendency to overlook problems during verification when employing the “blank slate”
approach. During this approach, reading the to-be-verified element will activate the read
concepts in your brain including the logic of the story and this will create a beaten track.
This beaten track is easy to travel along in the sense that it is highly activated and the
first ideas come up again easily. Alternative notions are activated less easily and can
“lose” from the beaten track.

A comparable experience we all have had is during brainstorm sessions, for example
when considering a new approach or a project title or a gift for a friend. When a few
suggestions have already been made, you have the tendency to think of these same
suggestions again and again or the same suggestion in slightly different wording. As soon
as you feel you are on the brink of thinking of something new, another person offers
their suggestion and you lose your own thought. It cannot compete with the other
activation.

The beaten track disadvantage does not necessarily prevent one from noticing erroneous
thinking. It mainly prevents you from including elements in your judgment that are not in
the to-be-verified object, therefore causing you to overlook certain elements. You are
able to judge what is done, but less able to judge what they have not done and should
have done. In a verification task it is therefore useful to first consider your own version
of the correct solution and then compare it with the actual solution. Even just considering
all the factors to take into account and the necessary information to be collected can
already be useful.

6.3.5.2. Example

Below is a simplified example of a hypothetical calculation process:

“The possible locations to install the GPS sensor on the train differ per train. Each train
has one possible location to install the GPS sensor with a set distance to the head of the
train. The FTS train 4 has a distance of 54 m to the head of the train. The FTS train 6 has
a distance of 86 m to the head of the train. Of all the FTS trains, only the FTS 6 trains
have been equipped with a GPS sensor so far. The distance between the head of the train
to the signal is calculated using Vincenty’s formula to discover the distance between
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longitude and latitude provided by the GPS sensor and longitude and latitude of the
signal. The 86 m are then subtracted from that sensor-signal distance to get the distance
between the head of the train and the signal (accepting some inaccuracies due to track
curvature instead of a straight line between the train and the signal).”

For this simplified example, a question during the verification process would be whether
there are any issues with this process as described above?

When we accept the usage of Vincenty’s formula in this case, then there does not seem
to be a problem with the process. Yet there is one potentially relevant question to ask:
do we also receive GPS data from trains other than FTS trains? If so, then the
adjustment for GPS sensor position might be incorrect. This seems like a straightforward
question to ask and yet it is easily overlooked. The presence of more trains than only FTS
trains with GPS data is a realistic situation, especially when different parts of the
algorithms are written by different persons and they receive the information in
fragments. The programmer who includes the distance from the sensor to the head of
the train might be referred to someone who is knowledgeable about these distances.
When this person only ever works with FTS trains, he or she will only give the
information related to the FTS trains and the programmer will use this knowledge in his
coding.

6.3.5.3. Cases

One of the cases that occurred during our verification project did entail the difference
between sensor location and head of the train. During the calculation of the DtSPAD, the
calculation of the distance between head of the train and the red aspect took the sensor
location into account. However, during an earlier version, calibration of the time was also
necessary because the clocks of the sensors were not running synchronous. The
calibration was done by taking the moment in time according to the GPS sensor when
they passed a signal and the time according to the system in the tracks registering train
passage.

When we looked at the code written for this calibration, we did not register it as a
problem that the actual longitude and latitude of the GPS sensor were used instead of the
adjusted location of the head of the train, even though we were familiar with the issue of
sensor distance even for calibration in other settings. However, when looking at the code,
which was otherwise executed perfectly fine, the problem was not noticed. During code
adjustments for the calculation of the DtSPAD with respect to the sensor distance, the
programmer noted he should use this approach for the calibration as well upon which the
response was: “did you not already do that?”, illustrating that the knowledge of its
necessity was there but it was not sufficient for us to notice the glitch when looking at
the code.

6.3.5.4. Implication

If quantitative verification with actual data is possible, this is a sound approach. When
theories or algorithms need to be checked, this is however not always possible. In these
types of expert-judgment verifications it is useful to discourage the “blank slate
approach” and encourage persons to first consider their own version of the correct
solution and then compare it with the actual solution. When this is too time consuming,
one can restrict the work to considering the factors to take into account when one would
try to create the correct solutions themselves. These factors can then be used as a
checklist or backbone to verify the element with.
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6.3.6. Summary of All 5 Identified Pitfalls

The five identified pitfalls are summarized in Table 10 with a recommendation per pitfall.

# Pitfall Name

Description

Recommendation

The good form as
evidence-error

The incorrect assumption that
if data looks good, for
example in terms of
distribution, that the quality is
therefore good.

Starting with form checks is
important, but make sure to check
in other systematic ways as well by
for example comparing sources
that are supposed to measure the
same variable.

The improved-thus-

The incorrect assumption that
if the data is improved, for
example because of a bug fix,
that the data quality is then

Develop a procedure to recheck
the data after every new
improvement and express the data

2 quality in terms of actual quality
correct fallacy good, or more subtly, . ' ) .
. instead of bugfixes. Keeping a list
forgetting to recheck whether . .
: of the quality of each variable at
the data is actually good after ;
. certain dates can be useful.
the improvement.
When writing down the quality of a
variable/data source, include a
The tendency to forget that de§cr|pt|pn of the conqmon n
S . which this quality applies
Situation- data, for example coming from . .
. . . (especially when applies to lab
3 dependent-identity-  a sensor, can be of different . "
. . - tests versus in position). If
oversight quality depending on the :
situation unknown, leave a question mark to
' visualize that the listed quality
might not apply in other
circumstances.
When the outcome is critical,
The incorrect assumption that assume that LS |mp035|ple L9
o grasp the impact of a variable
Impact small variation in a data . .
4 N . unless studied and simulated
underestimation source corresponds with small -~
g explicitly. Keep track of the
variation in the outcome. . : o
decision which variations are
accepted and which are not.
Use systematic verification where
The beaten track The dlfflCUltY to spot prob_lems possible. If expert judgement is
5 . when following the narrative of necessary, make sure the expert
disadvantage . ; . e
the to-be-verified item. forms an opinion before verifying
the to-be-verified item.
Generic recommendation
Create awareness regarding system 1 thinking, mainly focusing on the fact that data
verification is complicated and (big) data projects include complex interactions.
Solutions/conclusions that come to mind easily are likely based on system 1 thinking. Given
ALL the complexity of the tasks at hand, it is possible that these solutions/conclusions are not

based on all relevant information and/or include implicit incorrect assumptions that work in

general in life but not with respect to (big) data. Teams are important to help each other to
think of and consider all the relevant information and to set aside time to reconsider
previously drawn conclusions.

Table 10. Summary of the 5 identified pitfalls.
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6.4. Discussion

6.4.1. Limitations and Further Research

This “proof of concept” case study of our mDtSPAD safety indicator took a closer look at
the human factors challenges in the verification process as part of (big) data utilization.
Five cognitive pitfalls were identified to be aware of when verifying data, given the way
our brains function. It is expected that knowledge of these pitfalls is relevant for other
railway organizations and other industries as well, because cognitive biases in general
have been proven to occur amongst all people. However, the prevalence of these pitfalls
and data verification within other organizations is not known. The current study focused
on testing a more extensive theoretical framework on cognitive biases in an actual
setting, with a focus on providing a deeper understanding of these types of errors and
their prevention. Future studies that focus on measuring the prevalence of these pitfalls
would be beneficial, followed by research on the success rate of interventions.

Another limitation of the current research is that the list of five pitfalls is not necessarily
exhaustive. It is possible that there are other cognitive pitfalls relevant for the
verification process that are not in this list because they did not occur during this specific
case study or did not lead to salient errors. Further research to identify other possible
cognitive pitfalls can consist of other case studies or experimental settings with respect
to data verification. This research is especially important in use cases where the results
cannot be easily verified, that is when the calculated indicator does not have an
equivalent indicator or predicted live data to compare it with. This is the case for safety
indicators that relate to low incidence incidents, like SPADs, but can also be the case for
“softer” measures, like “safe driving behavior” or, for example in health care, for
measures like “improved health” or “surgery success”.

Besides improving the verification process, future studies are also needed to improve
other aspects of (big) data: Even when the input data is correct, the results can still be
incorrect. Common errors include the sampling error causing the data to be non-
representative. Even in the big data domain where the assumption often is that we have
all the data, this can be a far cry from the truth if there are non-random gaps in the data
[114]. Multiple comparison is also highlighted as a big data issue, meaning that the
presence of a lot of variables and a lot of data will, by chance, always lead to some
seemingly significant factors unless corrected for. Van Gelder and Nijs [140] also note
this issue in their overview of typical statistical flaws and errors that they found upon
investigation of published big data studies related to pharmacotherapy selection.

Another problem is that big data solutions are notorious for focusing on correlation and
ignoring causality. The Google Flu prediction algorithm for example was based on the
amount of flu related google searches and was considered an exemplary use of big data,
until the predictions were far off in 2013. The overestimation was likely caused, at least
in part, by a media frenzy on flu in 2013 leading to a lot of flu-related searches by
healthy people. Additionally, the constant improvements in Google’s search algorithm has
likely had an effect on the quality of the predictions [141]. Even in cases where the
prediction model can be updated based on new information of the changing
circumstances, this might already have led to losses when the results were acted upon
and the cost of a false-alarm or miss are high. The universal occurrence and especially
recurrence of such errors (e.g., not taking changing relationships into account, multiple
comparison and sampling error) can be illuminated by investigating the role that
cognitive biases play in their occurrence.
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The interpretation of data and the data results can also be complicated. This is a vast
topic on its own that deserve many references. Within railways specifically, Figueres-
Esteban and colleagues (2015) discuss the challenges of comprehending big data within
and advocate a decision support system specifically for the railways. See [142] for their
recommendations and literature review.

6.4.2. Advocated Perspective and Recommendations

For each cognitive pitfall identified in this study, recommendations were given to prevent
them from leading to errors. When thinking about tackling errors within risk monitoring,
it is important to keep in mind that, given the way our brains function, it is expected that
errors occur within information judgment tasks as part of risk monitoring. These errors
occur regardless of the intelligence of the persons performing the tasks and are not
person-dependent. Creating awareness among persons about these facts, the way we
think and our tendency to fall into these pitfalls is part of the approach against cognitive
pitfalls. Secondly, and equally if not more important, measures can be taken to improve
the process itself and minimize the chances that people will make these types of errors.

This second approach consists of formalizing the verification process to create reminders
of the factors that need to be considered with system 2 thinking so the errors do not
occur.

These formalizations of the verification process are not designed to take away some of
the cognitive load or the thinking of the persons involved, but in contrast to encourage
deep and reasoned thinking. It is a matter of setting up the right circumstances, of
facilitating the possibility of persons to be able to handle the cognitive task in the desired
manner: with system 2 thinking and thereby their own, well-based, judgment.

Although this chapter might appear to highlight human’s limitations, it is actually meant
to illustrate that there are many instances in which we do not use the full extent of our
capabilities which causes errors rather than a lack of capabilities as a cause of these
errors. With the right adjustments in processes and increased awareness, we do not
become more intelligent, but we are able to perform as if we did. Especially in the age of
(big) data usage where information judgment takes on a new level of complexity, while
also providing unique opportunities to improve safety, facilitating the best possible
performance of the human brain via work process improvement is not a matter of
optimization but of necessity.

This study and other referenced examples make it apparent that we tend to have false
assumptions: we implicitly assume that when we look at data, it is correct or we would
notice and that persons looking at the data before us would have noticed if anything was
wrong. As the use of (big) data is becoming more common, it is becoming increasingly
important to tackle these issues. If we want correct conclusions, we need good quality
data and if we want good quality data, we need to set up a solid verification process
befitting human cognition.

This case study has also shown that, in the larger conversation of improving data
utilization, considering technical advancements alone is not enough: a focus on the
human factor in the (verification) process is essential to truly fulfill the grand promises of
big, and medium-sized, data.

107



Chapter 7 Practical insights on using big data to investigate human behavior and improve safety

Chapter 7

Practical insights on using big data to investigate
human behavior and improve safety

108



Chapter 7 Practical insights on using big data to investigate human behavior and improve safety

7.1. Using big data: Lessons learned for behavior related
safety research and process improvements

The use of big data for this dissertation provided multiple insights that are useful for
future endeavors using big data for behavior related safety research within academia, rail
and other industries.

7.1.1. Beyond statistically significant: Using big data to identify
effect size and exact circumstances

The last decades of research within human factors and other disciplines have shown that
many factors can influence human behavior. Building upon this knowledge, the question
is shifting from “can a factor influence behavior” into the question: “to which degree does
a factor influence behavior?”

Step one has in large part been done within science: the identification of potential
factors. Existing theory and experts in the field help us to identify and operationalize the
factors. Step two is the ordering of these factors in effect size and investigating under
which exact circumstances the effect occurs. The use of big data takes us outside
artificial laboratory settings and provides knowledge on the effect size in real-life settings
that occur day-to-day.

Depending on the dataset being used, big data can easily lead to statistically significant
results. In the case of results that are statistically significant, the focus lies on how big
the effect is. Very small effects or even non-significant effects (despite large amounts of
data) also provide valuable knowledge as it is often also informative to know what does
not have a (substantial) effect when it comes to practical application.

7.1.2. The human error in big data research

Any task involving human performance is susceptible to human error, including tasks
such as data analysis. Those that investigate human behavior are expected to have a
certain level of knowledge about human behavior and human error. We should take
advantage of this knowledge and not be afraid to apply it to ourselves and our processes.
No one is immune to being human.

Using big data provides some specific openings for errors to occur and remain
undetected. Firstly, due to the amount of data, individual inspection of all the data points
is unlikely. Secondly, the data might be originally collected for other purposes and have
hidden or uncommunicated properties that serve the original goal but not the current
research goal. Thirdly, multiple variables might be combined leading to many potential
entry points for problems in data quality.

One might be aware of some unknown information, but there will also undoubtedly be
unknown unknowns. Thorough interaction with the data in different manners, like
examining specific data points, will help to get a better grasp of the data and the
unknown unknowns. For concrete advice, see chapter 6.

7.1.3. User-friendly data: the importance of a useful indicator
The indicator described in this dissertation is the "maximum deceleration-to-SPAD”. It
summarizes each red aspect approach into one number. This indicator was not the

original indicator. At the start of my research, the indicator that had just been developed
and taken into use was called "minimum Time-to-SPAD". Being able to summarize all the
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data points of an approach into one relevant number was an important first step, but not
enough.

The original indicator made intuitive sense. For each data-point (train speed and distance
to red aspect), the time was calculated (in seconds) until the train had to decelerate with
the emergency brake in order to stop exactly at the red aspect. This calculation included
the time that it takes for the emergency brakes to apply. For each approach, the
minimum time was selected. If the minimum Time-to-SPAD was, for example, ten
seconds, then this meant that the train driver had ten seconds left until he or she had to
use the emergency brake in order to prevent a SPAD. If the Time-to-SPAD was one
second, then it was a close call.

One of the difficulties with the minimum Time-to-SPAD, was identifying the cut-off score.
Is ten seconds low? Or five or only two? While identifying a cut-off score is often difficult,
examination of individual approaches with different minimum Time-to-SPAD values, led
to different conclusions from different subject matter experts. There were only a few
approaches where there was consensus amongst subject matter experts. Additionally,
the minimum Time-to-SPAD value did not seem to provide sufficient information to the
experts since they also wanted to know the train speed at the moment of the minimum
Time-to-SPAD. A final clue was that most subject matter experts wanted to see how fast
the train had decelerated before they could provide a conclusion.

It became clear that the actual deceleration of the train mattered to the subject matter
experts. Solely looking at the actual deceleration was however also inherently flawed as
an indicator for the probability of a SPAD. A train driver might decelerate very fast at a
long distance in front of the red aspect and drive very safely with respect to SPAD
probability. In such situations, the fast deceleration was not actually necessary to be able
to stop in front of the red aspect. These notions eventually led me to consider: what if we
calculate the deceleration that is actually necessary?

Upgrading the indicator from time-to-SPAD to deceleration-to-SPAD had many
advantages:

e Fewer estimated fixed variables were needed whilst no additional data point were
necessary to calculate the maximum Deceleration-to-SPAD.

e The indicator value is easier for subject matter experts to interpret and to judge
whether a value is low or high.

e There was more consensus amongst subject matter experts about high-risk
approaches. One specific considerable improvement was that low-speed
approaches were no longer incorrectly labeled as “near miss”.

e The new indicator had a normal distribution in contrast to the original indicator
which had no clear distribution shape with values as high as hundreds of seconds.
Having a variable that follows the normal distribution or a comparable distribution
has many advantages from an analysis perspective. Some of these advantages
have been discussed in chapter 5.
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7.1.4. The importance of a theory-driven approach in safety
context

There are many ways to analyze big data. One can use modern techniques that rely less
on the traditional “top-down” theory-driven approach and focus more on a “bottom-up”
approach whereby the algorithms help select the best combination of factors for a
predictive model. Whilst these techniques can provide very useful insights, they are not
necessarily useful for certain safety-related research.

Two important factors to consider are the cost of a “false alarm” and, related, whether
there is a need for a causal explanation. At ProRail, a predictive model has been
developed which predicts locations where people will walk along the tracks. Inspectors
can use this information to inspect a specific location if they happen to be in the area.
When the algorithm made the right prediction, this is great, and when the algorithm was
incorrect, then there is no real loss. However, when an algorithm predicts that there are
certain locations with a high SPAD risk, then the question becomes: what now? Adding
additional (technical) safety barriers in Dutch rail tends to cost a lot of money. The
results from an algorithm with for example a 67% predictive performance will not be
considered sufficient evidence to warrant the investment.

In the example of high SPAD locations, it is also valuable to know why there is a risk, so
the cause can be eliminated if possible rather than adding additional safety barriers.
Whilst the algorithms can identify which factors have the highest predictive performance,
there might be spurious correlations present. If this is the case, changes to the factor
might have no or even a worsening impact on the risk that one tries to reduce. A theory-
driven approach can help in providing a higher degree of certainty and a clearer
indication of causality.

Another advantage of a theory-driven approach is that certain factors can be investigated
that would not have been identified by the algorithms. For our research on incidental
learning, one of the additional variables that needed to be calculated, was the frequency
of the same yellow+number aspect in the past 14 days for the same specific signal, if
there was a yellow aspect that was near a station platform stop. This extremely specific
combination of variables would not have been found by the algorithm.

The modern “bottom-up” techniques can be alluring due to the idea of requiring less
subjective decision making by the researchers or analysist. However, in many ways, this
is an illusion. Even with the use of algorithms, many decisions need to be made including
what methods exactly will be used and how the data is split in training and test set.
Perhaps most importantly, the decision of which factors to include remains present. It is
neither practically feasible to gather and connect every possible variable nor is it good for
the predictive performance of the algorithm to add every possible variable. A selection of
variables must be made, and the inclusion or exclusion of specific variables can lead to
an entirely different answer to the same question. Here, again, the unknown unknowns
are the biggest risk. Interaction with, and in-depth knowledge of what the data
represents helps in making sure the relevant questions are asked and the relevant
variables are included.

Figure 36 gives an example of how a psychologist and big data expert can collaborate to
answer safety related human behavior questions.
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“[This] is the
safety problem”

‘ [This] type of information s relevant J
[This] is the actual data we have "“\A
[This] human behavior is relevant to measure
and the variables should be combined in [this]
way to calculate the human behavior indicator
[Here]is an initial examination of the \"“\_\\:
human behavior indicator
i
" [These] factors are relevant and [this] is how
the variables should be combined to calculate
the factors
; o
[Here] are the results of the analysis of \
the effect of the factor on the indicator

Pl [This] makes sense froma human behavior
perspective and [this] does not. Let’s refine the
data and/or analysis [here] and [here].
—

———
[Here] are the new results.

Based on these results, we should incorporate
[these| factorsinthe subsequent analysis.

\—‘m___ﬁ

[Here] are the results of the subsequent
analysis.

e — “[This] is what the

O O insights mean and
m how they can be
h m used”
Big data analyst Human behavior specialist
Knowledge of Knowledge of human error
Big data collection, analysis causation (Human Factors expert
and interpretation or related expertise)

~.

Figure 36. Example of collaboration between Human Behavior specialist and Big data analyst and the
added value that the Human Behavior specialist can bring to the process. Both parties need each other
to effectively use big data.

7.1.5. Why behavioral data can lead to different findings than
accident data

In chapter 5 the philosophy was introduced of looking at variation in processes. With
respect to incidental learning, we looked at the variation in train driver behavior. A larger
variation theoretically leads to a distribution with more datapoints in the “near miss”
region and thereby a larger probability of accidents to occur. However, as we have seen
in chapter 3, this is not necessarily the case if there are additional safety barriers in place
to prevent the unwanted behavior from leading to an accident.

This means that research using behavioral data cannot necessarily be validated (easily)
by research using accident data. This is especially the case for infrequent accidents.
Nonetheless, valuable insights can be gained from using behavioral data and from
investigating variation, as discussed in chapter 5.

Data variation can also be used as a proactive or leading indicator upon which can be
acted before the accident occurs rather than afterwards. Monitoring variation can be a
useful leading indicator in general and specifically to monitor the effects of a process
change with unknown effects on employee behavior. Within Dutch rail, the leading
indicator maximum Deceleration-to-SPAD was used to monitor the effects of an
infrastructure change on train driver behavior and the SPAD risk. There was sufficient
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data to reliably monitor the mDtSPAD distribution on a weekly basis for passenger trains
and be able to conclude whether an intervention was necessary or not. The number of
SPADs and the number of high mDtSPAD values was also monitored, but the absence of
both provided less (leading) information than the results showing stability in the
distribution of train driver behavior.

7.2. Recommendations for safety research using (big) data of
employee behavior

Chapter 5 describes the approach of how to examine variation in order to gain new
insights and section 7.2 describes tips that are useful for the practical execution. Before
any data can be used, there of course needs to be an willingness from industry and/or
academia to invest time and money in the endeavor. For this final section we will
therefore recommend some arguments that can be used to list the advantages of using
(big) data of employee behavior for safety purposes:

e “The methods that we used up until now have led to a reduction in the numbers of
accidents, but there still remain accidents which were unforeseen and for which
we do not fully understand the cause based on the current methods. Using the
data-based approach can provide new insights into the causes of the accidents,
and thereby make it possible to:

e improve accident analysis

e improve task evaluation

e develop new or adjusted safety measures for accident prevention and
mitigation

e avoid the unintended introduction of unsafe situations as a result of
process changes or innovation”

e “There is an increasing number of a certain accident. The current methods
insufficiently explain why this is happening. The data-based approach can provide
more insights into the cause of the increase. At the very least, the data can show
whether the increase correlates with an increase in opportunity for accidents to
occur (exposure) or a change in behavior (chance) or both.”

e "The data-based approach allows us to proactively monitor the effects of
innovations or changes and intervene before accidents occur. The monitoring
based on employee behavior also gives more confidence in the conclusion that a
change does not have a negative effect if no to little change in behavior is
measured over a time period in contrast to measuring zero accident in the same
time period for a location where zero accidents is the baseline. Thus, more firm
conclusion can be drawn sooner.”

e “There are assumptions within the industry about whether certain factors
influence employee behavior and increase the probability of an error, but there is
no definitive evidence yet whether this is indeed the case. Even more importantly,
we do not know how big the effect is per factor and in which situations this effect
occurs. The data-based approach allows us to measure whether the factors indeed
increase the probability of an error and which factors have the highest impact.”

® “We implement certain costly safety barriers in terms of money or process costs
like time, but we have little evidence which locations or situations actually are at
high risk for errors to occur. The data-based approach will make it possible to
identify high risk locations with more certainty and potentially also identify
locations which have a low risk for error if research is done on risk factors. This
information makes it possible to make more deliberate decisions on where to
implement costly safety barriers and where not to.”
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Closing remarks

The findings on incidental learning highlight a new and significant factor for risk
management and accident prevention. As a cognitive psychologist, I have enjoyed
figuring out and elaborating on the theoretical underpinning of these sections. I have
made an explicit effort to clearly explain the psychology so readers can go beyond merely
obtaining knowledge and into understanding. If this dissertation inspires anyone to
continue research on the role of incidental learning in human error occurrence or to
change task design in order to prevent errors by taking previous exposure into account,
then I will call this dissertation a success.

To continue increasing the level of safety for employees and for society, we need
improvements with respect to incidental learning but of course also with respect to other
factors that influence human behavior. I believe that the use of big data can lead to great
strides in the broad field of behavior related safety issues, both in terms of scientific
knowledge and in the prevention of accidents. If this dissertation inspires and supports
anyone in this endeavor, then I will call that success, as well.

A final ambition of mine, with this dissertation and in general, is to contribute to fostering
more understanding around human behavior. Still too often, we judge and punish others

and ourselves for the mistakes we make. But when we enter the realm of “he should” or

“she should” or “I should have”, then it is hard for learning to occur.

Only by accepting what behavior apparently occurs under the current circumstances, can
we imagine solutions to change it. This is what I love about using big data from actual
day-to-day behavior: it is truth being presented to us. It is not the scientist’s job to
judge the behavior he or she is shown, but only to explain what is going on and present
the results in a way that turns truth into knowledge. Hopefully this knowledge will foster
understanding and with it, both compassion towards the persons who have erred in the
past and action to prevent future errors and improve safety for all.

"It’s not 'us versus them’ or even 'us on behalf of them.’ For a design thinker it has to be
'us with them'”

- Tim Brown, CEO and President of IDEO
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Risicoanalyse en Bedrijfszekerheid), 22 oktober 2019,
https://www.nvrb.nl/nieuws/column-de-pen/oktober-2019-onzekerheid-omarmen

Presentations and workshops at professional meetings (excluding
presentations at ProRail)

Burggraaf, J.M. Human Factors vraagstukken beantwoorden met realisatiedata: Tips,
voorbeelden en waarom HF input nodig is. 2021, Dutch Rail Human Factors conference,
19 May, online.

Burggraaf, J.M. Impliciet leren als oorzaak voor STS-passages en fouten in het algemeen.
2019. Dutch Rail Human Factors conference, 26 November, Amersfoort, the Netherlands.

Burggraaf, J.M. Je leert meer dan je weet: Invloed van onbewuste processen op
handelen. 2019. Workshop organized for NVVK members via the Andrew Hale
scholarship, 14 November, Utrecht, the Netherlands.

Burggraaf, J.M. Beheerst en veilig? Leer van de spreiding! 2019. TU Delft MOSHE course,
9 September, The Hague, The Netherlands.

Burggraaf, J.M. Ook cheeta’s lopen wel eens langzaam: Mijn kijk op vakmanschap als
wetenschapper. 2019. NVVK Praktijkdag voor veiligheidskundigen over Vakmanschap. 17
May, Woerden, the Netherlands.

Burggraaf, J.M. De denkreflex game: Denkreflexen ervaren en leren navigeren. 2019.
Dutch rail conference Risicobesluitvorming: Is er over nagedacht?, 21 March, Railcenter,
Amersfoort, the Netherlands.

Burggraaf, J.M. Je leert meer dan je weet. 2019. NVVK conference: 2025 Wat ga ik
anders doen?, 13-14 March, Arnhem, the Netherlands.
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Burggraaf, J.M. Tunnelvisie in communicatie. 2018. Veiligheidsbijeenkomst spoorsector
Tunnelvisie: Heb jij grip op je veiligheidsblik?, 30 October, Leiderdorp, the Netherlands.

Burggraaf, J.M. Innovatieve aanpakken en cognitieve valkuilen. 2018. Netwerkmiddag
Veilig werken, Rijksinstituut voor Volksgezondheid en Milieu (RIVM), May 25th, Bilthoven,
the Netherlands.

Burggraaf, J.M. Managing the Human Factor in the Incident Investigation Process. 2016.
SPE International Conference and Exhibition on Health, Safety, Security, Environment,
and Social Responsibility, 11-13 April, Stavanger, Norway.

Burggraaf, J.M. Het voorkomen van cognitieve biasen in ongevalsanalyse. 2015. NVVK
conference: Veiligheid? Zoek het ff zelf uit!, 31 March - 1 April, Arnhem, the
Netherlands.

Academic awards
Andrew Hale scholarship at the NVVK conference “2025 Wat ga ik anders doen? Nieuwe

risico’s, nieuwe opvattingen, nieuwe oplossingen”, March 13, 2019, Arnhem, the
Netherlands
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Appendix A

R code for statistical test:

## Statistical testing: get p-value for 1 segment by comparing observed with expected
# example values in total sample

high<-1+39

tot<-38+377

low<-tot-high

values<-c(rep(1,high), rep(0,low))

# example values in subset

high_subset<-1

n_subset<-38

# Prepare for 100000 runs

reps<-100000

result<-logical(length=reps)

# Check side: greater or lesser than; if greater than expected:
if(high_subset>(high/tot*n_subset)){

for(i in 1:reps){

# draw random sample of subset size without replacement and check if as many or more
values in drawn as in measured

result[i]<-sum(sample(values, n_subset, replace = F)==1)>=high_subset
b
b

# Check side: greater or lesser than: if lesser than expected:
if(high_subset<(high/tot*n_subset)){
for(i in 1:reps){

# draw random sample of subset size without replacement and check if as little or less
values in drawn as in measured

result[i]<-sum(sample(values, n_subset, replace = F)==1)<=high_subset
b

b

p<-sum(result)/reps

P
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Appendix B

R code for statistical test:
## Statistical testing: get p-value for 1 segment by comparing observed with expected
# below values for frequency bin 351-450 times in Table 7.
SPADs<-13+5+0+2+0+5+4+0
RAA<-649738+323313+48057+31053+20082+36227+29752+1443 -SPADs
tot<-SPADs+RAA
values<-c(rep(1,SPADs), rep(0,RAA))
# example values in subset
SPADs_subset<-5
n_subset<-36227
# Prepare for 100000 runs
reps<-100000
result<-logical(length=reps)
# Check side: greater or lesser than; if greater than expected:
if(SPADs_subset>(SPADs/tot*n_subset)){

for(i in 1:reps){

# draw random sample of subset size without replacement and check if as many or
more values in drawn as in measured

result[i]<-sum(sample(values, n_subset, replace = F)==1)>=SPADs_subset

b
b

# Check side: greater or lesser than: if lesser than expected:
if(SPADs_subset<(SPADs/tot*n_subset)){
for(i in 1:reps){
# draw random sample of subset size without replacement and check if as little or
less values in drawn as in measured
result[i]<-sum(sample(values, n_subset, replace = F)==1)<=SPADs_subset
b
b
p<-sum(result)/reps
p
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Appendix C

Behavioral data study

Accident data study

Period

20-08-2018 to 20-03-2020

01-01-2014 to 31-12-2019

Trains

Passenger trains from NS
with the Orbit installed and
active

All passenger trains, excluding
those with Orbit

Train types

Regional trains
underrepresented because
one type of regional trains did
not have Orbit installed yet

All passenger trains

Trains used in
frequency
calculation

All trains of the same train
series mentioned at “Trains”

All trains of the same train
series mentioned at “Trains”

Frequency
calculation

All planned yellow+number
aspects in the location for
that train + yellow+number
speed restrictions if the same
yellow+number as planned
yellow+number aspects

Frequency of one specific
yellow+number aspect.
Approaches are excluded when
other yellow+number aspects or
planned yellow are present more
often than 5 times and/or the
most prevalent yellow+number
aspect is present less than 100
times in the previous 14 days.

Planned yellow-
yellow-red
approaches at
location

Yellow-red approaches with
planned yellow-yellow-red in
the past fourteen days
included, but yellow-yellow-
red not used in the frequency
calculated

Yellow-red approach filtered out
if there is often a yellow as part
of planned yellow-yellow-red in
that location as per criteria at
“Frequency calculation”

Table 11. Differences in data used between the study using behavioral data and the study using

accident data
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Appendix D

The signal chosen for this explorative analysis was the signal with the most red aspect
approaches in the study described in chapter 2. A random date was chosen within the
time period of data used in that study, namely 15-01-2019. We identified two train series
that had more than two red aspect approaches towards that signal on that day. Next, for
both train series, we counted the number of yellow aspects during a time periods of 14
days, specifically the first 14 days of the month and the last 14 days (day 01 to 14 and
day 15 to 28). Data was gathered for January, March, May and July and thus 8 periods of
14 days.

Y:8 264 282 302 362 349 453 471 471
Y:4 2 4 1 4 3 3 4 4

Y 34 134 125 167 180 70 60 56
Time March July May May 1- | July 1- | January | January | March
period | 15-28 15-28 15-28 14 14 15-28 1-14 1-14
in 2019

Table 12. No clear correlation between yellow+8 and yellow frequency for train series A.

Y:8 330 336 367 477 492 496 498 505
Y:4 2 5 7 5 2 4 5 5

Y 92 158 44 48 29 27 29 26
Time March | May July July 1- | January | January | March | May 1-
period | 15-28 15-28 15-28 14 15-28 1-14 1-14 14

in 2019

Table 13. No clear correlation between yellow+8 and yellow frequency for train series B.

Since there was no differentiation in the data analysis whether a yellow aspect was part
of a yellow-yellow-red approach or not, it was checked whether there could actually be a
scheduled yellow-yellow-red approach in this location. This is not the case. For the signal
used to analyze the red aspect approaches, if the previous signal is ‘yellow’, then the
next signal must either be red or yellow-flashing where yellow-flashing indicates that
speed needs to be restricted to below 40 km/h and the driver should be able to stop at
any point behind the signal, for example due to occupied tracks or danger. During
January 01 to 28 of 2019, the aspect was never yellow-flashing at the location of the
signal which was used for red aspect approach analysis. This indicates that there is never
a scheduled yellow-yellow-red approach and there does not often seem to be a scheduled
yellow-yellow+flashing approach. Thus, the presence of a yellow signal was usually
followed by a red aspect, of which the moment of signal aspect improvement is unknown.

Overall, above data does not provide support for the hypothesis that higher
yellow+number frequencies in the previous fourteen days are accompanied by a higher
exposure to having to stop in front of the red aspect.
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Appendix E

Suggested reading with respect to SPAD causation:

Gibson, H. (2016). Industry Human Factors SPAD Review - Project Summary Report.
RSSB Human Factors. Retrievable from
https://www.sparkrail.org/Lists/Records/DispForm.aspx?ID=22779

Turner, C., Harrison, R. & Lowe, E. (2003). Development of a human factors SPAD
hazard checklist. Contemporary Ergonomics 2003, 385-390.

Turner, C. (2002). Human factors SPAD hazard checklist: Management summary. SPARK,
retrievable from https://www.sparkrail.org/Lists/Records/DispForm.aspx?ID=20074

Hamilton, I. W. & Clarke, T. (2005). Driver performance modelling and its practical
application to railway safety. Applied Ergonomics, 36 (6), 661-670. doi:
10.1016/j.apergo.2005.07.005

Naweed, A., Rainbird, S. & Chapman, J. (2015). Investigating the formal
countermeasures and informal strategies used to mitigate SPAD risk in train driving.
Ergonomics, 58(6), Pages 883-896, doi:10.1080/00140139.2014.1001448

Naweed, A., Bowditch, L., Chapman, J. and Balfe, N. (2019). System precursors to
signals passed at danger (SPADs): An exploratory comparison of SPAD history and rail
environment. Conference paper at 12th World Congress on Railway Research
(WCRR2019), Tokyo, Japan. Available at:
https://www.researchgate.net/publication/337336060_System_precursors_to_signals_pa
ssed_at_danger_SPADs_An_exploratory_comparison_of_SPAD_history_and_rail_environ
ment

Anjum Naweed (2020). Getting mixed signals: Connotations of teamwork as performance
shaping factors in network controller and rail driver relationship dynamics. Applied
Ergonomics, 82, doi:10.1016/j.apergo.2019.102976.

van den Top, J. (2010). Modelling Risk Control Measures in Railways: Analysing How
Designers and Operators Organise Safe Rail Traffic. In; Next Generation Infrastructures
Foundation: Delft, the Netherlands, ISBN 9789079787159.

Verstappen, V.J. (2017). The performance of Dutch train drivers based on the impact of
the presence of a second person in the cab. Proceedings of the Institution of Mechanical
Engineers, Part F: Journal of Rail and Rapid Transit., 231(10),1130-1140.
doi:10.1177/0954409717694562

Suggested reading with respect to big data research and SPADs:

Rawia Ahmed Hassan E.L. Rashidy, Peter Hughes, Miguel Figueres-Esteban, Chris
Harrison, Coen Van Gulijk, A big data modeling approach with graph databases for SPAD
risk, Safety Science, Volume 110, Part B, 2018, Pages 75-79, ISSN 0925-7535,
https://doi.org/10.1016/j.ssci.2017.11.019.

Figueres-Esteban, M., Hughes, P., El Rashidy, R. A. H. and Van Gulijk, C. (2017)
Integrating data to support SPAD management. In: Sixth International Human Factors
Rail Conference, 6-9 November 2017, London. (Unpublished) Available at
http://eprints.hud.ac.uk/id/eprint/33962/
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Zhao, Y., Stow, J. and Harrison, C. (2016). Improving the understanding of SPAD risks
using red aspect approach data. Safety and Reliability, 36(3), p. 199-212,
doi:10.1080/09617353.2016.1252086

Harrison, C., Stow, J., Ge, X., Gregory, J., Gibson, H. and Monk, A. (2022). At the limit?
Using operational data to estimate train driver human reliability. Applied Ergonomics,
Volume 104, doi:10.1016/j.apergo.2022.103795.

Zhao, Y., Stow, J. & Harrison, C. (2016). Improving the understanding of SPAD risks
using red aspect approach data. Safety and Reliabilty, 36(3), 199-212.
doi:10.1080/09617353.2016.1252086

Suggested reading with respect to big data research in railway safety:

Van Gulijk, C., Hughes, P., Figueres-Esteban, M., Dacre, M. and Harrison, C. (2015). Big
Data Risk Analysis for Rail Safety? In: Safety and Reliability of Complex Engineered
Systems: ESREL 2015. CRC/Balkema. ISBN 9781138028791

Parkinson, H.]. & Bamford, G. (2016). The Potential for Using Big Data Analytics to
Predict Safety Risks by Analysing Rail Accidents. Proceedings of the Third International
Conference on Railway Technology: Research, Development and Maintenance, J. Pombo,
(Editor), Civil-Comp Press, Stirlingshire, Scotland. [2016]; paper 66;

D’Agostino, A. (2016). Big data in railways. European Union Agency for Railways, Safety
Union. Retrievable from http://www.era.europa.eu/Document-Register/Pages/Big-data-
in-railways.aspx
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