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Abstract: Better understanding of manual control requires more research on human antic-
ipatory feedforward behaviour. Recent advances include a human control model for preview
tracking, and a subsystem identification (SSID) technique that uses a candidate pool approach to
identify the human feedforward and feedback responses. This paper discusses the performance of
the SSID method when estimating the preview control model parameters. Through simulations
of a preview task with two controlled element dynamics, the SSID performance with different
remnant noise levels and candidate pool densities is quantified. We demonstrate its successful
application to the preview model and show that its performance deteriorates for higher noise
levels. While the feedforward parameters are estimated accurately, the high-frequency compen-
satory feedback dynamics cannot be reliably determined. Future work focuses on alternative
formulations for using SSID to estimate preview model parameters. Since in manual control the
closed-loop magnitude decreases at higher frequencies, effects of manipulating the weightings of

the closed-loop fitting cost values at these frequencies must be further analyzed.
Copyright © 2022 The Authors. This is an open access article under the CC BY-NC-ND license

(https://creativecommons.org/licenses/by-nc-nd/4.0/)
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1. INTRODUCTION

While a thorough understanding of Human Operator (HO)
feedback control behavior exists, as well as validated
models for predicting this behavior (McRuer and Jex,
1967; Mulder et al., 2018), the complex combination of
feedback and feedforward behavior that characterizes HOs’
behavior in pursuit and preview tracking tasks is less well
understood. Recently, Van der El et al. (2016) proposed
a novel linear time-invariant model that can accurately
explain and predict behavior in pursuit/preview tracking
tasks. The model is based on McRuer and Jex (1967)’s
‘precision model’, can be applied to a range of different
tasks (Van der El et al., 2016, 2020) and uses intuitive
and identifiable parameters, such as a human look-ahead
time. Essential for the development of such valuable HO
models are accurate and reliable identification techniques
that enable explicit separation of human feedback and
feedforward control contributions (Mulder et al., 2018).

Recently, Zhang and Hoagg (2016a) proposed a novel Sub-
System IDentification (SSID) technique for estimating hu-
man feedback and feedforward control responses as differ-
ent subsystems in an overall closed-loop system. SSID uses
a frequency-domain estimate of the closed-loop dynamics
and a candidate pool approach to separate the internal
feedforward and feedback contributions. Since then, SSID
has been extended to include estimation of time delays
(Zhang et al., 2018; Mousavi et al., 2020) and assessed
with increasing noise levels and varying candidate pool
densities (Mousavi et al., 2020; Sheffler et al., 2019). SSID’s

advantages over existing ‘instrumental variable’ techniques
(Van Paassen and Mulder, 1998; Van der El et al., 2016)
are that it guarantees stability of the estimated system
dynamics and does not require two independent forcing
functions to identify both feedback and feedforward re-
sponses. The latter potentially allows for identifying hu-
man feedback/feedforward control in more realistic tasks
than currently possible. Thus, investigating whether SSID
accurately estimates the parameters of Van der El et al.
(2016)’s preview model is an important step.

The aim of this paper is to modify the SSID technique
from (Mousavi et al., 2020) so that it can be applied to
Van der El et al. (2016)’s preview model and to evaluate its
performance for different remnant noise levels (Van der El
et al., 2019) and candidate pool densities. For this analysis,
offline simulations with a previously identified HO preview
model (Van der El et al., 2020) are used, to provide a
‘ground truth’ for identification performance assessment.
Furthermore, SSID results are presented for preview tasks
with two types of controlled element (CE) dynamics —
i.e., single and double integrator dynamics — as the CE
affects both HOs’ feedback and feedforward behavior and
remnant characteristics (Van der El et al., 2019).

2. FEEDFORWARD HUMAN CONTROL MODELS
2.1 The Preview Tracking Task

To identify HO control behavior in preview tracking tasks,
different approaches have been taken (Ito and Ito, 1975;

2405-8963 Copyright © 2022 The Authors. This is an open access article under the CC BY-NC-ND license.
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Fig. 1. Overview of a preview display (a), the three-channel block diagram that represents the human in a preview
tracking task (b), and the two-channel simplifications (ET, top; TX, bottom) used for identification (c).

Van der El et al., 2016; Sheffler et al., 2019; Efremov et al.,
2022). Fig. 1 shows the preview display and model struc-
tures used to describe HO behavior in preview tracking.
Fig. 1(a) becomes a preview display when (part of) the
future trajectory of f; is shown; otherwise (i.e., for 7, = 0)
it is a pursuit display. In a preview task, see Fig. 1(b), the
human operator provides control outputs (u) to the CE,
aiming to keep the CE output = (white circle in Fig. 1(a))
as close as possible to f; (black circle), minimizing error e.
Fig. 1(b) shows that in this task, HOs can respond to the
target (ft, feedforward), the error (e, feedback) and the
CE output (z, feedback) presented on their display.

When identifying HO control dynamics in preview tasks,
the three-channel control structure of Fig. 1(b) poses two
key challenges: 1) it is an inherently overdetermined model
structure, as the three inputs are not independent (i.e.,
e = fr —x) and 2) most state-of-the-art identification
techniques (e.g., (Van Paassen and Mulder, 1998)) require
a separate independent forcing function for each estimated
HO response. Therefore, the full model of Fig. 1(b) is
often reduced to a two-channel model, where either the
x or e responses are omitted, see Fig. 1(c). The resulting
model structures are here referred to as ET (responses to
e and f;) and TX (f; and z). Both two-channel model
structures — which are equivalent and equally able to
describe HO behavior — include the feedforward response
that captures the feedforward behavior HOs use in preview
tasks (Van der El et al., 2016).

All efforts to use SSID for the identification of human
feedback and feedforward responses have used an ET
model structure (Zhang and Hoagg, 2016a,b; Zhang et al.,
2018; Sheffler et al., 2019). Many previous investigations
into HO preview control behavior have also used the ET
model structure (Ito and Ito, 1975; Efremov et al., 2022),
however, Van der El et al. (2016)’s preview model (this
paper) has a TX model structure.

2.2 Van der El’s Preview Model

Van der El et al. (2016)’s preview model, see Fig. 2, is an
extension of McRuer and Jex (1967)’s quasi-linear model
for compensatory HO behavior. While generally identified
using the TX structure of Fig. 1(c), its minimum realiza-
tion has a ‘prefiltered compensatory’ structure (Van der El
et al., 2016). Fig. 2 shows that this implies that in preview
tasks HOs minimize an ‘internally calculated’ error e*,

based on the current CE output and a target 7y < 7,
seconds ahead, instead of the true error e.

Human operator
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Fig. 2. Van der El et al. (2016)’s HO preview model.

Fig. 2 shows that the prefilter dynamics H,,, consist of the
feedforward look-ahead time 7 (a ‘negative’ delay) and a
low-pass filter H,,, with a feedforward gain Ky and lag
time constant T; y as parameters. In this paper, the low-
pass filter is rewritten to cut-off frequency form, i.e., with
wy r = 1/T; 5, for implementation in SSID (see Section 3).
The compensatory dynamics H,,,,, are equivalent to those
of traditional compensatory HO models (McRuer and Jex,
1967; Mulder et al., 2018) and consist of the equaliza-
tion dynamics H,_,, the neuromuscular (NMS) dynamics
H,ms, and a feedback time delay 7,. The equalization
dynamics vary with the type of CE dynamics (McRuer
and Jex, 1967), as the lead time-constant 77, . is only non-
zero for double integrator dynamics, while the lag-time
constant is non-zero for gain dynamics only.

2.8 HO Remnant Model

In this paper we use Van der El et al. (2016)’s preview
model as defined in Fig. 2 for generating representative
data for identification tests with SSID. Besides the model
itself, this requires also a simulation of the HO remnant n.
As detailed in (Van der El et al., 2019) and shown in Fig. 2,
our remnant model inserts the remnant signal, low-pass
filtered Gaussian white noise, at the system output . The
remnant filter H, (jw) = K, /(1 + T} ,jw) is parameterized
with a gain K, and a lag time-constant 7;,, which both
vary based on the CE dynamics (Van der El et al., 2019).
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3. SUBSYSTEM IDENTIFICATION
3.1 The SSID Method

In this paper, we aim to estimate the parameters of
Van der El et al. (2016)’s HO preview model using a
modified version of the Subsystem Identification (SSID)
technique in (Mousavi et al., 2020), which extends earlier
work described in (Zhang and Hoagg, 2016a,b; Zhang
et al., 2018). SSID estimates the dynamics of multiple
subsystems (i.e., blocks) from a single measured ‘overall’
closed-loop input-output relation. The technique operates
in the frequency domain and uses a candidate pool ap-
proach to ensure stability of the estimated system.

The central optimization objective of SSID is to find the
parameter set © that minimizes the difference between a
modelled closed-loop frequency response Hcml“’d( jwi) and a
measured frequency response H7°*(jwy). As also done in
(ShefHler et al., 2019), here this is achieved by minimizing
the cost function given by Eq. (1), which has the depen-
dence on jwy omitted right of the equals sign for brevity.
Note that Eq. (1) shows how H7°%(jwy|©) is related to the
different control-loop subsystems shown in Fig. 2 and that
no frequency-dependent weighting is applied. H***(jwy)
is estimated from the Fourier transforms of the input f;
and the output z, i.e., H}** (jwg) = X (jwi)/Fi(jwk)-

N
o= 5l Oy
Pt 1+ HCEHocmp(@) ol
H:rLLod(@)

3.2 Changes for Preview Model Identification

The SSID implementation in this paper is modified with
respect to (Mousavi et al., 2020) to allow for direct esti-
mation of Van der El et al. (2016)’s model’s parameters.
Looking at Fig. 2, the subsystems that are to be identi-
fied are the prefilter dynamics H,, and the compensatory
dynamics H, The modifications involve the following:

cmp ©

(1) The model structure. Instead of an ET model struc-
ture as used by Mousavi et al. (2020), a prefiltered
compensatory model structure is used, see Fig. 2.

(2) SSID’s feedforward subsystem model. Here, we use an
infinite impulse response (IIR) model, as this enables
the estimation of w; . Mousavi et al. (2020) used a
finite impulse response (FIR) feedforward model.

(3) The coefficients of the closed-loop stability candidate
pool. This paper directly uses the preview model’s
coeflicients to define the candidate pool, whereas this
is mostly done using the transfer function coeflicients.

(4) No frequency weighting. Mousavi et al. (2020) pro-
posed frequency-dependent weights in the cost of
Eq. (1). Here, all frequencies are weighted equally.

8.8 SSID Candidate Pool Definition

Fig. 3 shows an overview of the adapted SSID algorithm.
In Step 1, the preview model’s parameters (see Section 2)
are divided over SSID’s two candidate pools (CPs): the
closed-loop stability CP ® and the feedforward time delay

CP W. The closed-loop stability CP assures stability by
only allowing parameter combinations that result in stable
closed-loop poles. Non-CP model parameters — here only
the prefilter gain K ywy ¢, see Fig. 3 — are estimated directly
as part of the optimization parameter vector «. In Step 2,
the optimal value for the feedforward delay 7 and the
« parameters are found for each closed-loop stability CP
(®) entry. This is done by minimizing the reduced cost
function @ (Mousavi et al., 2020). Finally, Step 3 selects
the final optimal parameters from all entries in the closed-
loop stability CP, completing the estimation of ©.

Human operaror

Step 1: Candidate pool setup b1 = [Ke Tioey T @ Sums @y
i Form the two candidate pools: :
Closed-loop stability CP @ :
Feedforward time delay CP W P

Step 2: Quadratic optimization per entry
| For each ¢; in @ and with f = {1, ..., p}.

i perform quadratic optimization to obtain

| the optimal o, ) =min Q;( ¢y, 1,

i P Q((ab[ : ) jep Q:(‘p\ ) Qi(ﬂﬁ:-'vx)
L and a4, (SKranf)

Step 3: Select optimal parameters
‘ With M = {1, ..., m}. find
| Qe(de,1q,) = min Q; (b0,1g,), to

find the optimal parameters.
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Fig. 3. Schematic overview of the SSID technique.

Following the methodology outlined by Sheffler et al.
(2019) for dividing the different model parameters over
the two CPs, H,, and H,,,,, are parameterized by their
numerator and denominator coefficients; n,, dp, emp and
demp are the respective numerator and denominator orders
of Ny, Do,, No,,,, and D . The coefficients of N, are
assigned to «, while all closed-loop stability coefficients
D,,, No.,,, and D, are collected in 8. As indicated in
Table 1, all o and S are expressed in terms of Van der
El et al. (2016)’s HO model parameters. Furthermore, as
the equalization dynamics H,,, (see Fig. 2) vary with the
CE, the definition of 3 is different for the considered SI
and DI cases. Also, it should be noted from Table 1 that
wy, s occurs in both o and 3; however, o only contains the
product of K and w, r, which means that in fact only Ky
is quadratically solved during Step 2.

Ocm

4. METHOD: OFFLINE SIMULATIONS
4.1 Simulation Settings

HO model parameters  In this paper, simulations are used
to test SSID’s performance for estimating the (known) HO
model parameters, for different CP densities and remnant
noise levels. Table 2 lists the HO model parameters based
on Van der El et al. (2020)’s preview task with 7, = 2 s
that were used to generate our simulated HO data.
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Table 1. Subsystem order and « and g vector definitions for both CE dynamics.

Subsystem Order

HO Model Parameter Vectors

Np dp Nemp dcmp « B
SI 0 1 0 2 wl,fo [wl,f w%msKe anmswnms wﬁms]
DI 0 1 1 2 wipKp  lwp wimsKeTre wpmsKewnms 20nmsWnms  Whms)

Table 2. HO model simulation parameters and
candidate pool limits and resolution.

HO parameter settings

op  Hee Keoo Tre Tv wnms  Cnms  Kj e Ty
-] [ [s] [s] [rad/s] [ [l [s] [s]

SI oy 125 - 023  13.0 013 1.0 060 0.15

DI ﬁ 0.33 127 0.33 74 0.13 095 095 1.15

Candidate pool settings

max 2 3 0.4 16 1 - 2 1.6
min 0.1 0.6 0.1 4 0.05 - 0.3 0
ngref 6 3 3 4 2 - 3 2

Forcing Function Settings  The target forcing function
signals from Van der El et al. (2020)’s experiment were
used. The f; signals were sums of 10 sinusoids with a
bandwidth (frequency after which amplitudes reduce 10x)
of 1.5 rad/s, a measurement time of 120 s, and a standard
deviation of 0.5 inch. For consistency with the experiment
data (Van der El et al., 2020), five different f; signals with
different sinusoid phase realizations were used.

HO Remnant Settings  As explained in Section 2.3, HO
remnant is simulated as low-pass filtered Gaussian white
noise. For SI and DI CE dynamics, the remnant time
constant T, is respectively set to 12 s and 0.2 s (Van der
El et al., 2019). The remnant gain K; was determined
iteratively to achieve a desired relative remnant level in
the control output signal u, i.e., agn/oi. In this paper,
we evaluate SSID’s performance for different noise ratios
(NRs) ranging from a no-remnant reference case to noise
levels that exceed typical HO measurement data, i.e.,
agn /o2 =0,0.25, 0.5 and 0.75. All presented comparisons
are based on 40 different remnant realizations. Consistent
with experiment data processing of (Van der El et al.,
2020), each simulation realization combines the frequency-
averaged results from the five different f; realizations.

4.2 SSID Settings

The main settings that need to be defined for SSID relate
to its two candidate pools. The parameter ranges used
here are listed in Table 2 and are based on results from
previous experiments (Van der El et al., 2016, 2020). The
same candidate pool settings (except for 17, .+) were used
for SI and DI dynamics. For each model parameter 6, a
vector of candidate values was constructed based on the
parameter limits, the CP density number dop and a tuned
reference number of steps 7 r. The reference number of
candidates for each parameter is shown in Table 2 and
was selected based on a desired step size for dgp = 5.
For the analysis in this paper, we compared dop = 1 —
5,7,10 and 12, for which the number of candidates in the
CP for each parameter can be calculated as ng rerdcp.
Based on all combinations of K., T, ¢, Ty, Wnms, Cams and
T;.r, and filtering out those cases that result in unstable
closed-loop system dynamics, the closed-loop stability CP

® is constructed. In our implementation, the feedforward-
delay CP W contains all candidate 7 values.

5. RESULTS
5.1 Cost Function

Fig. 4 shows the variation in the cost function of Eq. (1)
for both CE dynamics for different dop settings and noise
ratios (NRs). For noiseless data (NR = 0), J continues
to reduce with increasing dop, especially for the SI data.
This is expected, as with increased CP resolution the true
parameter values can be approximated more accurately.
For all NR > 0, the reduction in .J with dcp levels off for
dcp > b for both CE dynamics. This indicates that for
realistic noisy HO data, at dop = 5 or higher increasing
the CP density no longer helps to improve the fit to H}“*%.
Comparing the results for ST and DI dynamics, the optimal
J values for SI are more affected by remnant, with a larger
discrepancy between the noiseless and noisy outcomes.

5.2 Parameter Estimates

Figs. 5 and 6 show the parameter estimates for H,,_,  and
H,,, respectively. The graphs show the means (markers)
and 95% confidence intervals (error bars) for the different
noise levels for both CE dynamics. Furthermore, dashed
lines indicate the true parameter value (black) and the
parameter limits defined for the CP (red). For the param-
eters estimated using a CP, all CP candidates are shown
as black crosses, while the gray shaded area highlights the
two candidates closest to the true parameter value. For
DI dynamics, the limits for K. and 7y were adjusted after
dcp = b to reduce computational time for the denser CPs.
Figs. 5 and 6 show that this was allowed as the optimal
fits, also at lower docp and with noise, did not occur in
the excluded ranges. Note that the red CP limits and CP
grid are not shown for K, as this parameter is estimated
directly, see Section 3. Finally, all graphs have a second
y-axis (right) that shows the percentage variation with
respect to the true parameter value (A).

100 10()
e N L
107! gg 107! ,&*
T2y To? ‘g&f% (g $ $
~ "og.m ~ L} (# # <$ #
107 " 10° B =
" =2 NR=0 ONR:O.S‘ "
10 = 1074t NR =025 -&-NR =075
12345 7 10 12 12345 7 10 12
d(?p H dC‘P H
(a) SI (b) DI

Fig. 4. Cost function values for SI (a) and DI (b) for
different noise levels and candidate pool densities.
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Fig. 5. Parameter estimates of the compensatory feedback
subsystem H,__  for SI and DI CE dynamics.

cmp

Figs. 5 and 6 show that not all parameters are estimated
with similar accuracy. For example, the prefilter gain K
(Fig. 6(a) and 6(b)) shows an estimation error <1% for
both dynamics and all NRs, while errors for the NMS
damping ratio (pms exceed 200% for DI dynamics, see
Fig. 5(i). Also at high dcp, where candidates much closer
to the true parameter values are present in the CPs, these
are not selected as SSID’s optimal estimates. Overall,
Figs. 5 and 6 show that H,,’s parameters and those param-
eters of H,,,,, that affect its low-frequency dynamics — K.
and 77, . — are estimated more accurately than those that
characterize the high-frequency compensatory dynamics.
This result is at least partly explained by the choice of cost
function, i.e., Eq. (1); the magnitude of H,; (SSID’s fitting
reference) in preview tracking tasks is much smaller at high
frequencies (Van der El et al., 2020) (see also Fig. 7(a)),

0.9
BNR=00 ONR=05
08 O NR =0.25 ANR =0.75
T 12345 7 10 12
dep [
(a) SI, Ky

---True value ~ CP grid

2F
‘"'CP limits .Closesl CP points

1000

-3 i
12345 7 10 12
dep [-]

(f) DI, Ty, ¢

Fig. 6. Parameter estimates of the feedforward subsystem
H,, for ST and DI CE dynamics.

meaning also that high-frequency fitting errors may only
have a minor influence on our SSID outcomes.

Furthermore, Figs. 5 and 6 show that both the estimation
errors and the spread across different realizations are
generally larger for DI than for SI dynamics. In terms
of percentage error with respect to the true value (A),
this is especially visible for K. (33% vs. 2%), 7, (22%
vs. 14%), and wpms (27% vs. 4%). This effect is at least
partly explained by the stronger influence of remnant
for DI (Van der El et al., 2019). For some of the DI
parameters the noiseless results are less accurate than
those for NR > 0. This effect may be explained by our
choice for an unweighted SSID cost (see Eq. (1)), which
especially for the single NR = 0 data set results in
many cost function minima with a similar J. Finally, the
parameter estimates show that estimation biases reduce
with increasing dcp, also for dop > 5 when J no longer
reduces, see Fig. 4. Looking at Figs. 5 and 6, dop = 10 is
a good choice for both CEs and realistic NRs of 0.25-0.5.

5.8 Frequency Domain Fits

Fig. 7 shows example estimated closed-loop (H.) and
subsystem (H,, and H,,, ) frequency response functions
(FRFs) for noiseless DI data (NR = 0) and a selection of
dop values. For SI and NR > 0 equivalent results were
obtained, but these are not shown here for brevity. Fig. 7
shows that even with a low dop the closed-loop FRF
(H.) is fitted accurately, especially at low frequencies,
while the subsystem dynamics (H,, and H,,,,,) are only
approximated with much denser CPs, i.e., docp = 10. This
is consistent with the parameter results in Figs. 5 and
6. Still, especially for H, even for high dop values

cmp )
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Fig. 7. Frequency domain functions of the closed-loop (H.) and open-loop (H,, and H,,, ) of the estimated- and
reference parameters for noiseless data for DI dynamics. Different lines indicate different CP densities.

high-frequency errors between the true FRFs and SSID
estimates persist; normalized FRF fitting errors for the
subsystem dynamics are found to be a factor 10-25 higher
than those for H.. With the unweighted cost function of
Eq. (1) and a magnitude of H; that is 10-100 times smaller
above 3 rad/s (see also Fig. 7(a)), SSID is insufficiently
sensitive to the high-frequency dynamics to accurately
estimate all model parameters. However, the estimation
accuracy may be improved by using a frequency-weighted
SSID cost as proposed by Mousavi et al. (2020).

6. CONCLUSION

We investigated the application of a subsystem identi-
fication (SSID) technique to a recently proposed quasi-
linear human operator model for preview tracking tasks.
With some modifications it is shown how SSID can be
successfully adapted to estimate the preview model pa-
rameters. Realistic operator model simulation data for two
different controlled element dynamics, including remnant,
were used to quantify how the estimation accuracy varied
for different noise levels and SSID candidate pool densities.
At realistic noise levels, a candidate pool density (dcp)
of 10 was found to be required to minimize both SSID’s
cost function and parameter estimation biases. While the
human preview (prefilter) parameters were accurately es-
timated, the high-frequency compensatory feedback pa-
rameters (describing the neuromuscular system and time
delay dynamics) showed errors of up to 200%. Future work
includes a comparison of SSID’s performance with other
identification techniques, investigating alternative SSID
candidate pool formulations for the preview model and
study the effects of including frequency-dependent cost
function weights to improve the SSID parameter estima-
tion accuracy for higher frequency dynamics.
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