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h i g h l i g h t s
� A computational model to calculate surface segregation is developed.

� Short- and long-range ordering effects in segregation can be predicted.

� The model enables high throughput screening of surface segregation.

� PdeCueZr is proposed for H2 separation membranes with reduced poisoning and enhanced H2 permeability.
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a b s t r a c t

Surface compositions play a predominant role in the efficiency and lifetime of membranes

and catalysts. The surface composition can change during operation due to segregation,

thus controlling and predicting the surface composition is essential. Computational

modelling can aid in predicting alloy stability, along with designing surface alloys and

near-surface alloys that can outperform existing materials. In this work, a computational

model to predict surface segregation in ternary alloys is developed. The model, based on

Miedema's semi-empirical model and Monte Carlo simulations, enables to predict long-

and short-range ordering in the surface and subsurface layers. It is used to screen a vast

range of alloy compositions to design a novel ternary Pd-based material for H2 separation

membranes. The addition of specific amounts of Cu and Zr to Pd is expected to reduce

poisoning and enhance the permeability as compared to pure Pd.

© 2022 The Authors. Published by Elsevier Ltd on behalf of Hydrogen Energy Publications

LLC. This is an open access article under the CC BY license (http://creativecommons.org/

licenses/by/4.0/).
Introduction

The drive towards a hydrogen economy has a great potential

to reduce the emission of greenhouse gases, but a number of

challenges have to be overcome to make it viable [1]. One of

these challenges is the purification of H2 [2,3]; for instance,

high purity (>99.95%) H2 is needed for general industrial hy-

drogenation [4] and ultra-pure H2 (>99.97%) for polymer elec-

trolyte membrane fuel cells [5].
.I. Postma).

r Ltd on behalf of Hydrogen En
Hydrogen can be purified with metal membranes based on

the element Pd, which can efficiently dissociate the H2 mole-

cule [6e8]. However, membranes made only of Pd have

numerous shortcomings, including: i) a phase transitionwhen

H is absorbed, which causes embrittlement [9,10]; ii) surface

poisoning by CO and H2S, which decrease the rate at which H

can be adsorbed on the surface [11]; iii) high material cost; iv)

supply scarcity [12].

Pd-membranes are often alloyed with transition metals to

alleviate some of these drawbacks [13,14]. In particular Ag, Au,
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and Cu have received considerable attention [15e18]: the

addition of Ag increases the permeability [18]; the addition of

Cu improves the poisoning resistance against H2S and CO

[19,20], but decreases the permeability [21]; the addition of Au

improves the poisoning resistance against H2S and improves

the permeability, but PdeAu membranes are less stable in

operation than PdeCu membranes, leading to diminishing

permeation rates over time [22], and the adsorption of H on Au

is endothermic, which is unfavourable for the adsorption of H

on PdeAu membranes [23].

Despite being better than pure Pd-membranes, binary

membranes are still sub-optimal and there is ample room for

further improvement of their properties by alloying withmore

elements. In recent years numerous studies have considered

Pd-based ternary membranes with a combination of the

alloying elements Ag, Au and Cu to combine their advanta-

geous properties in one membrane with varying success. One

major challenge of thesemembranes is controlling the surface

segregation [24,25]. Although multicomponent alloys may

display novel properties and mechanisms (e.g. unforeseen

segregation patterns), they cannot be directly predicted by

averaging the properties of unary or binary metals. Therefore,

the identification of the right alloying elements and the

optimal composition is very difficult, because firstly, several

target properties (stability, poisoning, permeability, cost, …)

have to be considered simultaneously and secondly, the

number of possible compositions to screen to find “sweet

spots” increases rapidly when more components are added.

For these reasons, standard trial-and-error approaches cannot

be employed and simulations are preferred.

Most simulations of surface segregation employ the

Langmuir-McLean (LM) equation [26] to compute the layer-by-

layer equilibrium composition of each element in an alloy at a

given temperature T. The LM equation is a mean-field model

that assumes a perfectly random solid solution for each layer

and neglects possible ordering within the layers. Although the

LM equation works well for ideal solid solutions, it may fail

spectacularly when the absolute value of the binding energy

between one (ormore) pair(s) of atoms ismuch larger than the

typical thermal energy kBT; in this case, mechanisms such as

co-segregation, site-competition, and blocking can arise [27].

Co-segregation describes the effect of two elements segre-

gating to the surface as a result of a low surface energy, of

strong binding between the co-segregating elements, or of

strong repulsion from one or more elements in the bulk. Site-

competition occurs when two elements tend to segregate but

one of the two elements has a strong binding with a third

element, resulting in the segregation of the other element.

Lastly, blocking takes place when one element has a low

surface energy but also binds strongly with an element that

has a high surface energy. The element with the intermediate

surface energy will then segregate. These mechanisms can be

more accurately predicted by utilizing Monte Carlo (MC) sim-

ulations. These simulations introduce a lattice, thereby lifting

the mean-field assumptions of the LM equation. Hence,

eventual short-range ordering effects can be predicted.

Several simulation methods have been developed to

quantify surface segregation. Density functional theory (DFT)
or tight binding Hamiltonians are often used to compute the

segregation enthalpies that enter the LM equation, but these

methods are computationally too expensive to screen entire

ternary phase diagrams for many alloying elements evenwith

the simple LM equation, not to mention for MC simulations.

Other models, such as the (modified) embedded atommethod

(EAM) [28], are more tractable and have been employed in

combination with MC. However, reliable potentials are not

always available, especially for ternary alloys. An alternative

to these methods to compute segregation tendencies are

semi-empirical thermodynamic models. Semi-empirical

models predict binding and segregation energies based on a

database of thermochemical parameters derived directly or

indirectly from experiments. The most prominent examples

to derive alloy (free) energies in the bulk are Miedema's model

[29] and CALculation of PHAse Diagrams (CALPHAD) [30]. In

particular, Miedema's model has been successfully employed

to predict surface segregation in combination with the LM

equation [23,31e34]. Such models are computationally inex-

pensive and general, since the corresponding databases are

very rich and complete especially for transition metals [35],

and thus can be used to explore large compositional spaces.

In this work we introduce a computational method based

on MC simulations and Miedema's model to predict surface

segregation in ternary alloys. We use the thermodynamic

model employed in Refs. [23,31e34] to parametrize segrega-

tion and interatomic interaction energies. However, we lift the

mean-field approximation in those works by performing

explicit MC simulations rather than simply using the LM

equation. The validity of our model is verified against the

available literature for binary and ternary Pd-based alloys. We

then couple this model to CALPHAD simulations to screen

candidate alloying elements X for novel ternary PdeCueX

separation membranes with optimal properties (i.e. high sta-

bility, low poisoning, high permeability, and low materials

cost). This study finds that the composition Pd48Cu40Zr12 op-

timizes all the required properties and this new material is

expected to yield better hydrogen separationmembranes than

the state-of-the-art. We finally validate our predictions with

DFT simulations.
Methods

Monte Carlo simulations

Surfaces with the (111) orientation in the face-centred cubic

(fcc) structure were simulated. Slabs of 12 � 12 � 100 super-

cells (see Fig. 1) with periodic boundary conditions along the x

and y directions were used. To check the surface segregation

in both reactive and vacuum conditions, one of the two sur-

faceswas exposed to H2 and the other to vacuum.We fixed the

partial pressure of H2 at 1 atm. We performed MC simulations

in the NVT ensemble. The MC moves consisted of surface-

surface, surface-bulk, or bulk-bulk swaps of atoms of

different species. We performed 3$106 swaps in total (1$106 for

equilibration and 2$106 for sampling) to obtain converged

configurations. In order to guide the MC exploration to the

https://doi.org/10.1016/j.ijhydene.2022.10.057
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Fig. 1 e The fcc(111) slab used for our Monte Carlo

simulations. The top surface is exposed to a H2 reservoir,

the bottom one to vacuum.
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global minimum, the systemwas slowly cooled from 2000 K to

T for the first 5% of the simulation. Atomic swaps associated

with a total energy change DE were accepted according to

Metropolis’ rule, i.e. with an acceptance probability

min

�
1;exp

��DE
kBT

��
: (1)

For everyMC step, we assumed that a H atom can adsorb or

desorb from a random position on the surface exposed to

hydrogen gas with a probability of 1%, i.e. the coverage of H on

the surface was allowed to increase or decrease on average

every 100 steps. The probability that an adsorbedH desorbs, or

a free site on the surface is populated with H, is

min

�
1;exp

�
±
Eads

kBT

��
; (2)

where the þ sign holds for desorption and the � sign for

adsorption, respectively. The details of the calculation of DE

and Eads are provided in the next subsections.

Energy change of atomic swaps

To evaluate the energy change associated with atomic swaps,

we considered a broken-bond model [31], where each atom

interacts only with its nearest neighbours and only via pair-

wise terms. If the binding energy between atoms of type i and j

is εij, the alloy parameter for i� j is defined as

uij ¼ εij �
εii þ εjj

2
(3)

It can be shown that bulk-bulk swaps of two atoms of type

A and B at positions 1 and 2 in a ternary alloy A-B-C change the

total energy by
DE ¼ �
ZA
1 � ZA

2

�ðuAB þ uAC � uBCÞ þ
�
ZB
1 � ZB

2

�ð � uAB þ uAC

� uBCÞ; (4)

where ZA
1 is the number of A atoms that surround site 1, ZA

2 the

number of A atoms that surround site 2, ZB
1 is the number of B

atoms that surround site 1 and ZB
2 the number of B atoms that

surround site 2. We computed the alloy parameters uij with

Miedema's model following Ref. [33], which proposes a com-

bination of the geometric Miedema's model by Ouyang et al.

[36] and a two-step Miedema's model by Wang et al. [37]. In

brief, the general approach for extending the Miedema's
model to ternary alloys is by averaging the sub-binary alloys

that are contained in the ternary alloy [33,36e42]. Similarly, to

bulk-bulk swaps, the energy change associated with surface-

surface swaps is

DE ¼ �
ZA
1 � ZA

2

�ðuAB þ uAC � uBCÞ þ
�
ZB
1 � ZB

2

�ð � uAB þ uAC � uBCÞ
þ DEads

(5)

where the extra term DEads accounts for the eventual energy

change if sites 1 or 2 are adjacent to an adsorbed H atom.

The total energy change related to bulk-surface swaps in-

volves more terms, associated with the change of the overall

surface energy of the alloy and the release of the elastic misfit

energy [31e33]:

DE ¼ �
ZA
1 � ZA

2

�ðuAB þ uAC � uBCÞ þ
�
ZB
1 � ZB

2

�ð � uAB þ uAC � uBCÞ
þ ZvðuBC � uACÞ þ gAsA � gBsB þ DEads þ DEelastic

(6)

where Zv ¼ 3 is the number of out-of-plane nearest neighbours

for the fcc (111) geometry, gA and, gB are the surface energies of

pure A and Bmetals and sA and sB are the unit surface areas of

A and B for the fcc (111) surface. The elastic energy DEelastic was

evaluated using the geometric model proposed by Ouyang

et al. [36]. The equation for the elastic energy as originally

introduced in the dilute limit is not symmetric and this results

in artificially different values of the elastic energy at equia-

tomic compositions when the solute and solvent are switched.

To solve this issue, we took a weighted average of the elastic

energy. This ensured that the detailed balance was preserved,

which was necessary for the MC simulations:

DEelastic ¼ cA$DE
AB
elastic � cB$DE

BA
elastic þ cC

�
DECB

elastic � DECA
elastic

�
(7)

where cA, cB and cC are the concentrations of elementsA, B and

C, respectively.

Adsorption energy

The energy change associated to the adsorption of a H atom

on a surface site is

Eads ¼Eð0Þ
ads � mðTÞ (8)

with Eð0Þ
ads the adsorption energy of H on the surface at 0 K and

mðTÞ the chemical potential of a hydrogen atom at 1 atm. We

parametrized mðTÞ from thermochemical tables [43]. When

available, Eð0Þ
ads was taken from Ref. [23], otherwise we

computed it with DFT as

https://doi.org/10.1016/j.ijhydene.2022.10.057
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Fig. 2 e Surface segregation of PdeAg and PdeAu in

vacuum at 600 K in atomic fractions. The no-segregation

line is indicated by the dotted line. Atomic fractions above

the dotted line indicate surface segregation of the alloying
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Eð0Þ
ads ¼

EMþ2H � EM � EH2

2
(9)

where EMþ2H is the energy of a slab with a H atom adsorbed on

both surfaces, EM the energy associated to the slab in vacuum

and EH2
the energy of a hydrogenmolecule.We neglected HeH

interactions on the surface, since they are only relevant at

temperatures below 200 K [44].

Since the H atoms preferentially adsorb on the fcc hollow

sites [45], an adsorbed H atom on a fcc site is surrounded by

three atoms. For simplicity, we took Eð0Þ
ads as the average

adsorption energy of the three pure metals surrounding the H

atom.

Density functional theory calculations

DFT calculations were performed using the plane-wave pro-

jector augmentedwave (PAW)method [46,47] as implemented

in VASP 5.4 [48e50]. The generalized gradient approximation

in the Perdew-Burke-Ernzerhof (PBE) parametrization was

used for the exchange-correlation potential [51]. An energy

cutoff of 400 eV and a k-mesh density of 0.125 2p/�A ensured

converged energy differences. Smearing of the electronic

states was applied with the Methfessel-Paxton function [52]

with a width of 0.1 eV. The atomic positionswere relaxed until

the energy decreased by less than 10�4 eV. To calculate Eð0Þ
ads,

the fcc (111) surfaces were modelled as 1 � 1 � 7 slabs with

30�A of vacuum. This value is large enough to prevent spurious

interactions with the periodic images along the z direction.

CALPHAD calculations

The CALPHAD calculations to assess the stability of the fcc

phase in our high-throughput search for PdeCueX mem-

branes were performed with the Thermo-Calc 2019b software

package [53] using the SSOL2 database.

element (i.e. Ag or Au). The coloured lines are predicted by

our model. The crosses indicate predictions of the surface

fraction by the LM equation. (a) Pd-Ag. (b) Pd-Au.

Fig. 3 e Predicted atomic fraction at the surface in

Pd50Cu10La40 at 600 K in vacuum by the LM equation

(crosses) and by MC simulations (circles). Layer 49 to 51

show the bulk composition.
Model benchmark

Comparison between MC and the LM equation

As a first benchmark, we compared the MC method with the

LM equation. Fig. 2 displays the concentrations of Ag andAu in

the n-th layers (the first being the surface) as a function of the

bulk composition in binary PdeAg and PdeAu alloys. The solid

lines refer to the MC results, the black crosses to the LM

equation. For these alloys, Ag and Au segregate on the surface

and there is also a mild anti-segregation of Ag in the subsur-

face layer. It can be clearly seen that the difference between

MC simulations and the LM equation is small (maximum 5 at.

%) for binary alloys and we conclude that for these alloys the

effect of short-range order is not relevant.

Contrary to binary systems, the LM equation can lead to

quantitatively wrong predictions in ternary alloys. In this

case, short-range ordering, co-segregation, site-competition,

and blocking mechanisms can have significant effects. These

effects are enhanced by mixing elements from opposite ends

of the transitionmetal series, because themixing energies are

higher in magnitude; for instance, Fig. 3 shows the layer-by-
layer composition of the alloy Pd50Cu10La40 predicted by the

MCmethod (circles) and by the LM equation (crosses). The MC

simulations predict that Pd and La segregate at the surface in

https://doi.org/10.1016/j.ijhydene.2022.10.057
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almost equal concentrations, whereas the LM result shows a

predominant La segregation. In this case, a difference as high

as 41 at. % between the MC simulations and the result from

the LM equation is observed for the surface layer. The mixing

energies of PdeLa and CueLa are �0.56 eV and �0.51 eV

respectively, thus want to mix, and are roughly 5 times larger

than the mixing energy of PdeCu. The surface energy and

elastic energy in this alloy are small in comparison to the

mixing energy and have a negligible effect. La therefore stays

in the bulk, in order to maximize the amount of Pd and Cu

neighbours and blocking occurs. Therefore, using the LM

equation may be inappropriate for certain ternary alloys.

Surface segregation in binary alloys

To test the quantitative predictions of our model, we first

compared our results against the available literature for bi-

nary PdeAg, PdeAu, and PdeCu alloys. Surface segregation

predictions of Pd alloys from our model are compared to the

literature in Table 1. First of all, our results agree well with the

other works using Miedema's model, as we observe a

maximum deviation of only of 5 at. %, likely due to small

ordering effects as mentioned earlier.

The results fromourmodel agree alsowell withmost of the

other instances in the literature in a range of�9 at. % toþ12 at.

%, with the exception of the Pd-rich PdeAg alloys from Refs.

[54,55]. However, we note that the experimental results from

Ref. [55] show a larger segregation at 920 K than at 720 K,
Table 1 e Surface segregation from literature compared to the

Ref. Method T (K) Composition
bulk (at. %)

[55] STM 720 Pd67Ag33
920 Pd67Ag33

[32] Miedema þ LM 600 Pd75Ag25
[54] DFTþ Mean fielda 600 Pd70Ag30

900 Pd70Ag30
600 Pd50Ag50
900 Pd50Ag50
900 Pd30Ag70

[56] DFTþ LM 0 Pd50Ag50
300 Pd50Ag50
600 Pd50Ag50
900 Pd50Ag50
1200 Pd50Ag50

[57] LEIS, XPS 800 Pd50Au50

Pd25Au75

Pd75Au25

[58] LEIS 875 Pd40Au60

Pd60Au40

[32] Miedema þ LM 600 Pd75Au25

[34] Miedema þ LM 800 Pd50Au50

[34] LEIS, XPS 1000 Pd60Cu40

[59] LEIS, XPS 700 Pd48Cu52

900 Pd48Cu52

700 Pd40Cu60

900 Pd40Cu60

[32] Miedema þ LM 600 Pd75Cu25

a Modified mean field model that includes subsurface layers.
indicating that the sample is not in thermodynamic equilib-

rium, hence these results may not be trustworthy for a

quantitative comparison. Nevertheless, all models and ex-

periments capture qualitatively the Ag segregation in PdeAg.

Surface segregation in ternary alloys

The available literature on the segregation tendencies in Pd-

based ternary alloys is much scarcer than that for binary al-

loys. Here we tested our model on PdeCueAu, for which

experimental data exist for the whole compositional space,

and on Pd61Cu29Ag10 and Pd84Cu5Mo11.

Fig. 4 shows the excess surface segregation predicted by

our model in the PdeCueAu compositional space at 600 K in

vacuum. Blue regions indicate depletion of an element on the

surface, whereas red regions indicate enrichment. Our results

qualitatively follow the trends reported in Ref. [60], in partic-

ular: i) the strong depletion of Pd and enrichment of Cu and Au

for Pd-rich compositions; ii) the enrichment of Au and

depletion of Pd for Au-rich compositions; and iii) the “island”

of strong Cu enrichment and Pd depletion around Pd60Cu40.

We point out however two differences: i) the absolute values

of the enrichment/depletion from our work (�0.90 to þ0.80)

are much larger than those observed experimentally (�0.35 to

þ0.35); ii) for Cu-rich compositions, we predict a small

depletion of Au whereas Ref. [60] reports a small enrichment.

The first discrepancy may be due to kinetic limitations in the

experiments: by comparing the experimental data at 500 K
predictions from this work.

Surface composition
literature (at. %)

Surface composition
this work (at. %)

Pd11Ag89 Pd38Ag62
Pd5Ag95 Pd41Ag59
Pd48Ag52 Pd49Ag51
Pd12Ag88 Pd41Ag59
Pd20Ag80 Pd45Ag55
Pd10Ag90 Pd18Ag82
Pd15Ag85 Pd19Ag81
Pd3Ag97 Pd2Ag98
Pd0Ag100 Pd0Ag100
Pd8Ag92 Pd10Ag90
Pd19Ag81 Pd18Ag82
Pd25Ag75 Pd19Ag81
Pd28Ag72 Pd27Ag73

Pd18Au82 Pd12Au88

Pd6Au94 Pd4Au96

Pd35Au65 Pd34Au66

Pd5Au95 Pd9Au91

Pd30Au70 Pd21Au79

Pd29Au71 Pd24Au76

Pd20Au80 Pd12Au88

Pd50Cu50 Pd49Cu51

Pd20Cu80 Pd32Cu68

Pd24Cu76 Pd31Cu69

Pd17Cu83 Pd20Cu80

Pd19Cu81 Pd19Cu81

Pd74Cu26 Pd69Cu31

https://doi.org/10.1016/j.ijhydene.2022.10.057
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Fig. 4 e Predicted excess atomic fraction at the surface in PdeCueAu at 600 K. Blue regions indicate depletion of the element

from the surface, whereas red regions show enrichment of the element on the surface. A region where the body-centred

cubic (bcc) phase is stable is roughly outlined. (For interpretation of the references to colour in this figure legend, the reader

is referred to the Web version of this article.)
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and 600 K in Ref. [60], we notice that the segregation seems to

be more pronounced at high temperature, which signals that

the alloy is in ametastable state at 500 K, and presumably also

at 600 K. We believe that annealing for a longer time or at a

higher temperature may lead to segregation profiles closer to

our data. The second discrepancymay be due to our simplified

treatment of the elastic energy: Cu and Au have similar sur-

face energies; hence the elastic term has a decisive role in

determining which element segregates. Another factor that

may explain this difference is that the body-centred cubic

(bcc) phase is known to be stable for some Cu-rich composi-

tions (approximately outlined in Fig. 4) [61], whereas we only

considered the fcc phase. Table 2 compares the composition

of the surface of Pd61Cu29Ag10 at 1000 K predicted by ourmodel

to the experimental and theoretical results from Ref. [33]. In

vacuum, both our model and that of Ref. [33], based on the LM

equation and Miedema's model, predict that Cu and Ag are

enriched and Pd is depleted from the surface, in qualitative

agreement with the experiments. In a H2 atmosphere, it is

found experimentally that Ag and Cu are depleted, in quali-

tative agreement with the predictions of both models. Quan-

titatively, like for PdeCueAu, theoretical models tend to

overestimate segregation when compared to experimental

measurements.

Similarly to the model in Ref. [33], we also observe a com-

plete depletion of Cu and Mo from the surface of Pd84Cu5Mo11
at 1000 K, both in vacuum and in a H2 atmosphere.
Table 2 e Reported segregation of PdeAgeCu from Zhao et al.
scattering spectroscopy and calculated usingMiedema'smodel
monolayer coverage. This is compared to the computational m
coverage of H.

Condition Experimental. (at. %) Calculat

Cu Ag Cu

Before segregation 29.4 10.4 30.0

1000 K in vacuum 45.1 15.3 54.4

1000 K in 1 bar H2 23.2 7.6 29.9
Accuracy and limitations of our model

Despite its simplicity, our model accurately predicts the

segregation trends in binary and ternary alloys. For systems

that can be well approximated as ideal solid solutions, our

model shows similar results as the LM equation. However, for

ternary or more complex systems when long- or short-range

ordering, co-segregation, site-competition, or blocking may

play a significant role, our model performs better than other

state-of-the-art empirical methods based on the LM equation.

Eventual quantitative inaccuracies of the segregation pre-

dictions are ascribed to (i) the approximations of the calcula-

tion of the binding and segregation energies with Miedema's
model, for which Ref. [37] estimated a mean absolute error of

roughly 0.05 eV with respect to calorimetry experiments, and

(ii) to our simplifying assumption that the interactions be-

tween the atoms are only pairwise and short-ranged. We also

should emphasize that our model may give biased predictions

for elements with similar surface energy but different atomic

volumes (like Cu and Au), due to the simplistic treatment of

the elastic energy. Moreover, caution is advised when

comparing to experimental data, for which full thermody-

namic equilibrium may not be reached.

Nevertheless, we believe that our model is very well suited

to perform high-throughput searches to design surface and

near-surface alloys with tailored properties, as showcased in

the next Section.
[33] of the surface layer measured with low-energy ion
in combinationwith the LM equation in vacuumandwith a
odel from this work in vacuum and a 2/3 monolayer

ed Zhaoet al. (at. %) Calculated this work (at. %)

Ag Cu Ag

10.0 29.4 10.4

16.5 67.3 25.0

3.9 9.0 0.0
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Fig. 6 e Average concentration of the component elements

of Pd48Cu40Zr12 at 700 K for the first five subsurface layers

(1e5 and 96e100) and for three bulk layers (49e51). Layer 1

is exposed to vacuum, layer 100 is exposed to H2. The

horizontal lines indicate the nominal bulk composition.
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Design of novel PdeCueX membranes

The model from this work was applied in a general workflow

to design new Pd-based H2 separation membranes. The target

properties that needed to be optimized were: permeability of

H, cost of the component elements, thermodynamic stability,

and resistance to poisoning.

We started from binary PdeCu membranes, that were

shown to possess high poisoning resistance at 670 K and 770 K

at a composition of Pd70Cu30 [62] and looked for candidate

alloying elements X to form PdeCueX membranes such that:

i) X increases the lattice parameter thereby improving the H

diffusivity and X has high solubility, thereby increasing

permeability [63]; ii) X decreases the overall cost of the alloy;

iii) the resulting alloy is a single-phase solid solution in the fcc

phase; iv) the addition of X leads to a surface composition

close to Pd70Cu30, which is needed for poisoning resistance.

Our workflow is schematically displayed in Fig. 5: we first

considered all the transition metals (Input), then we selected

all the elements with a larger lattice parameter and solubility

to H than Pd and Cu and which are not more expensive than

Pd (Wishes). For each of the resulting PdeCueX alloys, we

performed CALPHAD calculations to assess the regions of the

phase diagram where a single fcc phase is stable at a tem-

perature of 1000 K, a typical annealing temperature for pro-

cessing (Stability). Finally, we used our model to determine

the alloy composition so that a Pd70Cu30 surface alloy is stable

on the surface exposed to H2, that is, the alloying element X

segregates in the bulk and it does not interfere with the

dissociation and adsorption of hydrogen (Segregation).

From this selection process, Zr is found to be the most

promising candidate. In particular, as shown in Fig. 6, our

model predicts that for a bulk composition of Pd48Cu40Zr12 the
Fig. 5 e Approach to tailor the surfac
composition of the surface exposed to H2 (100th layer) is close

to the target Pd70Cu30 at 700 K. Amembrane with composition

Pd48Cu40Zr12 would increase the H permeability and cut the

cost when compared to PdeCu membranes, due to the partial

substitution of Pd for Zr. For this composition, the fcc phase is

stable at T > 1000 K. From our CALPHAD simulations, for

T < 1000 K, a small fraction of the hexagonal close-packed

(hcp) phase may precipitate, but we expect this precipitation

to be kinetically hindered. According to the MC simulations, it

maintains the nominal composition in the bulk and shows the

favourable Pd70Cu30 composition on the H2 exposed surface,

which prevents poisoning.
e composition of a ternary alloy.
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We validated the segregation of Zr to the bulk with DFT. To

this end, we randomly extracted five snapshots from a MC

simulation on a smaller 3 � 3 � 7 slab at 700 K, swapped the

element Zr from a random position in the bulk to a random

position on each surface for 15 different positions, and then

calculated the energy difference associated with each swap.

We thus computed a total of 75 energy differences for the

surface exposed to H2 and 75 for that exposed to vacuum.

Forcing Zr to the surface is indeed unfavourable: the energy

increases by 0.25 ± 0.08 eV when Zr is put on the surface

exposed to H2 and by 0.58 ± 0.10 eV when Zr is put on the

surface exposed to vacuum. This confirms the prediction of

our model that alloying with Zr improves the bulk properties

of PdeCu membranes without altering the favourable surface

properties, i.e. high H2 dissociation rate and low poisoning.
Conclusions

Surface segregation is of great importance as catalytic re-

actions are mostly determined by the surface layer. In this

work, we developed a model to predict the equilibrium

composition of the surface and subsurface layers of arbitrary

ternary alloys. Ourmodel is based onMonte Carlo simulations

combined with semi-empirical thermodynamic methods. We

benchmarked the results from ourmodel against the available

literature on Pd-based alloys and found that it predicts similar

segregation profiles as other state-of-the-artmethods for ideal

solid solutions. However, in contrast to other methods, it can

take into account short-range ordering, co-segregation, site-

competition, and blocking mechanisms for non-ideal sys-

tems. We employed our model to design novel hydrogen

separation membranes with improved properties and we

verified our predictions with Density Functional Theory. We

propose the Pd48Cu40Zr12 alloy for more efficient, more stable

and less expensive hydrogen separation membranes. A

membrane with a similar composition was fabricated by

Nayebossadri et al. and displayed higher stability and

improved tolerance against sulphur poisoning compared to

PdeCu membranes [64].
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The code used for the Monte Carlo simulations can be found

here.
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