<]
TUDelft

Delft University of Technology

Estimating Route Choice Characteristics of Truck Drivers from Sparse Automated Vehicle
Identification Data through Data Fusion and Bi-Objective Optimization

Sharma, Salil; van Lint, Hans; Tavasszy, Lorant; Snelder, Maaike

DOI
10.1177/03611981221095089

Publication date
2022

Document Version
Final published version

Published in
Transportation Research Record

Citation (APA)

Sharma, S., van Lint, H., Tavasszy, L., & Snelder, M. (2022). Estimating Route Choice Characteristics of
Truck Drivers from Sparse Automated Vehicle Identification Data through Data Fusion and Bi-Objective
Optimization. In Transportation Research Record (12 ed., Vol. 2676, pp. 280-292). (Transportation
Research Record; Vol. 2676, No. 12). SAGE Publishing. https://doi.org/10.1177/03611981221095089

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.


https://doi.org/10.1177/03611981221095089
https://doi.org/10.1177/03611981221095089

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!’ - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.



W) Check for updates

TRR

JOURNAL OF THE TRANSPORTATION RESEARCH BOARD

Research Article

Transportation Research Record
2022, Vol. 2676(12) 280292

© National Academy of Sciences:
Transportation Research Board 2022
Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/03611981221095089
journals.sagepub.com/home/trr

®SAGE

Estimating Route Choice Characteristics
of Truck Drivers from Sparse Automated
Vehicle ldentification Data through Data
Fusion and Bi-Objective Optimization

Salil Sharma'®, Hans van Lint', Lérant TavasszyI , and Maaike Snelder'?

Abstract

Optimizing route choices for truck drivers is a key element in achieving reliable road freight operations. For commercial rea-
sons, it is often difficult to collect freight activity data through traditional surveys. Automated vehicle identification (AVI) data
on fixed locations (e.g., Bluetooth or camera) are low-cost alternatives that may have the potential to estimate route choice
models. However, in cases where these AVI sensors are sparsely located, the resulting data lack actual route choices (or
labels), which limits their application estimating route choice models. This paper overcomes this limitation with a new two-
step approach based on fusing AVI and loop-detector data. First, a sparse Bluetooth data set is fused with travel times esti-
mated from densely spaced loop-detector data. Second, the combined data set is fed into a bi-objective optimization method
which simultaneously infers the actual route choices of truck drivers between an origin—destination pair and estimates the
parameters of a route choice (discrete choice-based) model. We apply this approach to investigate the route choice behavior
of truck drivers operating to and from the port of Rotterdam in the Netherlands. The proposed model can distinguish
between peak and off-peak periods and identify different segments of truck drivers based on a latent classes choice analysis.
Our results indicate the potential of traffic and logistics interventions in improving the route choices of truck drivers during
peak hours. Overall, this paper demonstrates that it might be possible to estimate route choice characteristics from readily
available data that can be retrieved from traffic management agencies.

Keywords
data and data science, freight movement data, freight traffic, road freight vehicles (trucks), freight systems, driver, general

Road transport has been the main choice for inland
freight transport within the European Union, accounting
for 76.30% of the modal share in 2019. Especially in the
Netherlands, where the port of Rotterdam generates
most of the freight activity, the share of road freight was
estimated at over 50% in 2019 (/). This reliance on road
transport calls for robust and reliable traffic operations.
On the one hand, freight transport contributes to conges-
tion and, on the other, trucking companies in the
Netherlands have suffered economic damage caused by
road congestion. This economic damage is estimated to
be €1.5billion for 2019 and this cost has been increasing
yearly (2). Therefore, a thorough investigation of on-trip
route choices of truck drivers is fundamental to our
understanding of how road freight moves. This, in turn,

can support the development of advanced traffic and
logistics interventions.

The estimation of route choice models requires data
that are typically collected using either stated-preference
(SP) or revealed-preference (RP) surveys. The pros and
cons of SP and RP-based approaches are widely known.
SP studies solicit choice behavior in hypothetical scenar-
ios where the actual choices might be different than those
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stated. RP studies rely on rich activity data sets and do
not have these validity limitations. However, RP data
cannot be collected under the same rigorously controlled
circumstances as SP data (3). Nonetheless, for studes of
the route choices of truck drivers there has been a recent
shift from SP-based (4-8) to RP-based studies given the
availability of trajectory (mostly GPS) data sets (3, 9-14).
Although GPS data are appealing because of their spatial
(i.e., location) and temporal (i.e., timestamps) richness to
investigate route choices, a few limitations are associated
with collection and coverage. These data are often not pub-
licly available and are expensive to buy from service provi-
ders. Furthermore, they might not capture a representative
sample of the population over a limited period. In contrast
to GPS data, there are other low-cost alternatives such as
automated vehicle identification (AVI) data. These data
are collected from fixed-location sensors (e.g., Bluetooth
sensors or traffic cameras), which can be installed by road
authorities on many different strategically chosen loca-
tions. These fixed-location sensors can alleviate the limita-
tions of GPS data in two ways. First, these sensors can
capture passing vehicles’ movements to produce a large
sample that is (more) representative of the population.
Second, they can continuously record vehicles’ movements
over several periods of the day.

Fixed-location sensors have some advantages over
mobile sensors (i.e., GPS). However, little research effort
has been put into harnessing the potential of such data
for route choice modeling (15). The key reason for that
is that these sensors may not fully cover a road network
sufficiently to make the underlying route choice observa-
ble (in the mathematical sense, e.g., Viti et al. [16]). The
result typically is a sparse data set that comprises origin,
destination, and experienced travel time for a given trip.
This sparse data set is unlabeled in the sense that it lacks
the actual route choices of drivers and, as such, cannot
be used to estimate discrete-choice models. To deal with
the sparsity issue, extra information about the estimated
travel times of route alternatives is required to infer the
most likely chosen route, that is, the missing label. One
possibility is to use another independent data set (e.g.,
loop-detector data, floating car data) to derive this infor-
mation. The estimation problem relies on the inference
of the most likely chosen route, and this inference can be
approached from the following two perspectives.

1. The most likely route chosen by a driver will max-
imize their perceived utility.

2. The most likely route chosen by a driver will mini-
mize the deviation between experienced and esti-
mated travel times.

Note that the deviation of travel times is computed
from two independent data sets and might be associated

with some uncertainty (/7). A naive approach that
assigns missing labels based on the lowest deviation
value might, therefore, produce erroneous estimates of
model parameters. In contrast, Cao et al. (/5) combine
the aforementioned two perspectives into a single objec-
tive function, based on the so-called network-free model
(18), to model route choices using camera (also sparse
data) and GPS data. Although their approach is promis-
ing, it strongly depends on the quality of the available
GPS data and how representative they are for the popu-
lation. Moreover, their method incorporates the second
perspective through a measurement equation to supply
prior beliefs, which come from distributional assump-
tions, about a route present in the choice set.

Motivated by these issues, we propose an alternative
approach that fuses a sparse Bluetooth data set with path
travel times derived from densely spaced loop detectors. To
estimate how long a trip would take on alternative routes,
we use a trajectory-based travel time estimation approach
(19). In this way, our approach does not depend on GPS
data and their variability. In addition, the estimation prob-
lem is investigated in a bi-objective optimization setting that
allows the capture of the interdependency between the con-
flicting perspectives: utility maximization and deviation
minimization. Therefore, this approach can be used to
simultaneously infer actual route choices (labels) and esti-
mate the parameters of a route choice (discrete choice-
based) model under minimal assumptions. As a result, this
approach is applied to estimate route choice characteristics
of truck drivers operating in the Netherlands.

Turning now to route choice phenomena among truck
drivers, the existing literature has studied time-of-day
impacts and the latent class segmentation in SP-based con-
texts (4, 5, 7) where full experimental control is exerted by
researchers and the data may suffer from hypothetical
bias. The study of these two effects is particularly impor-
tant for road freight for two reasons. First, it can provide
us with insights into the vulnerability of road freight oper-
ations, especially in peak hours. Second, latent class choice
models, unlike mixed logit models (/4), do not require
knowledge of any mixing distribution, thus making them
more useful for policy and decision makers in the logistic
and traffic sectors. This indicates a need to study these
effects using route choices made by truck drivers in real-
world situations. This paper fills this research gap by using
a Bluetooth data set. Please note that this paper does not
use data collected from either SP or RP surveys.

This paper aims to estimate the route choice charac-
teristics of truck drivers using a sparse AVI or Bluetooth
data set that lacks actual route choices. This paper con-
tributes to the existing literature by:

1. estimating the route choice characteristics of
truck drivers from a sparse AVI data set, where
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actual route choices are lacking, in combination
with loop-detector data through bi-objective opti-
mization; and

2. investigating time-of-day effects and latent seg-
mentation within route choices of truck drivers
from Bluetooth data that include their decisions
in real-world situations.

This paper is structured as follows. The first section
will describe an approach to building a database of truck
drivers and route-specific attributes using a sparse
Bluetooth data set and loop-detector data. The subse-
quent section is concerned with the methodology where
the bi-objective optimization approach and latent class
modeling approach are described. The paper then pre-
sents the modeling results and discusses key findings.
Finally, in the conclusions, we outline future research
directions. Note that route and path are used inter-
changeably in this paper.

Data

This section first describes an approach to building a
Bluetooth data set for truck drivers that can be used for
modeling their route choices. It then presents the attri-
butes of route alternatives necessary to capture the route
choice behavior of truck drivers.

Bluetooth Data Set for Trucks

Bluetooth stations record the time stamp and identity of
a passing vehicle equipped with a Bluetooth sensor. The
identity is captured in the form of a media access control
(MAC) address. The travel time between two Bluetooth
stations can be retrieved by comparing the timestamps.
For this paper, the Bluetooth data are provided by the
Bluetooth service from the port of Rotterdam. This is a
query-based service that returns data in the JavaScript
object notation (JSON) format. This service ensures pri-
vacy by masking the real MAC address. However,
Bluetooth data, in general, do not provide information
related to vehicle type. This paper uses a three-step
approach to prepare a Bluetooth data set for trucks.
First, we identify pairs of Bluetooth stations that can be
used to identify the vehicle type. Second, we prepare a
database of truck drivers by storing their hashed MAC
IDs. Finally, these MAC IDs are used to identify a truck
trip from Bluetooth data. These trips provide key infor-
mation (such as origin—destination [O-D] pair, and trip
duration) that is necessary to estimate their route choice
characteristics.

Identification of Bluetooth Stations that can Cluster Travel
Time. Clustering has been used in the past to infer

vehicle type by analyzing travel times between two
Bluetooth sensors (12, 20). In our data, we have found
two pairs of Bluetooth stations near the ring of
Rotterdam (A15 and A4) where each pair comprised one
main Bluetooth station and one ancillary Bluetooth sta-
tion (Figure 1). These pairs can cluster travel time obser-
vations in both travel directions, resulting in four
sections for our analysis.

Identification of Truck Drivers in the Bluetooth Data Set. The
method for extracting truck-specific data from the
Bluetooth data set is presented in Figure 2. For a given
day and a pair of Bluetooth stations, congested periods
from the data set are removed since vehicles are observed
to behave similarly as shown by travel time plots.
Outliers are then removed using a quartile-based method
(21). Next, we apply the Gaussian mixture model-based
technique (22) to cluster travel time observations into
one of the two groups: faster and slower vehicles. Note
that the slower vehicles group might contain some of the
slower passenger cars. We, therefore, use the regulatory
speed limit of trucks on motorways in the Netherlands,
that is, 80 km/h as a filter to remove undesired passenger
cars and label the rest of the vehicles as “likely to be
trucks.” We iterate over different days (October and
November 2017) and one of the four sections that can
cluster travel time observations. After this process, we
label vehicles that are found in the “likely to be trucks”
category more than 90% of the time and are detected at
least three times by any pair of the Bluetooth stations as
“trucks.” This process results in a database of hashed
MAC IDs that represent truck drivers.

el A15 B

Spikenjsse ¢

© Main Bluetooth station
@ Ancillary Bluetooth stations

Figure 1. Two pairs of Bluetooth stations that can cluster travel
times in both traffic directions.
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Figure 2. Extracting trucks-specific observations from Bluetooth data set.

Identification of Truck Trips. Having identified truck IDs, between a port node and a hinterland node (see Figure
we can now turn to obtain truck trip data between an ID 3). Four hinterland nodes, which are strategic in freight
pair. In this paper, we consider trips of truck drivers flows, are considered at shorter and longer distances
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@ Portnode
@ Hinterland nodes
@ Anchor points

Figure 3. Locations of the port node, hinterlands nodes, and
anchor points in the Netherlands.

from the port—a total of eight O-D pairs by considering
trips in both directions for a single O-D pair. Since
Bluetooth observations lack information about the route
chosen by a truck driver between an O-D pair, we use
anchor points to alleviate some of the limitations of the
Bluetooth data set. An anchor point is defined as a
Bluetooth station that lies between an origin and a desti-
nation node. Thus, the trips made by truck drivers in our
data represent journeys over an origin node, an anchor
point, and a destination node.

In addition, we also filter out anomalies (e.g., long
breaks) occurring in the trip data using a rule-based
approach. Let 7T, , be the journey time incurred by a
truck driver n while making a trip over an origin node,
an anchor point (a,), and a destination node. This travel
time is retrieved from the Bluetooth data set. An anchor
point allows us to reduce the choice set for a truck driver
n, that is, C, to a viable subset 4,,. All those route alter-
natives for a truck driver » that pass through the anchor
point a, are present in A4,. TT; refers to the expected
travel time over a route alternative i for a truck driver n.
Then, the journey time (77,s,) of a truck driver » should
lie between the minimum expected travel time and the
maximum expected travel time among route alternatives
present in the viable choice set 4,. A tolerance of 10% is
added to the minimum and maximum expected travel
times. We assume that any trip beyond this threshold
would have incurred long breaks. Therefore, a continu-
ous trip should satisfy the following Equation 1:

0.9 % (minyey, TTin) < TTops,n < 1.1 % (max;eq, TTy) (1)

This step has produced a total of 14,928 trips made by
truck drivers during October and November 2017. Next,
we present key attributes that characterize a truck trip.

@ Portnode
@ Hinterland node —
@ Anchor points

)

TT,=0.898 TT. +0.972
R?=0.903

Journey time (TT,)
from Bluetooth dataset (min)

10 20 30 40 50 60 70 8 90 100
Expected travel time (TTe)
from trajectory method (min)

Figure 4. Travel time comparison between the journey time
obtained from Bluetooth data and the expected travel time
derived from the filtered speed-based (FSB) trajectory method:
(a) origin—destination pair with two known routes; and (b) travel
time comparison.

Attributes of Route Alternatives

We consider three attributes: expected travel time, travel
distance, and travel time unreliability at the time of
departure.

Expected Travel Time. We use expected travel time at the
time of departure as one of the attributes of route alter-
natives. We use loop-detector data (23) and apply the fil-
tered speed-based (FSB) trajectory method (/9) to
compute the expected travel time for a truck driver over
a path between an O-D pair. In the Netherlands, loop
detectors are roughly located at every 500m and can
provide dense coverage of the road network. Between
the O-D pair shown in Figure 4, for which route choices
are known beforehand, we compared the expected travel
time with the journey time obtained from Bluetooth
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Figure 5. A framework to estimate route choice characteristics of truck drivers from sparse Bluetooth data.

data. The t-test shows that the journey time obtained
from the Bluetooth data set (77,) and the expected travel
time computed from the trajectory method (77,) are
equal (t-statistic = 11.37, p-value = 8.08e-30). The unit
of expected travel time is minutes.

Travel Distance. The travel distance of a route alternative
between two Bluetooth stations is measured using
Google Maps API. The unit for travel distance is
kilometers.

Travel Time Unreliability at the Time of Departure. We use a
skewness-based travel time unreliability indicator (/7).
This can be interpreted as the likelihood of incurring a
very bad travel time relative to the median travel time, as
defined in Equation 2:

_ TToy — TTs

Mooy = X — 2250 2
ske TTSO — TTIO ( )

where Ny, 1S the measure of travel time unreliability and
TT, refers to x percentile of travel time observations. Age,
is computed for the four time periods in a day: morning
peak hours (06:30-09:30), day (09:30-16:00), evening
peak hours (16:00-19:00), and night (19:00-06:30).
Morning and evening peak hours were then combined
into peak hours. Day and night constituted off-peak
hours. For the computation of travel time unreliability, we
select the travel times incurred over a path in the previous
10 days. Having discussed the data set and the attributes,
the next section presents our methodology to estimate
route choice models using sparse data.

Methods

This paper proposes a new model estimation framework
to estimate route choice characteristics from a sparse
AVI or Bluetooth data set. Figure 5 presents this

framework that accepts truck-specific trip data, obtained
through clustering, and the travel times of alternative
paths derived from loop detectors as inputs.
Subsequently, a bi-objective program is formulated to
simultaneously infer actual route choices and the para-
meters of a route choice model. Finally, a latent class
choice analysis is conducted to identify segments with
truck drivers’ route choice behavior.

The rest of the section is divided into three parts. The
first part presents the problem formulation and solution
approach. The second part discusses the decision rules that
capture the behavior of decision makers. Finally, the third
part describes our approach to generating choice sets.

A Bi-Objective Optimization Approach to
Simultaneously Infer Actual Route Choices and
Estimate the Parameters of a Route Choice Model

Problem Description. This paper proposes a bi-objective
model that simultaneously considers the two objectives.
On one hand, the proposed model aims to maximize the
log-likelihood of an entire data set of choice observa-
tions. Here, the likelihood of an entire data set is simply
the product of individual choice probabilities. On the
other hand, the model aims to minimize the total devia-
tion between the experienced and estimated travel times
of a path. The main optimization decisions for the pro-
posed model are as actual route choices (labels) and para-
meter estimates of a route choice model.

Notations. The mathematical notations used in the paper
are listed in Table 1.

Mathematical Model.
Max F, = ZHGN Ziecnyi”(lnPi”(B)) (3)

Min F, = ZnEN Ziec”y’in( T, — TTobs,n)2 (4)
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Table 1. Notations

Notation Description
Indices
i Index of a route alternative
n Index of a truck driver
Sets
N Set of truck drivers,n € Nor N = {I,...,n}
G Set of route alternatives for a truck driver n
A, Set of route alternatives for a truck driver n passing through an anchor point a,
a, Anchor point for a truck driver n
Parameters
TTobs,n Experienced travel time for a truck driver n retrieved from Bluetooth data set
T, Estimated travel time for a truck driver n over a route alternative i
Bmin The user-specified minimum value for parameters 3
Bmax The user-specified maximum value for parameters 3
Decision variables
Yin Binary variable, | if a truck driver n chooses a route i, 0 otherwise
B Coefficients of the utility function
Subject to: We consider that F; is upper bounded by ¢, that is, the
total squared deviation between the Bluetooth reported
Zie 4 Yin = 1VheN (5) journey time and the expected travel time computed
" using the trajectory method should not be more than €.
yin €{0,1} Vn €N, Vi€ C, (6) We vary the value of & from F3_ min to Fy, mayx Using a pay-
Bunin < B = Brnax (7) off table (24), which consists of all objective values, when

The objective function (3) maximizes the log-likelihood
of the sample. The probability of a truck driver n choos-
ing a route i is expressed by P;,(B), which depends on the
type of decision rule employed. The objective function (4)
minimizes the squared deviation between the experienced
travel time obtained from the Bluetooth data and the esti-
mated travel time derived from loop-detector data.
Constraint (5) ensures that truck drivers can be assigned
to, at most, one route that is present in the choice set
A, € C,. Constraints (6) and (7) state the type of decision
variables and their restrictions.

Solution Approach. In bi-objective optimization problems,
there is no single optimal solution that can simultane-
ously optimize all the objective functions. In these cases,
decision makers look for the most preferred solution.
For these problems, the efficient (or Pareto optimal)
solution is the solution that cannot improve one objec-
tive function without deteriorating at least one of the
rest. A well-known technique for solving bi-objective
optimization problems is the e-constraint method (24).
This technique optimizes one main objective while other
objectives act as constraints. In this paper, our main
objective (F) is to maximize the log-likelihood of the
sample considering F, as a constraint (see Equation 8).

Max F
subject to F, (8)

each objective is optimized subject to constraints. The set
of all obtained solutions for the entire range of € are con-
sidered the Pareto optimal front of the bi-objective opti-
mization problem. Among the obtained Pareto optimal
solutions, the most preferred is selected by the decision
maker according to the specific preference of the applica-
tion. We use an optimization-specific algebraic modeling
language AMPL (25) to code our optimization formula-
tion and use Bonmin solver (26).

Decision Rules

Having formulated the optimization problem formula-
tion, we will now discuss decision rules that describe the
process used by the decision maker to choose an alterna-
tive. We consider three decision rules: multinomial logit,
path size logit, and latent class choice models.

Multinomial Logit Models. Random utility theory assumes
that drivers are perfectly rational and that they have per-
fect discrimination capabilities (27). It is assumed that
the utility for a driver n associated with route alternative
i in the choice set C, is the sum of a deterministic part
(Viy) and a random part (€;,). We consider a linear utility
specification; therefore, we have V;, = BX. Here, B refers
to parameters associated with route attributes X. If we
assume that the error terms of the utility function are
independent and identically Gumbel distributed, the
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choice probability of each alternative i can be described
in Equation 9 as:

etV
Py, = m )
n

Thereby, . is a positive scale parameter and is related to
the Gumble variable.

Path Size Logit Models. Typically, in route choice modeling,
the alternatives are often correlated. We, therefore, use a
correction factor (28). The path size correction factor
quantifies the similarity of a route alternative with other
route alternatives present in the choice set and its values
range from 0 to 1. A distinct route, which is unique and
does not overlap with other route alternatives in the
choice set, has a path size of 1. Path size correction for a
route alternative i corresponding to a truck driver »n is
defined in Equation 10 as:

j€Cy Baj

where

a is a link in the route alternative i,

I'; is the set of links present in the route alternative i,

I, refers to the length of link @, and

L; is the length of route alternative i.

>_jec, O indicates the total number of route alternatives,
present in the choice set of a driver n, sharing link a. By
including a path size (PS) correction factor (28), we deal
with the correlation among route alternatives. Thus, the
choice probability of a driver # to choosing a route alter-
native i is given by Equation 11:

eMVin + InPS;)
TR (1
jeCy

Pin:

Latent Class Choice Models. Latent class models are used to
capture unobserved heterogeneity in the behavior of
truck drivers (28). The underlying assumption is that het-
erogeneity may be produced by taste variations. The
latent class model is given by Equation 12:

Py = Zf: 1 'TrnsPin(Bs)a (12)

where 3, are class-specific parameter estimates and 1, is
the probability that driver n belongs to a segment s and
can be given by Equation 13:

exp(8s,)
Tps = = = > 13
S exp(a,y,) (13)

where 3 is a class-specific constant to be estimated and
v, refers to individual-specific  socio-economic
characteristics.

For model selection, we use the Bayesian information
criterion (BIC) (29). The BIC value is defined mathemati-
cally in Equation 14:

BIC = —2 In(L) + K In(n), (14)

where

L is the log-likelihood of the model,

K refers to the number of estimable parameters in the
model, and

n denotes the number of observations in the data set.

We compute the BIC value for each model under consid-
eration and select the one with the smallest criterion
value (30).

Choice Set Generation

Analyzing individual decision making requires knowl-
edge not only of what has been chosen, but also of what
has not been chosen. Therefore, we require a set of avail-
able alternatives (also termed a choice set) that an indi-
vidual considers during a choice process. We use the
Breadth-First Search on Link Elimination (BFS-LE)
method to find repeated least-cost paths between an O-D
pair (37). This algorithm is a link-elimination approach
where links of the current least-cost path are removed
one at a time to calculate subsequent least-cost paths. We
check the commonality of generated least-cost paths and
only store unique paths in the route choice set by using
travel time as our cost function. A maximum number of
30 unique paths between an O-D pair served as the termi-
nation criteria. This value is set as a target choice set size
considering the computational tractability of the bi-
objective optimization program.

Results

This section first presents the results of an optimization
model that is used to simultaneously estimate route
choices and parameters of a route choice model. This
section then presents segments of truck drivers using the
latent class choice model.

Simultaneous Inference of Actual Route Choices and
Estimation of Parameters of Route Choice Models

The Pareto curve captures the trade-off between the two
conflicting objectives considered in this paper. Figure 6
illustrates the Pareto curves for the multinomial and path
size logit models. The solution “a” is obtained when the
deviation is minimized, whereas the solution “b” is

obtained when the utilities of drivers are maximized.
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Figure 6. Bi-objective optimal Pareto curve for likelihood and deviation objectives for two different decision rules. The preferred
solution is “c” where the deviation is 196,833.64 min’: (a) path size logit model; and (b) multinomial logit model.

Among the obtained solutions that lie on the Pareto
curve, we select the solution “c” where the value of ¢
refers to a reasonable estimate of the total squared devia-
tion for sample data. For the O-D pair shown in Figure
4, the mean squared deviation is computed as 5.43 min®
over an average distance of 31.20 km between the same
O-D pair. This average distance is the mathematical
average of the length of all route alternatives between an
O-D pair. Note that that the mean squared deviation is
assumed to increase linearly over longer distances
because of errors in loop-detector data or the inability of
Bluetooth observations to detect vehicle activity in
between. The value of € for sample data is computed to
be 196,833.64 min”.

Table 2 shows the model fit of the multinomial logit
and path size logit models. For both the models, all the
parameters are significant and they have expected signs
except the travel time unreliability in off-peak hours. The
path size logit model outperforms the multinomial logit
model based on the likelihood ratio test (p-value < 0.01).
The path size logit model not only improves the model fit
but can also correct the correlation among route alterna-
tives. The path size logit model shows that truck drivers
negatively value travel time, travel distance, and travel
time unreliability in peak hours. The path size parameter
estimate’s positive coefficient is consistent with the find-
ings of Hess et al. (3). A positive estimate for path correc-
tion term denotes that truck drivers prefer unique routes
(i.e., routes with less overlap). We test truck drivers’ pre-
ferences concerning the travel time unreliability in peak
and off-peak hours. During peak hours, truck drivers, in
general, stay away from unreliable routes. However,

during off-peak hours, they are more likely to make risky
route choices. If we now turn to heterogeneity in the
route choice behavior of truck drivers, we will present the
results of latent class choice models.

Latent Class Choice Models

We use the solutions of the optimization problem gener-
ated from the path size logit model as actual route
choices of truck drivers to segment the drivers. We
estimate a latent class choice model using the
PandasBiogeme (32). Using the BIC criterion, we find
that the model with four segments performs best as it
has the least value for the BIC criterion (see Table 3).
The proportions of truck drivers belonging to the four-
segment model are 15.41%, 37.05%, 39.82%, and
7.72%. The signs of parameter estimates for travel time
are negative as expected. Similarly, the signs of para-
meter estimates for travel distance are negative except
for segment 4. The parameters for the route choice
model show that truck drivers value the path overlap/
correction factor and travel time unreliability differently.

Table 4 shows that segments 2 and 3 constitute three-
fourths of the truck drivers. A majority of truck drivers
belong to segment 3, and they seem to prefer the shortest
distance and shortest time routes. Their preference to
choose routes with high overlaps makes them more flex-
ible in unexpected situations such as congestion.
However, they show risky behavior during both peak
and off-peak hours by having a likelihood for routes
with unreliable travel times. Compared with segment 3,
truck drivers belonging to segment 2 form a second
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Table 2. Route Choice Models for Truck Drivers
Path size logit model Multinomial logit model
Parameters Value Rob. SE Rob. t-test Value Rob. SE Rob. t-test
Natural log of path size based on travel distance 0.492 0.067 7.31 na na na
Travel distance (km) —0.097 0.002 —47.70 —0.090 0.002 —44.00
Expected travel time (min) —0.023 0.002 —13.30 —0.025 0.001 —13.90
Travel time unreliability if departing in off-peak hours 0.072 0.003 18.40 0.063 0.003 18.00
Travel time unreliability if departing in peak hours —0.046 0.004 —11.30 —0.035 0.003 —9.72
Number of observations na na 14,928 na na 14,928
Initial log-likelihood na na —25,655.720 na na —25,655.272
Final log-likelihood na na —17,966.610 na na —17,989.800
Adjusted Rho-square na na 0.299 na na 0.298
Likelihood ratio (LR) test with respect to the na na 46.38 na na na
multinomial logit model
p-value of LR test na na <0.01 na na na
Note: SE = standard error; Rob. = Robust; na = not applicable.
Table 3. Comparison of Latent Class Models for Different Number of Segments
Latent segments
Parameters | 2 3 4 5
Final log-likelihood —17,966.61 —17,054.19 —17,029.96 —16,756.74 —16,860.90
Adjusted Rho-squared 0.299 0.334 0.335 >0.346 0.341
Segment proportions (%) 100.00 37.61 3391 15.41 1.72
na 62.39 3.61 37.05 24.55
na na 62.48 39.82 10.39
na na na 7.72 43.84
na na na na 19.50
Estimated parameters 5 I 17 23 29
AIC 35,943.22 34,130.37 34,093.92 33,559.48 33,779.80
BIC 35,981.27 34,214.09 34,223.30 33,734.53 34,000.52
Note: AIC = Akaike information criteria; BIC = Bayesian information criterion; na = not applicable.
Table 4. Segmented Route Choice Model for Truck Drivers
Segment | Segment 2 Segment 3 Segment 4
Rob. SE Rob. SE Rob. Rob. SE
Parameters Value  (t-test statistic) Value (t-test statistic) Value SE (t-test statistic) Value (t-test statistic)
Class proportion (%) 15.41 na 37.05 na 39.82 na 7.72 na
Natural log of path size —11.40 323 (—3.52) 4.55 0.17 (26.20) —781 075(—1030) —40.80 5.18(—7.88)
based on travel distance
Travel distance (km) —1.31 030(—435) —0.10 0.00(—30.30) —0.36 0.02 (—16.50) 0.35 0.05 (6.47)
Expected travel time (min) —1.90 040 (—4.70) —-0.01 000(—599) —005 0.0l (—7.04) —0.05 0.01 (—3.48)
Travel time unreliability if —0.49 0.10 (—4.67) 0.06 0.01 (11.60) 0.07 0.0l (4.95) 0.28 0.03 (7.17)
departing in off-peak hours
Travel time unreliability if 0.48 0.11 (4.22) —0.02 00l (—2.50) —0.06 0.02 (4.30) 0.17 0.21 (0.78)
departing in peak hours
Number of observations na na na na na na na 14,928
Initial log-likelihood na na na na na na na —25,655.27
Final log-likelihood na na na na na na na —16,756.74
Adjusted Rho-square na na na na na na na 0.346

Note: SE = standard error; Rob. = Robust; na = not applicable.
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majority and they are less likely to prefer the shortest dis-
tance and shortest time routes. Unlike those in segment
3, truck drivers in segment 2 show a preference for routes
with less overlap. Their preference to select a unique
route is in contrast to the behavior shown by a majority
of truck drivers. However, they are concerned about the
reliability of travel times during peak hours which
prompts them to make informed routing decisions and
decreases the possibility of incurring longer travel times.
Around a quarter of truck drivers belong to segments 1
and 4. Truck drivers belonging to segment 1 behave
more like those in segment 3 except for their sensitivities
to the unreliability of travel times. Their sensitivities to
travel time and distance are similar to other segments,
that is, they negatively value longer time or distance
routes. However, they are prone to choose unreliable
routes during peak hours. Truck drivers in segment 4
account for only 7.72%. They value shortest time routes
but they have an unexpected affinity for longer distance
routes. This can be explained by their preference to
choose a route with high overlaps. In doing so, they
travel longer distances between an O-D pair. Also, they
are more likely to choose an unreliable route since they
are not significantly affected by the unreliability of travel
times during peak hours.

Discussion

This section begins by discussing the plausibility of the
route choice characteristics of truck drivers estimated
from a sparse Bluetooth data set. We then elaborate on
the advantages and limitations of our estimation
approach from an application perspective. Finally, we
provide the implications of our findings for the design of
policies.

This paper found that truck drivers can be segmented
into four groups based on their preferences with regard
to travel distance, expected travel time to destination,
and the unreliability of travel time on a route at the time
of departure. The number of segments is greater than
used in previous research (5, 7). A possible explanation
for this might be that previous research (5, 7) used data
from SP surveys, while this paper has used empirical
data that include choices made in real-world situations.
Another possible explanation is that previous research
focused on different business and demographic needs
(urban logistics in the Netherlands (5) and regional logis-
tics in Washington state, U.S.A. [7]) compared with the
port logistics considered in our paper. Another signifi-
cant aspect of our findings is that a majority of truck
drivers prefer paths with a high degree of overlap, which
indicates that they value the availability of many alterna-
tives to minimize the risks during their trips. These
results corroborate the findings of Anderson et al. (33).

In addition, truck drivers seem to prefer paths with unre-
liable travel times during peak hours. This outcome is
contrary to a previous study that suggested that truck
drivers value reliability (34). Our results seem to be con-
sistent with Luong et al. (/3). These results are likely to
be related to the behavior of short-haul truck drivers or
those departing in the off-peak hours who may take the
chance of reaching their destination by choosing an unre-
liable path.

Let us now turn to our estimation approach, which is
formulated as a bi-objective optimization program. Our
study raises the possibility that passive data sources
(Bluetooth data and loop-detector data) can be used to
estimate route choice models. This approach might alle-
viate the need to perform expansive data collection from
SP or RP surveys to understand driving behavior.
Different types of fixed-location sensors other than
Bluetooth, such as cameras, Wi-Fi sensors, and mobile
phone towers can be used as inputs. This formulation
can also be applied to freight-specific sparse data sets
such as freight trip diaries, which also lack actual route
choice observations; with these we could develop
advanced commodity-specific route choice models. In
this way, the estimation approach opens new possibilities
to use sparse data sets in generating insights about the
route choice behavior of drivers. The following are the
limitations of this approach. First, loop detectors in
other regions may not be densely located because of the
high costs of installation. We recommend considering
the use of other data (e.g., floating car data) in such
cases. Second, clustering of vehicles based on speed
works well for the Netherlands but may not deliver
promising results in countries with low speed limit
compliance or different driving policies in place (e.g., a
keep-your-lane policy). Here, further research on mode iden-
tification from a sparse data set would be recommended.

For the implications for practice, our model indicates
that few truck drivers prefer less reliable routes during
peak hours. There could be a benefit in including the
reliability of travel times in route planning or navigation
systems to support companies in making the trade-off
between travel time, costs, and reliability. Further
research should be undertaken to investigate the objec-
tive of truck drivers behind choosing unreliable routes.
Also the model could inform the design of interventions
by traffic management agencies, such as peak-hour con-
gestion charging or segment-specific route guidance.

Conclusions

This paper estimates the route choice characteristics of
truck drivers using sparse automatic vehicle identifica-
tion (AVI) data. A novel method that uses data fusion
and a bi-objective optimization program is proposed to



Sharma et al

291

deal with the sparsity of the AVI data set, which lacks
actual route choices (labels). This method can simultane-
ously estimate the actual route choices and the para-
meters of a route choice model. This method is
successfully applied on a sparse Bluetooth data set of
truck drivers making trips to and from the port of
Rotterdam in the Netherlands. The resulting models can
identify four latent segments within the route choice
behavior of truck drivers and capture the effects of time
of day (peak and off-peak hours).

In future investigations, it might be possible to incor-
porate panel effects (or repeated choices made by a driver)
within the current framework. Despite the usefulness of
our estimation method in delivering behaviorally consis-
tent findings, future work is required to establish the valid-
ity of this method. A possible approach would be to
conduct a driver survey that can supply the ground truth
in addition to a sparse data set. A further study on investi-
gating the route choice behavior of car drivers and its
comparison with this study could provide useful insights
for the management of significant freight corridors.
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