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Autonomous RC Cars for Control Research and Education: Implementation
of Virtual Potential Based Navigation and Platooning

T.R. de Jager∗† N.K. Meinders∗† T.A. van Vugt∗† W. Zomerdijk∗†

R.M.G. Ferrari∗
∗Dept. of Systems and Control, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands.

Abstract— Autonomous and collaborative vehicles not only
are seen as a possible solution to reducing congestion and
traffic related fatalities. They also provide an excellent multi-
domain test bench for engineering education at undergraduate
and graduate level. Yet, the use of real scale platforms for
experimental educational activities bears prohibitive costs and
complexity. While several small scale autonomous platforms
have been developed in recent years to address this issue, still
they require a significant investment of time and money, which
is not always ideal for undergraduate education. Furthermore,
none of the available platforms are specifically developed for
platooning experiments. In this paper, we detail the results of
an undergraduate student’s project where a pair of relatively
low-cost, off-the-shelf small scale RC cars have been used to
implement and test a well known platooning algorithm from the
literature. Furthermore, a Virtual Potential Field (VPF) based
lateral controller has been included in order to allow the cars to
navigate a prescribed closed-circuit track. Self-location of each
car has been obtained via a ceiling-mounted motion capture
system. Results have shown that, even using a relatively low
sampling rate of 10 Hz, accuracies in the order of 1 cm can be
obtained when platooning at 0.5 m/s along a circuit of 4 by 3 m.
As further improvements to the platform, apart from higher
sampling rates for the control law, the inclusion of onboard
perception is being explored, in order to eliminate the need for
an external motion capture system.

I. INTRODUCTION

In populous urban areas across the world, road congestion,
pollution, and traffic accidents caused by human error are of
increasing concern. In order to ease such negative situations,
solutions based on autonomous and collaborative vehicles
are being broadly researched at academic and industrial lab-
oratories [1], [2]. Furthermore, according to a recent article
by The New York Times, 108 companies in the U.S. alone
are using public roads as a "lab for self driving experiments"
[3]. These considerations support the need for including the
design of control and perception algorithms of autonomous
vehicles in the curricula of engineering education [4], [5],
[6], [7].

Furthermore, as recognised by [7], robots and, by ex-
tension, autonomous vehicles constitute an excellent multi-
domain test bench for developing in undergraduate students
skills and topics such as design thinking, analysis, problem
solving, perception, control and planning. Yet the cost and
complexity of real scale platforms for testing and developing
autonomous vehicle solutions are prohibitive for educational
settings. This led in recent years to the development of sev-
eral, mostly open-source small scale autonomous platforms.

†
These authors contributed equally.

Notable examples include, ordered by increasing cost and
complexity: the Donkey Car1; the Berkeley Autonomous
Race Car (BARC) [8]; the MIT Racecar [4]; the F1/10
project [9], [6]; the AutoRally [10]. While such small
scale autonomous vehicles include increasingly sophisticated
arrays of sensors and powerful onboard processing, their
cost and required investment of time can still be high,
especially for educational activities. Furthermore, none of
these platforms are specifically designed for cooperative
driving functionalities, such as platooning.

In order to address these issues, in this paper we explored
the use of a relatively inexpensive, off-the-shelf autonomous
RC car for undergraduate education in autonomous, coop-
erative navigation. In particular, we will present the results
obtained by a team of four undergraduate students in Me-
chanical Engineering, which were tasked with implementing
a proof of concept platooning experiments using such small
scale autonomous cars. In particular, the students’ project
involved the following tasks:

1) to develop a simple navigation algorithm such that the
platoon can drive along a predefined circuit;

2) to design a lateral control law, based on VPF, that the
cars in the platoon can use to drive along a predefined
circuit;

3) to obtain a kinematic model of the cars that can account
for their nonlinear, non-holonomic behaviour, which
can be used for computing steering actions;

4) to implement a longitudinal control law that allows the
cars to form and maintain a platoon;

5) to validate in an experimental setting the lateral and
longitudinal control laws developed.

In section II background information on the modelling
and control approaches used in this research are presented.
Then, section III describes the experimental setting and the
methodology used to evaluate the students’ design. Further-
more, section IV presents and discusses the results, and
possible origins of nonidealities within the research. Lastly,
the conclusions and future recommendations are drawn in
section V.

II. THEORETICAL BACKGROUND

This section presents the theoretical foundations on which
the car’s individual and cooperative control laws have been
developed.

1https://www.donkeycar.com

2022 IEEE Conference on Control Technology and Applications (CCTA)
August 22-25, 2022. Trieste, Italy

978-1-6654-7338-5/22/$31.00 ©2022 IEEE 504

20
22

 IE
EE

 C
on

fe
re

nc
e 

on
 C

on
tr

ol
 T

ec
hn

ol
og

y 
an

d 
Ap

pl
ic

at
io

ns
 (C

CT
A)

 |
 9

78
-1

-6
65

4-
73

38
-5

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
 D

O
I: 

10
.1

10
9/

CC
TA

49
43

0.
20

22
.9

96
60

19

Authorized licensed use limited to: TU Delft Library. Downloaded on January 03,2023 at 09:48:07 UTC from IEEE Xplore.  Restrictions apply. 



A. Virtual Potential Field

The concept of VPF has been successfully used for
navigation and track following of autonomous vehicles or
robots [11], [12], [13]. The intuition behind VPF is to
use an artificial potential to generate forces that will keep
an autonomous vehicle on the intended path, similar to
how magnetic fields are used inside particle accelerators.
In particular, a VPF can be computed as the combination
of both repulsive and attractive components. The former are
employed to steer a vehicle away from static and dynamic
obstacles, such as the road boundaries or other vehicles. The
latter are used to drive the vehicle towards a desired position,
such as a point along the intended track to follow, or the
intended position of the vehicle as part of a platoon. Once
such an artificial VPF is defined, the resulting forces can be
computed as the negative gradient of the VPF and translated
into actual steering and acceleration commands.

In this work, a combination of Gaussian potentials are
used, as in [14], to generate lateral forces for steering the
car towards a desired path along a given track. Assuming a
straight track in the (x, y) plane, aligned with the x direction,
the VPF value, Ur,sr, in Equation 1 will cause the car to
steer towards the centre of the track, with lateral coordinate
denoted by yc.

Ur,sr = Ar(1− e−br(y−yc))2 (1)
Ar is a scaling factor, with larger values giving a higher
amplitude of the VPF. br corresponds to the steepness
of the Gaussian curve with a larger value increasing the
steepness. By combining several of such potentials, each
one aligned with a different portion of a given circuit, it
is possible to obtain an overall VPF that enforces tracking
of a path along that circuit (see Figure 2). The intuition is
that Equation 1 attains its minimum at the centre line of the
circuit, while it increases as a car moves laterally towards
the lane boundaries.

B. Bicycle model

In order to translate the virtual lateral force into an actual
force steering the car, a simplified kinematic model, called
bicycle model, has been used [15]. Equation 2 and 3 are
prescribed by the bicycle model, assuming no lateral slip.

ẋfsin(θ + δ)− ẏfcos(θ + δ) = 0 (2)
ẋsin(θ)− ẏcos(θ) = 0 (3)

Where (x, y) and (xf , yf ) are the rear and front wheel
coordinates, respectively, and θ is the orientation of the car,
all of these described in the global frame. δ is the steering
angle of the front wheel. The distance between the front and
rear wheel is L, thus the orientation of the car (xf , yf ) can
be expressed as xf = x + Lcos(θ) and yf = y + Lsin(θ).
Substituting this into Equation 2 gives Equation 4.

ẋsin(θ + δ)− ẏcos(θ + δ)− θ̇Lcos(δ) = 0 (4)
Also provided that ẋ = vcos(θ) and ẏ = vsin(θ), where v
is the velocity of the car, results in Equation 5.

θ̇ =
vtan(δ)

L
(5)

Besides, it is known that θ̇ = v
R , where R is the radius of

the curve that the car would make with a certain steering
angle. Combining this with Equation 5 gives tan(δ) = L

R .
The potential field gives a virtual force, Fpf , that is acting

on the car in the lateral direction. This virtual force leads to
a physical force, the centripetal force, given by Fc = mv2

R ,
where m is the mass of the car. As explained in subsection II-
A, the virtual force must be equal to the centripetal force. As
the car mass is known and its longitudinal velocity can be
measured, the turning radius can be obtained from the VPF
and Equation 6 is derived for the steering angle.

δ = tan−1

(
LFpf

mv2

)
(6)

By designing a control law that tracks this desired δ, the car
can track a given circuit, as detailed in subsection III-E.

C. Longitudinal control and Platooning

Cooperative Adaptive Cruise Control (CACC) [1], [16]
will be used to design the longitudinal velocity control law.
As a proof-of-concept only two cars will be considered:
a leader car, whose velocity, vL, will follow a prescribed
profile, and a follower car, which will employ CACC to track
the reference distance from the leader given by Equation 7.

dr(t) = r + hvF (t) (7)
Where dr is the desired distance between the cars, r is the
standstill distance, h is the time gap and vF (t) is the velocity
of the follower car. The distance error e(t) is computed using
Equation 8, where d is the actual distance between the cars.

e(t) = d− dr(t) (8)

Combining Equation 7 and 8 leads to Equation 9, where
pL(t) and pF (t) are the positions of the leader and follower
cars and L their length. The time derivative of the error is
given by Equation 10.

e(t) = pL(t)− pF (t)− L− r − hvF (t) (9)
ė(t) = vL(t)− vF (t)− haF (t) (10)

In [16] the desired acceleration, uF , of the follower car is
computed from the control law given by Equation 11.

u̇F (t) =
1

h
[−uF (t) + (kpe(t) + kdė(t)) + uL(t)] (11)

Where uL is the known desired acceleration of the leader,
assumed to be communicated to the follower, and kp and kd
are control gains. Finally, the relation between the follower’s
desired acceleration and its actual one, aF , is given by
Equation 12.

ȧF =
1

τ
(uF (t)− aF (t)) (12)

Where τ is a time constant accounting for the drive-train
dynamics.

III. METHOD

The method and experimental setup used in this paper are
explained in this section.
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A. Erle-Rover and -Brain

The Erle-Rover is a Linux-based unmanned ground vehicle
with an artificial robotic brain (see bottom-right of Figure 3).
It uses the Robot Operating System (ROS) and Ardupilot
(APM).

B. Motion capture system

In order to accurately track the position of the Rover, an
Optitrack Motion Capture System (Mocap), in combination
with the software Motive, was used. The system consists of
a series of IR cameras, which are used to track reflective
markers attached to the Rover.]

C. Circuit

The circuit consists of curved and straight segments. The
grid for the circuit is made up of multiple sample grids of
one meter segments, each consisting of multiple connected
grid points. The amount of grid points in x and y direction
and the width of the grid are adjustable. Different sub-grids
are curved, translated, rotated and/or a scaled in length and
connected to each other. This results in the sample grid
illustrated in Figure 1. A more complex circuit with multiple
turns was also created. The grid is defined in the global
frame.

Fig. 1. Road grid made out of a combination of grid points that are
connected.

D. Feedforward

A reference steering angle and longitudinal speed have
been computed as a function of the position along the track.
These are used as feedforward action in the cars’ control
law. This allows for using small angle approximations in
the feedback action, as, during normal driving conditions,
the cars will need to correct only small deviations from the
track.

E. Feedback

A feedback action was implemented for making the lateral
control robust to unmodelled dynamics and other nonideali-
ties of the rover. As illustrated in Figure 3, the VPF gradient
is computed as a function of actual longitudinal and lateral
position along the circuit, and converted to a centripetal force
that must be applied to the car. By means of the bycicle
model, presented in subsection II-B, this is translated into a
steering angle, which is fed through a PID transfer function

and then added on the top of the nominal steering angle
provided by the feedforward action.

For the sample grid explained in subsection III-C, the
potential field is calculated using Equation 1. This sample
potential field is plotted over each sub-grid, which gives the
total potential field shown in Figure 2. The smoothness of
the gradient of the potential field for a straight part depends
only on the amount of grid points in the y-direction, as
the potential field is constant in the x direction. However,
for curved parts the potential field is not constant in the x
direction.

Fig. 2. Static potential field.

With the position measurement of the Mocap system, the
grid point closest to the car can be found. At this grid point,
the gradient of the potential field will be calculated. Based
on the position of the rover relative to the grid point, the
gradient is calculated using a forward, backward or central
difference method.

F. Simulink model

A simplified version of the Simulink model used to control
the leader car is shown in Figure 3. The feedforward has a
velocity and a steering angle as output. If the car is not in
the middle of the road, a virtual force from the potential
field will act on it. The bicycle model translates this force
to the desired steering angle. After the bicycle model, the
PID-controller is placed to prevent oscillations, decrease the
steady state error, and decrease the response time of the
Rover. Subsequently, the calculated steering angle will be
added to the feedforward and is translated to a so-called
RC-override command sent to the rover via ROS.

Fig. 3. Control scheme of the leader car (Erle-Rover with Erle-Brain [17]).

G. Follower car

A simplified version of the Simulink model with the most
important control flows, based on formulas for CACC given
in subsection II-C, can be seen in Figure 4.
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Fig. 4. Implementation of a CACC.

Authors in [16] present the output of the CACC as
the desired acceleration, uF . However, it is not possible
to send an acceleration command to the Rover, only RC-
override commands for the speed and steering angle can be
sent. Therefore, the follower’s desired acceleration, uF , is
integrated to obtain a desired velocity. The desired velocity
is sent to the rover as an RC-override command.

The steering input for the follower car is calculated in the
same way as described in subsection III-D and subsection III-
E. The control scheme of the follower car is similar to
Figure 3. The only difference is that the CACC controller
directly uses the position on the grid, provided by the Mocap
data, and translates it to a velocity input.

H. Software architecture

ROS, Matlab, and Matlab Simulink were used for con-
trolling both the Rovers. Matlab and Matlab Simulink were
used for implementing the control laws. ROS was used as a
middleware between the computer running the control laws,
the Mocap system, and the two Rovers.

I. Experiments

Before real-life testing, the Simulink model was verified in
Gazebo and the potential field parameters were tuned using
multiple virtual simulations. The accuracy of the system in
real life was tested for different velocities. The optimum
potential field parameters obtained from Gazebo were used
in the experiments. Before the start of each test, a calibration
was performed to accurately correlate the RC-override value
with the velocity of the car. The performance of the follower
car was evaluated based on the distance to the centre of the
road of the car and the difference in distance between the
leader and follower car and their desired distance.

IV. RESULTS AND DISCUSSION

The obtained results of the experiments are presented and
discussed in this section. The parameters presented in Table I
were used for performing simulation.

A. Accuracy

This section is divided into three subsections. In the
first subsection the accuracy with different VPF parameters
is given. The accuracy with different velocities and the
accuracy for the follower car are given in the second and third
subsection, respectively. The first two subsections provide the
accuracy for following a predefined trajectory and the last
subsection provides the accuracy for keeping a formation.

TABLE I
PARAMETERS USED FOR THE EXPERIMENTS.

Parameter Value
# points in X direction 141 [-]
# points in Y direction 151 [-]

width of the field for standard circuit 0.75 [m]
width of the field for complex circuit 0.30 [m]

dt Simulink model 0.1 [s]
stand still distance (r) 0.25 [m]

time gap (h) 0.50 [s]

1) Accuracy for different VPF parameters: The potential
field is tuned by varying the values for the amplitude Ar

and the steepness br. The tuning is done via experimental
iteration, with a constant velocity of 0.5 m/s. The results
for the circuit presented in Figure 1, are given in Table II.
The goal is that the Mean Absolute Deviation (MAD) from
the circuit is minimum. The MAD is determined to be the
difference in the real and intended position of the car. The
absolute difference is taken, such that the deviations do not
cancel each other out. It can be concluded from Table II, that
the minimum MAD is achieved when using Ar = 20 and
br = 0.3. This combination also has the lowest peak value,
defined as the maximum deviation from the circuit. The path
of the Rover plotted on the circuit can be seen in Figure 5.

Fig. 5. Standard circuit, single Rover experiment (Ar = 20, br = 0.30).

When a combination of Ar and br leads to a field that
is too strong, the absolute gradient of the potential field,
defined as

∣∣∆U
∆S

∣∣ where U is the potential field value and
S the position of a point, will rise substantially. As a result,
even a small deviation from the circuit result in the maximum
steering angle of the Rover, which causes the system to
behave unstable. When the field is too weak, the steering
angle of the Rover will be insufficient to return to its desired
location and can result in a deviation larger than the width
of the circuit. Both situations can be observed in Table II.

2) Accuracy with different velocities: Apart from a change
in VPF parameters, the accuracy also depends on the velocity
and the acceleration of the Rover. In Table III the accuracy
is given for various velocities. It can be concluded that the
accuracy decreases when the velocity increases. A possible
reason for this is that signals were sent for fixed time
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TABLE II
FOR DIFFERENT VALUES FOR Ar AND br , THE MAD AND THE PEAK

DEVIATION FROM THE SIMPLE CIRCUIT ARE MEASURED.

Ar [-] br [-] MAD [mm] Peak [mm]
10 0.30 (7± 7) · 101 3.5 · 102
10 0.40 (4± 4) · 101 1.9 · 102
15 0.30 (7± 7) · 101 3.3 · 102
20 0.20 (7± 7) · 101 2.9 · 102
20 0.25 (5± 5) · 101 2.4 · 102
20 0.30 (2± 2) · 101 9.2 · 101
20 0.35 (6± 7) · 101 4.2 · 102
20 0.40 (8± 8) · 101 3.2 · 102
25 0.30 (4± 3) · 101 1.6 · 102
30 0.25 (3± 2) · 101 1.4 · 102
30 0.30 (5± 4) · 101 1.8 · 102
30 0.40 (5± 3) · 101 1.5 · 102
40 0.25 (4± 3) · 101 1.6 · 102
40 0.30 (9± 6) · 101 3.2 · 102
80 0.25 (8± 7) · 101 3.0 · 102

periods, resulting in bigger distances travelled i the same time
period for higher velocities. This leads to a bigger deviation
from the circuit. Also, the standard deviation increases with
higher velocities, meaning that the results show oscillations.
Another reason can be, that there is more slip at higher
velocities.

TABLE III
FOR DIFFERENT VELOCITIES OF THE ROVER, THE MAD AND THE PEAK

DEVIATION FROM THE SIMPLE CIRCUIT ARE MEASURED.

Velocity [m/s] MAD [mm] Peak [mm]
0.25 (8± 7) · 100 6.2 · 101
0.50 (2± 1) · 101 4.7 · 101
0.75 (5± 4) · 101 1.7 · 102
1.00 (1± 1) · 102 5.4 · 102
1.25 (2± 2) · 102 9.7 · 102
1.50 (4± 2) · 102 8.2 · 102

3) Accuracy while following a leader car: For determin-
ing the accuracy of the leader and follower car, a more
complex circuit was used Figure 6. The velocity used in this
experiment is a constant velocity of 0.5 m/s. For the leader
car, the MAD is (3 ± 2) · 10 mm, the peak is 84 mm. The
follower car had a MAD of (2 ± 2) · 101 mm, with a peak
of 96 mm.

The second accuracy for following a leader car is defined
as the actual distance between the cars on the circuit and
the desired distance between the cars. Again the accuracy is
defined by the MAD, which is (4 ± 2) · 102 mm. This is a
rather high value in comparison with the MAD of following
a predefined circuit. A first explanation for this result can
be that only a RC-override command message, indirectly
representing the velocity, can be sent to the Rover and not
an acceleration value. A calibrated look up table was used,
which cannot be perfectly smooth. As a consequence, the

Fig. 6. Complex circuit, platooning experiment (Ar = 20, br = 0.30).

follower car cannot drive at the exact desired velocity. A
second reason for the relative high MAD, is the velocity
profile which is measured using Mocap. This causes some
errors even though filtering using a moving average is used—
otherwise the velocity profiles of the Rovers are very noisy.
More about these errors caused by Mocap can be read in
subsubsection IV-B.3. Thirdly, the control sampling time dt
that we managed to steadily maintain in Simulink was 0.1
seconds. Considering the maximum speed at which the rover
was tested was 1.5 m/s, it is easy to see that the sampling
time used was too high.

Furthermore, there is a delay between sending information
to the Rover and the Rover responding to that information.
This results in an error which causes a lower accuracy, as
explained in subsubsection IV-B.1. Lastly, there will always
be a calculation error when determining the accuracy.

B. Nonidealities that limit the accuracy

In this section, the nonidealities in the Rover, the model,
and the Mocap system will be explained.

1) Rover nonidealities: The RC-input for the velocity
changes over time as the battery drains or when using dif-
ferent ground surfaces. Therefore, small deviations between
real and intended speed can be observed. Furthermore, the
Rover was not designed for indoor use. The suspension,
and chassis of the Rover were vibrating, and the tires were
lacking grip, which negatively affected the Mocap data and
accuracy. Another nonideality is the steering of the Rover.
During testing, it was observed that the same steering input
not always results in the same steering angle. An explanation
for this behaviour is that the servo motor is too weak or
that the Rover has slack, leading to an inconsistent steering
angle. Finally, delays can be observed in the Rover’s robotic
brain when too many messages were sent. While running the
Simulink model without limitations, the delay could even
reach four seconds. This issue was initially solved using
Simulink Real Time, but the ’Paced Run’ option can also
be used. This is arguably a better solution.

2) Model nonidealities: The potential field method was
created for a point mass, which is free to move in all
directions. However, the car was modelled as a bicycle,
which restrains lateral movement. This means that a lateral
force will not directly result in a lateral movement, but it will
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(a) Mocap data with dt = 1/120 s. (b) Mocap data with dt = 1/10 s.

Fig. 7. Mocap data illustrating the staircase effect.

result in a steering angle. To simplify the bicycle model, it is
assumed that there is no lateral slip, since only low velocities
were used. However, when the car moves at higher velocities,
this assumption is no longer valid. As a consequence, the
bicycle model needs to be expanded to include lateral slip.

3) Mocap nonidealities: The Rover velocity is calculated
by taking the time derivative of its position, obtained by the
Mocap system. The x and y position (of a test circuit) of the
Mocap system can be seen in Figure 7. The data is shown as
a staircase. As the Mocap system is an optical system and
computes the position of the markers at a pixel resolution,
this could introduce the quantisation effect. This causes the
derivative to give either zero or high peak values. The frame
rate of the Mocap system was changed from 120 Hz to 10
Hz, solving the quantisation effect. The mean squared error
will be approximately ∆2/12, where ∆ the quantisation step
size [18]. According to [19], the method of oversampling
and low-pass filtering can be applied to reduce the signal
to noise ratio by a factor described with SNRA/D−gain =
10 log10(fs,new/fs,old). Increasing the sampling rate by a
factor of four, 6 dB of gain can be achieved.

V. CONCLUSION

The first research question was, whether it is possible to
implement virtual potential based navigation on the available
autonomous RC car platform. When looking at the results,
it can be concluded that it is indeed possible to implement
this to control the steering of a RC car.

The second research question was, which level of accuracy
could be obtained in following a given trajectory or keeping
a given formation. From the results, it can be concluded that
a high level of accuracy is achieved for the scenario that one
Rover is driving at 0.50 m/s. This accuracy corresponds to
a MAD of (2 ± 1) · 10 mm. However, when driving faster,
the level of accuracy is low. The MAD for keeping a given
formation is (4 ± 2) · 102 mm. This corresponds to a low
level of accuracy. Also the follower car obtained a MAD of
(2±2) ·101 mm for following a given trajectory. The reason
for the high standard deviation is that no exact velocities can
be sent to the Rover.

The third research question was, which nonidealities limit
in practice this accuracy. The main nonideality is the fact,
that the RC car is not a point mass. Other nonidealities are
due to the Rover, the models used—i.e. the Simulink and
bicycle model—and the Mocap system.

To improve the accuracy and the use of potential fields for
navigation, there are some future recommendations. Firstly,
a more advanced bicycle model can be used to better pre-
dict the vehicle behaviour. Secondly, if more computational
power can be made available a smaller time step can be
used. This will allow to update the steering input of the RC
car at a higher frequency. Thirdly, different PID controllers
can be used for different ’cases’. For example, use different
controllers for different speeds and for different curvatures
or straight paths. Lastly, a Kalman filter can be used to filter
the Mocap data, as a raw noisy signal cannot be numerically
differentiated.
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