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Enabling Patient- and Teleoperator-led Robotic Physiotherapy via
Strain Map Segmentation and Shared-authority

Stephan Balvert1, J. Micah Prendergast1,∗, Italo Belli1,2, Ajay Seth2, and Luka Peternel1

Abstract— In this work, we propose a method for monitoring
and managing rotator-cuff (RC) tendon strains in human-
robot collaborative physical therapy for shoulder rehabilitation.
We integrate a high-resolution biomechanical model with a
collaborative industrial robot arm and an impedance controller
to provide feedback to a human subject, therapist or both,
which prevents the subject from entering unsafe poses during
rehabilitation. The biomechanical model estimates RC tendon
strain as a function of human shoulder configuration, muscle
activation and applied external forces. Subject- and injury-
specific data are model estimates of strain that compose strain
maps, which capture the relationship between the RC strains
and movement of the shoulder degrees of freedom (DoF). High-
strain regions of the strain map are identified as unsafe zones by
clustering and ellipse fitting to smoothly demarcate these zones.
These unsafe areas, which reflect increased risks of (re-)injury,
are used to define parameters of an impedance controller and
reference pose for real-time biomechanical safety control. Using
strain maps we demonstrate both safe patient-led movements
and teleoperated movements that prevent the subject from
entering unsafe zones. In the teleoperated case, the physical
therapist leads the patient remotely using a haptic device. The
proposed method has the potential to improve the safety, range
of motion, and volume of activity that a patient receives through
robot-mediated physical therapy. We validated our approach
using three experiments that demonstrate shoulder joint torques
of less than 1 Nm during free motion with larger torques
occurring only when the subject was asked to actively push
into the unsafe boundary or, in the case of teleoperation, to
resist the physical therapist.

I. INTRODUCTION

Musculoskeletal injuries attributed to accidents, recreation
and/or general wear-and-tear due to ageing are the leading
cause of living with a disability and being unable to work.
Of these injuries, a shoulder rotator-cuff (RC) tear is one
of the most common, with an estimated prevalence rate of
22.1% in the general population and over 50% for those older
than 60 [1]. To restore shoulder mobility and functionality
following RC injuries, a patient must undergo a lengthy and
expensive physiotherapy process.

Due to the complexity of the shoulder joint, and a lack of
quantitative insights into re-injury risks, existing practices
of RC physiotherapy typically involve rather conservative
movements even when performed by expert physiothera-
pists [2]. The conservative nature of such therapy means
that the intensity of treatment delivered is limited in terms
of the range of motion (RoM). Overly restricting RoM can
slow down the healing process while safely increasing RoM
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Fig. 1: An overview of the complete high strain avoidance system. (a)
OpenSim shoulder model and rotator-cuff (RC) strain map are overlaid.
(b) One RC strain map is shown with unsafe (high strain) zones labeled.
(c) Impedance control to push subjects out of unsafe zones is shown. (d)
The sigma.7 haptic device and the strain map visualizer can be used for
safely teleoperating the system. (e) The Kuka LBR iiwa robotic arm is used
to control the subject so that they cannot reach poses that would result in
unsafe RC tendon strains.

improves it along with with the completeness of recovery [3].
Furthermore, RC therapy itself can be quite strenuous for
physiotherapists who typically handle many patients each
day, and are limited to assisting/treating one patient at a
time. A promising alternative to the traditional approach is
robotic-assisted rehabilitation.

The majority of existing robotic rehabilitation devices are
custom-built robots and exoskeletons [4], [5]. The main
advantage of such devices is that they can be specialised for
treating specific injuries/joints in terms of the mechanical
design, required payload, RoM, and degrees of freedom
(DoF) [6]–[8]. Nevertheless, custom-built robots and ex-
oskeletons are typically overspecialised and expensive, which
makes it difficult for them to be used for multiple purposes
and on a larger scale. On the other hand, mass-produced in-
dustrial collaborative robots are typically less expensive and
are designed to be versatile multi-purpose devices that are
certified for safe physical human-robot interaction (pHRI).

2022 IEEE-RAS 21st International Conference on Humanoid Robots (Humanoids)
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Fig. 2: Workflow of the biomechanics aware robotic system for delivering physical therapy. The biomechanical model is used to generate maps of muscle
strains. Clustering-based segmentation is performed to determine unsafe pose regions and ellipse fitting is done to simplify these “unsafe zones”. Additional
interpolation is done to allow for smooth map transitions during real-time changes to axial-rotation. These maps and corresponding safe zones are then used
either directly by the robotic control system during patient-led activities or by the haptic feedback system for guiding and restricting the physiotherapist
as they lead the patient. Robot position and force measures are fed back to the biomechanical model to update its current state. Data is collected from the
robot for further evaluation.

Previous research on the safety of collaborative robots
during pHRI has predominantly focused on external safety
in terms of collision detection and avoidance [9], [10], soft
robots [11], [12], compliant actuators [13], influence of
robot joint configuration on collision injury [14], awareness
of potential injury caused by human-robot collisions [15],
[16], and conservative force/velocity limits [17]. However,
characteristics related to robots’ external safety are often in-
sufficiently consistent with medically observed injuries [18],
thus some insight into the internal states of the human body
is needed for a more complete perception of safety.

To evaluate the characteristics related to the internal safety
of collaborating humans during pHRI in real-time, several
approaches have used heuristic ergonomics for ergonomic
working postures [19], [20], which are based on methods
such as Rapid Upper Limb Assessment (RULA) [21] and
Rapid Entire Body Assessment (REBA) [22]. The final
scores of RULA and REBA can provide a quick assessment
of the posture of relevant limbs, providing an indication of
the level of musculoskeletal disorders (MSD) risk. Unfortu-
nately, these heuristics are difficult to generalise for specific
humans, tasks, and conditions, and do not provide detailed
information about the inner workings of the musculoskeletal
system. This problem can be solved by using musculoskeletal
models, which can account for patient-specific parameters
and give an accurate estimate of the actual internal proper-
ties of the human body in real-time; such as (static) joint
loading [23], muscle fatigue [24], muscle comfort [25], and
muscle manipulability [26]. While promising, these methods
used collaborative robots for pHRI in workplace tasks rather
than physiotherapy.

A few recent studies focused on using off-the-shelf col-
laborative robotic arms for shoulder rehabilitation. For ex-
ample, a collaborative robotic arm was used for upper arm

rehabilitation, where the robot measured force, position,
and electromyography (EMG) data from various sensory
systems [27]. In a similar manner, a collaborative robotic arm
was used to perform shoulder rehabilitation, where the con-
trol was based on the measurement of arm pose and muscle
activity through EMG [28]. While these examples were lim-
ited to direct pHRI, the method in [29] used teleoperation to
enable the human physiotherapist to guide the collaborative
robotic arm performing the therapy remotely. The methods
in [27], [28] did not incorporate musculoskeletal models and
had to rely on external measurements, thus like human phys-
iotherapists, they had limited insight into the inner workings
of the musculoskeletal system. The method in [29] did use a
musculoskeletal model to guide the therapy to some degree.
However, musculoskeletal models are composed of numerous
underlying variables that are difficult to interpret, thus an
abstraction that is suitable for an intuitive representation
for use by human physiotherapists or in effective real-time
control is missing.

To address this gap, our previous work [30] demonstrated
an abstraction of a complex musculoskeletal model, called
the “strain maps”, that provide an intuitive representation
of the RC tendon strains and are used in effective real-
time control. These maps give the robot controller a high-
resolution estimate of muscle strains in the joint space. The
strain maps were generated for the four RC muscles and the
robot trajectory was planned to minimise the risk of re-injury
while maximising RoM. Nevertheless, the study was limited
to planned robot trajectories more suitable for the initial stage
of therapy where solely passive movements are utilized.

In this study, we propose a strain-based control method for
physiotherapy using a collaborative robot that goes beyond
planned trajectories. The proposed approach (see Fig. 1 for
concept overview) enables the active involvement of the
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patient, in which they can perform movements themselves
to maximise RoM, or be guided by a physiotherapist. In
both cases, the controller for the robot (and haptic device
in the case of teleoperation) acts as a safeguard to prevent
the patient from reaching dangerous poses or “unsafe zones”.
Expanding on our previous work [30], where the planned tra-
jectories only demonstrated motion in the plane of elevation
(PE) and shoulder elevation (SE) degrees of freedom, in this
work we also allow for axial rotation (AR) and incorporate
all associated control complexity.

We validate the patient-led approach on a Kuka LBR iiwa
collaborative robotic arm serving as the robotic physiothera-
pist, while a human performs movements on their own within
the safety bounds defined by a strain threshold. Similarly,
we demonstrate the physiotherapist-led approach using a
haptic device (sigma.7, Force Dimension, Nyon Switzerland)
to remotely operate the robot while the therapist receives
visual and haptic feedback based on these unsafe zones and
any applied forces or resistance from the patient in a share-
authority fashion.

II. METHODS

The methods section is divided into four sub-sections. II-
A gives an overview of the involved systems and relevant
coordinate frames, II-B presents the biomechanical model
that is adopted for modeling the patient and the way in which
safe human positions are defined, II-C details the control
algorithm that we propose to allow the robot to deliver safe
physiotherapy to the patients, and II-D explains the imple-
mentation of our teleoperation approach to physiotherapy.
As a reference, a block diagram overview of the proposed
approach is shown in Fig. 2.

A. Coordinate Frames

To enable the robot to physically interact with the patients
and prevent them from accidentally re-injuring themselves,
a custom arm brace was mounted on the robot end-effector
and worn by the patient, see Fig. 1. The brace, shaped like
an “L”, limited the movement of the patients and allowed the
robot to know the position in space of their elbow, since this
was translated by a known quantity with respect to the end-
effector pose xee ∈ R6, measured by the robot’s encoders.
We define the following frames (see Fig. 3):

• shoulder frame: centered on the humeral head of the
patient, its x-axis lies in the frontal plane of the patient
body and points towards the left shoulder, while the
z-axis is parallel to the sagittal plane and pointing
upwards;

• arm frame: centered on the elbow joint, the x-axis points
towards the wrist and the z-axis towards the shoulder;

• arm brace frame: aligned with the arm frame. The arm
is mounted so that the z-axis of the robot end-effector
and the z-axis of the arm brace frame coincide.

During the experiments, participants (acting as patients)
were instructed not to move their torso, so that the shoulder
frame was considered to remain fixed over time. In this way,
it was possible to establish a constant transformation that

X
s

Zs

Xe

Ze

SE

PE
AR

SE

PE

Fig. 3: Overview of the coordinate systems used: shoulder frame (green),
with the origin centered on the glenohumeral joint; DoF of the glenohumeral
joint (blue) and their mapping to the sigma.7 device; robot’s end-effector
frame (purple). When the patient is wearing the arm brace, the elbow frame
coincides with the end-effector frame.

linked the state of the glenohumeral joint to the position
and orientation of the arm frame. The system was therefore
always aware of the biomechanical condition of the subjects,
who were either free to explore their shoulder’s RoM au-
tonomously or were guided in the rehabilitation exercises by
the physiotherapist through teleoperation.

B. Biomechanical Model and Safety

To suitably represent the patient with a biomechanical
model, we leveraged the shoulder model presented in [31],
[32]. This model describes the right shoulder joint with
a high degree of fidelity, including the four rotator cuff
muscles: subscapularis, teres minor, supraspinatus and in-
fraspinatus. By means of the open-source musculoskeletal
modelling tool OpenSim [33], [34] the full RoM of the
human shoulder can be simulated and the strains of the RC
muscles for various robot-mediated human poses computed.
In particular, we focus on the value of the induced tendon
strain level ϵ, which is indicative of the risk of tearing or
re-injury for the muscle, and is defined as a dimensionless
number as follows

ϵ =
lT − l0

l0
· 100% (1)

where lT and l0 are the tendon length and slack length (i.e.,
the length at which the tendon starts to stretch) respectively.
As previously mentioned, we restrict our analysis to the
influence that the 3 DoF of the human glenohumeral joint
have on the resulting strain level, thus effectively defining
the shoulder state vector as

α = [AR PE SE] (2)

where the values are limited to be −90° ≤ AR ≤ 90°,
−20° ≤ PE ≤ 160° and 0° ≤ SE ≤ 144° to include
only feasible poses. The humerus of the model was posed in
all combinations of the 3 shoulder state variables, using 4°
increments, and the corresponding strain values are computed
offline. For a given value of α, we grouped the strain
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levels into a single metric consisting of the maximum strain
experienced among the RC muscles, which allows us to avoid
large strains in all four tendons. To accommodate specific
injuries of actual patients in the future, this value can be
adjusted and/or applied to only the map of the tendon that
has been injured (i.e., the infraspinatus map). By selecting
an appropriate value of strain as a threshold, we classified
each pose of the human arm as “safe” or “unsafe”, thus
minimizing the risk for re-injury during the rehabilitation
exercises. The strain threshold was set conservatively to be
2.4% under the assumption that larger strains even within the
elastic deformation range of the tendons (4-8%) might still
exceed the safe limits for a tendon that has been surgically
repaired [35]. This threshold was applied on the combined
strain map that includes only the maximum strain from the
four RC tendons.

For this biomechanical information to be integrated into
the robot control, we broke down the 3-dimensional space
in which α is defined into 2-dimensional “layers” (where
AR is fixed): these are referred to as strain maps in the
current work. When AR changes, a new map is considered.
For each one of these maps, we defined unsafe clusters (or
zones) where the strain level is above the safety threshold,
see Fig. 4. First, an equivalent map was retrieved by retaining
just the points {PE,SE} whose strain is greater than the
threshold. As a second step, the unsafe points are clustered
using the Density-Based Spatial Clustering of Applications
with Noise (DBSCAN) algorithm [36], which was chosen
because of its ability to cope with an unknown number of
clusters, its ability to identify non-spherical shapes and its
low computational cost. These characteristics are desirable
since they ease the pre-computation of the clusters among
the strain maps without the need for supervision. When the
unsafe zones have been identified, they are approximated as
minimum-volume enclosing ellipses (MVEEs). This repre-
sentation of the unsafe zones was chosen as it allows for
more efficient computation of the control references (see II-
C), at the acceptable cost of constraining the allowed RoM
to be possibly more conservative, but still safe.

C. Strain-Map-Based Impedance Control

To integrate the strain-map-based safety into the robot
control in real-time, at every timestep t we need to:

1) find the current shoulder state vector αt;
2) leverage the strain maps to perform a biomechanical

safety check;
3) send commands to the robot.

A Cartesian impedance controller is used to control the
interaction force exerted by the robot on the patient:

F imp = K(xee − xee) +D(ẋee − ẋee), (3)

where F imp ∈ R6 is the interaction force/torque vector
acting from the robot to the patient, K,D ∈ R6×6 are the
desired stiffness and damping matrices in Cartesian space,
and xee and xee ∈ R6 are the reference pose and the
measured actual pose of the end-effector, respectively. K
is defined to prescribe the desired Cartesian and rotational

Fig. 4: Identification and segmentation of unsafe zones. (a) A raw strain
map at each axial rotation pose is first generated, (b) DBSCAN is used
to cluster high strain points together within the map, (c) ellipses are fit to
these segments to serve as simplified boundaries which must be used in
real-time by the robot to ensure safe motion of the patient. (d) multiple
axial rotation maps are combined by interpolating between adjacent ellipses
so as to ensure smooth force changes during axial rotation.

stiffness and its value was determined iteratively, to ensure
subjects would be deterred from crossing unsafe zone bound-
aries. Based on this stiffness, D was obtained using the
double diagnolisation design technique [37].

The references for (3) are adjusted according to a safety
check based on αt, where we assess whether the shoulder
state lies in an unsafe zone in the current strain map (AR
is virtually fixed, and strain values depending on the current
PE and SE are considered). If this was the case, the closest
safe point lying on the elliptic contour of the zone was
estimated in real-time with Brent’s approach [38] and set as a
reference point. To ensure that the patient was repositioned
to the new reference pose, the impedance control stiffness
matrix was set to high stiffness (Khi), and the damping
matrix was adjusted accordingly. This results in a control
force F imp that pushes the patient perpendicularly towards
the zone boundary, ensuring minimal penetration into the
zone itself. In all other cases where αt does not correspond
to an unsafe strain, the reference point was set to the current
coordinates {PEt, SEt} so that no resistive force is generated
by the impedance controller.

Similarly, a second safety check addressed the problem
that, even if αt was safe in the current strain map, slight
changes in the AR value could make it unsafe in an adjacent
one (by changing the value of AR unsafe zones change as
well). This check only affects the AR angle, and spans the
third dimension of the shoulder state vector space. In the
case in which AR was approaching a value that would entail
excessive strains, the impedance control parameters K and
D were set to high values as in the previous/unsafe case. This
results in a torque on the z-axis of the robot end-effector that
guides the subject towards the safe strain map, hence acting
only along the AR coordinate.

With the control methodology formulated above, the pa-
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tients could freely explore the RoM of their glenohumeral
joint, while the robot implemented limitations on their mo-
tion based on quantitative knowledge of their internal safety,
expressed in terms of RC muscle strains. It must be noted
that, as described in II-B, AR is a quantity that varies
continuously, while the strain maps were precomputed with
a fixed discretization. This means that the patient will never
be exactly on one strain map, but between two adjacent ones.
Therefore, smooth transitions between maps was guaranteed
by calculating the closest safe points for both maps and
retrieving the correct reference point by linear interpolation
as a function of AR (see Fig. 4 (d)). Finally, we also
leveraged gravity compensation such that the jointed weight
of the brace+robot system was not sustained by the subjects
themselves.

D. Tele-Physiotherapy through Haptic Device

To demonstrate the utility of our method, we implemented
a second modality in which a patient received therapy
from a physiotherapist (PT) by leveraging the metric of
biomechanical safety introduced in II-B in terms of strains.
In this case, we allowed for a shared-authority control of
the patient’s movement, which was facilitated by the use of
a haptic device with which the PT could interact with the
patient. The use of the haptic teleoperation interface makes
it possible for a PT to move the patient’s elbow through the
sigma.7 gripper, as the movement of the haptic device is
transferred to the Kuka end-effector directly. By limiting the
haptic device’s RoM on the basis of the value of α, the PT
experiences a repulsive force field in case an unsafe zone is
being entered. The feedback force that the PT experiences
can be formalized as follows:

F fb = F zone + kp(xPT − xee) + kvẋPT (4)

where the first term implements biomechanical safety as
explained above. The second term introduces a force pro-
portional to the error between the commanded pose xPT

for the robot and the actual end-effector pose, so that
potential movements or resistances on the patient side are
reflected in a feedback force for the PT. The last term in (4)
represents a viscosity force depending on the velocity of
the commanded movement that is generated, to prevent the
PT from unwillingly generating excessively fast movements
during therapy.

During the experiments, the experimenter monitored the
subject’s position within the strain map in real-time using
a GUI visualization on a monitor. This visualization also
showed the unsafe zones overlayed onto the map to enable
easy navigation for the experimenter.

III. RESULTS

In this section we present results for the two modalities
within the proposed method. One healthy individual acts as
subject/patient for the following experiments. By considering
a scaled version of the OpenSim model, strain maps were
generated and divided into safe and unsafe zones by selecting
the strain threshold to be 2.4%. In III-A a first simpler case

Fig. 5: An example experiment where Axial Rotation has been fixed. (a) The
trajectory is shown with time stamps in seconds indicated by the enumerated
blue circles. (b) pose error used by the impedance controller is shown for
those times when the subject has entered the unsafe zone. (c) Joint torques
on the subject’s shoulder as calculated from the end-effector force of the
robot are shown. (d) estimated tendon strain based on the strain map.

is demonstrated, where the subject interacted autonomously
with the robot, but the axial rotation of the arm is locked.
This case is extended in III-B by leaving the subject-robot
interaction unconstrained. In both cases the subject was sit-
ting on a normal chair, and the robot was moved to its initial
position so the custom arm brace described above could be
worn comfortably. The movements that were performed were
projected on the strain map that best represented the current
state of the subject’s shoulder, and a screen was used to
provide visual information allowing safe exploration of the
shoulder range of motion. The visual display was updated
at 30 Hz, while the robotic control loop ran at 200 Hz. We
then integrated the sigma.7 into the experimental setup to
test our teleoperation system. These results are given in III-
C. Overall, this study was approved by the Human Research
Ethics Committee of Delft University of Technology.

A. AR locked

First, we considered the case in which the subject move-
ment was constrained to lie on one strain map only. By
locking the rotation of the end-effector about its z-axis, the
resulting trajectory is visualized on a single strain map, since
only PE and SE can change. In such a way, interpretation
and discussion of the results become possible in a single 2D
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Fig. 6: An example of a full three degree of freedom motion experiment is
shown. (a) the corresponding strain maps representing the change of axial
rotation are shown here as partially transparent so that the trajectory can
be seen. (b) the full trajectory is plotted just on the original axial rotation
map for ease of visualization. (c) the full shoulder pose of the subject is
shown (d) the error used by the impedance controller is shown for the time
in which the subject is in an unsafe zone (e) joint torques as calculated from
the end-effector force.

plot. The references for the impedance controller formulation
as in (3) are computed in real-time, depending on the
interaction with unsafe zones. In Fig. 5 a selected trajectory
of 16 seconds was visualized, during which the subject
interacted with one unsafe zone during their exploration of
the rehabilitation space: when the current shoulder state αt

became unsafe, the controller reference was shifted to the
closest point on the border of the ellipse, producing robot
torques that encouraged the subject to navigate, once again,
to a safe region. The positional and rotational stiffness for the
controller was tuned to be khi p = 800 N/m and khi r = 30
Nm/rad when inside an unsafe zone, and klo p = khi p/2 and
klo r = khi r/2 otherwise. Note that as shown in Fig. 5 (d), the
percentage of strain within the zone may be lower at some
points than the strain outside of the zone. This is because the
unsafe zone represents a somewhat conservative estimate and
as such breaching the zone itself does not necessarily put the
patient at risk. At no point during these experiments did the
subject ever exceed the strain threshold of 2.4%.

B. Free interaction results

This experiment showcases our proposed use of a patient-
led robotic-assisted rehabilitation. No constraints were pre-
scribed on the motion of the shoulder by the subject, so that
α could freely vary inside their feasible biomechanical range
of motion. In the reported results, the movement happened

Fig. 7: An example teleoperation experiment is shown along with the
force and pose data. The top image shows the strain map and trajectory
traveled with the time indicated by the numbers along the subject and PT’s
trajectories. (a) Initially the subject follows the PT and overall forces are
low. (b) as the PT pushes into the unsafe zone they feel the force feedback
from the zone boundary. (c) Both the subject and PT have exited the unsafe
zone. (d) The subject has been asked to actively resist at this point while
the PT attempts to pull them along. (e) The subject relaxes and once again
begins to follow the PT.

through 8 different strain maps: the trajectory travelled on
each map and the strain map themselves are shown in Fig. 6.
Initially, the subject axially rotated 28 degrees, intentionally
forcing themselves into an unsafe zone. The subject then
rotated back slowly while also moving along the other two
DoF, until they eventually returned to the original axial
rotation position.

C. Teleoperation results

The test reported here for the use of strain-map-based
safety demonstrates the effectiveness of the teleoperation
approach. One of the authors acted as the PT operator, and
drove the movements of the subject’s elbow. To demonstrate
different scenarios, the movement began in the safe-strain
region, and then the subject was driven towards an unsafe
zone (Fig. 7). As the initial motion is slow and safe, the
operator did not feel significant feedback force, as expected
from (4). When the unsafe zone was hit, the operator ex-
perienced a repulsive force pointing towards the safe region.
For illustration purposes, the operator navigated briefly inside
the unsafe region, and then drove the subject away from
it. Note that, because it requires some force for the PT to
push into this zone, there was some oscillation by the PT
that also resulted in some increased forces for the subject.
At this point, the subject was instructed to resist the end-
effector force, such that the reference trajectory and the
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actual trajectory diverged, and this generated a feedback
force for the operator.

IV. DISCUSSION

The results shown represent a step forward in the
biomechanical-aware safe interaction between robots and hu-
mans. They support our claim that it is possible to deliver so-
phisticated physiotherapy by employing commercially avail-
able collaborative robots that, while not designed primarily
for this aim, can be used as a part of reliable physiotherapy
tools or systems when integrated with biomechanics-based
feedback and safe control modalities. Moreover, such off-
the-shelf collaborative robotic systems natively grant various
safety features for pHRI as they already respect rigorous
standards. This is a significant benefit in comparison with
custom-built rehabilitation robotic platforms or exoskeletons,
where similar features must still be implemented and stan-
dardized for each new individual device. We demonstrated
that the strain maps that we generated are suited for a patient-
led therapy that could be useful to assist during later stage
shoulder rehabilitation, extending the purely robotic-driven
approach that we presented in [30], which was suited only
at the very early stages of therapy.

The very same strain maps also enable the delivery of
expert treatment in the case in which a professional phys-
iotherapist (rather than the patient on their own) interacts
with the robot. The approach we presented enables the PT to
visualize in real-time the quantitative strain that the therapy
is generating in the patient’s tendons, possibly leading to a
more efficient and safer therapy overall. The way in which
the PT interacts with the patient during teleoperation relieves
them from physical fatigue, since it is primarily the robot that
supports the weight of the patient’s arm. Future efforts will
also enable full arm-weight compensation during the patient-
led exercises.

Both the modalities that we demonstrated can be con-
sidered safe for the patient interacting with the robot as
the forces/torques generated by the robot are extremely
low (less than 1 Nm) when movement happens within the
safe zone (see Figs. 5,6,7). The same results show that
the forces/torques exerted on the patient increase when an
unsafe zone is entered: the value reached is proportional to
the amount of penetration into the unsafe zones, and the
increase in this value is guaranteed to be smooth due to
the interpolation performed on the reference point for the
Cartesian controller, as described in Section II-C. Higher
forces are observed in the case in which the subject actively
resisted the PT, as reported in Section III-C: this is not
considered an issue as it is assumed that the operator/PT
can supervise the patient, hence modifying the commanded
trajectory when they assess that the patient is non-compliant.
In general, it is expected that intentional patient resistance
during robotic therapy is somewhat unlikely or at least no
more likely than during conventional therapy. Regardless,
the development of a safe strategy to minimize the risk of
(re-)injury in cases of active resistance could be beneficial, as

it should also be considered that the strain maps will change
when the patient’s muscle activation increases significantly.

Finally, it is important to include in the biomechanical
modeling information regarding the injuries that the patient
has suffered or the surgery they have undergone, to gen-
erate real patient-specific rehabilitation policies. Currently
our maps can be weighted based on which RC-tendon has
been injured (and thus which tendon may be most sensitive
to large strains), however for the work presented here we
assume all RC-tendons are equally at risk.

Our future work will consider how to expand the presented
method, for example by allowing the robot to gradually resist
the human motion with the goal of allowing the patient to
gain the muscular strength they need to effectively complete
their rehabilitation by regaining the lost functionalities as
much as possible.

V. CONCLUSION

We present a robotic physiotherapy system that allows
a collaborative robot to deliver safe exercises to a patient
suffering from a rotator-cuff injury. The presence of the robot
enables patient-led rehabilitation movements, and also en-
ables expert rehabilitation guided by a professional PT. Both
modalities employ a state-of-the-art biomechanical model to
provide RC tendon strain feedback during therapy via the use
of strain maps and safe/unsafe zone segmentation. Overall,
this system allows the robot and underlying controller to use
patient- and injury-specific insights to provide safe control
during patient-led or PT-led therapy enabling large RoM
activities without risking patient re-injury.
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