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Abstract We use tridiagonal models to study the limiting behavior of S-Laguerre and
[-Jacobi ensembles, focusing on the limiting behavior of the extremal eigenvalues and the
central limit theorem for the two ensembles. For the central limit theorem of B-Laguerre
ensembles, we follow the idea in [1] while giving a modified version for the generalized case.
Then we use the total variation distance between the two sorts of ensembles to obtain the

limiting behavior of 3-Jacobi ensembles.

Key words beta-ensembles; largest and smallest eigenvalues; central limit theorem; total

variation distance
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1 Introduction
A p-Laguerre ensemble, also called a Wishart ensemble, is a set of non-negative random
variables A := (A1, A2, - -+, \,) with the joint density function
n
8,01 (1,2, ,20) = Cg"“ H |x; — £Cj|ﬁ H:v;“*re_%“, (1.1)
1<i<j<n i=1

where a; > g(n—l),ﬁ>0, r:l—l—g(n—l), and

o r(1+%)
e Er(l%a’)r(al—%("—”)
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A (-Jacobi ensemble, also called the -MANOVA ensemble, is a set of random variables
po= (p1, p2, -, 1) € [0,1]™ with a joint probability density function

fﬁ,al,ag ($17$2; . afEn) — C§,G17a2 H L x]|ﬁ thn r _ 1 a2 r, (12)
1<i<j<n

where a1, a9 > ﬁ(n— 1)and r:=1+ ﬁ(n— 1), and

50102712[ F(1+ )P(a1+a2_ﬁ(n_j)/2)
oy P+ 85/2)0 (a1 = B(n = 5)/2)T (a2 = B(n = j)/2)°

In 2002, Dumitriu and Edelman proved that the S-Laguerre ensembles can be seen as the

eigenvalues of real symmetric tridiagonal random matrices, which are distributed as Lgln in
Table 1 ([3]). The calculations in this note are all based on the tridiagonal model. In fact, in
the same paper, Dumitriu and Eldeman also gave the random tridiagonal model of another sort
of B-ensemble, the -Hermite ensemble, which we are not going to discuss here. The tridiagonal
model of the $-Jacobi ensembles was achieved in [7] and [10]. Jiang ([9]), Ma and Shen ([12])
used the tridiagonal model to calculate the distances between the two sorts of ensembles; this
is quite useful in terms of understanding the limiting behavior of 8-Jacobi ensembles through
the 0-Laguerre ensembles.

Based on the tridiagonal random matrices, Dumitriu and Edelman gave the central limit
theorem for the B-Laguerre ensembles in [2]. Let (A1, A2, -+, \,,) be the beta-Laguerre ensem-
bles of parameter a; and size n, whose joint density function is given by (1.1). Assume that
% — 7 €(0,1), and let ymin = (1 — /7)?, Ymax = (1 +/7)?. For any i > 1, let

a

n A i—1 o~y
,7 O’L O’L‘*l 2 /'Ymax X
X; = —\i | - ———"—(==-1 ] (t)dt,
. (nﬂ J) nz r+1 K (6 ) . nr(t)
]:1 r=0 min
where
1 1 1 1 .
"1 YYmax (‘r) + _5'71nin (x) 5 ) 1f T e ['Ymina ’7]11&)(]7
‘u}: (;17) = 4 4 27 \/({E - 'Ymin)(”)/max - x) (13)
0, otherwise.
Here C := Wlm)‘ is the combinatorial number, with 0 < m < n. Then, for any integer
k>1, (X1,Xs,--, X)) converges weakly to a centered multivariate Guassian as n — oo.

Set Amax = max{A1, A2, -, An}, Amin = min{A1, Ay, -+, A, } and assume that "—B — v €
(0,1]. Then

/\md" B(L+ /v~ and % — B =12,

almost surely. This result was first reported without proof in [1], and then in [9], the proof was
given by Jiang.

Let (p1, pt2, -+, pin) be random variables with density function f3 4, 4., defined in (1.2).
In [9], Jiang obtained similar results for extremal eigenvalues and the central limit theorem

for empirical measures. Setting pimax = max{p1, ft2, -« , fbn }, fbmin = min{pq, ga, -, fin }, and
assuming that a; = o(y/az), n = o(y/az) and % — v € (0,1], we then have that
az B+ 7)? a B(1 — /7)?
2 fmax — % and 2 [imin — M
Y n 2y
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in probability as n — +o0.

Given any integer i > 1, define

(e ' GG,
ne 8 () 8 S

j=1 r=0

for ¢ > 1. Similarly, assume that a; = o(\/az) and that n = o(\/az), (X1,---,Xy) converges
weakly to a multivariate normal distribution for any £ > 1.

A considerable amount of literature has been devoted to the eigenvalue distributions of beta
ensembles. Dumitriu and Koev presented explicit formulas for the distributions of the extreme
eigenvalues of the g-Jacobi random matrix ensemble in terms of the hypergeometric function
of a matrix argument (see [3]), and Edelman and Koev presented the explicit expressions for
B-Laguerre ensembles (see [4]). Dumitriu and Paquette studied global fluctuations for linear
statistics of the (-Jacobi ensembles (see [5]). It is also worth mentioning that Killip studied
the Jacobi ensembles and proved Gaussian fluctuations for the number of points in one or more
intervals in the macroscopic scaling limit given in [6]. Trinh in [14] gave a unified way to offer
the central limit theorems via spectral measures for beta ensembles and also investigated the
Gaussian fluctuation around the limit.

The case v := lim 52> = 0 was excluded in [1, 2] and [9]. In this note, we will prove the

2a
limit for extremal eig;z(;lovahlles when v = 0 for both §-Laguerre and (-Jacobi ensembles, modify
the central limit for S-Laguerre in [2], and generalize the central limit theorem for S8-Jacobi
from a; = o(y/az),n = o(y/az) to ayn = o(az).

Recently, high-dimensional data has appeared in many fields, and analysis of this data
has become increasingly important in modern statistics. However, it has long been observed
that several well-known methods in multivariate analysis become inefficient, or even misleading,
when the data dimension p, which is equivalent to the parameter 2a; /3 in this note, is much

larger than the sample size n. Here a high dimensional scenario n/p — 0 is considered.

1.1 Main results for g-Laguerre ensembles
The main results for g-Laguerre ensembles in this note are as follows:

Theorem 1.1 Let (A, A2, -, A,) be the 8-Laguerre ensembles of parameter a1 and size

n, whose joint density function is given by (1.1). Assume that lim % =+ € [0,1]. Then as
n—oo

n — oo,

)\max 2 )\min 2
2a, _)(1"_\/?)7 20/1_’(1_\/5)7

almost surely.
Ai
? 2(11
The following theorem is an extension of Theorem 1.5 in [2]:
Theorem 1.2 Let (A1, Ao, -+, \,) and v be defined as Theorem 1.1. For any k > 1, set
n k k—1 T I ald 1+ )2
A np\" CrCra 2 ™
X = — — ] ———(==-1 thuT (t)dt 1.4
A 2(2) ng(z) et /(1W Wi (1)

where p] (t) is defined as in (1.3). Then, for any integer m > 1, as n — oo,

\/ %(X15X27"' 7Xm) i“_> (}/1;}/25 aYm)

In particular, for v =0 — 1 almost surely for all 1 <14 <n.

@ Springer
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Here (Y1,Y3,---,Y,,) is a centered multivariate Guassian with the covariance matrix
COV(}/M}/J):Sl(lv.])_'—‘g?(lv])v (15)
where
itj—1 o o, it (—1)!
Sii.d) = D0 ()T B S 3 @G )
q=1 I=q+1 Titj—1 ris=l
1<r<s
1<s<5
.o i+j—qg— 1+ - . . r s
Sa(i, §) = Z (—1)THiyttima 1Z-+J. Z o1 Z (i —7)(J — s)(C; )2(Cj)2- (1.7)
q=0 J l=q itj—1 pqs=l
1<r<i
1<s<j

Remark 1.3 Thereis an inconsistency in Theorem 1.5 in [2], which we found is established
only for —f = =, but not for the genereal case 22 — (0 < v < 1). Take the following case as
an example:

Suppose that (A1, A2 -+, A,) are the eigenvalues of Lﬁ s then

n—1 n—1
=0 =1

Taking scaling into account, we have that

é) _ 2, —n- 7 2m =n(l+o(1)) =n+ o(n). (1.8)

E(Z; : 5 Bn

According to the central limit theorem from Dumitriu (Theorem 1.5 in [2]),

E(él}) —n+ (%—2>c+0(%),

where c¢ is a constant; this contradicts (1.8), therefore, we need to make a slight modification

and rewrite the formula as (1.4).

Remark 1.4 It is easy to see that when v = 0,
Therefore, for Vi, j > 1,
Cov (Y3,Y;) = 51(i, j) + S2(i, ) = ij.

The improvement from the result of Dumitriu and Edelman in [2] is reflected in the power
of v in (1.6) and (1.7). In [2], the central limit theorem is only adaptable for 0 < v < 1. Here,
we obtain a more general consequence adaptable for 0 <~ < 1.

1.2 Main results for $-Jacobi ensembles

For Jacobi ensembles, we utilize the conclusions of S-Laguerre to yield the relative results
of B-Jacobi through the connection between the two ensembles. The following lemma was first
proved by Jiang in [9] for a1 = o(y/az2),n = o(/az), and then generalized by Ma and Shen in
[12] for ain = o(az) :

@ Springer
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Lemma 1.5 Let A = (A, A\, -+, \,) and let g = (u1, p2, -+, ftn) be the random vari-
ables with density functions (1.1) and (1.2), respectively. Denote with ||£(2(a1 4+ a2)p) — L(A)]]
the total variation distance between the probability distributions of 2(aq+a2)p and A. Assume
that a1n = o(ag). Then

Jim [[£(2(a1 +az)) — L] =0,
Following the method in [9], and based on Lemma 1.5 and Theorem 1.1, we can easily have

Theorem 1.6 Let (u1, 12+« - , fin) be the §-Jacobi ensembles with density function fg 4,4,

given by (12) Recall that Hmax = max{:ulv 2, 7,“71}7 Hmin = min{:ulv 2, ,,Un} Suppose

that ain = o(az) and lim 267" =~ € [0,1]. Then, as n — oo,
a1—00 1

a a
s = (143 and iy — (1= 7
1 1

in probability.
Similarly, utilizing Lemma 1.5 and Theorem 1.2, we have
Theorem 1.7 Define
n k k—1 Vel als (1+\ﬁ)2
as nB\ CLCr_, (2 )/ .
7, = —Ui ] —n — ] ——-|=-1 tou7 (t)dt. 1.9
k ;(Chy’) ;)(26“) r+1 g (1= ) ML() ( )

Suppose that a;n = o(ag). Then for any given m > 1,

\(2(217227"'7Z’m)iu_>(}/1;}/27"'aym)a as n — oo,
n

where (Y1,Ys, -+ ,Y,,) is the same as in Theorem 1.2.

2 The Proof of Theorem 1.1: the Extremal Eigenvalues for $-Laguerre
Ensembles

We can see a set of random variables from the 8-Laguerre ensembles as the eigenvalues of

the corresponding tridiagonal model, which is L', = Bgfn(Bgfn)T, where

X2a,

XB(n—1) X2a1—8

BY., ~ (2.1)

X3 X2a1—6(n—1)
and entries of the By, are mutually independent ([3]). Denote by A = (A1, A2, , A,) the
eigenvalues of L%ln. Through simple calculation, we have

Lemma 2.1
X%al X2a1 XB(n—1)

X2a1 XB(n—1) X%al—ﬁ + X%(n—l)—ﬁ

Ly, ~ (2.2)

X2a1—B(n—2)XB
X2a1-B(n—2)Xp Xgal*ﬁ(nfl) T X% ,

@ Springer
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where
(La@fn)u = X%alv
(L5n)ii = Xoay—p(-1) T Xbtn—g1)s
(LE0)i15 = Xoa1—8(-2)X8(n—j+1)
for j =2,--- ,n. Note that L‘éln is a tridiagonal symmetric matrix.

In this section, we will prove the limiting behaviour of the extremal eigenvalues of Lgln.
The idea is borrowed from [13] (Silverstein 1985). To prove Theorem 1.1, we first introduce
two lemmas.

Lemma 2.2 y, is a chi distribution with n degrees of freedom, so % — 1 almost surely

as n — o0o.
Proof As x2 can be seen as the sum of the squares of n independent normal random
variables, according to Kolmogorov strong law of large numbers, we have that
2
Xn
n
almost surely as n — oo. Note that the property of convergence is maintained under the

transformation of continuous functions, thus

Xo _ XA

vn n

almost surely as n — oo. O

The proof of Theorem 1.1  From Theorem 6.0.5 in [1], we know that

Fgh(x) — By (2)

and E, is a cumulative distribution function with

n
1
almost surely, where Fg’ (z) :== z:l 1 L
1=
density function

1 (1_'Ymin)('7max_1)
— 2m x )
ey(z) = 7 .
0, otherwise.

1f x e ["Yminv Vmax];

Here Ymax = (1 + 7)? and ymin = (1 — /7)*. Thus, similarly to the proof in [13], we can
conclude that

T )\min _ 2
Jim g < (1= 3)%, 03
lim Apex > (14 ,/7)?

n—oo

almost surely.
Next, we will prove that lim 2= > (1—,/7)? and Iim 2Agex < (14 ,/7)2, almost surely.
o n— o0

2a1 2a1

n
Gersgorin’s theorem from [8] says that each eigenvalue z of an n x n complex matrix A = (a;;)

lies in at least one of the disks |z — aj;| < > |as], 5 = 1,2,--- ,n in the complex plane. Thus,
i#]
combined with Lemma 2.1, GerSgorin’s theorem leads to

)\min

1 : 2 2 2 :
24, > 3q, min {Xzal = X201 XB(n—1) X2a,~(n—1) T X5 ~ X201 -(n-2)Xg3,, 100 A7 o
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with
AY = (L) — (L5) -1 — (Lgh)j+1,

2 2
= X2a,-8(—1) T XB(n—j+1) — X2a1—B(i—2)XB(n—j+1) — X2a1—B(i—~1) XB(n—j)-

Since X—\/% — 1 almost surely from Lemma 2.2, we have that
L o
TM(XZal - X2G1Xﬁ(n*1)) - (1 - ﬁ)7
1
E(X%alfﬁ(nfl) + X% - X2a1—ﬁ(n—2)X5) —1- Y

almost surely as n — oo, and

lim ﬁ =1+ (1-2c)y =2/ (1 —ey)(1—c)y > (1 —7)?

n—oo 2@1

almost surely for j satisfying lim % =c € [0,1]. Note that 1 —v >1— /7 > (1 —,/7)? and
thus

lim 28 > (1 )2 (2.4)

n—oo 401
Combining (2.3) and (2.4), we conclude that

Amin

lim 20— (1 - 5)2,

n—oo 2a1

almost surely. In a similar way, we have that

lim Amax _ (1+v7)%

n—oo aq

almost surely. O

3 The Proof of Theorem 1.2: CLT for g-Laguerre Ensembles

In this section, we are going to prove Theorem 1.2. The proof is divided into two parts.

Lemma 3.1 (the fluctuation) Recall, for k£ > 1, that

w2 (o) %)

i=1 i=1

Assuming that lim Qﬁ—” = v € [0, 1], we have, for any m > 1, that

a1 —oo <91

a w
\) El(XlaXQW" 7Xm) - (}/15}/25 aY’m)a

where (Y1,Ys, -+ ,Y,,) is a centered multivariate Guassian defined as in Theorem 1.2.

Lemma 3.2 (The deviation) With the same assumption as in Lemma 3.1, for n large
enough, we have that

n A\ F k—1 nﬁ>r crer, (2 )/(Hﬁ)z -
E ) =n ) Rl (2 tk"*tdt—i—o(M—), 3.1
; (2&1) ;0 (20,1 T+ 1 6 (1_ﬁ)2 ML( ) a1 ( )

where ] (t) is as defined by (1.3).

@ Springer
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Remark 3.3 In particular, if v =0,

n )\1 k k—1 nﬂ TC]:C]: . n
E = = Rk -
;(2611) nz(2a1> r+1 +0( al)

r=0

for n large enough.

3.1 The proof of Lemma 3.1: the fluctuation

To prove Lemma 3.1, we are going to prove the following claims first (all the notations are
defined as above):
Claim 1 Set X, = V2 Xy for any k > 1. For any positive integers k and [,

(1 — ISy (k) + Sa(k)®, if 1is even;

lim E[(X;)!] = (3.2)
n—00 0, if 1 is odd,
where
2k—1 o1 2k (_1)1
_ +1, 2k—q—1 2k T YS\2
Si(k) = 3 ()T S S Y (GG (3.3)
q=1 l=q+1 72k—1 r4s=1,1<r,s<k
and
etk O N~ (1) 2
Salk) = D (~)HIyRe 2 T Yo (k=r)(k-9)(CiCE?.  (34)
q=0 l=q 2k—1 r+s=[,1<r,s<k

Claim 2 For any fixed positive integers ¢ and j,

lim Cov (X Xj) = S1(i,§) + Sa(i. 5), (3.5)

where S1(, ), Sa2(4, j) are defined as in (1.6) and (1.7).
Claim 3 For any Xkl,Xk2, e ,ka(l <k;<n),and Vt; e RE=1,---,m),

1

2

i (Zm: tiin>l _Ja-ny 1S§;§mtitj(sl(ki,kj) + Salkiky)) | 5 if Lis even
= 0, if 1 s odd.

(3.6)

The proof of the three claims are basically the same, and the idea also comes from [2].

Before the proof, we first introduce some notations.

Table 1 Unscaled and scaled tridiagonal models for beta-Laguerre ensembles
(>0,n€N,a €R', and a1 > %(n—l))

X2a;

a Xﬁ(nfl) X2a1 -8
unscaled Bﬁln ~

XB X2a1—pB(n—1)

Lbn
scaled Bg,ln = ﬁBg}n
Li, = Li

2ay
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Write the scaled matrix Bgln (see Table 1) as

-~ 1
B =D+ —Z7 3.7
fa=D+ =7, (3.7)

where

1 1
E ——F a1 —B(n—
\/ﬁ (XB) \/m ((XQ 1—06( 1))
and
X2a1 — E(X2a1)
XB(n—1) — E(Xg(n-1)) X2a1—5 — E(X2a,-5)
Z = : (3.9)

X2a1—B(n—1)
_E(XQalfﬁ(nfl))

x5 — E(xg)

Remark 3.4 Asin [2], the entries of D are bounded and for any finite k and [ there exists

a constant M such that .
76,

Jid}
i=1

E <M

for all 0 < ¢; < kl and for all jq,--- ,jw and ji,-- -, j;,; such that |j; — 77| < 1.

For the expression of tr ((BB™)¥), it holds that

tr ((BBT)k) = Y BuwBLi, BBl i
1<in i, yiop<n

where the sum is taken over sequences (i1, - - ,42;) with the property that is;_1 —is; € {0,1}
(for all 1< j < k), 495 —igj41 € {0, —1} (for all 1 < j < k — 1), and also i9, — 41 € {0,—1}.

Definition 3.5 Denote by S, € {1,---,n}?* the set of sequences of integers i1, - - , i
such that igj_1 — ig; € {0,1} for all 1< j < k, and i9j —igj41 € {0,—1} forall 1 < j <k —1,
and also ig — i1 € {0, —1}.

For each T € S*, we consider all the ways in which we can break Z := (iq,- - ,i2;) up into

overlapping J and R; i.e.,

J = ((ipo"" ’iP1>a(iP27"' ’iP3>v(iP4v"' 7ip5)7"' ’(ipzq"" 7ip2q+1))
and
R= ((imv"' 77;172)7(1';037"' 71’174)7"' 7(7;p2q717"' 77;p2q))7
with
(ila t 7i2k) = (ipov T 7ip17ip1+17 T 7ip2vip2+1v e 7iP37 e ’ipzq+1) .
We allow for the possibility of having empty sequences iy, - ,ip, in the beginning and/or
Upags* " s bpagy, 0 the end of J.

@ Springer



2034 ACTA MATHEMATICA SCIENTIA Vol.42 Ser.B

Definition 3.6 For any Z € S¥, we introduce the set J = J(Z) of pairs (J, R) corre-
sponding to the sequence Z. For a bidiagonal matrix B, donote that B* = BT if i; —i;.1 = —1,
otherwise, B* = B. Define

T _ * * * *
(BB )Z - Bil-,izBimiS BiQk—liZkBiZkil’
BBT) =B . ...B* . B* . ...B* . ...B* . ...B* _
( J tpg stpo+1 Tpy—1,tp1 " lpalpa+1 p3—1,tp3 1pagqitraqtl “pag4+1—1rtpagq1’
(BBT) = B* . ...B* . BY . ...B* . ...B* , ...B* o
R tp1otp1+1 tpo—1:tpa " tp3zlpg+1 Tpg—1stpy pag—1-tp2q—1+1 tpaq—15tp2g

Remark 3.7 Note that any term in tr ((Lgln)k) will consist of terms in D and terms
in Z, with a sequence of runs J recording the former, and a sequence of runs R recording the
latter.

Ai
2a1 :

The proof of Claim 1  For simplicity, set N = According to the definition above,

we have that

B —E | S M B
=1 =1

l

—E ftr(ig{n)’“ —E (“(i?ﬁn)k)}l
: l

=E| > (Lg)r-E| > (L§,)z

TESn .k ZESn k

Note that

(ig{n)z - <(D n \/%le) (D n ﬁz)ﬁ

with P=py —p1 + 1+ -+ 4+ pag — p2g—1 + 1. Thus,

l l
Bl = Y Y g (Lo | 2| L (@s -2 (@)5)

T,€80k (J;,R;)ET; j=1 j=1

= Z W(D)J(Z)R,

A (J,R)eT

l

l
= > Y s (0w B | (@, - B8] |+ 610

(2 q_i L
2 2 B
I,esn (1 Rpeg; (201)17In2 \ G

l

where ¢ = q(Z1,--- ,I;) = P;/2, and P; is the length of R;.

j=1
In the next lemma, we will present some results from [2] which also hold here.

Lemma 3.8 Assume that (R1, Ra, -+, R;) involves s independent variables. The only
terms of asymptotical significance are those for which s = ¢ = [/2; this means that for k and [
fixed, if [ is odd,

lim E[(X;)!] = 0. (3.11)

n—00
Therefore, we only need to examine what happens when [ is even and s = ¢ = 1/2.
Lemma 3.9 If [ is even, s = ¢ = /2, and we have |R;| = 1. This means that for each

1 < 71 <, there exists a unique 1 < jo <[ such that ZR].1 = ZRJ,Q. Moreover, given an ordered

l/2-tuplet of distinct indices 41,42, -+ ,i;/2, there are (I — 1)!! ways of pairing these indices to

the R;-s in this order.
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The next two lemmas are about the estimation of (Z)g; and (D), ; there are slight differ-
ences from [2]. Also we only need to consider the significant terms.
Lemma 3.10 For (Zg,) we have that

! 1/2
B [T, ~B(2)n,)| - [[E(@n, ~B(@, ) =275 2 n—o0 (@312)
j=1
Lemma 3.11 For (D);,, assuming that Z;, have 2s off diagonal terms, there are two
cases:
1) when (Z)g, corresponds to a diagonal term, then there exists an ¢ such that (Z)g, = Zi;

and there are 2(k — s) (l:)2 corresponding to Z;,, and
. kfsfé o s
(D)), = <1 - 2%) <6(ng1)> to(1), as n— oo; (3.13)
2) when (Z)g, corresponds to an off diagonal term, then there exists an i such that (Z)r, =
Zit1,i, and there are 23(];)2 corresponding to IJ],, and
.\ k—s o sf%
(D)), = <1 - 2%) <6(ng1)> +o(l), as n— oo (3.14)

The proof of Lemmas 3.10 and 3.11 By Lemma 7.1.2 in [1], we know that if lim =, =

n—oo

00, then
w 1
Xro, —\/EHN(O,—) as n — 00
and E(x,, ) = \/Tn + O( —) as n large enough. Thus,
Zii = X2a1—B(i—1) — E[X2a, -8(i-1)]
= X2a1-p(i—1) — V2a1 — B(i — 1) + /2a1 — B(i — 1) — E[x20, —p(i—1)]:

where x2q,—g@i—1) — V201 — B(i — 1) % N(o, ) and

lim (E[anlﬁ(il)] —+/2a1 — B(i — 1)) =0

n—oo

for any ¢ satisfying ¢ << a;. Therefore, (3.12) is established.
In the same way, we know that for the entries of D, as n is large enough, we have that

/1 / i
D;; = Z—QI]E(Xzalfﬁ(ifl)) =4/1- 2, +o(1),
1 B(n — i)
Di i — n—1u — a. 1
L= 5 E(Xg(n—i)) = o +o(1)

for any 7 satisfying ¢ << a;. Therefore, (3.13) and (3.14) hold. O

Combining the above lemmas, if [ is even, we can easily obtain equation:

lim E[(Xp)] = lim (I — )I(S1n+ Son)?,

where
2k—2 Cop i o
sw0 =3 X 3 (-g) T (BR) X e sicran
1<i<n j5=0 s1+s2=j

0<s1,82<k—1
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1 57/ 2k—j 6(TL—Z) i—1 S1,v52\2
San() == 3 2(1_271) (T) Do sm(COR) (3.15)
1<i<n j=2 s1+s2=]
1§51752S]€
First, calculate S ,,. For simplicity, set
Ur(k,j):= > s1s(CyrC32)°,
s1+s2=j
1§51,52Sk
Usk,j): = > (k—s1)(k—s2)(C} C32)%.
s1+s2=j
0§51,52§k71

By binomial expansion and a changing summation order, we have that

2k—22k—j—1

1 i 2k—j—1—q
Sta(h) = ey s 3 (1)

j=0 q=0 1<i<n

(1 - E>7 (;‘Cﬁ)%_l_q Us(k, 7). (3.16)

Using the properties of the Riemann integral and the Beta function, we know that

1 i 2k—j—1—q i J 1 ok i1 )
lim — - 1——|) = —Im1ma(1 — z)d
ey () () [

_@k—j—1-1)l!

3.17
(2k — q)! (3:17)
Hence, plugging (3.17) into (3.16), we have that
2k—1 2k ;
C? (—1)7
] — +1%2k , 2k—1— .
nlLII;O Sl,n(k) = Z (_1)q %’7 1 Z Ojil Ul(kaj)'
g=1 j=q+1 “2k—1
Similarly,
2k—2 C 2k—2
Jm 520 = Y (-1r e Y E ),
q=1 Jj=q 2k—1
Therefore, Claim 1 is established. 0

The proof of Claim 2  For any ki, ks > 1, by the precedent calculations, we have that

E|[] (2, ~E[(2)n])|.

2

E(Xp, Xp,) =272 Z Z m H(D

T1€Sn,k; Z2€Sn Ky Jj=1
(J1,R1)€Ty (J2,R2)€ET>

where ¢ is the total length of R; and Rz. The contribution terms are for |Ry| = |Rz| = 1 and
Ry = Rs. Similarly, we have that

lim Cov(Xy,, Xp,) = lim E(Xp, Xi,) = lim (Sln(kl,k2)+32n(k1,k2))%

where
k1+ko—2
Bi B(n —1i)
Sy (ks ko) = Z > = 507) Yrrtha=j— 1(T)JU2(k1,k2, P,
1<1<n 7=0 (318)
Sy (kr, k) Z kic( )k% J(Ln_i))j‘lU(k k )
2n 1, 2 1<Z<n = 2@1 20,1 1 1, 2;] .
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Denote that

Ui(ki ko, j) = Y s1s2(Cp)2(C2)2,
s1+s2=j
1S81 Skl
1S52Sk2

Uk ko, g) = > (k= s1) (ke — 52)(C3)(C32)2.
s1+s2=7j
OSsl Sklfl
OSSQ Skg—l
Repeating a process similar to that of Claim 1, we obtain the equation (3.5). This means that

Claim 2 is established. O

The proof of Claim 3 For simplicity, we take m = 2, for example. For other m > 1,
the process is basically the same. In fact, for any ¢1, t2 € R and k1, ko > 1, we have that

2 T | TT(@)r, ~ @),

(2a1)4"2n? -

E[ti% +6X0) = Y ()e)
I’.
(ijRJJ')te
where p is the number of picking X k, among the product of I terms, and ¢ is still the total
length of R;.

By Lemmas 3.8, 3.9 and 3.10, if [ is odd, it holds that

lim E(t; Xy, + t2X3,)" = 0.

n—oo

In the next calculations, we only need to consider what happens when [ is even. The only

difference from the proof of Claim 1 is in terms of the estimation of (D) ;.

For the %—tuplet (Ri,, Riy, -, R; L ), every R;, corresponds to two types of R for any

1 <5< %; each one of these has two choices: either from Xj, or Xj,. Then, there are
three combinations, we denote r as the occurrence number of the combination (k1,k1), 7o
as the occurrence number of the combination (ks,ks), and r3 as the occurence number of

3
the combination (ki,k2). In addition, Y r; = [/2, and there are

) choices for each
i=1 )

3
rilralr
combination (rq,72,73).

Now, we can obtain the estimation of (D), under the three combinations. Note that for

combination (k1, k2), there are two choices for the corresponding R. Thus, we have the following

formula:
l
B % SV RT 2
Tim B [(6 Xy, +025,)! | = m -1 > g Q) Q2 (r2)Qan(ra)
r1+r2+r3=g
(3.19)
Here

Qua(r) = (B (S1n(hr, k) + San(br, b))
Q2,n(r2) = (tE(Sl,n(kz, k2) + Sa,5(k2, k2)))r27
Qsn(rs) = (20t2(Snlln, ko) + San(hr, ) )
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Obviously, it holds that

Jim Qun(r1) = (B(S1 (K, k) + Salka, k)™,
lim Qs n(ra) = (13(S1(ka, ko) + Sa(ka, k2)))", (3.20)

nlgTolo Q3.n(13) = (2t1t2(S1(k1, k2) + Sa(k1,k2)))"s,

where Sy ,,(ki, k;) and S, (ki, k;)(i = 1,2) are defined as in (3.18); S1(k;, k;) and Sa(ki, k)
(1 =1,2) are defined as in (1.6) and (1.7). Putting (3.20) back into (3.19), for even [, we have
that

lim E | (t X5, +t25<k2)l] = (- 1)!!< > titj(Sl(ki,kj)-i-Sg(ki,kj)))
e 1<i,j<2

Set m > 1. For any ¢; € R and any integer k; > 1, the following conclusion can be obtained
similarly:

2

)l - (1= 1)”( Z tit; (S1(ki, kj) + Sa(ki, kj))) , if 1 is even;

1<i,j<m

0, if [ is odd.

nh_)rr;oE(Zth

i=1

Lemma 3.1 follows directly from Claim 1, Claim 2 and Claim 3.

3.2 The proof of Lemma 3.2: the deviation

In this section, we are going to prove Lemma 3.2.
The proof of Lemma 3.2 According to Chapter 6.3 in [1], if 0 < v < 1, for n large

enough, we have that

n /\1 k k—1 nﬁ TC£C£71 nﬁ
Ez(zal) :”Z(z—aﬂ S +Fk(2a)+0< ) (3.21)

i=1 r=0

for any k£ > 1, where Fk(%) is a polynomial of % with respect to k. More precisely,
(MY _ 25 (PB\_p (18
"\2a1) ~ 67" 2a 2a1 )’

=S (3) | 5 Ti(er i)

pEAGDy, . i>1

s -S(2) 5 ()

2a
L/ pedAGD, , i>1

where

and AGDy, - denotes the set of alternating Motzkin paths of length 2k with r rises, u;(p) denotes
the number of rises between altitutes ¢ and i+ 1 in path p and [;(p) denotes the number of level
steps p taken from altitude ¢ on odd-numbered steps.

Through the proof of Lemma 2.20 in [2], when "TBI =7,

n k k—1
TC£C£71 2 (1+ﬁ) k
53 (5n) =gt e (5-1) [, treaoq) e

r=0 1—-y7)?
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Combining (3.21) and (3.22), since lim % =, it is easy to find out, that for n large enough,

n5> <3_1> (1+ﬁ)2k .
(22)- (3 /(lmt T(0)dt + o).

Therefore, returning to (3.21),

S\ S (BN GG (2 NV
EZ (2a1> —nz (Tn) r+1 + (B - 1)/( tpy (t)dt + o(1). (3.23)

i=1 r=0 1-y7)?

Naturally, if 0 < v < 1, (3.23) yields the following result:
CrCra

aq ~ )\i " . T_
\/ ;E;(2a1) alnz<2a1> r+1

aq 2 (1+ﬁ) k
Y2y #)d
2 (2 >/<1ﬁ>zt L)t + o(1).

By definition, u;(p) = 0 for any p € AGDy o and any ¢ > 1. This means, for the case
lim 22 =0, that Fk(;—ﬁ) = O(+) for n large enough. Therefore,

n—oo 2(1
ai . Ai " CrCria
| —E =/ _— 1
n ;(2611) alnz<2a1) r+1 +o(l)
for n large enough. The proof is now complete. O

References
(1] Dumitriu I. Eigenvalue Statistics for Beta-Ensembles [D]. Massachusetts Institute of Technology, 2003
(2] Dumitriu I, Edelman A. Global spectrum fluctuations for the g-Hermite and (-Laguerre ensembles via
matrix models. J Math Phys, 2006, 47(6): 063302
[3] Dumitriu I, Edelman A. Matrix models for beta ensembles. J Math Phys, 2002, 43(11): 5830-5847
[4] Dumitriu I, Koev P. Distributions of the extreme eigenvalues of beta-Jacobi random matrices. STAM J
Matrix Anal Appl, 2008, 30(1): 1-6
[5] Dumitriu I, Paquette E. Global fluctuations for liner statistics of 8-Jacobi ensembles. Random Matrices:
Theory Appl, 2012, 1(4): 1250013, 60
(6] Edelman A, Koev P. Eigenvalue distributions of beta-Wishart matrices. Random Matrices: Theory Appl,
2014, 3(2): 1450009
[7] Edelman A, Sutton B D. The beta-Jacobi matrix model, the CS decomposition, and generalized singular
value problems. Found Comput Math, 2008, 8: 259-285
[8] Gersgorin S A. Uber die abgrenzung der eigenwerte einer matrix. Nauk SSSR Ser Fiz-Mat, 1931, 6: 749-754
[9] Jiang T. Limit theorems for beta-Jacobi ensembles. Bernoulli, 2013, 19(3): 1028-1046
[10] Killip R, Nenciu I. Matrix models for circular ensembles. Int Math Res Not, 2004, 50: 2665-2701
[11] Killip R. Gaussian fluctuations for 3 ensembles. Int Math Res Not, 2008, 2008: Art rnn007
[12] Ma Y, Shen X. Approximation of beta-Jocobi ensembles by beta-Laguerre ensembles. To appear at Front
Math China, 2022
[13] Silverstein J W. The Smallest eigenvalue of a large dimensional Wishart matrix. Ann Probab, 1985, 13:
1364-1368
[14] Trinh K. On spectral measures of random Jacobi matrices. Osaka J Math, 2018, 55: 595-617
[15] Wishart J. The generalized product moment distribution in samples from a normal multivariate population.
Biometrika A, 1928, 20: 32-43

@ Springer



