

Delft University of Technology

Green Rooftops

Dang, M.K.

Publication date 2022 **Document Version** Final published version

Published in Biodivercities by 2030 : transforming cities with biodiversity

Citation (APA)

Dang, M. K. (2022). Green Rooftops. In M. Angelica, & J. D. Amaya-Espinel (Eds.), Biodivercities by 2030 : transforming cities with biodiversity (pp. 158-161). Instituto de Investigación de Recursos Biológicos Alexander von Humboldt. http://hdl.handle.net/20.500.11761/36048

Important note

To cite this publication, please use the final published version (if applicable). Please check the document version above.

Copyright Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy

Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim.

BODVERCITES BY 2030 O TRANSFORMING CITIES WITH BIODIVERSITY

Shirthrather

MARÍA ANGÉLICA MEJÍA AND JUAN DAVID AMAYA-ESPINEL, EDITORS.

BIODIVERCITIES D BY 2030 TRANSFORMING CITIES WITH BIODIVERSITY

Editors: María Angélica Mejía and Juan David Amaya-Espinel.

BIODIVERCITIES BY 2030 TRANSFORMING CITIES WITH BIODIVERSITY

Edited by: María Angélica Mejía and Juan David Amaya-Espinel.

Editorial assistance: Érika A. Peñuela.

Authors: Albert Kreisel, Alejandra Osejo, Aleiandro Serrano. Ana María Garrido. Ana Vicente-Álvarez, Andrea Padilla. Andrés Ibáñez, Andrés Suárez-Castro, Angélica Hernández-Palma, Bibiana Gómez-Valencia, Brian Amaya, Brigitte Baptiste, Carlos Betancur, Carlos Correa, Carlos Cortés, Carlos Montoya, Carlos David Montoya, Carlos Mario Wagner-Wagner, Carmen Antuña, Carmen Bouyer, Carolina Rodríguez, Cassandra Johnson, Cielo Holquín, Claudia Álvarez, Cristina Camacho, Dairo Escobar, Daniel Raven-Ellison, David Montgomery, Diana Ruiz, Diana Wiesner, Duncan Mackay, Édgar Mora, Eduardo Haene, Edward Buitrago, Eliana Cardona, Eline van Remortel, Elizabeth Riaño, Emily Norford, Fernando Flórez, Frances Taylor, Germán Andrade, Germán Torres-Morales, Harini Nagendra, Ioana Biris, Irene García, Jaime Rovira, Jennifer Lenhart, Jhon Rodríguez, Juan Caicedo, Juan Guhl, Juan Múnera, Juan Sebastián Ulloa. Juana Figueroa, Juana Mariño, Julián Restrepo, Juliana Montoya, Laura Sokka, Leon Kapetas, Lucía Rojas, Luis Inostroza, Maéva Dang, Manuel Jaen, Marcela Noreña, María Camila Díaz, María Camila Méndez, María Cecilia Londoño, María del Pilar Arroyave, María Stella Sáchica, Marianne Katunaric, Mario A. Murcia-López, Masatoshi Funabashi, Mateo Hernández, Matías Ramírez, Maximilian Becker, Menno Schilthuizen, Natalia Truiillo, Nathalia M. V. Flórez-Zapata. Nicolás Galarza, Norbert Peeters, Óscar Mejía, Pablo Lazo, Paola Morales, Patrick Lydon, Piero Pelizzaro, Rigoberto Lugo,

Sandra Castro, Sara Cabrera, Simon Bell, Tadashi Matsumoto, Theresa Williamson, Valentina Tovar and Yenifer Herrera-Varón.

Editorial Direction .Puntoaparte: Andrés Barragán and Juan Mikán. Proofreading: Nicole Bedoya, John Güechá, Andrés Hernández and Nicolás Sepúlveda. Translated by: Lina Grisales. Art Direction: Mateo L. Zúñiga, Andrés Álvarez and Felipe Caro. Illustration: Guillermo Torres, Nere Guarrotxena, Sofía Londoño, Andrea Santana and Dylan Quintero. Design: Andrés Álvarez, Felipe Caro, Inti Alonso and Laura Gutiérrez.

.Puntoaparte

Photos and maps: Amazonian Institute of Scientific Research Sinchi, Carlos Montoya, Carlos Mario Wagner-Wagner, Catalytic Communities, Charlie Peel, Charlie Peel, Densurbam, EAFIT University, Eduardo Haene, Érika A. Peñuela, Fideicomiso Lagos de Torca, Germán Torres-Morales, Gimnasio Femenino, Illustrated guide to the birds of Santiago de Cali, Iván Potes, Jhon Rodríguez, Juan Hinacapié, Leonardo Centeno, Luis Inostroza, Maéva Dang, María Angélica Mejía, Ministry of Environment of Chile, Muncipality of Montería, Municipality of Curridabat, Olger Guzmán, OPUS. Design, architecture, landscape, Rizoma, Sebastián Saiter, Secretariat of Environment of Medellín. Senderos de Chile Foundation, Sergio Gómez, TALLER Architects, Taxon Expeditions, Urban Oasis Foundation (Fundación Oasis

Urbano), VTT Technical Research Centre of Finland and Yumbo Futuro (TU).

Satellite images: Google Earth and IDECA Infraestructura de datos espaciales de Bogotá.

Geographic and demographic information: Amazonian Institute of

Scientific Research Sinchi (Instituto Amazónico de Investigaciones Científicas-Sinchi), Official Website of the Republic of Argentina (Argentina.gob.ar), Brazilian Institute of Geography and Statistics (Instituto Brasileiro de Geografia e Estatística). Chile National Congress Library (Biblioteca del Congreso Nacional de Chile - BCN), Los Llanos University (Universidad de Los Llanos), National Planning Department (Departamento Nacional de Planeación-DNP), Los Llanos Road Concession (Concesión Vial de Los Llanos S.A.S.), Greater London Authority Official Website, Medellín, how are we doing? (Medellín, ¿Cómo vamos?), Metropolitan Regional Government of Santiago (Gobierno Regional Metropolitano de Santiago), Municipality of Bogotá, Municipality of Medellín, Municipality of Montería, Municipality of Santa Cruz of Mompós, Municipality of Santiago of Cali, Municipality of Yumbo, National Administrative Department of Statistics (Departamento Administrativo Nacional de Estadística-DANE). National Statistics and Census Institute INEC - Costa Rica (Instituto Nacional de Estadística y Censos-INEC Costa Rica), NLS National Land Survey of Finland, Shenzhen Government Online, Statistics Finland and Statistics Netherlands (CBS).

BiodiverCities by 2030: Transforming Cities with Biodiversity was developed under Contract No. 21- 017, signed by the Administrative Department of the Presidency of the Republic of Colombia and the Alexander von Humboldt Biological Resources Research Institute. The latter carries out the conceptual and methodological development and global positioning of the BiodiverCities transformational initiative. BiodiverCities is part of the Public Sector Strategic Management Capacity Strengthening Program, through the line of urban development and Cities System for sustainability, productivity, and quality of life.

Alexander von Humboldt Biological Resources Research Institute

Hernando García, *General Director*. Cristina Gómez García-Reyes, *Advisor to the Director (outgoing)*. Sandra Perdomo, *Head of Policy and International Affairs*. María Angélica Mejía, *Lead of the BiodiverCities by 2030 Initiative*. Gabriela Guerrero, *Manager of the National Commission on BiodiverCities by 2030*. Érika A. Peñuela, *Project Assistant*.

First edition July, 2022 Bogotá D.C.

Alexander von Humboldt Biological Resources Research Institute and Administrative Department of the Presidency of the Republic of Colombia (Dapre).

Suggested complete work citat

Mejía, M. A., Amaya-Espinel, J. D BiodiverCities by 2030: Transforr Cities with Biodiversity. Bogotá. I de Investigación de Recursos Bio Alexander von Humboldt, 2022.

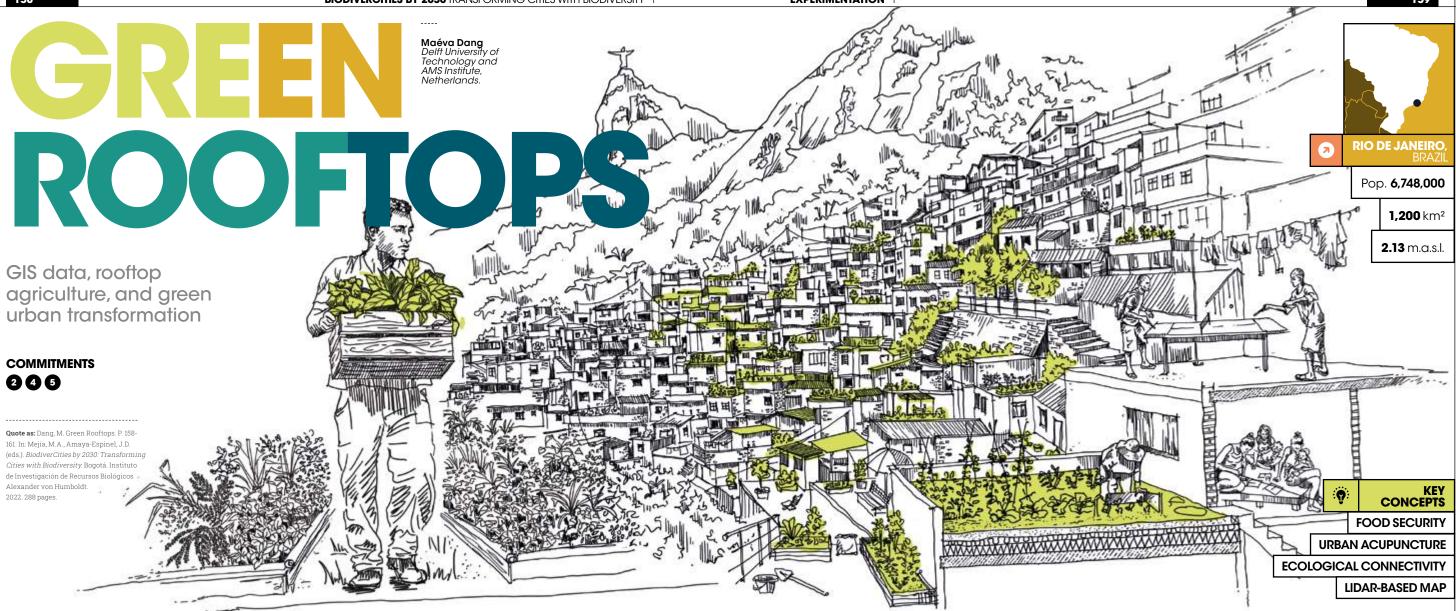
CATALOGING DATA SHEET:

BiodiverCities by 2030: Transform Cities with Biodiversity / edited b María Angélica Mejía and Juan D Amaya-Espinel. — Bogotá: Institu Investigación de Recursos Biológ Alexander von Humboldt, July 20

288 p.; 20 x 25 cm.

Includes bibliographical referenc figures, maps, and index. ISBN printed work: 978-958-5183 ISBN digital work: 978-958-5183-

1. Urban biodiversity, 2. Urban ecc services, 3. Urban ecology, 4. Urba Land use planning, 5. Colombia. I. Mejía, María Angélica and Juan D Amaya-Espinel (Eds.), II. Instituto Investigación de Recursos Biológ Alexander von Humboldt


CDD: 354.35 Ed. 23. Contribution number: 533. Humboldt Catalog Record: 14972.

Cataloging in Publication (CIP) – Francisco Javier Matís Mahecha Alexander von Humboldt Institu

tion:	
). (eds.).	
ming	1
Instituto	
ológicos	
9	
ming	
by	
David	
uto de	
gicos	
022.	
ces, tables,	
3-48-3.	
-49-0.	
osystem	
ban	
Ι.	
David	
o de	
gicos	1
	1
a Library,	1
ite.	
	1

EXPERIMENTATION

Rio de Janeiro is an ever-changing and expanding city that is facing challenges in terms of food security, urban sprawl, and the fragmentation of the green infrastructure. By mapping the surface area of the urban rooftop landscape and finding spatial synergies with the city's socially and environmentally vulnerable areas, a case can be made in favor of implementing a rooftop agricultural infrastructure capable of meeting roughly 40% of the city's yearly demands for vegetables.

Rio de Janeiro is a 1200 km² city with 6,4 million inhabitants. It is a changing and growing urban system with a fragmented green infrastructure, a **food secu**-

rity crisis, and the constant threat of flooding. The current economic crisis and the unevenly distributed income increased the gap between the richest and the poorest classes in the last years. As a result of insufficient income, almost a third of the Brazilian population does not have adequate resources for acquiring the appropriate quantity and quality of food (Meade et al., 2004).

The city is a combination of dense urban areas in the northeast, tropical forests, gray streets and favelas, and extremely dense urban areas that grow organically on rocky hillsides.

After working in the city of Vienna in Austria, where flat roof surfaces were identified as underused spaces, the team of researchers started to explore Rio de

Janeiro's potential for rooftop agriculture. This meant: a) carrying out a **LIDAR-based mapping exercise** (which located all of the roofs with an inclination inferior to 5 degrees on 69% of the city's surface), b) analyzing key areas with high flat roof potential, c) evaluating the growing capacity of this flat roofs landscape, d) calculating the yearly demand of vegetables in the city, e) using data from the municipality and the Social Development Index (which combined educational level income, housing quality and level of basic sanitation) to determine which areas were socially vulnerable and, in turn, ripe for food insecurity, and f) visualizing specific locations with potential for rooftop agriculture. The project showed that 1,385 hectares of roofs would be suitable for rooftop agriculture and that this productive roof surface could meet

the yearly demand for vegetables of 39,2% of the population of Rio de Janeiro.

This initiative aimed to look at how rooftop agriculture could address food insecurity and the fragmentation of the green corridor networks. In simple terms, the research team created a model that connected geographic data with different parameters located within a given area. By looking at rooftops, seeing how big they were and how much food they could produce, you could ask questions such as: *Would it make sense* to have a rooftop farm in X place where there is a lack of supermarkets? Would it be interesting to have a com*munity-based garden in Y*? The idea was to test this model in Rio de Janeiro, where you have different challenges, ecosystems, and types of inhabitants.

After looking at all the flat roofs (and making some calculations), researchers found that the highly populated zones had the greatest potential, but they were also the areas with the highest social vulnerability. These are the typical community areas, such as *favelas*, where all this "block" kind of architecture can be seen, usually on two levels with a flat roof. People typically build them so that they can extend their structures later when they have more money (that is, when they build another level for a cousin, an uncle, etc.). What was interesting was that these sorts of buildings are constructed in a way that makes them strong enough to hold those rooftop gardens. Furthermore, if the rooftop is lower to the ground, then the green area on the rooftop has more impact on the microclimate on the street level¹. So, it makes more sense to green those than the ones located in really high-rise buildings where they currently have little impact on the urban microclimate.

On rooftop gardens, you don't only grow food; you can also have flowers with substantial pollen and nectar for pollinators: the model took into account this aspect by looking at how far away those flat roofs are from each other. If they were within 500 meters from each other, it represents a suitable flight foraging distance for most common bee pollinators. Then the researchers considered that it would be like a green corridors network, which is connected enough so that pollinators could access it physically. In this sense, the study was also about raising awareness about the fact that ordinary urban spaces can be part of this flying path of pollinators. In a sense, it implies a complete change of perspective about the cityscape.

One project outcome was to create a digital map available on the municipality platform. The green roof potential map can be used as a tool to identify green roof locations in dense areas where little green space is available. Among other results, this research showed that 1,383 hectares of roofs would be suitable for intensive greening within the study area. This information was made available on the municipality platform² so property owners could have discussions and trigger community meetings and grassroots initiatives to start a rooftop agriculture movement.

In the end, the project is about much more than technical results and scientific findings. It is about people coming together to reconnect with nature and learning to work and grow food collectively. It's about social innovation in the sense that you need to raise awareness among citizens and communities not only about sustainable agriculture, permaculture, agroforestry, food, nutrition, etc., but also about consumers becoming producers of their own food so that they're not just tied to where the supermarket is located (in the *favelas* there are few supermarkets, but plenty of small shops that never sell fresh, healthy food). By helping citizens become their own producers, they are being empowered.

KEY LESSONS

Multifunctional rooftop agriculture provides a large range of environmental benefits: the enhancement of the green corridors network **connectivity**, the improvement of the air quality, the production of local food, and the mitigation of the urban heat islands effect.

spaces could be used directly next to the consumer, so you don't have to transport processed food and package it, reducing pollution by bringing rural functions inside the city. • Making projects happen in *favelas* is challenging be-cause people mistrust public authorities, and there's a lot of violence. You need to have a bottom-up approach as a cessful practices. This should always come from the citirecommendation to start such a project.

The best way to trigger a bottom-up approach is to pro-mote successful cases on buildings owned by the municipality to have the contagion effect. When something works well in communities like these, others replicate suczens themselves and should never be imposed.

161