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An MPC-Based Rescheduling Algorithm for
Disruptions and Disturbances in Large-Scale

Railway Networks
Graziana Cavone , Member, IEEE, Ton van den Boom , Lex Blenkers,

Mariagrazia Dotoli , Senior Member, IEEE, Carla Seatzu , Senior Member, IEEE,

and Bart De Schutter , Fellow, IEEE

Abstract— Railways are a well-recognized sustainable trans-
portation mode that helps to satisfy the continuously growing
mobility demand. However, the management of railway traffic in
large-scale networks is a challenging task, especially when both a
major disruption and various disturbances occur simultaneously.
We propose an automatic rescheduling algorithm for real-time
control of railway traffic that aims at minimizing the delays
induced by the disruption and disturbances, as well as the
resulting cancellations of train runs and turn-backs (or short-
turns) and shuntings of trains in stations. The real-time control is
based on the Model Predictive Control (MPC) scheme where the
rescheduling problem is solved by mixed integer linear program-
ming using macroscopic and mesoscopic models. The proposed
resolution algorithm combines a distributed optimization method
and bi-level heuristics to provide feasible control actions for the
whole network in short computation time, without neglecting
physical limitations nor operations at disrupted stations. A real-
istic simulation test is performed on the complete Dutch railway
network. The results highlight the effectiveness of the method in
properly minimizing the delays and rapidly providing feasible
feedback control actions for the whole network.

Note to Practitioners—This article aims at contributing to
the enhancement of the core functionalities of Automatic Train
Control (ATC) systems and, in particular, of the Automatic Train
Supervision (ATS) module, which is included in ATC systems.
In general, the ATS module allows to automate the train traffic
supervision and consequently the rescheduling of the railway
traffic in case of unexpected events. However, the implementation
of an efficient rescheduling technique that automatically and
rapidly provides the control actions necessary to restore the
railway traffic operations to the nominal schedule is still an open
issue. Most literature contributions fail in providing rescheduling
methods that successfully determine high-quality solutions in less
than one minute and include real-time information regarding
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the large-scale railway system state. This research proposes a
semi-heuristic control algorithm based on MPC that, on the
one hand, overcomes the limitations of manual rescheduling (i.e.,
suboptimal, stressful, and delayed decisions) and, on the other
hand, offers the advantages of online and closed-loop control
of railway traffic based on continuous monitoring of the traffic
state to rapidly restore railway traffic operations to the nominal
schedule. The semi-heuristic procedure permits to significantly
reduce the computation time necessary to solve the rescheduling
problem compared with an exact procedure; moreover, the use
of a distributed optimization approach permits the application
of the algorithm to large instances of the rescheduling problem,
and the inclusion of both the traffic and rolling stock constraints
related to the disrupted area. The method is tested on a realistic
simulation environment, thus still requires further refinements for
the integration into a real ATS system. Further developments will
also consider the occurrence of various simultaneous disruptions
in the network.

Index Terms— Mixed Integer Linear (MIL) Programming
(MILP), Model Predictive Control (MPC), railway traffic dis-
ruption, rescheduling algorithms.

I. INTRODUCTION

RAILWAYS are a well-recognized sustainable transporta-
tion modality and are among the most carbon-efficient

modes of mass transportation, exhibiting the highest share of
electrification [1]. Consequently, it is fundamental for railway
companies to offer high-quality service standards that allow
driving toward railways the modal shift of customers that care
for sustainability.

This article focuses on railway traffic rescheduling in large-
scale systems when both a disruption, i.e., a long interruption
in the railway service, and short delays suddenly occur. In the
related literature, the problem of railway traffic reschedul-
ing has been extensively discussed [2]–[6], leading to the
development of decision support systems that can model
specific situations, compute optimal solutions in real time,
and suggest proper control actions. However, most of the
available contributions focus on the rescheduling in case of
short delays (also called disturbances) [4], [5], while few
works consider the problem of long unexpected disruptions of
the service, which are less frequent but significantly decrease
the system performance [7]. Furthermore, most contributions
consider the application of only one type of control action
(e.g., canceling of train runs) or simple combinations of a few
of the available ones [8]–[10]; finally, they typically use either
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macroscopic [9], [11], [12] or microscopic models [13], [14],
where macroscopic models allow the representation of large
areas neglecting important physical limitations of the network
so as to reduce the problem complexity, while microscopic
models keep into account a lot of details, resulting in a huge
number of variables and constraints.

Here, we focus on real-time management of railway traffic
in large-scale networks in case of both a disruption and
small disturbances. In particular, we consider the problem
of automatically rescheduling the railway traffic when a full
blockade occurs between two consecutive stations, thus pre-
venting the circulation of trains in both directions, while small
disturbances are still present and interfere with the nominal
scheduling for the whole network. Our approach differs from
the state of the art on railway traffic management that mainly
provides open-loop control techniques for the railway traffic
management and looks at the global optimality instead of
global feasibility of the solutions [15]. In particular, in our
approach we aim at rescheduling on-line and in closed loop
the railway traffic in a large-scale network without neglect-
ing the capacity limitations and the actual operations to be
performed in the stations at the ends of the disrupted railway
section. To this aim, we present an automatic rescheduling
algorithm that combines Model Predictive Control (MPC) with
an integrated methodology based on a distributed optimization
algorithm and bi-level heuristics. The integrated methodol-
ogy performed in the control scheme is based both on a
macroscopic and a mesoscopic Mixed Integer Linear (MIL)
model that properly represent the network and its behavior
in nominal, disturbed, and disrupted modes. In the online
feedback control scheme, the algorithm iteratively solves a
distributed optimization problem based on the two MIL models
together with a linear cost criterion, i.e., an MIL Programming
(MILP) problem, and provides in real time updated control
actions to be implemented in the network. The setting of the
distributed optimization problem varies with each iteration of
the algorithm, thus depending on the state of the network (i.e.,
nominal, disturbed, or disrupted) and on the state of the zones
of the network (i.e., disrupted or nondisrupted). The bi-level
heuristics acts only when it is necessary to reschedule traffic
in the disrupted zone. In particular, the heuristics first solves
the macroscopic MILP subproblem related to the disrupted
zone and then, based on the obtained results, solves the
corresponding mesoscopic MILP subproblem. This approach
allows limiting the computational burden of the control scheme
without neglecting physical limitations and operations to be
performed at disrupted stations.

Summing up, the main contributions of this article are:
1) the development of bi-level heuristics for fast solution
of a mesoscopic MILP rescheduling problem in case of
full blockade; 2) the integration of the bi-level heuristics in
a distributed optimization algorithm for fast solution of a
large-scale rescheduling problem; 3) the implementation of an
automatic technique that allows online feedback control of a
large-scale railway system when both a disruption and various
unexpected disturbances occur, thanks to the integration of the
distributed optimization algorithm and the bi-level heuristics
in an MPC control scheme.

The effectiveness of the proposed technique is tested in
a simulation environment on a complex real case study.
More in detail, we apply the method to the national Dutch
railway network, where we use the real timetable consisting
of all train lines that run in the whole country during the
afternoon of a weekday. We simulate the presence of a full
blockade between two consecutive stations and the presence
of randomly generated small disturbances in the rest of the
network in 100 different instances. The obtained results show
that the proposed method provides feasible control actions in
less than 1 min, i.e., respecting the sampling time limit of
the MPC procedure, and being fully in accordance with the
real-time train dispatching rules. Furthermore, performance
indices highlight that the method ensures a low percentage
of delayed train runs as well as average and maximum arrival
delays that are significantly lower than the standard limits of
the railway companies.

The remainder of this article is structured as follows.
Section II recalls the related state of the art and positions this
article within it. Section III presents the MILP formulation of
the rescheduling problem. Section IV describes the distributed
optimization algorithm for solving the large-scale MILP prob-
lem including the bi-level heuristics. Section V describes the
automatic feedback control algorithm and Section VI reports
the results obtained by applying the method to the case study.
Finally, Section VII summarizes the contribution of the work
and the possible further developments.

II. STATE OF THE ART

A. Real-Time Management of Railway Traffic

Real-time railway traffic management is a well-studied
problem in the context of railway transportation, due to
the substantial losses and/or gains that it can generate to
companies and customers [4]. In general, the unexpected
events affecting the nominal traffic can be roughly divided
into two main categories: disturbances and disruptions [4].
Disturbances are defined as small perturbations that can cause
short delays and consequently slightly defer the nominal
arrivals and departures of multiple trains in the network. Such
type of events can be caused, e.g., by a minor malfunctioning
in the network. Their effects can be limited by small control
actions, e.g., retiming or reordering of trains in a station.
On the other hand, disruptions are defined as long delays that
can strongly affect the nominal circulation of trains in the
network. For example, an interruption of the traffic at a certain
track section can reduce the capacity of the network and
necessitate drastic control actions, e.g., the cancellation of train
runs. Two main categories of disruptions can be identified: full
blockades and partial blockades. A full blockade consists in
the complete interruption of the traffic between the stations at
each end of the disruption, while a partial blockade consists
in a reduction of the capacity of the tracks available for the
circulation between the stations at each end of the disruption
(hence, the number of the blocked tracks is smaller than
the total number of the available tracks at the considered
section).
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A further classification regards the main control actions that
can be performed in case of disruptions: 1) short-turning;
2) shunting in stations; and 3) cancellation of train runs. More
in detail, short-turning consists in a U-turn of the trains that
enter the disrupted stations and then in the rerouting of the
trains on their way back; while for shunting, trains are moved
from the stop platform in station to a dedicated yard in order to
free the space in the station and to be used for later train runs
when no other train is available. Cancellation obviously refers
to the cancellation of some trains. Note that more formal def-
initions of short-turn and shunting are provided in Section III.

Currently, in The Netherlands and in other countries like
Germany, Switzerland, Denmark, and Japan, traffic controllers
deal with disruptions by using predefined solutions, i.e., con-
tingency plans, that are tailored to a precise disruption scenario
in a precise location and that are designed manually by expe-
rienced human traffic controllers [8]. However, contingency
plans cannot cover all the disruption cases and are suitable
only for small portions of larger and more complex railway
systems. In case no suitable contingency plan is available,
human traffic controllers are required to promptly reach an
agreement about a suitable plan and consequently are charged
with a stressful and challenging workload. It appears then
evident that there is a need for a method that supports human
train controllers in rescheduling the railway traffic in real time,
independently of the type of disruption, and that also provides
feasible solutions for large-scale railway systems.

The analysis of the related literature allows pointing out that
in general the rescheduling problem is represented as an opti-
mization problem and the main limitation in tackling real-time
rescheduling in case of disruptions and disturbances is the high
level of complexity of the problem. The long computation
time necessary for the solution of the problem makes the
optimization-based method impractical for a real-time control
environment. To avoid such an issue, on the one hand, some
contributions (see [9]–[12], [16]–[20]) consider simplified
models of the railway network, i.e., macroscopic models,
so as to reduce the complexity of the problem and so as to
properly represent larger areas of the network. However, such
a representation increases the workload of train controllers,
who have to readapt the rescheduled timetable before applying
it to the real environment. On the other hand, other articles
(see [8], [13], [14]) propose detailed models, i.e., microscopic
models that allow a realistic representation of the problem
and the immediate applicability of the rescheduled timetable.
However, in a real-time context, microscopic models limit the
management to only small portions of the network. Hence,
there is an urgent need to extend the research so as to fill the
gap and to obtain a suitable technique for the rescheduling
of railway traffic: 1) in case of disruptions and disturbances;
2) based on realistic models; 3) in real time; and 4) for large-
scale networks.

B. MPC for Real-Time Rescheduling in Large-Scale
Networks

The various automatic real-time rescheduling approaches
presented in the literature can be distinguished into static

(or open-loop rescheduling) if the rescheduling is performed
only once, with full information on the state of the system, and
dynamic (or closed-loop rescheduling) if the rescheduling is
iteratively performed and the information to use changes over
time [10]. The second class of real-time control approaches
are based on a general scheme that can be resumed as
follows: selected data are gathered from the real world and
passed to controllers that, based on certain models and rules,
come up with proper control actions. The control actions are
the input to steer the system to a certain desired state or
performance. In general, such systems are included in iterative
frameworks that adjust the forecast and the solution along
time, in a closed-loop control setup inspired by rolling horizon
optimization or MPC. Among the available dynamic real-time
approaches, here we focus on the MPC [21] scheme, which is
effectively used to determine the optimal dispatching actions
based on a prediction of the evolution of the system under
control, using a model of that system [22].

As shown in [23], for large-scale railway systems, a cen-
tralized MPC scheme to control the entire system will exceed
the allowable calculation time and is, therefore, infeasible.
Especially for large networks, it is instead better to split
the system into several smaller subareas and to control them
individually. However, such a distributed approach can effi-
ciently solve the real-time rescheduling problem for large-scale
railway systems only if it relies on macroscopic models of the
railway system and operations. In case of microscopic models,
the computational burden may become so significant that the
real-time requirements cannot be fulfilled. It is also worth
noting that the MPC scheme, both in its centralized and distrib-
uted version, has been mainly used to solve the rescheduling
problem only in case of disturbances (see [23]–[27]).

Considering the above state of the art, it is evidently
important to develop a novel approach that allows the use
of the MPC scheme in a distributed fashion in the context of
disturbance and disruption management in large-scale railway
networks.

This article presents a novel rescheduling algorithm that
allows traffic controllers to effectively cope with disturbances
and disruptions in large-scale networks. The method success-
fully combines the bi-level resolution of a macroscopic and
a mesoscopic MILP problem, representing the behavior of
a railway network affected by disturbances and disruptions,
with the distributed optimization of the MPC scheme, so as to
overcome the reported computational issues and to provide in
real time a realistic and suitable rescheduled timetable to be
used for the automatic train supervision.

III. MACROSCOPIC AND MESOSCOPIC MODELS

In this section, before introducing the MILP rescheduling
problem, we provide the definition of short-turn and shunting
of rolling stock, which are common control actions in railway
traffic management.

Given the generic i th train run as a pair (di , ai ) of
departure–arrival times between two consecutive stations (i.e.,
without any intermediate stop), short-turn and shunting are
defined as follows.
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Fig. 1. Nominal traffic.

Fig. 2. Short-turn.

Fig. 3. Shunting a train from platform to shunting yard.

1) Short-turn consists in a turn-back of the trains that
are directed to the blocked tracks. The short-turn is
performed at the stations located at the ends of the
full blockade. In this way, trains are used to perform
runs in the opposite direction of their nominal one.
An example of short-turn is reported in Figs. 1 and 2.
More in detail, Fig. 1 represents the normal behavior of
two trains arriving from opposite directions in station s.
Consider two train runs i and j with the respective
subsequent train run ξ−1(i) and preceding train run ξ( j).
The train run i is combined with the subsequent train run
ξ−1(i) and the train run ξ( j) is combined with the train
run j as nominally scheduled. In practice, the two trains
transit simultaneously or with a few minutes of delay,
in opposite directions in the same station s. Conversely,
in Fig. 2, the train run i is combined with train run j
since train run ξ−1(i) and train run ξ( j) have been
canceled. In practice, the train arriving from the left
to station s cannot proceed to the next station and
then, after the short-turn, it performs the train run j
as nominally scheduled in the opposite direction.

2) Shunting consists in a shift of the trains from a platform
in station to a separate shunting yard/track of the same
station or vice versa. The shunting can be performed
in the stations at the two ends of the full blockade
to: 1) avoid their congestion/block by releasing plat-
forms; 2) use the trains in the shunting yard/track to
perform train runs that would otherwise be canceled.
Examples of the two cases are reported in Figs. 3 and 4.

Fig. 4. Shunting a train from shunting yard to platform.

Fig. 3 represents the case of a train that performs the
run i but cannot proceed in its nominal direction, since
the subsequent run ξ−1(i) has been canceled. Then,
the train is moved from the platform to the shunting
yard in station s. Conversely, in Fig. 4, the run ξ−1(i)
has been canceled and the run j cannot be performed
by the nominal train. Then, a train is moved from the
shunting yard to a platform of the station s to perform
the run j .

Hereafter, we describe the formulations of the rescheduling
optimization problems which are based on a macroscopic and
a mesoscopic MIL model. Both optimization problems can be
used in case of full blockade, delays, and simultaneous full
blockade and delays. The macroscopic model mainly repre-
sents the railway network traffic, while the mesoscopic model
includes also the rolling stock dispatching operations in the
stations directly involved in the full blockade. For the sake of
brevity, we provide only an intuitive insight of the mathemati-
cal formulations. For the formal definitions of the macroscopic
and mesoscopic MIL models, we refer the interested reader,
respectively, to the works of Kersbergen et al. [23] and
Blenkers [28] that, differently from this work, respectively
provide a distributed MPC rescheduling scheme based on a
macroscopic MIL model in case of delays, and a mesoscopic
MIL model of the network in case of disruptions.

Let us denote the discrete time instant as t (k), with k =
0, 1, . . . , K, the constant sampling time as Tstep, such that
t (k) = kTstep, the time horizon as Thor = t(K) = KTstep,
the continuous (binary) decision variables vector at time t (k)
as x(k) (v(k)). The continuous decision variable vector x(k)
contains all time variables (departure time and arrival time) for
which the times are scheduled or expected to occur in the time
horizon Thor at time instant t (k). The binary decision variable
vector v(k) contains all the binary variables (i.e., cancellations,
headway, short-turn, shunting, and ordering variables) at time
instant t (k) over the time horizon Thor.

The rescheduling problem can be formulated as an MIL
model together with a linear cost criterion, thus leading to an
MILP problem in the standard form as follows:

min
x(k),v(k)

gT
x(k)x(k) + gT

v(k)v(k)

s.t. Ax(k)x(k) + Av(k)v(k) ≤ b(k). (1)

The linear objective function f (x(k),v(k)) =gT
x(k)x(k) +

gT
v(k)v(k) is the sum of two terms:

1) the sum of the continuous decision variables vector x(k)
weighted by the vector gT

x(k);
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TABLE I

NOTATION

2) the sum of the binary decision variables vector v(k)
weighted by the vector gT

v(k).

The constraints set is presented in its matrix notation where:

1) Ax(k) is the coefficient matrix of the continuous decision
variables;

2) Av(k) is the coefficient matrix of the binary decision
variables;

3) b(k) is the constraint vector with known terms.

In the macroscopic and in the mesoscopic MILP problems,
both the objective function and the constraints sets assume
different formulations as follows.

In the mesoscopic MILP problem, the continuous deci-
sion variables vector at time instant t (k) is x(k) =
[dT (k) aT (k)]T , while the binary decision variables vector
is v(k) = [cT (k) uT (k) sT (k)sT

p (k) yT (k) ωT (k)]T . For the
meaning of the decision variables, the reader is referred to
Table I.

The constraints set can be divided into the following subsets
(see [23] and [28] for the mathematical description of the
constraints) according to their physical meaning.

1) Timetable constraints, imposing the rescheduled depar-
ture/arrival times to be equal to or higher than the
nominal ones.

2) Running time constraints, imposing the fulfillment of the
minimum run time duration for each train run.

3) Dwell time constraints, imposing the fulfillment of the
minimum dwell time duration for each train stop in
station.

4) Headway time constraints, imposing the fulfillment of
the safety time between two consecutive departures in
the same direction from the same station.

5) Short-turn constraints, allowing the combination of two
consecutive train runs in opposite directions.

6) Shunting constraints, allowing the implementation of a
shunting operation (from/to platform to/from shunting
yard in the disrupted stations).

7) Capacity constraints, imposing the fulfillment of the
capacity limits in the disrupted stations.

8) Ordering constraints, imposing the fulfillment of time
order constraints for the trains assigned to the same
platforms in the disrupted stations.

Table II summarizes the railway traffic conditions that can
be modeled with the mesoscopic MIL model, the type of
control actions, and the subsets of constraints included. Hence,
in the mesoscopic formulation, the rescheduling problem is
written as (1) subject to constraints (a)–(h) (see [28] for a
detailed description of the constraints).

In the macroscopic MILP problem, the continuous deci-
sion variables vector at time instant t (k) is still x(k) =
[dT (k) aT (k)]T , while the binary decision variable vector is
v′(k) = [cT (k)uT (k)sT (k)yT (k)]T , which is a subvector of the
vector used in the mesoscopic model v(k), namely a vector
only containing a subset of the components of v(k). For the
meaning of the decision variables, refer again to Table I. The
constraints set is composed by the subsets (a)–(f) as described
in Table II (see also [23]).

Table II, third and fourth rows, summarizes the railway
traffic conditions that can be modeled with the macroscopic
MILP model, the type of control actions, and the subsets
of constraints included. Note that, although the macroscopic
model allows to represent the short-turn and shunting actions,
it does not consider the capacity limits of the stations and the
time ordering of trains on the platforms, which are instead
considered in the mesoscopic one.

IV. DISTRIBUTED OPTIMIZATION ALGORITHM

In this section, we propose the integration of bi-level
heuristics in a distributed optimization scheme with the aim of
solving the macroscopic and mesoscopic MILP rescheduling
problem for the large-scale railway network over the time
horizon Thor. This integrated algorithm can be used only to
control the system in a feedforward way, thus neglecting
the real-time evolution of the system. To overcome such a
limitation, in Section V, we include this algorithm in an MPC
scheme to obtain a feedback control approach.

Let us consider a complex large-scale rescheduling
MILP problem (1) for which the dimension of the vector
[xT (k) vT (k)]T is in the range [5000–15 000], the dimension
of the vector b(k) is in the range [50 000–150 000], and the
considered time horizon Thor ≤ 120 min. We set the sampling
time Tstep = 1 min, which is the minimum time unit of the
departure and arrival times, so as to have a sufficiently high
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TABLE II

MAIN FEATURES OF MACROSCOPIC AND MESOSCOPIC MODELS

Fig. 5. Pseudocode of the distributed rescheduling algorithm.

resolution of the state of the system. We remark that the
considered values of the time horizon and the time step are
commonly accepted values of these parameters, see the dis-
cussion in [15]. Obviously, the proposed algorithm parameters
may be straightforwardly changed if necessary.

The proposed integrated algorithm, here named Distributed
Optimization Algorithm, is based on an iterative procedure
and consists in the following two subsequent phases:
configuration and core algorithm. Hereafter, the algorithm
is described in detail, while Fig. 5 shows the corresponding
pseudocode.

Phase 1–CONFIGURATION
P1.1 Global Macroscopic Problem Definition:
Configure the global macroscopic MILP problem

min
x(k),v ′(k)

f
(
x(k), v′(k)

) = gT
x(k)x(k) + gT

v ′(k)v
′(k)

s.t. A′
x(k)x(k) + A′

v ′(k)v
′(k) ≤ b′(k) (2)

with

x(k) = [
dT (k) aT (k)

]T ∈ R
lx1

v′(k) = [
cT (k)uT (k)sT (k)yT (k)

]T ∈ {0, 1}mx1

gx(k) = 1l×1

gv′(k) = [λ 0 0 γ ]mx1 where |λ| = |c(k)| = mλ and λ =
500 · 1mλx1, while |γ | = | y(k)| = mγ and γ = 1000 · 1mγ x1.
In other words, the weights are chosen to minimize the delays
in the network, as well as the cancellations and the shunting
actions due to their cost in terms of time and operators. The
constraints set satisfies the specifications reported in the third
row of Table II.

The parameters of the MILP problem are set in accordance
with the specifications of the real system, i.e., the nominal
timetable, the headway time, the dwell time, the runtimes,
the short-turn time, the shunting time, and the ordering time.

P1.2 Macroscopic Problem Partitioning:
Partition the global macroscopic MILP problem into a

number α = |Z| of macroscopic MILP subproblems, with Z
the set of zones

min
x(k),v′(k)

gT
x(k)x(k) + gT

v′
z(k)v

′
z(k) + gT

v′
z(k)v

′
z′(k)

s.t. Ax(k) x(k) + Av′
z(k)v

′
z(k) + Av′

z(k)v
′
z′(k) ≤ b(k)

with z ∈ Z . (3)

Note that v′
z(k) = [cT

z (k)uT
z (k)sT

z (k)yT
z (k)]T is the vec-

tor of the binary variables of zone z, and ν′
z′(k) =

[cT
z′ (k) uT

z′ (k) sT
z′ (k) yT

z′ (k)]T is the vector of the binary vari-
ables of all other zones z′ different from z.

For the optimal partitioning of the global macroscopic MILP
problem, we use the procedure by Kersbergen et al. [23]. This
procedure consists in: 1) grouping the variables and constraints
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of the global problem per track and choosing the number α
of zones; 2) solving a Mixed Integer Quadratic Programming
problem that minimizes: 1) the number of constraints that
couple the subproblems; 2) the difference in the number of
constraints among the subproblems, by keeping the disrupted
area into a single zone. Note that there is no specific rule
for the choice of α, but in general, the higher the number
of zones is, the lower the computation time needed to solve
the MILP problem. For further details, we refer the interested
reader to [23].

P1.3 Mesoscopic Problem Definition:
Set the mesoscopic MILP subproblem for the disrupted

zone z

min
x(k),v(k)

gT
x(k)x(k) + gT

vz(k)vz(k) + gT
vz (k)vz(k)

s.t. Ax(k)x(k) + Avz(k)vz(k) + Avz(k)vz′(k) ≤ b(k)

with z ∈ Z (4)

with vz(k) = [cT
z (k) uT

z (k) sT
z (k) sT

p,z(k) yT
z (k) ωT

z (k)]T the
vector of the binary variables for the disrupted zone z. The
constraints set respects the specifications in Table II.

P1.4 Stop Criterion Definition:
Let us define the iteration counter for the algorithm

by n = 1, 2, … The algorithm stops if (n≥Nmax)
OR(� ≤ �max)OR(Ctime≥Cmax), where �max and Cmax pro-
vide an upper and a lower bound, respectively, to � and
Ctime, which are defined as follows: � is the error between
the solution of the global problem of phase P1.1 at the
nth generic iteration f n(x(k), v′(k)) and the solution of the
global problem of phase P1.1 at the previous n-1-th iteration
f n−1(x(k), v′(k)); Ctime is the total computation time until
now. In order to apply the algorithm in real time, reasonable
values for the stopping criterion parameters are Nmax = 7,
�max = 0.01, Ctime = 1min.

Phase 2—CORE ALGORITHM
P2.1 Set Counters—Set Initial Solution:
Set the counter of the zones z = 1 and the iteration counter

n = 1.
Set the initial solution

x̄(k) = [
dT

nom (k) aT
nom (k)

]T
and v′(k) = 0m×1.

Hence, we assign to the continuous decision variable the
nominal departure and arrival times and to the binary variables
the value 0, i.e., no control action is performed.

P2.2 Distributed Optimization:
Iterate until (n≥Nmax)OR(� ≤ �max)OR(Ctime≥Cmax)
Iterate until z < α
P2.2.1 Check Zone:
If z is the disrupted zone, execute the BI-LEVEL HEURIS-

TICS
FIRST LEVEL
Solve the macroscopic MILP subproblem for zone z

min
x(k),v′(k)

gT
x(k) x(k) + gT

v ′
z(k)v

′
z(k) + gT

v′
z′ (k)v

′
z′(k)

s.t. Ax(k)x(k) + Av′
z(k)v

′
z(k) + Avz′ (k)v

′
z′(k) ≤ b(k)

v′
z′(k) = v′

z′(k) (5)

with v̄′
z′(k) the solution vector of the binary variables for the

zones z′ obtained at the previous iteration n. −1. At the first
iteration, v̄′

z′(k) is the zero vector.
Let us denote the solution vector of the binary variables

of (5) by v̂′(k). Then, we extract from v̂′(k) the subvector
of the cancellation variables ĉ(k) and the subvector of the
short-turn variables ŝ(k).

END FIRST LEVEL
SECOND LEVEL
Solve the mesoscopic MILP subproblem for zone z

min
x(k),v(k)

gT
x(k)x(k) + gT

vz (k)vz(k) + gT
vz′ (k)vz′(k)

s.t. Ax(k)x(k)+ Avz(k)vz(k)+ Avz′ (k)vz′(k)≤ b(k)

v′
z′(k) = v′

z′(k)

ĉz(k) ◦ cz(k) = ĉz(k)

(1 − ŝz(k)) ◦ sz(k) = 0. (6)

The added equality constraints imply that the cancellation
variables set in the first-level in the macroscopic subproblem
is kept in the mesoscopic one and the non-feasible short-turns
allowed in the macroscopic subproblem are kept in the meso-
scopic one. Note that the symbol ◦ represents the element-wise
product.

END SECOND LEVEL
Else solve the macroscopic MILP subproblem for zone z′

min
x(k),v ′(k)

gT
x(k)x(k) + gT

v′(k)z
v′(k)z + gT

v′(k)z′ v
′(k)z′

s.t. Ax(k)x(k) + Av′(k)z v
′
z(k) + Av′

z′ v
′
z′(k)z′ ≤ b(k)

v′
z′(k) = v′

z′(k). (7)

Update n, �, and Ctime; go to P.2.2.
Return the solution vector [x̂T (k)v̂T

z (k)v̂′
z′T (k)]T where

v̂T
z (k) is the solution vector of the mesoscopic problem for

the disrupted zone and v̂′
z′T (k) is the solution vector of the

macroscopic problem for all other zones.
Note that the above procedure can also be used for the case

in which only small disturbances are present by setting the
global macroscopic MILP problem as specified in Table II.

In the next section, we describe the rescheduling algorithm
that includes the above algorithm integrated in the MPC
feedback control scheme.

V. RESCHEDULING ALGORITHM

This section presents the proposed automatic online feed-
back control algorithm. Differently from the state of the art
that mainly provides open-loop control techniques and looks
at the global optimality instead of global feasibility of the
solutions [15], the proposed rescheduling algorithm permits
the online feedback control of the railway traffic and ensures
the feasibility of the dispatching plans.

In particular, the algorithm allows to achieve the following
three goals.

1) Online feedback control of the railway traffic in the
event of a full blockade and various short delays in
a large-scale network. Note that the full blockade and
short delays can occur at any time and that the nominal
timetable can be cyclic or acyclic.
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Fig. 6. Integrated rescheduling algorithm.

2) Online computation of control actions that minimize the
delays throughout the network as well as the cancella-
tions of train runs and shunting actions.

3) Online computation, in a rolling horizon mode, of fea-
sible dispatching plans that allow the global reordering
of the traffic in the whole network and the local man-
agement of the rolling stock in the disrupted stations.

For a detailed description of the fundamentals on MPC
control, the interested reader is referred to [29].

A. Structure of the MPC Algorithm

The algorithm is sketched in Fig. 6 and consists of four
steps. Step 1 is an offline configuration of the algorithm;
Steps 2–4 perform the online feedback control of the system
and are iteratively executed in accordance with the MPC
scheme.

Step 1–Configuration: In this preliminary step, the historical
data regarding the unpredictable events that may affect the
railway network are analyzed and the most common inter-
ruptions are identified and characterized in terms of duration
and location in the railway network. Consequently, based on
the performed analysis and on the company requirements
and constraints (e.g., refresh rate of the current system state,
communication systems, etc.), the following input parameters
of the rescheduling algorithm are set.

1) Sampling Time Tstep, i.e., the time step for the MPC
procedure to update the railway state in the system
model and compute the optimal control actions.

2) Number of Iterations kfinal = T−Tcurr/Tstep, where Tcurr

is the time at which the algorithm starts and T corre-
sponds to the daily timetable duration. Note that k =
1, 2, . . . , kfinal represents the counter of iterations and,
at each iteration, the time step is updated accordingly
t (k) = kTstep.

3) Estimated Duration of the Disruption Tdisr.
4) Number of Partitioning zones α, i.e., the number of

zones in which the whole network would be partitioned
for the implementation of the distributed optimization.

5) Prediction Horizon Thor for the MPC procedure, which
should be higher than or equal to the estimated duration
of the disruption.

6) Control Horizon Tcontr.
7) Transition Period Ttr, i.e., the time necessary to restore

the nominal traffic after the disruption.
8) Objective of the Rescheduling Problem.
Based on the above parameters, the global MILP problems,

both for the cases of small disturbances and small disturbances
and disruption, are set and Phase 1 of the integrated algorithm
is executed.

Step 2—Update State: At each time step t (k), the current
state of the system is measured (e.g., via the European Rail
Traffic Management System) and the actual running times and
dwell times are collected.

Step 3—Solve the Rescheduling Problem: The state of the
railway traffic is evaluated and only if delays, or a disruption
or both are occurring, or if the system is in the transition phase
(i.e., nominal traffic restoration after the disruption), the global
rescheduling MILP problem is updated and solved over the
prediction horizon Thor.

Step 4—Control: In this step, the control actions computed
in Step 3 are applied for the current time step Tstep and the
prediction horizon is shifted of one time step, coherently with
the MPC scheme. Note that if the railway traffic is in nominal
conditions, no control action is applied.

After executing Step 4, the iteration counter k is
incremented by one and the steps from 2 to 4 are iterated
until the counter k is lower than the assigned number of
iterations kfinal.

We now focus on Step 3, which is the fundamental part of
the algorithm and is summarized in Fig. 7. In particular, at each
time step of the MPC procedure, it is necessary to verify
the state of the network, which can be in one of these four
modes: (0) Nominal schedule; (1) Delay; (2) Disruption; and
(3) Transition (i.e., the phase of nominal traffic restoring after
the end of the disruption). The flowchart in Fig. 7 shows the
actions performed for every iteration by the control technique
and is described hereafter.

In mode (0), i.e., Nominal schedule, no control action must
be performed and the nominal timetable is applied without any
modification.

In mode (1), i.e., Delay, the network is affected by small
delays. In this case, no cancellations, short-turn, shunting, nor
ordering actions are necessary. The rescheduled timetable for
Thor is obtained by executing Phase 2 of the integrated algo-
rithm presented in Section IV, considering the Macroscopic
MILP model for the small disturbances case. Note that no
disruption is occurring; hence, the BI-LEVEL HEURISTICS
is not executed.

In mode (2), i.e., Disruption, the network is affected
by disruption and the rescheduled timetable for the
prediction horizon is obtained by executing Phase 2 of
the integrated algorithm presented in Section IV, considering
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Fig. 7. Distributed optimization in one time step of the MPC procedure.

the macroscopic MILP model for the small disturbances and
disruption case. In this mode, the BI-LEVEL HEURISTICS
is executed for the disrupted zone.

Finally, in mode (3), i.e., Transition, the network is in a
transition period immediately after the end of the disruption,
where canceling, short-turning, and shunting actions are still
necessary to finally restore the nominal functioning. In this
situation, the rescheduled timetable for the prediction horizon
is obtained by executing Phase 2 of the integrated algorithm
presented in Section IV, considering the macroscopic MILP
model for small disturbances and the disruption case.

VI. CASE STUDY AND SIMULATION RESULTS

In this section, the proposed rescheduling algorithm is used
to reschedule the railway traffic of the national Dutch railway
network in case of disruptions and short delays (Fig. 8).
A full blockade of the country network is considered on the
track section between the stations Lage Zwaluwe (LZW) and
Dordrecht (DD). The considered section includes the Moerdijk
bridge, at which disruptions often occur due to adverse weather
conditions. Moreover, this section of the network is part of
one of three important train routes from North to South of the
Netherlands.

Fig. 8 shows the main lines of the Dutch network and the
zones in which the network is partitioned for the rescheduling
(respectively, represented in green, red, black, and blue colors).
The disrupted area is represented in yellow in the green zone
and the full blockade is indicated by an orange cross on the
disrupted section. During the blockade, trains arriving from
the south at LZW are short-turned and return to their starting
destination. Similarly, trains arriving from the north at DD are
short-turned and passengers continue their trip to LZW by bus.
The short-turns of trains at stations DD and LZW may lead
to local deviations from the nominal timetable that can cause
secondary delays for the rest of the network.

The rescheduling algorithm is implemented in the MATLAB
(ver. R2020a) environment on an Intel core i7 processor with
8-Gb memory, and the optimization problem is solved with
the Gurobi solver (ver. 7.0.2).

As performance indicators for the rescheduling algorithm,
we consider:

1) AvgAD, i.e., the average arrival delay;
2) MaxAD, i.e., the maximum arrival delay;
3) %DTR, i.e., the percentage of delayed train runs;
4) AvgCT, i.e., the average computation time per iteration

in the MPC scheme;
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Fig. 8. Dutch railway network.

5) StdAD, i.e., the standard deviation of the arrival delays;
6) StdCT, i.e., the standard deviation of the computation

time per iteration in the MPC scheme.

The approach proposed in this article is applied to five sce-
narios considering randomly generated delays in the network
and a disruption between Dordrecht and Lage Zwaluwe with
five different durations.

Scenario 1: Tdisr = 60 min, Thor = 75 min (i.e., longer than
the duration of the disruption and sufficiently limited to avoid
computation time issues).

Scenario 2: Tdisr = 20 min, Thor = 75 min.
Scenario 3: Tdisr = 30 min, Thor = 75 min.
Scenario 4: Tdisr = 40 min, Thor = 75 min.
Scenario 5: Tdisr = 50 min, Thor = 75 min.
For all scenarios, we perform 20 short delay instances:

Scenario1.1 to Scenario 1.20; Scenario 2.1 to Scenario
2.20; Scenario3.1 to Scenario 3.20; Scenario 4.1 to Scenario
4.20; Scenario5.1 to Scenario 5.20, considering that 20% of
the train runs is delayed by unexpected short delays that follow
a uniform distribution on the interval [1, 15] min, with 20 dif-
ferent seeds. Summarizing, we perform 100 different scenarios
simulations to properly evaluate the proposed rescheduling
algorithm.

The input parameters for Step 1—Configuration of the
rescheduling algorithm are set as follows:

1) Sampling Time Tstep = 1 min;
2) Number of Iterations kfinal = 1440−Tcurr, where Tcurr

is the time at which the algorithm starts the control
and 1440 corresponds to the daily timetable duration
(in minutes);

3) Estimated Duration of the Disruption Tdisr set depending
on the considered Scenario;

4) Number of Zones for the partitioning of the network
α = 4, depicted in Fig. 8 as the red, the blue, the black,
and the green zone;

5) Prediction Horizon Tdisr ≤ Thor ≤ 120 min;
6) Control Horizon Tcontr = Thor;
7) Transition Period Ttr = 30 min.

Note that the transition period is set based on the sugges-
tions by the train dispatchers.

The results obtained for the performance indicators are
represented by means of boxplots, where in each blue box the
central red mark indicates the median value, and the bottom
and top edges of the blue box indicate the 25th and 75th
percentiles, respectively. Whiskers extend to the most extreme
data points that are not considered outliers, and outliers are
plotted individually using the “+” symbol. The boxplots
are reported in Fig. 9, while the corresponding minimum,
maximum, median, 25th percentile, and 75th percentile values
for each performance indicator and per each scenario are
collected in Table III. The outcomes are as follows.

1) AvgAD index (i.e., the average arrival delay) varies
in the interval [3.87, 5.73] min for Scenarios from
1.1 to 1.20; [3.88,5.49] min for Scenarios from 2.1 to
2.20; [3.90, 5.54] min for Scenarios from 3.1 to 3.20;
[4.01, 5.65] min for Scenarios from 4.1 to 4.20;
and [4.15, 4.79] min for Scenarios from 5.1 to 5.20.
As shown by the boxplots and by the corresponding
data reported in Table III, the algorithm performs best
in Scenario 2, where the duration of the disruption is the
shortest one, i.e., 20 min. In effect, analyzing the results
in Table III, the AvgAD presents the lowest values both
for the 25th and the 75th percentile of the instances
in Scenario 2. Nevertheless, it can be observed that in
all scenarios, the AvgAD in the 75% of the total delay
instances is lower than 5.4 min. Consequently, it can be
asserted that the algorithm is not particularly influenced
by the duration of the disruption and in the considered
scenarios, it allows ensuring AvgAD ≈ 4.5 ± 1 min.

2) MaxAD index (i.e., the maximum arrival delay) varies
in the interval [14.24, 22.34] min for Scenarios from
1.1 to 1.20; [14.24, 26.33] min for Scenarios from
2.1 to 2.20; [14.28, 27.84] min for Scenarios from 3.1 to
3.20; [14.27, 27.84] min for Scenarios from 4.1 to 4.20,
and [14.28, 27.84] min for Scenarios from 5.1 to 5.20.
Analyzing the corresponding boxplots and the results
reported in Table III, it can be observed that the value
of the MaxAD index for the 25th percentile of the
instances is lower than 16.55 min for all scenarios.
Moreover, it can be observed that for the 75th percentile
of the instances, the value of the MaxAD is lower than
27.85 min for all scenarios. As for the AvgAD index,
the MaxAD values are not particularly influenced by the
duration of the disruption. Furthermore, it is noticeable
that the maximum arrival delay for all of the instances is
much lower than the maximum admissible delay beyond
which customers can request a partial or total refund of
the ticket (i.e., 30 min for a partial refund and 60 min
for a total refund).
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Fig. 9. Boxplots of the performance indices for the 20 instances of Scenarios S1, S2, S3, S4, and S5: AvgAD, MaxAD; %DTR, AvgCT, StdAD, StdCT.

3) %DTR index (i.e., the percentage of delayed train runs)
varies in the interval [5.21, 9.52] for Scenarios from
1.1 to 1.20; [5.28, 9.33] for Scenarios from 2.1 to 2.20;
[5.26, 9.04] for Scenarios from 3.1 to 3.20; [5.20, 9.03]
for Scenarios from 4.1 to 4.20; and [5.20, 9.09] for
Scenarios from 5.1 to 5.20. Analyzing the corresponding
boxplots and the results reported in Table III, it can
be observed that the value of the %DTR index for the
25th percentile of the instances is lower than 6.60%.
Moreover, it can be observed that for the 75th percentile
of the instances, the value of the %DTR is lower than
8.06% for all scenarios. Thus, it can be observed that
the percentage of delayed train runs is particularly low
although the network is affected both by a disruption
and delays.

4) AvgCT index (i.e., the average computation time per
iteration in the MPC scheme) varies in the interval
[26.43, 40.70] s for Scenarios from 1.1 to 1.20; [25.24,
35.93] s for Scenarios from 2.1 to 2.20; [22.93, 37.42] s
for Scenarios from 3.1 to 3.20; [20.87, 40.62] s for
Scenarios from 4.1 to 4.20; and [25.55, 54.60] s for
Scenarios 5.1 to 5.20. Analyzing the corresponding
boxplots and the results reported in Table III, it can
be observed that the value of the AvgCT index for the
25th percentile of the instances is lower than 29.38 s.
Moreover, it can be observed that for the 75th percentile
of the instances, the value of the AvgCT is lower than
41.33 s for all scenarios. It is worth noting that the
AvgCT remains lower than 1 min (i.e., the time step of
the MPC scheme) in all the considered instances, while
its variation depends on the disruption duration and short
delay instance scenario.

5) StdAD index (i.e., the standard deviation of the arrival
delays) varies in the interval [1.21, 2.23] min for Scenar-
ios from 1.1 to 1.20; [1.25, 2.07] min for Scenarios from
2.1 to 2.20; [1.35, 2.16] min for Scenarios from 3.1 to
3.20; [1.36, 2.16] min for Scenarios from 4.1 to 4.20;
and [1.36, 2.16] min for Scenarios from 5.1 to 5.20.
Analyzing the corresponding boxplots and the results
reported in Table III, it can be observed that the value of
the StdAD index for the 25th percentile of the instances
is lower than 1.49 min. Moreover, it can be observed
that for the 75th percentile of the instances, the value
of the StdAD is lower than 1.74 min for all scenarios.
This shows that the variation of the arrival delays with
respect to the average value is particularly limited in all
scenarios although the disruption duration varies from
20 to 60 min.

6) StdCT (i.e., the standard deviation of the computation
time per iteration in the MPC scheme) varies in the
interval [17.30, 71.11] s for Scenarios from 1.1 to 1.20;
[16.54, 35.96] s for Scenarios from 2.1 to 2.20; [16.54,
35.96] s for Scenario 3.1 to 3.20; [13.89, 49.34] s for
Scenarios from 4.1 to 4.20; and [21.89, 56.66] s for
Scenarios from 5.1 to 5.20. Analyzing the corresponding
boxplots and the results reported in Table III, it can
be observed that the value of the StdCT index for the
25th percentile of the instances is lower than 25.06 s.
Moreover, it can be observed that for the 75th per-
centile of the instances, the value of the StdCT is lower
than 35.87 s for all scenarios. Consequently, the values
obtained for the standard deviation of the computation
time confirm that the proposed rescheduling algorithm
allows the resolution of the rescheduling problem for the
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TABLE III

BOXPLOT VALUES OF THE PERFORMANCE INDICATORS FOR
SCENARIO 1.1 TO SCENARIO 5.20

considered large-scale network in less than 1 min in all
the implemented scenarios.

Note that for each time step, the global MILP problem has
11 501 variables and 123 773 constraints for the worst case
Scenario 1, while it has 10 559 variables and 113 356 con-
straints for the best-case Scenario 2, which thus presents a
lower complexity.

With the aim of evaluating the effectiveness of the
rescheduling algorithm not only in managing railway traffic
but also in properly handling the rolling stock during the
disruption, in Fig. 10, we graphically report the assignment
of trains to the available platforms at the disrupted stations.
The two graphs in Fig. 10, respectively, show the assignment
of the trains to the platforms in LZW and DD stations in
the most critical Scenario 1, i.e., when the duration of the
disruption is equal to 60 min. It can be observed that in
both stations, the algorithm properly assigns the trains to the
available platforms, respectively, 4 in LZW and 6 in DD,

Fig. 10. Assignment of trains to platforms in the disrupted stations: Lage
Zwaluwe and Dordrecht.

without violating the corresponding capacity constraints and
avoiding accidents due to the overlapping of dwell times on
the same platforms. This confirms the effectiveness of the
algorithm in properly fulfilling the rolling stock constraints
in a large-scale system affected by a severe disruption and
various delays.

To further assess the outcomes of the proposed algorithm,
we report the results obtained with a semi-heuristic algorithm
that mimics the traditional control actions that can be per-
formed in the two disrupted stations by a train dispatcher
during the disruption. In particular, the heuristics considers
a manual short-turning that combines each incoming train
run with the first available outgoing train run, i.e., without
any optimization. For the sake of brevity, we only report the
results obtained for the worst case and best-case scenarios
with variable short delays, i.e., S1.1 to S1.20 and S2.1 to
S2.20. In particular, the AvgAD index increases between 10%
and 30%; the MaxAD index increases between 10\% and
35%; the %DTR index increases between 35% and 50%;
on the contrary, the AvgCT index decreases between 20%
and 30% with respect to the MPC approach. Consequently,
the outcomes show that the choice of the heuristic traditional
procedure for the assignment and ordering of train runs in
the disrupted stations reasonably leads to the worsening of
the arrival delays in the network and to an obvious reduction
of the computation time necessary for the execution of the
rescheduling algorithm, as compared with the performance of
our algorithm.

Finally, the proposed MPC-based rescheduling algorithm
has been further tested in Scenario 1 considering the exact
resolution of the mesoscopic problem for the disrupted zone,
thus excluding the bi-level heuristics. On average, the algo-
rithm requires 20 min for each iteration of the MPC scheme,
which is far higher than the expected 1 min, thus confirming
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the suitability of the proposed algorithm to be applied in a
real-time feedback control environment.

Concluding, we want to highlight that the obtained results
are already very good in terms of applicability to real-time
Centralized Traffic Control, but they can be obviously further
improved considering a dedicated high-performance computer
for the implementation of the algorithm.

VII. CONCLUSION

In this article, we propose an innovative online feedback
control algorithm for the rescheduling of railway traffic in
case of a disruption and various delays in a large-scale
network. Our method, based on the knowledge of the state
of the network, provides dynamically in a rolling horizon
control mode a feasible rescheduled timetable that includes the
physical operations to be performed in the disrupted stations.
The proposed technique is based both on a macroscopic and
a mesoscopic MILP model, and combines the MPC approach
with an integrated algorithm that merges a distributed opti-
mization method with bi-level heuristics.

The integrated algorithm allows to reduce the computation
time with respect to more classical algorithms that look at
the optimality of the timetable but fail in providing feasible
solutions for large-scale systems. The method has been tested
on various disruption and delays scenarios for the real national
Dutch railway network. The obtained outcomes highlight the
effectiveness of the approach in minimizing the average and
maximum arrival delays, the percentage of the delayed train
runs, and the computation time, thus ensuring the time step
constraint of 1 min for the MPC approach (which is coherent
with classical train dispatching specifications) without neglect-
ing the physical limitations and the actual operations to be
performed in the disrupted stations.

Further research will explore the effect of different tunings
of the objective function, the robustness of the technique with
respect to multiple disruptions and uncertainty in the data, and
the energy consumption optimization.
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