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Incremental Nonlinear Control Allocation for an Aircraft with
Distributed Electric Propulsion

P. de Heer ∗ and C.C. de Visser †

Delft University of Technology, 2629HS Delft, The Netherlands

M.L. Hoogendoorn ‡ and H.W. Jentink §
NLR - Royal Netherlands Aerospace Centre, 1059 CM Amsterdam, the Netherlands

In this paper, a new nonlinear control allocation method is presented for a distributed
electric propulsion (DEP) aircraft. As the electric propellers can be used actively for control,
in addition to the control surfaces, the DEP aircraft is over-actuated. This freedom in control
effectors can be exploited with an appropriate control allocation method. All control effectors
are, therefore, captured in the incremental nonlinear control allocation (INCA) method, which
allows taking into account effector nonlinearities and interactions introduced by the propellers.
The INCA method is based on a real-time updated Jacobian model of the control effectiveness,
thereby solving an efficient linear control allocation problem. This paper reformulates the
original INCA method to optimize the control allocation for minimal propeller power, resulting
in more efficient flight. A model predictive control (MPC) controller is added as an actuator
dynamics compensation method. This ensures that the commanded control inputs from the
INCA controller are achieved. The new controller is compared to a standard incremental
nonlinear dynamic inversion (INDI) controller with a translational and rotational loop. It is
shown in simulation that by combining INCA with MPC, the tracking performance is improved
and efficiency increased by 6.1%.

I. Nomenclature

𝐴𝑥 , 𝐴𝑦 , 𝐴𝑧 = external accelerations in body frame
𝐴𝑅 = aspect ratio
𝑏 = wing span
𝐶 = dimensionless coefficient
𝑐 = mean aerodynamic chord
𝐷 = drag
𝑒 = span-wise efficiency parameter
F = force vector
𝐹a, 𝐹b, 𝐹E, 𝐹V = aerodynamic, body, vehicle-carried normal Earth and velocity frame
𝑔 = gravitational acceleration
ℎ = altitude
I = inertia matrix
𝐽 = advance ratio
K = proportional gain matrix
𝐿 = lift
𝑙, 𝑚, 𝑛 = aerodynamic moments in the body frame
𝑚 = mass
M = moment vector
𝑛p = propeller rotational velocity
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𝑃p = propeller power
𝑝, 𝑞, 𝑟 = roll, pitch and yaw rate
𝑞 = dynamic pressure
𝑆 = wing surface
𝑡 = time
𝑇p = propeller thrust
𝒖 = control input vector
𝑢, 𝑣, 𝑤 = airspeed components in body frame
𝑉∞ = true airspeed
𝒙 = state vector
𝑋 , 𝑌 , 𝑍 = aerodynamic and propulsive forces
𝒚 = output vector
𝛼 = angle of attack
𝛽 = angle of sideslip
𝛾 = flight path angle
𝜹 = control surface deflections
𝝀 = perturbation term
𝝂 = virtual control input
𝜁 = damping coefficient
𝜌 = air density
𝝉 = control force and moment vector
Φ = control forces and moments mapping
𝜙, 𝜃, 𝜓 = roll, pitch and yaw angle
𝜒 = kinematic azimuth angle
Ω = propeller power mapping
𝝎 = angular rates in body frame
𝜔n = natural frequency
∇ = Jacobian
Subscripts
a = actual
c = commanded
des = desired
h = hedge
ref = reference
rm = reference model

II. Introduction

If no significant measures are taken, aircraft CO2 emissions will triple by 2050. This is due to an increase in
aircraft traffic, which historically doubles every fifteen years [1]. As a result, more demanding requirements on fuel
consumption, noise and chemical emissions are set, which calls for radically new aircraft concepts. The uncertainty for
these new designs increases, because less historical data is available. A scaled flight demonstrator (SFD), therefore,
forms a valuable addition to the design process, reducing the risks in terms of time and costs compared to full-scale
testing. At Royal Netherlands Aerospace Centre (NLR), in collaboration with Clean Sky 2 [2] partners ONERA, CIRA,
Airbus and Orange Aerospace BV, such an SFD is developed. Here a scaled 1:8.5 model of the Airbus A320 [3] is
tested, which forms the baseline on which new aircraft design concepts will be developed.
A promising new propulsion technique that is being researched, is distributed electric propulsion (DEP). For this

concept, the two jet engines of the Airbus A320 are replaced with six electric propellers, three on each wing. Similar
projects developing this technology include the NASA Sceptor project for the NASA X-57 aircraft [4] and the NASA
STTR project with a Cirrus SR22T scale model [5]. Besides key advantages in terms of aircraft design, it is interesting
to note that electric propellers have relatively low control input lags, which means that they can be used actively for
control [5]. Integration of the propellers results in coupling effects between the aerodynamics and propulsion, also
known as propulsion airframe interaction (PAI) effects. Together with differential thrust, this gives extra control freedom
which potentially improves flight performance, efficiency and robustness against actuator failures of aircraft [6]. The
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control aspect of DEP aircraft received limited attention in previous research, only modeling differential thrust [7, 8]
or designing a simple proportional–integral–derivative (PID) controller, without actively using the PAI effects [9].
Including the PAI effects poses a significant challenge, since this introduces nonlinear behavior and cross-couplings,
which are difficult to model accurately [10]. Furthermore, the introduction of extra control effectors introduces the need
for a control allocation method, as the aircraft becomes over-actuated [11]. This gave rise to the research into a control
method that can actively use all control effectors of the DEP aircraft while being robust against modeling errors. As the
aircraft and PAI effects dynamics are nonlinear, a nonlinear controller is required.
A common nonlinear control method for aircraft is nonlinear dynamic inversion (NDI) [12, 13]. A downside of this

method is that it relies completely on the aircraft model. Achieving robustness against modeling errors is, therefore,
challenging at best, and comes at the cost of reduced tracking performance. For this reason, the incremental counterpart
incremental nonlinear dynamic inversion (INDI) [14] forms a suitable alternative. For this method, the incremental
control input is calculated based on sensor measurements. If sampled at a sufficiently high frequency, part of the
aircraft’s model can be discarded, making the control law less model-dependent. As the sensor measurements also
contain external disturbances, the controller compensates for their influences, making it more robust. However, for this
type of controller to work, time derivatives of the controlled variables are required, given by nonlinear state observers or
a new class of inertial sensors as angular accelerometers [15, 16].
Another important aspect is that a suitable control allocation method is required for the DEP aircraft, since it is

over-actuated. A simple method for this is ganging, but this leads to sub-optimal allocation [17]. Other techniques can be
classified into linear and nonlinear allocation. The latter can take into account nonlinear relations, and examples of this
include nonlinear direct allocation [18], modeling with piecewise linear functions [19] and nonlinear optimization using
nonlinear programming [20]. Although all these methods show a significant improvement in terms of performance, they
are computationally demanding, so they cannot run in real time [21]. Linear allocation methods are, therefore, a better
alternative in terms of implementation. Common linear methods found in literature include the weighted generalized
inverse [17], redistributed pseudo-inverse [22], daisy-chaining [23] and direct allocation [24]. Also, optimization-based
methods such as linear (LP) and quadratic programming (QP) can be used to solve the allocation problem [25]. A major
shortcoming of these linear techniques is that they assume a linear relationship between the control forces and moments
and the control effectors. Furthermore, interactions between the effectors cannot be taken into account. As the PAI
effect introduces both nonlinearities and interactions, linear control allocation is not able to take full advantage of the
DEP system. A viable alternative is proposed in [21], where the method of INDI is combined with linear optimization
allocation. This allows taking into account nonlinearities and effector interactions while solving an efficient linear
allocation problem online. Using the mixed optimization problem with QP [25], the allocation is optimized for tracking
and another secondary objective.
The main contribution of this paper is the design of a new nonlinear control allocation method, which takes into

account all control effectors of the DEP aircraft, while optimizing for minimal propeller power. It extends on the INCA
method by redefining the secondary objective to optimize for minimal propeller power. This enables optimal exploitation
of the differential thrust and PAI effects. Furthermore, the INCA control scheme is extended with a translational control
loop, allocating the control inputs for altitude and velocity control next to attitude control. Finally, the INCA controller
is augmented with a model predictive control (MPC) controller to compensate for the actuator dynamics, based on
the work in [26]. This method is redesigned, so that it can compensate incrementally, ensuring that the commanded
incremental control inputs are achieved. To assess the performance of the new controller, it will be compared against the
conventional NDI/INDI controller in [27], which presents control loops for translational and rotational control.
The outline of this paper is as follows. First, the DEP aircraft model including the differential thrust and PAI

effects will be described in Sec. III. In Sec. IV, the NDI and INDI control laws will be derived, which are used in
Sec. V to define the control laws for the DEP aircraft. Sec. VI explores the potential performance increase because of
over-actuation, designing a suitable control allocation method that optimizes for propeller power. Finally, in Sec. VII the
results found in simulation are presented and compared against the conventional NDI/INDI controller, after which the
paper is concluded in Sec. VIII.

III. DEP Aircraft Model
The aircraft model used in this paper is based on the model developed for the SFD [3]. Added to this model are

the differential thrust and PAI effects, which are introduced by the six electric propellers. The DEP aircraft uses the
traditional control surfaces ailerons, elevator and rudder for roll, pitch and yaw control respectively. Next to this, the six
propellers can be used for both roll and yaw control. If the propellers operate at different thrust levels, the differential
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thrust effect creates a yawing moment. Furthermore, an increase in propeller thrust results in a local increase in lift,
thereby providing roll control using the PAI effects. The effects of the control inputs are summarized in Fig. 1, given in
the body reference frame (𝐹b).

Fig. 1 Overview of the control input effects on the DEP aircraft, where the blue arrows represent the control
surface deflections, the red the differential thrust effects and the orange the PAI effects in the 𝐹b frame.

As all six propeller are controlled separately, this gives the following control input vector

𝒖 =

[
𝛿aL 𝛿aR 𝛿e 𝛿r 𝑛p1 𝑛p2 𝑛p3 𝑛p4 𝑛p5 𝑛p6

]T
, (1)

where 𝑛p is the rotational velocity of the propellers and 𝛿 the control surface deflection. The left 𝛿aL and right 𝛿aR
aileron are controlled separately. The control inputs 𝒖 are subject to position and rate constraints, which are defined as

𝒖min ≤ 𝒖 ≤ 𝒖max,

| ¤𝒖 | ≤ ¤𝒖max.
(2)

All control inputs are also subject to actuator dynamics, which are modeled using a second-order transfer function
𝐴(𝑠) defined as

𝐴(𝑠) = 𝜔2
n

𝑠2 + 𝜁𝜔n𝑠 + 𝜔2
n
, (3)

where 𝜔n is the natural frequency and 𝜁 the damping coefficient of the actuator. The constraints and actuator dynamics
values for each actuator are given in Table 1 and Table 2.

Table 1 Control input constraints.

Limit 𝛿aL 𝛿aR 𝛿e 𝛿r 𝑛p

𝑢min -25° -25° -15° -30° 0 𝑟𝑒𝑣/𝑠
𝑢max 25° 25° 30° 30° 100 𝑟𝑒𝑣/𝑠
¤𝑢max 243°/𝑠 243°/𝑠 207°/𝑠 207°/𝑠 100 𝑟𝑒𝑣/𝑠2

Table 2 Actuator dynamics.

Second-order dynamics 𝛿aL 𝛿aR 𝛿e 𝛿r 𝑛p

𝜔n 6.460 6.460 5.680 5.680 6.000
𝜁 0.821 0.821 0.859 0.859 0.850
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To model the PAI effects, first, the propellers need to be described using the thrust 𝐶𝑇 and power 𝐶𝑃 coefficients
[28]. These are a function of the advance ratio 𝐽 and were determined using experimental data shown in Fig. 19 and
Fig. 20. Based on these coefficients, the propeller thrust 𝑇p and propeller power 𝑃p can be determined as a function of
the true airspeed 𝑉∞ and propeller rotational velocity 𝑛p.
As discussed in [29], for propellers placed in front of the wing two effects can be identified, the propeller affecting

the wing and other aerodynamic surfaces and vice versa. As the first effect is most significant for propellers placed in
front of the wing, changing the control force Fc and moment vectorMc, this is the only effect that will be considered
in the remainder of this paper. The propellers affect the slipstream over the wing, consisting of an axial and swirl
component. To analyze the effect of this change in the slipstream, the method of [30] is used. It discards the swirl
component effects of the slipstream and assumes that the increase in axial velocity behind the propeller is uniform. The
changes in lift Δ𝐶𝐿 and drag Δ𝐶𝐷 coefficient are then calculated based on an increase in dynamic pressure 𝑞, using
actuator disk theory. Note that as the slipstream is finite, a correction factor is applied using the surrogate model of [31].
The same method is used to calculate the dynamic pressure increase behind the outer propeller’s slipstream, increasing
the effectiveness of the ailerons.
Another important element of the PAI effects is the interaction between the wingtip propellers and vortices. The

propellers cancel out these vortices, reducing the induced drag defined as

𝐶𝐷𝑖
=

𝐶2
𝐿

𝜋𝐴𝑅𝑒
. (4)

As no aerodynamic data is available for the DEP aircraft, the wind tunnel data in [32] is used as reference. This
research finds a relation between the thrust coefficient 𝐶𝑇 and the spanwise efficiency factor 𝑒. The results are scaled to
the 𝐶𝑇 operating values of the DEP aircraft, which is summarized in Table 3. An increase in 𝐶𝑇 thus gives an increase
𝑒, reducing the induced drag, where the maximum increase in 𝑒 is assumed to be 𝑒max = 1.12.

Table 3 Relationship between 𝐶T and 𝑒 from wind tunnel test data scaled to the DEP aircraft.

Sinnige et al. [32] DEP
𝐶𝑇 𝑒 𝐶𝑇 𝑒

min 0 0.8 0 0.8
optimum 0.123 1.12 (+40%) 0.267 1.12 (+40%)
max 0.168 0.68 (-15%) 0.365 1.12 (+40%)

IV. Nonlinear Flight Control Design
The general nonlinear aircraft dynamics expressed in the input-affine form [12] are given by

¤𝒙 = 𝒇 (𝒙) + g(𝒙)𝒖,
𝒚 = 𝒙,

(5)

where 𝒙 ∈ R𝑛 is the state vector, 𝒖 ∈ R𝑝 the control input vector and 𝒚 ∈ R𝑚 the output vector. Note that it is thus
assumed that all states 𝒙 are directly available. 𝒇 ∈ R𝑛 and g ∈ R𝑛×𝑝 are nonlinear functions depending only on the
state 𝒙. For the remainder of this section it is assumed that the number of inputs equals the number of outputs, so that
𝑔 ∈ R𝑛×𝑚, which is a square matrix for full-state measurement. A control allocation method to fully take into account
the over-actuated DEP aircraft will be developed in the next section. To control the nonlinear dynamics of Eq. (5) types
of controllers are used, namely NDI and INDI.

A. Nonlinear dynamic inversion
The NDI controller is defined by introducing the virtual control input 𝝂 and setting this equal to the derivative of the

output, so that 𝝂 = ¤𝒚 = ¤𝒙. The control input is then defined by inverting the dynamics of Eq. (5) so that

𝒖 = g−1 (𝒙) (𝝂(𝒙) − 𝒇 (𝒙)) , (6)
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which gives the closed loop relation
¤𝒚 = 𝝂(𝒙). (7)

The virtual control input 𝝂 is determined using a linear controller with proportional gain K, steering the states 𝒙 to the
reference states 𝒙ref , which is defined as

𝝂(𝒙) = K (𝒙ref − 𝒙) . (8)

Note that for Eq. (7) to hold, the exact model should be known to completely linearize the dynamics. In reality, modeling
uncertainties, computational errors and external disturbances introduce inversion errors. These can be captured in the
perturbation term 𝝀, so that the closed loop system becomes

¤𝒚 = 𝝂(𝒙) + 𝝀(𝒙). (9)

Robustness against this perturbation term is not guaranteed which can come at the cost of reduced tracking performance
or instability.

B. Incremental nonlinear dynamic inversion
INDI can be used as an alternative to NDI, as this method is more robust against the influences of the perturbation

term 𝝀. This controller will be derived without the time-scale separation principle, following the method of [33]. In this
more general form, as compared to the traditional derivation given in [14], there is more freedom in the design of the
control loops. This freedom will be used for simultaneous translational and rotational control, which will be discussed
in Sec. VI.B.
Consider the input affine aircraft dynamics of Eq. (5), taking the first-order Taylor expansion gives

¤𝒚 = ¤𝒚0 +
𝜕 [ 𝒇 (𝒙) + g(𝒙)𝒖]

𝜕𝒙

����
0
Δ𝒙 + 𝜕 [ 𝒇 (𝒙) + g(𝒙)𝒖]

𝜕𝒖

����
0
Δ𝒖 + O(Δ𝒙2),

¤𝒚 = ¤𝒚0 +
𝜕 [ 𝒇 (𝒙) + g(𝒙)𝒖]

𝜕𝒙

����
0
Δ𝒙 + g(𝒙0)Δ𝒖 + O(Δ𝒙2).

(10)

Again, the perturbation term 𝝀 is introduced, which now also captures errors caused by the Taylor expansion, so that

¤𝒚 = ¤𝒚0 + g(𝒙0)Δ𝒖 + 𝝀(𝒙,Δ𝑡), (11)

where
𝝀(𝒙,Δ𝑡) = 𝜕 [ 𝒇 (𝒙) + g(𝒙)𝒖]

𝜕𝒙

����
0
Δ𝒙 + O(Δ𝑥2). (12)

Setting 𝝂 = ¤𝒙 defined by Eq. (8), the incremental and total control input is defined by inverting Eq. (11) so that,

Δ𝒖 = g−1 (𝒙0)
(
𝝂(𝒙) − ¤𝒚0

)
,

𝒖 = 𝒖0 + Δ𝒖0,
(13)

which gives the closed loop relation
¤𝒚 = 𝝂(𝒙) + 𝝀(𝒙,Δ𝑡). (14)

Comparing Eq. (9) with Eq. (14), one can see that for the latter the perturbation term 𝝀 also depends on Δ𝑡. As is shown
in [33] for INDI, there exists a bound on the perturbation term 𝝀 and this bound is decreased with decreasing sampling
time Δ𝑡. This shows for relations involving perturbation influences, the performance of INDI is superior to NDI when
the sampling frequency is sufficiently high. This is under the assumption that ¤𝒚0 is either directly measured or obtained
through (predictive) differentiation.

C. Pseudo-control hedging
To prevent windup problems for unachievable control commands, pseudo-control hedging (PCH) is implemented

[34]. The idea of PCH is to hedge the control signal with the difference between the commanded and achieved control
input. This difference develops when the commanded control forces and moments for tracking of the reference variables
cannot be achieved by the actuators. It is defined as the pseudo-control hedge and is given by

𝝂h (𝒙) = 𝝂c (𝒙) − 𝝂̂(𝒙), (15)
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where 𝝂𝑐 (𝑥) is the commanded and 𝝂̂(𝒙) the estimated achieved virtual control input, which is based on the measured
actuator states. To hedge the control signal, a first-order reference model is defined as

𝝂rm = Krm (𝒙c − 𝒙rm), (16)

where Krm is a diagonal matrix containing the reference model gains, 𝒙c is the commanded and 𝒙rm the reference model
state vector. The reference signal sent to the control system is 𝒙rm, and this state vector is given by

𝒙rm =
1
𝑠
(𝝂rm − 𝝂h). (17)

When there is no saturation 𝝂h = 0, as there is no difference between the commanded and actual virtual control input.
For this situation, the reference model acts as low-pass filter with bandwidth 𝐾rm𝑖

for the i-th state of 𝒙c. When there
is saturation, 𝝂h will give the difference between the commanded and achieved virtual control input, as defined in
Eq. (15). The PCH for incremental control [21] is defined by substituting Eq. (11), disregarding the perturbation term 𝝀,
in Eq. (15) which gives

𝝂h =
[
¤𝒚0 + g(𝒙0) (𝒖c − 𝒖0)

]
−
[
¤𝒚0 + g(𝒙0) (𝒖 − 𝒖0)

]
,

= g(𝒙0) (𝒖c − 𝒖).
(18)

To improve tracking performance, the derivatives of the reference commands, as defined in Eq. (16), are used as
feedforward terms [35]. In the subsequent sections, the different control loops for translational and rotational control are
derived.

V. Traditional Aircraft Control Loops
In this section, the control loops for traditional aircraft control are derived, using the control surfaces 𝜹 for rotational

control and the total thrust 𝑇tot to control the velocity. Note that the thrust of all propellers is thus the same in this
definition, so that 𝑇tot = 𝑇p1 + 𝑇p2 + ... + 𝑇p6. This means the differential thrust and PAI effects are not included yet, as
this requires control allocation and will be discussed in the subsequent section.
The reference values for control of the DEP aircraft are defined as

𝒚ref =
[
𝑉ref ℎref 𝜙ref 𝛽ref

]T
, (19)

so that the reference altitude ℎ, velocity 𝑉 , roll angle 𝜙 and sideslip angle 𝛽 are tracked. By default, 𝛽ref = 0 so that the
angle of sideslip is minimized, which gives coordinated turns and leads to most efficient flight.
Following [27], four different loops are used to control the aircraft, which are divided based on the the time-scale

separation principle. This states that slower outer loops and faster inner loops can be controlled individually, as long as
each subsequent loop is faster than the preceding loop. The following state variables are defined

𝒙1 =

[
𝑉 𝜒 𝛾

]T
, 𝒙̄1 =

[
𝑉 𝛾

]T
,

𝒙2 =

[
𝜙 𝛼 𝛽

]T
,

𝒙3 =

[
𝑝 𝑞 𝑟

]T
,

(20)

where 𝑉 is the true airspeed, 𝜒 the kinematic azimuth angle, 𝛾 the flight path angle, 𝜙 the roll angle, 𝛼 the angle of
attack, 𝛽 the angle of sideslip and 𝑝, 𝑞 and 𝑟 the roll, pitch and yaw rate respectively. The control inputs for the separate
control loops are defined as

𝒖1 =

[
𝛼des 𝑇tot

]T
,

𝒖3 =

[
𝛿a 𝛿e 𝛿r

]T
,

(21)

where 𝛼des represents the desired angle of attack, which cannot be reached instantaneously because of the dynamics of
the aircraft. The control loop structure with the four different controllers is shown in Fig. 2. For the loops involving only
kinematic relations, the NDI method is used as these do not contain modeling errors or external disturbances. Dynamic
relations are controlled using the INDI method to make the control law more robust. Also, as the dynamic relations
contain control commands 𝒖1 and 𝒖3, PCH will be applied for these loops. In the subsequent sections, the subscript ref
is used for reference commands which the aircraft is to follow and the subscript des for desired commands generated by
the controller.
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1. NDI 2. INDI 3. NDI 4. INDI

Translational Rotational

Fig. 2 Control loop structure for translational (block 1 and 2) and rotational (block 3 and 4) control.

A. Translational Control Loop

1. Altitude Control Loop
In controller 1 of Fig. 2, the desired flight path angle 𝛾des is determined, based on ℎref , using the kinematic relation

¤ℎ = 𝑉 sin 𝛾. (22)

Setting the virtual control input 𝜈ℎ = ¤ℎdes, based on the tracking error of ℎref , gives the desired flight path angle as

𝛾des = arcsin
(
𝜈ℎ

𝑉ref

)
. (23)

2. Flight Path Angle and Velocity Control Loop
Controller 2 in Fig. 2 controls 𝒙̄1, where the values 𝑉ref and 𝛾des are used as reference values. The dynamics for 𝒙1

are defined as

¤𝒙1 =


1
𝑚

0 0
0 1

𝑚𝑉 cos 𝛾 0
0 0 − 1

𝑚𝑣


©­­«TVa


𝑋a

𝑌a

𝑍a

 + TVE


0
0
𝑚𝑔


ª®®¬ , (24)

where the vector [𝑋a, 𝑌a, 𝑍a]T contains the aerodynamic and propulsive forces in the aerodynamic reference frame
(𝐹𝑎) [36]. The matrices TVa and TVE are transformation matrices, where 𝐹V is the velocity and 𝐹E the vehicle-carried
normal Earth reference frame [27]. As 𝜒 will not be controlled, instead the roll angle 𝜙ref is specified in 𝒚ref , only the
first and third row of Eq. (24) are considered. Eq. (24) can be rewritten in the affine-in-control form for 𝒖1 [27], so that

¤̄𝒙1 = 𝒇̄ 1 (𝒙) + ḡ1 (𝒙)𝒖1. (25)

Setting the virtual control input 𝝂 𝒙̄1 =
¤̄𝒙1des for tracking of 𝑉ref and 𝛾des, the INDI controller is defined as

Δ𝒖1 = ḡ−1
1 (𝒙0)

(
𝝂 𝒙̄1 − ¤̄𝒙1,0

)
,

𝒖1 = 𝒖1,0 + Δ𝒖1.
(26)

PCH is implemented for this control loop, with the pseudo-control hedge defined as

𝝂h𝒙1
= g1 (𝒙0)

(
𝒖1𝑐 − 𝒖1

)
. (27)

B. Rotational Control Loop

1. Aerodynamic Attitude Control Loop
Controller 3 in Fig. 2, controls 𝒙2 with 𝜙ref , 𝛼des and 𝛽ref as reference. The kinematic relation between 𝒙2 and 𝒙3,

given in [37, 38], is defined as

¤𝒙2 =


0(

1
𝑢2+𝑤2

)
(𝑢 (𝐴𝑧 + 𝑔 cos 𝜃 cos 𝜙) − 𝑤 (𝐴𝑥 − 𝑔 sin 𝜃))(

1√
𝑢2+𝑤2

)
(𝐹𝑥 + 𝐹𝑦 + 𝐹𝑧)

︸                                                                     ︷︷                                                                     ︸
𝒃𝒙2 (𝒙)

+


1 sin 𝜙 tan 𝜃 cos 𝜙 tan 𝜃
−𝑢𝑣

𝑢2+𝑤2 1 −𝑣𝑤
𝑢2+𝑤2

𝑤√
𝑢2+𝑤2 0 −𝑢√

𝑢2+𝑤2

︸                                           ︷︷                                           ︸
a𝒙2 (𝒙)

𝒙3, (28)
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where 𝑢, 𝑣, 𝑤 are the airspeed components in the 𝐹b frame, 𝜃 the pitch angle and 𝐴𝑥 , 𝐴𝑦 , 𝐴𝑧 the external accelerations
in the 𝐹b frame and

𝐹𝑥 = −𝑢𝑣
𝑉2 (𝐴𝑥 − 𝑔 sin 𝜃),

𝐹𝑦 =

(
1 − 𝑣2

𝑉2

)
(𝐴𝑦 + 𝑔 sin 𝜙 cos 𝜃),

𝐹𝑧 = −𝑣𝑤
𝑉2 (𝐴𝑧 + 𝑔 cos 𝜙 cos 𝜃).

(29)

Applying NDI by setting 𝝂𝒙2 = ¤𝒙2des for tracking of 𝜙ref , 𝛼des and 𝛽ref gives

𝒙3des = a−1
𝒙2
(𝒙)

(
𝝂𝒙2 − 𝒃𝒙2 (𝒙)

)
. (30)

2. Body Angular Rate Control Loop
Finally, controller 4 in Fig. 2 controls 𝒙3 using the desired body angular rates as reference. The dynamics of the

angular rates 𝒙3 are defined as
¤𝒙3 = I−1 (M − 𝒙3 × I𝒙3) , (31)

whereM contains all the moments applied to the aircraft in the 𝐹b frame and I is the moment of inertia matrix [36].
The moments can be separated into the ones applied by the airframeMa, and by the control inputsMc. Also, for more
compact notation, define the state dependent part as

𝒇 3 (𝒙) = I−1 (M𝑎 − 𝒙3 × I𝒙3) , (32)

so that
¤𝒙3 = 𝒇 3 (𝒙) + I−1

Mc. (33)

In the affine-in-control form this becomes
¤𝒙3 = 𝒇 3 (𝒙) + g3 (𝒙)𝒖3. (34)

By setting 𝝂𝒙3 = ¤𝒙3des for tracking of 𝑝des, 𝑞des and 𝑟des, the INDI controller is defined as

Δ𝒖3 = g−1
3 (𝒙0)

(
𝝂𝒙3 − ¤𝒙3,0

)
𝒖3 = 𝒖3,0 + Δ𝒖3.

(35)

PCH is implemented for this control loop with the pseudo-control hedge defined as

𝝂h𝒙3
= g3 (𝒙0)

(
𝒖3𝑐 − 𝒖3

)
. (36)

VI. Control Allocation Design
Generally, the control forces and moments are a nonlinear function of the states 𝒙 and control inputs 𝒖 given by

𝝉 = 𝚽(𝒙, 𝒖), (37)

where 𝝉 ∈ R𝑚 is the control forces and moments vector and 𝚽 ∈ R𝑚×𝑝 a nonlinear mapping as a function of the states
and control inputs. In this general form, Eq. (5) is changed to

¤𝒙 = 𝒇 (𝒙) + g(𝒙)𝝉 = 𝒇 (𝒙) + g(𝒙)𝚽(𝒙, 𝒖),
𝒚 = 𝒙.

(38)

Applying INDI using Eq. (13), the control law is then defined as

Δ𝒖 = g−1 (𝒙)
[
𝜕𝚽(𝒙, 𝒖)
𝜕𝒖

]−1 (
𝝂(𝒙) − ¤𝒚0

)
. (39)

The DEP aircraft is over-actuated, meaning that the number of control inputs is larger than the number of controlled
outputs (p>m). Therefore,𝚽 in Eq. (39) is not square and thus not invertible, requiring the use of control allocation.
The next sections will lay out the INCA algorithm used for this purpose and discuss the specific implementation for the
DEP aircraft.
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A. Incremental Nonlinear Control Allocation
INCA allocates incremental control inputs Δ𝒖, while satisfying constraints on the control inputs. A secondary

objective is introduced, so that the underdetermined allocation problem has a unique solution. To make the notation in
Eq. (39) more compact, define the control effectiveness Jacobian (CEJ) as

∇𝒖𝚽(𝒙0, 𝒖0) =
𝜕𝚽(𝒙0, 𝒖0)

𝜕𝒖
, (40)

using the Jacobian ∇. The CEJ is updated at every time step, thereby capturing nonlinearities and control effector
interactions. The commanded incremental force and moment vector is defined as

Δ𝝉c = g(𝒙0)−1 (𝝂(𝒙) − ¤𝒚0), (41)

so that the incremental control allocation problem is defined as follows. Given the current state 𝒙0, the current control
input 𝒖0 and the incremental commanded force and moment vector Δ𝝉𝑐, determine the incremental control input Δ𝒖 so
that

∇𝒖𝚽(𝒙0, 𝒖0)Δ𝒖 = Δ𝝉c,

subject to Δ𝒖 ≤ Δ𝒖 ≤ Δ𝒖.
(42)

Here Δ𝒖 and Δ𝒖 are the upper and lower incremental control input bounds, based on the position and rate constraints of
the actuators, as defined in Table 1.
As stated in [21], the allocation problem defined in Eq. (42) can be solved with different methods of which QP gives

the best allocation performance. Defining QP as a mixed optimization problem [25] gives

min
Δ𝒖

| |Q (∇𝒖𝚽(𝒙0, 𝒖0)Δ𝒖 − Δ𝝉𝑐) | |22︸                                    ︷︷                                    ︸
Allocation problem

+ ||W(Δ𝒖 − Δ𝒖p) | |22︸                 ︷︷                 ︸
Secondary objective

,

subject to Δ𝒖 ≤ Δ𝒖 ≤ Δ𝒖,

(43)

where the weighting matrices Q andW are introduced, with Q ≫ W, to prioritize the allocation problem over the
secondary objective. The secondary objective is defined with the control preference vector 𝒖p, driving the control inputs
to their trim values. Different algorithms can be used to solve Eq. (43), of which the active set method converges to the
optimal solution in a finite number of steps. Furthermore, the method is computationally efficient for problems up to
𝒖 ∈ R15 [39]. Therefore, the active set algorithm is used to solve the allocation optimization problem.

B. Control allocation for translational and rotational control
Using the control force and moment vector 𝝉, the incremental EoM for combined translational and rotational control

are defined as
¤𝒚 ≈ ¤𝒚0 + g(𝒙0)Δ𝝉,
≈ ¤𝒚0 + g(𝒙0)∇𝒖𝚽(𝒙0, 𝒖0)Δ𝒖,

(44)

where
𝒚 = 𝒙 =

[
𝒙̄1 𝒙3

]T
=

[
𝑉 𝛾 𝑝 𝑞 𝑟

]T
, (45)

and
g(𝒙) =

[
diag (0 0 I−1) ]

, (46)

and
𝝉 =

[
¤𝑉 ¤𝛾 𝑙 𝑚 𝑛

]T
, (47)

and
𝒖 =

[
𝛼des 𝛿aL 𝛿aR 𝛿e 𝛿r 𝑛p1 𝑛p2 𝑛p3 𝑛p4 𝑛p5 𝑛p6

]T
. (48)

Note that when comparing Eq. (1) and Eq. (48), 𝛼des is now added to allow for controlling the altitude ℎ. Note that
𝛼des cannot be controlled directly but is as desired value, used as a reference in the aerodynamic attitude controller.
The control loop for reference tracking of 𝒚ref , as defined in Eq. (19), is illustrated in Fig. 3. The altitude controller
corresponds to controller 1 and the aerodynamic attitude controller to controller 3 in Fig. 2. Note how the translational
and rotational control loop, defined in Sec. V, are merged in the INCA block and 𝛼des is fed back as a reference value.
Also, PCH is implemented by replacing g(𝒙0) in Eq. (18) with ∇𝒖𝚽(𝒙0, 𝒖0)Δ𝒖 to ensure that the force and moment
commands send to the INCA controller are achievable.
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PCH INCA DEP aircraft

Fig. 3 Control loop structure with the outer loops and INCA controller for reference tracking.

The CEJ used in the INCA controller for translational and rotational control is defined as

∇𝒖𝚽(𝒙0, 𝒖0) =



𝜕 ¤𝑉
𝜕𝑢1

���
𝑥0 ,𝑢0

𝜕 ¤𝑉
𝜕𝑢2

���
𝑥0 ,𝑢0

. . . 𝜕 ¤𝑉
𝜕𝑢11

���
𝑥0 ,𝑢0

𝜕 ¤𝛾
𝜕𝑢1

���
𝑥0 ,𝑢0

𝜕 ¤𝛾
𝜕𝑢2

���
𝑥0 ,𝑢0

. . .
𝜕 ¤𝛾
𝜕𝑢11

���
𝑥0 ,𝑢0

𝜕𝑙
𝜕𝑢1

���
𝑥0 ,𝑢0

𝜕𝑙
𝜕𝑢2

���
𝑥0 ,𝑢0

. . . 𝜕𝑙
𝜕𝑢11

���
𝑥0 ,𝑢0

𝜕𝑚
𝜕𝑢1

���
𝑥0 ,𝑢0

𝜕𝑚
𝜕𝑢2

���
𝑥0 ,𝑢0

. . . 𝜕𝑚
𝜕𝑢11

���
𝑥0 ,𝑢0

𝜕𝑛
𝜕𝑢1

���
𝑥0 ,𝑢0

𝜕𝑛
𝜕𝑢2

���
𝑥0 ,𝑢0

. . . 𝜕𝑛
𝜕𝑢11

���
𝑥0 ,𝑢0


, (49)

for the control input vector defined in Eq. (48). This matrix takes into account all effects of the control inputs on the
controlled outputs, whereas for the general INDI controller only the primary effects are considered. Secondary effects,
as the increase in drag because of control surface deflections, are then considered as disturbances [27]. A numerical
example of the CEJ at the trim conditions is given in Eq. (60).

C. Control allocation for minimal propeller power
The traditional formulation of the INCA algorithm, using the control preference vector 𝒖p in Eq. (43), can be

modified to optimize for different secondary objectives. Based on the method given in [40], synthesizing the translational
and rotational control loop, the optimal control inputs for minimal propeller power can be calculated, while satisfying
the reference trajectory defined in Eq. (19). For this, the INCA optimization problem is redefined as

min
Δ𝒖

| |Q (∇𝒖𝚽(𝒙0, 𝒖0)Δ𝒖 − Δ𝝉𝑐) | |22 + ||W (∇𝒖𝛀(𝒙0, 𝒖0)Δ𝒖 + 𝑷0) | |22,

subject to Δ𝒖 ≤ Δ𝒖 ≤ Δ𝒖,
(50)

where
∇𝒖𝛀(𝒙0, 𝒖0) =

[
0 . . . 0 diag

(
𝜕𝑃p1
𝜕𝑛p1

𝜕𝑃p2
𝜕𝑛p2

𝜕𝑃p3
𝜕𝑛p3

𝜕𝑃p4
𝜕𝑛p4

𝜕𝑃p5
𝜕𝑛p5

𝜕𝑃p6
𝜕𝑛p6

) ]
. (51)

The ∇𝒖𝛀(𝒙0, 𝒖0) matrix is called the power effectiveness matrix, which describes the incremental change in propeller
power 𝑃p for an increase in propeller rotational velocity 𝑛p. The vector 𝑷0 gives the current propeller power.
Solving the control allocation problem with Eq. (50) gives the optimal control distribution for minimal propeller

power. Increasing the angle of attack 𝛼 or the control deflections 𝜹 will increase the drag. This means that extra thrust is
required to satisfy Δ𝝉c, for Δ ¤𝑉 in particular, thereby increasing 𝒏p and thus propeller power. Furthermore, using the
propellers for roll or yaw control will also increase propeller power, as 𝑛p for that specific propeller is increased. Using
the above formulation thus gives the optimal trade-off between using the angle of attack 𝛼, the control surfaces 𝜹 and
the propeller differential thrust and PAI effects by changing the propeller rotational velocities 𝒏p, for minimal propeller
power given a reference trajectory.
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D. Model predictive control to compensate for actuator dynamics
An important limitation found during implementation of the INCA controller, is that the combination of rate

constraints Eq. (2) with actuator dynamics Eq. (3) results in an over-conservative design. These rate constraints set a
bound on Δ𝒖 and Δ𝒖. If actuator dynamics are added, the achieved incremental control input Δ𝒖a is smaller than the
commanded incremental control input Δ𝒖c, which has two consequences. Firstly, the full potential of the DEP aircraft is
not used as the achieved control inputs 𝒖a are lower, reducing the tracking performance. Secondly, the commanded
incremental control input Δ𝒖c is optimized for propeller power, but this is not achieved, so that the actual increase in
efficiency is less. To solve this, an MPC controller is introduced to compensate for the actuator dynamics, using a
similar method as in [26], redefining it for an incremental control input Δ𝒖.
The method of MPC is based on optimal control methods as the linear-quadratic regulator (LQR). For these methods,

the optimal control input 𝒖 is calculated using an optimization function. Compared to LQR, the main advantage of
MPC is that state, input and output constraints can be incorporated. In the actuator dynamics framework, this means
that actuator saturation can be prevented by limiting the control inputs with the constraints. Also, nonlinear actuator
dynamics can be taken into account, as the MPC controller uses a finite horizon optimization. The objective function
for optimal control is defined in quadratic form with two objectives, where the first ensures tracking and the second
minimizes the use of the control inputs [41]. Weighing matrices Q and R are added to penalize the first or second
objective. Constraints are added to this optimization, so that future state estimations satisfy the dynamic equations and
stay within a feasible set. Also, constraints are added to the control inputs, so that they stay within their physical limits
[42]. As new control inputs are calculated every time step with a receding horizon, feeding back actuator states, possible
mismatches between the predicted and real output due to modeling errors and disturbances can be compensated for [43].
An important aspect to consider is that for MPC all current actuator states need to be known. Generally, these

cannot all be measured and are subject to process and measurement noise. Therefore, a state-estimator is required, for
which the Kalman filter is used. This is a recursive filter that gives an unbiased minimum variance estimate of a linear
dynamic system taking into account both process and measurement noise [44]. The filter can be enhanced using the
extended Kalman filter [45] and iterated extended Kalman filter [46] to take into account nonlinear system dynamics.
For implementation of MPC with incremental control inputs, the transfer function from Δ𝒖a to 𝒖a needs to be

defined, which is given by the dashed block in Fig. 4. The closed loop actuator dynamics transfer function 𝐻 (𝑠), which
is a single-input single output system for each actuator, is defined as

𝑢a (𝑠)
Δ𝑢a (𝑠)

= 𝐻 (𝑠) = 𝐴(𝑠)
1 − 𝐴(𝑠) , (52)

where A(s) is defined by Eq. (3). The system dynamics are discretized using zero-order hold so that they can be used in
the MPC framework.

MPC
controller

INCA
controller Actuators

Kalman
filter

++ ++

Fig. 4 Controller structure of MPC for actuator dynamics compensation. The closed loop transfer function of
the actuator is given in the dashed line block.

The reference signal send to the MPC controller is 𝒖c = 𝒖a +Δ𝒖c, the sum of the current actual control input and the
commanded incremental control input of the INCA controller. The MPC controller then minimizes the error between
𝒖a and 𝒖c, so that the commanded control inputs by the INCA controller are actually achieved. The control horizon
is set to 𝑁c = 1 as the reference should be reached as fast a possible. The prediction horizon is set to 𝑁p = 3, giving
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a fast response with feasible Δ𝒖a and minimal computational effort. Note that the triangle blocks in Fig. 4 represent
augmentation of the signal over the prediction horizon 𝑁p, so that

Δuc =
[
Δ𝒖c 2Δ𝒖c 3Δ𝒖c

]
∈ R𝑝×𝑁p , (53)

ua =
[
𝒖a 𝒖a 𝒖a

]
∈ R𝑝×𝑁p , (54)

adding the commanded incremental control input Δ𝒖c over the prediction horizon 𝑁p.
As the value of Δ𝒖a should not be penalized, the weight on the control inputs was set to R = 0. The weight on

reference tracking of 𝒖c was set to Q = 1, giving satisfactory tracking performance. As can be seen in the control loop
of Fig. 4, a Kalman filter is placed giving the state estimates 𝒖̂ and ¤̂𝒖, where the noise was assumed to be uncorrelated
zero-mean white noise with variance one. Constraints are added on the output of the MPC controller so that

𝒖 ≤ 𝒖a ≤ 𝒖, (55)

which ensures that the actuators do not saturate. These constraints were softened using a relaxation factor to guarantee
that a feasible solution can always be found. Note that PCH is also used when implementing MPC, as the commanded
control forces and moments can still be unachievable because of actuator limits.

VII. Simulations and Results
In this section, the INDI controller described in Sec. V is compared in simulation with the new INCA controller

described in Sec. VI. The INDI controller does not use the differential thrust and PAI effects actively, so that all
propellers produce the same thrust. This is an inherent limitation of any non-control allocation approach. The INCA
controller does include these extra control effectors. It will be shown how the INCA controller uses this freedom to find
control inputs that minimize propeller power for the same reference trajectory.
For the simulation, the flat-earth, six-degree-of-freedom equations of motion (EoM) are used to describe the attitude

and position of the aircraft [36]. Simulations were initialized in MATLAB and run in Simulink at a sampling frequency
of 𝑓s = 100 Hz. Following the method of [33], it was found that at this sampling rate the influence of the perturbation
term 𝝀(𝒙,Δ𝑡) in Eq. (14) can be discarded, so that stability of the INDI controller can be guaranteed.

A. Controller gains
A proportional gain matrix K is used to steer the states to their reference values. The gains used for the INDI and

INCA controller are given in Table 4 and the reference model gains defined for PCH in Table 5.

Table 4 Proportional gains

ℎ 𝑉 𝛾 𝜙 𝛼 𝛽 𝑝 𝑞 𝑟

INDI 0.2 0.2 0.5 0.8 2.0 1.0 30 5.0 30
INCA 0.3 1.0 1.0 1.0 2.0 1.0 30 5.0 30

Table 5 Reference model gains

rm𝑉 rm𝛾 rm𝑝 rm𝑞 rm𝑟

INDI 1.0 0.4 6.0 5.0 5.0
INCA 2.0 2.0 6.0 5.0 5.0

The gains are tuned to give the same rise time of approximately 2.4 𝑠 for a reference step of 35° on the roll angle 𝜙,
while minimizing the overshoot of the INDI controller. The roll angle of 35° is based on a rate 1-turn of the Airbus
A320, scaled with the Froude number for 𝑛 = 1/8.5 [3]. If the gains are further increased, which gives faster responses,
the INDI controller saturates as it does not use the differential thrust and PAI effects and thus has less control authority.
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This means that the required control forces and moments cannot be achieved, resulting in overshoot. The weighing
matrices of Eq. (50) were set to

Q = 10
[
diag (𝑚 10 · 𝐼𝑦𝑦 1 1 1)

]
, (56)

W = I6, (57)

and when the reference altitude is changed, the weight on 𝛾 is decreased to 5 · 𝐼𝑦𝑦 .

B. Reference trajectory
The reference trajectory is specified with the vector in Eq. (19). Two reference trajectories were defined, where

for the first the reference altitude is set equal to ℎref = 300 𝑚 and the velocity to 𝑉ref = 45 𝑚/𝑠, which are the cruise
conditions. A square-wave reference signal with amplitude 35° is applied on 𝜙ref , while keeping the sideslip angle
𝛽ref = 0° for most efficient flight. This allows showing how the DEP aircraft uses the control surfaces, differential thrust
and PAI effects while maintaining constant altitude and velocity as efficiently as possible. For the second trajectory,
the reference altitude is increased twofold from ℎref = 300 to 500 and 700 𝑚. The reference velocity is also increased
twofold from 𝑉ref = 40 to 45 and 55 𝑚/𝑠. Simultaneously, a 35° full turn is specified, which combined results in
a spiral trajectory. This second trajectory will show controller performance over a large part of the flight envelope,
demonstrating how the nonlinear controller can deal with changing operating conditions.

C. Results
The tracking performance of the reference variables 𝒚ref for the first reference trajectory is given in Fig. 5 up to

and including Fig. 8. As both controllers are tuned for the same rise time of 𝜙 without overshoot, no significant
difference can be seen in Fig. 7 and Fig. 8. Interesting to note is that the tracking performance for the velocity and
altitude is significantly improved for the INCA controller, as can be seen in Fig. 5 and Fig. 6. This is because the INCA
controller merges the translational and rotational loop, controlling these reference values simultaneously. Also, in the
INDI controller, the secondary effects of the control surfaces, affecting the velocity and altitude, are considered as
disturbances. For the INCA controller, these are taken into account in the CEJ defined in Eq. (49), giving improved
tracking performance.
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Fig. 5 Velocity 𝑉 tracking performance.
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Fig. 6 Altitude ℎ tracking performance.

These results can be confirmed with the root mean squared error (RMSE) values of the reference and desired states,
given in Table 6, Table 7 and Table 8. Again, this shows that tracking performance is improved, especially for the
altitude ℎ, where the RMSE value is significantly lower for the INCA compared to the INDI controller.
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Fig. 7 Roll angle 𝜙 tracking performance.
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Fig. 8 Sideslip angle 𝛽 tracking performance.

Table 6 Tracking
performance 𝒙1.

RMSE(𝜖track (𝒙1))
Controller INDI INCA
𝑉 [𝑚/𝑠] 0.117 0.015
ℎ [𝑚] 2.421 0.180

Table 7 Tracking
performance 𝒙2.

RMSE(𝜖track (𝒙2))
Controller INDI INCA
𝜙 [°] 13.40 11.39
𝛼 [°] 0.705 0.359
𝛽 [°] 0.320 0.263
Total 7.747 6.582

Table 8 Tracking
performance 𝒙3.

RMSE(𝜖track (𝒙3))
Controller INDI INCA
𝑝 [°/𝑠] 0.142 0.152
𝑞 [°/𝑠] 0.110 0.016
𝑟 [°/𝑠] 0.006 0.019
Total 0.104 0.089

The control inputs for roll, yaw and velocity control are shown in Fig. 9 up to and including Fig. 11. Interesting
to note is how the ailerons deflect less for the INCA controller, as compared to the INDI controller in Fig. 9. This is
because part of the required rolling moment is now provided by the PAI effects. One can also observe the difference in
rudder deflection in Fig. 10, where the yawing moment is now also provided by the differential thrust for the INCA
controller. The total power of the propellers is given in Fig. 12, where one can see the power consumed is generally less
for the INCA controller. This has two reasons, firstly the INCA controller uses the tip propellers more as can be seen in
Fig. 11, which reduces the power consumed during cruise. Secondly, by using the differential thrust and PAI effects,
the maneuvers can be performed more efficiently, therefore consuming less power. This can be seen between ten and
fifteen seconds and between twenty and twenty-five seconds, where the INCA controller finds a constant allocation
for minimal propeller power. In comparison, for the INDI controller the propeller power keeps oscillating at higher
values. Interesting to see is that the propeller power of the INDI controller also sometimes drops below the levels of the
INCA controller. At these moments, 𝑉ref and ℎref are not accurately tracked, resulting in less propeller power but also
deterioration in tracking performance. Compensating for this tracking error again results in a higher propeller power for
the INDI controller.
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Fig. 9 Aileron deflection 𝛿a.
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Fig. 10 Rudder deflection 𝛿r.
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Fig. 11 Propeller rotational velocity 𝑛p.

0 5 10 15 20 25 30 35

Time [s]

6000

7000

8000

9000

10000

11000

12000

P
T
o
t
[W

]

INDI INCA

Fig. 12 Total propeller power 𝑃Tot.

Integrating the total power gives the total energy consumed, which can be used to quantify the efficiency increase.
The total energy consumed over the specified trajectory for the INDI controller is 0.290 MJ and for the INCA controller
0.273 MJ, giving an efficiency increase of approximately 6.1%. Note that this value is subject to a few assumptions,
especially regarding the PAI effects. Also, this value can change based on a different set of controller gains and a
different reference trajectory. Still, this shows that by actively using the extra control freedom of the DEP aircraft,
optimizing for propeller power, a significant increase in efficiency can be achieved.
To illustrate the effect of the MPC controller, the incremental commanded and achieved left aileron deflections

are given in Fig. 13 and Fig. 14, for the part of the response where the largest roll moment is required. Note that
without MPC the rate constraints are removed, else the ailerons would move too slowly. As one can see in Fig. 13, the
commanded Δ𝛿aLc is much larger than the achieved Δ𝛿aLa . The same holds for the other control inputs, so that an offset
is created between the commanded and achieved control allocation. Implementing MPC ensures that the achieved Δ𝛿aLa

is much closer to the commanded Δ𝛿aLc , as can be seen in Fig. 14. This illustrates how the MPC controller guarantees
that the commanded control allocation from the INCA controller is achieved, which increases tracking performance and
efficiency.
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Fig. 13 Commanded and achieved incremental
aileron deflection without MPC.
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Fig. 14 Commanded and achieved incremental
aileron deflection with MPC.

To show performance over a large part of the flight envelope, the second trajectory is used as the reference. The
tracking performance for this trajectory is shown in Fig. 15 up to and including Fig. 17. Note that the maximum flight
path angle is set to 𝛾max = 10°, which explains the offset between reference and actual altitude in Fig. 17. Looking
at Fig. 18, one can see that by using the differential thrust and PAI effects, more efficient flight is achieved. These
results confirm that by using a nonlinear controller, performance at different operating points is guaranteed. The INCA
controller in combination with MPC can thus be used to find the optimal control input distribution for multiple operating
conditions within the flight envelope.
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Fig. 15 Position in 𝐹E frame.
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Fig. 16 Velocity 𝑚/𝑠 tracking performance.
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Fig. 17 Altitude ℎ tracking performance.
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Fig. 18 Total propeller power 𝑃Tot.

D. Robustness against delays and modeling errors
In the derivation of the MPC controller combined with INCA, it was assumed that the state derivatives can be

measured instantaneously. This makes the method sensitive to delays introduced by filtering of the sensor measurements
[47, 48]. A solution to this can be direct angular accelerometer feedback [49], but measuring ¤𝑉 and ¤𝛾 directly may
prove to be difficult when implementing this method. As sensor filtering introduces delays, it was evaluated whether
the MPC controller can manage a delay of Δ𝑡 on the measurements of ¤𝒚. It was found that by introducing these
delays, the controller performance degrades. This is because the commanded incremental control inputs are determined
with delayed sensor measurements. The MPC controller then compensates for the actuator dynamics and with these
compensated control inputs, the reference variables are followed. As these control inputs lag behind the actual response
because of the delayed measurements, the MPC controller keeps compensating in each sampling instant to achieve
tracking. This results in severe oscillations in the control inputs, which is unacceptable.
A solution for this problem is to scale down the commanded incremental control input with

Δ𝒖c,scale = 𝑘MPCΔ𝒖𝑐,

0 < 𝑘MPC < 1.
(58)

With this method, the MPC controller compensation is smaller, which reduces control input oscillations due to delayed
state derivatives. The factor 𝑘MPC was determined in simulation for different delay values by tuning the value of 𝑘MPC
until the oscillations in the control input disappear. For a delay of Δ𝑡 𝑘MPC = 0.6, for 2Δ𝑡 𝑘MPC = 0.3 and for 3Δ𝑡
𝑘MPC = 0.2 was found. Note that by implementing 𝑘MPC, the power optimization is deteriorated, as the Δ𝒖c commanded
by the INCA controller is scaled down. Also, tracking performance is affected, as the commanded forces and moments
are not achieved. This method, therefore, gives a trade-off between INCA performance and robustness to delays.
Another important aspect to consider is the effect of combing MPC with the INCA controller on the stability of the

controller. To analyze stability, modeling errors were introduced in the CEJ. These errors are defined by an offset based
on the maximum CEJ during the nominal response and a scaling factor on the current CEJ so that

∇𝒖𝚽̂(𝒙0, 𝒖0) = 𝑘offset∇𝒖𝚽max + 𝑘scale∇𝒖𝚽(𝒙0, 𝒖0). (59)
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Here 𝑘offset is the offset factor, which ranges between -0.3 and 3.0, and 𝑘scale is the scale factor, which ranges between
0.5 and 5.0. If either of these values becomes too small, the values in the CEJ switch sign, causing instability. The gains
for roll are increased, so that 𝐾𝜙 = 3 and rm𝑝 = 10. This leads to faster roll responses so that instability is investigated
closer to the operating limits of the DEP aircraft, which gives more distinct results. To quantify these results, the root
mean square error (RMSE) is determined for the reference variables of Eq. (19). The nominal, minimum and maximum
RMSE values for each of the reference values are given in Table 9.

Table 9 RMSE values for modeling uncertainty in CEJ.

Nominal Minimum Maximum
RMSE Offset Scale RMSE Offset Scale RMSE

𝑉 0.044 -0.3 0.8 0.026 3.0 5.0 0.185
ℎ 0.414 -0.2 0.6 0.226 3.0 5.0 1.156
𝜙 16.92 3.0 4.0 16.34 2.9 4.9 18.17
𝛽 0.241 -0.3 0.8 0.219 2.9 4.8 0.753

One can notice that the controller gives stable reference tracking for a large range of offset and scaling errors. The
CEJ can be significantly overestimated, and only at high values the RMSE values increase substantially. Also, as long
as the CEJ does not switch sign it can be underestimated. This confirms the findings in [38], showing that the INCA
controller is robust to large modeling uncertainties. Adding an actuator compensator increases the stability margins of
an INDI controller [33], but an analytical proof for INCA with MPC is beyond the scope of this paper. Stability is,
therefore, concluded based on the simulation results given in Table 9.

VIII. Conclusion
Controllers without control allocation are unable to exploit the full potential of the distributed electric propulsion

(DEP) aircraft. This is because traditional aircraft controllers only use the control surfaces without the differential thrust
and propulsion airframe interaction (PAI) effects. In this paper, a new control allocation method is presented. It is based
on the incremental nonlinear control allocation (INCA) approach, where a real time updated Jacobian model is used to
determine the control effectiveness of the control inputs. This allows taking into account nonlinearities and coupling
effects, while solving an efficient quadratic optimization problem. This method is based on incremental nonlinear
dynamic inversion (INDI), where state derivatives measurements are used to reduce the model dependency and increase
robustness against external disturbances. The secondary objective of the traditional INCA optimization function was
redefined, so that the control allocation is optimized for minimal propeller power, while satisfying the reference tracking
variables. In the allocation algorithm, the translational and rotational control loops are merged, allowing to determine
the optimal control input in one step. A problem with the INCA formulation is that the commanded control inputs are
not achieved because of the actuator dynamics. Therefore, this paper implements a model predictive control (MPC)
controller to compensate for the actuator dynamics, improving tracking performance and optimization for minimal
propeller power.
The performance of the new INCA controller combined with MPC was compared against a conventional INDI

controller that does not actively use the differential thrust and PAI effects. The INDI controller uses an outer loop
for translational control and an inner loop for rotational control. Two reference trajectories were defined, where for
the first the reference velocity and altitude were kept at constant values. For the second trajectory, these values were
changed, so that controller performance over a larger part of the flight envelope with varying operating conditions can
be analyzed. In both simulations, it was shown that by actively using the differential thrust and PAI effects, propeller
power is significantly decreased, while achieving improved tracking performance. Robustness against state derivative
measurement delays was investigated. Here it was shown that by scaling down the commanded incremental control
inputs, small delays in combination with MPC actuator compensation are allowed. Also, modeling uncertainties
were introduced, showing that stability of the controller can be concluded over a large range of errors in the control
effectiveness Jacobian (CEJ).
Future work will focus on the implementation of the MPC method for actuator dynamics compensation, as this

method depends on real time state derivative measurements. The method of scaling down commanded incremental
control inputs deteriorates the tracking performance and power optimization, as the commanded and actual control
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inputs are different. It should be further investigated how this scaling factor can be taken into account in the optimization
and whether other methods are available to increase robustness against delays. Furthermore, MPC is computationally
expensive, which means that the performance regarding computational requirements should be analyzed. Next to that,
when new data from wind tunnel testing or computational fluid dynamics analysis becomes available, the aerodynamic
model should be updated. Specifically, the PAI effects including propeller-control surface interactions are uncertain
and more accurate models will give better optimization performance. Finally, it can be interesting to implement the
presented method on other flying frameworks. In particular, transition vehicles with vertical thrust form an interesting
framework, as there is a clear trade-off between using the wing’s lift and vertical thrust. The most efficient allocation
will depend on the flight condition and the method proposed in this paper is specifically suited for this.

Appendix

∇𝒖𝛀(𝒙0, 𝒖0)trim =



−5.209 1.587 0 −769.4 0
−1.074 · 10−9 0 225.7 2.924 · 10−7 −36.64
1.081 · 10−9 0 −228.4 −2.924 · 10−7 9.395
8.431 · 10−4 0.093 1.797 · 10−6 −1.410 · 103 1.822 · 10−7

−8.492 · 10−9 0 188.0 7.176 · 10−6 −1.209 · 103

0.017 3.543 · 10−4 4.174 0 4.918
0.015 5.290 · 10−4 3.585 0 2.767
0.015 3.657 · 10−4 1.428 0 1.615
0.015 3.657 · 10−4 −1.428 0 −1.615
0.015 5.290 · 10−4 −3.585 0 −2.767
0.017 3.543 · 10−4 −4.174 0 −4.918
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Fig. 19 Thrust coefficient 𝐶𝑇 as a function of
advance ratio 𝐽.
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vance ratio 𝐽.

Acknowledgments
This work was partially funded by the European Union Horizon 2020 program, as part of the Clean Sky 2 program

for Large Passenger Aircraft (CS2-LPA-GAM-2020/2021-01) under grant agreement No 945583.

References
[1] DLR, “Strategic research and innovation agenda - The proposed European Partnership on Clean Aviation,” Tech. rep., DLR,
2020.

[2] EU, “Clean Sky 2 Development Plan Clean Sky 2 Joint Undertaking Development Plan,” Tech. rep., EU, 2019.

19



[3] Schmollgruber, P., Lepage, A., Bremmers, F., Jentink, H., Genito, N., Rispoli, A., Huhnd, M., and Meissner, D., “Towards
validation of scaled flight testing,” 7th CEAS Air and Space Conference, 2020, pp. 1–10.

[4] Borer, N. K., Patterson, M. D., Viken, J. K., Moore, M. D., Clarke, S., Redifer, M. E., Christie, R. J., Stoll, A. M., Dubois, A.,
Bevirt, J. B., Gibson, A. R., Foster, T. J., and Osterkamp, P. G., “Design and performance of the NASA SCEPTOR distributed
electric propulsion flight demonstrator,” 16th AIAA Aviation Technology, Integration, and Operations Conference, 2016, pp.
3920–3939. https://doi.org/10.2514/6.2016-3920.

[5] Pieper, K., Perry, A., Ansell, P., and Bretl, T., “Design and development of a dynamically, scaled distributed electric propulsion
aircraft testbed,” AIAA/IEEE Electric Aircraft Technologies Symposium, 2018, pp. 1–22. https://doi.org/10.2514/6.2018-4996.

[6] Kim, H. D., Perry, A. T., and Ansell, P. J., “A review of distributed electric propulsion concepts for air vehicle technology,”
AIAA/IEEE Electric Aircraft Technologies Symposium, 2018, pp. 1–21. https://doi.org/10.2514/6.2018-4998.

[7] Klunk, G. T., Freeman, J. L., and Schiltgen, B. T., “Vertical tail area reduction for aircraft with spanwise distributed electric
propulsion,” AIAA/IEEE Electric Aircraft Technologies Symposium, 2018, pp. 5022–5034. https://doi.org/10.2514/6.2018-5022.

[8] Freeman, J. L., and Klunk, G. T., “Dynamic flight simulation of spanwise distributed electric propulsion for directional control
authority,” AIAA/IEEE Electric Aircraft Technologies Symposium, 2018, pp. 1–15. https://doi.org/10.2514/6.2018-4997.

[9] Soikkeli, J. S. E., “Vertical tail reduction through differential thrust - An initial assessment of aeropropulsive effects on
lateral-directional stability and control in engine inoperative conditions,” Master’s Thesis, Delft University of Technology, Delft,
the Netherlands, 2020.

[10] Perry, A. T., Ansell, P. J., and Kerho, M. F., “Aero-propulsive and propulsor cross-coupling effects on a distributed propulsion
system,” Journal of Aircraft, Vol. 55, No. 6, 2018, pp. 2414–2426. https://doi.org/10.2514/1.C034861.

[11] Rothhaar, P. M., Murphy, P. C., Bacon, B. J., Gregory, I. M., Grauer, J. A., Busan, R. C., and Croom, M. A., “NASA langley
distributed propulsion VTOL tilt-wing aircraft testing, modeling, simulation, control, and flight test development,” 14th AIAA
Aviation Technology, Integration, and Operations Conference, 2014, pp. 2999–3012. https://doi.org/10.2514/6.2014-2999.

[12] Slotine, J., Applied Nonlinear Dynamics, 1st ed., Prentice-Hall Inc., 1991.

[13] Enns, D., Stein, G., Bugajski, D., and Hendrick, R., “Dynamic inversion: an evolving methodology for flight control design,”
International Journal of Control, Vol. 59, No. 1, 1994, pp. 71–91. https://doi.org/10.1080/00207179408923070.

[14] Sieberling, S., Chu, Q. P., and Mulder, J. A., “Robust flight control using incremental nonlinear dynamic inversion and
angular acceleration prediction,” Journal of Guidance, Control, and Dynamics, Vol. 33, No. 6, 2010, pp. 1732–1742.
https://doi.org/10.2514/1.49978.

[15] Jatiningrum, D., de Visser, C. C., van Paassen, M. M., and Mulder, M., “Modeling an angular accelerometer using frequency-
response measurements,” AIAA Guidance, Navigation, and Control Conference, 2016, pp. 1–14. https://doi.org/10.2514/6.2016-
1139.

[16] Jatiningrum, D., van Paassen, M. M., de Visser, C. C., Chu, Q. P., and Mulder, M., “Investigating cross-axis sensitivity and
misalignment in an angular accelerometer measurement unit,” AIAA Guidance, Navigation, and Control Conference, 2017, pp.
1–16. https://doi.org/10.2514/6.2017-1905.

[17] Johansen, T. A., and Fossen, T. I., “Control allocation - A survey,” Automatica, Vol. 49, No. 5, 2013, pp. 1087–1103.
https://doi.org/10.1016/j.automatica.2013.01.035.

[18] Doman, D. B., and Sparks, A. G., “Concepts for constrained control allocation of mixed quadratic and linear effectors,”
American Control Conference, 2002, pp. 3729–3734.

[19] Bolender, M. A., and Doman, D. B., “Nonlinear control allocation using piecewise linear functions,” Journal of Guidance,
Control, and Dynamics, Vol. 27, No. 6, 2004, pp. 1017–1027. https://doi.org/10.2514/1.9546.

[20] Poonamallee, V. L., Yurkovich, S., Serrani, A., Doman, D. B., and Oppenheimer, M. W., “A nonlinear programming approach
for control allocation,” Proceedings of the American Control Conference, 2004, pp. 1689–1694. https://doi.org/10.23919/acc.
2004.1386822.

[21] Matamoros, I., and de Visser, C. C., “Incremental nonlinear control allocation for a tailless aircraft with innovative control
effectors,” AIAA Guidance, Navigation, and Control Conference, 2018, pp. 1116–1140. https://doi.org/10.2514/6.2018-1116.

20

https://doi.org/10.2514/6.2016-3920
https://doi.org/10.2514/6.2018-4996
https://doi.org/10.2514/6.2018-4998
https://doi.org/10.2514/6.2018-5022
https://doi.org/10.2514/6.2018-4997
https://doi.org/10.2514/1.C034861
https://doi.org/10.2514/6.2014-2999
https://doi.org/10.1080/00207179408923070
https://doi.org/10.2514/1.49978
https://doi.org/10.2514/6.2016-1139
https://doi.org/10.2514/6.2016-1139
https://doi.org/10.2514/6.2017-1905
https://doi.org/10.1016/j.automatica.2013.01.035
https://doi.org/10.2514/1.9546
https://doi.org/10.23919/acc.2004.1386822
https://doi.org/10.23919/acc.2004.1386822
https://doi.org/10.2514/6.2018-1116


[22] Virnig, J. C., and Bodden, D. S., “Multivariable control allocation and control law conditioning when control effectors limit,”
Guidance, Navigation, and Control Conference, 1994, pp. 572–582. https://doi.org/10.2514/6.1994-3609.

[23] Buffington, J. M., and Enns, D. F., “Lyapunov stability analysis of daisy chain control allocation,” Journal of Guidance, Control,
and Dynamics, Vol. 19, No. 6, 1996, pp. 1226–1230. https://doi.org/10.2514/3.21776.

[24] Durham, W. C., “Constrained control allocation,” Journal of Guidance, Control, and Dynamics, Vol. 16, No. 4, 1993, pp.
717–725. https://doi.org/10.2514/3.21072.

[25] Bodson, M., “Evaluation of optimization methods for control allocation,” Journal of Guidance, Control, and Dynamics, Vol. 25,
No. 4, 2002, pp. 703–711. https://doi.org/10.2514/2.4937.

[26] Luo Andrea, Y. S., and Yurkovich, S., “Model predictive dynamic control allocation with actuator dynamics,” Proceeding of the
2004 American Control Conference, 2004, pp. 1695–1700.

[27] Lu, P., van Kampen, E. J., de Visser, C., and Chu, Q., “Aircraft fault-tolerant trajectory control using incremental nonlinear
dynamic inversion,” Control Engineering Practice, Vol. 57, 2016, pp. 126–141. https://doi.org/10.1016/j.conengprac.2016.09.
010.

[28] Ruijgrok, G. J. J., Elements of airplane performance, 2nd ed., Delft University Press, 2009.

[29] Veldhuis, L., “Propeller wing aerodynamic interference,” Ph.D. thesis, Delft University of Technology, 2005.

[30] De Vries, R., Brown, M., and Vos, R., “Preliminary sizing method for hybrid-electric distributed-propulsion aircraft,” Journal
of Aircraft, Vol. 56, No. 6, 2019, pp. 2172–2188. https://doi.org/10.2514/1.C035388.

[31] Patterson, M. D., “Conceptual design of high-lift propeller systems for small electric aircraft,” Ph.D. thesis, Georgia Institute of
Technology, 2016.

[32] Sinnige, T., Van Arnhem, N., Stokkermans, T. C., Eitelberg, G., and Veldhuis, L. L., “Wingtip-mounted propellers: aerodynamic
analysis of interaction effects and comparison with conventional layout,” Journal of Aircraft, Vol. 56, No. 1, 2019, pp. 295–312.
https://doi.org/10.2514/1.C034978.

[33] Wang, X., van Kampen, E.-J., Chu, Q., and Lu, P., “Stability analysis for incremental nonlinear dynamic inversion control,”
Journal of Guidance, Control, and Dynamics, Vol. 42, No. 5, 2019, pp. 1116–1129. https://doi.org/10.2514/1.g003791.

[34] Johnson, E. N., and Calise, A. J., “Pseudo-control hedging : a new method for adaptive control,” Advances in Navigation
Guidance and Control Technology Workshop, 2000, pp. 1–23.

[35] Simplício, P., Pavel, M. D., van Kampen, E., and Chu, Q. P., “An acceleration measurements-based approach for helicopter
nonlinear flight control using incremental nonlinear dynamic inversion,” Control Engineering Practice, Vol. 21, No. 8, 2013,
pp. 1065–1077. https://doi.org/10.1016/j.conengprac.2013.03.009.

[36] Stevens, B. L., Lewis, F. L., and Johnson, E. N., Aircraft control and simulation, 3rd ed., Wiley, New Jersey, 2016.

[37] Durham, W., Aircraft Flight Dynamics and Control, 2nd ed., John Wiley & Sons Ltd., 2013.

[38] Matamoros, I., “Nonlinear control allocation for a high-performance tailless aircraft with innovative control effectors - An
incremental robust approach,” Master’s Thesis, Delft University of Technology, Delft, the Netherlands, 2017.

[39] Petersen, J. A., and Bodson, M., “Constrained quadratic programming techniques for control allocation,” IEEE Transactions on
Control Systems Technology, Vol. 14, No. 1, 2006, pp. 91–98. https://doi.org/10.1109/TCST.2005.860516.

[40] Pfeifle, O., and Fichter, W., “Energy Optimal Control Allocation for INDI Controlled Transition Aircraft,” AIAA SciTech Forum,
2021, pp. 1457–1468. https://doi.org/10.2514/6.2021-1457.

[41] Camacho, E. F., and Bordons, C. C.,Model predictive control, 2nd ed., Springer, 2007.

[42] Müller, M. A., and Allgöwer, F., “Economic and distributed model predictive control: recent developments in optimization-
based control,” SICE Journal of Control, Measurement, and System Integration, Vol. 10, No. 2, 2017, pp. 39–52.
https://doi.org/10.9746/jcmsi.10.39.

[43] Findeisen, R., and Allgöwer, F., “An introduction to nonlinear Model predictive control,” 21st Benelux Meeting on Systems and
Control, 2002, pp. 119–141.

21

https://doi.org/10.2514/6.1994-3609
https://doi.org/10.2514/3.21776
https://doi.org/10.2514/3.21072
https://doi.org/10.2514/2.4937
https://doi.org/10.1016/j.conengprac.2016.09.010
https://doi.org/10.1016/j.conengprac.2016.09.010
https://doi.org/10.2514/1.C035388
https://doi.org/10.2514/1.C034978
https://doi.org/10.2514/1.g003791
https://doi.org/10.1016/j.conengprac.2013.03.009
https://doi.org/10.1109/TCST.2005.860516
https://doi.org/10.2514/6.2021-1457
https://doi.org/10.9746/jcmsi.10.39


[44] Verhaegen, M. M., and Verdult, V., Filtering and system identification : a least squares approach, 1st ed., Cambridge University
Press, 2007.

[45] Skoglund, M. A., Hendeby, G., and Axehill, D., “Extended Kalman filter modifications based on an optimization view point,”
18th Conference on Information Fusion, 2015, pp. 1856–1861.

[46] Barfoot, T. D., State estimation for robotics, 1st ed., Cambridge University Press, 2017.

[47] Smeur, E. J., Chu, Q., and De Croon, G. C., “Adaptive incremental nonlinear dynamic inversion for attitude control of micro air
vehicles,” Journal of Guidance, Control, and Dynamics, Vol. 39, No. 3, 2016, pp. 450–461. https://doi.org/10.2514/1.G001490.

[48] Grondman, F., Looye, G. H., Kuchar, R. O., Chu, Q. P., and van Kampen, E. J., “Design and flight testing of incremental
nonlinear dynamic inversion based control laws for a passenger aircraft,” AIAA Guidance, Navigation, and Control Conference,
2018, pp. 385–409. https://doi.org/10.2514/6.2018-0385.

[49] Cakiroglu, C., Van Kampen, E. J., and Chu, Q., “Robust incremental nonlinear dynamic inversion control using angular
accelerometer feedback,” AIAA Guidance, Navigation, and Control Conference, 2018, pp. 1128–1143. https://doi.org/10.2514/
6.2018-1128.

22

https://doi.org/10.2514/1.G001490
https://doi.org/10.2514/6.2018-0385
https://doi.org/10.2514/6.2018-1128
https://doi.org/10.2514/6.2018-1128

	Nomenclature
	Introduction
	DEP Aircraft Model
	Nonlinear Flight Control Design
	Nonlinear dynamic inversion
	Incremental nonlinear dynamic inversion
	Pseudo-control hedging

	Traditional Aircraft Control Loops
	Translational Control Loop
	Altitude Control Loop
	Flight Path Angle and Velocity Control Loop

	Rotational Control Loop
	Aerodynamic Attitude Control Loop
	Body Angular Rate Control Loop


	Control Allocation Design
	Incremental Nonlinear Control Allocation
	Control allocation for translational and rotational control
	Control allocation for minimal propeller power
	Model predictive control to compensate for actuator dynamics

	Simulations and Results
	Controller gains
	Reference trajectory
	Results
	Robustness against delays and modeling errors

	Conclusion

