

Delft University of Technology

Are Concept Drift Detectors Reliable Alarming Systems?
A Comparative Study
Poenaru-Olaru, Lorena; Cruz, Luis; Deursen, Arie van; Rellermeyer, Jan

DOI
10.1109/BigData55660.2022.10020292
Publication date
2022
Document Version
Final published version
Published in
Proceedings of the 2022 IEEE International Conference on Big Data (Big Data)

Citation (APA)
Poenaru-Olaru, L., Cruz, L., Deursen, A. V., & Rellermeyer, J. (2022). Are Concept Drift Detectors Reliable
Alarming Systems? A Comparative Study. In S. Tsumoto, Y. Ohsawa, L. Chen, D. Van den Poel, X. Hu, Y.
Motomura, T. Takagi, L. Wu, Y. Xie, A. Abe, & V. Raghavan (Eds.), Proceedings of the 2022 IEEE
International Conference on Big Data (Big Data) (pp. 3364-3373). IEEE.
https://doi.org/10.1109/BigData55660.2022.10020292
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/BigData55660.2022.10020292
https://doi.org/10.1109/BigData55660.2022.10020292

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

2022 IEEE International Conference on Big Data (Big Data)

978-1-6654-8045-1/22/$31.00 ©2022 IEEE 3364

Are Concept Drift Detectors Reliable Alarming
Systems? - A Comparative Study

Lorena Poenaru-Olaru
Software Engineering

TU Delft
Delft, Netherlands

L.Poenaru-Olaru@tudelft.nl

Luis Cruz
Software Engineering

TU Delft
Delft, Netherlands
L.Cruz@tudelft.nl

Arie van Deursen
Software Engineering

TU Delft
Delft, Netherlands

arie.vandeursen@tudelft.nl

Jan S. Rellermeyer
Dependable and Scalable Software Systems

Leibniz University Hannover
Hanover, Germany

rellermeyer@vss.uni-hannover.de

Abstract—As machine learning models increasingly replace
traditional business logic in the production system, their lifecycle
management is becoming a significant concern. Once deployed
into production, the machine learning models are constantly
evaluated on new streaming data. Given the continuous data
flow, shifting data, also known as concept drift, is ubiquitous in
such settings. Concept drift usually impacts the performance of
machine learning models, thus, identifying the moment when
concept drift occurs is required. Concept drift is identified
through concept drift detectors. In this work, we assess the
reliability of concept drift detectors to identify drift in time
by exploring how late are they reporting drifts and how many
false alarms are they signaling. We compare the performance
of the most popular drift detectors belonging to two different
concept drift detector groups, error rate-based detectors and
data distribution-based detectors. We assess their performance on
both synthetic and real-world data. In the case of synthetic data,
we investigate the performance of detectors to identify two types
of concept drift, abrupt and gradual. Our findings aim to help
practitioners understand which drift detector should be employed
in different situations and, to achieve this, we share a list of the
most important observations made throughout this study, which
can serve as guidelines for practical usage. Furthermore, based on
our empirical results, we analyze the suitability of each concept
drift detection group to be used as an alarming system.

Index Terms—concept drift detection, machine learning lifecy-
cle management

I. INTRODUCTION

Predictive algorithms, such as classification algorithms us-
ing Machine Learning (ML) on Big Data have seen a signif-
icant growth in interest and plenty of real-world applications
have been proposed. Examples of those applications are fault
detection [36], anomaly detection [26], weather prediction [3],
or credit risk prediction [6], where different ML models are
constantly evaluated on streaming data. Generally, due to the
continuous data flow, data streams are more prone to changes
in data distributions over time and, thereby, to concept drift.

Concept drift is a significant threat to the performance of
ML models over time. ML models are created by training an
ML algorithm on a certain amount of available data, which
we are referring to as reference data. The ML algorithms
work under the assumption that the data distribution used
to evaluate the model is similar to the data distribution of
the reference data. However, this assumption does not hold
when considering data streams since the evaluation (testing)

data is constantly evolving over time due to uncontrollable
factors [37]. Therefore, this raises a substantial issue with
regards to preserving the performance of ML models over
time.

Knowing beforehand when concept drift occurs could help
data scientists to take appropriate measures in advance to
prevent its effects on the ML model’s performance [28]. Thus,
special drift algorithms called concept drift detectors were
proposed to identify the moment when concept drift occurs.
They can be used as an alarming system that notifies users
about expected model performance degradation. Consequen-
tially, it is important for these drift detectors to be precise
when reporting the moment of data shift.

Several studies have identified two major concept drift
detectors categories, the error rate-based drift detectors and
the data distribution-based drift detectors [9], [28]. The error
rate-based drift detectors identify drift by monitoring the error
rate of a trained model on new evaluation data batches. They
are always paired with the classification algorithm used to train
the model. Since they continuously compute the error rate,
these detectors assume that labels are available immediately,
which makes them label-dependent drift detectors. The data
distribution-based drift detectors identify drifts by assessing
the similarity between the distribution of the reference data
and the evaluation data. There is currently no general similarity
metric used uniformly among all studies. Since their drift
detection mechanism solely relies on density functions of
training and testing data, they are label-independent drift
detectors. In real-world settings, the data distribution-based
detectors are favored over the error rate-based detectors since
immediately obtaining labels can be expensive or even impos-
sible [19]. However, recently some techniques were developed
to adapt error rate-based detectors for unsupervised and semi-
supervised settings [9]. Previous comparative studies [8], [4],
[21] focused on analyzing only the error rate-based detectors.
Thus, our study is the first to compare the aforementioned
two categories of drift detectors. Furthermore, we are the
first to assess the precision of detectors in terms of latency
and false-positive rate from the perspective of monitoring Big
Data ML applications in production and to provide guidelines
for practitioners. Thereby, we contribute in the following
directions:

20
22

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 B

ig
 D

at
a

(B
ig

 D
at

a)
 |

97
8-

1-
66

54
-8

04
5-

1/
22

/$
31

.0
0

©
20

22
 IE

EE
 |

D
O

I:
10

.1
10

9/
B

ig
D

at
a5

56
60

.2
02

2.
10

02
02

92

Authorized licensed use limited to: TU Delft Library. Downloaded on January 27,2023 at 12:40:50 UTC from IEEE Xplore. Restrictions apply.

3365

Context A Context A + B Context B

Context A Context B

start end

drift width

time

time

Gradual

Abrupt

Fig. 1. Gradual vs abrupt drift duration.

1) We assess both the data distribution-based detectors and
the error-rate based detectors in terms false alarms, miss-
detection rate and drift detection latency on both synthetic
and real-world data.

2) We explore different similarity metrics of data distribution-
based detectors and find that, in some cases, other similarity
distances are more suitable than the widely used KL
Divergence [16], [31].

3) We share the open source implementation of the data
distribution-based detectors employed in this study, which
was not previously available. Furthermore, our work is
reproducible and available on GitHub.

4) We evaluate the error rate-based detectors paired with three
recent and popular classifiers, such as AdaBoost [17], XG-
Boost [14] and LightGBM [24], as well as commonly used
classifiers [4], [8], [21], i.e., Naive Bayes and Hoeffding
Trees.

5) We provide some major observations of detector-dataset
compatibility, which aim to serve as guidelines for prac-
titioners who want to include drift detectors in their data
stream monitoring process.

II. BACKGROUND AND RELATED WORK

A. Concept Drift General Knowledge

The term of concept drift, also known as data shift or data
drift, was originally used in data streams to describe changes
in data distributions over time [19]. The most common types
of concept drift are abrupt drift and gradual drift [4], [8],
[21]. The key difference between the two types of drift is
the duration. In case of abrupt drift, there is a sudden change
in the feature behavior, while in case of gradual change, the
features are changing completely after a transition period, as it
can also be observed in Fig. 1. The transition period between
the moment when gradual drift starts and the moment it ends
is referred to as drift width.

B. Concept Drift Detectors

Plenty of attention has been paid to developing techniques
that are able to detect concept drift as part of data stream
monitoring [28]. This section presents drift detectors belong-
ing to both error rate-based (ERB) drift detectors and data
distribution-based (DDB) drift detectors.

Out of the ERB drift detectors, the most popular drift
detector is Drift Detection Method (DDM) [20], which uses
statistical tests to identify significant changes in error rate. An

improved version of DDM is Early Drift Detection Method
(EDDM) [5], which, additionally, verifies the distance between
error rates when identifying drifts. Another popular ERB drift
detector is Adaptive Windowing (ADWIN) [10], a window
based technique to store recent samples. The decrease in
mean of the stored samples is monitored to detect drift. The
Drift Detection Method based on the Hoeffding’s inequality
carried with A-test (HDDM A) and W-test (HDDM W) [18]
methods rely on tracking the moving average and Hoeffding’s
inequality to determine the significance of the change. Other
examples of ERB drift detectors are FW-DDM [27], EWMA
chart drift detector [32] and RDDM [7].

Within the (DDB) detectors we distinguish between detec-
tors employing statistical tests and detectors using similarity
metrics. The most popular example of the former category
is the Equal Density Estimation (EDE) detector [22], which
identifies drift based on a non-parametric statistical tests. The
null hypothesis of the tests assumes the similarity of two data
distributions and its rejection signals a drift. The most com-
monly employed DDB detector relying on similarity metrics is
quad-trees which scale with the size (k) and dimensionality (d)
of the data (kdqTrees) [16]. This technique uses bootstrapping
to determine the highest discrepancy between the reference
(training) data and subsamples of the reference data in order
to compute a critical region. Thereafter, the similarity between
the distribution of the new data and the reference data, assessed
by the critical region, is used to detect drift. For this tech-
nique the similarity metric used is KL Divergence. However,
other studies consider different similarity metrics to measure
similarities between distributions [25]. Therefore, there is no
general similarity metric used in DDB drift detectors and no
available study about different metrics suitability in concept
drift detection. Furthermore, recent studies suggest that ex-
tracting the distributions of the projected features obtained
through Principal Component Analysis (PCA) instead of raw
features is more suitable for high dimensional datasets [31]
and could significantly improve drift detection. Other DDB
drift detectors are SyncStream [33] or RD [25].

C. Datasets for Concept Drift Detectors Evaluation

When comparing concept drift detectors, most studies [4],
[8], [21] are relying on synthetic datasets, usually generated
through the MOA Framework [11]. The reason for this is
that the moment when the concept drift occurs could be fixed
through data generation.

Evaluating concept drift detectors on real-world data is most
of the times impractical given that the exact moment when a
drift occurs is unknown. However, the study of Webb et al.
[35] identifies the moment of drift occurrence for two real-
world datasets, Electricity (ELECT2) [23] and Airlines [11].

The ELECT2 datasets, contains samples from Australian
New South Wales Electricity Market collected every five
minutes over a period of approximately two years. The main
prediction problem of ELECT2 is determining whether prices
are going up or down based on demand and supply features.
In this dataset there is a sudden drift on the 2nd of May when

Authorized licensed use limited to: TU Delft Library. Downloaded on January 27,2023 at 12:40:50 UTC from IEEE Xplore. Restrictions apply.

3366

wholesale electricity sales between the Australian Capital
Territory, New South Wales, South Australia and Victoria was
allowed [35]. The effect of this concept drift could be observed
on three attributes of the dataset, which were constant until that
date, but started fluctuating afterwards.

The Airlines dataset, contains samples corresponding to
details of multiple flights collected over a period of four weeks.
The main prediction problem is determining whether flights
are going to be delayed or on-time. Within this dataset, there
is a significant concept drift occurring during the weekend
flights (starting from Friday until Sunday) compared to the
week days. This drift can be observed especially on the first
two weeks of collected data [35].

III. EVALUATION METHODOLOGY

The main goal of this paper is to evaluate the ability
to detect drift in time of both error-rate based (ERB) drift
detectors and the data distribution-based (DDB) drift detectors
under different conditions. This can be summarized in the
following research questions:
RQ1: How do state-of-the-art drift detectors compare in their

ability to detect abrupt and gradual drift under ideal
circumstances?

RQ2: How do state-of-the-art drift detectors perform detect-
ing abrupt and gradual drift in the presence of noise and
imbalanced data?

RQ3: To what extent does the performance of drift detectors
on controlled drift position data generalize to real-world
data?

A. Data

1) Employed Datasets: In order achieve our goal, we need
to know precisely when the drift occurs. Thereby, in our
evaluation we include both synthetic data, where the concept
drift can be fixed through the data generation process, and real-
world data for which we know the moment when the concept
drift occurs [35]. Our study exploits three synthetic datasets,
namely SEA, AGRAW1 and AGRAW2, and two real-world
datasets for which the moment of concept drift occurrence is
known and marked through the findings of Webb et al. [35],
namely Electricity (ELECT2) and Airlines.

We generated synthetic data through two data generators,
namely SEA [34] and Agrawal [1] available in the MOA
framework. It needs to be mentioned that MOA was solely
employed to generate the data, not to perform the evaluation.
The former generates three attributes containing numerical
features ranging from 0 to 1 and is frequently used in the
concept drift detection literature [8], [21], [4]. The latter
creates three categorical attributes and six numerical attributes,
which correspond to loan-related data. Agrawal generator was
created through the process of database mining, in which
significant patterns were extracted from large scale industrial
data sets and used to generate synthetic data samples. We
generated two datasets with the Agrawal generator, AGRAW1
and AGRAW2. Although both AGRAW1 and AGRAW2 were
generated using the same generator, they are two different

datasets, which consider different forms of evaluation when
classifying the samples into the two classes. For all the
synthetic datasets, we generated data under ideal conditions,
in which no noise was added and the two classes are balanced
and also non-ideal conditions, with 10% and 20% noise or
imbalanced classes, where the imbalance ratio is 1:2. This is
the highest imbalance ratio for which the detectors were able
to identify any drift. The scope of the non-ideal conditions is to
assess the robustness of the detectors against events that could
occurs in real-world scenarios. Furthermore, we generate data
for both abrupt and gradual drift. We consider different drift
widths, namely [500, 1000, 5000, 10000, 20000] samples. For
instance, from the moment the gradual concept drift starts,
there are 500 samples until it ends and the features are
changing their behavior completely. Each dataset is generated
using 10 random seeds to avoid bias in our experiments. We
further assess the ability of drift detectors to identify drift on
two real-world datasets.

We purposely include datasets containing solely numerical
features, SEA and ELECT2, as well as datasets containing
both numerical and categorical features, AGRAW1, AGRAW2
and Airlines. In general, categorical features pose problems for
ML classifiers, since the ML algorithms usually require numer-
ical values. The most commonly used technique to overcome
this issue is one-hot encoding, which converts categorical data
into binary vectors. Therefore, we employ this technique in our
experiments for the datasets containing a mixture of numerical
and categorical features.

After ensuring that all datasets contain solely numerical
values, the next step is the data scaling. Two of the datasets
considered, SEA and ELECT2, include data scaled between
0 and 1. In order to ensure experimental consistency, we also
scale the values for remaining datasets, AGRAW1, AGRAW2
and Airlines. Data scaling was performed using the Min-
Max scaler implementation provided in the Python-scikit learn
package 1. The reason for choosing this scaler is that it does
not make any assumption regarding the distribution of the data
following a particular pattern.

2) Data Setup: In our experiments we process each dataset
as a data stream in which the first part is the reference data
and the second part is the testing data. The testing data is
divided into equal testing batches. The reason behind this is
that the reference data is used to train the ML model which
is going to be periodically tested on the new upcoming data.
In all cases we ensure that the drift occurs during the testing
phase, such that we simulate a deployed ML model which
needs to be tested on shifted data. For each new testing batch,
a drift detector is employed to determine whether the data
has shifted. A detailed representation of our setup is shown in
Fig. 2. In all our experiments, detectors that signal the drift
before the testing batch containing the actual concept drift is
a false alarm. In the same manner, signaling the drift after
the testing batch containing the drift increases the latency. In

1scikit-learn version 1.0.2 https://scikit-learn.org/stable/modules/generated/
sklearn.preprocessing.MinMaxScaler.html

Authorized licensed use limited to: TU Delft Library. Downloaded on January 27,2023 at 12:40:50 UTC from IEEE Xplore. Restrictions apply.

3367

... ...

Reference Data

Drift Start

Testing Batches

Fig. 2. Data stream setup.

case of ERB detectors, the reference data is used in order to
train the ML classifiers, which are paired with the concept
drift detectors. In case of some DDB detectors, the reference
data is used to compute a threshold, which is employed to
assess the similarity between the new data and the old data.
Furthermore, we solely use the reference data to fit the scaler
and then we apply it on each testing batch.

In the SEA, AGRAW1 and AGRAW2 datasets, the drift
start is fixed during the data synthesizing process such that
the first two testing batches do not contain drift, while the
others include drift.

In case of the real-world data, we initially defined the pre-
diction problem. In case of ELECT2, the prediction problem
is weekly predicting whether prices are going up or down.
The reference data is composed of the initial part of the data
stream, namely data collected between the 07th of May 1996
and the 15th of April 1997. Each testing batch is composed
of one week of data. The drift starts in the testing batch
containing the 2nd of May 1997. In terms of the Airline dataset,
the prediction problem is daily predicting delayed flights.
Since the first week of data has missing records corresponding
to Monday and Tuesday, we solely consider the second week,
for which we have complete data from Monday until Sunday.
The reference data is represented by samples from Monday
and Tuesday, while the other week days are testing batches.
The drift starts on the testing batch corresponding to Friday
and lasts until the end of the week.

B. Implementation Decisions in Drift Detectors

When selecting the detectors used for evaluation, our major
selection criteria is the publicly available implementations.
However, one barrier we encountered was the implementation
unavailability of the DDB detectors, for which only mathe-
matical proofs were provided. Thus, we implemented three
popular such detectors.

In terms of ERB drift detectors we employ DDM, EDDM,
ADWIN, HDDM A and HDDM W, using the implementa-
tions provided in the Python package scikit-multiflow2. These
detectors rely on the error rate and, thus, they need to be
paired with classifiers. For this study, we use the following
classifiers Naive Bayes, Hoeffding Trees, AdaBoost, XGBoost
and LightGBM, which were used either in previous drift
detection comparative studies, [21], [8], [4] or in data stream

2scikit-multiflow version 0.5.3. available here: https://scikit-multiflow.
github.io - this package was chosen based on its popularity

classification [29], [15]. The classifiers are not retrained after a
drift is signaled since the purpose of the experiment is solely to
identify how fast the first drift can be captured, not to evaluate
the situations of multiple drifts. Therefore, the reference data
is also not changed after a drift is signaled. For each detector
we employed the best hyperparameters configuration.

When it comes to DDB drift detectors, we employ the
statistical test-based detector EDE and two similarity metric-
based detectors, namely kdqTrees and PCA-kdq. We imple-
mented both EDE and kdqTrees according to the original
papers [22], [16]. In case of EDE, we employed two non-
parametric statistical tests, namely Kolmogorov-Smirnov and
Mann Whitney. When it comes to kdqTrees, the original
implementation included KL Divergence as similarity metric.
However, in our work, we experimented with seven similarity
metrics corresponding to seven different groups of distance
metrics suitable for determining the similarity between den-
sity functions according to Che et al. [12]. Thus, the sim-
ilarity metrics employed for this study are the following:
KL-Divergence (KL), Manhattan Distance (MH), Chebyshev
(CBS), Kulsinski (KLS), Cosine (COS), Squared Euclidean
(SE) and Bhattacharyya (BTC). In terms of PCA-kdq, this
detector is a modified version of kdqTrees with the purpose
of addressing the high dimensionality. The difference between
the two is that instead of extracting the data distribution from
the original data, we extract it from the projected data, which
is computed through PCA. The similarity metrics employed
within PCA-kdq are the same as the ones used for kdqTrees.
All implementations are publicly available in our replication
package3.

C. Evaluation Metrics

To evaluate the drift detectors, we employ three evaluation
metrics, namely the latency, the false positive rate and the
miss-detection probability. In our study we use these metrics
taking into account our data setup with the purpose of un-
derstanding how many testing batches with drift are ignored,
how many testing batches without drift are signaled as drift
and how many datasets with drift are not reported, respectively.

Latency (L): ranges between 0 and 1 and it shows how
late the detector manages to detect the drift. If the detector
indicates that there is a drift in the first batch when the drift
starts, the latency is 0. Therefore, the latency is 0 if the detector
identifies the drift at the batch corresponding to the beginning
of concept drift in case of gradual drift and occurrence of
concept drift for abrupt drift. The formula for the latency (L)
is the following:

L =
k − j

|B|
; bj , bk ∈ B, (1)

where bn is the nth batch in the list of batches (B), bj is the
batch corresponding to the beginning of the concept drift, bk
is the batch detected as drift. This metric takes the value ND
(nothing detected) if no drift is detected.

3https://github.com/LorenaPoenaru/concept drift detection

Authorized licensed use limited to: TU Delft Library. Downloaded on January 27,2023 at 12:40:50 UTC from IEEE Xplore. Restrictions apply.

3368

False Positive Rate (FPR): shows the percentage of
non-drifted batches detected as drifted batches. If no drift
is detected in the data-stream, the metric will output ND
(nothing detected). The FPR takes the value 0 if no batch that
does not contain drift is signaled as drift and 1 if all batches
that do not contain drift are signaled as drift. The formula for
the false positive rate is the following:

FPR =
kF

|BND|
; bFk ∈ B, (2)

where bFk is the batch erroneously detected as drift and BND

is the total number of batches without drift out of the total list
of batches (B).

Miss-Detection Probability (MDP): When evaluating con-
cept drift detectors on synthetic data, it is common to use
multiple random seeds of the same dataset to avoid bias. Thus,
this metric is only addressed to synthetic data to understand in
how many cases the detector managed to identify drift after its
occurrence among the 10 random seeds of one dataset, which
are referred to as iterations. Since it is a probability, it takes
values from 0 to 1, where 0 means that the detector managed
to identify drift in all the 10 random seeds of one dataset and
1 means that the detector did not manage to identify any drift
in any of the 10 random seeds. The formula for the miss-
detection rate is the following:

MDP = P (L(1,...,n) = ND) (3)

where n is the number of random seeds, L(1,...,n) is the array
corresponding to the latency

IV. EXPERIMENTAL RESULTS

This section presents the performances achieved by error
rate-based (ERB) detectors and data distribution-based (DDB)
detectors on both synthetic and real-world data.

A. Synthetic Data

1) Ideal Conditions.: With the scope of addressing the first
research question, we conduct the first set of our experiments
on synthetically generated data under ideal conditions (no
noise or class imbalance added).

We begin our evaluation by assessing the MDP of each
detector on each synthetic dataset in case of abrupt drift. Given
that all evaluated datasets contain concept drift injected in the
process of data generation, we consider that not being able
to flag a drift in one iteration of a dataset is an exclusion
criteria for the drift detectors in further experiments. Thus,
we filter out all detectors with a MDP higher than 0.0 for
each dataset. We provide a detailed explanation into which
detectors are removed during this step for each dataset together
with their corresponding MDP in Table I. We observe that
a high number of DDB detectors achieve an MDP close to
1 in case of AGRAW1 and AGRAW2 datasets, where the
categorical data was encoded using one-hot encoding. This
shows that the detectors are unable to find differences between

the reference data and the upcoming testing data, which could
be a consequence of computing the data distribution from a
sparse dataset.

TABLE I
MISS DETECTION PROBABILITY (MDP) OF EACH EXCLUDED DETECTOR
IN CASE OF ABRUPT DRIFT. IN CASE OF THE ERB DETECTORS WE ONLY

SHOW THE BEST MDP OF EACH POSSIBLE CONFIGURATION OF
DETECTOR+CLASSIFIER.

Dataset Detector Group Detector MDP

SEA ERB DDM 1
EDDM 1

HDDM A 0.8
DDB EDE-MW 1

PCA-kdq 0.8
AGRAW1 ERB DDM 1

EDDM 1
HDDM A 0.7

DDB EDE-MW 1
EDE-KS 0.8

kdqTrees-KL 1
kdqTrees-MH 0.8
kdqTrees-KLS 1
kdqTrees-CBS 1
kdqTrees-COS 1
kdqTrees-SE 1

kdqTrees-BTC 1
PCA-kdq-MHT 0.8
PCA-kdq-CBS 0.3
PCA-kdq-COS 0.7
PCA-kdq-SE 0.6

AGRAW2 ERB DDM 1
EDDM 1

HDDM A 0.9
DDB EDE-MW 1

EDE-KS 0.7
PCA-kdq-KL 0.3
PCA-kdq-MH 0.3
PCA-kdq-KLS 0.6
PCA-kdq-CBS 0.3
PCA-kdq-COS 0.3
PCA-kdq-SE 0.3

PCA-kdq-BTC 0.4
Acronyms: KL - KL Divergence Distance, MH - Manhattan Distance, KLS
- Kulsinski Distance, COS - Cosine Distance, SE - Squared Euclidean
Distance, CBS - Chebyshev Distance, BTC - Bhattacharyya Distance, MW -
Mann Whitney statistical test, KS - Kolmogorov Smirnov statistical test

We continue our experiments by assessing the latency and
false positive rate of the remaining detectors on each dataset
with abrupt drift. In Table II we show the results of our
findings. The main observation that we can draw from Table
II is that the error-rate based (ERB) detector ADWIN achieves
the lowest latency and false positive rate on all datasets,
managing to correctly identify all drifts. Furthermore, its
performance is independent of the chosen classifier. When it
comes to DDB detectors, we can see that they are in general
less precise than the ERB detector ADWIN. Furthermore,
there is no general similarity metric or statistical test that
achieved the highest performance for all datasets. For both
datasets AGRAW1 and AGRAW2, there is no best option in
terms of choosing one drift detector, since in all cases there
is a compromise between latency and false positive rate. For
instance, while KL Divergence minimizes the false positive
rate, the Kulsinski and Bhattacharyya distance minimize the

Authorized licensed use limited to: TU Delft Library. Downloaded on January 27,2023 at 12:40:50 UTC from IEEE Xplore. Restrictions apply.

3369

latency. Moreover, the DDB detectors can more accurately
identify concept drift within the dataset SEA, compared to
the datasets AGRAW1 and AGRAW2 datasets.

TABLE II
AVERAGE LATENCY AND FPR OF EACH DETECTOR OVER THE 10

ITERATIONS FOR ABRUPT DRIFT. IN BOLD WE SHOW THE BEST
PERFORMING DRIFT DETECTOR FOR EACH DATASET.

SEA AGRAW1 AGRAW2
Detector L FPR L FPR L FPR

ADWIN * 0.00 0.00 0.00 0.00 0.00 0.00
HDDM W NB - - 0.00 0.00 0.00 1.00

HT - - 0.04 0.00 0.00 0.00

E
R

B ADB - - 0.04 0.00 0.08 0.00
XGB - - 0.04 0.00 0.02 0.00

LGBM - - 0.04 0.00 0.02 0.00

D
D

B

EDE KS 0.00 0.10 - - - -
kdqTrees KL 0.00 0.20 - - 0.16 0.15

MH 0.00 0.40 - - 0.04 0.30
KLS 0.00 0.40 - - 0.12 0.20
CBS 0.00 0.20 - - 0.12 0.20
COS 0.00 0.20 - - 0.12 0.20

SE 0.00 0.15 - - 0.12 0.20
BTC 0.00 0.10 - - 0.12 0.20

PCA-kdq KL - - 0.20 0.32 - -
MH 0.00 0.25 - - - -

KLS 0.00 0.25 0.04 0.41 - -
CBS 0.00 0.30 - - - -
COS 0.00 0.25 - - - -

SE 0.00 0.25 - - - -
BTC 0.00 0.30 0.07 0.36 - -

Acronyms: NB- Naive Bayes, HT - Hoeffding Trees, ADB - AdaBoost,
XGB - XGBoost, LGBM - LightGBM, KL - KL Divergence Distance, MH
- Manhattan Distance, KLS - Kulsinski Distance, COS - Cosine Distance,
SE - Squared Euclidean Distance, CBS - Chebyshev Distance, BTC -
Bhattacharyya Distance, KS - Kolmogorov Smirnov statistical test

We further assess the precision of both ERB and DDB
detectors to identify gradual drift. In this experiment, we
solely include the drift best performing drift detectors from
the abrupt drift experiment. The reason for this decision is
that in real-world settings the type of drift that might occur
is unknown and, thereby, we need detectors which work well
on both abrupt and gradual drift. We depict the latency and
false positive rate of the chosen detectors in Fig. 3 and Fig. 4,
respectively.

One observation that we can make from Fig. 3 is that
the latency in general not impacted by drift widths lower
than 10000 samples. We can notice that the latency of ERB
detectors increases slightly for a gradual drift width of 20000
samples. Furthermore, the latency of DDB detectors is overall
higher than the latency achieved by the ERB detectors.

From Fig. 4, we can see that the ERB detectors are severely
impacted by higher drift widths, with the false positive rate
increasing up to 1.0 for 10000 and 20000 samples. However,
the false positive rate of DDB detectors remains relatively
stable across the different evaluated drift widths.

2) Non-Ideal Conditions: To answer the second research
question, we conduct experiments on both abrupt and gradual
drift under non-ideal conditions, such as noisy data and class
imbalance. In terms of the gradual drift we fix the drift width to
1000 samples, since we noticed from the previous experiment
that this is the higher evaluated drift width for which the false

500 1000 5000 10000 20000
0.0

0.2

0.4

0.6

0.8

1.0

La
te

nc
y

SEA-ERB
ADWIN-NB
ADWIN-HT
ADWIN-ADB
ADWIN-XGB/LGBM

500 1000 5000 10000 20000
0.0

0.2

0.4

0.6

0.8

1.0

La
te

nc
y

SEA-DDB
kdqT-BTC

500 1000 5000 10000 20000
0.0

0.2

0.4

0.6

0.8

1.0

La
te

nc
y

AGRAW1-ERB
ADWIN-NB
ADWIN-HT
ADWIN-ADB
ADWIN-XGB/LGBM
HDDM_W*

500 1000 5000 10000 20000
0.0

0.2

0.4

0.6

0.8

1.0

La
te

nc
y

AGRAW1-DDB
PCA-BTC
PCA-KL

PCA-KLS

500 1000 5000 10000 20000
Drift Width

0.0

0.2

0.4

0.6

0.8

1.0

La
te

nc
y

AGRAW2-ERB
ADWIN*
ADWIN_NB
HDDM_W*

500 1000 5000 10000 20000
Drift Width

0.0

0.2

0.4

0.6

0.8

1.0

La
te

nc
y

AGRAW2-DDB
kdqT-KL
kdqT-CBS
kdqT-MHT
kdqT-KLS

kdqT-BTC
kdqT-SE
kdqT-COS

Fig. 3. Latency of the best performing detectors on different gradual drift
width. Each row corresponds to one dataset, SEA, AGRAW1 and AGRAW2.
Each column corresponds to the drift detectors type, ERB and DDB.

positive rate remains 0.0 in case of ERB detectors. However,
we observed that the performance of identifying drift in time
of ERB and DDB is not affected by the presence of noise.
Thus we are not reporting results from this experiment in this
section, but we are arguing about the results in the discussions
Section. In this experiment we consider the same detectors
evaluated on the gradual drift.

Class-Imbalance: One notable outcome of this experiment
is the inability of DDB detectors to identify any concept drift
when the two classes are imbalanced. This is supported by
the increase in miss detection rate, which can be observed
in Table III. It needs to be mentioned that, similarly to the
gradual drift experiment, we solely considered detectors that
obtained a miss detection rate equal to 0.0 during the abrupt
drift experiment. We can remark from Table III that the
miss detection rate increases for all detectors, except for the
kdqTrees paired with the Manhattan distance when evaluated
on the dataset SEA with abrupt drift. However, on the dataset
SEA with gradual drift, we can still observe a 0.2 increase
of the miss detection rate, showing that this detector was not
able to detect any drift in 2 out of 10 random seeds.

Since we are dealing with class imbalance, during the
experiments with the ERB detectors we initially applied
SMOTE [13], which is a commonly used technique that
synthetically generates synthetic samples of the minority class.
The reason behind this decision is that the classifiers that are
paired with the detectors need balanced data to properly learn

Authorized licensed use limited to: TU Delft Library. Downloaded on January 27,2023 at 12:40:50 UTC from IEEE Xplore. Restrictions apply.

3370

500 1000 5000 10000 20000
0.0

0.2

0.4

0.6

0.8

1.0

FP
R

SEA-ERB

ADWIN

500 1000 5000 10000 20000
0.0

0.2

0.4

0.6

0.8

1.0

FP
R

SEA-DDB
kdqT-BTC

500 1000 5000 10000 20000
0.0

0.2

0.4

0.6

0.8

1.0

FP
R

AGRAW1-ERB

ADWIN
HDDM_W

500 1000 5000 10000 20000
0.0

0.2

0.4

0.6

0.8

1.0

FP
R

AGRAW1-DDB
PCA-BTC
PCA-KL

PCA-KLS

500 1000 5000 10000 20000
Drift Width

0.0

0.2

0.4

0.6

0.8

1.0

FP
R

AGRAW2-ERB

ADWIN
HDDM_W*
HDDM_W-NB

500 1000 5000 10000 20000
Drift Width

0.0

0.2

0.4

0.6

0.8

1.0

FP
R

AGRAW2-DDB
kdqT-CBS
kdqT-MHT
kdqT-KL

kdqT-KLS/BTC
kdqT-SE/COS

Fig. 4. False positive rate of the best performing detectors on different
gradual drift width. Each row corresponds to one dataset, SEA, AGRAW1
and AGRAW2. Each column corresponds to the drift detectors type, ERB
and DDB.

the behavior of the samples belonging to the two classes.
SMOTE was solely applied on the training data in the process
of training the classifiers.

In Table IV we show the performances of the two ERB
detectors on imbalanced classes. Despite achieving a latency
of 0.0, we can notice that the FPR of the HDDM W detector
significant increased in this setup, signaling every testing batch
as a drift batch. Thus, this detector tends to signal a high
number of false alarms when used in a real-world setting.
When it comes to ADWIN, we can notice that its latency
significantly increased compared to the case when the two
classes are balanced presented above, but the FPR remains
constant at 0.

B. Real-World Data

This last set of experiments seek to answer RQ3, by
understanding how do the analyzed drift detectors perform on
real-world data. Here we do not know whether the observed
concept drift is abrupt or gradual, but only the position of the
drift occurrence.

1) Electricity (ELECT2): As aforementioned, we assessed
the detectors’ performances to detect the week in which the 2nd

of May 1997 is included and we show the results in Table V.
Here we notice that both ERB and DDB detectors succeed
in identifying the exact testing batch which contains the
drift. Specifically, the ERB detector called ADWIN managed
to exactly identify the drifted batch, independently of the

TABLE III
MISS DETECTION PROBABILITY (MDP) OF DDB DETECTOR ON CLASS

IMBALANCE EXPERIMENT.

Dataset Detector MDP Abrupt MDP Gradual

SEA kdqTrees-KL 0.6 0.7
kdqTrees-MH 0.0 0.2
kdqTrees-KLS 0.9 0.9
kdqTrees-CBS 0.3 0.1
kdqTrees-COS 0.3 0.3
kdqTrees-SE 0.3 0.4

kdqTrees-BTC 0.9 0.9
PCA-MH 0.2 0.2
PCA-KLS 0.5 0.5
PCA-CBS 0.2 0.2
PCA-COS 0.2 0.2
PCA-SE 0.2 0.2

PCA-BTC 0.7 0.6
AGRAW1 PCA-KL 0.5 0.5

PCA-KLS 0.5 0.6
PCA-BTC 0.6 0.6

AGRAW2 kdqTrees-KL 0.8 0.7
kdqTrees-MH 0.6 0.7
kdqTrees-KLS 0.7 0.7
kdqTrees-CBS 0.7 0.7
kdqTrees-COS 0.7 0.7
kdqTrees-SE 0.7 0.7

kdqTrees-BTC 0.7 0.7
Acronyms: KL - KL Divergence Distance, MH - Manhattan Distance, KLS
- Kulsinski Distance, COS - Cosine Distance, SE - Squared Euclidean
Distance, CBS - Chebyshev Distance, BTC - Bhattacharyya Distance

TABLE IV
LATENCY (L) AND FALSE POSITIVE RATE (FPR) FOR ERROR

RATE-BASED DETECTORS ON BALANCED VS IMBALANCED DATA. *
SHOWS THAT THE RESULTS ARE APPLICABLE TO ALL PAIRED CLASSIFIERS

EXCEPT FOR THE ONES PRESENTED. - SHOWS THAT THE EXPERIMENT IS
NOT APPLICABLE.

Detector Paired SEA AGRAW1 AGRAW2
with L FPR L FPR L FPR

A
br

up
t ADWIN * 0.8 0.0 0.8 0.0 0.8 0.0

ADB - - - - 0.72 0.0
HT - - - - 0.82 0.0

HDDM W * - - 0.0 1.0 0.0 1.0

G
ra

du
al ADWIN HT 0.72 0.0 0.72 0.0 0.82 0.0

ADWIN * 0.8 0.0 0.8 0.0 0.8 0.0
HDDM W * - - 0.0 1.0 0.0 1.0

Acronyms: HT - Hoeffding Trees, ADB - AdaBoost

paired classifier. Furthermore, the same results were reported
for the DDM classifier paired with Naive Bayes, Hoeffding
Trees and AdaBoost. We can further see that using DDM
with XGBoost or LightGBM significantly increases its false
positive rate from 0.0 to 1.0, enhancing the risk of false alarms.
On the other hand, comparable performance was obtained
by one DDB detector, namely PCA-kdq using the Kulsinski
distance, which also managed to obtain both latency and false
positive rate of 0.0. Thereby, for this real-world dataset, DDB
detectors managed to achieve comparable good results with
ERB detectors.

2) Airlines: As previously mentioned, in case of this dataset
the detectors should detect drift on the evaluation batch
corresponding to Friday. In Table VI we depict the results
for both ERB detectors and DDB detectors. Here we can
observe that the ERB detectors show a poor performance on

Authorized licensed use limited to: TU Delft Library. Downloaded on January 27,2023 at 12:40:50 UTC from IEEE Xplore. Restrictions apply.

3371

TABLE V
LATENCY (L) AND FALSE POSITIVE RATE (FPR) OF EACH DETECTOR ON

ELECT2 DATASET. EACH DETECTOR IS PAIRED WITH EITHER A
CLASSIFIER (FOR ERB) OR A DISTANCE/STATISTICAL TEST (FOR DDB).
IN BOLD WE SHOW THE BEST PERFORMING DRIFT DETECTOR(S) FROM
EACH GROUP. * SHOWS THAT THE RESULTS ARE APPLICABLE FOR ANY

COMBINATION AND *- SHOWS THAT RESULTS ARE APPLICABLE FOR ANY
COMBINATION EXCEPT THE PRESENTED ONE.

Group Detector Paired with L FPR

DDM NB, HT, AB 0.0 0.0
DDM XGB, LGBM 0.0 1.0

EDDM * 0.0 1.0
ERB ADWIN * 0.0 0.0

HDDM W * 0.0 1.0
HDDM A * 0.0 1.0

EDE * 0.0 1.0
DDB kdqTrees KLS ND ND

*- 0.0 1.0
PCA-kdq KLS 0.0 0.0

*- 0.0 1.0

Acronyms: NB - Naive Bayes, HT - Hoeffding Trees, AB - AdaBoost, XGB
- XGBoost, LGBM - LightGBM, KLS - Kulsinski Distance

the Airlines datasets in terms of latency and false positive
rate. Most of the detectors capture the exact moment of drift
occurrence, but with the high cost of signaling false alarms.
The best false positive rate (0.5) and latency (0.0) was reported
by ADWIN paired with the Naive Bayes classifier. The high
number of false positives can also be observed in case of most
DDB detectors, except for kdqTrees and PCA-kdq paired with
the Kulsinski distance, where they did not manage to identify
any drift. Thus, both ERB and DDB detectors are affected by
false alarms.

TABLE VI
LATENCY (L) AND FALSE POSITIVE RATE (FPR) OF EACH ERROR

RATE-BASED (ERB) DETECTOR ON AIRLINES DATASET. IN BOLD WE
SHOW THE BEST COMPROMISE BETWEEN THE LATENCY AND FALSE

POSITIVE RATE. * SHOWS THAT THE RESULTS ARE APPLICABLE FOR ANY
COMBINATION AND *- SHOWS THAT RESULTS ARE APPLICABLE FOR ANY

COMBINATION EXCEPT THE PRESENTED ONE.

Group Detector Paired with L FPR

ERB DDM NB, HT ND 0.5
*- 0.0 1.0

EDDM NB ND 0.5
HT, AB, LGBM 0.0 1.0

XGB 0.67 1.0
ADWIN NB 0.0 0.5

*- 0.0 1.0
HDDM W * 0.0 1.0
HDDM A * 0.0 1.0

DDB EDE * 0.0 1.0
kdqTree KLS ND ND
kdqTree *- 0.0 1.0
PCA-kdq KLS ND ND
PCA-kdq *- 0.0 1.0

Acronyms: NB - Naive Bayes, HT - Hoeffding Trees, ADB - AdaBoost,
XGB - XGBoost, LGBM - LightGBM, KLS - Kulsinski Distance

V. DISCUSSIONS

This section highlights the most important observation that
we made during our study regarding the two groups of concept
drift detectors, namely the error rate-based (ERB) detectors

and the data distribution-based (DDB) detectors. Therefore,
we aim to help practitioners employ the most suitable drift
detector according to their data.

a) ERB detectors proved to be more suitable for datasets
including both categorical and numerical features compared
to DDB detectors: One major observation that we can draw
from our experiments addressing RQ1 and RQ3 is the fact
that DDB detectors achieve higher performance on datasets
with solely numerical values, such as SEA and ELECT2,
compared to datasets with both numerical and categorical
values, such as AGRAW1, AGRAW2 and Airlines. This could
be a consequence of the one-hot encoding technique used to
transform categorical variables into numerical. This prepro-
cessing technique increases the sparsity of the dataset, since it
represents each categorical value as a binary vector. Sparsity
usually alters the representation of the data distribution given
that the density function is computed using a high number of
0s and 1s [30]. This impacts the performance of DDB detectors
due to their high dependency on data distributions. However,
the ERB detectors do not suffer from this problem, since they
rely on the performance of the classifiers, which are robust
towards sparse data.

b) DDB detectors can achieve high performance solely
when the data is scaled: During our experiments we scaled
all datasets, such that their values would range in the interval
of [0, 1]. Although scaling is a common practice in ML, it
is not necessary when using tree-based algorithms, since they
are already robust to widely distributed data [2]. Therefore, we
observed that data scaling did not impact the ERB detectors,
which rely on ML classifiers’ performances. However, we
noticed a high impact of unscaled data on the performance
of DDB detectors, which were not able to identify any
drift. This could be the result of the fact that they solely
rely on the data distribution to detect drifts. Having values
widely distributed results in a skewed density function, which
impacts the ability of similarity metrics to identify significant
discrepancies between two data distributions. Furthermore, we
experimented with different scaling intervals, but the [0, 1]
interval was the most suitable for all the analyzed datasets.

c) ERB detectors outperform DDB detectors for abrupt
and gradual drift with a small drift width, but suffer from
a high number of false alarms in case of gradual drift with
a large drift width: When conducting experiments for RQ1,
we empirically proved that in case of abrupt and small width
gradual drift, the ERB drift detectors outperform the DDB
drift detectors, achieving a lower latency and a lower false
positive rate. The best performing ERB drift detector overall
is ADWIN, which obtained the best latency and false positive
rate independently of the chosen dataset or the paired classi-
fier. However, when tested on synthetic data which contains
gradual drift with large drift width, the ERB detectors starts
signaling multiple false alarms, although the latency is not
affected. The same behavior can be noticed when testing the
ERB drift detectors on the Airlines dataset, where all detectors
suffer from a significantly high false positive rate, which can
indicate that this real-world dataset contains a gradual drift.

Authorized licensed use limited to: TU Delft Library. Downloaded on January 27,2023 at 12:40:50 UTC from IEEE Xplore. Restrictions apply.

3372

In real-world data the drift type, abrupt or gradual, cannot
be controlled. Thus, in a real-world scenarios we should
use a detector that is able to identify all types of drifts.
Consequently, it is doubtful whether ERB detectors could be
employed in practice.

d) Given the high discrepancy between synthetic and
real-world data, there is currently no clear evidence regarding
the fact that class imbalance influences the impact of either
DDB or ERB detectors: We investigated the effect of class
imbalance on concept drift detectors. In case of synthetic
data, we noticed that all evaluated detectors suffer from sever
performance degradation, even for a small class imbalance
ratio of 1:2. However, on the real-world data the detectors
behavior was completely different. On the ELECT2 dataset,
both ERB and DDB detectors managed to accurately identify
concept drift even if the imbalance ratio of the drifted batch
was approximately 1:6. However, on the Airlines dataset,
both ERB and DDB detectors encountered difficulties when
detecting the concept drift in time, although the imbalance
ratio of the drifted testing batch was smaller than the one on
the synthetic data, namely 1:1.66. This casts doubt on whether
the synthetic data manages to mimic the behavior of real-
world data when it comes to class imbalanced datasets with
concept drift and shows how the performance of detectors on
controlled drift position does not generalize to real-world data
(RQ3). Therefore, there is no clear evidence of how the class
imbalance influences the performance of drift detectors.

e) When using DDB detectors in practice, multiple simi-
larity distance should be evaluated and in some cases a com-
promise between latency and false positive rate is required:
Another observation that we want to highlight is regarding
the DDB detectors. In literature, the most commonly used
similarity metric in this detector category is KL Divergence.
However, in our experiments for RQ1 and RQ3 we noticed that
this similarity metric did not always achieve the lowest latency
or false positive rate. When it comes to the synthetic data, the
KL Divergence is mostly minimizing the false positive rate,
while the Kulsinski Distance or the Bhattacharyya distance
minimized the latency. Thereby, when employed in practice,
for some datasets a compromise should be made regarding
whether the latency should be prioritized over the false pos-
itive rate or vice-versa. Furthermore, on the ELECT2 real-
world dataset, the PCA-kdq detector paired with the Kulsinski
distance achieved the lowest latency and false positive rate.
Furthermore, we have not identified any optimal configuration
of drift detector + similarity metric that achieved the best
performance on all datasets.

f) The presence of noise does not impact the latency
or false positive rate of either ERB or DDB detectors on
synthetic data: When answering RQ2, we noticed that the
latency and false positive rate of both ERB and DDB detectors
are relatively stable against noise. The explanation behind this
aspect is that both the reference data and the evaluation data
are affected by the same type and percentage of noise. Thus,
the differences between the reference data and evaluation data
are too small to impact the performance of evaluated drift

detectors. Unfortunately, the MOA framework does not have
an option to select which parts should be affected by noise or
to include different noise percentages in different parts of the
data stream. Therefore, we could not investigate the effect of
having clean reference data and noisy evaluation data.

VI. CONCLUSIONS

In this paper we have provided an in depth comparison
between two categories of drift detectors, the error rate-based
drift detectors and the data distribution-based drift detectors
under different conditions, synthetic data with ideal conditions,
synthetic data with non-ideal conditions and real-world data.
For the latter, we have explored multiple similarity metrics
and we have observed that some similarity metrics achieved
better latency and false positive rate compared to the state-
of-the-art KL Divergence on some datasets. Furthermore, we
implemented the most popular data distribution based drift
detectors and publicly shared them on GitHub and we eval-
uated the error rate-based drift detectors on three recent and
popular classifiers. Additionally, we provided a list of major
observations, which aim to serve as guidelines for practitioners
that want to include drift detectors to monitor streaming data.

Our observations indicate that the analyzed concept drift
detectors are not fully reliable when used as alarming systems.
We show empirical evidence of the fact that the error-based
drift detectors are signaling false alarms for a high drift width.
This questions their ability to detect drifts in environments
where the features are slowly changing over time. An example
of such situation is the inflation, which does not have imme-
diate impact on the financial features, but it affects them over
a longer period of time. When it comes to data distribution-
based drift detectors, their performance overall was lower than
the error-based drift detectors, although they were not affected
by higher drift widths. We observed that in cases of datasets
with categorical features, the data distribution-based detectors
suffered from high false positive rate. Furthermore, they are
also affected by a high miss-detection rate, which can be a
consequence of computing the data distribution from a sparse
dataset resulted after applying one-hot encoding. This reduces
the reliability of drift detectors when used as alarming systems.

In order to advance the field of concept drift detection,
we believe that research should focus on developing more
data distribution-based detectors. One major limitation of these
detectors was the high false positive rate. This might be
an indicator that they are too sensitive to small changes
in data. However, these small changes might not affect the
performance of the ML models. Thus, a promising research
direction is exploring which similarity metrics are the least
impacted by small changes in data. Moreover, changes in
some features might affect the ML models’ performances than
others. Thereby, another way to improve these drift detectors
is to identify the most significant features and monitor drift
by computing the data distribution corresponding to only those
features. Furthermore, we can explore other ways of encoding
categorical data that can reduce the data sparsity, since we no-
ticed that their performance was much lower on datasets where

Authorized licensed use limited to: TU Delft Library. Downloaded on January 27,2023 at 12:40:50 UTC from IEEE Xplore. Restrictions apply.

3373

one-hot encoding was employed. When it comes to error rate-
based detectors, future research should focus on adapting them
to identify gradual drift with a large drift width without signal-
ing false alarms and, thereby, preserving the false positive rate.
This study was limited to publicly available implementations
of drift detectors. Thereby, we strongly encourage researchers
who implement new drift detectors to publicly share their code.
Furthermore, in the situation of class imbalance we noticed
a strong inconsistency between synthetic and real-world data
when it comes to the performance of error rate-based detectors
and data distribution-based detectors. Thus, the concept drift
research path would benefit from understanding whether the
synthetic data is suitable to simulate the behavior of real-world
data in case of highly imbalanced classes.

ACKNOWLEDGMENT

This work was partially supported by ING through the AI
for Fintech Research Lab with TU Delft.

REFERENCES

[1] R. Agrawal, T. Imielinski, and A. Swami. Database mining: a per-
formance perspective. IEEE Transactions on Knowledge and Data
Engineering, 5:914–925, 1993.

[2] Md Manjurul Ahsan, M. Mahmud, Pritom Saha, Kishor Datta Gupta,
and Zahed Siddique. Effect of data scaling methods on machine learning
algorithms and model performance. Technologies, 9:52, 07 2021.

[3] Suja A. Alex, Uttam Ghosh, and Nazeeruddin Mohammad. Weather
prediction from imbalanced data stream using 1d-convolutional neural
network. In 2022 10th International Conference on Emerging Trends
in Engineering and Technology - Signal and Information Processing
(ICETET-SIP-22), pages 1–6, 2022.

[4] Elif Selen Babüroğlu, Alptekin Durmusoglu, and Türkay Dereli. Novel
hybrid pair recommendations based on a large-scale comparative study
of concept drift detection. Expert Syst. Appl., 163:113786, 2021.

[5] Manuel Baena-Garcı́a, José Campo-Ávila, Raúl Fidalgo-Merino, Albert
Bifet, Ricard Gavald, and Rafael Morales-Bueno. Early drift detection
method, 2006.

[6] Jean Paul Barddal, Lucas Loezer, Fabrı́cio Enembreck, and Riccardo
Lanzuolo. Lessons learned from data stream classification applied to
credit scoring. Expert Systems with Applications, 162:113899, 08 2020.

[7] Roberto Barros, Danilo Cabral, Paulo Alves, and Silas Santos. Rddm:
Reactive drift detection method. Expert Systems with Applications,
90:344–355, 2017.

[8] Roberto S. M. Barros and Silas Garrido Teixeira de Carvalho Santos. A
large-scale comparison of concept drift detectors. Inf. Sci., 451-452:348–
370, 2018.

[9] Firas Bayram, Bestoun S. Ahmed, and Andreas Kassler. From concept
drift to model degradation: An overview on performance-aware drift
detectors. Knowledge-Based Systems, 245:108632, 2022.

[10] Albert Bifet and Ricard Gavaldà. Learning from time-changing data
with adaptive windowing. In SDM, volume 7, 2007.

[11] Albert Bifet, Geoff Holmes, Richard Kirkby, and Bernhard Pfahringer.
Moa: Massive online analysis. J. Mach. Learn. Res., 11:1601–1604,
2010.

[12] Sung-Hyuk Cha. Comprehensive survey on distance/similarity measures
between probability density functions. Int. J. Math. Model. Meth. Appl.
Sci., 1, 2007.

[13] Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, and W. Philip
Kegelmeyer. Smote: Synthetic minority over-sampling technique. J.
Artif. Int. Res., 16:321–357, 2002.

[14] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting
system. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’16, page
785–794, NY, USA, 2016. Association for Computing Machinery.

[15] Fang Chu and Carlo Zaniolo. Fast and light boosting for adaptive mining
of data streams. In Honghua Dai, Ramakrishnan Srikant, and Chengqi
Zhang, editors, Advances in Knowledge Discovery and Data Mining,
pages 282–292, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

[16] Tamraparni Dasu, Shankar Krishnan, Suresh Venkatasubramanian, and
Ke Yi. An information-theoretic approach to detecting changes in
multidimensional data streams. Interfaces, 2006.

[17] Yoav Freund and Robert E. Schapire. A short introduction to boosting.
In Proceedings of the 16th International Joint Conference on Artificial
Intelligence - Volume 2, 1999.

[18] Isvani Frı́as-Blanco, José del Campo-Ávila, Gonzalo Ramos-Jiménez,
Rafael Morales-Bueno, Agustı́n Ortiz-Dı́az, and Yailé Caballero-Mota.
Online and non-parametric drift detection methods based on hoeffding’s
bounds. IEEE Transactions on Knowledge and Data Engineering,
27:810–823, 2015.

[19] João Gama, I. Žliobaitė, A. Bifet, Mykola Pechenizkiy, and
A. Bouchachia. A survey on concept drift adaptation. ACM Computing
Surveys (CSUR), 46:1 – 37, 2014.

[20] João Gama, Pedro Medas, Gladys Castillo, and Pedro Rodrigues. Learn-
ing with drift detection. In SBIA, volume 8, pages 286–295, 2004.

[21] Paulo Mauricio Gonçalves, Silas Garrido Teixeira de Carvalho Santos,
Roberto S. M. Barros, and Davi Carnauba de Lima Vieira. A compara-
tive study on concept drift detectors. Expert Syst. Appl., 41:8144–8156,
2014.

[22] Feng Gu, Guangquan Zhang, Jie Lu, and Chin-Teng Lin. Concept drift
detection based on equal density estimation. In 2016 International Joint
Conference on Neural Networks (IJCNN), pages 24–30, 2016.

[23] M. Harries, University of New South Wales. School of Computer Sci-
ence, and Engineering. Splice-2 Comparative Evaluation: Electricity
Pricing. PANDORA electronic collection. University of New South
Wales, School of Computer Science and Engineering, 1999.

[24] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong
Ma, Qiwei Ye, and Tie-Yan Liu. Lightgbm: A highly efficient gradient
boosting decision tree. In NIPS, 2017.

[25] Daniel Kifer, Shai Ben-David, and Johannes Gehrke. Detecting change
in data streams. In Proceedings of the Thirtieth International Conference
on Very Large Data Bases - Volume 30, pages 180–191, 2004.

[26] Saranya Kunasekaran and Chellammal Suriyanarayanan. Anomaly
detection techniques for streaming data–an overview. Malaya Journal
of Matematik, S:703–710, 01 2020.

[27] Anjin Liu, Guangquan Zhang, and Jie Lu. Fuzzy time windowing for
gradual concept drift adaptation. In 2017 IEEE International Conference
on Fuzzy Systems (FUZZ-IEEE), pages 1–6, 2017.

[28] Jie Lu, Anjin Liu, Fan Dong, Feng Gu, João Gama, and Guangquan
Zhang. Learning under concept drift: A review. IEEE Transactions on
Knowledge and Data Engineering, 31:2346–2363, 2019.

[29] Jacob Montiel, Rory Mitchell, Eibe Frank, Bernhard Pfahringer, Talel
Abdessalem, and Albert Bifet. Adaptive xgboost for evolving data
streams. 2020 International Joint Conference on Neural Networks
(IJCNN), pages 1–8, 2020.

[30] Elmar Plischke and Emanuele Borgonovo. Fighting the curse of sparsity:
Probabilistic sensitivity measures from cumulative distribution functions.
Risk Analysis, 40, 07 2020.

[31] Abdulhakim Qahtan, Basma Alharbi, suojin Wang, and Xiangliang
Zhang. A pca-based change detection framework for multidimensional
data streams. In KDD, 2015.

[32] Gordon Ross, Niall Adams, Dimitris Tasoulis, and David Hand. Ex-
ponentially weighted moving average charts for detecting concept drift.
Pattern Recognition Letters, 33, 2012.

[33] Junming Shao, Zahra Ahmadi, and Stefan Kramer. Prototype-based
learning on concept-drifting data streams. In Proceedings of the 20th
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, page 412–421, 2014.

[34] Nick Street and YongSeog Kim. A streaming ensemble algorithm
(sea) for large-scale classification. In Proceedings of the Seventh ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, pages 377–382, 2001.

[35] Geoffrey I. Webb, Loong Kuan Lee, Bart Goethals, and François
Petitjean. Analyzing concept drift and shift from sample data. Data
Mining and Knowledge Discovery, 32:1179–1199, 2018.

[36] Liangwei Zhang, Jing Lin, and Ramin Karim. Sliding window-based
fault detection from high-dimensional data streams. IEEE Transactions
on Systems, Man, and Cybernetics: Systems, 47(2):289–303, 2017.

[37] Indrė Žliobaitė, Mykola Pechenizkiy, and João Gama. An Overview
of Concept Drift Applications, pages 91–114. Springer International
Publishing, Cham, 2016.

Authorized licensed use limited to: TU Delft Library. Downloaded on January 27,2023 at 12:40:50 UTC from IEEE Xplore. Restrictions apply.

