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A B S T R A C T

The understanding of the rheological behaviour of suspensions in aqueous electrolytes is necessary for the
optimal design of hydraulic transport lines. In these applications, particle size is at least 10 micron, and the
particle Reynolds number, 𝑅𝑒𝑝, is finite: O(10−1). Although there are some experimental and numerical data on
the rheology of such suspensions, the number of detailed analyses is limited. Therefore, 3-D direct numerical
simulations of dense suspensions in aqueous electrolytes are conducted to assess the dynamics of the relative
apparent viscosity and particle structures. The solid–liquid interfaces are resolved, and the flow is simulated,
employing an in-house immersed boundary-lattice Boltzmann method code. In addition to the hydrodynamics
resolved in the computational grid, our simulations include unresolved sub-grid scale lubrication corrections
and non-contact electric double layer (EDL) and Van der Waals forces for a wide range of particle volume
fractions, 𝜙𝑣, at a single 𝑅𝑒𝑝 = 0.1. Under these conditions, the contribution of the Van der Waals force was
found to be weak. With an increase in 𝜙𝑣, the effect of EDL forces decreased the relative apparent viscosity.
Particle layering and structural arrangements were analysed for 𝜙𝑣 = 43 and 52%. As the Debye length (i.e.,
the thickness of EDL) decreases, the particle layers near the walls weakened. The analyses reveal how at these
high volume fractions, chain-like assemblies are transformed into hexagonal arrangements.

1. Introduction

This paper presents an extension of an Immersed Boundary (IB)
Lattice Boltzmann (LB) technique for assessing the rheology of a sus-
pension (Srinivasan et al., 2020a) to the cases of suspensions con-
sisting of particles with electrically charged surfaces such as food
matrices (Silaghi et al., 2010), Portland cement (Ferrari et al., 2011),
waste-water sludge (Liu et al., 2012), and drilling mud (Hamed and
Belhadri, 2009). In such applications, both the attractive Van der Waals
forces and repulsive electrostatic forces may play a distinctive role not
considered in earlier work. These forces may have an impact on the
structures of particles in a flowing suspension and consequently on the
rheology as expressed in terms of a relative apparent viscosity. We
restrict ourselves to non-Brownian particles of order 100 μm and to
finite particle Reynolds number of order 10−1. The resulting resolved
simulations will provide an ‘inner’ view of the complex response of
multiple charged particle assemblies subjected to shear. The viscosity
of particularly more concentrated suspensions strongly depends on
the dynamics of clusters which may be affected by the charges on
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E-mail addresses: sudharsansrinivasan1992@gmail.com (S. Srinivasan), Harry.VanDenAkker@ul.ie (H.E.A. Van den Akker), Orest.Shardt@ul.ie (O. Shardt).

the particle surfaces (Lattuada et al., 2016). Besides, the insights ac-
quired via these simulations may be useful for studies on shear assisted
agglomeration (Mumtaz et al., 1997; Hollander et al., 2001).

The flow characteristics of charged particles are affected by both
hydrodynamic forces and non-hydrodynamic interactions as described
by the Derjaguin–Landau–Verwey–Overbeek (DLVO) theory (Masliyah
and Bhattacharjee, 2006; Berg, 2010). Non-DLVO molecular forces be-
ing ignored, such as those between particles with a soft coating (Karan
et al., 2020), the focus is on two types of short-range interactions that
are not being resolved on the LB lattice, viz. hydrodynamic lubrication
corrections (Nguyen and Ladd, 2002; Derksen and Sundaresan, 2007)
and non-hydrodynamic DLVO interactions. We study their effects on
the rheology over a broad range of solid volume fractions. Furthermore,
the assumption is that the surfaces of the spheres are perfectly smooth,
and therefore, frictional contact forces (Toll and Månson, 1994) are not
considered when modelling sub-lattice scale interactions.

According to the classical DLVO theory, the particles get attracted
or repelled depending on their surface charge and on the distribution of
ions in solution (Masliyah and Bhattacharjee, 2006). The counter-ions
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in the liquid are attracted to the surface charges and form a diffuse
Electric Double Layer (EDL), the thickness of which is characterised
by the Debye length. When the EDLs of two (or more) like-charged
particles overlap (Berg, 2010), the effect is a repulsive force. The
net charge within the double layer is opposite to that of the surface
and decays with increasing distance from the surface. With decreasing
ion concentration, the EDL thickens (Berg, 2010; Pednekar et al.,
2017). This allows the repulsive EDL interactions to dominate over the
attractive Van der Waals forces.

Over the last two decades, several attempts have been made to
interpret the physics of suspensions with electric charges via exper-
imental (Chaouche and Koch, 2001; Hermes et al., 2016; Lattuada
et al., 2016; Vázquez-Quesada et al., 2017) and numerical approaches
(Rouyer et al., 2000; Sierou and Brady, 2002; Kromkamp et al., 2005;
Yeo and Maxey, 2010; Andreotti et al., 2012; Gallier et al., 2016;
McCullough et al., 2021). Most papers in the literature consider the
dependence of the rheology on hydrodynamic and other contact force
(frictional) models. The effects due to surface potentials (especially
the contributions from the close-range Van der Waals and EDL forces)
are often ignored when simulating suspensions in aqueous electrolytes.
In this paper, we demonstrate the effects of including DLVO forces
in computational studies of the suspension structure and rheology of
micron-sized particles.

Some recent advances in learning about the importance of in-
cluding these short-range DLVO forces have been made possible via
theory (Karan et al., 2020) and simulations (Lin et al., 2015; Mitchell
and Leonardi, 2016; Sarkar et al., 2017; Wang et al., 2019; Vowinckel
et al., 2019; Hayakawa, 2020). Pednekar et al. (2017) used the Discrete
Element Method (DEM) with Lubrication Flow (LF) to simulate col-
loidal Brownian suspensions with attractive forces. Their emphasis was
on investigating the effect of different strengths attractive forces on the
apparent viscosities and contact networks. They found that the impact
of attractive forces leads to an increased viscosity at low shear rates and
the viscosity decreases gradually to a plateau at high shear rates. Mari
et al. (2014) included EDL forces in their simulations and showed the
Discontinuous Shear-Thickening (DS-T) rheology of suspensions with
solids fractions between 45 and 56%. It may be necessary to note
that these simulations were performed under zero Reynolds number
(Stokes flow) conditions. To the best of our knowledge, the literature on
suspension behaviour with finite inertia under the influence of surface
forces is limited.

Recently, we have developed computer codes to simulate dense
solid–liquid suspensions using an IB-LB model
(Srinivasan et al., 2020a, 2021). One of the benefits of conducting
simulations is that they allow us to investigate details, for example, by
monitoring the particle rotation rates in a suspension (Srinivasan et al.,
2020a), that may not be possible through experiments. We now modify
the sub-lattice scale forces to include the contribution of unresolved
lubrication correction and DLVO forces and demonstrate the effects of
Debye length on cluster structures and relative viscosities.

The purpose of this study is to develop an understanding of the
resolved three-dimensional simulations of solid–liquid suspensions in
aqueous electrolytes that undergo deformations due to simple shear
flow. The effects of changes in the inter-particle collision schemes
on the relative viscosity and cluster structure are the outcomes of
our research. The simulations mimic the suspension behaviour in a
rheometer, where particles of order 150 μm in radius are sheared
between parallel plates separated by a 2 mm gap. The confinement
ratio 𝛿 = 2𝑅∕𝐻 = 0.15 (where 𝑅 is the particle radius and 𝐻 is the gap
between the parallel plates), which we match in our simulations. This
paper is a next step in developing a code to mimic suspensions under
time-varying shear rates with DLVO forces, with the end goal that we
can improve our understanding of the transient response of suspensions
to hydraulic transport conditions.

This paper is arranged as follows: first, in Section 2, we describe
our numerical IB-LB approach to simulate suspension flows. Since a

detailed description of the simulation methods is given in Srinivasan
et al. (2020a), here, we present just a brief summary of the method.
Also the modelling equations of DLVO theory, values of lubrication
cutoffs, integration of particle motion, and a brief description of our
simulation cases are given in this section. Section 3 details the effect of
including DLVO forces on collision between two particles by comparing
the simulation results with our previous findings. In Sections 4.1 and
4.2.1, we discuss the time-evolution of apparent viscosities and cluster
structures of dense suspensions for varying strengths of EDL forces. In
Section 4.2.2, we present a qualitative and quantitative analysis of the
structuring and ordering of particles, also by comparing our simulations
with literature data. Finally, in Section 5, we provide our concluding
remarks.

2. Simulation methods

2.1. Flow solver and boundary conditions

The flow of the incompressible Navier–Stokes equations is solved
by using the lattice Boltzmann method (Chen and Doolen, 1998) with
the BGK collision operator. In this method, the continuous Boltzmann
equation is discretised up to second order in space, momentum, and
time using the finite difference scheme. The simulations are three-
dimensional, and the LB populations move with discrete velocities
on a regular Cartesian grid represented by a 𝐷3𝑄19 lattice model.
The no-slip condition at the surface of each particle is enforced by
adopting Feng and Michaelides (2004) immersed boundary method.
The surfaces of the particles are represented by a set of equally spaced
Lagrangian points called marker and reference. The marker points get
advected during the simulation, and any small displacement in the
position of these points leads to a significant force called the Lagrangian
force. These local forces which are present only on the surface of each
particle can be interpreted as a distribution of hydrodynamic forces.
Through a linear interpolation scheme (Krüger et al., 2017; Srinivasan
et al., 2020a), we spread these local forces to the adjacent fluid nodes
using the Shan and Chen (1993) forcing scheme to compute the body
force density. The velocity of each marker point is interpolated back
from the adjacent fluid velocities, and the new marker positions are
computed using an explicit Euler integration. The reference points are
updated each time step by tracking the small-angle rotation of all
particles (Srinivasan et al., 2020a). In addition to employing a no-
slip condition at the surface of each particle, Ladd (1994a) and Ladd
(1994b) bounce-back scheme with momentum correction was used to
enforce the no-slip condition for the sliding plates on the top and
bottom (Srinivasan et al., 2020a).

2.2. Sub-lattice scale modelling

We need to consider the sub-lattice contribution of fluid–particle
interactions because particles with their variable advection and rotation
rates may approach each other, certainly during collisions, at distances
smaller than the lattice spacing used in the simulation. Both the in-
terstitial fluid flows and the positions and motions of the particles,
therefore, require modelling of these sub-lattice corrections to forces
and torques to capture the effects of the unresolved flow field during
collision process. In this paper, we include the corrections of lubrication
forces and torques, as well as the DLVO-based attractive Van der Waals
forces and repulsive forces due to surface charges.

2.2.1. Lubrication correction: forces and torques
Detailed modelling expressions and benchmark simulations of lubri-

cation forces and torques are provided in Appendix. When implement-
ing these corrections in the IB-LB code, we only added the difference
between the under-resolved LB values and the analytical terms. For
large interparticle gaps, the hydrodynamic forces and torques are ac-
curately evaluated by the LB simulation. However, in the case of small
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interparticle gaps, the cutoff to turn on the Lubrication Correction
(referred as LC from now onward) is chosen such that we restore
the correct behaviour of the forces and torques on the particle. The
forces calculated for the intermediate gap sizes are not necessarily
accurate — although they do interpolate reasonably between the two
extremes. While the specifics of how these cutoffs are chosen are given
in Appendix, the values of ℎ𝑛𝑜∕𝑅ℎ𝑦𝑑 , ℎ𝑡𝑜∕𝑅ℎ𝑦𝑑 , and ℎ𝑟𝑜∕𝑅ℎ𝑦𝑑 (where ℎ𝑛𝑜 ,
ℎ𝑡𝑜, ℎ𝑟𝑜, and 𝑅ℎ𝑦𝑑 are the normal, tangential translational and rotational
lubrication cutoffs, and the hydrodynamic radius, respectively) are
0.5, 0.1, and 0.01, respectively. We use these values in suspension
simulations to account for the unresolved details of the flow between
the neighbouring particles. For particle–wall interactions, we turn on
the LC when the gap between any particle and either wall is less than
0.01𝑅ℎ𝑦𝑑 .

2.2.2. DLVO forces
A Van der Waals form of force is used to model the attraction

between particles when the charged surfaces of two spheres approach
each other according to

𝐅𝑎𝑝 =
𝐴𝐻𝑅ℎ𝑦𝑑

12
1
ℎ2

𝐧𝑝𝑞 . (1)

The superscript 𝑎 denotes attraction, the parameter 𝐴𝐻 (Hamaker
constant) is the strength of the attractive force, ℎ is the gap between
the spheres, and 𝐧𝑝𝑞 =

𝐱𝑞 − 𝐱𝑝
‖𝐱𝑞 − 𝐱𝑝‖

is the unit vector from sphere 𝑝

to 𝑞 (where 𝐱𝑝 and 𝐱𝑞 are the centres of mass of spheres 𝑝 and 𝑞,
respectively). The solid back lines in the left panel of Fig. 1 presents the
evolution of attractive force as a function of gap size for two different
particles with physical radii 𝑅𝑝 of 10 and 150 μm, respectively.

These Van der Waals attractive forces compete with the electrostatic
repulsive component according to

𝐅𝑟𝑝 = −
64𝜋𝜂∞𝑘𝐵𝑇 𝛾2𝛿𝑅ℎ𝑦𝑑

𝜅
exp(−𝜅ℎ) 𝐧𝑝𝑞

𝛾2𝛿 = tanh2
(

𝑧𝑒𝜓𝛿
4𝑘𝐵𝑇

) (2)

where the superscript 𝑟 denotes repulsion. The variables 𝜂∞, 𝑘𝐵 , and 𝑇
are the number density of the ions, Boltzmann constant, and absolute

temperature, respectively. 𝜅−1 =
√

𝜖𝑘𝐵𝑇
2𝑧2𝑒2𝜂∞

is the Debye length, where

𝜖 is the dielectric permittivity of solvent (e.g., water), 𝑍 is the valance
of ions, 𝑒 = 1.6 × 10−19 C is the fundamental charge, and 𝜓𝛿 is the zeta
potential. At room temperature (20 ◦C), for water, the Debye length can
be written as 𝜅−1(nm) = 0.304

𝑍
√

𝐼
(Masliyah and Bhattacharjee, 2006).

In the current manuscript, we present simulations of two scenarios.
The first is suspensions without EDL forces (𝜓𝛿 = 0). The second sce-
nario is suspensions with a high zeta potential 𝜓𝛿 > 175 mV (𝛾2𝛿 > 0.9),
which demonstrates behaviour in the limit 𝛾2𝛿 → 1. The suspension we
are interested to mimic is comprised of iron oxide particles suspended
in an aqueous carrier liquid with a zeta potential that ranges between
−30 mV and +30 mV for pH ranging from 4 to 11 (Liu et al., 2013) for
which 0 ≤ 𝛾2𝛿 ⪅ 0.1 is valid. The investigation of suspension rheology
under these conditions is not addressed in this paper; nevertheless, the
reported data provide a range of suspension viscosities that can be used
in future studies.

In Fig. 1𝑎, along with the Van der Waals line, the dashed lines
represent the contributions of the electrostatic force for varying 𝐼 (pH)
and 𝑅𝑝. In Fig. 1𝑏, the total interaction force (i.e. the sum of Van der
Waals and EDL) in the physical units is shown. One can see that the
EDL forces are approaching constant value over small gaps, while the
Van der Waals force is infinite at zero separation. In Fig. 1𝑐, the total
particle–particle DLVO forces are expressed in LB units; for a symmetric
electrolyte solution (e.g. sodium hydroxide, where the anion and cation
charges are equal). In all panels, three pH values (10, 11, and 12) are
considered to show its effect on the force; however, in the remainder

of this paper we consider pH = 11. In order to mimic suspensions
with a physical radius of 10 and 150 μm, in simulations, we keep the
particle resolution at 8 lu while rescaling all other parameters as given
in Table 1.

Following Masliyah and Bhattacharjee (2006), the equations of Van
der Waals and EDL interaction of the particle 𝑝 with either wall are
given as

𝐅𝑎−𝑤𝑝 =
𝐴𝐻𝑅ℎ𝑦𝑑

6
1
ℎ2

𝐧𝑝𝑤

𝐅𝑟−𝑤𝑝 = −
128𝜋𝜂∞𝑘𝐵𝑇 𝛾2𝛿𝑅ℎ𝑦𝑑

𝜅
exp(−𝜅ℎ) 𝐧𝑝𝑤

(3)

where 𝑤 represents a wall. Adding these wall contributions to Eqs. (1)
and (2), we get the total DLVO force as

𝐅𝐷𝐿𝑉 𝑂𝑝 = 𝐅𝑎𝑝 + 𝐅𝑟𝑝 + 𝐅𝑎−𝑤𝑝 + 𝐅𝑟−𝑤𝑝 . (4)

2.3. Particle motion

In addition to the advection of the marker points, each particle has
contributions from its translational 𝐮𝑝 and rotational 𝝎𝑝 motions. In
order to avoid instabilities due to numerical integration, multiple sub-
timesteps 𝑛𝑡𝑝 were used for the integration of particle motion. At the
beginning of every sub-time step loop, we first compute the sub-lattice
scale forces and torques. Then the spheres’ linear motion and positions
are updated as

𝐮⟨𝛿𝑡+1⟩𝑝 = 𝐮⟨𝛿𝑡⟩𝑝 +
(

𝐅𝐿𝐵𝑝 + 𝐅𝐷𝐿𝑉 𝑂𝑝 + 𝐅𝑙𝑢𝑏𝑝
) 𝛿𝑡
𝑀

𝐱⟨𝛿𝑡+1⟩𝑝 = 𝐱⟨𝛿𝑡⟩𝑝 + 𝐮𝑝𝛿𝑡
(5)

where 𝑀 is the mass of the sphere, 𝐅𝐿𝐵𝑝 is the resolved (LB) fluid force
that arises from the IB method (Srinivasan et al., 2020a), and 𝐅𝑙𝑢𝑏𝑝 is
the total lubrication force (see Appendix). The time step for particle
integration is 𝛿𝑡 = 1∕𝑛𝑡𝑝. We assume that the DLVO forces do not affect
the rotation rates of the particle, and therefore the angular motion is
computed from the LB (Srinivasan et al., 2020a) and LC torques (see
Appendix) as

𝝎⟨𝛿𝑡+1⟩
𝑝 = 𝝎⟨𝛿𝑡⟩

𝑝 +
(

𝐓𝐿𝐵𝑝 + 𝐓𝑙𝑢𝑏𝑝
) 𝛿𝑡
𝐼

(6)

where 𝐼 and 𝐓𝐿𝐵𝑝 , and 𝐓𝑙𝑢𝑏𝑝 are the moment of inertia of the spheres,
LB torques, and lubrication torques (see Appendix), respectively.

When simulating suspension flows, the particles may occupy a
significant volume of the simulation box (for example, 𝜙𝑣 up to 52%
− highest solids concentration considered in this paper), and therefore
the number of collisions between spheres increases substantially that
− in turn − increases the simulation wall time. Therefore, to speed up
the calculations of these interparticle interactions, we implemented a
binning algorithm that identifies particles with specified distances from
each other. For more information about such binning algorithms, see
e.g. Perkins and Williams (2002) and Williams et al. (2004).

Another essential aspect in the simulation is the calculation of
sub-lattice forces using multiple sub-time steps. Depending on the
concentration of solids, either constant or adaptive (variable) sub-time
steps were used, viz a constant sub-time step for dilute and moderately
dense suspensions up to 36% solids, and an adaptive time-stepping
scheme for more dense cases (𝜙𝑣 > 40%). In the latter scheme, if
overlap between two particles or between a particle and either wall
was observed, the calculation of LC and DLVO forces and integration of
particle motion was repeated by doubling the number of sub-time steps
until the point that no overlap occurred. If no overlap is found in the
next fluid time step, 𝑛𝑡𝑝 is halved by the value used in the previous fluid
time step. In this manner, the algorithm adapts the number of sub-time
steps and resolves the sub-lattice scale interactions. The number of sub-
time steps in the simulations with 𝜙𝑣 ranging from 6 to 36% was kept
constant between 50 and 200. However, for suspensions containing 43
and 52% solids, the latter approach used about 512 sub-time steps.
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Table 1
Variables and values used for implementing the Van der Waals and EDL forces in the simulation are given for the particles with physical radii of 10 and 150 μm dispersed in a
symmetric electrolyte (e.g. NaOH) solution with pH = 11 and 𝐼 = 10−3 mol/L. The unit of length, time, and mass is expressed as lu, ts and mu, respectively. Variables like lu, 𝑅,
𝐴𝐻 , 𝜅−1, etc. are divided into two rows where the value in the top row corresponds to 10 μm particle size, while the bottom row corresponds to 150 μm. The value of 𝑘𝐵𝑇 in
physical units specified in this Table is for 0 ◦C.
Variable Description Physical units LB units

𝜈 Kinematic viscosity 10−6 m2 s−1 1/30 lu2 ts−1

𝜌 Fluid density 1000 kg m−3 1 mu lu−3

lu Lattice spacing 1.25 × 10−6 m 1 lu
1.875 × 10−5 m

𝑅 Particle radius 10 × 10−6 m 8 lu
150 × 10−6 m

ts Lattice time 5.2 × 10−8 s 1 ts
1.17 × 10−5 s

𝛾̇ Shear rate 807 s−1
4.2 × 10−5 ts−1

3.6 s−1

𝐴𝐻 Hamaker constant 9.54 × 10−20 J 4.44 × 10−9 mu lu2 ts−2

2.96 × 10−10 mu lu2 ts−2

𝜅−1 Debye length 9.61 × 10−9 m 1/130 lu
1/1950 lu

𝑘𝐵𝑇 Boltzmann constant × T 3.771 × 10−21 J 3.4 ×10−9 mu lu2 ts−2

2.23 ×10−10 mu lu2 ts−2

𝜂∞ Number density 6.022 × 1023 m−3 1.17 × 106 lu−3

3.97 × 109 lu−3

Fig. 1. Left panel: individual contributions of the physical Van der Waals and EDL forces are shown for particles with physical radii of 10 and 150 μm, respectively. The middle
panel shows the overall (‘𝐹 𝑉 𝑑𝑊 + 𝐹𝐸𝐷𝐿 ’) contribution of the physical Van der Waals and EDL force. Right panel shows the total interaction force in LB units for 𝑅 = 8 lu, and
other corresponding parameters as given in Table 1. The pH = 10, 11, and 12 is the same in all panels.

Although these sub-lattice forces could have been computed implicitly
during sub-cycling, as demonstrated by Nguyen and Ladd (2002), an
explicit scheme was sufficiently accurate for our purposes.

2.4. Simulations

The simulation cases discussed in this paper are as follows

• analysing the collision dynamics of two spheres under the influ-
ence of both LC and DLVO forces (Section 3).

• simulating suspensions to elucidate the rheology, clustering dy-
namics, and particle structuring (Section 4).

In all these cases, we used equally sized particles with an input radius of
8 lu. The domains were periodic in streamwise 𝑥 and spanwise 𝑦 direc-
tions. In the discussion of the simulations in Section 3.1 and Appendix,
the walls (top and bottom) were stationary, while the walls translate
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in opposite directions in the simulations discussed in Sections 3.2
and 4. In these simulations, an effective (or hydrodynamic) radius was
used to compute the interparticle and particle–wall collisions. The
calculation of an effective radius has been previously reported by
several other authors (Rohde et al., 2002; Ten Cate et al., 2002; Feng
and Michaelides, 2009; Krüger et al., 2011; Srinivasan et al., 2020a).
All of these implementations of moving surface boundary conditions
encountered an increase of 𝑅ℎ𝑦𝑑 between 0.2 and 1 lu. Also, in our
simulation, we noticed that the hydrodynamic radius increased by
around 8% (𝑅ℎ𝑦𝑑 = 8.65 lu) relative to the input radius.

In all simulations discussed in this paper, particles were simulated
with densities twice that of the fluid density, 𝜌𝑓 = 1 (in lattice units).
The density of the solid is 𝜌𝑠 = 𝜌𝑝 + 𝜌𝑓 , where, 𝜌𝑝 is the additional
density of the particle (Derksen and Sundaresan, 2007). All simulations
used 𝜌𝑝 = 1, therefore the density ratio is 𝜎 = 𝜌𝑠∕𝜌𝑓 = 2 (Srinivasan
et al., 2021).

3. Collision dynamics of two spheres with DLVO forces

3.1. Determination of equilibrium gap

This section focuses on the collision dynamics of two equally-sized
spheres under the influence of DLVO forces, demonstrating how the gap
size evolves over time. For this purpose, we consider two simulations in
which the initial gap (along the 𝑥 direction), ℎ𝑜, between the spheres
is 0.001 lu in the first case and 0.007 lu in the second case. In both
simulations, the 𝑦 and 𝑧 positions of the colliding particles were equal,
and therefore, the particle motion is not influenced by tangential forces.
Liquid kinematic viscosity was 1/6 lu2/ts and rotational motions are
inhibited in both simulations. Due to the inclusion of normal LC,
oscillations do not occur and the position of the particle approaches
the equilibrium position steadily.

The cutoff distance at which the EDL and Van der Waals forces were
turned on was the same as used for the normal LC because these forces
were found to be relevant for much smaller gap sizes of O(0.01). As
shown in Appendix A.2.1, the normal LC is switched on at the cutoff
distance of O(0.1), and therefore, it is reasonable to turn on the DLVO
forces over the same order of magnitude as normal LC. The inverse
Debye length used in this simulation was 1950 lu−1. Since the particle
resolution was set at 8 lu we rescale the Debye length in LB units to
account for particles with physical radii of 10 and 150 μm respectively
(see Table 1). For convenience, we normalise these inverse Debye
lengths by the hydrodynamic radius to form the non-dimensional Debye
length, 𝜅𝑅ℎ𝑦𝑑 . In all the simulations that follow, for a fixed pH of 11,
we vary 𝜅𝑅ℎ𝑦𝑑 in order to study its effect on (a) the collision dynamics
of two spheres and (b) the rheology and structure of suspensions.

Fig. 2 presents the evolution of the dimensionless gap size as a
result of the collision between two spheres as a function of simulation
time 𝑡 normalised by the viscous time scale based on 𝑅ℎ𝑦𝑑 . For the
parameters specified in Table 1 for 150 μm particles, ℎ𝑒𝑞 is calculated
to be 0.705 × 10−3 lu (solid line in Fig. 2). As expected, the gap size
computed from the simulation increases to reach the equilibrium value
when ℎ𝑜 is 0.001 lu, while with a larger initial gap, the gap size
decreases to attain equilibrium.

3.2. Effect of shear

While the particles were moved by the balance of forces in the
previous case, now we study the effect of shear on collisions between
two spheres. The purpose of this simulation is to compare the tra-
jectories of particles colliding under simple shear flow conditions in
simulations with and without DLVO forces activated. The wall velocity
𝑈𝑤 was set such that the particle Reynolds number, 𝑅𝑒𝑝 = 𝛾̇𝑅2

ℎ𝑦𝑑∕𝜈,
is 0.1 and shear rate, 𝛾̇ = 2𝑈𝑤∕𝐻 , is 4.5×10−5 ts−1. The resolution
of the computational grid and particle radius was twice that of our
previous study (Srinivasan et al., 2020a) with a confinement ratio,

𝛿 = 2𝑅ℎ𝑦𝑑∕𝐻 ≈ 0.11. Translation and rotation of two spheres with an
initial centre-centre distance of 10𝑅 and 2.5𝑅 in the directions of 𝑥 and
𝑧 were simulated for 500,000 iterations. The kinematic viscosity was
1/30 lu2/ts and 𝜅𝑅ℎ𝑦𝑑 = 1124 and 16 867.

A sample 3-D visualisation of the liquid flow field and two spheres
(after collision) is shown in the left panel of Fig. 3. Results shown at
the right panel of Fig. 3 are the trajectories of either particle under
the influence of successive additions of only EDL (blue lines), EDL and
Van der Waals (red lines) and the combination of EDL, Van der Waals,
and LCs (green lines), respectively. The second particle has the same
trajectory as presented in Fig. 3 though in the opposite direction, and
is not shown.

When the shear flow starts, the flow develops from either wall,
and open trajectories are more commonly encountered as the spheres
approach (Van de Ven, 1982), i.e. two particles approach and pass each
other from opposite directions. We distinguish the dynamics of particle
collisions into two stages. The first is the approach stage, where two
particles come closer from the opposite directions as (𝑥 − 𝑥𝑚)∕𝑅 < 0,
and the second is the separation stage, (𝑥 − 𝑥𝑚)∕𝑅 > 0. We can see
that the dynamics of the post-collision trajectories (i.e. the separation
stage) in the present work are very different from the previous case of
just hydrodynamic (LB, excluding LC) forces (dotted magenta line). As
𝜅𝑅ℎ𝑦𝑑 increases, we realise that the strength of the EDL force reduces
(see Eq. (2)). As a result, the particle is repelled to a shorter distance
(as seen from the dash–dot green line at the bottom panel of Fig. 3).
When comparing the separate effects of EDL (solid blue lines) and
EDL plus Van der Waals (dashed red lines) force, it is evident that
the contribution of the Van der Waals force does not significantly
affect the post-collision particle trajectory. As far as our simulations are
concerned, the attractive forces are always overpowered by the contri-
bution of EDL forces, indicating that the inclusion of surface charges
has a substantial effect on particle trajectories at these conditions.

4. Suspension rheology

Suspension simulations for several solids volume fractions between
6 and 52% were conducted with the effects of including sub-lattice scale
forces under a constant shear rate. In these simulations, the particles are
initially arranged in a cubic lattice with small random displacements.
The size of the simulation box is 𝐿 × 𝑊 × 𝐻 (where 𝐿 = 208 lu and
𝑊 = 𝐻 = 104 lu are the lengths, width, and height of the simulation
box, respectively). Other simulation parameters are the hydrodynamic
radius 𝑅ℎ𝑦𝑑 = 8.65 lu, the confinement ratio 𝛿 = 0.166, and the
liquid kinematic viscosity 𝜈 = 1∕30 lu2/ts. The wall speed is below
the velocity of sound and did not surpass 0.01 lu/ts thus simulating
an incompressible flow with particle Reynolds number, 𝑅𝑒𝑝 = 0.1. All
simulations ran for at least one million time steps with 𝛾̇ 𝑡 ≈ 42.3 on
the national HPC system ICHEC (Irish Centre for High-End Computing)
with several days for each simulation.

4.1. Relative apparent viscosity

The effect of including LC and DLVO forces on relative apparent
viscosity is demonstrated in terms of time-evolution and as a function of
solids volume fraction. In the remainder of this section (Sections 4.2.1
and 4.2.2) we will interpret our viscosity data in terms of particle
clusters, and the formation of particle layers and structures. First of all,
the relative apparent viscosity is computed from the top and bottom
walls as (Srinivasan et al., 2020a)

𝜂𝑟 =
⟨𝜏𝐿𝐵𝑤 ⟩ + 𝜏𝑙𝑢𝑏𝑤

𝜇𝛾̇
(7)

where 𝜏𝐿𝐵𝑤 = 𝜇 𝑈𝑤−𝑈𝑥𝑤𝛥𝑦 is the local LB shear stress on the walls (𝜇 is the
dynamic fluid viscosity, 𝑈𝑥𝑤 is the 𝑥 component of the liquid velocity
adjacent to either wall, and 𝛥𝑦 = 0.5 is the distance between the wall
and the neighbouring fluid node). ⟨ ⟩ denotes the average of wall
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Fig. 2. Comparison of the evolution of dimensionless gaps as a function of 𝑡𝜈∕𝑅2
ℎ𝑦𝑑 is shown for two simulations starting from different initial separation distances, ℎ𝑜 = 0.001

(solid green line) and 0.007 lu (dashed green line), respectively. The solid line indicates the equilibrium gap, ℎ𝑒𝑞 where the sum of the forces (i.e. Van der Waals and EDL) on
the particles become zero.

Fig. 3. Left panel: 3-D visualisation of two spheres after collision under simple shear flow with 𝛾̇ and 𝑈 ∗ = 𝑈𝑥∕𝑈𝑤 (where 𝑈𝑥 is the liquid velocity in the 𝑥 direction) being the
shear rate and dimensionless liquid velocity. Right panel shows the comparison of the influence of sub-lattice forces on the particle trajectory with the simulation of Srinivasan
et al. (2020a) in an interstitial liquid with 𝑅𝑒𝑝 = 0.1. The parameters 𝑥𝑚 = 𝐿∕2 and 𝑧𝑚 = 𝐻∕2 indicate the simulation domain centres, and the arrow indicates the direction of
the sphere’s motion. The black dot below the arrow shows the starting position of the sphere. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

shear stress being computed over the 𝑥−𝑦 cross-section. The tangential
lubrication stress on the walls is 𝜏𝑙𝑢𝑏𝑤 = 1

𝐿𝑊
∑

(𝐅𝑤,𝑡𝑡𝑝 + 𝐅𝑤,𝑡𝑟𝑝 ) (see Ap-

pendix for the expressions of 𝐅𝑤,𝑡𝑡𝑝 and 𝐅𝑤,𝑡𝑟𝑝 ). The viscosity values from
either wall are then combined to obtain an average relative apparent
viscosity (which we denote as 𝜂̄𝑟). This average (of top and bottom wall)
viscosity fluctuates over time (see Section 4.1.1), and therefore the
time-averaged viscosity over the period of steady fluctuations (which
we denote as 𝜂𝑟) is reported in Section 4.1.2. It is important to note
that both the Van der Waals and EDL forces act normal to the wall and
therefore do not contribute to the shear stress directly. These forces
affect the suspension structure (as discussed in Section 4.2.2), which
indirectly affects the shear stress.

4.1.1. Time-evolution of 𝜂̄𝑟
First, the evolution of average relative apparent viscosity, 𝜂̄𝑟, as

a function of non-dimensional time (starting from rest) is presented
in Fig. 4 for a suspension with 30% solids obtained by including
Van der Waals, EDL, and lubrication forces in varying combinations.
For all cases, it is evident that as time evolves, the average viscosity
first decreases to a minimum (approximately 2) and then increases
to attain a stable value after about 15−20 strain times. The time-
averaged (21 ≤ 𝛾̇ 𝑡 ≤ 42) viscosity obtained from the simulation in the
absence of EDL forces (𝜅𝑅ℎ𝑦𝑑 = ∞: solid red line) is approximately
3.4. By adding the EDL forces with LC forces, the steady viscosity of
the suspension decreases by approximately 18 and 26% for varying
magnitudes of 𝜅𝑅ℎ𝑦𝑑 = 16 867 (solid green line) and 1124 (solid blue
line), respectively. By adding Van der Waals forces (as indicated by the
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Fig. 4. The effect of 𝜅𝑅ℎ𝑦𝑑 on the time-evolution of the relative apparent viscosity of a suspension with 30% solids is shown for several sub-lattice scale forces. The particle
Reynolds number 𝑅𝑒𝑝 was 0.1 in all simulations. The dimensionless Debye lengths 𝜅𝑅ℎ𝑦𝑑 were 1124, 16 867, and ∞ (which implies the absence of EDL force), respectively. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

dashed green and blue lines), we can see that the viscosity variations
are different though without any noticeable change in the average
value. Even for 52% solids, it was found that the inclusion of Van der
Waals forces had no impact on the average viscosity of the suspension.
We therefore conclude that the influence of attractive Van der Waals
forces does not affect the relative viscosity of the suspension, at least for
our simulation conditions. In all results presented from now onward,
we will thus ignore the contribution of the Van der Waals force and
consider only the sub-lattice scale corrections from EDL and lubrication
forces and torques.

Now we turn our attention to discuss the time-evolution of vis-
cosity of a suspension with 52% solids with only EDL and LC. In
these simulations, the suspensions are sheared for longer periods up
to 𝛾̇ 𝑡 ≈ 105 compared to the previous case. From Eq. (7), we know that
the relative apparent viscosity of the suspension is expressed as the
summation of the resolved LBM and unresolved lubrication viscosity.
Therefore, in Fig. 5, we compare how these individual fluid (LBM) and
particle (lubrication) viscosities contribute to the total viscosity of the
suspension for two separate values of 𝜅𝑅ℎ𝑦𝑑 . In either case, we can see
that the viscosity fluctuates initially at some rate. For 𝜅𝑅ℎ𝑦𝑑 = 16 867,
the total average apparent viscosity (green line) wavers until 𝛾̇ 𝑡 ≈ 27.
Once the initial cubic structure is set into motion and collapses, the
stresses build and the momentum transport rate increases that – in
turn – rapidly increases the relative apparent viscosity. After the first
increase, we observe that the viscosity then gradually ramps down from
approximately 10 to 6 between times 40 ≤ 𝛾̇ 𝑡 ≤ 70, and then stabilises
till the end of shearing. On the contrary, for the case shown in the
left of Fig. 5 (i.e. 𝜅𝑅ℎ𝑦𝑑 = 1124), we can see that the viscosity first
oscillates continuously until 𝛾̇ 𝑡 ≈ 60 before it increases to approximately
7.5 and decreases to attain a steady viscosity of approximately 5. These
long steady initial oscillations observed for a lower magnitude of 𝜅𝑅ℎ𝑦𝑑
(or higher Debye lengths) suggest that the suspension takes longer
periods to break the initial particle assembly and re-structure into a new
configuration. Comparing the results between rather dilute (see Fig. 4)
and dense (see Fig. 5) suspensions, the response time of suspensions
after imposing a shear flow or shear stress, increases with increasing
solid fractions.

4.1.2. Effects of particle concentration
Having presented the time-evolution of viscosity for two solids load-

ings (30 and 52%), we now discuss the time-averaged relative apparent
viscosity which we denote as 𝜂𝑟 for a wider range of 𝜙𝑣 between 6 and

52%. For all concentrations (including 𝜅𝑅ℎ𝑦𝑑 = ∞), suspensions were
sheared up to 𝛾̇ 𝑡 ≈ 42 and the time-averaged viscosities were obtained
between 21 ≤ 𝛾̇ 𝑡 ≤ 42. However, in the case of 𝜙𝑣 = 52% with EDL
forces, the simulations ran until 𝛾̇ 𝑡 ≈ 105 (as stated earlier) and the
viscosity average was between 70 ≤ 𝛾̇ 𝑡 ≤ 105 and 90 ≤ 𝛾̇ 𝑡 ≤ 105 for
𝜅𝑅ℎ𝑦𝑑 = 16 867 and 1124, respectively.

Fig. 6 presents the dependence of 𝜂𝑟 on 𝜙𝑣. The simulation results
of the present study (filled left, up, and down-pointing triangles in red,
green, and navy blue) are compared with the correlation of Krieger
and Dougherty (1959), experiments of Dbouk et al. (2013), Stokesian
dynamics simulations of Sierou and Brady (2002), LB simulations with
repulsive spring force by Thorimbert et al. (2018), Srinivasan et al.
(2020a), and finally LB simulations with normal and tangential LC in
which the hydrodynamic radius of the particle was 4.2 lu (Srinivasan
et al., 2021).

First, we compare 𝜂𝑟 with the results from only LC. Our earlier sim-
ulation results (Srinivasan et al., 2021), represented by right-pointing
magenta triangles and obtained with an input radius of 𝑅 = 4 lu
(𝑅ℎ𝑦𝑑 = 4.2 lu) agree pretty well (for dilute concentration 𝜙𝑣 = 5%)
with our current results represented by left-pointing red triangles and
obtained with 𝑅 = 8 lu (𝑅ℎ𝑦𝑑 = 8.65 lu). The solids volume fractions
for the two cases are different because the ratio 𝑅ℎ𝑦𝑑∕𝑅 differs. For
𝑅ℎ𝑦𝑑 = 8.65 lu, the solids volume fraction is larger and therefore these
data points appear to the right of those for 𝑅ℎ𝑦𝑑 = 4.2 lu (see error bars
for 𝜙𝑣 = 52%). These observations have led us to conclude that, with
the same confinement ratio, the initial 4 lu radius used by us earlier
provides sufficiently accurate results.

Now we compare the effects of subsequently adding the EDL forces
to LCs and their consequences on 𝜂𝑟 as a function of 𝜙𝑣. Form the
up- and down-pointing triangles in green and navy blue in Fig. 6, it
is evident that the addition of this extra force decreases the viscosity
by a noticeable amount when 𝜙𝑣 ≥ 30%. The viscosity reduces further
when the magnitude of 𝜅𝑅ℎ𝑦𝑑 decreases. At 52% solids, the viscosity
plateaus (as evident from the dotted lines that connect the triangles)
to attain (almost) the same value as in 43% solids because at such
high concentrations the room for the particles (that is, the mean centre-
centre distance) to move freely decreases and the repulsive forces lock
the configuration of the particle structure. The plateauing of relative
suspension viscosity seen in Fig. 6 is explained in terms of particle
structures in Fig. 8. For 𝜙𝑣 up to 36%, the viscosities presented in
navy blue and green are in close agreement with the spring simulations
of our previous work (Srinivasan et al., 2020a). We speculate that in
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Fig. 5. Time-evolution of the average (of top and bottom wall) relative apparent viscosity of a suspension at 52% solids obtained by the contribution of only LBM (solid black
line), only LC (solid magenta line), and the summation of both LBM and LC (solid green and blue lines) is shown for two different values of 𝜅𝑅ℎ𝑦𝑑 = 16 867 (top panel) and 1124
(bottom panel). In both cases, the particle Reynolds number, 𝑅𝑒𝑝 = 0.1. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Fig. 6. Time-averaged relative apparent viscosities, 𝜂𝑟 as a function of solids volume concentration, 𝜙𝑣 between 2 and 52%. The particle Reynolds number, 𝑅𝑒𝑝 = 0.1. The
dimensionless Debye length, 𝜅𝑅ℎ𝑦𝑑 = ∞ (filled orange and red triangles) indicates the simulation of uncharged particles with 𝑅ℎ𝑦𝑑 of 4.2 (Srinivasan et al., 2021) and 8.65 lu
(current simulations), respectively. For the simulations with charged particles, the hydrodynamic radius was 8.65 lu and 𝜅𝑅ℎ𝑦𝑑 = 16 867 (filled green triangles pointing upwards)
and 1124 (filled navy blue triangles pointing downwards), respectively. These simulation viscosities are compared with Krieger and Dougherty (1959) (dashed line), Sierou and
Brady (2002) (diamonds), Dbouk et al. (2013) (pluses), Thorimbert et al. (2018) (circles), Srinivasan et al. (2020a) (filled pentagons). The errorbars (magenta lines) indicate the
average viscosity computed based on the input radius of two resolutions, 𝑅 = 4 and 8 lu. (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

both cases, the presence of non-hydrodynamic forces keeps particles
away from the surface, which decreases the shear stress and therefore
the relative viscosity. These variations in viscosity are related with the
spatial distribution of particle structures — details are given in the
upcoming section.

While two different values of 𝜅𝑅ℎ𝑦𝑑 = 1124 and 16 867 were used in
all simulations so far, a sample simulation of suspensions at 𝜙𝑣 = 43%
with 𝜅𝑅ℎ𝑦𝑑 = 113 was performed to test the degree to which the
effect of non-dimensional Debye length plays a role in determining the
relative apparent viscosity. We found that time-averaged viscosity was
in line with the simulation of 𝜅𝑅ℎ𝑦𝑑 = 1124 with an average deviation
of less than 0.5%. We remark here that the viscosity remains unchanged
for 𝜅𝑅ℎ𝑦𝑑 less than some critical value, which in our case is 1124.

4.2. Structure

Variations in the relative apparent viscosity found for different
values of 𝜅𝑅ℎ𝑦𝑑 are further investigated by analysing the 3-D spatial

distribution in terms of (a) cluster dynamics and (b) particle layering
versus 3-D particle structures

4.2.1. Cluster dynamics
For the first analysis, the particles’ structural distribution is qual-

itatively interpreted in the following ways: (a) analysing the average
cluster size for several choice of cluster cutoff ℎ𝑐 normalised using
𝑅ℎ𝑦𝑑 and (b) computing the dynamic evolution of particle clusters. For
these analyses, the simulation data over the last 10 strain times was
used. While there are many ways to characterise cluster distributions,
such as by means of pair distribution function (Sierou and Brady, 2002;
Srinivasan et al., 2021) or a icosahedral order parameter 𝑄6 (Kumaran,
2009), the present method qualitatively demonstrates the distribution
of particle structures in 3-D space. Although the development of struc-
tures from transient to steady state may depend on the sub-lattice
forces, the emphasis of this paper is on steady particle structures.

A cluster is defined as a group of particles where the distance
between adjacent particle surfaces is smaller than ℎ𝑐 . For several values
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Fig. 7. Left panel: dependence of average cluster size during the last 10 simulation strain periods for 𝜙𝑣 = 30, 36, 43, and 52% and 𝜅𝑅ℎ𝑦𝑑 = 1124, 16 867, and ∞ is shown as a
function of cluster threshold, ℎ𝑐∕𝑅ℎ𝑦𝑑 for 𝑅𝑒𝑝 = 0.1. The filled symbols demonstrate the cluster size distribution obtained by Srinivasan et al. (2020a). Right panel: time-evolution
of the number of clusters (left axis) for ℎ𝑐∕𝑅ℎ𝑦𝑑 = 1∕430 and 𝜂̄𝑟 (right axis) are shown for 43% solids. Inset displays the steady evolution of both 𝑁𝑐 and 𝜂̄𝑟 over the last 10 strain
times (33 ≤ 𝛾̇ 𝑡 ≤ 42).

of ℎ𝑐 , we compute the average cluster size as 𝑄 = 𝑁𝑝𝑁𝑠∕𝑁 𝑡
𝑐 , where

𝑁 𝑡
𝑐 is the total number of clusters (including all individual particles)

counted over 𝑁𝑠 equally-spaced samples of the simulation state. The
value of 𝑄 is always between 1 and 𝑁𝑝; this means that when 𝑄 = 1
there are no clusters, while 𝑄 = 𝑁𝑝 indicates that all particles are
counted as one cluster. In between 1 and 𝑁𝑝, the cluster size depends
on the choice of ℎ𝑐 . Since the selection of ℎ𝑐 is arbitrary, we consider
the effect of ℎ𝑐 on the size and number of clusters. The dependence of
the number of clusters on ℎ𝑐 provides information on how the particles
are distributed in space. While computing the average cluster size, we
use the data over the last 10 strain times of the simulation state.

Fig. 7 presents the dependence of 𝑄 as a function of ℎ𝑐∕𝑅ℎ𝑦𝑑
for four different solids loading (i.e. 30, 36, 43, and 52%) and one
particle Reynolds number, 𝑅𝑒𝑝 = 0.1. For each solids concentration,
𝑄 is compared for three values of 𝜅𝑅ℎ𝑦𝑑 , i.e. 1124 (blue lines), 16 867
(dashed green lines), and ∞ (dash–dot red lines), respectively. As the
concentration of solids increases from 30 to 52%, we can see that the
average cluster size also increases with increasing cluster threshold (see
the narrow distribution of gap sizes in left panel of Fig. 7). Once ℎ𝑐
exceeds a critical gap between the surface of the sphere, 𝑄 saturates to
match the number of particles as ℎ𝑐 is large enough that all particles
are counted as being in one cluster. This critical gap is determined by
the length of the Debye layer as it holds the particles apart over the
Debye length. In the discussion that follows, we will show how clusters
evolve as a function of time when the cluster threshold is chosen to be
the same order of magnitude as the Debye length.

Along with these solid, dashed, and dash–dot lines, the dependency
of 𝑄 as a function of ℎ𝑐∕𝑅ℎ𝑦𝑑 for a suspension at 38% solids (Srinivasan
et al., 2020a) is also shown in filled symbols. In our previous simula-
tion, a spring-like, non-hydrodynamic repulsive force was used between
adjacent particles to model interparticle interactions, where the spring
forces were turned on when the gap between the particles is less than
1 lu. Comparing the trends between our current simulation (EDL at 36%
solids) and our previous analysis (spring force at 38% solids), in either
case up to ℎ𝑐∕𝑅ℎ𝑦𝑑 ≈ 0.05, we can see that 𝑄 is approximately 1. This
means that the influence of non-hydrodynamic forces prevents particles
from forming clusters over a certain cutoff distance (determined by the
spring threshold in the previous case and Debye length in the present
case) and alters the morphology of the suspension.

Presented in the right panel of Fig. 7 is the temporal evolution of
𝑁𝑐 (left axis) and 𝜂̄𝑟 (right axis — for 𝜅𝑅ℎ𝑦𝑑 = ∞) for 𝜙𝑣 = 43% and
𝑅𝑒𝑝 = 0.1. First of all, 𝑁𝑐 is calculated by identifying pairs of particles
that touch each other’s surface over the same 𝑁𝑠 samples as before.
With respect to the dynamics of cluster evolution, two regions may be

discerned, viz. the initial development from rest (0 ≤ 𝛾̇ 𝑡 < 21) and
the steady-state region (21 ≤ 𝛾̇ 𝑡 ≤ 42) - as indicated by the black and
purple arrows. In this paper, we focus on the steady-state clusters, and
the analysis of the initial development of clusters is left for the future.
Between the two Debye lengths discussed in this paper (see Table 1),
a cluster threshold of 1/430 is chosen to demonstrate its effect on the
number of clusters. Comparing the time-evolution of 𝜂̄𝑟 and 𝑁𝑐 , it is
evident that the time scales of the both evolution are the same. After
around 10 strain times, both 𝜂̄𝑟 and 𝑁𝑐 start to hit a stable value.
From the inset that displays the steady evolution of 𝜂̄𝑟 and 𝑁𝑐 over
the last 10 𝛾̇ 𝑡 of the simulation state, we can hardly see any clusters
for the case with 𝜅𝑅ℎ𝑦𝑑 = 1124. Since the selected cluster threshold
(ℎ𝑐∕𝑅ℎ𝑦𝑑 = 1∕430) is within the same order of magnitude as the Debye
length (𝜅−1 = 1∕130 lu), the particles are held apart from each other.
However, as the Debye length decreases, the EDL forces weaken and
the contribution of LC governs the cluster formation. As a result, we can
see approximately 10 clusters when 𝜅𝑅ℎ𝑦𝑑 = ∞. As clusters accelerate
momentum transfer, the higher their number the higher the relative
apparent viscosity.

4.2.2. Particle structuring and ordering transitions
Now we go on to investigate the differences in apparent viscosity by

studying the spatial distribution and structuring of particles in dense
shear flow. Yeo and Maxey (2010) distinguished between the spatial
variation of particles into three regimes. The first is the particle layering
regime that happens predominantly near the walls, and the second
is the core region where the suspensions are homogeneously mixed.
In between the core and either wall is the buffer region that has the
features of either regime.

The particle Reynolds number 𝑅𝑒𝑝 = 0.1 was kept constant, and we
compare in Fig. 8, the cases for varying 𝜅𝑅ℎ𝑦𝑑 = 1124 (top), 16 867
(middle), and ∞ (bottom), respectively. The 3-D sample visualisation
(𝑥−𝑧 view) of the suspended particles at the end of the simulation state
is shown in the left panel of Fig. 8 for 𝜙𝑣 = 43 and 52%. In all snapshots,
the spheres are drawn at half (𝑅 = 4 lu) the original size (i.e. 8 lu)
to display the distribution of particles clearly. In either case, near the
walls, we can see that the particle layers are predominant. For relatively
dilute suspensions, 𝜙𝑣 = 43%, as we pass away from either wall, the
layers disappear and structures formed are homogeneously distributed
in the core of the flow (i.e. the centre of the simulation domain). In
between wall and core, the particles tend to form both layers and homo-
geneous structures. For dense suspensions, (i.e. 𝜙𝑣 = 52%), one can see
layers of particles (in all zones: near the walls, buffer zone and the core)
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Fig. 8. Left panel: 𝑥−𝑧 visualisations of particles are shown for 𝜙𝑣 = 43 and 52%. Right panel: 𝑦−𝑧 visualisations of suspended particles with 43 and 52% solids are compared. In
both panels, from top to bottom, the magnitude of 𝜅𝑅ℎ𝑦𝑑 increases from 1124 to ∞. The radius of each sphere is drawn half of its original size and the particle Reynolds number
𝑅𝑒𝑝 = 0.1. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

in the presence of EDL forces; interestingly, the suspensions look well-
mixed in the core region when EDL forces are absent (i.e. 𝜅𝑅ℎ𝑦𝑑 = ∞).
Furthermore, since the space for particles to move freely is restricted at
52% solids, the EDL repulsive potential around the spheres pushes the
particles apart, causing sliding layers to form (as shown in the second
column of Fig. 8 for 𝜅𝑅ℎ𝑦𝑑 = 1124 and 16 867, respectively). As a result
of this repulsive potential, microstructures emerge to minimise energy
dissipation, which can be interpreted as a way to decrease apparent
viscosity and facilitate transport in pipelines.

By visualising the particles from the 𝑦 − 𝑧 perspective as shown in
the right panel of Fig. 8, the difference in the structuring of suspended
particles can be seen when the loading of solids increases from 43 to
52%. In all these snapshots, the distribution of particles shown is at
the end of the simulation. For all magnitudes of 𝜅𝑅ℎ𝑦𝑑 , at 43% solids,
particle layering is clearly visible near either wall, while in the core
region, the particles form chain-like structures. As the solids volume
fraction increases from 43 to 52%, for 𝜅𝑅ℎ𝑦𝑑 = 1124 and 16 867 (top
and middle row in the right most panel of Fig. 8), a clear transition in
the structuring of particles from homogeneous chains to hexagons is ob-
served. It is interesting that this type of structural transformation is only
observed when EDL forces are present. For 𝜅𝑅ℎ𝑦𝑑 = ∞, although layers
are seen near the walls, at the core region the particles are smeared
and the structures are not as distinctly visible as observed for the other
two values of 𝜅𝑅ℎ𝑦𝑑 . Although it is intuitive that increasing the solids
volume fraction increases the apparent viscosity, the contribution of
EDL repulsive forces is significant enough that the particles are held
apart, lowering the local shear stress and thus the relative viscosity,
explaining why the plateauing behaviour occurs. From Fig. 5, we know
that in the presence of the EDL force the simulation took around 105
strain times to achieve a steady viscosity value. We remark here that, in
the absence of the EDL force, the suspension took approximately 𝛾̇ 𝑡 = 43
to achieve an equilibrium structure with no qualitative change in the
particle ordering for 𝜙𝑣 = 43 and 52%. In either case, the structures in
the core region are homogeneously mixed, which promotes momentum
transfer and increases the viscosity.

We quantitatively evaluate the ordering transitions for the last 10
strain times of the simulation by first computing the time-averaged
area fractions, 𝜙𝑎 at 43% solids, and then demonstrating the spatial
variation of particles at 52%. Presented in the left panel of Fig. 9 are the
comparisons of 𝜙𝑎 as a function of normalised channel height 𝑧∕𝑅ℎ𝑦𝑑
for several values of 𝜅𝑅ℎ𝑦𝑑 at 43% solids. In all cases, we can see
that the peaks are higher in the vicinity of the walls, while they are
noticeably higher when EDL forces (navy blue and green lines) are
included. These peaks indicate the evidence of particle-layering near
the walls. However, as 𝜅𝑅ℎ𝑦𝑑 increases, the values of the peak near
the walls decrease. After the first peak, the subsequent peaks drop
dramatically from approximately 0.6 to 0.4. In the core region, we can
see that all simulations have a similar trend in the distribution of 𝜙𝑎
with an average value of ≈0.37.

The results of the present simulation are validated by comparing the
time-average area fractions of our work (LBM with LC and EDL forces)
with Force Coupling Method (FCM) simulations with LC and contact
forces of Yeo and Maxey (2010) at 𝜙𝑣 = 40% (pluses in the left panel
of Fig. 9). While the simulations of Yeo and Maxey (2010) are under
Stokes flow conditions (𝑅𝑒𝑝 ≪ 1) with 𝛿 = 0.1, in our simulations, the
particles are rather larger in size with finite inertia (𝑅𝑒𝑝 = 0.1), and the
confinement ratio is 0.166. The peak and base values are comparable
with Yeo and Maxey (2010) up to the buffer region (i.e. 𝑧∕𝑅ℎ𝑦𝑑 ≈ 4).
At the core, the structures are different, indicating that the impact of
confinement affects the spatial distribution of particles.

In the case of a dense suspension (i.e. 𝜙𝑣 = 52%), as seen from the
navy blue and green lines in the right panel of Fig. 9, the number of
peaks corresponds to the number of layers observed in the rightmost
top and middle rows of Fig. 8. Since the particles appear to be smeared
in the core region for simulations with 𝜅𝑅ℎ𝑦𝑑 = ∞, we can see that the
distribution of particles in space follows a similar pattern to that seen
in 𝜙𝑣 = 43%. This advises that the presence of EDL forces significantly
alters the structuring and spatial distribution of particle assemblies.
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Fig. 9. The comparison of spatial variation of particles for several values of 𝜅𝑅ℎ𝑦𝑑 as a function of normalised channel height, 𝑧∕𝑅ℎ𝑦𝑑 is shown for 43 (left panel) and 52% (right

panel) solids. Shown in symbols (pluses) are the results of 𝜙𝑎 obtained by Yeo and Maxey (2010) for Stokes flow FCM simulations with LC and contact force model with 𝛿 = 0.1
and 𝜙𝑣 = 40%.

With LCs alone, the suspended particles are homogeneously mixed and
facilitate a higher rate of momentum transfer which, in turn, increases
the relative viscosity of the suspension. These differences in the spatial
distribution of particles with varying values of non-dimensional Debye
lengths can underpin the variations in suspension viscosity.

5. Conclusions

Motivated by the hydraulic transport of electrically charged parti-
cles, three-dimensional direct numerical simulations of suspensions in
aqueous electrolytes were performed under simple shear flow using a
custom immersed boundary-lattice Boltzmann method code. Suspen-
sions with varying concentrations of solids, 𝜙𝑣 between 6 and 52%, and
a single particle Reynolds number, 𝑅𝑒𝑝 = 0.1, were simulated. Besides
the hydrodynamics resolved in the LB lattice, the unresolved sub-lattice
scale collisions are modelled by including corrections due to both hy-
drodynamic and non-hydrodynamic forces. In terms of hydrodynamic
corrections, normal and tangential lubrication forces and torques were
used, while electric double layer (EDL) and Van der Waals forces were
used to model the non-hydrodynamic interaction.

Simple shear flow simulations under the influence of both lubrica-
tion and non-contact forces were performed to examine the trajectories
of two colliding spheres. For the particle Reynolds number 𝑅𝑒𝑝 = 0.1
the results showed that the effect of the attractive Van der Waals forces
was often dominated by the contribution of the repulsive EDL force.

In the case of shear flow of suspensions, good agreement has been
found between our viscosities and the literature for solids concentra-
tions up to 52%. In addition, for 𝜙𝑣 up to 38%, the current viscosities
with EDL forces are consistent with our previous findings (Srinivasan
et al., 2020a), where, a non-hydrodynamic force was used to model sub-
lattice scale interactions. With decreasing values of the Debye length,
our simulations (for 𝜙𝑣 ≥ 30%) show a reduction in the viscosity down
to approximately 30% of the case with only lubrication correction. We
quantified this reduction in viscosity by assessing the structural distri-
bution of particle clusters. Dense suspensions with a lower magnitude
of non-dimensional Debye length respond more slowly to the applied
shear stress on the walls than dilute suspensions, as the former takes a
long time to break the initial cubic assembly and delay the development
of the wall shear stress and therefore the relative apparent viscosity.

Our results with respect to the cluster dynamics of charged sus-
pensions show that the influence of EDL forces slows down the rate
of cluster formation, which can be interpreted as a way to prevent a

transport line from being clogged. Furthermore, the time scales of the
evolution of both the relative apparent viscosity and the number of
clusters were found to coincide for a dense suspension at 𝜙𝑣 = 43%.
The variations in the spatial structure of these suspensions have also
been studied. Upon increasing 𝜙𝑣 from 43 to 52%, chain-like homoge-
neous structures are transformed into hexagonal assemblies with the
inclusion of EDL forces, while the suspension retains its chain structure
in the absence of EDL force. As these homogeneous chains facilitate a
higher mixing rate compared to structured hexagonal assemblies, the
momentum transport increases that – in turn – increases the viscosity
of the suspension. Overall, the differences observed in the structuring
of the particles due to changes in the sub-lattice forces substantiate the
variation in the suspension behaviour.
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Fig. 10. Visualisations of translating and rotating rigid spheres are shown for the LC benchmarks. The particles have an equal radius of 𝑅 = 8 lu. While the 𝑧 position of the two
spheres is equal in 𝑎, in 𝑏 the translating particle is at a slightly higher 𝑧 (one diameter distance) than the stationary particle. In 𝑎 and 𝑏, the translating particle (shown with
arrows) approaches the stationary particle with a constant speed of 𝑢𝑥𝑝 , and in 𝑐, the upper particle rotates at a constant angular velocity 𝜔𝑦𝑝. The background colours indicate the
fluid velocity normalised by the particle speed.

Appendix

In this appendix, we first provide the governing equations used for
implementing the LC forces and torques, followed by the benchmarks
performed to determine the lubrication cutoffs.

A.1. LC modelling equations

First of all, the lubrication forces on particle 𝑝 due to relative
translation and rotation of spheres 𝑝 and 𝑞 can be written as (O’Neill
and Majumdar, 1970; Simeonov and Calantoni, 2012)

𝐅𝑛𝑝
6𝜋𝜇𝑅2

ℎ𝑦𝑑

= 𝛼2

(1 + 𝛼)2

(

1
ℎ
− 1
ℎ𝑛𝑜

)

𝐔𝑛 (A.1a)

𝐅𝑡𝑡𝑝
6𝜋𝜇𝑅ℎ𝑦𝑑

=
[

4𝛼(2 + 𝛼 + 2𝛼2)
15(1 + 𝛼)3

ln
(

ℎ
ℎ𝑡𝑜

)]

𝐔𝑡 (A.1b)

𝐅𝑡𝑟𝑝
6𝜋𝜇𝑅2

ℎ𝑦𝑑

=
[

2𝛼2

15(1 + 𝛼)2
ln
(

ℎ
ℎ𝑟𝑜

)]

(𝝎𝐹 × 𝐧𝑝𝑞) (A.1c)

where 𝛼 = 𝑅𝑞ℎ𝑦𝑑∕𝑅
𝑝
ℎ𝑦𝑑 is the ratio of radii, and 𝐔𝑛 = (𝐔𝑝𝑞 ⋅ 𝐧𝑝𝑞)𝐧𝑝𝑞

(where 𝐔𝑝𝑞 = 𝐮𝑞 − 𝐮𝑝 is the relative translational velocity and 𝐧𝑝𝑞 is
the unit vector) is the velocity along the unit normal. The velocity
perpendicular to the unit normal is 𝐔𝑡 = 𝐔𝑝𝑞−𝐔𝑛. The relative rotational
motion of the spheres is given by 𝝎𝐹 = 𝝎𝑝𝑞 + 4𝛼−1𝝎𝑝 + 4𝛼𝝎𝑞 (where
𝝎𝑝𝑞 = 𝝎𝑝 +𝝎𝑞). The superscripts 𝑛, 𝑡𝑡, and 𝑡𝑟 denote normal, tangential
translation, and tangential rotation, respectively. Following O’Neill and
Majumdar (1970) and Simeonov and Calantoni (2012), the contribution
from lubrication torques is written as

𝐓𝑡𝑡𝑝
8𝜋𝜇𝑅2

ℎ𝑦𝑑

=
[

𝛼(4 + 𝛼)
10(1 + 𝛼)2

ln
(

ℎ
ℎ𝑡𝑜

)]

(𝐧𝑝𝑞 × 𝐔𝑝𝑞) (A.2a)

𝐓𝑡𝑟𝑝
8𝜋𝜇𝑅3

ℎ𝑦𝑑

=
[

2𝛼
5(1 + 𝛼)

ln
(

ℎ
ℎ𝑟𝑜

)]

𝝎𝑇 (A.2b)

where 𝝎𝑇 =
(

𝝎𝑝 +
𝛼𝝎𝑞
4

)

−
[(

𝝎𝑝 +
𝛼𝝎𝑞
4

)

⋅ 𝐧𝑝𝑞
]

𝐧𝑝𝑞 .

During collisions, the particles not only interact with the neighbour-
ing particles, but also come into contact with either the top and/or
bottom walls. By having 𝛼 → ∞ in Eqs. (A.1a) through (A.2b) and
by replacing 𝑞 with 𝑤, the lubrication forces and torques on particles
throughout such contacts are derived as

𝐅𝑤,𝑛𝑝

6𝜋𝜇𝑅2
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)

𝐔𝑛 (A.3a)
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and
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ln
(

ℎ
ℎ𝑟𝑜

)

𝝎𝑇 (A.4b)

In Eqs. (A.3a) through (A.4b), the definition of normal and tangential
relative velocities remains the same as before, except that now 𝑞 is
replaced by 𝑤. All these forces and torques are summed up in order
to obtain the overall LC contribution as

𝐅𝑙𝑢𝑏𝑝 = 𝐅𝑛𝑝 + 𝐅𝑡𝑡𝑝 + 𝐅𝑡𝑟𝑝 + 𝐅𝑤𝑝 (A.5a)

𝐓𝑙𝑢𝑏𝑝 = 𝐓𝑡𝑡𝑝 + 𝐓𝑡𝑟𝑝 + 𝐓𝑤𝑝 . (A.5b)

where 𝐅𝑤𝑝 and 𝐓𝑤𝑝 are summations of particle–wall LC (i.e. Eqs. (A.3a)
through (A.3c) and Eqs. (A.4a) through (A.4b), respectively).

A.2. LC benchmarks

Now we move on to discuss the details of simulations carried out
to determine the normal and tangential lubrication cutoffs required
to appropriately evaluate the forces and torques on the particle over
small interparticle gaps. We discuss the results of our simulations in
the sequence shown in Fig. 10 by comparing with the literature. Two
particles with equal radius have been used in these simulations. To this
end, we calculate the forces and torques as a function of gap size and
determine at what distances they become relevant.

The size of the simulation box in Fig. 10𝑎 and 𝑏 were chosen to
be large enough to prevent any periodicity effects. In order to achieve
accurate forces and torques within the limit of large interparticle gaps,
the confinement ratio in Fig. 10𝑎 and 𝑏 were chosen to be ≈0.043 (where
𝐻 = 400 lu is the height of the simulation box). For the simulation in
Fig. 10𝑐, a confinement ratio of 0.16 was adequate to achieve accurate
results. However, in order to calculate the forces within the limit of
small gaps, we use the correction expressions given in the previous
section to account for the unresolved details of flow. Other parameters,
such as density ratio (particle over fluid densities, 𝜎 = 𝜌𝑝∕𝜌𝑓 ) and 𝜈,
were 1 and 1/6 lu2/ts, respectively.

A.2.1. Head-on collision: normal force
In this simulation, one particle is allowed to translate at a fixed

speed in the positive 𝑥 direction with translational particle Reynolds
number 𝑅𝑒𝑡𝑝 = 𝑢𝑥𝑝𝑅ℎ𝑦𝑑∕𝜈 = 0.025 until surfaces touch. The second parti-
cle is stationary in the centre of the domain. The 𝑦 and 𝑧 components
of the translating particle’s velocity are set to zero. The spheres are
separated by a centre-centre distance of 50𝑅 in the 𝑥 direction with
equal 𝑦 and 𝑧 positions.

Fig. 11 provides a comparison of the hydrodynamic (normal) force
of both stationary (open circles) and moving (filled circles) particles ob-
tained by LB simulation without LC and the analytical expression, viz.
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Fig. 11. The normal force on the stationary (open circles) and moving (filled circles) particle during a head-on collision of two spheres is compared for several dimensionless
gaps. The forces are normalised by the Stokes drag force 𝐹𝑜 = 6𝜋𝜇𝑢𝑥𝑝𝑅ℎ𝑦𝑑 . 𝑅𝑒𝑡𝑝 = 0.024, and the dash–dot line shows the lubrication cutoff, ℎ𝑛𝑜∕𝑅ℎ𝑦𝑑 = 0.5. The open triangles indicate
LBM simulation results with LC on the stationary particle.

Fig. 12. The tangential forces (left) and torques (right) exerted on the stationary particle as evaluated by the LB simulation are compared against the analytical solution (ℎ ≪ 𝑅ℎ𝑦𝑑 )
and O’Neill and Majumdar (1970). 𝑅𝑒𝑡𝑝 = 0.024, and the dash–dot line indicates the normalised cutoff gap, ℎ𝑡𝑜∕𝑅ℎ𝑦𝑑 = 0.1 below which LC due to translation is applied.

Eq. (A.1a). Forces are normalised by the Stokes force 𝐹𝑜 = 6𝜋𝜇𝑢𝑥𝑝𝑅ℎ𝑦𝑑 .
When the distances between the particles are large, the forces on the
stationary and moving particles tend to be zero and one (Stokes value)
respectively. However, as the distance decreases, the forces evaluated
from the LB simulation approach a constant value (≈2). Therefore,
to measure the forces precisely over the small gaps, we turn on the
LC when the distance between the particles is below the cutoff gap,
ℎ𝑛𝑜 = 0.5𝑅ℎ𝑦𝑑 , when the LB-only simulation begins to separate from the
analytical line. From the open triangles in Fig. 11, we can see that the
LB simulation results with LC follow the analytical value.

A.2.2. Tangential effect of particle translation
Now we benchmark the tangential lubrication forces and torques

due to translation of one particle relative to the second stationary
particle. While the 𝑧 position of the two particles was equal in the

previous simulation (see Appendix A.2.1), here, the particle centres are
off by a distance of one particle diameter along the 𝑧 direction. The
centre-centre distance along the 𝑥 direction is 37.5𝑅 and the 𝑦 positions
of the spheres are equal. The particle is allowed to translate at a fixed
speed in the positive 𝑥 direction with 𝑅𝑒𝑡𝑝 = 0.025 and stopped when the
surfaces touch. For gaps between 𝑂(10 𝑙𝑢) and 𝑂(10−5 𝑙𝑢), we present in
Fig. 12 (left panel), the comparison of the LB force (without LC) on the
stationary particle with the analytical expression and with O’Neill and
Majumdar (1970). Here, the tangential forces are normalised by 𝐹𝑜 =
6𝜋𝜇𝑢𝑥𝑝𝑅ℎ𝑦𝑑 . Since the stationary particle is far away from the translating
particle, the forces approach zero in the limit of large ℎ∕𝑅ℎ𝑦𝑑 , and
gradually saturate to ≈0.6 in short ranges. We determine the lubrication
cutoff, ℎ𝑡𝑜 when the LB force equals the analytical value in the limit
of small interparticle gaps. We can see from the left panel of Fig. 12
that the LB force stays constant below ℎ∕𝑅ℎ𝑦𝑑 ≈ 0.1. Applying the
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Fig. 13. The hydrodynamic forces (left) and torques (right) exerted on a rotating sphere computed from LBM simulation are compared with the previous results by O’Neill and
Majumdar (1970), as well as the analytical expression. 𝑅𝑒𝑟𝑝 = 0.22, and the dash–dot line shows the cutoff gap, ℎ𝑟𝑜∕𝑅ℎ𝑦𝑑 = 0.01 below which LC due to rotation is applied.

lubrication correction (open triangles) results in an excellent agreement
between our simulations, the analytical expression, and O’Neill and
Majumdar (1970).

For the same simulation setup, the normalised tangential torques
on the stationary particle for several gaps are presented in the right
panel of Fig. 12. In long ranges, the tangential torques evaluate to zero
and plateau to ≈0.3 in short ranges. With LC, our simulation results
are consistent with the analytical equation and O’Neill and Majumdar
(1970).

A.2.3. Tangential effect of particle rotation
For benchmarking the tangential forces and torques due to rotation,

we consider several simulations in which the 𝑧 positions between the
stationary and rotating spheres vary between 5 ≤ ℎ∕𝑅ℎ𝑦𝑑 ≤ 0.001. The
𝑥 and 𝑦 centres of mass of both particles are equal in all simulations.
To ensure that steady-state is attained, all simulations was run up to
100,000 iterations with rotational particle Reynolds number 𝑅𝑒𝑟𝑝 =
𝜔𝑦𝑝𝑅2

ℎ𝑦𝑑∕𝜈 = 0.22. In the left panel of Fig. 13, we present the time-
averaged hydrodynamic force on the rotating sphere normalised by
𝐹𝑜 = 6𝜋𝜇𝜔𝑦𝑝𝑅2

ℎ𝑦𝑑 for several dimensionless gaps. The tangential cutoff
due to rotation, ℎ𝑟𝑜 is determined when the time-averaged LB force
(without LC) starts to separate from the analytical line. Up to ℎ∕𝑅ℎ𝑦𝑑 =
0.01, the simulation values agree well with O’Neill and Majumdar
(1970), while the results plateau for small interparticle gaps. From the
open triangles in the left panel of Fig. 13, it is evident that the corrected
LB forces agree with the results in the literature.

In the right panel of Fig. 13, we present the time-averaged torques
on the rotating particle normalised by the Stokes torque. The simulation
parameters are the same as for the previous case. We can see that the
torques start to plateau for small interparticle gaps. At sufficiently large
gap widths, there is no interaction between the spheres and the torques
on the particle are equal to the Stokes situation (≈1). All open triangles
indicate the results of LB simulations with LC which agrees well with
the analytical expression and with O’Neill and Majumdar (1970).

References

Andreotti, B., Barrat, J.L., Heussinger, C., 2012. Shear flow of non-Brownian
suspensions close to jamming. Phys. Rev. Lett. 109 (10), 105901.

Berg, J.C., 2010. An Introduction to Interfaces & Colloids: The Bridge to Nanoscience.
World Scientific.

Chaouche, M., Koch, D.L., 2001. Rheology of non-Brownian rigid fiber suspensions with
adhesive contacts. J. Rheol. 45 (2), 369–382.

Chen, S., Doolen, G.D., 1998. Lattice Boltzmann method for fluid flows. Annu. Rev.
Fluid Mech. 30 (1), 329–364.

Dbouk, T., Lobry, L., Lemaire, E., 2013. Normal stresses in concentrated non-Brownian
suspensions. J. Fluid Mech. 715, 239–272.

Derksen, J.J., Sundaresan, S., 2007. Direct numerical simulations of dense suspensions:
wave instabilities in liquid-fluidized beds. J. Fluid Mech. 587, 303–336.

Feng, Z.G., Michaelides, E.E., 2004. The immersed boundary-lattice Boltzmann method
for solving fluid–particles interaction problems. J. Comput. Phys. 195 (2), 602–628.

Feng, Z.G., Michaelides, E.E., 2009. Robust treatment of no-slip boundary condition and
velocity updating for the lattice-Boltzmann simulation of particulate flows. Comput.
& Fluids 38 (2), 370–381.

Ferrari, L., Kaufmann, J., Winnefeld, F., Plank, J., 2011. Multi-method approach to
study influence of superplasticizers on cement suspensions. Cem. Concr. Res. 41
(10), 1058–1066.

Gallier, S., Lemaire, E., Lobry, L., Peters, F., 2016. Effect of confinement in
wall-bounded non-colloidal suspensions. J. Fluid Mech. 799, 100–127.

Hamed, S.B., Belhadri, M., 2009. Rheological properties of biopolymers drilling fluids.
J. Pet. Sci. Eng. 67 (3–4), 84–90.

Hayakawa, H., 2020. Simulation of dense non-Brownian suspensions with the lattice
Boltzmann method: shear jammed and fragile states. Soft Matter 16 (4), 945–959.

Hermes, M., Guy, B.M., Poon, W.C.K., Poy, G., Cates, M.E., Wyart, M., 2016. Unsteady
flow and particle migration in dense, non-Brownian suspensions. J. Rheol. 60 (5),
905–916.

Hollander, E.D., Derksen, J.J., Bruinsma, O.S.L., Van den Akker, H.E.A., Van Ros-
malen, G.M., 2001. A numerical study on the coupling of hydrodynamics and
orthokinetic agglomeration. Chem. Eng. Sci. 56 (7), 2531–2541.

Karan, P., Chakraborty, J., Chakraborty, S., 2020. Influence of non-hydrodynamic forces
on the elastic response of an ultra-thin soft coating under fluid-mediated dynamic
loading. Phys. Fluids 32 (2), 022002.

Krieger, I.M., Dougherty, T.J., 1959. A mechanism for non-Newtonian flow in
suspensions of rigid spheres. Trans. Soc. Rheol. 3 (1), 137–152.

Kromkamp, J., Van Den Ende, D., Kandhai, D., Van Der Sman, R., Boom, R.M., 2005.
Shear-induced self-diffusion and microstructure in non-Brownian suspensions at
non-zero Reynolds numbers. J. Fluid Mech. 529, 253.

Krüger, T., Kusumaatmaja, H., Kuzmin, A., Shardt, O., Silva, G., Viggen, E.M., 2017.
The Lattice Boltzmann Method: Principles and Practice. Springer.

Krüger, T., Varnik, F., Raabe, D., 2011. Efficient and accurate simulations of deformable
particles immersed in a fluid using a combined immersed boundary lattice
Boltzmann finite element method. Comput. Math. Appl. 61 (12), 3485–3505.

Kumaran, V., 2009. Dynamics of dense sheared granular flows. Part 1. Structure and
diffusion. J. Fluid Mech. 632, 109–144.

Ladd, A.J.C., 1994a. Numerical simulations of particulate suspensions via a discretized
Boltzmann equation. Part 1. Theoretical foundation. J. Fluid Mech. 271, 285–309.

http://refhub.elsevier.com/S0301-9322(21)00332-3/sb1
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb1
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb1
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb2
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb2
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb2
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb3
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb3
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb3
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb4
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb4
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb4
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb5
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb5
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb5
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb6
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb6
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb6
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb7
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb7
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb7
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb8
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb8
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb8
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb8
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb8
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb9
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb9
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb9
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb9
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb9
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb10
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb10
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb10
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb11
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb11
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb11
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb12
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb12
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb12
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb13
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb13
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb13
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb13
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb13
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb14
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb14
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb14
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb14
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb14
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb15
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb15
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb15
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb15
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb15
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb16
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb16
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb16
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb17
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb17
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb17
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb17
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb17
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb18
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb18
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb18
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb19
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb19
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb19
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb19
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb19
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb20
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb20
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb20
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb21
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb21
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb21


International Journal of Multiphase Flow 149 (2022) 103929

15

S. Srinivasan et al.

Ladd, A.J.C., 1994b. Numerical simulations of particulate suspensions via a discretized
Boltzmann equation. Part 2. Numerical results. J. Fluid Mech. 271, 311–339.

Lattuada, E., Buzzaccaro, S., Piazza, R., 2016. Colloidal swarms can settle faster than
isolated particles: enhanced sedimentation near phase separation. Phys. Rev. Lett.
116 (3), 038301.

Lin, N.Y.C., Guy, B.M., Hermes, M., Ness, C., Sun, J., Poon, W.C.K., Cohen, I., 2015.
Hydrodynamic and contact contributions to continuous shear thickening in colloidal
suspensions. Phys. Rev. Lett. 115 (22), 228304.

Liu, Y., Naidu, R., Ming, H., 2013. Surface electrochemical properties of red mud
(bauxite residue): Zeta potential and surface charge density. J. Colloid Interface
Sci. 394, 451–457.

Liu, J.Z., Wang, R.K., Gao, F.Y., Zhou, J.H., Cen, K.F., 2012. Rheology and thixotropic
properties of slurry fuel prepared using municipal wastewater sludge and coal.
Chem. Eng. Sci. 76, 1–8.

Mari, R., Seto, R., Morris, J.F., Denn, M.M., 2014. Shear thickening, frictionless and
frictional rheologies in non-Brownian suspensions. J. Rheol. 58 (6), 1693–1724.

Masliyah, J.H., Bhattacharjee, S., 2006. Electrokinetic and Colloid Transport
Phenomena. John Wiley & Sons.

McCullough, J.W.S., Aminossadati, S.M., Leonardi, C.R., et al., 2021. A 3D LBM-DEM
study of sheared particle suspensions under the influence of temperature-dependent
viscosity. Powder Technol. 390, 143–158.

Mitchell, T.R., Leonardi, C.R., 2016. Micromechanical investigation of fines liberation
and transport during coal seam dewatering. J. Natl. Gas Sci. Eng. 35, 1101–1120.

Mumtaz, H.S., Hounslow, M.J., Seaton, N.A., Paterson, W.R., 1997. Orthokinetic
aggregation during precipitation: A computational model for calcium oxalate
monohydrate. Chem. Eng. Res. Des. 75 (2), 152–159.

Nguyen, N.-Q., Ladd, A.J.C., 2002. Lubrication corrections for lattice-Boltzmann
simulations of particle suspensions. Phys. Rev. E 66 (4), 046708.

O’Neill, M.E., Majumdar, R., 1970. Asymmetrical slow viscous fluid motions caused
by the translation or rotation of two spheres. Part 1. The determination of exact
solutions for any values of the ratio of radii and separation parameters. Z. Angew.
Math. Phys. ZAMP 21 (2), 164–179.

Pednekar, S., Chun, J., Morris, J.F., 2017. Simulation of shear thickening in attractive
colloidal suspensions. Soft Matter 13 (9), 1773–1779.

Perkins, E., Williams, J.R., 2002. Generalized spatial binning of bodies of different sizes.
In: Discrete Element Methods: Numerical Modeling of Discontinua. pp. 52–55.

Rohde, M., Derksen, J.J., Van den Akker, H.E.A., 2002. Volumetric method for
calculating the flow around moving objects in lattice-Boltzmann schemes. Phys.
Rev. E 65 (5), 056701.

Rouyer, F., Lhuillier, D., Martin, J., Salin, D., 2000. Structure, density, and velocity
fluctuations in quasi-two-dimensional non-Brownian suspensions of spheres. Phys.
Fluids 12 (5), 958–963.

Sarkar, S., Shatoff, E., Ramola, K., Mari, R., Morris, J.F., Chakraborty, B., 2017. Shear-
induced organization of forces in dense suspensions: signatures of discontinuous
shear thickening. In: EPJ Web of Conferences, Vol. 140. EDP Sciences, p. 09045.

Shan, X., Chen, H., 1993. Lattice Boltzmann model for simulating flows with multiple
phases and components. Phys. Rev. E 47 (3), 1815.

Sierou, A., Brady, J.F., 2002. Rheology and microstructure in concentrated noncolloidal
suspensions. J. Rheol. 46 (5), 1031–1056.

Silaghi, F.A., Giunchi, A., Fabbri, A., Ragni, L., 2010. Estimation of rheological
properties of gelato by FT-NIR spectroscopy. Food Res. Int. 43 (6), 1624–1628.

Simeonov, J.A., Calantoni, J., 2012. Modeling mechanical contact and lubrication in
direct numerical simulations of colliding particles. Int. J. Multiph. Flow. 46, 38–53.

Srinivasan, S., Van den Akker, H.E.A., Shardt, O., 2020a. Shear thickening and
history-dependent rheology of monodisperse suspensions with finite inertia via an
immersed boundary lattice Boltzmann method. Int. J. Multiph. Flow. 103205.

Srinivasan, S., Van den Akker, H.E., Shardt, O., 2021. Numerical simulations of dense
granular suspensions in laminar flow under constant and varying shear rates.
Comput. & Fluids 105115.

Ten Cate, A., Nieuwstad, C.H., Derksen, J.J., Van den Akker, H.E.A., 2002. Particle
imaging velocimetry experiments and lattice-Boltzmann simulations on a single
sphere settling under gravity. Phys. Fluids 14 (11), 4012–4025.

Thorimbert, Y., Marson, F., Parmigiani, A., Chopard, B., Lätt, J., 2018. Lattice
Boltzmann simulation of dense rigid spherical particle suspensions using immersed
boundary method. Comput. & Fluids 166, 286–294.

Toll, S., Månson, J.-A.E., 1994. Dynamics of a planar concentrated fiber suspension
with non-hydrodynamic interaction. J. Rheol. 38 (4), 985–997.

Vázquez-Quesada, A., Mahmud, A., Dai, S., Ellero, M., Tanner, R.I., 2017. Investi-
gating the causes of shear-thinning in non-colloidal suspensions: Experiments and
simulations. J. Non-Newton. Fluid Mech. 248, 1–7.

Van de Ven, T.G.M., 1982. Interactions between colloidal particles in simple shear flow.
Adv. Colloid Interface Sci. 17 (1), 105–127.

Vowinckel, B., Withers, J., Luzzatto-Fegiz, P., Meiburg, E., 2019. Settling of cohesive
sediment: particle-resolved simulations. J. Fluid Mech. 858, 5–44.

Wang, G., Wan, D., Peng, C., Liu, K., Wang, L.-P., 2019. LBM Study of aggregation
of monosized spherical particles in homogeneous isotropic turbulence. Chem. Eng.
Sci. 201, 201–211.

Williams, J.R., Perkins, E., Cook, B., 2004. A contact algorithm for partitioning n
arbitrary sized objects. Eng. Comput..

Yeo, K., Maxey, M.R., 2010. Ordering transition of non-Brownian suspensions in
confined steady shear flow. Phys. Rev. E 81 (5), 051502.

http://refhub.elsevier.com/S0301-9322(21)00332-3/sb22
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb22
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb22
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb23
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb23
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb23
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb23
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb23
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb24
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb24
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb24
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb24
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb24
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb25
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb25
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb25
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb25
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb25
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb26
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb26
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb26
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb26
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb26
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb27
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb27
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb27
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb28
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb28
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb28
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb29
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb29
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb29
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb29
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb29
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb30
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb30
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb30
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb31
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb31
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb31
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb31
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb31
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb32
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb32
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb32
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb33
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb33
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb33
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb33
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb33
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb33
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb33
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb34
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb34
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb34
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb35
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb35
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb35
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb36
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb36
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb36
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb36
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb36
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb37
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb37
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb37
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb37
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb37
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb38
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb38
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb38
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb38
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb38
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb39
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb39
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb39
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb40
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb40
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb40
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb41
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb41
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb41
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb42
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb42
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb42
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb43
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb43
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb43
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb43
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb43
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb44
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb44
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb44
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb44
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb44
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb45
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb45
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb45
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb45
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb45
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb46
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb46
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb46
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb46
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb46
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb47
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb47
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb47
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb48
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb48
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb48
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb48
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb48
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb49
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb49
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb49
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb50
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb50
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb50
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb51
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb51
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb51
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb51
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb51
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb52
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb52
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb52
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb53
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb53
http://refhub.elsevier.com/S0301-9322(21)00332-3/sb53

	Inclusion of DLVO forces in simulations of non-Brownian solid suspensions: Rheology and structure
	Introduction
	Simulation methods
	Flow solver and boundary conditions
	Sub-lattice scale modelling
	Lubrication correction: forces and torques
	DLVO forces

	Particle motion
	Simulations

	Collision dynamics of two spheres with DLVO forces
	Determination of equilibrium gap
	Effect of shear

	Suspension rheology
	Relative apparent viscosity
	Time-evolution of r
	Effects of particle concentration

	Structure
	Cluster dynamics
	Particle structuring and ordering transitions


	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Appendix
	LC modelling equations
	LC benchmarks
	Head-on collision: normal force
	Tangential effect of particle translation
	Tangential effect of particle rotation


	References


