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A B S T R A C T   

This study unravels 58-years (1961–2018) of wind-waves in the Mediterranean Sea (MS). A wave dataset was 
developed using the wave model WAVEWATCH III forced with the high-resolution (5.5 km) UERRA-MESCAN- 
SURFEX downscaled wind fields which better contain the imprint of the local geomorphology compared to 
other, coarser wind datasets used in previous studies. Thus, improving the reliability and characterization of the 
wind-wave climate in the basin. Validation results revealed a higher performance than previous datasets, 
particularly on the wave direction (θm), with a bias<1◦. Climate variability at seasonal and interannual scales, 
wind-seas and swells distribution, and long-term trends in storminess and in the mean and extreme regimes were 
analysed. Results show a slight swell influence over the wind-sea in the hourly spectra at a large portion of the 
basin, excluding the wave generation areas. We detected that the western MS is the most storminess region with 
an average of three storms/year. Moreover, the anomalies of the seasonal mean wave direction relative to θm are 
large (~60◦), with opposing behaviours between the winter and summer. Finally, the long-term trends in the 
mean and extreme conditions and in storminess are mild with values reaching 6 cm/decade and less than 2% in 
the absolute value, respectively.   

1. Introduction 

The assessment and characterization of the spatial and temporal 
variabilities in wind-wave climate conditions are of vital importance for 
all offshore, maritime, ocean, and coastal engineering applications. 
Examples of such applications include the design of coastal, maritime, 
and offshore infrastructures, such as shore-protection works, wind 
farms, offshore platforms, and ship routing for navigation purposes. 
Wave climate characterization is also important for understanding the 
underlying processes driving large coastal systems, such as long-term 
beach morphological changes (Antolínez et al., 2018; Elshinnawy 
et al., 2018, 2022a,b; de Schipper et al., 2021; Wiegel et al., 2021; 
Caloiero et al., 2022; Lira-Loarca et al., 2022). Additionally, waves 
contribute significantly to the overall water levels, especially during 
extreme events, leading to coastal erosion and flooding hazards (Melet 
et al., 2018; Scott et al., 2020; Toomey et al., 2022). Over the last six 
decades (1960–2020), annual fossil fuel carbon emissions have more 
than tripled, increasing from 2580 million metric tons per year in 1961 

to 9885 million metric tons per year in 2014 (Boden et al., 2017). This 
carbon-emission increase is similar to those established in some CMIP6 
experiments (Meehl et al., 2020), which are often used to investigate 
future wind-wave changes (Badriana and Lee, 2021; Erikson et al., 
2022) that could impact human activities and coastal communities at 
both global and local scales (Shimura and Mori, 2019). Consequently, 
accurately representing and understanding both the past and present 
wave climate are essential and important for creating a solid reference 
for studying future wave climatology (Albuquerque et al., 2021; Bar
bariol et al., 2021; De Leo et al., 2021). 

The Mediterranean Sea (MS, hereinafter) is a semi-enclosed basin 
between Europe and Africa (see Fig. 1). The MS represents one of the 
most important routes of maritime transportation in the world (Moral
es-Márquez et al., 2020), linking seaborne trade routes between the 
Atlantic Ocean and the Indian Ocean, together with the Suez Canal and 
the Red Sea. The MS is the most densely populated enclosed basin in the 
world (Lira-Loarca et al., 2022) and is characterized by complex 
morphological features and orography along its coastlines. In other 
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(J.A.Á. Antolínez).  

Contents lists available at ScienceDirect 

Ocean Engineering 

journal homepage: www.elsevier.com/locate/oceaneng 

https://doi.org/10.1016/j.oceaneng.2023.113689 
Received 31 October 2022; Received in revised form 23 December 2022; Accepted 10 January 2023   

mailto:elshinnawy_im@yahoo.com
mailto:elshinnawy_im@f-eng.tanta.edu.eg
mailto:ahmed.elshinnawy@unican.es
mailto:j.a.a.antolinez@tudelft.nl
www.sciencedirect.com/science/journal/00298018
https://www.elsevier.com/locate/oceaneng
https://doi.org/10.1016/j.oceaneng.2023.113689
https://doi.org/10.1016/j.oceaneng.2023.113689
https://doi.org/10.1016/j.oceaneng.2023.113689
http://crossmark.crossref.org/dialog/?doi=10.1016/j.oceaneng.2023.113689&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Ocean Engineering 271 (2023) 113689

2

words, the basin represents a regime under which sea‒land boundaries 
and orographic features affect the flow patterns of the meteorological 
conditions, i.e., the overall wind fields in the area (Mentaschi et al., 
2015; Cavaleri et al., 2018). 

Throughout the literature, studies have often characterized the wave 
climate in the MS basin using wave datasets produced with third- 
generation spectral wave models (e.g., WAVEWATCH III, WW3DG, 
2019; WAM, WAMDI Group, 1988; Bidlot et al., 2007; MIKE21-SW, 
Sorensen et al., 2004; or SWAN, Booij et al., 1999) forced with winds 
from global atmospheric reanalysis products (e.g., Barbariol et al., 2021; 
Elkut et al., 2021) at resolutions between 25 and 80 km and, less 
frequently, using downscaled regional wind fields with spatial resolu
tions of approximately 10 km (e.g., Mentaschi et al., 2015; Donatini 
et al., 2015; Lira-Loarca et al., 2022). In addition, some previous studies 
focused on regional analyses of the eastern MS basin (EMS) wave climate 
(e.g., Musić and Nicković, 2008; Ayat, 2013), while others analysed the 
climate variability of the western MS basin (WMS) (e.g., Ponce de León 
and Guedes Soares, 2008; Martínez-Asensio et al., 2013; Gonçalves 
et al., 2018; Vannucchi et al., 2021; Amarouche et al., 2019, 2020, 2021, 
2022a, b). 

Global atmospheric reanalyses, such as the Climate Forecast System 
Reanalysis (CFSR) (Saha et al., 2010, 2014) provided by the National 
Center for Environmental Prediction (NCEP) and the ERA-Interim (Dee 
et al., 2011) and the ERA5 (Hersbach et al., 2020) reanalyses produced 
by the European Center for Medium-Range Weather Forecast (ECMWF), 
are very useful and adequate for developing global wave hindcasts, 
providing reliable results at the global scale (e.g., Reguero et al., 2012; 
Chawla et al., 2013; Rascle and Ardhuin, 2013; Perez et al., 2017; Alday 
et al., 2021). However, in semi-enclosed basins such as the MS, wind 
fields from global reanalyses are often associated with low resolutions 
and are thus inaccurate in reproducing local atmospheric processes, 
especially those derived at meteorological timescales spanning minutes 
to weeks. This inadequacy is due to various factors such as the presence 
of complex topographic and orographic landforms, as low-resolution 
atmospheric reanalyses are often associated with the smoothing of 
sharp physical-pattern gradients; consequently, such reanalyses might 

be incapable of accurately representing mesoscale dynamics (Vous
doukas et al., 2017). The consequences of inputting inaccurate wind 
data in wave modelling include, among others, misrepresentations of the 
wave directionality; an incapability to mimic local waves driven by 
coastal breezes; underestimations of wave extremes due to wind 
tunnelling or convective wind effects not being accounted for; or over
estimations of wind-wave energy due to a certain mountain range that 
might block, tunnel, or dissipate winds not being effectively captured in 
the numerical discretization. 

These wave-modelling limitations can be addressed by using high- 
resolution wind fields downscaled from global or regional reanalyses. 
Mentaschi et al. (2015) evaluated the performance of the WAVEWATCH 
III (abbreviated hereinafter as WW3) wave model in the MS by forcing 
the model with 10-km wind fields downscaled from the CFSR reanalysis 
and produced a wave hindcast from 1979 to 2010. Similarly, Donatini 
et al. (2015) employed 10.53-km downscaled wind fields from CFSR to 
force the MIKE21-SW spectral model, producing a wave dataset for the 
1981–2013 period. Recently, Lira-Loarca et al. (2022) followed the same 
approach, employing 10-km wind fields dynamically downscaled from 
CFSR to develop both a hindcast and a forecast for wave hazard appli
cations in the MS. 

In most of the previously mentioned studies, researchers calibrated 
the utilized wave datasets using short-period (days-months) measure
ment series collected at specific locations. Moreover, they validated the 
data only against buoys (e.g., Mentaschi et al., 2015; Elkut et al., 2021) 
or employed a small amount of altimeter data from a limited number of 
satellite missions (e.g., Donatini et al., 2015; Lira-Loarca et al., 2022). 
Furthermore, previous data validations focused on the significant wave 
height (Hs) and wave period but rarely on the wave directionality. For 
instance, in addition to using low-resolution wind fields (0.75◦) from 
ERA-Interim, Elkut et al. (2021) calibrated and validated their wave 
hindcast obtained in the MS against data recorded by four buoys using 
one year of data corresponding to each buoy. Barbariol et al. (2021) 
employed surface winds from the ERA5 global reanalysis with a reso
lution of 0.25◦ to generate a hindcast in the MS without calibrating the 
WW3 model and validated their dataset only against satellite data. Thus, 

Fig. 1. The Mediterranean Sea (MS) basin and sub-basins (Levantine, Aegean, Ionian, Adriatic, Tyrrhenian, Sardinian, Balearic, and Alboran Seas). The purple 
arrows indicate the directions of the main wind regimes dominating the area. The dashed black lines separate the MS basin into the sub-regions (EMS: Eastern MS, 
CMS: Central MS, and WMS: Western MS) for the climate analysis of this study. Based on Lionello and Sanna (2005) and Barbariol et al. (2021). 
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the modelled Hs was underestimated overall due to the non-calibration 
of the wave model. Mentaschi et al. (2015) and Lira-Loarca et al. (2022) 
calibrated WW3 using a series of storm events, i.e., short-term wave 
measurements recorded during specific months. The usage of wave data 
corresponding to a particular month or season might lead to overfitting 
when calibrating wave models due to seasonality effects (Chawla et al., 
2013; Stopa, 2018). Donatini et al. (2015) and Lira-loarca et al. (2022) 
validated their datasets in the MS using seven and eight missions, 
respectively, recorded in the historical GlobWave altimeter database 
(GlobWave, 2020). It is worth noting that newly updated and 
better-quality-controlled satellite datasets have been released recently 
with larger amounts of altimeter observations, including data from new 
missions (e.g., Ribal and Young, 2019; Dodet et al., 2020). 

Stopa (2018) stated that atmospheric reanalysis products continually 
improve, and there is a need to assess their ability to reproduce wave 
fields. According to Li et al. (2016) and Alday et al. (2021), the quality of 
the numerical wave model outputs is significantly dependent on the 
accuracy and resolution of the forcing fields. Hence, any improvement in 
the quality of the wind forcing data should provide improved wave 
model results. Thus, employing high-resolution downscaled wind fields 
with spatial resolutions finer than 10 km is expected to improve the 
resulting wave data reliability in semi-enclosed basins such as the MS, 
especially regarding the wave direction results (Vannucchi et al., 2021) 
and extremes (Van Vledder and Akpinar, 2015; Vousdoukas et al., 
2017). 

Accordingly, following the evolution of and improvement in atmo
spheric reanalysis products, the main purpose of this study is to char
acterize the MS wave climate over a period spanning six decades 
(1961–2018) using the recently released high-resolution (5.5-km) wind 
fields of the UERRA-MESCAN-SURFEX regional reanalysis product 
constructed for Europe (Bazile et al., 2017; Ridal et al., 2017). Thus, in 
the current study, we investigate the intra-annual and interannual var
iabilities and long-term trends in the MS, thus rectifying the limitations 
on wave modelling referred to above. In addition to the input of 
high-quality wind data, the wave model is calibrated for wind-wave 
growth by using satellite altimeter data collected over a one-year 
period and employing an objective function that accounts for several 
percentiles defining the probability density function of Hs. Moreover, we 
utilize the most updated satellite altimeter observations from ten mis
sions (Dodet et al., 2020) and all available buoy data to validate the 
wave dataset over a 27-year (1991–2018) period. Accordingly, this MS 
wave climate study relies on a long-term and high-resolution wave 
hindcast developed with a wave model that is fully calibrated and 
validated in the MS and forced by very-high-resolution wind fields. 

This paper is organized into six sections. Following the introduction, 
in Section 2, descriptions of the study area and the different available 
wind fields, bathymetry and observation datasets are given. In Section 3, 
the model setup and calibration procedure are delineated. In Section 4, 
the wave dataset results are validated against buoy measurements and 
altimeter data. In Section 5, the characterization and analysis of the MS 
wave climate and its variability are presented. Finally, the main con
clusions are provided in Section 6. 

2. Study area and datasets 

Brief descriptions of the MS basin and the available wind field, ba
thymetry and observation datasets in the study area are given in the 
following subsections. 

2.1. Study area 

The MS is a semi-enclosed basin located between Africa and Europe. 
It has a total surface area of approximately 2.5 million km2 (Cria
do-Aldeanueva and Soto-Navarro, 2020) and is connected to the Black 
Sea to the east by the Dardanelles and Bosporus straits and to the 
Atlantic Ocean to the west by the Strait of Gibraltar. Its average depth is 

approximately 1500 m, and the sea has more than 40000 km of very 
highly populated coastline. The MS basin is characterized by many 
peninsulas and islands that divide it into eight sub-basins, i.e., the 
Levantine Sea, Aegean Sea, Ionian Sea, Adriatic Sea, Tyrrhenian Sea, 
Sardinian Sea, Balearic Sea, and Alboran Sea (see Fig. 1). Additionally, 
as shown in Fig. 1, several mountain ranges are located close to the MS 
coastline, and these mountains affect and channel the wind fields in the 
area, thus producing distinct local meteorological patterns. Meteoro
logically, the MS basin is characterized by the presence of various wind 
regimes that vary seasonally and among the sub-basins (Lionello and 
Sanna, 2005; Cavaleri et al., 2018) (see Fig. 1). 

In the eastern MS (EMS) region, which includes the areas of the 
Aegean Sea and the Levantine Sea, northerly to north-westerly Etesian 
winds blow and dominate the area, with relatively strong summertime 
winds. 

In the central MS (CMS), three wind systems dominate the area. First, 
the Bora winds, which consist of north-easterly dry and cold wind jets, 
blow over the Adriatic Sea (Cavaleri and Bertotti, 2004; Barbariol et al., 
2021). Second, southerly winds blow over the Ionian and Tyrrhenian 
Seas, namely, the Sirocco and Libeccio winds (Zecchetto and De Biasio, 
2007). During spring and autumn, the Sirocco winds blow south-easterly 
(SE) and are channelled into the Adriatic Sea, whereas during winter, 
the Libeccio winds blow south-westerly (SW). 

In the western MS (WMS), the cold, dry Mistral winds blows north
erly or north-westerly over the French and north-eastern Spanish coasts 
(Pallares et al., 2014; Barbariol et al., 2021), extending over the 
Balearic, Sardinian and Tyrrhenian Seas. This wind jet is stronger during 
the winter than in other seasons. Additionally, the Levanter and Ven
daval winds blow over the Alboran Sea in the most western part of the 
MS basin. The Vendaval winds blow south-westerly during the autumn 
and spring seasons, whereas the Levanter winds blow north-easterly 
year-round but are much stronger in winter than in other seasons (Lio
nello and Sanna, 2005). 

Therefore, the MS wave climate is significantly conditioned by these 
wind regimes. 

2.2. Bathymetric and coastline data 

The ETOPO1 gridded bathymetric data (Amante and Eakins, 2009), 
with a spatial resolution of 1 arc-minute, were applied as the 
depth-boundary conditions in the MS wave model. Fig. 2 shows the 
basin bathymetry and the domain of the study area. Moreover, the 
full-resolution coastlines from the Global Self-consistent Hierarchical 
High-resolution Shoreline dataset (GSHHS) (Wessel and Smith, 1996) 
were employed in this study. 

2.3. Wind field forcing 

The high-resolution wind fields used to force the MS wave model 
were produced in the framework of the European project titled ‘Un
certainties in Ensembles of Regional Re-Analysis’ (UERRA). The 3D-VAR 
UERRA system of the ECMWF is based on the HARMONIE data assimi
lation system, which was developed and used within the HIRLAM and 
ALADIN models (Ridal et al., 2017). The UERRA system has been 
implemented and optimized for the European area covering the MS with 
a horizontal resolution of 11 km and 65 vertical levels, with higher 
resolutions at lower altitudes. The system uses data from global rean
alyses as lateral boundary conditions, including ERA40 data (Uppala 
et al., 2005) for the 1961–1978 period and ERA-interim data for the 
1979–2019 period. In the UERRA system, near-surface wind fields are 
downscaled at a horizontal resolution of 5.5 km from the 3D-Var rean
alysis performed at 11 km with the UERRA-HARMONIE-v1 system and 
the ALADIN model. Accordingly, we employed the 6-h downscaled 
high-resolution (5.5-km) wind fields, known as the 
UERRA-MESCAN-SURFEX data, as the forcing fields. 
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2.4. Wave observations 

2.4.1. Moored buoy observations 
In this study, wave data measured at 26 offshore moored buoys were 

obtained from the quality-controlled MS In-Situ Near Real Time Ob
servations product provided by the Copernicus Marine Environment 
Monitoring Service (CMEMS). Deep-water wave buoys with measure
ment records spanning more than two years were selected; see Fig. 2 for 
the specific locations of the buoys. Approximately 60% of buoys had 
recorded measurements for more than five years. The buoys are 
managed and maintained by a variety of agencies: the Spanish Port 
Authority (Puertos del Estado) REDEXT, the Italian buoy network RON 
(Rete Ondametrica Nazionale), Météo-France offshore French buoys, 
and the Poseidon Greek buoy network of the Hellenic Centre for Marine 
Research (HCMR). These offshore moored buoys provide Hs, mean wave 
period (Tm02), and mean wave direction (θm) measurements with vary
ing, network-dependent temporal resolutions. Notably, buoy numbers 8 
and 9 in Fig. 2, which correspond to the French offshore buoys with 
codes 61002 and 61001, respectively, do not provide measurements for 
either the mean period or the mean wave direction. 

2.4.1. Altimeter dataset 
The recent altimeter database of the Sea State Climate Change 

Initiative (SSCCI) (Dodet et al., 2020), provided by the European Space 
Agency (ESA), was used in this study. The first version of the SSCCI 
provided altimeter-recorded Hs data from multiple missions covering the 
period from 1991 to 2018. Ten platforms are included in the SSCCI 
database, namely, ERS-1 (1991–1996), ERS-2 (1995–2011), 
Topex-Poseidon (1992–2005), Geosat Follow On (GFO) (2000–2008), 
Jason-1 (2002–2013), Jason-2 (2008–2018), Jason-3 (2016–2018), 
Cryosat-2 (2010–2018), Envisat (2002–2012) and Saral (2013–2018). 
Each mission was quality-controlled and calibrated using data from 
moored buoys. Additionally, cross-calibrations were conducted among 
the different platforms (Stopa et al., 2019). The level-2 pre-processed 
(L2P) product in this database is an along-track, denoised and recali
brated altimeter-measured Hs product with a spatial footprint resolution 

of 7 km along the satellite track (Piollé et al., 2020; Dodet et al., 2020). 
This product was used in the current study for the calibration of the MS 
wave model and the validation of the MS wave hindcast. The L2P 
product includes Hs data with corresponding quality-flag values. 
Throughout the current study, only Hs data with a quality flag value of 3, 
meaning good and useable measurements, were used. 

3. MS wave model setup, calibration, and hindcast production 

This section describes the setup and calibration procedure of the MS 
wave model as well as the production of the MS wave hindcast dataset. 

3.1. MS wave model setup 

The MS wave model is based on the spectral wind wave model WW3 
version 6.07. The WW3 model is a third-generation wave model that 
spatially and temporally integrates the spectral action equation to allow 
numerical modelling of wind-driven wave processes such as wave gen
eration, propagation, and dissipation. The MS wave model domain 
covers the basin area between 6◦ W and 36.30◦E and between 30◦ and 
46◦ N, with a spatial resolution of 0.1◦ in longitude and latitude (Fig. 2). 
The wave spectral domain is discretized into 24 directions and 29 fre
quencies nonlinearly distributed from 0.05 Hz to 0.721 Hz with a fre
quency increment factor of 1.1. The bathymetry, land‒sea mask, and 
obstruction grids were generated using the grid-generation software 
developed for WW3 (Chawla and Tolman, 2008). Obstruction grids were 
generated to reduce the energy fluxes in the x and y directions resulting 
from islands smaller than the spatial resolution of the MS wave model. 
WW3 requests the definition of four time steps, namely, the maximum 
overall global time step (Δtg), the maximum CFL time step (Δtx-y, used 
for spatial propagation), the refraction time step (Δtk-θ, used for spectral 
propagation) and the minimum source term time step (Δtmin). These 
time steps were set to 1800 s, 600 s, 900 s and 10 s, respectively, with the 
condition that the maximum Δtx-y value of the lowest-frequency waves 
must satisfy the CFL criterion. 

The physical processes of wave generation, propagation, and 

Fig. 2. Study area showing the model domain (the dashed rectangle), bathymetry and the locations of the wave buoys are shown in yellow circles and numbered 
in red. 
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dissipation are parameterized in WW3. Following Stopa et al. (2016), we 
implemented the ST4 parameterization package developed by Ardhuin 
et al. (2010) for wind input and dissipation (see WW3DG, 2019). 
Moreover, Ardhuin et al. (2010) recommended the source-term 
TEST405 (T405) parameterization scheme of ST4 for wave modelling 
in regions characterized by short fetches such as those present in the MS 
and its sub-basins (Fig. 1). They stated that the T405 parameterization is 
preferred in the MS due to its superior performance for younger wind 
seas. Accordingly, in this study, we employed the T405 parameterization 
scheme and applied the default values for all parameters, except the 
non-dimensional wind wave growth parameter (βmax), which we utilized 
to calibrate the model as described in the following subsections. 

The Discrete Interaction Approximation (DIA) of Hasselmann et al. 
(1985) was used to model nonlinear wave‒wave interactions. Dissipa
tion due to bed friction was included using the SHOWEX formulation of 
Ardhuin et al. (2003). Moreover, shallow-water-depth breaking was 
adopted following the method described by Battjes and Janssen (1978), 
including the application of the Miche-style water limiter for maximum 
energy. Following Perez et al. (2017) and Alday et al. (2021), the 
reflection from shoreline and subgrid features was set to 0.05. 
Furthermore, the Ultimate Quickest third-order propagation scheme 
was implemented along with the garden-sprinkler-effect reduction 
scheme proposed by Tolman (2002). 

3.2. MS model calibration 

The source term parameterization of Ardhuin et al. (2010) includes 
wind input and energy dissipation source terms based on the formula
tion of Janssen (1991). It is written as a function of the wave action N (k, 
θ) for each wave number (k) and direction (θ) as follows: 

Sin(k, θ) =
ρa

ρw

βmax

κ2 eZZ4
(u∗

C
+ zα

)2
cosPin(θ − θu)σN(k, θ) + Sout(k, θ) (1)  

where βmax is a non-dimensional wind wave growth parameter, ρw and 
ρa are the densities of water and the atmosphere, respectively, κ is the 
von Karman constant, Z is the parameterized sea surface roughness, Pin is 
a constant that controls the directional distribution of Sin, u* is the wind 
friction velocity, and zα is the wave age tuning parameter. Moreover, C is 
the wave celerity, σ is the wave frequency, Sout is the dissipation source 
term, and θu and θ are the wind and wave directions, respectively. 

Following the calibration guidance proposed by Stopa (2018), we 
adjusted the βmax parameter to minimize the overall Hs bias and the root 
mean square error between the wave model results and the altimeter 
data. Here, βmax was optimized by minimizing the differences among the 
10th, 50th, 99th and 99.5th percentiles of the Hs distribution from both 
the altimeter data and model results, thus fulfilling the following 
condition: 

− 0.1 m < P(10, 50, 99, 99.5)WW3,Hs − P(10, 50, 99, 99.5) ALT,Hs < 0.1 m (2) 

Therefore, the different energetic sea states of the Hs probability 
distribution should match between the model and altimeter observa
tions. The calibration was carried out using a 1-year hindcast to avoid 
overfitting to a particular season or month (Stopa, 2018; Alday et al., 
2021; Soran et al., 2022). The year 2011 was selected for the calibration 
of the model, as a large amount of altimeter data were available in this 
year and because it was one of the stormiest years on record (Hanafin 
et al., 2012; Ardhuin et al., 2019; Alday et al., 2021). During 2011, five 
altimeter platforms were available: ERS-2, Jason-1, Jason-2, Envisat, 
and Cryosat-2. 

Accordingly, the WW3 model was run four times for the 2011 wave 
hindcast using tested values (1.55, 1.80, 2.25, and 2.40) of the wind- 
wave growth parameter βmax. Notably, the βmax value of 1.55 is used 
as the default value for this parameter in WW3 when employing the 
T405 parameterization (WW3DG, 2019; Ardhuin et al., 2010). From the 
altimeter data, the recalibrated and denoised Hs values in 2011 were 

employed as the benchmark. First, the modelled Hs values were 
co-located over the satellite tracks by applying linear temporal inter
polation and a bilinear spatial interpolation methods to match the 
scattered positions of the altimeter observations along the satellite 
tracks. Then, Hs data pairs from WW3 and altimeters were aggregated in 
0.25◦ × 0.25◦ grid cells to calculate several error metrics (e.g., the bias, 
scatter index, and root mean square error) for each cell. Altimeters 
typically perform poorly at distances up to 20 km from coasts (Passaro 
et al., 2015; Ardhuin et al., 2019) due to the inhomogeneity of coastal 
backscattering in satellite footprints affecting the retrievals; this effect is 
particularly notable within 20 km from coastlines (Dodet et al., 2020). 
Accordingly, a quality flag was applied such that only altimeter data 
recorded at distances from coasts greater than 20 km were considered. 

Standard error metrics were used for the MS wave model calibration 
and, later, for the MS wave hindcast validation, including the bias, root 
mean square error (RMSE), scatter index (SI) and Pearson coefficient of 
correlation (R); the equations of these terms are given as follows: 

Bias=
1
n
∑

(Xmod − Xobs) (3)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
(Xmod − Xobs)

2

√

(4)  

SI =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑
((Xmod − Xmod) − (Xobs − Xobs))

2

∑
(Xobs)

2

√

(5)  

R=

∑
(Xmod − Xmod)(Xobs − Xobs)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑

(Xmod − Xmod)
2

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑

(Xobs − Xobs)
2

√ (6)  

where Xmod is the modelled wave parameter, Xobs is the wave parameter 
observed in the altimeter or buoy measurements, and n is the number of 
data pairs. The overbar represents the mean of all samples. The slope of 
the linear regression was also employed. 

As mentioned above, this calibration procedure includes metric 
statistics for the four tested βmax values. Consequently, the different 
percentiles (10th, 50th, 99th and 99.5th) of the Hs distributions were 
computed for both the modelled and altimeter-recorded data. To opti
mally determine the βmax parameter value, the previously mentioned 
percentiles were computed for the modelled Hs values co-located along 
the satellite tracks; then, the Hs residuals (i.e., Hs, WW3 - Hs, ALT) were 
calculated for the different percentiles to satisfy the condition given by 
Eq. (2). Accordingly, when comparing the Hs residuals against the tested 
βmax values, the optimum βmax value was the value resulting in negli
gible Hs residuals among the different percentiles. 

As shown in Fig. 3, the results indicate an optimum βmax value of 
2.25; this value produced the minimum residual in the hindcast Hs 
distribution evaluated at several percentiles. This means that the 1-year 
hindcast produced with a βmax value of 2.25 best matched the different 
percentiles of the Hs distribution between the modelled and altimeter- 
recorded data, with Hs residuals within ±0.1 m. The values of the 
different error metrics derived for the four tested βmax values are listed in 
Table 1. Fig. A.1, in Appendix A, shows two scatter plots of the Hs pairs 
obtained from the model data and altimeter observations recorded in 
2011 using the default value of βmax = 1.55 as well as the optimum value 
of βmax = 2.25, which resulted in the minimum bias value and optimal 
error metrics. Similar to the wave-hindcasting results obtained in the MS 
by Barbariol et al. (2021), Fig. A.1 and Table 1 show that under
estimated modelled Hs values with an overall bias of − 0.148 m and a 
linear slope of 0.848 were derived when the default βmax value of 1.55 
was used in WW3. 

3.3. MS wave hindcast production 

After calibration, the MS wave model was run over the 1961–2018 
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period. The MS wave hindcast consists of hourly sea-state parameters of 
the 2D wave spectrum outputted at each grid point for 58 years. These 
sea-state parameters include the Hs, mean wave periods (Tm01 and Tm02), 
θm, directional spreading (σθ), spectral peak frequency (fp), and wave 
energy flux (ECg). Additionally, the hourly parameters of the partitioned 
2D wave spectrum in one sea and five swell partitions (Vincent and 
Soille, 1991; Hanson and Phillips, 2001), including Hs, fp, θm, and σθ, 
were stored at each grid point. Moreover, three hourly time series of the 
2D wave spectrum were stored along the MS coastal areas at water 
depths exceeding 200 m, with a spacing of 0.20◦. Such long-time-series 
directional spectra are useful for investigating multimodal wave climate 
variabilities and as boundary conditions for modelling the nearshore 
transformation of waves in coastal engineering applications, offshore 
engineering, and maritime navigation; as reconstructing the wave 
spectra from wave partitions is still challenging (Albuquerque et al., 
2021). 

4. Performance of the MS wave hindcast 

The MS hindcast dataset was validated against both in situ buoy 
records and altimeter observations. The data validation process is 
described in this section. 

4.1. Validation with buoy measurements 

The model-derived sea-state parameters, including Hs, Tm, and θm, 
were compared with the corresponding wave parameters measured by 
26 offshore buoys available in the MS (Fig. 2). 

The standard error metrics (bias, RMSE, SI, and R, as previously used 
for the model calibration described in Section 3.2) were utilized to 
quantify the errors of the scalar wave parameters, i.e., Hs and Tm. 
Nonetheless, the error in the θm estimation was evaluated using the 
normalized bias of directions (NBIθ) and the normalized root mean 
square error (NRMSEθ), employing a 2π radiant angle for normalization 
(Mentaschi et al., 2015; Vousdoukas et al., 2017; Umesh and Behera, 
2020); these terms can be expressed as follows: 

NBI θ =

∑
mod− π,π(θmod − θobs)

2π n
(7)  

NRMSE θ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n Σ

(
mod− π,π(θmod − θobs)

)2
√

2π (8)  

where θmod and θobs are the modelled and observed mean wave di
rections, respectively. Furthermore, the modulo operator mod-π,π in
dicates that if (θmod - θobs) < -π, a 2π angle is added to the difference, 
while if (θmod - θobs) > π, a 2π angle is subtracted from the difference 
(Mentaschi et al., 2015; Umesh and Behera, 2020). Additionally, other 
error metrics were used to compare the results of the current study with 
those of previous studies. These metrics include the normalized root 
mean square error (HH index) introduced by Hanna and Heinold (1985) 
and the index of agreement (d) introduced by Willmott et al. (1985); 
these metrics are expressed as follows: 

HH =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑

(Xmod − Xobs)
2

∑
(Xmod ∗ Xobs)

√

(9)  

Fig. 3. Optimization of the βmax parameter in WW3 using model results and altimeter observations of Hs for the year 2011. The green, blue, black and red lines are, 
respectively, the 10th, 50th, 99th and 99.5th percentiles of Hs residual, i.e., the Hs from WW3 minus the Hs from altimeter. The magenta dashed line represents the 
root mean square error. The optimum βmax value is specified by the vertical black line. 

Table 1 
Error metrics for the tested values of βmax for model calibration based on a 1-year 
hindcast. The calibration is carried out using altimeter Hs data of the year 2011. 
The βmax in bold is the final value used to force the model for the development of 
the MS hindcast.  

βmax Bias (m) RMSE (m) SI R Lin. Slope 

1.55 − 0.149 0.331 0.196 0.922 0.848 
1.90 − 0.072 0.292 0.191 0.923 0.9145 
2.25 ¡0.005 0.284 0.193 0.922 0.973 
2.40 0.020 0.290 0.196 0.922 0.996  
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d = 1 −

∑
(Xmod − Xobs)

2

∑
(|(Xmod − Xobs)| + |(Xobs − Xobs)|)

2 (10) 

The scatter plots shown in Fig. A.2 were constructed to compare the 
modelled and measured Hs and Tm values for the whole set of buoys 
employed in the current study. The values of the overall error metrics 
are summarized in Table 2. We found negligible positive biases, an 
almost one-one linear regression slope, and RMSEs of 0.323 m and 
0.733 s for the Hs and Tm results, respectively. Thus, strong agreement 
between the calibrated model results and in situ observations was ach
ieved. Similar scatter plots are shown in Fig. A.3 when using the default 
βmax value, revealing an underestimation of both Hs and Tm with nega
tive biases of − 0.06 m and − 0.112 s, respectively. Additionally, the 
linear slope is less than 1 for both wave parameters. 

In general, the statistics obtained based on the validation of the 
hindcast against buoy records were better than those achieved in pre
vious studies performed in the MS (e.g., Mentaschi et al., 2015). The HH 
values of Hs were 0.25 and 0.34 in the current study and in Mentaschi 
et al. (2015), respectively. Both wave datasets showed similar Tm results, 
with an HH value of 0.18. Regarding the wave direction (θm), the current 
hindcast resulted in an NBIθ of 0.216% (see Table 2), corresponding to a 
bias equal to 0.778◦, i.e., less than 1◦. This represents a significant 
improvement in the θm estimation compared to the results of other 
hindcasts performed in the basin, such as that of Mentaschi et al. (2015), 
which revealed a bias of 3.6◦. This may be attributed to the high spatial 
resolution of the wind fields used to force the wave model resulting in an 
improved ability to represent local atmospheric features and wind di
rections accurately in this semi-enclosed basin with complex surround
ing orography. 

The performance of the model at each buoy for each wave parameter 
and the error metrics considered herein are summarized in Table A1. 
This same information is also provided graphically in Fig. 4 in the form 
of Taylor diagrams (Taylor, 2001) for the Hs and Tm parameters. In the 
Taylor diagrams, the standard deviation of the model output is 
normalized by dividing it by that of the buoy measurements. In these 
diagrams, the shorter the distance to the point marked as ‘Buoys’ is, the 
better the model performance is. Despite the general trend in which the 
MS hindcast yielded better Hs results than Tm results, Tm was estimated 
robustly and compared quite well with the in situ observations, showing 
a negligible bias and a low RMSE (see Table 2). 

In addition, as an example, the time series of the modelled wave 
parameters and those measured by the Cabo de Palos offshore buoy 
(61417) in the WMS are shown in Fig. 5, indicating that the MS hindcast 
can correctly represent the temporal evolution of Hs, Tm, and θm, also 
capturing the severe storm that occurred in November 2012. 

4.2. Validation with altimeter data 

Denoised and recalibrated Hs data from the altimeter database 
(Dodet et al., 2020), available for the period from 1991 to 2018, were 
used to validate the MS wave hindcast by applying the procedure 
described in Section 3.2. Thus, the validation was carried out for the 
27-year period in which data were available (>6.58 × 106 co-located 
points in the basin). Fig. A.4 shows the scatter plot of Hs pairs from 
the MS wave hindcast and altimeter series for the 1991–2018 period. 
The MS wave hindcast performance resulted in a bias of 0.022 m and 
RMSE, SI, correlation coefficient and linear slope values of 0.300 m, 
0.200, 0.928 and 0.990, respectively. Moreover, the quantile‒quantile 
plot of the co-located modelled Hs along the satellite tracks and the 

altimeter data shown in Fig. A.4 indicates strong agreement between the 
two datasets with regards to the different Hs percentiles, ranging from 
the lower percentiles (Hs,10) corresponding with relatively calm condi
tions to the larger percentiles (Hs,99.9) corresponding with extreme 
values. It is worth pointing out that using the default settings of the 
WW3 model, without optimizing βmax, resulted in an underestimation of 
the modelled Hs values in comparison with altimeter data with a bias 
and a linear slope of − 0.126 m and 0.86, respectively, see Fig. A.5. A 
clear underestimation of Hs takes place all the way between the mean 
conditions (Hs,50) and extremes (Hs,99.9) as shown in the 
quantile-quantile plot of Fig. A.5. 

Similar to the hindcast performance against buoy measurements, the 
validation results against the altimeter data revealed an improvement in 
the Hs error metrics compared to those reported in previous studies in 
the MS (Donatini et al., 2015; Barbariol et al., 2021; Lira-Loarca et al., 
2022; Toomey et al., 2022). As indicated above, here, we obtained 
smaller RMSE and SI values in comparison to the results of Donatini 
et al. (2015), who revealed RMSE and SI values of 0.34 m and 0.25, 
respectively. Moreover, the results obtained in the current study indicate 
optimal values of both the bias and linear slope compared to those 
achieved by Barbariol et al. (2021), with a negative bias of − 0.12 m and 
a slope of 0.87. Furthermore, the current study shows an index of 
agreement (d) of 0.96, higher than that obtained by Lira-Loarca et al. 
(2022) (0.65) for the whole MS. Additionally, the current study im
proves the estimation of the Hs higher quantiles providing reliable re
sults all the way to Hs reaching 6 m (see Fig. A.4), whereas the 
quantile-quantile analysis performed by Toomey et al. (2022) revealed 
an underestimation of wave heights for the domain of Hs exceeding 4.8 
m. 

Fig. 6 shows the spatial distributions of the error metric statistics 
describing the performance of the MS wave hindcast against the altim
eter data during the 1991–2018 period, showing overall good agree
ment. Negligible biases were obtained in most areas of the basin. Slightly 
negative values were obtained in the eastern and central MS areas, 
whereas slightly positive biases were encountered in the western MS, 
especially in the gulf of Lyon (northern Sardinian Sea) and the most 
western part of the Alboran Sea. The RMSEs were approximately 0.30 m 
in most regions of the MS. As observed for the bias results, relatively 
large RMSE values were found in the Alboran Sea and the offshore 
French coasts compared to the rest of the MS basin. Correlation values 
larger than 0.9 were obtained in the MS basin. Additionally, the scatter 
index showed an almost consistent value of 0.20 in the entire MS basin. 
Similar to Fig. 6, Fig. A.6 shows the spatial distribution of the error 
metrics when using the default value of βmax revealing a negative bias in 
the whole MS basin and larger RMSE values up to 0.5 m in a large 
portion of the basin including the Sardinian Sea, Ionian Sea, and the 
Levantine Sea. 

The MS wave hindcast performance in the different sub-basins 
revealed strong agreement between the modelled and satellite-derived 
Hs data. This agreement can be seen in Fig. A.7 by comparing the his
togram of the modelled Hs against the corresponding one from the 
altimeter observations representing the MS basin (the Panel Mediter
ranean), as well as the different sub-basins (the Alboran-Balearic, 
Sardinian, Adriatic, Tyrrhenian, Ionian, Aegean and Levantine Panels). 
Strong agreement was obtained for Hs > 1 m, with Pearson correlations 
exceeding 0.91. Furthermore, the upper tails of the distributions (sea 
states characterized by Hs > 2 m) strongly matched. Similarly, the 
central regimes (sea states characterized by Hs = 1–2 m) and lower tails 
of the distribution (sea states characterized by Hs < 1 m) showed good 

Table 2 
Validation results, in terms of error metrics, of the MS hindcast against in-situ wave buoys data of the significant wave height, mean period and mean direction.  

Hs Tm θm 

Bias (m) RMSE (m) SI R Lin. Slope Bias (s) RMSE (s) SI R Lin. Slope NBIθ (%) NRMSEθ 

0.082 0.323 0.25 0.915 1.054 0.041 0.733 0.188 0.714 1.002 0.216 0.1285  
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agreement, providing correlations larger than 0.98. Minor differences in 
the lower tails of the distributions were found in the narrow sub-basins 
with short fetches (the Adriatic and Aegean Seas). This may be attrib
uted to the tendency of the model to underestimate wave growth on very 
short fetches (Mentaschi et al., 2015) or is perhaps a consequence the 
altimeter wave height measurements being unreliable below 0.75 m 
(Cavaleri et al., 2018; Dodet et al., 2020; Alday et al., 2021). 

In general, the validation results obtained herein are amply suitable 
for the wave climate analysis and characterization addressed in the 

following section. 

5. Mediterranean sea wave climate 

This section addresses the characterization of the MS wave clima
tology. First, the predominance of sea and swell energies in the wave 
spectra across the MS basin are assessed. Second, the mean and extreme 
regimes of the MS basin are described. Third, the magnitude of the intra- 
annual variability is discussed. Next, the interannual variabilities in the 

Fig. 4. Taylor diagrams (Taylor, 2001) displaying the performance of the MS hindcast against buoys for Hs and the Tm. Each point represents one buoy. Shorter 
distances to the point marked as ‘Buoys’ indicate better validation results than larger ones. Blue and green circles refer to the normalized standard deviation and the 
RMSE, respectively, whereas the dashed straight lines correspond to the correlation coefficient values. 

Fig. 5. Time series of the significant wave height (Hs), the mean period (Tm02) and the mean wave direction (θm) for the year 2012 at the location of Cabo de Palos 
buoy (61417). The buoy data is shown in blue dots, while the hindcast wave parameters from WW3 are displayed in red. 
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MS wave climatology are correlated with large-scale atmospheric pat
terns. Then, the wave storminess characteristics are described. Finally, 
the long-term trends in intra-annual, interannual, and storminess vari
abilities are evaluated. The characterization is based on statistics of 
spectral parameters that describe the 2D wave spectrum and on existing 
wave systems analysed through the usage of spectral wind and swell 
partition parameters. 

5.1. Wind seas and swells throughout the MS 

The mean wind sea fraction (WSF) of the hourly wave spectra was 
calculated for the 1961–2018 period. In WW3, this term is estimated by 
partitioning the wave spectrum into different wave systems following 
the algorithm developed by Vincent and Soille (1991) and the meth
odology of Hanson and Phillips (2001), thereby identifying the wind sea 
energy portion of the wave spectrum. As described in Tracy et al. (2007), 
the WSF can be defined as follows: 

WSF =
E|Up>C

E
(11)  

where E is the total spectral energy and E|Up>C is the energy in the 
spectrum for which the projected wind speed Up is larger than the local 
wave celerity C. The latter defines an area in the spectrum under the 
direct influence of the wind. Up is given as follows (see WW3DG (2019)): 

Up = 1.7 ∗ U10 cos(θ − θu) (12)  

where U10 is the surface wind velocity at 10 m over the sea surface. In 
this study, the mean WSF is used as an indicator of the distribution of the 
hourly wind sea and swell energies in the MS basin (Fig. 7). In previous 
studies, the MS wave climate has been said to be driven mainly by 
regional winds, suggesting a predominance of local wind seas (Cavaleri 
et al., 2018). We found that in a large portion of the MS basin, the swell 
energy has a slight influence (0.25 < WSF<0.45), thus confirming the 
notable presence of wind-sea energy in the hourly spectra. Notably, the 
Gulf of Lyon (in the northern Sardinian Sea) and the Alboran Sea in the 
WMS, the Adriatic Sea in the CMS, and the Aegean Sea in the EMS are 
characterized by larger wind sea fractions (WSF>0.65) than the rest of 
the MS basin. In these sub-basins, the wind sea influence can be signif
icant (0.75 < WSF<0.95, see Fig. 7), or the wind sea can dominate (0.95 
< WSF<1, see Fig. 7), corresponding with the wave generation domains 
attributed to the wind systems that are active in these areas: the Mistral 
winds dominate in the Gulf of Lyon, the Vendaval and Levanter winds 
dominate in the Alboran Sea, the Bora and Sirocco winds dominate in 
the Adriatic Sea, and the Etesian winds dominate in the Aegean Sea 
(Fig. 1). 

5.2. Mean and extreme wave climatology regimes in the MS 

A characterization of the wave climatology in the MS basin and in 
each sub-basin was conducted for the 1961–2018 period by assessing the 
indicators of the mean regime (the 50th percentile), the extreme regime 
(the 99.5th percentile), and the maximum value. Henceforth, these 

Fig. 6. Spatial distributions of the Bias (Bias panel), the RMSE (RMSE panel), the scatter index (SI % panel), and the correlation coefficient (R panel) in Hs using the 
optimum value of βmax = 2.25. The performance of the MS hindcast is evaluated using, as benchmark, the SSCCI altimeter data of Hs from 1991 to 2018. 

Fig. 7. The spatial distribution of the mean wind 
sea fraction (WSF) during the period 1961–2018 in 
the MS basin. The colour map represents WSF, with 
WSF = 0 for predominance of swell energy, and 
WSF = 1 for wind sea predominance in the wave 
spectra. 0 < WSF<0.05 for swell dominated; 0.05 <
WSF<0.25 for significant swell influence; 0.25 <
WSF<0.45 for slight swell influence; 0.45 <

WSF<0.55 for neutral wind sea and swell influence; 
0.55 < WSF<0.75 for slight wind sea influence; 
0.75 < WSF<0.95 for significant wind sea influ
ence; 0.95 < WSF<1 for wind sea dominated. The 
continuous contour line delimits WSF = 0.45 and 
WSF = 0.55, the dashed contour line delimits WSF 
of 0.05 and 0.25, and the point dashed line delimits 
WSF of 0.75 and 0.95.   
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terms are referred to as the median, threshold, and maximum values and 
are applied to the univariate Hs and Tm parameters. Fig. 8 shows the 
spatial distributions of these values (Hs,50, Tm,50, Hs,99.5, Tm,99.5, Hs, max, 
and Tm, max) in the MS basin. In summary, the spatially averaged median 
Hs and Tm values were Hs,50 = 1.1 m and Tm,50 = 4.72 s, respectively; the 
spatially averaged threshold Hs and Tm values were Hs,99.5 = 4.20 m and 
Tm,99.5 = 8 s, respectively; and those of the maximum Hs and Tm values 
were 8.94 m and 10.85 s, respectively. The spatially averaged values of 
these three indicators were conditioned by the extent of each sub-basin 
relative to the total MS area; as seen in Fig. 8, the spatial variability was 
significant. 

For the mean conditions, Hs,50 shows values above 1.1 m in the MS 
basin except the Adriatic, Tyrrhenian, and Aegean Seas, where the Hs,50 
values are <1 m. It is worth noting that the maximum Hs,50 values are 
encountered in the western MS, within the Sardinian Sea area, with 
values up to 1.50 m. Comparably, Tm,50 shows values of approximately 5 
s in a large percentage of the MS basin, excluding the Adriatic and 
Aegean Seas, where Tm,50 < 4 s. Then, the maximum Tm,50 values are 
found in the Sardinian Sea area, reaching 6 s. 

Regarding extreme conditions, the threshold Hs values, Hs,99.5, 
ranged from 4 to 5 m in a large area of the MS basin, increased to 6 m in 
the Sardinian Sea, and showed relatively low values (Hs,99.5 < 4 m) in 
the short-fetch sub-basins (the Adriatic and Aegean Seas). In contrast, 
the Tm,99.5 thresholds exhibited clear zoning, with periods up to 10 s 
observed in the Sardinian Sea, values of 8 s in the Ionian and Levantine 
Seas, and relatively low values (Tm,99.5 < 7 s) in the Adriatic and Aegean 
Seas. The maximum wave conditions reveal that the maximum Hs value, 
Hs,max, occurred in the eastern Tyrrhenian Sea (near the south-western 
Italian coast), with a Hs,max value > 10 m. The western MS (WMS), the 
Sardinian Sea, and the Ionian Sea of the central MS (CMS) exhibit 
slightly lower values (Hs,max reaching 10 m). In the Levantine Sea, the Hs, 

max values reached 9 m in the areas very far offshore. Regarding the 
maximum Tm, Tm,max, the spatial distribution of these values indicates 
the presence of waves with Tm,max values ranging from 10 to 12 s in a 
large percentage of the MS basin, with the exception of the Adriatic and 
Aegean Seas, which are characterized by relatively short wave periods 
(Tm,max = 8–10 s). For more specific details on the spatial variabilities in 
the mean and extreme regime indicators, we refer the reader to Fig. 8. 

Regarding the wave directionality in the MS, Fig. 9 displays the θm 
results in the basin during the 1961–2018 period. At the Levantine Sea in 
the EMS, the θm values range from the north to northwest direction. This 
result is attributed to the Etesian winds dominating that region. More
over, the Adriatic Sea in the CMS is characterized by θm values ranging 
from the southwest direction along the longitudinal axis of this sub- 
basin because Sirocco winds are channelled in this area. The results 
also indicate the presence of northeast waves in the northern Sardinian 
Sea in the WMS, together with south-to-south-west waves in the Balearic 
Sea in the WMS due to the southwest Vendaval winds affecting this area. 
Consequently, bimodal wave climates are present along the north- 
eastern Spanish coasts, where double-peaked spectra are often 
observed (Sánchez-Arcilla et al., 2008; Elshinnawy et al., 2017). 
Accordingly, the MS hindcast properly captures such 
directional-variability features in this zone because of the high accuracy 
of the modelled wave directions resulting from the high-resolution wind 
forcing data employed. It is worth noting that the results also show that 
the θm direction indicates movement from the south in the Alboran Sea 
in the WMS. This zone of the south-eastern and southern Spanish coasts 
is characterized by sea states originating from both the south-eastern 
and south-western quadrants (Camus et al., 2011; Elshinnawy et al., 
2017), leading to bimodal wave climates along these coasts of the Ibe
rian Peninsula. Thus, the integral θm direction in this area is from the 
south, but it does not properly represent the different wave systems in 

Fig. 8. The spatial distributions of the mean, the 99.5th percentile, and the maximum values of Hs (meters) and Tm (seconds) in the period 1961–2018.  
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the area. Accordingly, detailed analyses of the different wave families 
from the wave partitions of the directional wave spectra are required to 
better understand such directional variability in this zone. Moreover, the 
characterization of the crossing, opposing and following seas in the MS 
basin should be addressed in the future. Such a study is mandatory 
because sea crossings often poses navigation problems for ships. 

5.3. Wave climate intra-annual variability in the MS 

The monthly mean wave climatology of the Hs results during the 

1961–2018 period is shown in Fig. 10. H*s,50 was estimated as a single 
indicator representing the 50th percentile of the probability density 
function (PDF) of a particular month (e.g., all January months) during 
the 1961–2018 period. The most energetic wave heights were found to 
occur during the winter months (December–March), with H*s,50 values 
reaching 1.8 m in the Sardinian Sea due to the influence of the strong 
Mistral winds blowing during the winter season from the French inland 
region. In contrast, the highest waves occurred during the summer 
months in the Levantine Sea (mainly south of Crete) with H*s,50 values 
reaching 1.5 m. These waves are the result of the strong Etesian winds 

Fig. 9. The mean hourly wave direction, θm, in the MS basin during the 1961–2018 period. The arrows represent the direction to where the waves are going, with the 
length of the arrows directly proportional to the value of Hs,50. 

Fig. 10. H*s,50 as a representative indicator of the monthly mean wave climatology during the period from 1961 to 2018.  
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dominating the region in summer. Consequently, the spatial distribution 
of H*s,50 oscillated longitudinally between the summer and winter sea
sons, with the months of April and November sharing a very similar 
spatial pattern. The months of May and October also shared quite similar 
spatial distributions, with wave heights reaching 1 m in the MS basin. 
Additionally, similar H*s,50 distributions were also encountered during 
June and September. In summary, the Sardinian Sea exhibited the 
highest H*s,50 values throughout the year except in the summer season. 

The monthly extreme wave height, H*s,99.5, was also estimated as a 
single indicator representing the 99.5th percentile of the PDF in a 
particular month during the 1961–2018 period. The results displayed in 
Fig. 11 show that the largest H*s,99.5 values consistently occur in the 
Sardinian Sea throughout the year. In this zone, the H*s,99.5 values reach 
5.5–6 m during the November–March period, 4.5 m in April and 
October, and 4 m during the summer season. It is worth noting that the 
spatial distribution of the highest waves encountered in the MS differs 
between the mean and extreme conditions. In the Ionian Sea of the CMS, 
H*s,99.5 exhibits values up to 4.5 m and 2 m during the winter and 
summer seasons, respectively. In the Tyrrhenian Sea, the same spatial 
pattern as that observed in the CMS is seen because of the south-western 
Libeccio winds being stronger in the winter season than in the other 
seasons. Moreover, in the EMS, mainly in the Aegean Sea and Levantine 
Sea, the H*s,99.5 value reaches 4 m during the winter and 3 m in the 
summer because of the north-westerly Etesian winds dominating this 
area. The southern part of the Adriatic Sea is characterized by H*s,99.5 
values reaching 3.5 m during the winter because of the south-easterly 
Sirocco winds. Furthermore, smaller H*s,99.5 values (reaching 2 m) 
occurred during the summer than in the other seasons in this sub-basin. 

The results indicate clear seasonal variability in the directional wave 

climate in the MS basin with different patterns among the EMS, CMS, 
and WMS regions. The seasonal anomaly of the mean hourly wave di
rection (Δθms) was calculated by obtaining the difference between the 
seasonal mean hourly wave direction θms and the mean hourly wave 
direction θm during the 1961–2018 period. The Δθms term can be used to 
characterize seasonal shifts in wave directionality and is shown in 
Fig. 12. The blue and red colour maps shown in Fig. 12 refer to the 
clockwise (CW) and counter-clockwise (CCW) turns of θms, respectively. 
In the Levantine Sea in the EMS, θms turned CW relative to θm, with Δθms 
reaching 60◦ during winter, but turns CCW during the summer. At the 
Adriatic Sea in the CMS, θms turns slightly CW during winter and 
autumn; however, it turns CCW during summer with Δθms values up to 
30◦ (see Fig. 12). The most-southern parts of the Ionian Sea in the CMS 
are characterized by CW- and CCW-turning of θms during summer and 
winter, respectively, with Δθms values up to 60◦. In the Alboran Sea and 
Balearic Sea in the WMS, θms also turns slightly CCW and CW during 
winter and summer, respectively, with anomalies reaching 20◦. In the 
northern Sardinian Sea in the WMS, CW changes in θms are found in 
winter and spring, while CCW changes take place during summer. 
Similarly, in the Tyrrhenian Sea in the WMS, θms turns CW and CCW 
during winter and summer, respectively. During autumn, CW θms turns 
reaching 20◦ occur in the whole MS basin except in the Levantine Sea, 
which exhibits CCW changes with anomalies up to 10◦. Finally, smaller 
anomalies are found during springtime over the MS basin than during 
the rest of the year. These results show the opposing turning patterns of 
θms in the MS between summer and winter, suggesting that θms is an 
indicator that should not be averaged over relatively long periods in the 
MS. In summary, large Δθms values (up to 60◦) occur in the MS basin 
during winter and summer in the EMS and the most southern area of the 

Fig. 11. H*s,99.5 as a representative indicator of the monthly extreme wave climatology during the period from 1961 to 2018.  
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CMS. The large intra-annual variabilities identified in this study indicate 
that the annual mean hourly wave direction can be a very inaccurate 
indicator of wave directionality in the MS. 

5.4. Wave climate interannual variability in the MS 

This subsection explores the interannual variability in the MS wave 
climate by assessing the correlations of the monthly Hs,50 and Hs,99.5 
(Hs,50monthly and Hs,99.5monthly) values with climatic indices. Here, 
Hs,50monthly and Hs,99.5monthly were computed as the 50th and 99.5th 
percentiles, respectively, of the PDF of every month during each year 
throughout the 1961–2018 period. Similarly, the monthly mean surface 
wind speed (U10,50monthly) was estimated. The five most meaningful cli
matic indices in the MS basin, the North Atlantic Oscillation (NAO), the 
East Atlantic-West Russia (EAWR) index, the East Atlantic index (EA), 
the Mediterranean Oscillation Index (MOI), and the Scandinavian 
(SCAND) pattern, were selected according to Criado-Aldeanueva and 
Soto-Navarro (2020) and Morales-Márquez et al. (2020). 

The NAO represents a dipolar sea level pressure (SLP) characteristic 
pattern over the North Atlantic-European region with one centre in 
Iceland and the other in the Azores. The EA pattern is described as the 
SLP anomaly between the British Islands-Baltic Sea area and Greenland 
(Criado-Aldeanueva and Soto-Navarro, 2020). The MOI is defined as the 
dipolar behaviour of the atmosphere between the western and eastern 
MS, i.e., the normalized SLP difference between Marseille and Jerusa
lem. The EAWR pattern consists of four main anomaly centres. The 
positive phase is associated with positive height anomalies located over 
Europe and northern China and negative height anomalies located over 
the central North Atlantic and the northern Caspian Sea. Finally, the 
SCAND pattern consists of a primary circulation centre over Scandi
navia, with relatively weak centres of opposite signs over western 
Europe and eastern Russia/western Mongolia. More detailed informa
tion about these climatic indices can be obtained from the Climate 
Prediction Center (CPC) and the Physical Sciences Laboratory (PSL) of 
the National Oceanic and Atmospheric Administration (NOAA) at the 
following webpages: https://www.cpc.ncep.noaa.gov/data/teledoc/te 
lecontents.shtml and https://psl.noaa.gov/gcos_wgsp/Timeseries/. 

Table 3 presents the correlation coefficients between both Hs,50monthly 
and U10,50monthly and the climatic indices, providing spatially averaged 
values over the entire MS basin, the EMS, the CMS, and the WMS. 
Figs. 13 and 14 display correlation maps of Hs,50monthly and Hs,99.5monthly, 
respectively, for the months of January, April, and August. 

The correlations between Hs,50monthly and the NAO were found to be 
statistically significant (at the 90% confidence interval) and positive in 
the northern EMS (Aegean Sea) during the summer months, with values 
reaching 0.40. In contrast, negative correlations were found in the WMS 
and northern CMS, both during the summer months. Nonetheless, in the 
WMS, relatively high significant correlations with values down to − 0.5 
were found during the autumn, winter, and spring seasons (see Table 3). 
Moreover, these correlations were significant and negative in the Adri
atic Sea in the winter. For U10,50monthly, the NAO displayed correlations 
of − 0.27 during winter in the WMS and values reaching 0.35 and 0.42 
during summer and autumn, respectively, in the EMS. The results most 
often showed similar behaviours involving high correlations between 
NAO and both Hs,50monthly and U10,50monthly in the same area during the 
same season. 

The MOI correlations with Hs,50monthly were statistically significant 
and positive over almost the whole MS basin during the winter months, 
with large values reaching 0.6 and 0.56 in the CMS and WMS, respec
tively. These high values could be attributed to the strong correlations 
between MOI and U10,50monthly during winter, with values up to 0.85 and 
0.72 in the WMS and CMS, respectively (see Table 3). Notably, in the 
WMS and CMS, the correlations with Hs,50monthly were positive for almost 
the entire year. The Tyrrhenian Sea was characterized by significant 
Hs,50monthly correlations, with values reaching 0.5 in every season. 

For the EA index, the correlations with Hs,50monthly were negative in a 
large extent of the MS basin and were relatively large in the EMS, with 
correlation values down to − 0.64 in August and − 0.48 for U10,50monthly. 
Additionally, the correlations were also negative in the CMS and WMS, 
with values down to − 0.6 in May for the CMS and down to − 0.42 in 
December for the WMS (see Table 3). Statistically significant values 
were found in the Levantine Sea throughout the entire year, in the 
Tyrrhenian Sea and CMS in August, and in the Gulf of Lyon and the 
Adriatic Sea in January. 

The correlations between the EAWR index and Hs,50monthly were 
positive and significant in the EMS, with values reaching 0.34 in August. 
However, the correlations were negative and significant, with values 
down to − 0.36 and − 0.54 in the CMS and WMS, respectively, during 
winter (December and January) (see Fig. 13 and Table 3). During this 
season, EAWR showed correlation values of − 0.35 and − 0.25 with 
U10,50monthly in the WMS and CMS, respectively. 

Finally, the SCAND pattern exhibited positive correlations with 
Hs,50monthly in most of the MS basin in the summer (August), with values 
reaching 0.42 in the EMS and a correlation of 0.43 with U10,50monthly. 

Fig. 12. Seasonal anomaly of the mean hourly wave direction, Δθms, during the 1961–2018 period. Each subpanel corresponds with a season, SON is autumn; DJF is 
winter, MAM is spring; and JJA is summer. The blue and red colors refer to a seasonal clockwise (CW) and counter-clockwise (CCW) turning of the θms, respectively. 
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Table 3 
Correlation coefficients between the Hs,50monthly and five climatic indices in the whole Mediterranean Sea as well as sub-regions during the 1961–2018 period. Values in parenthesis are the correlation coefficients between 
U10,50monthly and the five climatic indices. U10,50monthly is shown when the absolute values are larger than 0.25 and when that of Hs,50monthly is also larger than 0.25.  

period Full Mediterranean Sea (FMS) Eastern Mediterranean Sea (EMS) Central Mediterranean Sea (CMS) Western Mediterranean Sea (WMS) 

NAO EAWR MOI EA SCAND NAO EAWR MOI EA SCAND NAO EAWR MOI EA SCAND NAO EAWR MOI EA SCAND 

January – − 0.36 0.60 
(0.69) 

– – – – 0.49 
(0.25) 

− 0.342 
(− 0.33) 

– – − 0.36 0.60 
(0.72) 

– – − 0.273 − 0.39 
(− 0.30) 

0.54 
(0.80) 

– – 

February − 0.47 – – − 0.37 0.25 − 0.27 – – − 0.41 – − 0.40 – – − 0.39 0.26 − 0.43 
(− 0.27) 

− 0.44 
(− 0.51) 

0.33 
(0.64) 

− 0.26 – 

March − 0.315 – 0.27 
(0.48) 

0.288 0.264 – – – – – – – – – 0.34 
(− 0.26) 

− 0.37 – 0.28 
(0.62) 

− 0.27 – 

April – – 0.37 
(0.35) 

– – – – – − 0.41 – – – 0.28 − 0.262 – – − 0.27 0.56 
(0.61) 

– 0.34 

May 0.281 − 0.274 0.28 − 0.46 – – – – − 0.25 
(0.27) 

– – − 0.257 – − 0.60 – − 0.26 − 0.35 0.27 
(0.29) 

− 0.27 – 

June 0.35 – 0.42 – – 0.37 
(0.35) 

– – – – – – 0.31 – 0.258 
(− 0.30) 

– – 0.365 – – 

July 0.47 − 0.264 0.29 – – 0.40 
(0.27) 

– – – – – – 0.33 – – – − 0.36 0.28 – – 

August − 0.25 
(0.31) 

– – − 0.43 0.41 – 0.34 – − 0.64 
(− 0.48) 

0.42 
(0.43) 

– – – − 0.29 
(0.36) 

0.376 − 0.34 – – – 0.27 

September − 0.26 
(0.47) 

– 0.30 – – – – – – – – – 0.25 – – − 0.51 – 0.36 – 0.37 
(− 0.29) 

October – – – − 0.29 – 0.25 
(0.42) 

– – – – – – – – – − 0.40 – 0.29 
(0.28) 

− 0.36 – 

November – – – − 0.343 – 0.28 
(0.35) 

– – – – – – – − 0.254 – − 0.44 − 0.26 
(− 0.31) 

– − 0.28 – 

December − 0.25 − 0.39 0.48 
(0.63) 

− 0.39 – – – – – – – − 0.35 
(− 0.25) 

0.44 
(0.66) 

− 0.41 – – − 0.54 
(− 0.35) 

0.56 
(0.85) 

− 0.42 – 

- indicates absolute values of the correlation coefficients, for Hs,50monthly, lower than 0.25. 
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These correlations were also positive and significant in the CMS during 
February and March (see Table 3) and in the Adriatic Sea in January, 
where the values reached 0.4 (see Fig. 13). Moreover, significant posi
tive correlations occurred in the WMS during the autumn (September) 
and spring (April) (see Table 3). 

Regarding the spatial correlations between Hs,99.5monthly and the five 
selected climate indices (NAO, EAWR, EA, MOI, and SCAND), despite 
the quite similar correlation patterns observed for both the mean and 
extreme conditions, the spatial distribution of statistically significant 
correlations were different than those of Hs,50monthly (see Figs. 13 and 
14). For example, EAWR displayed significant values for Hs,50monthly at 
the Sardinian Sea in April but less significance for Hs,99.5monthly. 

At the seasonal level, the spatial patterns in the correlations between 
Hs,50monthly or Hs,99.5monthly and the 5 climate indices were almost similar 
during summer and winter for each index. However, they exhibited 
different spatial distributions of statistically significant correlations. The 
MOI revealed the largest positive significant values in the MS basin 
during winter. Additionally, the SCAND index exhibited a positive sig
nificant correlation during summer. In contrast, the EA index displayed 
significant negative correlations in the EMS (Levantine Sea) during 
summer for both Hs,50monthly and Hs,99.5monthly (see Figs. 13 and 14). 

5.5. Wave storminess in the MS basin 

This subsection analyses the frequency of extreme events in the MS 
basin by analysing the number of storms occurring per year. Mentaschi 
et al. (2015) defined a typical storm in the MS basin as an event with Hs 

> 4 m; this definition agrees with the spatially averaged Hs,99.5 value 
found in this study (4.2 m). Consequently, in the current study, we used 
this value as a threshold to first identify the number of independent 
events with Hs > 4.2 m; next, we quantified the number of storms per 
year (N); and finally, we defined the average number of storms per year 
(Nop). To guarantee independence, successive storms that took place 
within a period shorter than 72 h were considered a single event. Fig. 15 
shows the spatial distribution of Nop in the MS basin for the 58-year 
period. The western WMS was the most stormy area in the MS basin 
during this time, with a typical Nop exceeding 3 storms/year as shown in 
the Sardinian Sea, where the strong Mistral winds dominate. The Tyr
rhenian Sea in the WMS and the Ionian Sea in the CMS showed Nop 
values reaching 2 storms/year. The Adriatic Sea in the CMS and the 
Aegean and Levantine Seas in the EMS exhibited fewer storms per year 
(Nop < 2 storms/year). Exceptions were found in the jet-like-pattern area 
located southern to Crete and generated by the Etesian winds that 
dominate in the Aegean Sea, in addition to the southern Adriatic Sea 
dominated by the Sirocco winds, with Nop values of ~2 storms/year. 

5.6. Long-term trends in the wave climatology of the MS 

In this subsection, the Hs,50 and Hs,99.5 trends (trend Hs,50 and trend 
Hs,99.5), as representatives of the mean and extreme regimes in the MS 
basin, are presented. These trends were obtained by fitting a linear 
regression model to the hourly data in the 1961–2018 period. The model 
consisted of a slope coefficient and an independent term. Maps dis
playing the spatial distribution of these trends (i.e., the slope coefficient 

Fig. 13. Spatial correlation coefficients between Hs,50monthly and five climatic indices (NAO, EAWR, MOI, EA, and SCAND) during January, April and August 
(1961–2018). Areas with statistically significant correlations at the 90% confidence interval (tested with Mann-Kendall test) are stippled by black dots. 
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of the regression model) are shown in Figs. 16 and 17 for the whole 
period (trends in the interannual variability) and the different seasons 
(trends in the intra-annual variability), respectively. The trends are 
mapped in cm/decade, and stippling points are shown where the trends 
were found to be statistically significant at the 90% confidence level 
using the Mann-Kendall test (Mann, 1945; Kendall, 1975). The spatially 
averaged values of the seasonal trends are listed in Table 4 for the full 
MS (FMS) basin and sub-regions. The trends were also computed for the 
entire 58-year period. 

The spatial average of the Hs,50 trend in the MS basin (shown in panel 

A of Fig. 16) was negative and statistically significant, with a magnitude 
of − 0.4 cm/decade. The Hs,50 trend was negative in most of the MS 
basin, except in the Alboran, Adriatic, and Sardinian Seas, where the 
trends were positive. For example, in the Levantine Sea, the trends are 
negative and statistically significant in the area between Egypt and 
Turkey, with values down to − 2 cm/decade, whereas in the Alboran Sea, 
the trends were positive and statistically significant, with magnitudes 
reaching 2 cm/decade. 

Additionally, the spatial average of the Hs,99.5 trend in the MS basin, 
as a consequence of the spatially distributed negative and positive 

Fig. 14. Spatial correlation coefficients between Hs,99.5monthly and five climatic indices (NAO, EAWR, MOI, EA, and SCAND) during January, April and August 
(1961–2018). Areas with statistically significant correlations at the 90% confidence interval (tested with Mann-Kendall test) are stippled by black dots. 

Fig. 15. Average number of storms per year (Nop) with Hs > 4.2 m in the MS basin during the 1961–2018 period.  
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patterns (panel A of Fig. 16), was negligible (0.11 cm/decade). These 
patterns were positive in the northern (north Sardinian, north Adriatic, 
and north Aegean Seas) and south-western (the Alboran Sea) MS basin 
and negative in the southern CMS and in the Levantine Sea. Notably, the 
Hs,99.5 trend was statistically significant and positive, with values 
reaching 4 cm/decade, in sub-regions of these sub-basins, for example, 
in the Alboran Sea and the northern parts of the Adriatic and Tyrrhenian 
Seas. In contrast, the Hs,99.5 trend was statistically significant and 
negative in the Levantine Sea, with values reaching − 4 cm/decade. 

Panel B of Fig. 16 shows the time series of the spatial mean and the 
standard deviation of the annual Hs,50 and Hs,99.5 values calculated for 
the FMS, EMS, CMS, and WMS basins. The results indicate that mild 
changes took place throughout the 58-year period in both the annual 
Hs,50 and annual Hs,99.5, with larger standard deviations and variabilities 
observed in Hs,99.5 than in Hs,50 in all basins. 

The spatial pattern of the seasonal Hs,50 trend was negative in most 
areas of the MS basin during the winter, spring, and summer seasons and 
positive in autumn in the sub-basins of the CMS and WMS (Fig. 17). An 
exception was found in the Alboran Sea of the WMS, where the Hs,50 
trend was positive during all seasons. The seasonal Hs,50 trends were 
statistically significant in the Levantine Sea and the CMS areas during 
summer, with values of − 3 cm/decade, and in the WMS during autumn, 
with moderate values of 1.2 cm/decade. 

The spatial pattern of the seasonal Hs,99.5 trend was consistently 
steeper than that of the Hs,50 trend, and more importantly, the spatial 
patterns are different, especially during the winter and spring seasons 
(Fig. 17, Table 4). In winter, a positive Hs,99.5 trend was found in the 
southern Levantine Sea in the EMS (with rates up to 6 cm/decade) and 
negative Hs,99.5 trends were found in the Tyrrhenian Sea and in the 
southern Sardinian Sea along the Algerian coasts in the WMS (rates 
down to − 6 cm/decade). In summer, positive, statistically significant 
Hs,99.5 trends (up to 6 cm/decade) were found in the Alboran, northern 

Sardinian and Tyrrhenian Seas in the WMS and in the Adriatic Sea in the 
CMS. In contrast, negative, statistically significant Hs,99.5 trends (down 
to − 6 cm/decade) were found in the Levantine Sea (EMS), the Ionian Sea 
(CMS), and along the eastern Spanish coast (WMS) during the same 
season. For a more detailed interpretation of the spatial seasonal Hs,99.5 
trends, refer to Fig. 17. 

In summary, during the 1961–2018 period, decreasing trends in Hs,50 
and Hs,99.5 were consistently found in the MS wave climate throughout 
the winter, spring, and summer seasons and increased during autumn, 
with larger Hs,99.5 rates than Hs,50 rates. 

Regarding the long-term storminess trends in the MS, the trends in N 
were also analysed throughout the 1961–2018 period using the same 
model as described above. Identifying trends in N is key when per
forming extreme value analyses, as an increase in the frequency of 
storms would consequently increase the estimated return-period values. 
As shown in Fig. A.8, the trends in N were very mild in the MS basin 
throughout the study period. The results revealed mild statistically 
significant negative trends in the Gulf of Lyon in the northern Sardinian 
Sea in the WMS and in the south-western Levantine Sea in the EMS, with 
a decrease rate of − 2%. Additionally, slightly positive trends were found 
in the Alboran Sea, Balearic Sea and Aegean Sea. 

6. Conclusions 

The wind-wave climatology in the MS was presented and discussed 
in the current study based on a 58-year, high-resolution MS wave 
hindcast. The state-of-the-art spectral wind wave model WW3 was used 
to develop the MS wave model to produce a hindcast for the 1961–2018 
period. The MS wave hindcast provides hourly time series of the sea 
state parameters; spectral partitioned wave data at a spatial resolution of 
0.1◦ in both longitude and latitude; and a 3-h time series of the direc
tional wave spectra along the coastal areas of the MS basin, with a 

Fig. 16. Panel A shows the Hs,50 trend (upper) and Hs,99.5 trend (lower) in the MS basin during the 1961–2018 period. Areas with statistically significant trends with 
a 90% confidence level (tested with Mann-Kendall test) are stippled by black dots. The trends are plotted in cm/decade. Panel B shows the spatial mean (coloured 
lines) and standard deviation (filled area) of the annual Hs,50 and Hs,99.5 calculated for the full, eastern, central, and western MS basins (FMS, EMS, CMS, WMS, 
respectively). 
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spacing of 0.2◦. The dataset obtained herein represents one of the 
longest wave datasets representing the MS to date. 

The MS wave model was forced with the high-resolution UERRA- 
MESCAN-SURFEX wind fields (at a 5.5-km horizontal resolution). The 
source-term parameterization was set to T405, the recommended 
physical wind input and dissipation formulation developed by Ardhuin 
et al. (2010) for short-fetch regions. The wind wave growth parameter 

βmax was used for the model calibration, using satellite altimeter data 
collected during 2011 as a benchmark. The calibration procedure 
applied in the current study optimized the βmax parameter to minimize 
the residual error of Hs at the 10th, 50th, 99th, and 99.5th percentiles; in 
addition, a convergence criterion was set for this error at ± 0.1 m. In the 
MS, the optimal βmax value was found to be 2.25 for the employed 
forcing wind fields. 

Fig. 17. Seasonal trends of Hs,50 and Hs,99.5 in the MS basin during the period 1961–2018. The row-wise allocated subpanels indicate the seasons (DJF: winter, MAM: 
spring, JJA: summer, SON: autumn). The column-wise subpanels refer to the Hs,50 and Hs,99.5. Areas with statistically significant trends at the 90% confidence interval 
(tested with Mann-Kendall test) are stippled by black dots. The trends are plotted in cm/decade. 

Table 4 
Spatial averages over the MS and sub-regions of Hs,50 and Hs,99.5 seasonal trends (cm/decade) during the 1961–2018 period.  

Season Hs,50 Hs,99.5 

FMS WMS CMS EMS FMS WMS CMS EMS 

Winter (DJF) − 0.944 − 1.233 − 0.866 − 1.136 0.46 − 1.875 − 2.337 1.346 
Spring (MAM) − 0.40 0.12 − 0.753 − 1.376 − 0.096 1.71 − 1.385 − 3.546 
Summer (JJA) − 0.897 − 0.235 − 0.897 − 2.95 − 1.726 − 0.087 − 2.268 − 5.33 
Autumn (SON) 0.841 1.20 0.8965 0.5624 2.223 5.5487 3.17 1.036  
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The validation of the dataset was carried out against records 
collected by 26 wave buoys in the MS basin and more than 27 years of 
recalibrated and denoised altimeter Hs data. The validation results dis
played strong agreement between the Hs values provided by the MS 
wave hindcast and the in situ observations recorded at buoys, with 
negligible positive biases and linear regression slopes close to 1 for the 
wave parameter, Hs and Tm values. Furthermore, the dataset revealed a 
robust representation of θm in the MS basin with a bias less than 1◦, likely 
because of the quality of the high-resolution wind fields. Comparing the 
wave dataset with the altimeter observations of Hs, the MS hindcast 
reported bias, RMSE, SI and correlation coefficient values of 0.022 m, 
0.30 m, 0.2 and 0.93, respectively. Additionally, the distributions of Hs 
in the modelled dataset and altimeter observations for the MS basin as 
well as for the different MS sub-basins showed strong matches between 
both distributions when Hs > 1 m, with Pearson correlations exceeding 
0.91. Accordingly, the validation of the MS wave hindcast, developed 
using the UERRA-MESCAN-SURFEX wind fields, showed that the data 
are appropriate for wave climate analyses. 

The results show that there is a high presence of wind sea energy in 
the hourly wave spectra in the MS basin, although there is a slight in
fluence of swell energy (0.25 < WSF<0.45) in most of the MS basin. At 
the Gulf of Lyon (northern Sardinian Sea) and the Alboran Sea in the 
WMS, the Adriatic Sea in the CMS, and the Aegean Sea in the EMS, the 
wind sea is predominant (WSF>0.65), corresponding with the wave 
generation domains attributed to the wind systems active in the MS 
basin. 

The statistical characterization of the MS wave hindcast climate 
during the 1961–2018 period revealed that the spatially averaged Hs 
value varies between 1.1 m (Hs,50) and 4.20 m (Hs,99.5), while Tm ranges 
from 4.72 s (Tm,50) to 8 s (Tm,99.5). Additionally, the most energetic Hs,50 
occurs in the WMS during winter and in the EMS during summer. 
However, the highest extreme waves occur in the WMS, mainly in the 
Sardinian Sea, throughout the whole year. Accordingly, the spatial 
distribution of the largest waves in the basin during mean conditions 
differed from that during extreme events. The directional wave climate 
in the MS basin revealed clear seasonal variability. The anomaly of the 
seasonal mean wave direction (θms) relative to θm exhibits large values 
(reaching 60◦), with opposing behaviours observed in the MS basin 
between the winter and summer seasons. 

The correlations of the Hs,50monthly and Hs,99.5monthly values in the MS 
basin with five climate indices (NAO, EAWR, EA, MOI, and SCAND) 
revealed large, positive, and significant correlations with the MOI index 
during the winter. These correlations could be attributed to the high 
correlations, reaching 0.85, encountered in the MS between MOI and 
U10,50monthly during this season. During the summer season, the SCAND 
pattern exhibits statistically significant positive correlations in the MS 
basin with both Hs,50monthly and Hs,99.5monthly. The results most often show 
similar behaviours of high correlations between the climatic indices and 
both Hs,50monthly and U10,50monthly in the same area during the same sea
son. For Hs,50monthly and Hs,99.5monthly, the spatial correlation pattern is 
similar for each climate index; however, the significance of these cor
relations are differently distributed. 

The WMS is the area characterized by the most frequent occurrence 
of storms (defined by the threshold Hs > 4.2 m), with Nop > 3 per year, 

whereas the EMS and the short-fetch sub-basins are characterized by less 
frequent stormy conditions, with Nop < 2 per year. 

The MS wave climate in the 1961–2018 period shows negative trends 
in both Hs,50 and Hs,99.5 during winter, spring, and summer; in contrast, 
these trends are positive during autumn under both mean and extreme 
conditions, with the largest changes observed during extreme condi
tions. The spatial patterns of these trends differ mainly during mean and 
extreme conditions in the winter and spring seasons. In general, the 
long-term trends in Hs,50 and Hs,99.5 as well as the changes in N in the MS 
basin are found to be mild, with values reaching 6 cm/decade and less 
than 2% in the absolute value, respectively. Additionally, the EMS is 
characterized by statistically significant negative Hs,50 and Hs,99.5 trends, 
while the most western area of the WMS is characterized by statistically 
significant positive trends under both mean and extreme conditions. 
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Appendix A. Figures and tables for the MS wave model calibration and validation

Fig. A.1. Scatter plots of Hs in the year 2011, the y-axis refers to the WW3 output (co-located along the satellite tracks), and the x-axis to the altimeter data, using the 
source term parameterization T405 with the optimum value of βmax = 2.25 (upper panel) and the default value of βmax = 1.55 (lower panel). The different error 
metrics are shown. The red dashed line, shown in each panel, represents the slope of the linear regression. The color intensity corresponds to the density of data.  
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Fig. A.2. Scatter plots of the measured and modelled significant wave height (Hs) and the mean period (Tm) from in-situ wave buoys employed in the current study, 
using the source term parameterization T405 with the optimum value of βmax = 2.25. The different error metrics (Bias, RMSE, SI, Pearson correlation R and the linear 
slope) are shown in both panels. The red dashed line, shown in each panel, represents the slope of the linear regression. The colour intensity corresponds to the 
density of data. 

Fig. A.3. The same as Fig. A.2 but using the default value of βmax = 1.55.  

Fig. A.4. Left: A scatter plot of Hs pairs from the MS hindcast and the SSCCI altimeter database of Hs for the 1991–2018 period, showing different error metrics (Bias, 
RMSE, SI, Pearson correlation R and the linear slope). The red dashed line, shown in the left panel, represents the slope of the linear regression. The colour intensity 
corresponds to the density of data. Right: Quantile-Quantile plot for modelled and altimeter Hs for the whole period (1991–2018), with vertical lines corresponding to 
different percentiles of Hs. Results are shown using the source term parameterization T405 with the optimum value of βmax = 2.25.  
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Fig. A.5. The same as Fig. A.4 but using the default value of βmax = 1.55.  

Fig. A.6. Spatial distributions of the Bias (Bias panel), the RMSE (RMSE panel), the scatter index (SI % panel), and the correlation coefficient (R panel) in Hs using the 
default value of βmax = 1.55. The performance of the MS hindcast is evaluated using, as benchmark, the SSCCI altimeter data of Hs from 1991 to 2018.  
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Fig. A.7. Histograms of Hs in the period 1991–2018. In blue the SSCCI altimeter data of Hs, and in red the corresponding output from WW3. Panel Mediterranean 
shows the histogram corresponding to the whole basin data and all the other for the several sub-basins. The model wave heights were spatially co-located along the 
satellite tracks. The Pearson correlation coefficient is provided in the x-axis label.  
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Fig. A.8. Trend of N, the number of storms per year, defined with a threshold Hs > 4.2 m in the MS basin during the 1961–2018 period. The trends are plotted in N/ 
year. The color bar ranges between − 1% and 1%, which is equivalent to a decrease/increase of N of 0.1 per year, i.e., a decrease/increase of N of 1 per decade. Red 
and blue colors refer to an increase and decrease in storminess, respectively. Areas with statistically significant trends at the 90% confidence interval (tested with 
Mann-Kendall test) are stippled by black dots.  

Table A.1 
Error metrics of the significant wave height, mean wave period and mean wave direction comparing the Mediterranean Sea hindcast results with observations from 26 
in-situ wave buoys data.  

Buoy Hs Tm θm 

No. Station name 
(ID) 

Location Bias 
(m) 

RMSE 
(m) 

SI R Lin. 
Slope 

Bias (s) RMSE 
(s) 

SI R Lin. 
Slope 

NBIθ 
(%) 

NRMSEθ 

longitude latitude 

1 Mahon (61197) 4.42 39.72 0.093 0.326 0.197 0.92 1.016 0.182 0.651 0.136 0.80 1.032 0.716 0.102 
2 Cabo de Palos 

(61417) 
− 0.33 37.65 0.086 0.276 0.22 0.90 1.047 0.304 0.762 0.172 0.665 1.067 − 2.46 0.118 

3 Cabo de Begur 
(61196) 

3.64 41.92 0.27 0.50 0.25 0.93 1.17 0.107 0.56 0.13 0.823 1.023 − 0.326 0.129 

4 Cabo de Gata 
(61198) 

− 2.333 36.567 0.23 0.377 0.24 0.92 1.21 0.261 0.662 0.155 0.741 1.065 − 1.218 0.1065 

5 Drangonera 
(61430) 

2.10 39.56 0.042 0.30 0.24 0.85 0.993 0.238 0.69 0.158 0.72 1.054 1.113 0.142 

6 Tarragona 
(61280) 

1.48 40.69 0.16 0.30 0.25 0.90 1.148 0.39 0.768 0.172 0.667 1.095 − 0.654 0.121 

7 Valencia 
(61281) 

0.208 39.517 − 0.02 0.26 0.27 0.85 0.91 0.397 0.92 0.22 0.652 1.1 − 1.862 0.128 

8 Lion (61002) 4.7 42.1 0.13 0.38 0.19 0.953 1.056 – – – – – – – 
9 Cote de Azur 

(61001) 
7.8 43.4 0.16 0.386 0.283 0.92 1.15 – – – – – – – 

10 Athos (61X03) 24.7 40.00 − 0.058 0.273 0.235 0.94 0.95 − 0.66 0.834 0.13 0.83 0.831 1.836 0.135 
11 Lesvo (61X04) 25.80 39.10 − 0.082 0.241 0.238 0.916 0.923 − 0.356 0.55 0.116 0.856 0.90 2.536 0.09 
12 Mykonos 

(61X05) 
25.5 37.50 − 0.12 0.297 0.217 0.931 0.883 − 0.373 0.61 0.1277 0.863 0.903 1.652 0.101 

13 Pylos (61X08) 21.6 36.80 − 0.08 0.256 0.207 0.867 0.873 0.021 0.694 0.163 0.682 0.993 − 2.78 0.093 
14 E1M3 A 

(61X07) 
24.90 35.80 − 0.09 0.248 0.23 0.73 0.85 0.477 0.717 0.126 0.633 0.834 − 1.644 0.101 

15 Santo (61X06) 25.50 36.30 − 0.13 0.292 0.25 0.89 0.874 − 0.347 0.697 0.158 0.704 0.903 − 2.23 0.142 
16 Mazara (61208) 12.53 37.52 0.08 0.234 0.23 0.923 1.05 − 0.256 0.911 0.177 0.67 0.935 − 1.036 0.1137 
17 Palermo 

(61209) 
13.33 38.26 − 0.02 0.215 0.20 0.95 0.94 − 0.605 1.417 0.24 0.51 0.845 − 2.425 0.12 

18 Crotone 
(61210) 

17.22 39.02 0.047 0.238 0.26 0.92 0.998 0.15 0.975 0.206 0.617 1.02 6.98 0.146 

19 Cetraro 
(61211) 

15.92 39.45 0.10 0.252 0.23 0.936 1.082 − 0.2 0.952 0.18 0.718 0.945 4.79 0.1123 

20 Alghero 
(61213) 

8.11 40.55 0.025 0.314 0.19 0.96 0.951 − 0.01 0.846 0.151 0.818 0.982 − 1.47 0.09 

21 Ponza (61214) 12.95 40.87 0.011 0.25 0.237 0.93 0.98 − 0.123 0.8727 0.187 0.683 0.961 2.75 0.126 
22 Monopoli 

(61215) 
17.38 40.97 0.045 0.251 0.31 0.90 1.07 − 0.66 0.991 0.164 0.69 0.851 2.14 0.105 

23 Civitavecchia 
(61216) 

11.55 42.24 0.182 0.313 0.343 0.92 1.265 − 0.171 0.917 0.197 0.625 0.954 1.817 0.103 

24 La Spezia 
(61219) 

9.83 43.93 0.044 0.228 0.232 0.94 1.034 − 0.197 0.97 0.188 0.70 0.95 0.532 0.123 

25 Punta Maestra 
(61220) 

12.52 45.33 0.033 0.265 0.425 0.84 1.03 − 0.795 1.19 0.213 0.53 0.80 0.573 0.123 

26 Cagliari 
(61221) 

9.40 39.12 0.148 0.273 0.29 0.883 1.16 0.433 1.106 0.21 0.686 1.083 2.136 0.089  
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A.I. Elshinnawy and J.A.Á. Antolínez                                                                                                                                                                                                      

https://doi.org/10.1016/j.ocemod.2021.101897
https://doi.org/10.1016/j.ocemod.2021.101848
https://doi.org/10.1594/PANGAEA.769615
https://doi.org/10.1594/PANGAEA.769615
https://doi.org/10.3390/cli9010011
https://doi.org/10.1016/j.apor.2019.01.014
https://doi.org/10.1016/j.oceaneng.2020.107432
https://doi.org/10.1016/j.ocemod.2021.101933
https://doi.org/10.1016/j.ocemod.2021.101933
https://doi.org/10.1007/s00382-021-05997-1
https://doi.org/10.1007/s00382-021-05997-1
https://doi.org/10.1002/2017JF004367
https://doi.org/10.1175/1520-0485(2003)033<1940:STATCS>2.0.CO;2
https://doi.org/10.1175/1520-0485(2003)033<1940:STATCS>2.0.CO;2
https://doi.org/10.1175/2010JPO4324.1
https://doi.org/10.1175/2010JPO4324.1
https://doi.org/10.3389/fmars.2019.00124
https://doi.org/10.3389/fmars.2019.00124
https://doi.org/10.1016/j.energy.2013.02.060
https://doi.org/10.3390/jmse9080835
https://doi.org/10.3390/jmse9080835
https://doi.org/10.3389/fmars.2021.760614
http://refhub.elsevier.com/S0029-8018(23)00073-2/sref16
http://refhub.elsevier.com/S0029-8018(23)00073-2/sref16
http://refhub.elsevier.com/S0029-8018(23)00073-2/sref16
http://www.uerra.eu/publications/deliverable-reports.html
http://www.uerra.eu/publications/deliverable-reports.html
http://refhub.elsevier.com/S0029-8018(23)00073-2/sref18
http://refhub.elsevier.com/S0029-8018(23)00073-2/sref18
https://doi.org/10.3334/CDIAC/00001_V2017
https://doi.org/10.3334/CDIAC/00001_V2017
https://doi.org/10.1029/98jc02622
https://doi.org/10.1016/j.oceaneng.2021.110322
https://doi.org/10.1016/j.coastaleng.2011.02.003
https://doi.org/10.3402/tellusa.v56i2.14398
https://doi.org/10.3402/tellusa.v56i2.14398
https://doi.org/10.1016/j.pocean.2018.03.010
https://doi.org/10.1016/j.ocemod.2008.01.003
https://doi.org/10.1016/j.ocemod.2012.07.005
https://doi.org/10.3390/app10175790
https://doi.org/10.1007/s10236-020-01419-8
https://doi.org/10.1038/s43017-020-00109-9
https://doi.org/10.1002/qj.828
https://doi.org/10.5194/essd-12-1929-2020
http://refhub.elsevier.com/S0029-8018(23)00073-2/sref32
http://refhub.elsevier.com/S0029-8018(23)00073-2/sref32
http://refhub.elsevier.com/S0029-8018(23)00073-2/sref32
http://refhub.elsevier.com/S0029-8018(23)00073-2/sref32
https://doi.org/10.1016/j.ecss.2021.107267
https://doi.org/10.1016/j.coastaleng.2017.06.009
https://doi.org/10.1016/j.coastaleng.2018.01.001
https://doi.org/10.1016/j.coastaleng.2022.104096
https://doi.org/10.1016/j.coastaleng.2022.104112
https://doi.org/10.5066/P9KR0RFM
http://globwave.ifremer.fr/
https://doi.org/10.1016/j.energy.2018.10.002
https://doi.org/10.1016/j.energy.2018.10.002
https://doi.org/10.1175/BAMS-D-11-00128.1
http://refhub.elsevier.com/S0029-8018(23)00073-2/sref42
http://refhub.elsevier.com/S0029-8018(23)00073-2/sref42
http://refhub.elsevier.com/S0029-8018(23)00073-2/sref42
http://refhub.elsevier.com/S0029-8018(23)00073-2/sref43
http://refhub.elsevier.com/S0029-8018(23)00073-2/sref43
http://refhub.elsevier.com/S0029-8018(23)00073-2/sref44
http://refhub.elsevier.com/S0029-8018(23)00073-2/sref44
http://refhub.elsevier.com/S0029-8018(23)00073-2/sref44
http://refhub.elsevier.com/S0029-8018(23)00073-2/sref44
https://doi.org/10.1002/qj.3803
https://doi.org/10.1002/qj.3803
http://refhub.elsevier.com/S0029-8018(23)00073-2/sref46
http://refhub.elsevier.com/S0029-8018(23)00073-2/sref46
http://refhub.elsevier.com/S0029-8018(23)00073-2/sref46
http://refhub.elsevier.com/S0029-8018(23)00073-2/sref47
https://doi.org/10.1016/j.ocemod.2016.02.001
https://doi.org/10.1016/j.ocemod.2016.02.001
https://doi.org/10.1007/s00382-005-0025-4
https://doi.org/10.1007/s00382-005-0025-4
https://doi.org/10.1016/j.apor.2022.103118
https://doi.org/10.1016/j.apor.2022.103118


Ocean Engineering 271 (2023) 113689

26

Mann, H.B., 1945. Nonparametric tests against trend. Econometrica 13, 245–259. 
https://doi.org/10.2307/1907187. 
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A.I. Elshinnawy and J.A.Á. Antolínez                                                                                                                                                                                                      

https://doi.org/10.2307/1907187
https://doi.org/10.1016/j.jmarsys.2013.04.006
https://doi.org/10.1016/j.jmarsys.2013.04.006
https://doi.org/10.1126/sciadv.aba1981
https://doi.org/10.1038/s41558-018-0088-y
https://doi.org/10.1038/s41558-018-0088-y
https://doi.org/10.1016/j.ocemod.2015.04.003
https://doi.org/10.1016/j.ocemod.2015.04.003
https://doi.org/10.5194/os-16-1385-2020
https://doi.org/10.1016/j.coastaleng.2008.02.024
https://doi.org/10.1016/j.csr.2014.03.008
https://doi.org/10.1109/TGRS.2014.2356331
https://doi.org/10.1016/j.coastaleng.2017.03.005
https://doi.org/10.1016/j.coastaleng.2017.03.005
https://doi.org/10.5285/f91cd3ee7b6243d5b7d41b9beaf397e1, 2020a
https://doi.org/10.5285/f91cd3ee7b6243d5b7d41b9beaf397e1, 2020a
https://doi.org/10.1016/j.coastaleng.2008.02.023
https://doi.org/10.1016/j.coastaleng.2008.02.023
https://doi.org/10.1016/j.ocemod.2012.12.001
https://doi.org/10.1016/j.coastaleng.2012.03.003
https://doi.org/10.1038/s41597-019-0083-9
https://doi.org/10.1038/s41597-019-0083-9
http://www.uerra.eu/component/dpattachments/?task=attachment.download&amp;id=296
http://www.uerra.eu/component/dpattachments/?task=attachment.download&amp;id=296
https://doi.org/10.1175/2010BAMS3001.1
https://doi.org/10.1175/JCLI-D-12-00823.1
https://doi.org/10.1175/JCLI-D-12-00823.1
https://doi.org/10.5194/nhess-8-1217-2008
https://doi.org/10.3389/fmars.2020.00361
https://doi.org/10.1016/j.coastaleng.2019.04.013
https://doi.org/10.1016/j.coastaleng.2019.04.013
https://doi.org/10.1016/j.oceaneng.2022.111627
https://doi.org/10.1016/j.oceaneng.2022.111627
http://refhub.elsevier.com/S0029-8018(23)00073-2/sref73
http://refhub.elsevier.com/S0029-8018(23)00073-2/sref73
http://refhub.elsevier.com/S0029-8018(23)00073-2/sref73
http://refhub.elsevier.com/S0029-8018(23)00073-2/sref73
https://doi.org/10.1016/j.ocemod.2018.04.008
https://doi.org/10.1016/j.ocemod.2018.04.008
https://doi.org/10.1016/j.ocemod.2015.09.003
https://doi.org/10.1029/2018JC014607
http://refhub.elsevier.com/S0029-8018(23)00073-2/sref77
http://refhub.elsevier.com/S0029-8018(23)00073-2/sref77
http://refhub.elsevier.com/S0029-8018(23)00073-2/sref78
http://refhub.elsevier.com/S0029-8018(23)00073-2/sref78
http://refhub.elsevier.com/S0029-8018(23)00073-2/sref78
https://doi.org/10.1016/S1463-5003(02)00004-5
https://doi.org/10.3389/fmars.2022.991504
http://refhub.elsevier.com/S0029-8018(23)00073-2/sref81
http://refhub.elsevier.com/S0029-8018(23)00073-2/sref81
http://refhub.elsevier.com/S0029-8018(23)00073-2/sref81
http://refhub.elsevier.com/S0029-8018(23)00073-2/sref81
https://doi.org/10.1016/j.oceaneng.2020.106959
https://doi.org/10.1016/j.oceaneng.2020.106959
https://doi.org/10.1256/qj.04.176
https://doi.org/10.1016/j.apor.2015.08.006
https://doi.org/10.1016/j.apor.2015.08.006
https://doi.org/10.3390/jmse9020208
https://doi.org/10.3390/jmse9020208
http://refhub.elsevier.com/S0029-8018(23)00073-2/sref86
http://refhub.elsevier.com/S0029-8018(23)00073-2/sref86
https://doi.org/10.1002/2016EF000505
https://doi.org/10.1002/2016EF000505
http://journals.ametsoc.org/doi/pdf/10.1175/1520-0485%281988%29018%3C1775%3ATWMTGO%3E2.0.CO%3B2
http://journals.ametsoc.org/doi/pdf/10.1175/1520-0485%281988%29018%3C1775%3ATWMTGO%3E2.0.CO%3B2
https://doi.org/10.1029/96JB00104
https://doi.org/10.1029/96JB00104
https://doi.org/10.3390/jmse9070695
http://refhub.elsevier.com/S0029-8018(23)00073-2/sref91
http://refhub.elsevier.com/S0029-8018(23)00073-2/sref91
http://refhub.elsevier.com/S0029-8018(23)00073-2/sref91
https://doi.org/10.1175/JAM2498.1
https://doi.org/10.1175/JAM2498.1

	A changing wave climate in the Mediterranean Sea during 58-years using UERRA-MESCAN-SURFEX high-resolution wind fields
	1 Introduction
	2 Study area and datasets
	2.1 Study area
	2.2 Bathymetric and coastline data
	2.3 Wind field forcing
	2.4 Wave observations
	2.4.1 Moored buoy observations
	2.4.1 Altimeter dataset


	3 MS wave model setup, calibration, and hindcast production
	3.1 MS wave model setup
	3.2 MS model calibration
	3.3 MS wave hindcast production

	4 Performance of the MS wave hindcast
	4.1 Validation with buoy measurements
	4.2 Validation with altimeter data

	5 Mediterranean sea wave climate
	5.1 Wind seas and swells throughout the MS
	5.2 Mean and extreme wave climatology regimes in the MS
	5.3 Wave climate intra-annual variability in the MS
	5.4 Wave climate interannual variability in the MS
	5.5 Wave storminess in the MS basin
	5.6 Long-term trends in the wave climatology of the MS

	6 Conclusions
	Authorship contributions
	Declaration of competing interest
	Data availability
	Acknowledgements
	Appendix A Figures and tables for the MS wave model calibration and validation
	References


