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Abstract

Objective. The image reconstruction of ultrasound computed tomography is computationally
expensive with conventional iterative methods. The fully learned direct deep learning reconstruction
is promising to speed up image reconstruction significantly. However, for direct reconstruction from
measurement data, due to the lack of real labeled data, the neural network is usually trained on a
simulation dataset and shows poor performance on real data because of the simulation-to-real gap.
Approach. To improve the simulation-to-real generalization of neural networks, a series of strategies
are developed including a Fourier-transform-integrated neural network, measurement-domain data
augmentation methods, and a self-supervised-learning-based patch-wise preprocessing neural
network. Our strategies are evaluated on both the simulation dataset and real measurement datasets
from two different prototype machines. Main results. The experimental results show that our deep
learning methods help to improve the neural networks’ robustness against noise and the general-
izability to real measurement data. Significance. Our methods prove that it is possible for neural
networks to achieve superior performance to traditional iterative reconstruction algorithms in
imaging quality and allow for real-time 2D-image reconstruction. This study helps pave the path for
the application of deep learning methods to practical ultrasound tomography image reconstruction
based on simulation datasets.

1. Introduction

Ultrasound computed tomography (USCT) is a promising tool for non-invasive and non-ionizing medical
image diagnosis, especially for breast cancer detection in screening. It has been proven that sound-speed
tomograms can help differentiate between different breast lesions and henceforth assess breast cancer risks (Li
etal 2009).

A popular conventional approach for USCT image reconstruction is ray-based methods (Ozmen et al 2015).
Ray-based methods reduce the wave propagation model into a ray-propagation problem which reduces the
computation burden (Javaherian and Cox 2021). The ray-based methods achieve a good balance between

© 2023 Institute of Physics and Engineering in Medicine
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imaging quality and computational cost, and allow handling larger problems with reduced computational
efforts, which also helps accelerate the simulation for training data generation. The ray-based methods have
been used for practical 3D USCT reconstruction for breast imaging (Birk et al 2014, Hopp et al 2014), where the
TVAL3-based iterative reconstruction is combined with GPU acceleration to speed up the imaging process.
More recently, the Bézier curve technique (Perez-Liva et al 2020, Zuch et al 2021) is introduced to further
accelerate the bent-ray-based reconstruction.

With more computing power available, full-waveform inversion (FWTI), an imaging method originally
developed in the field of seismic exploration, has been intensively studied for ultrasound tomography. Requiring
aheavy computational burden, FWI models both transmission and reflection and can make full use of the
measurement data. [tis believed that FWT has the potential for high resolution image reconstruction (Lucka et al
2021). However, to get a high fidelity reconstruction, FWI needs good initialization and low frequency
information(a few hundreds of kHz) (Agudo et al 2018) to avoid cycle skipping (Robins et al 2021, Boehm et al
2022). This low frequency information is often unavailable in conventional ultrasound tomography machines.

Besides FWI, another seismic imaging technique, finite frequency traveltime tomography (Mercerat and
Nolet 2013) has also been introduced for ultrasound tomography (Martiartu et al 2020). This method considers
the frequency dependence and volumetric sensitivity of traveltime measurements and shows decent
performance on 2D ultrasound tomography image reconstruction with real measurement data.

In recent years, there has been a growing interest in deep learning methods to allow for real-time USCT
image reconstruction, which can be divided into two categories: hybrid approach and fully-learned approach.
The hybrid approach aims at integrating deep learning methods with traditional iterative reconstruction
methods to achieve faster reconstruction (Poudel et al 2019, Robins et al 2021, Stanziola et al 2021, Fan et al
2022). On the other hand, the fully learned approach tries to reconstruct images via end-to-end learning with
deep learning methods from measurement data (Prasad and Almekkawy 2020, Zhao et al 2020). Due to the lack
of real measured data with ground truth information, simulation data are typically used for training these neural
networks. However, in practice, the neural networks trained with simulation datasets usually show poor
performance on real data due to the subtle difference between simulation and real data, known as the
simulation-to-real gap.

The discrepancy between simulation and real measurement data is unavoidable and originates from
different reasons. One key part is systematic errors (Taylor 1997) including positioning errors of transducers, the
time delay error between emitters and receivers, etc (Filipik 2008, Tan et al 2015), which can be reduced by
calibration but cannot be eliminated completely. Random errors from such as temperature fluctuation can be
another error source. In addition, the approximation methods used in simulation such as defining each sensor as
asingle point can also aggravate the gap between simulation and real data. Yet, in practice, a more realistic
simulation usually requires a huge computational burden. For refraction-corrected transmission tomography,
the estimation of time of flight (ToF) is also an important error source. In our simulation, given the distribution
of emitters and sensors, and the speed of sound map, the ToF can be simply obtained via the ray-based forward
model. Yet, the real measurement data are usually time series data recorded by receivers, where arrival time
estimation algorithms should be applied in order to obtain the measurement data. In this study, we adopt a state-
of-the-art arrival time estimation method, referred to as the sliding-window weighted Akaike information
criterion method (Bao and Jia 2019).

The common problems of imperfect instrument calibration, arrival time estimation errors, and random
perturbance in the real imaging process of USCT cause uncertainties in the measurement data. These
uncertainties constitute a significant part of the simulation-to-real gap, and can pose a substantial source of
errors for neural networks that use simulation data for model training. However, few research works have
focused on this aspect of deep-learning-based USCT image reconstruction so far.

Deviations between simulation and measurement can be mitigated by making the simulation more accurate
relative to the real setup (system identification), performing a domain adaptation, and domain randomization
(Tobin etal 2017, Peng et al 2018). However, the system identification and calibration are expensive and error-
prone (Tobin et al 2017). Thus, one focus of our work is to develop domain adaptation and randomization
techniques for deep-learning-based USCT image reconstruction. In this paper, we do not attempt to improve
the imaging process from the hardware aspect or to improve a specific simulation algorithm. Instead, we
consider a common, realistic, and deep-learning-related scenario, where given the limited and imperfect
measurement data obtained from the real imaging process and imprecise system parameters, we aim to achieve a
decent data-driven image reconstruction with a neural network that is trained only on a simulation dataset
generated by an efficient simulation algorithm (in this paper we adopt Eikonal-equation-based fast marching
algorithm Hassouna and Farag 2007). In other words, we emphasize improving deep-learning methods’
simulation-to-real generalizability. To achieve this goal, we consider the process of developing a deep learning
model, and investigate three strategies in literature: simulation data generation, measurement domain
generalization, and neural network architecture.
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(1)In simulation data generation, a large dataset with image sources of high diversity is essential for training a
deep learning model with high generalizability (Jush et al 2022). In this study, we use image sources from the
ImageNet dataset to guarantee diversity. In contrast to increasing the diversity of datasets, there is a large
volume of research works in computer vision that tries to develop image style transfer techniques to create a
realistic dataset to the target image domain (Csurka 2017, Peng et al 2018, Yue et al 2019, Farahani et al 2021).
This strategy is also adopted in recent works on ray-casting ultrasound simulation (Feng et al 2021) and
seismic data simulation (Vitale et al 2020), where researchers try to improve the realism of simulation by
applying generative deep learning models in the image domain. The image style transfer allows reducing the
problem to a certain clinical application for a certain organ such as the human brain or lung, but may not
improve the generalizability of the image reconstruction for objects of any kind of structure. Since deep
learning methods are data-driven and the possible physical structure of real phantoms can be extremely
diverse, the diversity of data sources helps avoid overfitting and improve the generalizability of neural
networks from simulation data to real data (Jush et al 2022).

(2)For deep-learning-based end-to-end image reconstruction, the measurement data as input to neural
networks has a direct influence over the neural network parameters after training henceforth to the output.
Yet, few research works focus on this aspect. Meanwhile, in computer vision, data augmentation (Volpi et al
2018, Hendrycks etal 2019, Zeng et al 2020, Li et al 2021) and data preprocessing (Qiu and Qiu 2020, Haque
etal 2021) techniques are frequently used to improve the neural networks’ generalizability and robustness.
However, these techniques are all targeted toward the image domain. In the measurement domain, the
uncertainties in the real world due to imperfect calibration and random errors need to be considered. In this
paper, we focus on data augmentation strategies and deep-learning-based data preprocessing techniques for
measurement domain generalization.

(3) The architecture of neural networks can affect neural networks’ robustness (Devaguptapu et al 2021). It has
been shown that increasing the depth and the number of parameters can help improve the robustness (Madry
etal2017, Xie and Yuille 2019). However, it can lead to a higher computation burden of neural networks. In
this paper, we propose to develop a Fourier-transform-integrated neural network to help improve the
robustness and generalizability of the neural network without increasing the number of parameters.

The rest of the paper is organized as follows. We introduce the background of the reconstruction problem and
our method in the Materials and Methods section. In the Experiments and Results section, we describe the
experiment setting and show our experimental results on both simulation and real data. The further discussion
and final conclusion are in the Discussions section and the Conclusions section.

2. Materials and methods

2.1. Problem formulation and forward model

Our approach adopts ray-based wave propagation forward model for quick simulation data generation. The
acoustic wavefront propagation with inhomogeneous sound-speed distributions v can be modeled by Eikonal
equation (Hassouna and Farag 2007):

1
Vi = —, @
v(x)
where t € R is travel time, Vdenotes the gradient, || - || is the Euclidean norm, and v: {2 — R, represents the

sound speed at location x in the considered domain €. Based on this equation and the sound-speed distribution
vof the refractive medium, we trace rays across the medium efficiently by fast marching methods (FMM)
(Hassouna and Farag 2007), and get the ToF T, from wave sources e to receivers r.

As in a USCT imaging system, we consider the location of each sender-receiver pair to be fixed, generally, we
can denote the Eikonal-equation-based forward operatoras 7: X — Y,v+— Tiwithve X, Te V; X, YEH
(Hilbert Space). Thus the USCT reconstruction problem can be formulated as the minimization of the following
objective functional:

Jw) = [ Tv) = Tons |, @)

where T, is the observed travel time at receivers. In traditional iterative reconstruction algorithms, smoothness
regularization terms are often introduced to improve imaging quality. In this case, the objective function can be
rewritten as

J) = [|[Tv) — Topsl| + AR®), 3
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where A € R, is the regularization parameter, and the regularization functional R(-): X — R, canbe the
Laplace operator (Ali eral 2019), or, alternatively one could choose the Total Variation (Li et al 2013) for
smoothing the velocity field (Ozmen et al 2015).

In our fully learned approach, we aim at training a deep neural network to achieve a direct mapping from
observed measurements T, to the sound-speed distribution v, i.e. v = T 1(Typ,).

2.2. Fourier-transform-integrated convolutional neural network

Recent publications in computer vision have demonstrated that Fourier transform and frequency information
are useful for improving machine learning model’s robustness and domain adaptation (Yin et al 2019, Yang and
Soatto 2020). Yet, they are simply using Fourier transform as a data preprocesssing or post-processing method.
In this paper, we propose to integrate the Fourier transform directly between layers of neural network to
improve convolutional neural networks’ robustness and generalizability for image reconstruction. We present a
Fourier integrated convolutional neural network named as ‘split-step Fourier convolutional network’, i.e.
SSFnet by inserting the fast Fourier transform (FFT) layers into the residual layers of a U-shaped convolutional
neural network. As shown in figure 1(c), in the implementation, we separately insert the 2D FFT and inverse 2D
FFT in two positions of a residual neural network block, where only the real part of outputs of FFT and inverse
FFT are used in the following layers. Discrete cosine transform can be another option, which can give a similar
performance. Yet for efficient implementation, in this paper, we only use FFT to exploit the global frequency
information. Within the residual block, the skip connection between the frequency domain and the non-
frequency domain helps the neural network to combine information from both domains. In figure 1(b)-(c), N
represents the number of channels. Empirically, we set N = 256 for the reconstruction network and N = 128 for
the patch-wise preprocessing network.

The overall architecture of our neural network is shown in figure 1. The basic convolutional unitis a
convolution layer with a kernel size of 3 x 3 followed by PReLU activation function (He et al 2015, Zhao et al
2020). The down-sampling layer is implemented by changing the stride size to 2. We adopt the sub-pixel
convolutional unit (Shi et al 2016) for the up-sampling layer because of its efficiency. In general, the neural
network has three parts: the encoding part, the remapping part in the latent space, and the decoding part. The
encoding part uses multiple down-sampling layers to reduce the feature size, which allows the following
reconstruction to be realized more efficiently. The remapping part contains most of the parameters and achieves
the mapping between the measurement domain and the image domain. Finally, the decoding part up-samples
the remapped features and reconstructs the images. The number of parameters of the neural network in total is
about 27.1 x 10°. In the following parts of the paper, we denote the reconstruction neural network (ReconNN)
with FFT integrated as SSFnet, and the corresponding version without FFT as CNN.

2.3.Measurement data augmentation and preprocessing for simulation-to-real domain generalization
There are various factors that can lead to a gap between real data and simulation data. If considering water-only
measurement data, we can find that there is a difference between the estimated ToF t,, via ToF estimation based
on time series data, and the ToF calculated by ¢, = d/cwith d the distance between emitters and receivers, c the
speed of sound in water. This can be caused by various factors: random noise, the error in sensor positions, the
temperature change of the environment, and outliers by various anomalous causes.

In this paper, we apply specific data augmentation to improve the generalization of the neural network.
Considering the above-mentioned factors that affect the generalization of the neural network, we perform the
following data augmentation strategies.

(1)Random noise (RN): To improve the robustness to random noise, we add random Gaussian noise Ny, 02)
with variance o* and a mean value y that follows uniform distribution in the range of [—u,, u,]. Here all the
measurement data has been normalized to a range of [0, 1] beforehand. Both ¢ and u,, should be small because
heavy noise will result in a performance drop of neural networks. We empirically set o = 0.020, and
1,=0.035.

(2)Sensor position perturbance (SPP): To improve the robustness against the error of sensor geometry, we
further generate another dataset by adding random uniform noise to the sensor position in the range of [—uy,
up] mm. In practice, u;, should be close to the physical size of the transducer’s element pitch. In this study, the
target machine has d,;;, mm pitch. As we also consider the displacement error of transducers, we set a larger

sensor position perturbance with u;, = d,p, mm.

(3)Semi-random bias (RB): We also consider the calibration based on the water-only measurement data. We
add adjustbias 6t = (¢, — t,,) - a with ava uniform random variable in the range 0f [0.7, 1.3]. It should be
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Figure 1. The architecture of the proposed network. (a) The overall architecture of SSFnet (The version without FFT is denoted as
CNN); (b) The SSF-Recon-N block with N the number of channels; (c) The SSF-Res-N residual block (Replacing 2D FFT layers with
identical connections yields a plain residual block Res-N); (d) The preprocessing neural network PNN for outliers removal.

noted that we do not include the water-only measurement data into the training dataset directly. We only use
the water-only measurement for the data augmentation with RB.

(4)Besides data augmentation, data preprocessing is also a promising direction for improving the generalization
of neural networks. Inspired by the recent work in domain adaptation based on data reconstruction (Ghifary
etal2015), we try to use deep-learning-based preprocessing model to reconstruct the measurement data with
learned robust features and thus also help remove the outliers. On the other hand, recent research works in
computer vision also show that the random mask or pixel deletion training procedure helps improve neural
networks’ robustness against adversarial noise (Globerson and Roweis 2006, Naveed 2021, He et al 2022, Xu
etal2022). Based on the above consideration, in this paper, we design a patch-wise preprocessing neural
network (PNN) as shown in figure 1 (d). A self-supervised learning approach is applied based on random
pixel deletion (RPD), which can help the neural network give more focus on the global structure instead of
thelocal changes and thus help to learn robust features. Specifically, we first split the ToF measurement data I
into small patches of size 16 x 16, and then we randomly remove some areas by assigning null values to
relevant pixels and get Ixpp. We train the PNN to recover the area with self-supervised loss function
L, = |I — I|with I the output of PNN, and | - | thel, loss. After pretraining, the PNN is connected to the
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(@) (b) (©)

Figure 2. Measurement data acquisition from two different prototype machines. (a) The MUBI system (Ozmen et al 2015, Camacho
etal 2018, Perez-Liva et al 2020, Usct data 2022); (b) schematic superior View of the gelatin breast tissue-mimicking phantom; (c) The
KIT 3D USCT system (Ruiter et al 2012, 2017). Reproduced with permission from 2d CSIC/UCM USCT. The data is freely available
dual licensed under the 3-clause BSD-license and the “Open Data Commons Attribution License”, in accordance with the “Berlin
Declaration”.

reconstruction network by using the output of PNN as the input of the reconstruction network, and we
finetune the whole network for 6 epochs with combined loss function L. = 0.3 - Ly + 0.7 - L,, where

L, = |0 — Ois the reconstruction loss with O the ground truth image, and O the output of the
reconstruction network.

All considered neural networks are trained using Adam optimizer with a constant learning rate 1 x 10~ *and
batch size 16. The training has two stages: (1) Pretraining stage: PNN self-supervised training with RPD for 3
epochs; ReconNN training for 21 epochs (ReconNN). (2) Robust training stage: PNN-+ReconNN training with
the combinations of RN, RB, and SPP for N,;, epochs (ReconNN+PNN+RN+RB+-SPP), where considering
each training sample, we have a 70 percent chance that a data augmentation like RN or RB is applied. It should be
noted that all the parameters including the number of epochs are determined empirically. For different
machines with different geometric designs, the parameters need to be changed accordingly to achieve the best
performance.

2.4. Prototype machines

Our experiments consider two different prototype machines: the Multimodal Ultrasound Breast Imaging
(MUBI) system ( Medina-Valdés et al 2015, Ruiter et al 2017, Camacho et al 2018, Perez-Liva et al 2020) and the
KIT 3D USCT system (Ruiter et al 2012).

The MUBI system is shown in figure 2. The system performs circular scans by two 3.5 MHz and 128
elements moving arrays (0.22 mm pitch, P2-4/30EP, Prosonic, Korea). These arrays move around in a water
tank of 95 mm radius with an angular resolution of 0.1°. A total of 23 fan beams are obtained. For each fan beam,
the emitter array is fixed at a certain position around the circle, while the receiver moves around the tank circle to
receive wave signals at 11 different positions. For both emitter and receiver arrays, only 1 out of every 8 array
elements was used. In this way, we have 16 x 11 x 16 A-scans for each fan beam.

To estimate the ToF for each A-scan, we adopt the sliding-window-based arrival time estimation method as
in (Bao and Jia 2019). Since the waveform in water-only measurement data differs from the waveform in the
measurement data for gelatine phantom, we did not use the cross-correlation phase correction in the final step of
arrival time estimation. We set the size of the sliding window w = 40 empirically.

KIT 3D USCT II system has a semi-ellipsoidal 3D aperture with a diameter of 26 cm and a height of 16 cm.
Wavefronts are generated by each emitter at 2.5 MHz (bandwidth 1.5 MHz). The transducers (emitters or
receivers) have opening angles of 38.2 deg(standard deviation 1.5 deg). There are 628 emitters and 1413 receivers
in total, which are divided into 157 transducer array systems (TAS) with each TAS consisting of four emitters and
nine receivers. Virtual positions of the ultrasound transducers can be created by rotational and translational
movement of the complete sensor system. For the selected columnar gelatine phantom object, the
measurements for 10 different movements of the sensor systems are available. For 2D imaging experiments with
the columnar gelatine phantom, we select 24 TAS at the upper part of the 3D aperture that are approximately
arranged around a horizontal circle. Therefore, 96 emitter and 216 receivers are used.

We use the same arrival time estimation methods as the experiment with MUBI system. However, due to the
strong reflection waves observed, to eliminate their influence and to focus on transmission waves as much as
possible, we set the time range of interest (¢, £,) for the signal at receivers according to the distance dpz between a

pair of receiver and emitter. Since the average sound speed of breast tissue is in the range of (1400, 1700) m s~ v
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(d) (©)

Figure 3. The procedure of simulation data generation. (a) The source RGB image from ImageNet dataset, Reproduced with
permission from Image-net.org.; (b) The Y-channel luminance extracted from the RGB image, Adapted with permission from
Image-net.org; (c) The sound speed map generated based on the luminance image; (d) The ToF measurements generated by Eikonal-
equation-based forward operator.

we empirically set t, = dgg /1700, and t, = dgg /1400 + 400dt with dt = 5.0 x 10~® sthe sampling interval of
signal. The arrival time estimated based on water-only measurements is used for calibration. The final arrival
time estimation is the average of estimation results for measurements at all the 10 different movements.

2.5.Simulation data generation

To train our neural network to reconstruct the real measurement data from the prototype machines, we generate
simulation data with the same geometrical structure parameters as those of the corresponding prototype
machines. We adopt the ray-based forward model as described in section 2.1: Problem formulation and forward
model. We consider each used element in the emitter and receiver array as a single point.

The synthetic sound-speed maps used for our simulation are derived from natural images. We collect 49 998
natural RGB images from ImageNet dataset (Deng et al 2009) as source images for simulation, where 47 998
images are used for the training set, and 2000 images are for the validation set. The RGB color images from
ImageNet are converted to grayscale images with pixel value x € [0, 255] by extracting the Y-channel luminance.
To further enlarge the source images for the training set, we perform two augmentation operations: grayscale-
value reversing and 90-degree rotation, which ends up yielding 47 998 x 4 source images. We scale the source
images to a size of 128 x 128, and use a Gaussian filter of size 3 x 3 to smooth the source images, which are then
scaled toasize of H x W.

Ithas been suggested that in the breast, fat and some glands often have slower sound speed than water, while
blood, skin, and tumors often have higher sound speed values (Hendee and Ritenour 2003, Tissue properties—
speed of sound 2022). Thus, we split a natural image into six areas with different sound speed values accordingly.
Specifically, the pixel values of all the source images are scaled to a range of [0, 6]. For each source image, two
sound-speed values x; and x; in the range of [¢;, ¢,,] m - s~ and three other sound-speed values x4, x5 and x4 in
the range of [¢,,, cy] m - s~ ! are generated randomly following the uniform distribution in the respective range.
Wesetx; =, m-s ' assound speed in water. We assign sound speed x;inm - s to the image pixels in the
rangeof (i — 1,i/,i= 1, 2,...,6, and 0-value pixel has sound speed x; m - s L. Inthis way, we obtain a sound-speed
map for each source image. Let both the horizontal and vertical distance between adjacent pixels be d, m. We
consider a circle area of radius r = R m to be the region of interest (ROI) and the area outside of the ROl is
considered to be water. The ROl size is chosen based on both the radius of sensor arrangement and the size of the
phantom. Empirically, we chose the value between them but closer to the radius of the sensor arrangement.
Figure 3 shows an example of the whole procedure for generating simulation measurement data from natural
images.

For two different prototype machines, empirically, we set different parameters (as shown in table 1) to yield
optimal performance. According to the literature (Hendee and Ritenour 2003, Tissue properties—speed of
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Table 1. The parameter settings for two different prototype machines.

Machine H w Cy cr v d, R dpitch dspp Nirain
MUBI 417 417 1479.7 1430.0 1600.0 4.80 x 107 0.064 0.22 0.9 6
KIT3D USCTII 403 403 1483.0 1430.0 1600.0 7.20 x 107 0.120 NULL 1.4 21

sound 2022), we set the range of the sound speed in breast tissues as (1430.0, 1600.0) m s~ . It should be noted
that for KIT 3D USCT IJ, since it needs more epochs, to reduce the training time, we further scale down the size
ofimages to H = 256 and W = 256 as the target output of neural networks.

For testing purposes, two additional synthetic phantoms A and B are used. Phantom A contains regular
geometric patterns. Phantom B is based on a breast model derived from an MRI scan of a cancerous breast
containing cancerous tissue (Bakker et al 2009). Different tissues are assigned with different sound speeds.

3. Experiments and results

Two neural networks DeepPet (Haggstrom et al 2019) and mWnet (Zhao et al 2020) are included in our
experiments. Both of these two neural networks are originally designed for end-to-end fully learned image
reconstruction from measurement data, and have achieved decent performance for PET image reconstruction,
and paraxial-approximation-based ultrasound tomography image reconstruction. Since the mWnet is originally
designed for inputs of size ¢ x 128 x 128 with c the channel number, we do size adaptation by first padding the
border of the input measurement data of size 1 X m X ninto the size of 1 x (128ceil(1m/128)) x (128ceil(n/128))
with ceil(- ) the ceil function, and then reshape it into the size of (128ceil(11/128))(128ceil(n/128)) x 128 x 128.
The output size is scaled back to the target size via bilinear interpolation.

We compare deep learning methods with the TV-based iterative algorithm TVAL3 (Li et al 2013), which is
the state-of-the-art algorithm for ray-based USCT image reconstruction (Dapp 2013, Birk et al 2014). We set the
optimal parameters for TVAL3 by grid search, where the tests on the simulation dataset and real dataset use
different parameters for TVAL3’s optimal performance. The result of the finite-frequency method (Martiartu
et al 2020) on image reconstruction for the gelatin phantom with MUBI system is also considered for visual
comparison.

We implement all the compared deep learning methods with Pytorch and follow the same training routine as
described in the section of Measurement data augmentation and preprocessing for simulation-to-real domain
generalization. We use the root-mean-square error (RMSE) and structure similarity (SSIM) (Wang et al 2004) to
measure the imaging quality of algorithms. Compared with RMSE, SSIM is more consistent with the visual
perception of human eyes in general.

3.1. Ablation experiments on Fourier-transform-integrated neural network

To investigate the optimal use of Fourier transform in the network layers, we perform an ablation study on
different Fourier transform setups. Specifically, we have ‘Full’: Fourier transform is applied at all the four
residual blocks as shown in figure 1; ‘Forward only’: only forward Fourier transform is kept; ‘Inverse only’: only
inverse Fourier transform is kept; ‘Double forwards’: we replace the inverse Fourier transform as forward
transform; ‘P1’: from the left side, only the first SSF residual block is kept; ‘P1-2’: from the left side, only the first
two SSF residual blocks are kept; ‘P1-3’: from the left side, only the first three SSF residual blocks are kept. The
quantitative results are shown in table 2. And the visual results are shown in figures 4—6. On simulation data, ‘P1-
2’ and ‘Inverse only’ give the worst performance. However, on real measurement data, ‘P1-2’ gives the best
results visually, which implies that a good result on noise-free simulation data does not guarantee a good result
onreal data. In the following experiments, we test further the ‘Full’ (SSFnet v1) and ‘P1-2’ (SSFnet v2) setups to
see how other different simulation-to-real generalization strategies affect the neural networks’ performance.

3.2. Results on simulation data

The results on noise-free simulation test set are shown in figures S1-S2 for SSFnet v1 and figures S3-5S4 for SSFnet
v2 in the supplementary document. The corresponding quantitative results are shown in table 3. We see that the
proposed deep learning methods (SSFnet and CNN) have similar performance. All the deep learning methods
are significantly better than the TVAL3 method. Deep learning methods are able to learn deep priors from
natural image phantom data from ImageNet. This helps the neural networks achieve superior performance. The
best RMSE and SSIM results are obtained by RB, which is probably because RB is a relatively weak way to add
noise to the dataset and thus allows the neural network training converging faster than RN, SPP, and PNN

with RPD.
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Figure 4. The sound-speed image reconstruction results (m - s~ ') on noise-free simulation phantom A. The simulation configuration
is based on MUBLI. (a) Ground truth; (b) Full; (c) P1; (d) P1-2; (e) P1-3; (f) Forward only; (g) Inverse only; (h) Double forwards; (i)
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Figure 5. The sound-speed image reconstruction results (m - s~ ') on noise-free simulation phantom B. The simulation configuration

is based on MUBLI. (a) Ground truth; (b) Full; (c) P1; (d) P1-2; (e) P1-3; (f) Forward only; (g) Inverse only; (h) Double forwards; (i)
CNN.

(f)

Table 2. The RMSE and SSIM results on noise-free
simulation test images with Fourier transform setups. The
simulation configuration is based on MUBI. The SSIM
scores are shown in brackets.

Phantom A Phantom B
Full 5.258(0.9617) 4.712(0.9488)
Forward only 4.415(0.9586) 4.018(0.9581)
Inverse only 5.470(0.9506) 5.431(0.9386)
Double forwards 5.136(0.9541) 4.105(0.9550)
P1 4.286(0.9715) 4.569(0.9541)
P1-2 6.245(0.9456) 4.983(0.9470)
P1-3 4.334(0.9735) 4.561(0.9540)

The results on simulation test set with sensor position perturbation are shown in figures S5-S6 for SSFnet v1
and figures S7-S8 for SSFnet v2 in the supplementary document, where uniform noise in the range of [—1.8,
1.8] mm is added to sensor positions. The corresponding quantitative results are shown in table 4. It should be
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Figure 6. The sound-speed image reconstruction results (m - s ') on real measurement data with different Fourier transform setups.
The simulation configuration is based on MUBL. (a) Full; (b) P1; (c) P1-2; (d) P1-3; (e) Forward only; (f) Inverse only; (g) Double
forwards; (h) CNN.

Table 3. The RMSE and SSIM results on noise-free simulation test images with different algorithms and training strategies. The simulation
configuration is based on MUBI. The SSIM scores are shown in brackets. Bold font indicates the best results for each phantom.

Phantom A Phantom B
8.327(0.9179) 10.38(0.8143)
TVAL3
CNN SSFnetvl SSFEnetv2 CNN SSFnetvl SSFnetv2

Baseline 5.190(0.9607) 4.728(0.9658) 6.245(0.9456) 4.337(0.9519) 4.311(0.9531) 4.983(0.9470)
RN 5.295(0.9521) 5.016(0.9582) 5.681(0.9575) 4.127(0.9551) 4.750(0.9527) 5.542(0.9422)
RB 4.846(0.9590) 4.356(0.9732) 5.273(0.9606) 3.897(0.9560) 4.263(0.9564) 4.209(0.9572)
SPP 5.381(0.9516) 4.499(0.9648) 4.555(0.9701) 4.642(0.9481) 4.275(0.9531) 4.743(0.9478)
RN+RB+SPP 5.791(0.9539) 5.050(0.9523) 6.020(0.9547) 5.960(0.9234) 4.891(0.9481) 5.893(0.9320)
PNN 5.251(0.9559) 4.931(0.9568) 5.007(0.9635) 4.040(0.9539) 4.116(0.9570) 4.426(0.9540)
PNN+RN 5.948(0.9479) 5.648(0.9445) 6.012(0.9340) 5.198(0.9426) 4.657(0.9493) 5.640(0.9414)
PNN+RB 5.045(0.9649) 4.573(0.9659) 5.588(0.9570) 4.528(0.9504) 4.586(0.9506) 5.086(0.9474)
PNN+SPP 4.960(0.9606) 4.863(0.9557) 5.413(0.9657) 4.756(0.9493) 5.276(0.9435) 5.146(0.9456)
PNN+SPP+RN 6.087(0.9424) 5.620(0.9379) 6.538(0.9338) 5.777(0.9305) 5.596(0.9262) 6.239(0.9299)
PNN+SPP+RB 5.236(0.9463) 4.934(0.9578) 5.902(0.9546) 4.808(0.9501) 5.047(0.9488) 4.660(0.9502)

PNN-+SPP+RN+RB 5.883(0.9492) 5.657(0.9549) 6.216(0.9373) 6.265(0.9235) 5.622(0.9366) 6.242(0.9278)

noted that our SPP only uses uniform noise in a range of [—0.9, 0.9] mm, which is much smaller than that of the
test data. Yet, we see that SPP with small sensor position perturbation enables the neural network to handle
larger sensor perturbation significantly better.

The baseline SSFnet v2 is superior to both plain CNN and SSFnet v1 with respect to SSIM, which proves its
superior robustness versus other models. However, after adding data augmentation and preprocessing
strategies, the performance difference between the different neural networks is narrowed.

3.3. Efficiency comparison

The average runtime per image of TVAL3 on CPU Intel(R) Core(TM) i5-8400 CPU @ 2.80 GHz is about
15min51s. To compare the efficiency of the neural networks, the number of parameters and inference time on
GPU Nvidia RTX3090 are shown in table 5. Since our data augmentation techniques do not affect the
reconstruction time, we do not include them in the tables. We see that introducing Fourier transform in SSFnet
leads to a tiny increase in inference time. The computation burden by PNN is acceptable in general.
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Table 4. The RMSE and SSIM results on noisy simulation test images with different algorithms and training strategies. The simulation
configuration is based on MUBI. The SSIM scores are shown in brackets. Bold font indicates the best results for each phantom.

Phantom A Phantom B
1.230x 10 (0.2277) 6.337x10° (0.3092)
TVAL3
CNN SSFnet vl SSFnet v2 CNN SSFnet vl SSFnet v2

Baseline 38.99(0.6748) 35.65(0.6100) 39.93(0.7426) 46.57(0.6160) 35.47(0.5805) 38.66(0.6714)
RN 14.80(0.8281) 44.21(0.6847) 44.67(0.7009) 28.70(0.7164) 24.33(0.7011) 26.90(0.7023)
RB 32.48(0.6470) 42.41(0.4671) 93.84(0.5183) 39.69(0.6057) 46.08(0.4523) 85.26(0.5385)
SPP 10.91(0.9155) 5.507(0.9516) 4.947(0.9669) 6.847(0.8867) 6.344(0.9032) 5.997(0.9046)
RN-+RB-+SPP 12.09(0.9154) 5.851(0.9565) 6.922(0.9493) 9.985(0.8156) 6.972(0.8841) 7.357(0.9040)
PNN 56.46(0.6796) 75.34(0.6798) 61.85(0.6951) 50.22(0.6602) 61.52(0.6650) 54.37(0.6813)
PNN+RN 25.12(0.7985) 9.398(0.8973) 9.763(0.9131) 22.74(0.7373) 13.60(0.8172) 12.40(0.8405)
PNN+RB 42.22(0.6891) 47.26(0.7083) 39.23(0.7526) 40.56(0.6733) 36.41(0.6748) 35.83(0.6781)
PNN+SPP 7.769(0.9460) 5.320(0.9523) 6.423(0.9561) 7.121(0.8835) 4.934(0.9454) 7.118(0.8858)
PNN+SPP+RN 16.13(0.8831) 7.127(0.9380) 7.518(0.9458) 15.50(0.7305) 9.330(0.8367) 7.455(0.8884)
PNN+SPP+RB 6.753(0.9544) 5.363(0.9578) 7.002(0.9485) 6.115(0.9173) 5.583(0.9198) 7.269(0.8665)

PNN+SPP+RN+RB 24.60(0.8424) 6.345(0.9525) 7.637(0.9397) 14.98(0.7319) 6.956(0.8917) 8.632(0.8602)

Table 5. The efficiency comparison of different neural networks. The simulation configuration is based on MUBI.

DeepPet mWhnet CNN SSEnet PNN+CNN PNN+-SSFnet vl

Number of parameters (million) 11.0 113.6 27.1 27.1 31.2 31.2
Inference time for 2000 samples (s) 63 61 49 51 73 76

3.4.Results on real data

Figures S9 and S10 show the results of neural networks trained with different generalization techniques on real
measurement data from MUBI using the gelatin phantom shown in figure 2(b). We see TVAL3 has more blurred
results than our deep learning methods. Generally, for both SSFnet vl and SSFnet v2, both RN and RB alone can
help improve the results of neural networks slightly. SPP can significantly improve networks’ imaging
performance. The combination of RN, RB and SPP together leads to further improvement, and the white hollow
becomes clearer and more observable. Meanwhile, PNN can help remove outliers and reduce singular dots in
the reconstructed images. The combination of SSFnet+PNN+RN is able to give the smoothest results
compared to other combinations, but the white hollow area is less observable. Generally, SSFnet shows much
better imaging quality on real measurement data, especially in the cases without SPP, which demonstrates that
SSFnet has higher robustness and better generalizability than the SSFnet baseline, the plain CNN.

The comparison results of the state-of-the-art imaging methods on real measurement data from MUBI are
shown in figure 7. It is noted that among the results by neural networks, SSFnet vl combined with the proposed
PNN and data augmentation methods achieved the best results by using far less number of parameters than
mWnet. We also see that the low-sound-speed circle area in the result by the finite-frequency method is smaller
than the high-sound-speed circle area, which indicates that the refraction correction by the multiresolution
method may be incorrect. On the other hand, the results by TVAL3 and neural networks have a slightly larger
low-sound-speed circle area, which is consistent with each other and is probably because they share the same
arrival time estimation method.

Figure S11 in the supplementary document and figure 8 show the results on real measurement data from the
prototype machine KIT 3D USCT II using a columnar gelatin phantom (different from the phantom in
figure 2(b)). From the result by TVAL3, we see that a part of the edge of the columnar gelatin phantom is well
reconstructed. This is probably because of the strong reflection wave from the surface of the gelatine phantom
while the transmission wave is too weak to be detected. This could explain why the neural networks get terrible
results. However, with the proposed data augmentation (RN,RB, SPP) and preprocessing network (PNN), the
neural network is still able to catch some edge information.SSFnet v1+SPP and SSFnet v1+PNN give the best
results among the neural network models, which also proves that SSFnet has better generalizability than
plain CNN.
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Figure 7. The image reconstruction results (m - s ') of the state-of-the-art imaging methods on real measurement data from MUBL
(a) TVALS3; (b) Finite-frequency method; (c) DeepPet; (d) mWnet; (e) CNN; (f) SSFnet v1; (g) SSFnet v1+PNN-+RN; (h) SSFnet v1
+PNN+RN-+RB+SPP.

4. Discussions

4.1. The comparison with the state-of-the-art methods

In this work, we focus on improving neural networks’ generalization against uncertainties due to imperfect
system calibration and random errors in the imaging process of USCT. To our best knowledge, few works have
addressed this problem. In addition, we emphasize the measurement domain generalization instead of the
popular image domain generalization in computer vision. The techniques used in the image domain for data
augmentation and data preprocessing may not be suitable for measurement domain generalization due to the
difference between measurement data and image data. The characteristic of the targeted machine is a key aspect
to be considered. We believe our work paves a new research front for simulation-to-real generalization in the
measurement domain.

The state-of-the-art ray-based reconstruction algorithms that work on real datai.e. TVAL3 and the finite-
frequency method (Martiartu et al 2020) are considered for comparison with our deep learning scheme. Even
though the finite frequency method gives the clearest imaging result, it still shows a slight distortion with respect
to the geometric shape of the reconstruction phantom image. The difference between the results of finite
frequency method and TVAL3 is probably partly due to the different ways in which the measurement data are
preprocessed. When compared with TVAL3, the proposed deep-learning-based approach achieves superior
visual and quantitative performance on both simulation and real datasets. With robust training, we see that the
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Figure 8. The image reconstruction results (m - s~ !y on real measurement data from KIT 3D USCT IL. (a) TVALS3; (b) DeepPet; (c)
mWnet; (d) CNN; (e) SSFnet v1; (f) SSFnet v1+-SPP; (g) SSFnet v1+PNN; (h) SSFnet vI+PNN+RN+RB-+SPP.

neural networks gain superior robustness to perturbance of sensor position. However, as a black-box model, the
deep learning network itself lacks interpretability and the risk exists that unexpected artifacts may happen on
measurement data with a certain adversarial noise. Adversarial defense is a promising direction to mitigate this
issue. In addition, for a certain deep learning model, once trained, it can only apply to the machine of the same
geometry and setup, which shows a lack of flexibility. A more flexible deep learning approach can be a future
research direction.

4.2. Therole of FFT in neural network layers

The ablation study on positions of FFT layers shows that putting more FFT layers close to the encoder side (the
left side in figure 1) is beneficial to the generalization on real data. As we know the left side focuses on dealing
with the measurement domain data, and transforming from the measurement domain to the image domain
requires a global view of input data. FFT itself is essentially a form of convolution with global kernel size and thus
is helpful in handling the mapping from measurement domain to image domain. In other words, FFT provides
global frequency information that helps capture the useful global pattern in the feature map encoded from
measurement data. This probably explains the superior performance of integrating FFT into the neural
networks.
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4.3. The role of different simulation-to-real generalization strategies

Our experiments show that both RN and RB are helpful in improving the neural networks’ robustness. SPP gives
the most significant improvement of neural networks’ robustness to sensor displacement error. The
combination of RN, RB and SPP can improve the robustness further, yet make it more difficult for convergence
during the network training on the simulation dataset, which leads to a decrease in imaging quality on noise-free
data quantitatively. In this case, SSFnet shows a much better performance than plain CNN. PNN can help
remove outliers in the measurement data, and its combination with RN gives a highly smoothed result on real
measurement data.

We observe that RN and RB can sometimes improve neural networks’ performance on noise-free data. A
similar phenomenon has been observed in other applications (Audhkhasi et al 2016), where suitable noise
addition is helpful for performance improvement. On the other hand, heavy noise reduces their quantitative
performance on noisy simulation data. However, it improves its visual performance on real data. It is because
heavy noise sacrifices the prediction accuracy of the neural networks and, at the same time, allows the model to
be more robust to handle the simulation-to-real gap.

The embedding of FFT into neural network layers greatly improves neural networks’ performance on both
simulated noisy data and real data. However, when we add more generalization training strategies (including
data augmentation and preprocessing techniques), the performance difference between different neural
networks is reduced. It is observed that a combination of improvements in both architecture and training
strategies helps yield the best results on real data.

4.4. The limitations and future work

The ray-based approach requires a good estimation of ToF. In this paper, we adopt the ToF estimation methods
proposed in (Bao and Jia 2019). We also note that recently there have been deep-learning-based ToF estimation
methods being proposed, which claim to have superior performance to traditional methods. However, the
robustness and generalizability of this deep learning approach remain to be tested and evaluated, which is
beyond the focus of our paper. We hereby safely take the state-of-the-art traditional ToF estimation method we
have for experiments.

Another limitation of this work is that we only test the real dataset for two different prototype machines with
two different tissue-mimicking phantoms. In the future, we will test our methods on more machines with
different geometric designs and more complex phantoms, which will also include 3D USCT image
reconstruction.

5. Conclusions

In this paper, we present a deep learning scheme for fully learned USCT image reconstruction with real data. We
show that integrating Fourier transform into a neural network helps achieve better robustness and
generalizability. We develop and evaluate a series of simulation-to-real measurement data augmentation and
preprocessing strategies on both simulation and real measurement data. Our approach can consistently improve
the neural networks’ performance on real data, and achieve a decent performance when compared to the state-
of-the-art ray-based reconstruction algorithm.
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