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Abstract. We propose alternatives to Bayesian prior distributions that are

frequently used in the study of inverse problems. Our aim is to construct

priors that have similar good edge-preserving properties as total variation or
Mumford-Shah priors but correspond to well-defined infinite-dimensional ran-

dom variables, and can be approximated by finite-dimensional random vari-

ables. We introduce a new wavelet-based model, where the non-zero coeffi-
cients are chosen in a systematic way so that prior draws have certain fractal

behaviour. We show that realisations of this new prior take values in Besov
spaces and have singularities only on a small set τ with a certain Hausdorff

dimension. We also introduce an efficient algorithm for calculating the MAP

estimator, arising from the the new prior, in the denoising problem.

1. Introduction. Inverse problems arise from the need to extract information from
indirect measurements. They are typically ill-posed, meaning that algorithmic re-
covery of information is sensitive to noise and modelling errors. Robust reconstruc-
tion methods are based on combining the measurement data with a priori knowledge
about the unknown target. Formulating a priori knowledge mathematically is a core
challenge in inverse problems research. Popular models for a priori information pro-
mote global smoothness, piecewise regularity, or sparsity in a given or learned basis
or a more general collection of building blocks. They can be implemented using vari-
ational regularisation, providing a stable solution but little information about its
uncertainties. Bayesian inversion offers an attractive alternative by also delivering
information on how uncertainties in the data or model affect the point estimates.

Practical measurements are always finite and corrupted by noise, which can in
many cases be reasonably modelled using independent Gaussian random variables.
This gives rise to a discrete measurement model of the form

Mi = (Af)i + wi, i = 1, . . . , n, wi
iid∼ N (0, 1), (1)

where A describes the forward process. Computational solutions of the inverse
problem require also a finite approximate model for the unknown f . It is advisable
to design the models for f and for the noise in a discretisation-invariant way [26, 32,
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34, 33]. One way to achieve this is to build a continuous model which is discretised
as late as possible in the analysis and solution procedure [18, 46]. In this paper we
consider the case where A : H1 → H2 is a linear operator between Banach spaces
H1 and H2, and assume the continuous equivalent model (in the sense of [5, 43])

M = Af + εW, (2)

where W is a Gaussian white noise process indexed by H2.
Fractals have many applications in science since they often describe the real world

better than traditional mathematical models. As Mandelbrot noted,“Clouds are not
spheres, mountains are not cones, coastlines are not circles, and bark is not smooth,
nor does lightning travel in a straight line.” Fractal geometry and analysis of fractal
dimension is a powerful tool that has been used to study turbulent mixing flows
and atmospheric turbulence [21, 44], evaluate the risk of a patient developing cancer
and predict tumour malignancy [37, 14, 6], screening for osteopenia [3], recognising
Alzheimer’s disease patients from magnetoencephalogram recordings [25], and in
study of macular diseases [47].

We will next give a few examples of measurement models like (2) arising in
practical applications where the unknown quantity has fractal properties. In each
case we encounter a function f that has singular support on a fractal set τ . We
emphasise that we mostly consider random fractals: sets produced by a random
process whose (Hausdorff) dimension is not an integer.

As a one-dimensional example we consider functions f : [0, 1]→ R whose graphs
have fractal properties or whose smoothness changes on a fractal set. Such functions
appear, for example, in medicine (heart rate, stride, and breathing variability)
[52] and financial data (local volatility models for asset prices where the volatility
changes when the price drops below a threshold value) [38, 39, 36, 42]. Here the
formula (2) can model e.g. interpolation or extrapolation problems. An example
of two-dimensional problems of the form (2) are digital image processing tasks
such as deblurring, inpainting and denoising an image f : [0, 1]2 → R. If the
underlying picture is a photograph containing clouds, coastlines or skylines with
forest or mountains, some interfaces between image areas are fractals. See Figure
1 (a). X-ray tomography is a good example of a three-dimensional inverse problem
that fits to our model. There, one records several two-dimensional X-ray images
of a patient along different directions of projection. The goal is to reconstruct the
X-ray attenuation coefficient f : [0, 1]3 → R from these images, where each pixel
is considered as a line integral of f along a ray. The structure of human lungs is
known to be fractal [52], so our new model may be useful for lung tomography. See
Figure 1 (b).

Most of the theory for infinite-dimensional Bayesian inverse problems focuses on
the case were the unknown is assumed to follow a Gaussian prior. Gaussian inverse
problems benefit from fast computational properties, but in many signal and image
reconstruction problems the detection of edges and interfaces is crucial. In those
cases basic Gaussian priors are not optimal. One way of circumventing the issue is
to use hierarchical Gaussian models as in [7, 8]. Closely related to this paper are
the hierarchical models whose maximum a posteriori (MAP) estimate converges to
a minimiser of the Mumford-Shah functional [27, 28].

We follow the idea of using wavelet-based Besov priors introduced in [33] and
further studied in [16]. Consistency of such priors has been considered in [2, 2, 24].
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Figure 1. (a) Photograph featuring fractal-like structures such as
boundaries of clouds. (b) The three-dimensional structure of hu-
man lungs follows a self-similar rule leading to a fractal dimension.
Also shown is an X-ray tomography slice of lungs. Images courtesy
of Wikimedia Commons.

These priors are especially useful since smooth functions with few local irregulari-
ties have a sparser expansion in the wavelet basis than, e.g., in the Fourier basis. If
the unknown is assumed to be sparse in some basis, using a prior that encourages
this sparsity results in a more efficient finite-dimensional approximation of the so-
lution. Methods for recovering finite-dimensional estimates of the unknown based
on wavelet bases are broadly studied in image and signal processing, and statistical
literature, see e.g. [1, 13, 20, 22]. Priors based on small trees and structured wavelet
shrinkage have also been used in density estimation, see e.g. [9, 12, 11, 10].

We assign a prior probability measure Π to f . The full solution to the Bayesian
inverse problem is the posterior distribution; i.e. conditional distribution of f for
a given realization of data. The mean or mode of the posterior can be used as
a point estimator. A popular method for achieving edge-preserving solutions in
image analysis is to employ the so-called total variation prior and use the mode of
the posterior as a point estimate. In practice this means solving the minimisation
problem

min
f∈H

{
‖Af −M‖2L2 + β‖∇f‖L1

}
, (3)

where H is a finite-dimensional subspace of piece-wise smooth functions and A :
L2 → L2 is a continuous operator. Despite active research in this area, no natural
infinite dimensional models have been found that would have (3) as a MAP estimate.
In other words, the widely used formal prior

π(f) ∝
formally

exp(−β‖∇f‖L1) (4)

is not known to correspond to any well-defined random variable. It is also known
that the usual discrete total variation priors can converge to Gaussian smoothness
priors as the discretization is refined, see [34].

The idea presented in [33] is to replace formula (4) by a well-defined prior

π(f) ∝
formally

exp(−‖∇f‖pB0
pp

),

where the Besov spaces B0
pp are closely related to Lp spaces. Hence the Besov

B0
11-priors have similar properties to total variation prior, but correspond to well-

defined infinite-dimensional random variables. The construction of the Besov prior
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is done using the Karhunen-Loève expansion and can hence be approximated with
finite-dimensional random variables.

We introduce a new wavelet-based computational model for a priori information
about the fractal dimension of the edges of the unknown target. We will build on
the idea from [33] but choose the non-zero wavelet coefficients in the Karhunen-
Loève expansion in a systematic way, so that the resulting priors have a certain
fractal dimension. This is done by introducing a new random variable T that takes
values in the space of ‘trees’. The trees are chosen so that the realisations f have
singularities only on a small set. This opens up new possibilities in medical imaging
and signal processing. Our new model allows rigorous analysis in the Bayesian
inversion framework. Also, we present an efficient algorithm for the computation
of MAP estimates for two- and three-dimensional denoising problems. The exact
construction of the prior can be found in Section 3.

The rest of the paper is organised as follows. In Section 2 we introduce our
Besov space setting for constructing the priors. We then define the new random-tree
Besov priors and formulate the main results of the paper in Section 3. Section 4 is
dedicated for the denoising examples and constructing an algorithm for calculating
MAP estimators.

2. Priors in Besov-spaces.

2.1. Gaussian inverse problems. We start by motivating the use of Besov priors
by first considering the standard Gaussian prior. Let H1 is a Banach space, and let
f be a H1-valued random variable following a Gaussian distribution µ. We denote
by W the Gaussian white noise proces. For simplicity, we assume that Ef = 0
and denote by Cf and Cw the covariance operators of f and W, respectively. If
the forward operator A : H1 → H2 is assumed to be linear, then the posterior
distribution µ(· |M) is also Gaussian. It follows that the conditional mean estimate
for the Bayesian inverse problem (2) coincides with the MAP estimate (under mild
assumptions on A, see e.g. [17]) and is given by

fMAP = (A∗C−1
w A+ C−1

f )−1A∗C−1
w M, (5)

where A∗ : H2 → H1 is the adjoint of A (see e.g. [35]).
Example 1. Here we consider a stereotype of a 1-dimensional linear Bayesian
inverse problem. We use an a priori model that f is a Brownian bridge on the
interval (0, π). Assume that H1 = L2(0, π) with the usual inner product 〈· , ·〉.
Choose the basis ej(x) = 1

2 sin(jx). Let AN = {f ∈ H1 : aj < 〈f, ej〉 < bj , j =
1, 2, . . . , N} be a cylinder and define µ by setting

µ(f : (〈f, ej〉)Nj=1 ∈ AN}) = cN

∫ b1

a1

· · ·
∫ bN

aN

N∏
j=1

e−λ
−1
j t2j/2dt1 . . . dtN , (6)

where cN are normalisation constants and λj = j−2. We see that f has a rep-

resentation f =
∑∞
j=1 λ

−1/2
j fjej , where fj are independent normalised Gaussian

variables. Furthermore, f has the covariance operator Cf defined by

〈Cfφ, ψ〉 = E (〈φ, f〉〈f, ψ〉), (7)

where φ, ψ ∈ L2(0, π), which can easily be seen to be

Cfφ =

∞∑
j=1

λj〈φ, ej〉ej . (8)
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Now, if we consider the Dirichlet Laplacian, that is, the operator −∆ = − d2

dx2

defined in the domain D(−∆) = H2(0, π)∩H1
0 (0, π), we see that ej are the complete

system of orthonormal eigenvectors of −∆ corresponding to eigenvalues λ−1
j . Thus

we see from (8) that the covariance operator C coincides with −∆−1. In applica-
tions, the distribution (6) is (non-rigorously) expressed by saying that f has the
probability density function

πf (f) = ce−〈f,∆f〉/2, f ∈ L2(0, π) (9)

where c is a normalisation constant. This notation becomes rigorous if we discretise
the system, that is, consider N + 1-dimensional vector (f(0), f(π/N), . . . , f(π))
and approximate −∆ with the finite difference operator [31]. When A : L2(0, π)→
L2(0, 1) is a bounded linear operator, and W is normalised Gaussian white noise
on the interval (0, 1), then the conditional mean estimate for inverse problem (2) is
fMAP = (A∗A− 1

2∆)−1A∗m, in accordance with (5). Here m is the given measure-
ment.

2.2. Sobolev and Besov spaces. Our aim is to combine the fast computational
properties of the Gaussian inverse problems with the good edge-preserving proper-
ties of some non-Gaussian variables, in particular those generated by assuming a
total variation prior. Analogously to (4) we would like to use the prior

π(f) ∝
formally

exp(−‖∇f‖pLp), p ≥ 1.

As this is not a well-defined object for general p, we will replace it by

π(f) ∝
formally

exp(−‖∇f‖pB0
pp

)

or more generally by

π(f) ∝
formally

exp(−‖f‖pBspp),

where the Besov space B0
pp has many similar properties to Lp as we see below.

In this section we recall the Besov spaces Bspq(Rd), 1 ≤ p, q <∞ and s ∈ R, and

the closely related Sobolev spaces W s,p(Rd) (see e.g. [50] for general theory). Let F
denote the Fourier transform and S ′(Rd) the space of tempered generalised functions
(also called tempered distributions). The Sobolev spaces on Rd for p ∈ (1,∞) and
s ∈ R are defined as

W s,p(Rd) = {f ∈ S ′(Rd) : F−1
(
(1 + | · |2)

s
2Ff

)
∈ Lp(Rd)}

with norm

‖f‖W s,p(Rd) :=
∥∥F−1

(
(1 + | · |2)

s
2Ff

)∥∥
Lp(Rd)

.

For s ∈ N the above definition is equivalent to having derivatives of f of order
at most s, defined in the distributional sense, in Lp. This second definition can be
used to consider also the Lebegue exponent p = 1. For example, W 1,1(Rd) consist
of functions that together with their first derivatives lie in L1(Rn).

The Besov spaces are slightly more complicated. One possible way to define
them is to use Fourier multipliers, that is, frequency band filters in the Fourier
space. First, let φ0 ∈ C∞0 (Rd) be a function for which

supp(φ0) ⊂
{
ξ ∈ Rd : |ξ| ≤ 3/2

}
, φ0(ξ) = 1 if |ξ| ≤ 1.
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We can then define

φj(ξ) = φ0

(
2−jξ

)
− φ0

(
2−j+1ξ

)
, ξ ∈ Rd, j ≥ 1,

and note that

supp(φj) ⊂
{
ξ ∈ Rd : 2j−1 ≤ |ξ| ≤ 2j+1

}
and

∞∑
j=0

φj(ξ) = 1 if ξ ∈ Rd,

that is, φj is a partition of unity. We define the Fourier multipliers Fj : S ′(Rd) →
S ′(Rd) as,

Fjf = F−1(φj(·)Ff).

The Besov space is the collection of all f ∈ S ′ such that

‖f‖Bspq(Rd) =

 ∞∑
j=0

2sjq‖Fjf‖qLp(Rd)

1/q

<∞. (10)

Below, we denote ‖f‖1 ≈ ‖f‖2 when c1‖f‖1 ≤ ‖f‖2 ≤ c2‖f‖1 with some c1, c2 >
0. In particular, we are interested in B1

1 1(Rd) having norm

‖f‖B1
1 1(Rd) ≈ ‖f‖B0

1 1(Rd) + ‖∇f‖B0
1 1(Rd) ≈ ‖f‖B0

1 1(Rd) +

∞∑
j=0

‖∇(Fjf)‖L1(Rd), (11)

(see the first theorem in [48, Section 2.3.8]) as the space B1
1 1(Rd) is relatively close

to space of functions of bounded variations that satisfy ‖∇f‖L1 <∞. For example,
it is not difficult to show that (locally) all the functions xα+ belong to B1

1 1(R) for
any α > 0. Formula (11) also implies that

‖f‖B1
1 1(Rd) ≈ ‖f‖B0

1 1(Rd) + ‖∇f‖B0
1 1(Rd) (12)

≈
∞∑
j=0

‖Fjf‖L1(Rd) +

∞∑
j=0

‖∇(Fjf)‖L1(Rd) ≈
∞∑
j=0

‖Fjf‖W 1,1(Rd).

This means that if a function f : R → R is written as a sum its frequency
band filtered components Fjf , that is, f =

∑∞
j=0 Fjf , then f is in the Besov space

B1
1 1(Rd) if and only if the frequency band filtered components Fjf are in W 1,1(R)

and the sum of the Sobolev norms of the components,
∑∞
j=0 ‖Fjf‖W 1,1(Rd), is finite.

Thus B1
1 1(R) almost contains functions having Heaviside-type jump singularities.

Let us digress for a slightly more careful comparision of the B1
1 1-norm and the

W 1,1-norm. As f =
∑∞
j=0 Fjf , formula (12) implies that ‖f‖W 1,1(Rd) ≤ ‖f‖B1

1 1(Rd)

which implies the embedding B1
1 1(Rd) ⊂ W 1,1(Rd). On the other hand, [51, (7.3)]

verifies that compactly supported signed Borel messures belong to B0
1∞, and a

constant times their total variation norm gives an upper bound for the Besov norm.
By combining this with [48, 2.3.8] we deduce that W 1,1(Rd) ⊂ B1

1∞. Moreover,
by using Hölders inequality and formula (10), we see that for any ε > 0 we have
B1

1∞(Rd) ⊂ B1−ε
1 1 (Rd). The embedding W 1,1(Rd) ⊂ B1−ε

1 1 (Rd) follows from these.
Thus the spaces B1

1 1 and W 1,1 are rather close to each other since an arbitrarily
small drop of smoothness changes the direction of the inclusion of one space into
other:

B1
1 1(Rd) ⊂W 1,1

loc (Rd) ⊂ B1−ε
1 1 (Rd), for all ε > 0.

We finally mention that Besov norm for p > 1 can also be defined equivalently
via suitable integrals of finite differences of the function f , see e.g. [49, p.8].
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2.3. Random variables with values in Besov spaces. In this paper we will use
the wavelet representation of Besov norms in dimension d ≥ 1. For this, we recall
that for any integer r ≥ 1 there exist compactly supported Cr functions φ and Ψ`

(` = 1, . . . , 2d − 1) which generate wavelets suitable for multi-resolution analysis of
smoothness Cr. More specifically, if we denote

ψ`jk(x) = 2jd/2Ψ`(2jx− k), k ∈ Zd, j ≥ 0, ` ∈ L := {1, . . . , 2d − 1},

φk(x) = φ(x− k), k ∈ Zd,

we can write any function f ∈ L2(Rd) using the wavelet representation

f(x) =
∑
k∈Zd
〈f, φk〉φk(x) +

∑
j≥0, k∈Zd

`∈L

〈f, ψ`jk〉ψ`jk(x)

=
∑
k∈Zd

f−1kφk(x) +
∑

j≥0, k∈Zd
`∈L

f `jkψ
`
jk(x).

Especially, Daubechies wavelets with vanishing moments up to order N − 1 ∈ N
are suitable for r-regular multi-resolution analysis if r < 0.1936(N−1). Daubechies
wavelets φ,Ψ` (` = 1, . . . , 2d − 1) of order N are supported in the cube [−L,L]d,
where we have L := 2N − 1. For more details about wavelets see [19, 41].

Note that for 1D signals ` = 1 and the wavelet coefficients are naturally organised
in a binary tree. However, for 2D image data ` ∈ {1, 2, 3} and the corresponding
data structure consists of three parallel quadtrees, since the vertical, horizontal
and diagonal subbands each have their own tree. We take the simplified approach
of using only one logical tree where value 0 means that all subbands have a zero
coefficient at that location, and value 1 means that all subbands are allowed to
have a nonzero coefficient on that node. It is an interesting avenue for further
investigations to consider separate trees and to generalise to more steerable frames
than orthonormal wavelets, but such discussions are outside the scope of this paper.

We have the following equivalent representation to the Besov norm (10) in case
p = q

‖f‖Bspp(Rd) '

 ∞∑
j=−1

2jp
(
s+ d

2−
d
p

)
‖fj‖p`p

1/p

, (13)

where

fj = (f `jk)k∈Zd, `∈L with ‖fj‖`p =

 ∑
k∈Zd, `∈L

|f `jk|p
1/p

if j ≥ 0, and

f−1 = (f−1k)k∈Zd with ‖f−1‖`p =

∑
k∈Zd

|f−1k|p
1/p

.

We may re-enumerate the full set of indices of our wavelets

{(−1, k)k∈Zd} ∪ {(`, j, k)`∈L, j∈N, k∈Zd}

as {(`(l), j(l), k(l)) : l ∈ N} (if j(l) = −1 we may set set k(l) = −1 and interpret
(−1,−1, k) = (−1, k)). In the case p = q we have the following trivial but essential
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consequence of (13) which states that considering random Besov-space valued vari-
ables is abstractly equivalent to considering random variables in a weighted `p-space
(or via another trivial isomorphism, in a non-weighted `p-space).

Proposition 2.1. Besov space Bspp(Rd) is isomorphic to the weighted `p space

`pv = {(al)∞l=1 : ‖(al)‖p`pv =

∞∑
l=1

|vlal|p <∞}

where v = (v1, v2, . . . ),

vl = 2j(l)
(
s+ d

2−
d
p

)
. (14)

The isomorphism is given by

(al) 7→
∞∑
l=1

alψ
`(l)
j(l),k(l).

For simplicity we will mainly consider the behaviour of random functions on the
unit cube D = [0, 1]d. Hence, while defining random functions via the wavelet
decompositions we may well set f `jk = 0 if k = (k1, . . . , kd) and |kl| > L2j − 1 for
some l = 1, . . . , d. Because of this, we call the remaining set of indices of possibly
nonzero wavelet coefficients the entire tree, which is given by

T = {(j, k) ∈ N× Zd , j ≥ 0, k = (k1, . . . , kd), |kl| ≤ L2j − 1}

Note that we consider the same tree for all ` ∈ L.
We emphasize that in our theoretical results on the behaviour of the Besov prior

we aim for modelling the generic local behaviour of the prior, which in our setup
takes place in the interior of the unit cube D = [0, 1]d. One may of course fine-tune
the definition of the prior suitably in connection with different boundary condi-
tions, and study its behaviour also near the boundary, but since this is generally
application-specific we do not consider it in this paper.

Next we introduce random variables in Besov spaces, or equivalently in `pv. The
generated measures are similar to the p-exponential measures whose consistency
has been studied in [2].

Definition 2.2. Let {ψ`jk}`∈L, j∈N, k∈Zd be an r-regular wavelet basis for L2(Rd).
Let (X`

jk)(j,k)∈T be an i.i.d. sequence of real random variables with probability

density function π(x) ∝ exp(− 1
2κp |x|

p), 1 ≤ p < ∞, in which case we denote

X`
jk ∼ Np(0, κp). Let the random function f be defined as

f(x) =
∑

(j,k)∈T
`∈L

hjX
`
j,kψ

`
j,k(x), x ∈ D,

where hj = 2−j
(
s+ d

2−
d
p

)
, s < r, are deterministic constants. In light of (13) we call

f a Bspp-random variable.

We note that random variables defined in Definition 2.2 take values in Besov
spaces Btpp, with t < s − d

p , a.s. and a realisation f takes values in the space

B
s−d/p
pp only with probability zero. This follows directly from Theorem 3.3 below

with γ = d. The space Bspp plays a role similar to the Cameron-Martin space for

Gaussian processes. Informally, f has density proportional to exp(− 1
2κp ‖f‖

p
Bspp

),
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see [2, 33, 16]. If p = 2, we obtain a Gaussian measure with Cameron-Martin space
Bs22 = Hs. If p = 1, then f is a semi-Laplace random variable, by which we mean
that f is a hierarchical random variable which is determined in the last stage as a
Laplace random variable.

3. Generalisation to random functions having singularities on random
fractals. In applications the strength of wavelets often appears in the fact that if
a large portion of small wavelet coefficients of a given function are replaced by zero,
the new function corresponding to these truncated wavelet coefficients approximates
well the original function. In particular, the singularities of the original function are
often preserved. Because of this we consider a model where a large part of wavelet
coefficients are assumed to be zero. This idea has been previously studied e.g. by
[1, 15, 29, 45] but here we emphasise the singularities by choosing the non-zero
wavelet coefficients in a systematic way.

We will consider the following set of subtrees of T:

Γ = {T ⊂ T | if (j, k) ∈ T and j ≥ 1 then (j − 1, [k/2]) ∈ T}

where [k/2] = ([k1/2], . . . , [kd/2]) is the vector which elements are the integer parts
of kl/2. We call Γ the set of proper subtrees. The above definition means that if
some node is in the tree Γ, then all of its ancestor nodes also belong to the tree.
That is, all the branches are connected to the root node, see right hand side of
Figure 2.

Figure 2. On the left: all the nodes where tj,k < β, with tj,k ∼
U [0, 1] and β ∈ [0, 1]. On the right: the proper subtree where only
nodes with direct connection to the root node are included.

Definition 3.1. Let {ψ`jk}`∈L,j∈N, k∈Zd be an r-regular wavelet basis for L2(Rd),
and β = 2γ−d with some γ ∈ (−∞, d ]. Consider pairs (X`, T ) where X` is an
RT-valued random variable, and T ∈ Γ is a random tree. We assume that X and
T are independent random variables, having the following distributions

• The sequence X` consists i.i.d X`
jk ∼ Np(0, κp), with probability density pro-

portional to exp(− 1
2κp |x|

p), κ > 0 and 1 ≤ p <∞.
• A proper subtree T is build recursively by choosing at each level new nodes

into the tree with probability β. More precisely, T is determined with the
following rule: We assume that the root node is always chosen. For the rest
of the levels; When for a given level j all nodes (j, k) in the tree T are chosen
we can move to level j+ 1. First draw tj+1,l ∼ U([0, 1]). The node (j+ 1, l) is
chosen to be in the tree T if and only if its parent is in the tree and tj+1,l < β.
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Let f be the random function

f(x) =
∑

(j,k)∈T
`∈L

hjX
`
j,kψ

`
j,k(x), x ∈ D,

where hj = 2−j
(
s+ d

2−
d
p

)
, s < r, are deterministic constants. We say that f is a

Bspp-random variable with stochastic fractality index β.

We call β stochastic fractality index since, with certain positive probability, the
Hausdorff dimension of the singular support of the random function f turns out
to be log2(β) + d, see Corollary 3.4. Notice that every node can have at most 2d

children in the tree T . This means that if we choose new nodes to T with probability
β < 2−d the recursion will stop at some point with probability one resulting in a
finite tree. A random function f created using a finite tree has the same regularity
as the wavelet basis.

Note that for a single (`, j, k) the random variable X`
j,k ∼ µ = Np(0, κp) has

probability distribution

X`
jk ∼ Pjµ+ (1− Pj)δ0,

i.e. it vanishes with a probability 1− Pj (compare this with [1]).
Next we will employ theory of random fractals based on[23]. Let us consider

dyadic cubes

Qj,k = {y ∈ [0, 1]d : [jy] = k}.

For the random variable T we define a random fractal (a set-valued random
variable)

τ =

∞⋂
j=1

⋃
k∈Rj

Qj,k

where Rj = {k : (j, k) ∈ T} is set of level j elements in the random tree T .
We are interested in the behaviour of random draws f from the random tree

Besov prior and will show that the random fractal τ coincides with the r-singular
support of f . The r-singular support of f is the complement of the largest open set
on which f is r-smooth. We will also study the fractal dimension of the r-singular
support of f . For this we recall the definition of the Hausdorff outer measure and
Hausdorff dimension. Let η ≥ 0, δ > 0, and A be any subset of Rd. We define the
η-dimensional Hausdorff outer measure as

Hη(A) = lim
δ→0

inf

{ ∞∑
i=1

(diam (Ui))
η

: A ⊂ ∪∞i=1Ui, 0 < diam (Ui) ≤ δ

}
.

The Hausdorff dimension of A is then given by

dimH(A) = inf {η ≥ 0 : Hη(A) = 0} .
For a smooth shape or a shape with few corners, e.g., smooth curve or cube the

Hausdorff dimension is an integer agreeing with the topological dimension. Certain
irregular objects like fractals have non-integer Hausdorff dimension which describes
their roughness. For example, Cantor set, which can be built by removing the
central third of a line segment at each iteration creating a nowhere dense and non-
countable set, has Hausdorff dimension log3(2) ≈ 0.63. The Weierstrass function,
which is an example of an everywhere continuous but nowhere differential function,
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has Hausdorff dimension 1.5. It is also possible to construct space filling curves
whose Hausdorff dimension equals to 2, see Figure 3.

Figure 3. From left to right; Weierstrass function with Hausdorff
dimension 1.5, sixth iteration of the space filling Hilbert curve with
Hausdorff dimension 2, and Menger sponge with Hausdorff dimen-
sion log3(20) ≈ 2.7.

The following theorem gives the Hausdorff dimension of the random fractal τ ,
which is shown to coincide with the r -singular support of the random variable f
in Theorem 3.3 below.

Theorem 3.2. Let β = 2γ−d, with γ ∈ (−∞, d ], and T be chosen as in Definition
3.1. If γ ∈ (−∞, 0] then τ is an empty set with probability one. If γ ∈ (0, d] the set
τ has Hausdorff dimension

dimH (τ) = γ,

with probability 1 − Pβ and is empty with probability Pβ, where Pβ is the solution

to Pβ = ((1− β) + βPβ)2d .

Proof. This result is known from the basic theory of Galton-Watson trees, see e.g.
[30, Section 8], but for the readers benefit we sketch part of the argument here in
the one-dimensional case. We start by noting that τ is empty if and only if the tree
T terminates at some finite level, and we denote the probability for this by Pβ . We
will first look at the case d = 1. Since the nodes of the tree are chosen recursively
and a new node can only be chosen if its parent node is chosen we can write

Pβ = (1− β)2 + 2(1− β)βPβ + β2P 2
β = ((1− β) + βPβ)2.

Solving the above for Pβ gives us that the probability for the tree T being finite,

and for τ being an empty set, is
(

1−β
β

)2

. For a general d the result follows by a

similar argument. We note that if β ≤ 2−d there is no solution Pβ < 1 and the tree
terminates almost surely at some finite level.

Consider the random process v(j) which is the number of elements on Rj = {k :
(j, k) ∈ T}. Then v(0) = 1 and the random variables v(j), j ≥ 1, follow binomial
distributions v(j) ∼ Bin(2dv(j − 1), β). This means that v(j) is the number of
offspring at level j in the induced Galton-Watson branching process and when
β > 2−d we note that E v(j) = (2dβ)j > 1 for all j ≥ 1.
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We denote by qjk the ratio of the diameter of Qjk to the diameter of its parent
when the parent is non-empty set, so that qjk = 1/2 with probability β and qjk = 0
with probability 1− β. We then notice that

E
( ∑
k={0,1}d

qγ1k

)
= 2d

(
1

2

)γ
β = 1

which implies that when τ is non-empty its Hausdorf dimension is γ a.s. [40,
Theorem 1.1].

Consider next a realisation of the random function f corresponding to a realisa-
tion of (X,T ) = (X`, T )`∈L. Since the wavelets ψ`j,k are in a Hölder space Cr(Rd)
and the wavelet-representation is locally finite outside the closed set τ , we see that

f |D\τ ∈ Crloc(D \ τ), i.e. singsuppr(f) ⊂ τ,
where singsuppr(f) is the Cr-singular support of f . Motivated by this, we show
next that f is a Besov-space Btpp, t < s − γ/p, valued function and that the Cr-
singular support of f is a.s. the random fractal τ corresponding to the realisation
of the tree T .

Theorem 3.3. Let f be a Bspp-random variable with stochastic fractality index

β = 2γ−d, with γ ∈ (0, d], as in Definition 3.1. Then, for all t < s − γ
p , f takes

values in Btpp almost surely and f 6∈ Bs−γ/ppp on the event

G := {ω ∈ Ω : τ 6= ∅}
Moreover,

singsuppr(f) = τ

almost surely.

Proof. We consider again the random process v(j) ∼ Bin(2dv(j − 1), β) which is
the number of offspring at level j in the induced Galton-Watson branching process.
Denote by v̄ = E v(1) = 2dβ > 1, and w(j) = v(j)/v̄j . Next we consider the Besov
norm of f , which according to (13) has the same distribution as

‖f‖pBtpp =

∞∑
j=0

v(j)2−jp(s−t)
∑(2d−1)v(j)
u=1 |Y uj |p

v(j)
, (15)

where Y uj are independent draws from Np(0, κp).
Let us first consider the case t < s− γ

p . Denote E(|Y uj |p) = cp. Then

E
(∑(2d−1)v(j)

u=1 |Y uj |p

v(j)

)
= (2d − 1)cp and

∞∑
j=0

v̄j2−jp(s−t) <∞

and hence we see
E ‖f‖pBtpp <∞.

This verifies that, for t < s− γ
p , we have f ∈ Btpp almost surely.

Next we will consider the case t = s− γ
p . Since E (v(1))2 <∞, the basic theory

of Galton-Watson processes (see e.g. [4]) yields that the sequence (w(j))j≥1 is an
L2-bounded martingale that has a limit w∞,

w∞ = lim
j→∞

w(j)
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satisfying

w∞ 6= 0 a.s. on G. (16)

Naturally, w∞ = 0 in Ω\G. Since w(j) is then a uniformly integrable martingale
we have, by Doob’s theorem, L1(Ω)-convergence

lim
j→∞

‖w(j)− w∞‖L1(Ω) = 0. (17)

Write Zj :=
∑v(j)(2d−1)
u=1 |Y uj |p. Let mj ∈ {1, . . . , 2jd} and consider the random

variable Z̃j that is the variable Zj conditioned on the set {ω | v(j) = mj}. Denoting

Var(|Y uj |p) = c′p we get E (Z̃j) = cpmj and Var(Z̃j) = c′pmj . Hence we can conclude

E (Z̃2
j ) = c′pmj + (cpmj)

2 ≤ c′′pm2
j .

Write A := {ω : Z̃j ≥ cpmj/2} and let a = P(A). Then the Cauchy–Schwarz
inequality yields

cpmj = E Z̃j ≤ (1− a)cpmj/2 +

∫
A

Z̃j dP

≤ (1− a)cpmj/2 +
(∫

Ω

Z̃2
j dP

)1/2(∫
Ω

χAdP
)1/2

≤ (1− a)cpmj/2 +mj

√
c′′pa.

Thus cp(1 + a) ≤ 2
√
c′′pa and we obtain that a ≥ a0, where a0 ∈ (0, 1] depends

only on p. Hence for all mj ∈ {1, . . . , 2jd} it holds that

P
(
{Zj ≥ mjcp/2} | v(j) = mj

)
≥ a0. (18)

One may observe that we essentially reproved a lemma due to Paley-Zygmund.
Let q and m1,m2, . . . ,mq be given positive integers with mi ∈ {1, . . . , 2id}. This

time we condition Zj on the set

Am1,m2,...,mq = {ω ∈ Ω : v(1) = m1, . . . , v(q) = mq}.

Notice that since the Y uj are independent random variables, the estimate (18)
holds for j ≤ q as well if we replace there the set {v(j) = mj} by Am1,m2,...,mq ., i.e.,

P({Yj ≥ mjcp/2} | Am1,m2,...,mq ) ≥ a0, j ≤ q. (19)

To apply this, consider variables Wj := Zj/v(j). Observe that the variables Zj ,
1 ≤ j ≤ q, conditioned on the set Am1,m2,...,mq , are independent. Thus (19) implies
that

P
({ q∑

j=1

Wj <
cpq

2

} ∣∣∣∣ Am1,m2,...,mq

)
≤ (1− a0)q.

Let C > 0 and ε > 0 be chosen arbitrarily. Choosing q so large that q > 2Cc−1
p

and (1− a0)q < ε we see that

P
({ q∑

j=1

Wj < M
}
| Am1,m2,...,mq

)
< ε.

This does not depend on q nor m1,m2, . . . ,mq and we deduce that

P
({ ∞∑

j=1

Wj =∞
} ∣∣∣∣G) = 1
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which implies, in view of (16) and the the expression (15) for the Besov norm, that
almost surely P({‖f‖p

B
s− γ

p
pp

=∞}) = 1.

It remains to prove that sing suppr (f) = τ almost surely. By construction it is
almost immediate that sing suppr (f) ⊂ τ . Towards the other direction, given any
dyadic subcube Q of D, denote by 2Q the cube parallel to and with the same center
as Q but double the size of Q. Let ϕQ denote a smooth cut-off function that is zero
outside 2Q and one in a neighbourhood of Q. Because of the stochastic structure
of the tree, the part of the tree (and the coefficients of our random Besov function)
corresponding to Q is (essentially) similar to the whole tree. Hence the above proof
applies and we deduce that

a.s. ‖ϕQf‖Bs−γ/ppp
=∞ on the set τ ∩Q 6= ∅.

On the other hand, we have the equality of the following events:

{sing suppr (f) ( τ} =
⋃
Q

{‖ϕQf‖Brpp <∞} ∩ {τ ∩Q 6= ∅},

and the claim follows combining these observations and the fact that the number
of dyadic subcubes Q is countable.

Corollary 3.4. Let f be a Bspp-random variable with stochastic fractality index

β = 2γ−d, γ ∈ (−∞, d], as in Definition 3.1. Theorems 3.2 and 3.3 imply that
for γ ∈ (−∞, 0] a.s. f ∈ Cr, and for γ ∈ (0, d] singsuppr(f) is an empty set

with probability Pβ, with Pβ being the solution of Pβ = ((1 − β) + βPβ)2d , and
dimH(singsuppr(f)) = γ with probability 1− Pβ.

4. MAP-estimate for denoising problem.

4.1. Discrete wavelet decomposition model. In this section we study signal
and image denoising examples and show how the MAP estimator can be calculated
explicitly. We start by introducing some notation for finite trees. For clarity we
introduce the notation for the 1-dimensional case. The techniques readily generalise
to 2-dimensional setting, and the image denoising example is introduced at the end
of the section.

We define an entire finite tree as a set

T = {(j, k) ∈ N2 | 0 ≤ j ≤ jmax, 0 ≤ k ≤ 2j − 1},

where jmax is a chosen terminating depth. In practice jmax is is determined by
the size of the signal. The discrete wavelet transform computation starts from the
pixel resolution of the data and builds step by step from finer to coarser wavelet
sub-bands. If the length of the signal is n = 2j , we set jmax = log2(n). If the length
of the signal is not 2j for some j ∈ N, then extra ‘padding’ can be added. This
padding can be disregarded after the denoising has been done. We also consider
finite proper subtrees

Γ = {T ⊂ T | if (j, k) ∈ T and 1 ≤ j ≤ jmax then (j − 1, [k/2]) ∈ T},

where [k/2] is the integer part of k/2. We denote (j′, k′) E (j, k) if (j, k) = (j′, k′)
or (j′, k′) C (j, k) by which we mean that (j, k) is an ancestor of (j′, k′). We can
then define the full subtree with a root node (j, k) as

T(j,k) = {(j′, k′) ∈ N2 | (j′, k′) E (j, k)}.
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The size of a sub tree T(j,k) (number of the nodes) is sj = 2jmax−j+1 − 1. The
parent of a node (j, k) is P (j, k) = (j − 1, [k/2]), and its left and right child are
C0(j, k) = (j + 1, 2k) and C1(j, k) = (j + 1, 2k + 1) respectively. If the nodes
(j, k) and (j′, k′) have the same parent we say that they are siblings and denote
(j′, k′) ∼ (j, k).

We consider the denoising problem of recovering f from

M = f + W,

where W =
∑
wjkψjk with wjk ∼ N (0, 1) is a white noise process independent of

f . We employ a discrete version of the random tree Besov prior introduced in the
previous section and assume that, with some T ∈ Γ, f can be written as

f(x) =
∑

(j,k)∈T

〈f, ψjk〉ψjk(x)

=
∑

(j,k)∈T

t̃jkgjkψjk(x),
(20)

where gjk ∼ N (0, 1) or gjk ∼ Laplace(0, a), and t̃jk ∈ {0, 1} defines if a node
(j, k) ∈ T is chosen i.e. term gjkψjk(x) is allowed to be non-zero. We assume that
an independent node tjk is chosen with probability β, that is, P(tjk = 1) = β and

P(tjk = 0) = 1 − β. Then the sub tree Γ contains the nodes for which t̃jk = 1,

where t̃jk is defined as

t̃jk =
∏

(j′,k′)D(j,k)

tj′k′ . (21)

Notice that this means that a coefficient can only be chosen if all of its ancestors
have been chosen. Otherwise the coefficient is zero. All the variables gjk, tjk are
assumed to be mutually independent.

The data can be written as M =
∑
mjkψjk(x), where

mjk =

{
gjk + wjk, when t̃jk = 1

wjk, when t̃jk = 0.
(22)

The posterior distribution of g = (gjk)(j,k)∈T and t = (tjk)(j,k)∈T, given data
m = (mjk)(j,k)∈T can then be written as

π(g, t | m) ∝ π(m | g, t)π(g)π(t)

=
∏

(j,k)∈T

π(mjk | gjk, t̃jk)π(gjk)π(tjk).

4.2. Pruning and tree enforced soft thresholding algorithms. In this sec-
tion we will show how the MAP estimator for the above denoising problem can
be calculated explicitly. If we assume that gjk ∼ N (0, 1), then the result is a
pruning algorithm where β < 1/2 acts as a regularisation parameter. Regularisa-
tion is achieved through turning branches of the wavelet tree on or off depending on
whether they are important for the reconstruction. If we assume gjk ∼ Laplace(0, a)
instead, then the outcome is a mixture of the above-mentioned pruning algorithm
and soft thresholding where the threshold is given by a.

We start by noting that gjk has density

π(gjk) ∝ exp(−R(gjk)),
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where R(gjk) =
g2jk
2 when gjk ∼ N (0, 1), and R(gjk) =

|gjk|
a

when gjk ∼ Laplace(0, a).
We define

zjk = π(mjk | gjk, t̃jk)π(gjk)π(tjk)

and note that, since the root node (0, 0) is always chosen,

z0 0 = π(m0 0 | g0 0, t0 0 = 1)π(g0 0).

For general (j, k) ∈ T the value of zjk depends on whether the node is chosen or
not and we denote

z1
jk = π(mjk | gjk, t̃jk = 1)π(gjk)π(tjk = 1) = exp

(
− 1

2
(mjk − gjk)2 −R(gjk)

)
β

z0
jk = π(mjk | gjk, t̃jk = 0)π(gjk)π(tjk = 0) = exp

(
− 1

2
m2
jk −R(gjk)

)
(1− β).

The problem of maximising π(g, t | m) is equivalent to minimising(
− log

(∏
(j,k)∈T zjk

))
. Write

F (m) := min
g, t

(
− log

( ∏
(j,k)∈T

zjk

))

= min
g, t

(
− log(z0 0)−

∑
(j,k)∈T\(0,0)

(
t̃jk log(z1

jk) + (1− t̃jk) log(z0
jk)
))

.

Notice that if tjk = 0 then t̃j′k′ = 0 for all (j′, k′) E (j, k). This means that the
whole branch is turned off and we attain the minimum

min
g

(
−

∑
(j′,k′)∈T(j,k)

log(z0
j′k′)

)
=

1

2
‖m|T(j,k)

‖22 − sj log(1− β)

by choosing g|T(j,k)
= 0.

Denote the restriction of the function F (m) to a sub tree T(j,k) by F(j,k)(m) =
F (m|T(j,k)

). We can then rewrite the minimisation problem in the following recur-
sive form

F (m) = min
g, t

(
− log(z0 0)−

1∑
k=0

(
t1 k
(

log(z1
1 k) +

∑
(j′,k′)∈T(1,k)\(1,k)

log(zj′k′)
)

+ (1− t1 k)
∑

(j′,k′)∈T(1,k)

log(z0
j′k′)

))

= min
t1 0,t1 1

(
− log(z0 0) +

1∑
k=0

(
t1 k
(
F(1,k)(m)− log β

)
+ (1− t1 k)

(1

2
‖m|T(1,k)

‖2 − s1 log(1− β)
)))

.

The above recursion can be repeated until the lowest level jmax is reached.
To find the minimising tree and the minimising coefficients we start from the

bottom of the tree and calculate the minimising weights. Let j = jmax. If gjk ∼
N (0, 1) then

F(j,k)(m) = min
gjk

(
− log

(
π(mjk | gjk, t̃jk = 1)π(gjk)

))
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= min
gjk

(1

2
(mjk − gjk)2 +

1

2
g2
jk

)
=

1

4
m2
jk,

and the minimum is attained by ĝjk = mjk/2. If gjk ∼ Laplace(0, a) then

F(j,k)(m) = min
gjk

(
− log

(
π(mjk | gjk, t̃jk = 1)π(gjk)

))

= min
gjk

(1

2
(mjk − gjk)2 +

1

a
|gjk|

)
=


1
2m

2
jk when |mjk| ≤ 1

a
1
a

(
mjk − 1

2a

)
when mjk >

1
a

− 1
a

(
mjk + 1

2a

)
when mjk < − 1

a

and

ĝ(j,k) = arg min
gjk

(1

2
(mjk − gjk)2 +

1

a
|gjk|

)
=


0, when |mjk| ≤ 1

a

mjk − a when mjk >
1
a

mjk + a when mjk < − 1
a .

We can now use the weights F(j,k)(m) to find the minimising tree structure. After
calculating the weights for the nodes on the bottom level jmax we move one level
up and test if using a nonzero gjk, while paying the penalty − log β for doing so,
gives a smaller value than setting gjk to zero. If choosing nonzero gjk produces a

smaller value we put t̃jk = 1 otherwise t̃jk = 0. The same procedure is then carried
out on every level. Note that F(j,k)(m) is the weight of a minimised tree with a
root node (j, k) and we only need to test it against the weight of an tree where all
gjk are chosen to be zero. See Algorithm 1 below for case gjk ∼ N (0, 1).

When gjk ∼ N (0, 1) the denoising problem is only regularised by turning of
branches that do not carry enough information. If gjk ∼ Laplace(0, a) regularisa-
tion is achieved through soft thresholding, with threshold 1/a, and by excluding
branches with small wavelet coefficients. This allows us to combine the benefits of
soft thresholding and the pruning algorithm described above.

We also note that due to the recursive nature of the algorithm its computational
complexity is linear in the number of the wavelet coefficients. This can be seen by
observing that in the algorithm one performs four “for-to” or “while” loops where
a finite number of operations are performed once in all vertexes of the tree. The
number of the vertexes of the tree is equal to the number of the wavelet coefficients
that is of the same order as the length n of the given signal.

4.2.1. Some results for general linear inverse problems. We will next show that
when a wavelet branch does not carry enough information it will be turned off also
in the case of a general linear forward operator A. We assume the random tree
Besov prior introduced in (20). We can then write

π(f | M) ∝ π(M −Af | f)π(g)π(t)

= exp
(
− 1

2
‖M −Af‖2

)
exp

(
−R(g)

)
βn(t)(1− β)(s1−n(t))

)
where n(t) is the number of elements in a tree Γ = {(j, k) ∈ T | t̃jk = 1}. We are
interested in the minimisation problem

min
f

(
− log π(f | M)

)
= min

g, t

(1
2
‖M −Af‖2 +R(g)− n(t) log β − (s1 − n(t)) log(1− β)

)
.

We will next show that if the measurement m|T(j,k)
has small enough `2 norm in

some T(j,k) the subtree will be turned off.
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Input: jmax, wavelet coefficients mjk of the measurement, parameter β
Output: wavelet coefficients gjk of the fractal-denoised signal

for k = 0 to 2jmax − 1 do
F(jmax,k) = 1

4 |mjmaxk|2;

end
j = jmax − 1;
while 1 ≤ j ≤ jmax − 1 do

s = 2jmax−j − 1;
for k = 0 to 2j − 1 do

F(j,k) =
1

4
|mjk|2;

j′, k′ ← indices of the left child of leaf j, k
if F(j′,k′) − log β < 1

2‖m|T(j′,k′)‖
2 − s log(1− β) then

tj′,k′ = 1; F(j,k) = F(j,k) + F(j′,k′) − log β;

else
tj′,k′ = 0; F(j,k) = F(j,k) + 1

2‖m|T(j′,k′)‖
2 − s log(1− β);

end

j′′, k′′ ← indices of the right child of leaf j, k
if F(j′′,k′′) − log β < 1

2‖m|T(j′′,k′′)‖
2 − s log(1− β) then

tj′′,k′′ = 1; F(j,k) = F(j,k) + F(j′′,k′′) − log β;

else
tj′′,k′′ = 0; F(j,k) = F(j,k) + 1

2‖m|T(j′′,k′′)‖
2 − s log(1− β);

end

end
j = j − 1;

end

t̃00 = 1;
for j = 1 to jmax do

for k = 0 to 2j − 1 do
j′′′, k′′′ ← indices of the parent of leaf j, k
t̃jk = tjk t̃j′′′k′′′ ;

end

end

for j = 0 to jmax do
for k = 0 to 2j − 1 do

if t̃jk = 1 then
gjk = mjk/2;

else
gjk = 0;

end

end

end

Algorithm 1: Pseudocode for finding the minimising t and g recursively. In
practical calculations we found that replacing gjk = mjk/2 by gjk = mjk

gives better results.
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Lemma 4.1. Let M = Af + W, where W is a centred Gaussian noise process.
We assume a random tree Besov prior defined in (20). If ‖m|T(j,k)

‖2 < ε, where

0 < ε < min{log(1/β − 1), 1}, 0 < β < 1/2 then the tree maximising the posterior
π(f | M) is a subset of T \T(j,k).

Proof. The result follows directly from the fact that if ‖m‖2 < ε the tree that
maximises the posterior is an empty tree T = ∅. For an empty tree n(t) = 0 and
we have

min
g

(
− log π(f | M)

)
=

1

2
‖m‖2 − s1 log(1− β).

On the other hand, if n(t) ≥ 1 we can write

min
g,t

(
− log π(f | M)

)
≥ min

t

(
− n(t) log β − (s1 − n(t)) log(1− β)

)
> min

t

(
n(t)(ε− log(1− β))− (s1 − n(t)) log(1− β)

)
> ‖m‖2 − s1 log(1− β)

which concludes the proof.

4.3. Signal and image denoising examples. In our first example we consider
the blocks test data from [22] which is displayed in Figure 4. We assume that only
a noisy signal, with noise ratio 3, is observed and want to denoise it. We employ
semi-Gaussian random tree Besov prior with Haar wavelets, in which case the MAP
estimator is given by the pruning algorithm. We also tested denoising the signal with
several Matlab denoising packages of which hard thresholding performed the best.
Figure 5 shows that the pruning algorithm performs better than hard thresholding.
The `2 error and root mean squared error between the original and our denoised
signal are 9.5 and 0.21 respectively. For the thresholded signal the errors are 13.7
and 0.30. The denoised signals and the corresponding wavelet trees are shown in
Figure 5 and one can clearly see how choosing a proper tree model is beneficial for
the reconstruction.

Figure 4. Original blocks signal and the observed noisy signal
with signal to noise ratio 3.

In Figure 6 we present some prior draws from semi-Gaussian random tree Besov
priors with Haar wavelets with different wavelet densities β. As expected, when
1/2 < β < 1 is small the realisations are mostly flat with some small areas of large
jumps, while with large β the realisations are more erratic.
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Figure 5. The denoised signal using pruning algorithm on top left
and the denoised signal that was attained using hard thresholding
on top right. Below them are the wavelet trees corresponding to
the estimators.

Figure 6. Prior draws from the 1-dimensional semi-Gaussian ran-
dom tree Besov prior with Haar wavelets. The wavelet densities are
β = 0.6 on the left, β = 0.75 on the middle and β = 0.9 on the
right.

Next we consider real accelerometer data collected from a human subject with
a wearable device. The accelerometer erroneously records slight movement even
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when the device is still and our aim is to use the pruning algorithm with Haar
wavelets to denoise the signal. The original and denoised signal are presented in
Figure 7. The pruning algorithm returns a denoised signal where the areas of large
acceleration have been left untouched while the parts where the device was still
have been cleaned and are piecewise constant as one would expect.

Figure 7. Measured accelerometer data on left and the denoised
signal on right.

In our final example we study image denoising. The original and noisy image are
shown in Figure 8. We consider the MAP estimators arising from semi-Gaussian
and semi-Laplace random tree Besov priors with Daubechies 2 wavelets, which are
given by pruning and tree enforced soft thresholding algorithms respectively. The
image has been extended by mirroring to avoid boundary effects, and cut down to
the original size after using the algorithm. In the tree enforced soft thresholding
and soft thresholding algorithms the thresholding is only done for the deeper levels
j ≥ 5 containing finer details.

We use two error measures to quantify the reconstruction quality. The first one is
the peak signal-to-noise ratio (PSNR) which is an expression for the ratio between
the maximum possible value of an image and the power of distorting noise that
affects the quality of its representation. The PSNR is given by 10 log10(R2/MSE),
where MSE is the squared error between the denoised and the original image, and R
is the maximum possible pixel value of the image. Higher values of PSNR indicate
better reconstruction quality. The second error measure we use is the structural
similarity index measure (SSIM) which measures the perceived change in structural
information by assessing the visual impact of three characteristics of an image:
luminance, contrast and structure. The higher the SSIM, the better the quality of
the reconstructed image.

As expected the tree enforced soft thresholding performs better than the pruning
algorithm since it allows two type of regularisation; pruning and soft thresholding.
The PSNR (using the original image as a reference) for the pruned image and for
the denoised image given by the tree enforced soft thresholding are 23.0 and 23.7
respectively. The SSIM are 0.69 and 0.71 respectively. We also denoised the image
using soft thresholding with Daubechies 2 wavelets and the PSNR for the best
achieved reconstruction is 23.6 and SSIM is 0.69. The three reconstructions are
presented in Figure 9. As one can see from the close-ups of the images the tree
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Figure 8. Original sharp image and image with Gaussian noise
with variance 0.01.

Figure 9. From left to right; Denoised images and close-ups
attained using pruning, tree enforced soft thresholding and soft
thresholding algorithms. From the close-ups we can clearly see
that the tree based methods denoise smooth areas better than soft
thresholding.
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based algorithms are better at denoising smooth areas like the leaves and the nose
of the koala.

Random draws from the semi-Gaussian prior with Daubechies 2 wavelets and
different wavelet densities can be found in Figure 10.

Figure 10. Prior draws from the 2-dimensional semi-Gaussian
random tree Besov prior with Daubechies 2 wavelets. The wavelet
densities are β = 0.3 on the left, β = 0.6 on the middle and β = 0.9
on the right.
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