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Abstract—A key aspect of daylight modeling is the definition of
material optical properties. Characterization of such properties in
existing indoor spaces with current methods is a labour-intensive
and time-consuming task, especially in surfaces with considerable
visual complexity. Faster and more accurate estimations of such
properties will lead to more efficient workflows. Towards this di-
rection, the present work studied the feasibility of using two novel
approaches i.e. illuminance-proxy and probabilistic image based
material characterization methods for implementation in daylight
modeling. These approaches are compared with two common
techniques, namely the manual selection from a measured dataset
and the use of illuminance/luminance measurements. According
to the results, both novel techniques are able to predict spatially-
averaged Daylight Autonomy, continuous Daylight Autonomy,
and Useful Daylight Illuminance in 300-3000 lx range with less
than 5% error.

Keywords—on-site, field, measurement, visual, Digitalization,
Optical.

I. INTRODUCTION

Sufficient and proper daylight in indoor spaces lead to
more energy-efficient buildings and has a significant impact
on users’ satisfaction and well-being[1, 2].
Numerical simulation of daylight has been extensively im-
plemented in recent decades as a reliable tool to assess the
performance of buildings for improving existing indoor spaces
and designing future buildings. Such a numerical model is not
only applied for design and retrofit purposes, but it is also
capable of acting as a virtual representation of a building
which can potentially be applied for making several kinds
of real-time to long-term decisions during the building life-
cycle. The key to constructing this so-called “digital twin” is,
on one hand, dependent upon the calculation and estimation
algorithms, and on the other hand, accurate and reliable inputs,
based on which making such informed decisions will be
feasible.

As far as daylight is concerned, the optical properties of
different surfaces within an indoor space are important deter-
minants of its short-term and long-term performance[3]. While
this information can be defined roughly according to design
specifications in the pre-construction phases, measurements
are, in most cases, necessary for creating an accurate model.
With current methods, however, this demands a considerable
on-site field measurement effort followed by manual modeling,
which makes daylight analyses costly for many applications
and real-time decision-making impossible.

To tackle these limitations, two image-based techniques for
pixel-wise and patch-wise material characterization are tested
in estimation of material properties in a real indoor space.
These results are then implemented for daylight simulation
and calculation of annual performance.

II. BACKGROUND

A. Illuminance-proxy method
Characterization of dense, pixel-wise reflectance maps of ar-

bitrarily complex diffuse surfaces using High Dynamic Range
Imaging (HDRI) has been studied by Mardaljevic, Brembilla,
and Drosou [4], [5]. This approach derives an illuminance
map, based on interpolation of sparsely known reflectance
values on a surface. Since it requires only a few known
reflectance values on a surface, this method can reduce the
field measurement labor, while giving a pixel-wise reflectance
map.

B. Probabilistic material characterization
The existing body of literature on probabilistic material

characterization in computer vision attempts to minimize
the measurement cost by probabilistic characterization of
material optical properties. This is done with the help of
supervised learning algorithms, mainly Convolutional Neural
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Networks (CNN) trained with labeled datasets of materi-
als. These datasets can be categorized according to acqui-
sition method, including real-world images (e.g., MINC[6]
and OpenSurfaces[7]), synthesized sets of images, and mea-
sured datasets (e.g., BTF material database[8] and SVBRDF
database Bonn[9]). Another example of measured datasets,
relevant to the daylighting field, is Spectral Materials Database
(SpectralDB), a work done by Jakubiec [10]. This is exten-
sively used by daylight modellers and researchers to define ma-
terials in simulation models for evaluation of daylight provi-
sion, visual comfort and non-visual effects of light on building
occupants. However, the applicability of this dataset for image-
based probabilistic estimation of key material information
for daylight simulation (i.e., reflectanceRGB, specularity, and
roughness) is not yet studied, which is one of the objectives
of the present work.

III. OBJECTIVES

This study investigates the feasibility of using the
illuminance-proxy method as an efficient characterization ap-
proach for pixel-wise reflectance calculation for modeling
daylight in existing indoor spaces.
Moreover, it aims to study the feasibility of using a learning-
based approach for estimating material optical properties with
only a small-size (128*128 pixels) rectangular RGB patch
from an image taken with a regular camera. This is an effort
towards automation of daylight modeling in existing indoor
spaces, and to address the lack of coordination with other
related fields, such as geomatics and scan-to-BIM [11].

IV. METHODS

Four material characterization scenarios are considered for
the purpose of this study, each applied to the same daylight
model of a case study room.
The results of annual daylight simulations obtained using these
methods are then compared and discussed. The following sub-
sections describe the case study room, simulation parameters,
material characterization scenarios, and data analysis methods.

A. The case study room

The studied room is a 5.8 m by 4.3 m meeting room located
at the Faculty of Architecture in Delft, The Netherlands. The
room is oriented towards South-East with a 4 degrees angle
from due South. Pictures from the room are presented in Fig.
1

B. Material characterization scenarios

The following four methods for characterizing material
optical properties are considered:

1) Manual selection from a material database: Material
properties were manually selected based on color and type
from SpectralDB.

Fig. 1. The case study room

2) Average Hemispherical Reflectance (AHR): Reflectance
values for each sub-surface were calculated based on lumi-
nance and illuminance measurements, assuming the following
relation:

⇢ = ⇡ ⇤ (L/E) (1)

where ⇢ is diffuse reflectance, L is luminance, and E is
illuminance.
This method, known as Average Hemispherical Reflectance
(AHR), is assumed as the ground truth method for material
characterization in this study. Specularity and roughness values
were assigned a value of zero.

3) Illuminance-proxy method: HDR images of five main
surfaces, i.e. walls and ceiling, were captured. The validity
of the resulting luminance map was tested against measured
luminance values of three spots in the Field of View (FOV).
A list of sparse points of known reflectance values, measured
with the AHR method, was created. A mask, indicating the
area of interest in each HDR image was created as the third
input of this method. In Fig. 3 these inputs for calculating the
mean reflectance in one of the walls are visualized. Knowing
the luminance and reflectance, an illuminance map is gener-
ated. The resulting list of illuminance values and their pixel
location is then fed into a Kriging interpolation algorithm,
as previously implemented by Mardaljevic et. al. [12]. The
resulting illuminance map and the input luminance map are
used to generate the reflectance map. Finally, the reflectance
is calculated by averaging the pixel-wise reflectance values
across the area of interest, indicated by the mask, e.g., brick
parts, plinth (see Fig 3).
An additional outlier removal step, which includes the removal
of 0-5th and 95-100th percentiles is applied to the list of output
reflectance values for one of the surfaces (wall 3). This was
only done on this wall because for other surfaces this did not
significantly change the result (less than 5%).
A geometrically simplified model was also created by approx-
imating a big surface, e.g. a wall, with many sub-surfaces,
such as pipes and ducts, to a single polygonal surface. This is
visualised for two example surfaces in Fig. 2.
Like the AHR method, specularity and roughness are assumed
to be zero in this characterization scenario. For the definition
of the floor, reflectance from the measurements is used for
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Fig. 2. Geometrical simplification adopted in the illuminance-proxy method.

simulation, since it was not possible to capture a full image
of the floor.

4) Image-based probabilistic estimation: An Artificial Neu-
ral Networks model was constructed to quantitatively charac-
terize material properties under random daylight conditions,
consisting of an input layer with the shape of 128*128*3
(pixels*pixels*channels), one hidden layer, and an output layer
with five neurons, for estimation of the following variables:

1) Reflectance in the red channel
2) Reflectance in the green channel
3) Reflectance in the blue channel
4) Specularity
5) Roughness

Mean squared error (MSE) was selected as the loss function to
optimize the ANN model. Number of neurons was fine-tuned
in from a search space of 1 to 400 neurons. 16 is shown to give
the least loss (0.05). This neural network model was trained
by a rendered data set with 1288 materials measured with a
reflectance spectrophotometer [10](see Fig. 4). Each material
was labeled with the above-mentioned information to define
the material optical properties. The Radiance rendering engine
[13] was used to generate a dataset of images of a flat surface
perpendicular to the virtual camera for training. The rendered
views were compressed from a four-channel HDR image to
JPG images with three color channels to be read by the ANN
model. A set of 16 random rendered samples are presented in
Fig. 5.
The training data set is split into two training and validation
sets with 1159 and 129 samples, respectively. Seven images
of surface materials – including an exposed brick wall – from
the studied room under random daylight illumination were

cropped from images of the room to estimate the optical
properties with the ANN model (see Fig. 6).

Fig. 5. Rendered samples for training the ANN.

Fig. 6. Input samples of materials as real-world test cases. Top row from left
to right: black screen, white desk, and orange floor. Bottom row from left to
right: painted blue walls and ceiling, brick walls, opaque parts of the doors

C. Daylight performance simulation

The Radiance 2-phase method was chosen to run annual
daylight simulations, using Honeybee [14] as the interface.
Five daylight performance metrics are used in this study,
including Daylight Autonomy (DA), continuous Daylight Au-
tonomy (cDA), and three Useful Daylight Illuminance (UDI)
values representing under-lit, well-lit, and over-lit areas. The
thresholds for calculating these metrics are 300 lux for DA and
UDI (lower threshold), and 3000 lux as the upper threshold
for UDI.
The output of each material characterization scenario is ap-
plied on a single room described in section IV-A. Other infor-
mation necessary for daylight calculations, including context
and transmittance of windows, are maintained constant for all
scenarios.
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Fig. 3. Inputs for the illuminance-proxy method. From left to right: luminance map [cd/m2], masked area, spots of known reflectance

Input image
128 × 128 × 3

Input layer
49152

Hidden layer
[1-400]

Output layer
5

Flatten

Fig. 4. Representation of the simple ANN used in this study.

V. RESULTS

Firstly, the results from the various material characterisation
methods are presented and compared against the AHR method.
Secondly, the corresponding daylight simulation results are
presented.

A. Material properties

The visible reflectance values given by the AHR, Spec-
tralDB (manual selection), illuminance proxy, and ANN meth-
ods are presented in Fig. 7. Since specularity is assumed to
be zero in AHR and illuminance proxy, only the estimation
of specularity resulting from ANN and SpectralDB are pre-
sented in Fig. 8. The results show that SpectralDB predicts
reflectance more accurately compared to ANN, however, this
prediction resulted in significant error in characterizing the
reflectance of White desk, Floor, Windows sill, and Flower
box. Reflectance results from the illuminance-proxy method
gives the reflectance for brick and plaster, as well as the minor
sub-surfaces including black screen and red beam with less
than 5% absolute error. Errors are considerable for white pipes,
silver ducts, and radiators. The results for radiators is above
1, even with outlier removal.
The output illuminance map, reflectance map, and the final

mean reflectance values from the illuminance-proxy method
corresponding to the model with geometrical simplification,
for five surfaces including four walls and the ceiling, are
presented in Table I. These mean values range from 0.36 for
the ceiling to 0.481 for wall1. As mentioned in Section IV-B3,
for wall3 the initial mean reflectance output was 1.48, so an
outlier removal was applied (removal of lowest and highest
five percentiles), and the resulting value, 0.42, is considered
for the daylight simulation.

Fig. 8. Comparison of specularity values from ANN and SpectralDB
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Fig. 7. Visible reflectance values from AHR, SpectralDB, illuminance proxy, and ANN. Reflectance values corresponding to the surfaces indicated by (*)
are include the spots with known reflectance as the input for illuminance-proxy methods, thus are equal to AHR.

B. Annual daylight performance metrics

The spatially averaged performance values corresponding
to each of the four material characterization scenarios are
presented in Fig. 9. A more detailed comparison was done
to capture the deviation of each annual performance metric
from the AHR scenario across all the points on the simulation
grid. The RMSE values resulting from this comparison are
presented in Fig. 10.
According to the daylight results in Fig. 9, the performance
metrics from the illuminance proxy method with and without
geometrical simplification falls within 5% error range for DA,
cDA, and UDIwell-lit and it predicts UDIover-lit with less than
10% error. Nevertheless, the error in calculation of UDIunder-lit
is more than 15%.
Comparing the annual results across grid points (Fig. 10)
shows that, while illuminance proxy results agrees the most
with the ground truth model, geometrical simplification causes
significant errors in predicting UDIunder-lit and UDIwell-lit, and
while performing almost similarly with ANN in calculating
cDA, it is considerably more accurate than ANN overall.

VI. DISCUSSION

Annual daylight results (Fig. 9 and 10) indicate that
illuminance-proxy performs better that the other methods,
showing less than 10% error relative to the model correspond-
ing to AHR technique. However, significant errors exist when
geometrical simplification is applied.SpectralDB also shows
good agreement with the ground truth, however, significant er-
rors exist when this comparison is done for visible reflectance
values as shown in Fig. 7.Such errors are more than 10% for a
few surfaces, namely White desk, Floor, Plinth, Walls-plaster,
Windows-sill, and Flower box.

Fig. 9. Average values of annual daylight performance metrics with 5, 10,
and 15% error range relative to AHR

Fig. 10. Root Mean squared error (RMSE) of annual performance values
across the simulation grid range relative to AHR
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TABLE I
INTERPOLATED ILLUMINANCE MAP, REFLECTANCE MAP, AND MEAN REFLECTANCE FOR FIVE MAIN SURFACES OF THE STUDIED ROOM

Surface name Input HDR map [cd/m2] Illuminance map[lx] Reflectance map[0-1] Mean
reflectance

Wall1 0.481

Wall2 0.361

Wall3 0.42

Wall4 0.44

Ceiling 0.36

There are three underlying assumptions in the illuminance-
proxy method:

1) The area of interest does not have significant protrusions
and is flat.

2) The light that falls onto each surface has smooth illumi-
nance variations.

3) All of the surfaces and materials in the FOV are diffuse.

Any geometrical and lighting conditions deviating from these
assumptions will cause error in the final results. A possible

source of errors in many cases is the existence of specular
surfaces, resulting in over-prediction of average reflectance,
and consequently, daylight results. This over-prediction has
been significant for two specular surfaces, namely silver ducts,
radiators (see Fig. 7) and wall3(see Section IV-B3). This
outliers might also be partly caused by abrupt changes in the
illuminance levels on the areas close to the windows, which
can be the result of inaccurate masking of the opening areas.
According to annual average results, ANN has less than
5% error in the calculation of DA, cDA, UDIunder-lit (Fig.9).
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Fig. 11. Rendered scene corresponding to each measurement scenario, from left to right: (1) AHR, (2)SpectralDB, (3)Illuminance-proxy, (4) Illuminance
proxy with geometrical simplification,and (5)ANN

However, except for White desk, Doors, Walls-plaster, and
Silver duct, it estimated the visible reflectance with significant
error. The predicted specularity results are not realistic, while
seven (out of fifteen) predictions for roughness are close to
those suggested by SpectralDB for a similar material (Fig. 8).
Five renderings of the room (Fig. 11), corresponding to each
scenario reveals the inaccurate predictions of ANN.
Inaccurate predictions of ANN is also confirmed by analysing
hourly illuminance values for all the grid points with
RMSE of31.62 for illuminance-proxy, 98.52 for illuminance
proxy(simplified), 44.02 for SpectralDB, and 270.75 for ANN.

VII. CONCLUSION

In this study, four material characterization scenarios are
implemented to define material properties of opaque surfaces
in a single meeting room. Accuracy of these methods are
evaluated both by comparing the reflectance values, and by an-
nual daylight provision metrics. Illuminance-proxy has shown
promising results for pixel-wise reflectance characterization
and proved to be a powerful alternative for manual point-by-
point measurements of luminance and illuminance (AHR) as
a common approach. Nevertheless, this method is prone to
error specially when a specular surface is in the FOV. Manual
selection of materials from SpectralDB has also shown to
give accurate results compared to ANN. Still, all the scenarios
showed acceptable results in predicting average annual perfor-
mance metrics, i.e., DA, cDA, and UDIwell-lit with less than 5%
error, while significant error exists in calculation of material
properties, namely reflectance and specularity. Both methods
have potentials in digitizing the process of daylight modeling.
Illuminance proxy reduces the measurement costs by reducing
the number of AHR and offers pixel-wise material reflectance
map of areas within the FOV. This is a good solution for
complex surfaces.
This project is limited in some aspects, which will be described
in the next paragraphs. Future research will address these
limitations.

• Reliable ground truth measurement. Average Hemispher-
ical Reflectance (AHR) technique is used as the ground
truth value for visible reflectance in this study. Since this
method does not capture detailed information regarding
the five key optical properties, a similar material from
a measured data set (SpectralDB) is used to check the

validity of the ANN outputs for specularity and rough-
ness (see Fig. 8). Even in that data set, the roughness
values assigned to each material are not coming from
accurate measurements and are based on a rule of thumb
introduced by Jones and Reinhart [15]. A more reliable
data measured in the studied space is needed to check
the validity of the outcomes. This can be done using
reflectance spectrophotometers [16].

• Error measurement for illuminance proxy. In this study,
daylight results were used to quantify the errors asso-
ciated with the uncertainties in the illuminance proxy
method (see Section VI). To do this task more reliably,
a predicted mean reflectance should be calculated based
on accurate measurements.

• Improved learning approaches. In this study a simple
neural network, consisting of one hidden layer with
16 neurons, with linear activation is used. This simple
architecture does not capture the capabilities of proba-
bilistic methods. In future research, this will be addressed
by generating other training datasets under a certain
lighting condition, which is reproducible in the indoor
space. This will be done to reduce the uncertainties
concerning the lighting conditions. Furthermore, other
learning architectures proven to perform well on mate-
rial classification task will be adapted to the problem
of this research [17, 18]. Lastly, based on the reliable
results from manual selection of materials (SpectralDB),
approaching the learning-based material characterization
as a classification, rather than regression (as done in
this study) might give more accurate results and will be
further developed in the future studies.
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