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Thermal FEM Analysis of Surge Arresters During
HVdc Current Interruption Validated by Experiments

Siyuan Liu , Member, IEEE, Marjan Popov , Senior Member, IEEE, Nadew Adisu Belda , Member, IEEE,
René Peter Paul Smeets , Fellow, IEEE, and Zhiyuan Liu , Senior Member, IEEE

Abstract—This paper deals with the development of an accurate
finite-element model of an arrester to investigate the electrothermal
and mechanical stress during dc current interruption. The compre-
hensive analysis performed on a ZnO surge arrester is supported
by experiments during high-voltage dc circuit breaker current in-
terruption. The performed experimental analysis comprises three
sequential 26 kV/10 kA direct current interruption tests carried
out within a period of one hour. The dynamic temperature and
current distribution of the surge arrester columns during current
interruption are measured. The finite-element simulation results
are in good agreement with the test results. The influence of the
surge arrester temperature on the current distribution among the
surge arrester columns is analyzed. The impact of the surge arrester
temperature on ZnO electrical characteristics and mechanical
stress inside the surge arrester are also investigated. The surge
arrester finite-element model can be used with full success for
parameter optimization of the surge arresters to prevent possible
failures when dc circuit breakers performed multiple interruptions
in short period of time.

Index Terms—Metal-oxide surge arresters, dc circuit
breaker, thermodynamics finite-element simulation, temperature
measurement.

I. INTRODUCTION

THE prompt development of voltage source converters
paves the way towards building multi-terminal dc grids,

which will be used for the connection of offshore wind power
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plants [1]–[3]. One of the main bottlenecks for developing multi-
terminal dc grids is the lack of fast, economical and reliable
high-voltage dc (HVdc) circuit breakers (CBs) [4]. The dc CBs
are required to isolate the faulted segments of the multi-terminal
dc grid in several milliseconds in order to keep the healthy
segments operating continuously [5]. So far, several dc CB
concepts have been developed and reported as suitable solutions
for (HVdc) current interruption [6]–[13].

Current interruption in multi-terminal dc grids is far more
complicated than the current interruption in well-known ac
CBs because of not having current zero in a dc system [11].
All HVdc CB technologies operate on the principle of creat-
ing a counter voltage known as transient interruption voltage.
To achieve this dc CBs employ several current branches with
different components serving different purposes as illustrated
in Fig. 1 [14]. Firstly, the current is interrupted locally in the
main current branch leading to the current commutation into the
parallel current commutation branch. This TIV is produced in
the commutation branch and is limited by the energy absorption
branch in the third parallel branch. All the dc CBs have a metal
oxide surge arrester (MOSA), which is used to limit the transient
interruption voltage and absorb the energy stored in the system.

Therefore, the MOSA is a very crucial component of the dc
CBs as it deals with the absorption of large amount of energy
resulting from the fault current interruption [15]. In dc CBs, the
MOSAs are part of the dc CBs themselves, and their task is to
absorb the energy stored in the lines or cables and converters
during the current is interruption process. The amount of energy
(which may be in a range of several megajoules) and the very
short period of time in which this energy should be removed
(5–10 milliseconds), makes the temperature rise faster and much
higher. As a result, the evaluation of the thermal stress during and
after the dc interruption is very important for the MOSAs in dc
CBs. Particularly for the future overhead multi-terminal dc grid,
reclosing operation is essential for the protection strategy, which
leads to multiple dc interruptions and hence multiple energy
absorptions in a short duration [16].

So far, there has been no testing platform that could pro-
vide test environment for the open-close-open current inter-
ruption while applying full energy in a short period of time
in the order of 300 ms. As a result, an accurate finite-element
(FE) model is a suitable method to investigate electrothermal-
mechanical behavior of a MOSA during multiple dc interrup-
tions. The validated model can be used to simulate different
scenarios of DC current interruption such as reclosing operation
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Fig. 1. Generic model of HVdc circuit breakers.

(open-close-open) and other multiple current interruptions in
multi-terminal dc grids. Extensive research has been conducted
on the thermal and mechanical stability of MOSAs [17]–[22].
So far, vast majority of studies have been focused on failure
analysis of single MOSA column or zinc oxide (ZnO) varistor
blocks. Besides, experimental research on the MOSAs during
successive dc interruptions and associated temperature impact
on the current distribution and mechanical stress among parallel
columns comprising the full MOSA of the dc CB has been rarely
reported.

The failure modes of the MOSAs can be divided as a thermal
runaway, a puncture, and cracking, and are discussed in [22],
[23]. The thermal runaway strongly depends on current and volt-
age instability, which usually occurs in the MOSAs applied in
ac over-voltage protection. It occurs when the heating generated
by the leakage current exceeds the heat dissipation and MOSA
temperature exceeds the thermal stability point [23]. Puncture is
caused by localized current flow in the microstructure of the ZnO
disks [17]. Meanwhile, in the breakdown regime, the current
density in a ZnO varistor is inhomogeneous [24]. The current
in this operating region forms channels and paths through the
ceramics and does not flow homogeneously [25]. Besides, in-
homogeneous current leads to uneven heat generation, resulting
in inhomogeneous thermal expansion in the MOSAs, which is
the main reason for cracking failure [26]. During the conducting
period of the ZnO varistor, energy is injected accordingly, which
can be seen as an adiabatic process due to a temperature rise,
which results in thermal stresses inside the ZnO varistor. If the
thermal stresses exceed the critical value, cracking of varistor
disks takes place.

In practice, MOSA consists of large number of parallel
columns to deal with large amount of energy absorption. Dur-
ing the current suppression period (lasting 5–10 ms) of the
interruption process, the temperature of the MOSA rises to
high value and thereafter begins to cool down. The thermal
diffusion of the MOSA columns depends on the MOSA’s ther-
mal conductivity, the ambient temperature, and the convection
losses. The temperature of the MOSA columns decays slowly
after the dc interruption. Due to physical arrangement of the
MOSA columns, the columns near the outer edges cool faster
than the columns located in the inner side of the MOSA bank.
The unequal temperature distribution may lead to the unequal
current distribution among these columns. The hotter columns
in the middle have higher conductivity because of the negative
correlation between the conductivity of zinc oxide and its tem-
perature. Therefore, more current will flow through the hotter

TABLE I
SURGE ARRESTER COLUMNS MATCHING RESULTS

columns, which may lead to overheating of the MOSA or even
a failure in the dc current interruption. Therefore, the analysis
thermal stress on the MOSAs during the dc current interruption
is very important for the design of dc CBs. So far, no research
has been done on the MOSA thermal stress during dc current
interruption.

The remainder of the paper is organized as follows.
Section II deals with the physical modelling of MOSAs in a 3D
environment with FE. The experimental setup and the detailed
measurement are demonstrated in Section III. In Section IV, the
MOSA model is validated by experimental measurements and
the results are analyzed. The paper ends up with meaningful
conclusions based on the obtained results.

II. ELECTROTHERMAL-MECHANICAL MODEL OF MOSA

A. Thermal Model of the MOSA

Thermal analysis of MOSA deal with heat diffusion. Current
conduction of MOSA during the current suppression period
leads to huge Joule losses, which results in a large amount of heat
generation inside the ZnO varistor blocks. The heat generation
is a transient process and its propagation in the MOSA during
a given time interval can be described in coordinates by the
following equations:

Equation (1) represents the transient heat conduction process,

∇ · (k∇T ) +Qv = ρCp
∂T

∂t
(1)

Qv =

{
ESA/V
ESA/V +Qr

(Internal)
(Surface)

(2)

where k is the heat conductivity, T is the absolute temperature.
Qv is the heat generated per unit volume. For ZnO varistors

inside the SA, the heat source is the Joule heat generated during
the energy absorption (ESA), which is calculated by equation
(15). Meanwhile, for the ZnO varistors on the surface, the heat
source is the Joule heat plus radiation heat. As a result, Qv can be
expressed as (2). Cp and ρ are the heat capacity and mass density,
respectively and t is the time; Both k, Cp and ρ are functions of
temperature, the functions can be found in Table III.

−k
∂T

∂r

∣∣∣∣
Surface

= h(Tsuf − Tamb) (3)

Equation (3) is known as heat convection equation, with
Tsuf and Tamb being the ZnO varistor surface temperature and
ambient temperature. In present work, it is assumed that the
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TABLE II
GEOMETRY PARAMETERS OF SURGE ARRESTER

TABLE III
CHARACTERISTICS OF MATERIALS

ambient temperature Tamb is constant. The heat convection oc-
curs between ZnO varistor surface and the natural air in ambient
environment. h is the natural convection coefficient in air and it
can be estimated by (4) [27].

h =
k

L
C(Gr · Pr)n (4)

Gr =
gϕ(Tsuf − Tamb)L

3

v2
(5)

Pr =
v

ζ
(6)

ϕ =
1

Tsuf
(7)

ζ =
kair

Cp_airρair
(8)

Qr = εσA(T 4
suf − T 4

amb) (9)

The characteristic length L in equation (4) for the cylinder
is calculated by L = πR2l/2πRl = R/2 , where R and l is
the radius and height of the ZnO varistor, respectively. And
for the flat plate L = bl, where b and l are the broadness and
height of the plate. C and n are constants determined by the
shape of the varistor surface, respectively. For the vertically
positioned cylinders, C is chosen as 0.99 and n is chosen as
0.33. Gr is Grashof number as computed by (5), whilst Prandtl
number Pr is determined by (6). Other parameters are: g -
gravitational acceleration, g = 9.8 m/s2, β - volume expansion
coefficient for the surrounding air, ϕ can be calculated by (7),
v is kinematic viscosity (for air, v = 14.8× 10−6 m2/s), ζ is
thermal diffusivity, for air, ζ is determined by (8). Hence, by
combining equations (4)-(8), the h is found to be in the range
of 5∼6 W/(m2 ·K) under the temperature range of 10–100 °C.

Fig. 2. The V-I characteristic of the ZnO varistor blocks used in the experiment.

Equation (9) determines the process of thermal radiation where
Qr is the radiation heat flux. ε is the emissivity, and the emissivity
of ZnO varistor is 0.83. σ is the Stefan-Boltzmann constant,
σ = 5.67× 10−8 W/(m2 ·K4). A is the radiating surface area.

B. Surge Arrester Thermal Stress

The cracking of ZnO varistors caused by energy absorption
is investigated through thermal mechanics. Assuming Ee is
amount of energy that is absorbed by a ZnO element, the
adiabatic emperature rise can be computed by (10):

Ee = ΔV ·
∫

ρ(T )Cp(T )dT (10)

whereΔV denotes the ZnO element volume with a specific mass
density ρat particular temperature T. Furthermore, Cp is the
specific thermal capacity of ZnO varistor at temperature T. If the
temperatures rise of two close elements are denoted by ΔTa and
ΔTb respectively, the thermal stress F between the two elements
can be computed by (11):

F =
Ea(ΔTa −ΔTb)

1− μ
(11)

where E is Young’s module of elasticity, and μ is Poisson’s
ratio; a is the linear expansion coefficient in units of 1/K, which
is a function of temperature [23] that can be expressed by
a = (−a1 − a2T1 + a3InT1)× 10−6 , where T1 is the specific
temperature, and a1 = 23.75 ,a2 = 3.76× 10−3 and a3 = 5.11.

C. V-I Characteristics of the MOSA

Electrical properties of the ZnO are described through a
nonlinear V-I characteristics as shown in Fig. 2. This nonlinear
behavior of ZnO ceramics is the result of the double Schottky
barriers at the grain boundaries. An important parameter, which
is crucial for the application of the MOSA is the clamping
voltage, Uclamp which is set to 1.5 p.u. When the MOSA
voltage exceeds the clamping voltage, Uclamp, it becomes highly
conductive resulting in a high current flow. UI = 1 mA is the
reference voltage, which is the knee point of the characteristic
curve, transition from highly insulating to conducting condition
[28], [29]. UI = 10 kA is the residual voltage at 10 kA discharge
current [28]. In this work, MOSA curve is aggregated repre-
senting 12 parallel MOSA columns which correspond to the
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Fig. 3. Surge arrester structure and materials.

designed MOSA for the prototype dc CB that will be explained
in the next section. The MOSA module is designed to have a
clamping voltage of 40 kV, which corresponds to 1.5 p.u. of
the nominal dc voltage. The 1 p.u. dc voltage in the presented
research work is equal to 27 kV. The current density through the
ZnO varistor element is determined by:

J(E) =

{
A1

ρgb
exp

(
−Eg−β

√
E

kbT

)
+A2(

E
EB

)
α
J(E) < JU

D(T, J) · A3

ρg
(E − EU) + JU J(E) > JU

(12)

In (12), J denotes the current density expressed in A/cm2, E
is the voltage gradient in V/cm, and A1 and A3 are constant
coefficients in units of V/cm whilst A2 is a constant in A/cm2.
Furthermore, ρgb is the pre-breakdown resistivity in Ω · cm,
Eg is the height of double Schottky barriers with the value of
0.8 eV, β is a constant that deals with the electrical properties
and geometrical structure of the intergranular layer of the ZnO
varistors.

Moreover, e is the electron charge, ε0 = 8.85× 10−12 F/m,
εr is the relative dielectric constant of intergranular layer, which
is in the range of 4 to 25 [22] [30]. And it is chosen with a
value of εr = 8 used in the model; and d is the thickness of the
intergranular layer of ZnO varistors, which in practice is 120 nm.
kb is Boltzmann’s constant, and kb = 1.38× 10−23 J/K, the
value of β = 2.83× 10−2 eV1/2, T is the absolute temperature
expressed in K, EB is the barrier voltage of the element boundary.
The remaining coefficients are:α is the nonlinear coefficient
expressed as α = d(log J)/d(logE) , D(T, J) is a function
of temperature and current density, which is obtained from
experiments. EU is the upturn voltage, EU = EB(JU/A2)

1/α,
where JU = 1× 104A/cm2, is the upturn current density. In the
applied model, these parameters can be changed in a way to
satisfy the electrical properties of different ZnO varistors.

β =

√
e3

4πdε0εr
(13)

D. Geometry of MOSA Module

Fig. 3 illustrates the physical arrangement of the MOSA
columns in a module. The MOSA module comprises two flat
terminal aluminum plates, 12 ZnO varistor columns in parallel.
Each ZnO varistor column consists of 6 ZnO varistor discs
stacked in series, along with spacers and a mechanical fastener.
The geometrical parameters - the diameter, the height and the

length of each column are required to perform the modelling
and simulation.

In order to study the effect of temperature on the V-I character-
istics of the MOSA, it is necessary to ensure that each column has
adequately matched V-I characteristic. When a certain number
of ZnO varistors are stacked in series to form a ZnO varistor
column, the difference in aggregate V-I characteristics between
parallel columns can become significant. This results in non-
uniform current distribution among the arrester columns which
leads to non-uniform temperature rise, which may in turn result
in destruction of the columns exposed to higher temperature.
Therefore, matching the MOSA column V-I characteristics is
important in order to minimize the impact of the dispersion of
the manufacturing process. This can be achieved by performing
the column matching procedure.

The matching procedure is performed by applying 8/20 μs
impulse to the parallel arrangement of several columns in which
one is taken as a reference column. Then, the resulting impulse
current flowing in each column is compared against the impulse
current in the reference column. Considering the residual voltage
printed on the varistor blocks, there are 10 sets of varistors with
residual voltages ranging from 7.35 kV to 7.44 kV. Thus, these
varistors are combined and arranged into six groups as shown
in Table I. As can be seen from this table, the columns are built
in such a way that the total sum of the residual voltages of each
column is equal (44.37 kV).

The data about geometrical parameters, which are needed for
the FE analysis are summarized in Table II. It should be pointed
out that since the MOSA module is designed for indoor ex-
perimentation and providing access for temperature monitoring,
there was no housing placed on the MOSA columns. In practice,
polymer or porcelain housing is used to increase the dielectric
strength and to protect the varistors. Whole solid-insulated
MOSA are widely used for energy absorption in DC circuit
breaker because of the good performance in heat dissipation.
The model proposed in this paper can be applied on other types
of solid-insulated ZnO. The heat conduction, heat convection
and heat radiation equations can be applied on housing and
other insulation materials by changing the parameters of the
corresponding material characteristics.

E. Characteristics of Materials

Energy absorption process can be described by the temper-
ature change with respect to the type of the ZnO material. As
shown in Fig. 3, the varistor material is ZnO and the terminals
and spacers are made of aluminum, whilst the mechanical fasten-
ers are made of brass. The variables in Table III are temperature
dependent parameters, which are available in the COMSOL
default library.

F. Determination of Energy Injection

In order to the obtain the amount of energy injected in
the MOSA columns, the current in each column of MOSA is
measured independently. Thereafter, the power (PSA) and the
energy (ESA) corresponding to these currents can be computed
by equations (14) and (15) respectively. It must be noted that
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Fig. 4. 20 node hexahedra element [31].

the FE analysis is performed with variable voltage, current, and
power. The total current across the MOSAs is computed by (16).

PSA(t) = VSA(t) · ISA(t) (14)

ESA =

∫ t

0

PSA(t)dt (15)

ISA(t) =

12∑
i=1

ISAi
(t) (16)

The parallel connection of MOSA columns implies that they
are stressed by the same voltage. Even though the MO varistor
blocks are macroscopically the same, V-I characteristics may be
slightly different due to manufacturing imperfections that cannot
guarantee exactly identical blocks. This results in different cur-
rent flows and different energy absorptions. Due to lack of data
for each module of the applied MOSA, the same characteristics
for each module is used. Furthermore, our objective is to analyze
the temperature variation of each MOSA column during differ-
ent dc current interruption scenarios, and to propose suitable
methodology that can be applied in practice when dealing with
thermal analysis of MOSA during dc current interruption. The
proposed model can be used for MOSA columns with different
geometry as well as different electrical characteristics.

G. Mesh and Simulation Time Step

The mesh division method and its fineness have an impor-
tant influence on the accuracy of the calculation results. The
constituents of MOSA model are relatively regular and can be
meshed using free meshing methods. When dividing the com-
putational domain, a 20-node six-sided cell is chosen to ensure
high accuracy, with each node of the cell having only one degree
of freedom for temperature. Fig. 4 shows a 20-node six-sided
cell, whose temperature distribution function can be expressed
as (17) [31][32], where r, s, t are coordinates in 3 directions
respectively. And TX (X = I, Q, J …) is the temperature of node
X.

T =
1

8
(TI(1− s)(1− t)(1− r)(−s− t− r − 2)

+ TJ(1 + s)(1− t)(1− r)(s− t− r − 2) + . . .)

+
1

4
(TR(1 + s)(1− t2)(1− r) + TS(1− s)

× (1− t2)(1− r) + . . .) (17)

Transient heat conduction equation (1) can be transformed
into a transient heat balance equation with the nodal temperature
expressed as:

C
•
T+KT = Q(T) (18)

where C is heat capacity matrix; Kis heat conductivity matrix;

Tis temperature matrix;
•
T is the derivative matrix of tempera-

ture with respect to time, and Q is the heat load matrix, which
is temperature dependent.

By utilizing the Euler equation, the temperature at every
instant t can be calculated from the temperature at the previous
instant t-1.

Tt = Tt−1 + (1− θ)Δt
•
T t− 1 + θΔt

•
T t− 1 (19)

where θ is the Euler parameter; Δt is the time step and for
the implicit Euler equation, 0.5 ≤ θ ≤ 1. Accurate results are
strongly dependent on the correct time step applied in the FE
analysis. As FE simulation deals with the solution of a system
of partial differential equations by taking into account different
boundary conditions, the experience shows that the smaller the
time step is, the more accurate the results are. Depending on
the dc CBs, the dc current interruption process lasts several
milliseconds and the energy absorption process usually takes
5–10 ms. In the present case, a simulation time step of 10 μs
for the energy absorption process is used, which is sufficient
to obtain accurate results as it was validated later through the
experimental measurements. This is to take in to account the high
frequency oscillation occurring in the MOSA voltage and current
especially during the initial stage of the current commutation
into the MOSA branch. Besides, the temperature decay lasts
for several tens of minutes, and therefore, the FE simulation
may take very long time when using the same time step. Hence,
for the temperature decay, large time steps are applied. In this
way, the computational procedure is conducted in two steps.
Firstly, the energy absorption is computed by making use of
small-time steps (in the order of 10 μs), and thereafter, the
temperature decay is computed with larger time steps (order of
several seconds). This offers possibility in the future studies to
accelerate the computation process in case when having multiple
reclosing scenarios of the dc CBs.

III. EXPERIMENTAL SETUP

A. Description of the Experimental Test Setup

The test circuit that is used to perform dc CB current in-
terruption is illustrated in Fig. 5 and it has been verified in
[33], [34]. The test circuit is energized by a low frequency ac
short-circuit generator, which operate at 16.7 Hz. The making
switch (MS) controls the current making angle and the master
breaker (MB)controls the supply of low-frequency sinusoidal
current, where only a half cycle is needed. The MB will interrupt
the supplied current at the first natural current zero-crossing
in case the dc CB fails to clear. In order to limit the rate of
rise of the current, an adjustable reactor is used. For the dc
current interruption, an active injection dc CB is utilized and
as previously described in Fig. 1, the applied dc CB consists
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Fig. 5. Equivalent test circuit for dc CB energy absorption.

Fig. 6. Laboratory setup of the dc CB components.

of three branches: the main branch, the current commutation
branch, and the energy absorption branch. The main branch is
a vacuum circuit breaker (VCB) rated at a voltage of 36 kV
and a breaking current of 40 kA. The VCB is actuated by a
spring mechanism providing an opening time of 46.6 ms. The
opening time of the breaker is the duration between received trip
signal and the instant of contact separation, which is precisely
known before the experiment takes place. Hence, the trip signal
of MS, the VCB and the triggered spark gap (TSG2) can be
precisely sequenced. The active injection branch comprises of
a pre-charged current injection capacitor (Cinj), a current injec-
tion inductor (Linj) and a TSG2. The energy absorption branch
consists of twelve MOSA columns. The laboratory set up of the
main dc CB components can be seen in Fig. 6.

As the scope of the paper is the energy absorption by the
MOSAs in dc CB during interruption, the dc CB topology and
the driving mechanism or the fault current clearing time are
beyond the scope. Therefore, more details can be found in [34].

B. Measurements

During the experimental campaign, several MOSA parame-
ters were monitored, and the following measurements have been
recorded:
� Voltage across the VI

Fig. 7. Surge arrester measurement and surge arrester prototype.

Fig. 8. Typical test results of current through and voltage across MOSA.

� Current through the VI
� Voltage across the MOSA
� Total current through the MOSA
� Current through eight columns of MOSA
� Temperature measurement of eight columns of MOSA (the

same columns in which current measurements were taken)
A multi-channel fiber optic-based based temperature mea-

surement system with data acquisition rate as high as 10 Hz per
channel is used. This system is Qualitrol, Neoptix OmniFlex-2
temperature measurement system as shown in zoom in Fig. 6.
Fig. 7 shows the MOSA module with eight mounted fiber
optic-based temperature sensors. The sensors are placed at the
center of each column since this is typically the hottest spot.

IV. RESULTS AND ANALYSIS

A. Typical Test Results of MOSA Voltage and Current

Fig. 8 depicts a typical test result showing the current com-
mutation in the MOSA branch. The negative voltage across the
MOSA is a pre-charged voltage across the injection capacitor
applied to the MOSA as well.

Firstly, the current is cleared by the VI at the 2nd high-
frequency current zero crossing. Thereafter, the injection branch
is activated where the current commutes to and charges the
capacitor. When the voltage across the capacitor reaches around
35 kV, the MOSA begins to conduct, and the system current
commutates from the capacitor to the MOSA (which is indicated
by the magenta and the black trace in the zoomed part of Fig. 8).
However, the commutation does not stop until the MOSA current
equals the system current. Instead, the MOSA current continues
to increase to a higher value than the system current. This is
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Fig. 9. Simulation results of MOSA temperature variation.

Fig. 10. Experimental results of MOSA temperature variation.

due to the loop stray inductance between the injection capacitor
and the MOSA, where a circulating current flow. This is well
visible in the decaying oscillation of the MOSA and capacitor
current measurements. This oscillation is not observed in the
system current. This circulating current results in an oscillating
capacitor charge and a TIV, which may be reduced by a compact
(low inductance) design of the set-up. The difference in the
voltage measurements across the VI and the MOSA is due to
the voltage drop across the stray inductance of the measurement
loop. In this case, the MOSA conducts for about 4 ms whilst
maintaining the voltage above 38 kV. During this time, the
absorbed energy from the MOSA is about 1.3 MJ.

B. Successive DC Interruption and MOSA
Temperature Variation

Three successive dc current interruptions are carried out, for
which the measured energy absorption in each test is about 850
kJ. The ambient temperature during the test was 13 °C. Fig. 9 and
Fig. 10 show the simulated results and the experimental results of
the MOSA temperature variation, respectively. The first current
interruption occurs at t = 183.0 s. From 183.0 s to 183.3 s, the

TABLE IV
ENERGY ABSORPTION IN EACH MOSA COLUMN

MOSAs temperature abruptly rises because this period the heat
is transferred from ZnO varistors to the aluminum disc in which
the fiber optic-based temperature sensors are inserted, and the
MOSAs reaches the first peak value of 39.6 °C. As soon as the
MOSA energy absorption is finished, the temperature decays
slowly. The heat in the MOSA columns begins to diffuse into the
environment of the MOSA which undergoes a heat conduction
process. The second interruption occurs at t = 1127.0 s and
the third interruption at t = 1767.0 s, respectively. The energy
absorbed in each column for all three interruptions is shown in
Table IV. As we can see from the results, columns 8, 10 and
11 absorb more energy than the other columns. As a result, the
temperature rise in these three columns is higher than that of the
others.

During the first current interruption, the temperature differ-
ence between the local maximum and minimum temperature is
1.8 °C; and for the second interruption and the third interruption,
the maximum and the minimum difference is 3.9 °C and 5.2 °C.
After 3 successive interruptions, the MOSA columns are at
a higher average temperature, and a greater difference exist
between maximum and minimum temperature. The difference
between the experimental results and the simulation results,
which is mainly due to the assumptions in the simulation is 1.4%.

In this experimental work, the currents through 8 MOSA
columns are also measured for three successive dc current inter-
ruptions. The currents through the MOSA columns for the first
dc current interruption and for the third dc current interruption
are presented in Fig. 11 and Fig. 12, respectively, and imply
that the current through the MOSA columns is not equally
distributed.

Especially, the deviation between the column currents in-
creases as the MOSA temperature increases. The temperature
difference is enlarged due to differences in the cooling of MOSA
columns caused by the physical arrangement of the columns. The
columns which are located in the middle along the length of the
MOSA module have less ventilation compared to those located
at the edges.

The temperature distribution among the ZnO varistor columns
after the 3rd current interruption is shown in Fig. 13.

The current distribution uniformity B is expressed as a ratio
between the maximum and the average current among all ZnO

Authorized licensed use limited to: TU Delft Library. Downloaded on February 23,2023 at 14:43:30 UTC from IEEE Xplore.  Restrictions apply. 



LIU et al.: THERMAL FEM ANALYSIS OF SURGE ARRESTERS DURING HVDC CURRENT INTERRUPTION VALIDATED BY EXPERIMENTS 1419

Fig. 11. Measured current distribution among MOSA columns during 1st

energy absorption.

Fig. 12. Measured current distribution among MOSA columns during 3rd

energy absorption.

Fig. 13. Simulation result of temperature distribution after 3rd current
interruption.

varistor columns, (Imax) and (Iave), respectively:

B =
Imax − Iave

Iave
(20)

The difference of the maximum temperature and the average
temperature can be computed by (5), (10) and (12) as (13). The

Fig. 14. Test results of V-I characteristic during three interruptions.

temperature difference can be estimated as BEave, if the impact
of temperature on density and heat capacity is neglected.

ΔTmax−ΔTave=
Emax

V ρmaxCP _max
− Eave

V ρaveCP _ave
≈ BEave

(21)
The temperature difference between columns leads to more

non-uniform current distribution, which results in greater tem-
perature difference. As a result of this, MOSA failure may
take place after several current interruptions. Meanwhile, the
negative temperature-resistivity characteristic of ZnO varistors
also contributes to a greater difference. As shown in Fig. 14, the
V-I characteristic of one column during the third interruption
with different temperature are compared. With the increase of
MOSA temperature, the voltage required to generate the same
current decreases. In the high-current region, the temperature has
more impact on the voltage for the same current, whilst in the
low-current region, the temperature difference has less impact
on the V-I characteristic. D(69 °C, 800 A)= -0.020 °C/kV, which
is verified by the test results in [35].

C. Cracking

The mechanical pressure inside the ZnO varistors during the
temperature variation is shown in Fig. 15. The open circles in
Fig. 15 are simulation results, and the line is the relation between
the temperature rise and mechanical pressure. The critical ther-
mal stress Fc, which is capable of cracking the varistor is in the
range of 48.3 MPa [22] to 100 MPa [23]. The value of 48.3 MPa
is chosen as the safe operation threshold of the ZnO, for which
the corresponding temperature is 150 °C.

Furthermore, MOSA destruction tests are carried out with four
successive current interruptions, until the cracking failure takes
place. The temperature variation during MOSA destruction tests
is shown in Fig. 16. The energy absorbed by MOSA in first three
tests is 2.59 MJ, 2.68 MJ and 2.64 MJ, respectively. Meanwhile,
the temperature variation of MOSA in first three tests is 72.0 °C,
68.6 °C and 66.3 °C, respectively. The fourth test is carried
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Fig. 15. Thermal stress inside surge arrester influence by temperature.

Fig. 16. Temperature measurement during MOSA destruction tests.

out at 12.7 minute, at which time the MOSA temperature is
194.3 °C. The MOSA absorbs the energy normally for 2.2 ms,
then failure occurs. At instant of failure, the MOSA temperature
is 222 °C, the voltage across MOSA is 38.5 kV and the current
through MOSA is 10.6 kA.The cracking destruction occurs at
T = 222 °C, a temperature for which the corresponding thermal
stress is 74 MPa.

V. CONCLUSION

The paper presents the thermal behavior of MOSA resulting
from dc current interruption realized with active current injection
dc CB. The model is built by making use of the fluid dynamics
equations in powerful COMSOL. The focus of the work is to
analyze the energy absorption process and heat diffusion in the
MOSA modules, and it can be used to identify the hot spots in
the MOSA. The model offers large scale flexibility, and each
MOSA module can be modeled by different V-I characteristic
and different geometry as long as it is necessary. The com-
putation process is conducted in two stages, which comprise
small and large time steps during fast temperature rise and very

slow temperature decay, respectively. The computed results are
qualitatively compared by unique experimental results where the
measurements are conducted by utilizing mounted fiber optic-
based temperature sensors. The computed and the experimental
results are in good agreement, which verifies the validity of the
MOSA thermal model.

The deviation between the column currents increases as the
temperature of the MOSA increases. The temperature difference
is enlarged due to differences in the cooling of MOSA columns
caused by the arrangement of the columns. As the columns
located in the middle have less convection losses compared to
the peripheral columns, larger temperature difference exists. In
the high-current region, the temperature has higher impact on
the voltage amplitude for the same current value. The performed
analysis can be used for every dc CB to evaluate the performance
of the MOSAs, which play an important role for the successful
operation of the dc CBs.
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