

Curved Concrete Elements: Rheological Parameters used for Deliberate Deformation of a Flexible Mould after Casting

Schipper, Grünewald, Raghunath, Delft University of Technology

> September, 2013 RILEM Paris Conference

Goal: make curved concrete

Outline

- Complex Geometry
- An Open, Flexible Mould
- Curvature and Slope
- Thixotropy and yield strength

2 Experiments

- Experimental setup
- Results
- 3 Conclusions

Complex Geometry An Open, Flexible Mould Curvature and Slope Thixotropy and yield strength

Curved Elements in Freeform Architecture

Trends in precast concrete:

- More and more buildings with complex geometry
- Manufacturing is expensive:
 - limited repetition
 - high mould costs
 - complex shape
- Reconfigurable Mould System

Heydar Aliyev Cultural Centre Baku (Zaha Hadid Architects)

Complex Geometry An Open, Flexible Mould Curvature and Slope Thixotropy and yield strength

Curved Elements in Freeform Architecture

Trends in precast concrete:

- More and more buildings with complex geometry
- Manufacturing is expensive:
 - limited repetition
 - high mould costs
 - complex shape
- Reconfigurable Mould System

Heydar Aliyev Cultural Centre Baku (Zaha Hadid Architects)

→ < Ξ → <</p>

Complex Geometry An Open, Flexible Mould Curvature and Slope Thixotropy and yield strength

Curved Elements in Freeform Architecture

Trends in precast concrete:

- More and more buildings with complex geometry
- Manufacturing is expensive:
 - limited repetition
 - high mould costs
 - complex shape
- Reconfigurable Mould System

Heydar Aliyev Cultural Centre Baku (Zaha Hadid Architects)

∃ → ∢

Complex Geometry An Open, Flexible Mould Curvature and Slope Thixotropy and yield strength

Curved Elements in Freeform Architecture

Trends in precast concrete:

- More and more buildings with complex geometry
- Manufacturing is expensive:
 - limited repetition
 - high mould costs
 - complex shape
- Reconfigurable Mould System

Heydar Aliyev Cultural Centre Baku (Zaha Hadid Architects)

Complex Geometry An Open, Flexible Mould Curvature and Slope Thixotropy and yield strength

Curved Elements in Freeform Architecture

Trends in precast concrete:

- More and more buildings with complex geometry
- Manufacturing is expensive:
 - limited repetition
 - high mould costs
 - complex shape
- Reconfigurable Mould System

Heydar Aliyev Cultural Centre Baku (Zaha Hadid Architects)

Complex Geometry An Open, Flexible Mould Curvature and Slope Thixotropy and yield strength

Curved façade cladding

Fondation Louis Vuitton pour la création, Paris Frank O'Gehry Architects

ntroduction	Complex Geometry			
×periments	An Open, Flexible Mould			
Conclusions	Curvature and Slope			
Outlook	Thixotropy and yield stre			

ntroduction	Complex Geometry			
xperiments	An Open, Flexible Mould			
Conclusions	Curvature and Slope			
Outlook	Thixotropy and yield stren			

ntroduction	Complex Geometry				
xperiments	An Open, Flexible Mould				
Conclusions					
Outlook	Thixotropy and yield stren				

Complex Geometry An Open, Flexible Mould Curvature and Slope Thixotropy and yield strength

Principle

troduction	Complex Geometry
xperiments	An Open, Flexible Mou
onclusions	
Outlook	Thixotropy and yield st

ntroduction	Complex Geometry				
×periments	An Open, Flexible Mould				
Conclusions	Curvature and Slope				
Outlook	Thixotropy and yield stre				

ntroduction	Complex Geometry				
×periments	An Open, Flexible Mould				
Conclusions					
Outlook	Thixotropy and yield stre				

troduction	Complex Geometry			
periments	An Open, Flexible Mould			
onclusions				
Outlook	Thixotropy and yield stre			

Introduction An Open, Flexible Mould Outlook

Principle

Schipper, Grünewald, Raghunath, Delft University of Technology

Curved Concrete Elements

Introduction Complex Geometry Experiments An Open, Flexible Mould Conclusions Curvature and Slope Outlook Thixotropy and yield stre

Principle

troduction	Complex Geometry
periments	An Open, Flexible Mould
onclusions	Curvature and Slope
Outlook	Thixotropy and yield stren;

Slope

Open mould -> slope

- Gravity makes concrete flow down
- Yield strength keeps concrete in place
- Edge of mould keeps concrete in place

roduction	Complex Geometry
periments	An Open, Flexible Mould
onclusions	Curvature and Slope
Outlook	Thixotropy and yield stre

Curvature

Bending -> Curvature

- By deforming a strain is initiated
- Yield strength might lead to cracks
- Relation between R and h?

Introduction	Complex Geometry
Experiments	An Open, Flexible Mould
Conclusions	Curvature and Slope
Outlook	Thixotropy and yield strength

Table with needed yield strength

Table 2. Critical yield strength $\tau_{0,crit}$ necessary for casting under slope θ , depending on mould radius, element length (horizontal) and height (for a circular shape $\tau_{0,crit} = \rho g \ln L / 2R$)

Element length	Element height	curvature R=1.5 m		curvature R=2.5 m		curvature R=5.0 m	
L [m]	h [m]	slope θ [°]	τ _{0;crit} [Pa]	slope θ [°]	τ _{0;crit} [Pa]	slope θ [°]	τ _{0;crit} [Pa]
0.80	0.025	15.5	157	9.2	94	4.6	47
0.80	0.050	15.5	314	9.2	188	4.6	94
0.80	0.100	15.5	628	9.2	377	4.6	188
2.00	0.025	41.8	329	23.6	235	11.5	118
2.00	0.050	41.8	785	23.6	471	11.5	235
2.00	0.100	41.8	1570	23.6	942	11.5	471

Introduction	Complex Geometry
Experiments	An Open, Flexible Mould
Conclusions	Curvature and Slope
Outlook	Thixotropy and yield strength

Using thixotropy

Thixotropic mixtures were used:

- two mixtures
 - mixture 1 (coarse): all aggregates < 8 mm
 - mixture 2 (fine): al aggregates < 1 mm
- use of sufficient amount of fines
 - cement CEM I 52,5 R
 - Fly ash
 - Omya Betoflow D
- superplasticizer Chryso Premia 196
- quick structural build-up in first hour after mixing

Experimental setup Results

Test Setup - four identical moulds

Timber frame with silicone moulds

- Simple grid of metal pins
- Manual adjustment of height
- Double layer of timber strips
- Silicone rubber moulds

Schipper, Grünewald, Raghunath, Delft University of Technology

Curved Concrete Elements

Experiments Conclusions Outlook

Experimental setup Results

Rheology

Slump (flow) tests

BML Viscometer

Experimental setup Results

Deformation after casting

Experimental setup Results

Deformation after casting

Schipper, Grünewald, Raghunath, Delft University of Technology

Curved Concrete Elements

Rheology - Slump tests

Rheology - BML Viscometer

Experiments Conclusions Outlook

Experimental setup Results

Cast elements

Combined elements

▲御▶ ▲ 臣▶ ▲ 臣▶

Experimental setup Results

Cut slices

بر الم

Conclusions

→ < Ξ → <</p>

Conclusions

Conclusions

TUDelft

Conclusions

Conclusions

- concrete does not flow out
- no cracking due to deformation
- Curvature with R=1.5 m is possible
- O deformation 30-60 minutes after mixing
- use thixotropic mixture
 - quick rise of yield strength
 - still plastic enough to prevent cracking

Future research

Acknowledgements

Thanks to:

- co-authors
- prof. dipl.-ing.
 Vambersky (promotor)
- Conovation (material sponsor)
- lab technicians

Thank you for your attention!

