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A B S T R A C T

Modelling dislocation glide over the initial part of a stress–strain curve of metals received little attention up
to now. However, dislocation glide is essential to ones understanding of the fundamental relationship between
inelastic deformation and the evolution of the dislocation network structure. Therefore, we present a model
of dislocation-driven deformation under static loading conditions.

We reproduce repeated cyclic uniaxial tensile tests on Interstitial-Free and Low-Alloy steels. The elastic
mechanical behaviour is described by isotropic linear elasticity, pre-yield anelastic mechanical behaviour by a
dislocation bow-out model with dissipation, and the post-yield evolution of dislocation network structure by
a statistical storage model. We hypothesise that when the local anelastic compliance is lower than the global
plastic compliance, deformation is mechanically recoverable, and vice versa. This hypothesis is corroborated
with the classical Taylor relation. We report the relation between stable and unstable dislocation glide using
this prototypical modelling framework.

We find four structural variables, that are based on dislocation physics, to describe the stress–strain
curve: total dislocation density, average dislocation segment length, dislocation junction formation rate,
and average dislocation junction length. Firstly, we quantify the dislocation network evolution during
uniaxial monotonic loading, and verify work-hardening by dislocation junction formation and a Taylor-type
equation for flow. Finally, we present a semi-empirical relation for the evolution of the dislocation network
structure. Which allows us to: refine the physical interpretation of the Taylor relationship, and rationalise
experimental observations on apparent modulus degradation by thermomechanical processing. Both these
findings circumvent the limitations of current, physics-based hardening models.
1. Introduction

Metals typically undergo significant deformation before they frac-
ture. The force per unit area necessary to continue deformation in-
creases with the previously applied plastic strain, which is called
strain or work hardening. Hence hardening is commonly associated
with plasticity. A lesser studied type of deformation is anelasticity,
i.e. recoverable nonlinear mechanical behaviour, as observed by [1–7].
Anelastic deformation is an additional strain component on top of the
elastic lattice strain during loading and unloading. Li and Wagoner [7]
show that anelastic deformation is dissipative yet mechanically re-
coverable, while plastic deformation is both thermodynamically and
mechanically irrecoverable. The physical interpretation of yield thus is
the transition from mechanically recoverable to mechanically irrecover-
able deformation. Both types of deformation are inelastic, that literately
means non-elastic.

∗ Corresponding author.
E-mail address: j.s.vandokkum@tudelft.nl (J.S. Van Dokkum).

1.1. Background

At temperatures below about one-third of the melting point of
metals, dislocation glide is the dominant mechanism of inelastic defor-
mation [8]. It is common knowledge that the mechanical deformation
of metals is chiefly governed by the generation, glide and storage of
dislocations [9]. The key microstructural feature thus is the dislocation
network [8,10]. The structure of the dislocation network is complex,
with a distribution of dislocation-link lengths [8,11]. The network is a
continuous structure that consists of dislocation links delimited by mi-
crostructural features like precipitates, solute atoms, grain boundaries,
and junctions with adjacent dislocations within the same net [9,12].
Those points of interaction, which include all microstructural defects
that impede local dislocation motion, are commonly known as pinning
points [9]. A schematic representation of a dislocation link bound by
two forest dislocations is presented in Fig. 1(a).
vailable online 7 February 2023
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Nomenclature

𝛼 Proportionality (–)
𝛼′ Taylor relationships’ constant (–)
𝑏 Burgers vector magnitude (L)
𝛽 Junction formation rate (–)
𝛽 Work-hardenability (–)
𝐶 Constant (– & L−1)
𝛾 Shear strain (–)
𝐸 Elastic modulus (ML−1t−2)
𝜖 Strain (–)
𝛩 Tangent modulus (ML−1t−2)
𝑗 & 𝑘 Slip-system indices (–)
𝑙 Segment length (L)
L Length
𝑀 Taylor factor (–)
M Mass
𝜇 Shear modulus (ML−1t−2)
𝑁 Number (–)
𝜈 Poisson’s ratio (–)
𝜉 Junction length (L)
𝑅 Radius (L)
RMSE Root mean-square error (–, L−2 & ML−1t−2)
R2 Coefficient of determination (–)
𝜌 Dislocation density (L−2)
𝑞−1 Hardening ratio (–)
𝑆 Area (L2)
𝜎 Stress (ML−1t−2)
𝜏 Shear stress (ML−1t−2)
t time
𝑉 Volume (L3)
𝜙 Angle (–)
𝑥 & 𝑧 Cartesian coordinates (L)

The motion of a given dislocation link, which is an initially straight
islocation segment under zero Peach–Koehler force delimited by pin-
ing points, was first described by Frank and Read, and is known
s a Frank–Read source [14,15]. A schematic representation of the
rank–Read (FR) source is given in Fig. 1(b). While a given link, that
s delimited by stable junctions, bows out on its glide plane and not
et attains its critical, semicircular shape, the shear strain contribution
s mechanically reversible [1]. The interaction between dislocations
n non-parallel planes during Stage-II hardening forms these stable
unctions that are strong obstacles to local dislocation motion [16].

hen a link attains its critical shape, the link starts acting as a so-called
ource [15]. The ensuing dislocation loop, if unimpeded, keeps ex-
anding. The latter action is commonly referred to as the activation of
rank–Read sources, and herein, the main mechanism for dislocation
ensity increase.

Plastic mechanical deformation is commonly captured in
ork-hardening models, e.g. Kocks [17], Kocks and Mecking [18],
strin and Mecking [19], Bergström [20,21], Bergström-Van Liempt
22,23] and internal-variable models [24,25], which make use of
olume averaged quantities, e.g. the total dislocation density, aver-
ge storage distance and average interaction range. In the remain-
er of the present work, we consider static loading conditions [16],
.e. time-dependent (dislocation) interactions that take place at much
horter timescales than the rate of loading and unloading. Hardening
odels consist of two parts [26]. The first part describes the dislocation
etwork evolution. The dislocation network structure evolves by the
2

glide of activated dislocation links, commonly called mobile disloca-
tions [9,16]. The global dislocation density increases and the average
dislocation segment length decreases on a given (active) slip-system [26]
Upon load reversal, the stored, previously mobile, dislocation links
reverse their motion. Yet, they remain inactive as Frank–Read sources
because the dislocation network refined concurrently. Plastic deforma-
tion is thus uniquely defined after unloading, i.e. the area swept by
mobile dislocations whilst hardening minus the mechanically recov-
erable anelastic component of the total strain. Virtually all present
work-hardening models neglect anelastic strain; the second part of
hardening models consists of a flow rule that relates the current
dislocation network geometry to the global flow strength. Commonly
the flow strength is determined by a Taylor-type equation [27]. The
Taylor relation is sometimes rationalised with the force necessary to
activate dislocation links [28], under the assumption that the average
segment length scales with the square root of the dislocation den-
sity [8,26]. In the Taylor model, hardening is thus due to either the
increase in global dislocation density [27] and/or the decrease of local
dislocation segment lengths [28]. Taylor-type equations assume solely
linear elastic pre-yield behaviour, although dislocations mechanics is
modelled [27,29]. Hence there are few studies that explicitly model
dislocation glide over the entire stress–strain curve of metals. Currently,
we are solely aware of the work by Torkabadi et al. [30], who use a
mixed physical-phenomenological model. More common are hyperelas-
ticity and Mroz-like multi-surface descriptions of continuum inelastic-
ity, and complex path- and direction-dependent hardening models of
continuum plasticity (See [7] for an extensive overview).

Several yield strength models do explicitly consider dislocation
motion before massive dislocation multiplication initiates. Recently,
Van Liempt and Sietsma [4] postulate a yield criterion based on the
identification of the transition in dislocation behaviour from limited
reversible glide in the pre-yield stage, without essential changes in
the dislocation structure, to post-yield dislocation multiplication. The
methodology as championed by Van Liempt and Sietsma [4] yields the
dislocation density and a measure of dislocation segment lengths. Li
and Wagoner [7] present a dissipative dislocation bow-out model, that
they [7] state reproduces anelastic unloading–reloading hysteresis. The
aforementioned dislocation bow-out models [4,7] excel in capturing the
dissipative and mechanically reversible pre-yield deformation, however
omit significant mechanically irreversible dislocation motion, that is at
the origin of plastic strain and hardening. The flow strength descrip-
tion in current hardening models juxtaposed to bow-out models [4–7]
leads to solely linear elastic behaviour; the majority of work-hardening
models lacks a description of reversible dislocation motion and bow-out
models [4–7] omit significant irreversible dislocation motion. From an
engineering perspective, the total recoverable strain during loading and
unloading governs the apparent elastic modulus [1–3,31,32], which is
essential for materials models of cyclic loading and precision engineer-
ing [4,7,33], and in spring-back and thermomechanical processing of
metals alloys [5,30,34]. Especially the nonlinear unloading–reloading
behaviour in thermomechanical manufacturing processes is ill under-
stood, which directly affects the process parameters, and assurance of
products’ properties and quality [35]. There is thus a distinct need
for a unified inelastic model, where the physics-based descriptions of
the anelastic and plastic strain are combined, that currently lacks in
literature.

1.2. Outline

We propose a novel yield criterion that encompasses both the local
behaviour of individual sources and the global dislocation interactions
that constitute hardening. First, we ensure that the bow-out model
and a statistical storage [36] model share the same set of dislocation
structural variables, which is the unification in the present work. Then,
we hypothesise that when the local anelastic compliance is higher
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Fig. 1. Schematic representation of (a) a dislocation link on slip system 𝑘 pinned by two forest dislocations on slip system 𝑗, and (b) a Frank–Read source with an initially straight
dislocation segment. Adapted from [4,13], respectively.
than the global plastic compliance, deformation is mechanically ir-
recoverable, and vice versa. In this work, we construct a model of
inelastic deformation under static loading conditions. The unified in-
elastic model consists of three parts: part one describes the anelastic
deformation in the absence of structural change in the dislocation
network, i.e. the dissipative dislocation bow-out model [7]. Here, we
simplify the quasi-static bow-out model by Benzerga et al. [37]; part
two describes the structural change of the dislocation network with
plastic strain. Here, we re-interpret the proto(type)-statistical storage
model by Kocks [17]; and, part three is the physics-based criterion
that identifies the transition from mechanically recoverable to irrecov-
erable deformation. The present model must be: general, to apply
to various metals; concise, to represent dislocation physics; consistent,
to incorporate commonplace material properties; and, transparent, to
uniquely capture the stress–strain curves shape. These steps allow us to
define the four unique physical, structural variables of total dislocation
density, average segment length, junction formation rate and average
junction length. Herewith we finalise our unified model, that we use to
analyse uniaxial tensile force–displacement curves.

All is performed under the following main assumption: the pro-
portionality 𝛼 between the square root of the dislocation density

√

𝜌 and
the number of junctions per unit dislocation length 1∕⟨𝑙⟩ is constant for
monotonic uniaxial loading in each cycle. This is based on the relation
between the aforementioned proportionality 𝛼 and the Taylor relation-
ships’ constant 𝛼′ [27] as proposed by Arechabaleta et al. [6]. The
proportionality 𝛼 ≡ 1∕

(

⟨𝑙⟩
√

𝜌
)

thus represents the geometry of the dis-
location network, wherein the global dislocation density is connected to
the local dislocation-link structure as described by average dislocation
segment length ⟨𝑙⟩. From a physics perspective, we identify a disparity
between the invariance of the Taylor relationships’ constant 𝛼′ during
work hardening, which is widely accepted, and the different functional
forms of the proportionality 𝛼. Several works find that the proportional-
ity 𝛼 is constant [6,26,38], while others [5,7,8] report that it decreases
with plastic deformation.

In the remainder, the following results are presented and discussed:
first, we corroborate our definition of yield with the square root de-
pendence of the yield strength on dislocation density. Wherefore we
analyse the experimental force–displacement results of asymmetric
stress, low cyclic, uniaxial ratcheting of single phase, Interstitial-Free
and Low-Alloy, steels [5,6]. Moreover, we find our definition of yield
to be in keeping with the Taylor relationship [27]; then, we repro-
duce the evolution of average dislocation segment length and density
with plastic monotonic uniaxial loading. Combining these findings, we
construct the statistical storage-base work-hardening model. The statis-
tical storage-based work-hardening model allows us to verify that the
Taylor relationship captures the flow stress increase with dislocation
network structure evolution; finally, we find that the proportionality 𝛼
3

decreases monotonically with plastic strain, yet distinctly different from
previous reports [6,7]. These observations prompt us to experimentally
quantify the evolution of the dislocation network structure. Hence we
derive a new, semi-empirical relation of proportionality change that
accompanies work hardening. This relation then allows us to: present a
new physical interpretation for the Taylor relationships’ constant 𝛼′; ra-
tionalise previous experimental observations [30,32,35,39–42] on the
changes in initial apparent moduli with thermomechanical processing;
and, finally, we propose a first step towards improving the current
unified inelastic model.

With the present work, the in-depth understanding of the fundamen-
tal relationships between limited plastic deformation and the disloca-
tion structure, and the mechanical properties of anelastic deformation,
yield and flow are advanced. We contribute to current works [4–7]
with a seamless, unified stress–strain treatment, that combines the three
deformation mechanisms of elastic bond stretching, stable and unstable
dislocation glide. The unified model allows us to ascertain the Taylor
relationship and the proto-statistical storage model; two premises of
physical metallurgy. Ergo we establish a physics-informed connection
between the geometry of the dislocation network, by proportionality 𝛼,
and the Taylor relationships’ constant, 𝛼′.

2. Theory

For an isotropic mechanical response and uniaxial loading 𝜎, the
total principal strain is

𝜖 (𝜎) = 𝜖el (𝜎) + 𝜖in (𝜎) =
𝜎
𝐸

+ 𝜖an(𝜎) + 𝜖pl(𝜎), (1)

with elastic lattice strain 𝜖el, inelastic strain 𝜖in, and anelastic and plas-
tic strains, 𝜖an and 𝜖pl, respectively, where 𝐸 is the isotropic linear elas-
tic modulus. Here, the Roman subscript ∙ indicates a given mean-field
property ∙. In the following, we consider solely isothermal deformation
conditions.

2.1. Anelastic strain

A pinned dislocation segment with length 𝑙 lays along the 𝑥-axis
with the applied shear stress 𝜏PK in Fig. 2. Benzerga et al. [37]
solved the differential equation of motion, under quasi-static loading
conditions, of a single dislocation link for a constant Peach–Koehler
force 𝜏PK𝑏, with the Burgers vector magnitude 𝑏. The Roman super-
script ∙ indicates a given specification ∙. These quasi-static loading
conditions mean that the solution of the differential equation of motion
is approximated by omission of inertia [43]. Under static equilib-
rium, the velocity of the dislocation line vanishes and the given link’s
curvature is
1 = 2𝜏PK

, (2)

𝑅 𝜇𝑏
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Fig. 2. Schematic representation of a dislocation link with radius of curvature 𝑅,
ubtended angle 𝜙 and swept area 𝑆 indicated by a grey semicircle.
ource: Adapted from [4].

here 𝜇 = 𝐸∕ (2 (1 + 𝜈)) is the linear elastic shear modulus, with
oisson’s ratio 𝜈. The area swept by the given link is

(𝜙) =

⎧

⎪

⎨

⎪

⎩

−𝜋𝑅2 − 1
2𝑅

2(𝜙 − sin(𝜙)), −𝜋 ≥ 𝜙 > −2𝜋;
1
2𝑅

2(𝜙 − sin(𝜙)), 𝜋 > ‖𝜙‖ ≥ 0;
𝜋𝑅2 − 1

2𝑅
2(𝜙 − sin(𝜙)), 𝜋 ≤ 𝜙 < 2𝜋;

, (3)

with the subtended angle

𝜙 (𝑅∕𝑙) =

⎧

⎪

⎨

⎪

⎩

−2𝜋 − 2 sin−1 (𝑙∕(2𝑅)) , 𝑅 < − 𝑙
2 ;

2 sin−1 (𝑙∕(2𝑅)) , ‖𝑅‖ ≤ 𝑙
2 ;

2𝜋 − 2 sin−1 (𝑙∕(2𝑅)) , 𝑙
2 < 𝑅;

. (4)

ubstituting Eqs. (2) and (4) in Eq. (3), we obtain the swept area for
hear stress 𝜏PK < 𝜇𝑏∕𝑙 as

(

𝜏PK, 𝑙
)

= 𝑙2

8

(

𝜏c

𝜏PK

)2 (

2 sin−1
(

𝜏PK

𝜏c

)

− sin
(

2 sin−1
(

𝜏PK

𝜏c

)))

, (5)

ith the critical line stress 𝜏c ≡ 𝜇𝑏∕𝑙. In the following, pre-yield
islocation motion is limited to planar glide.

We take the local Peach–Koehler force 𝜏PK𝑏 equal to 𝜏𝑘𝑏, with
esolved shear stress 𝜏𝑘 in slip system 𝑘. Note that the Italic subscript ∙ is
ot the index notation, but indicates a given slip system ∙. The anelastic
hear strain is

an
𝑘 (𝜏𝑘) =

𝑏𝜌𝑘
⟨𝑙𝑘⟩

𝑆
(

𝜏𝑘, ⟨𝑙𝑘⟩
)

, (6)

where the average segment length ⟨𝑙𝑘⟩ is related to the dislocation den-
sity 𝜌𝑘 on slip system 𝑘. We thus consider a dislocation-link
length-distribution, that we model implicitly by representative, volu-
metric mean, dislocation structural properties ∙ indicated by ⟨∙⟩.

2.2. Statistical storage model

Kocks [17,36] constructed a self-styled statistical dislocation storage
and dynamic recovery model. This early model, often called prototype
[44] and/or Kocks–Mecking model, is a posteriori rationalised by the
empirical Palm–Voce equation [45,46]. The formulation is originally
based on the forest strengthening model [10,47], although this is not
advocated as such in the earliest publication [17]. Furthermore, the
dislocation interaction is confined to interaction between mobile and
forest dislocations, and the model was formulated for zero Kelvin as
well. In order to relate the flow strength at 0 K to the glide flow stress
at finite temperatures and applied strain rates, one can use, follow-
ing [17,44,48], a simple Arrhenius expression for thermally activated
glide. We extend this proto-statistical storage-based model.
4

Mobile dislocation links travel a given distance till they interact
with microstructural obstacles and/or (other) dislocations. The latter
interaction predominantly forms stable junctions between dislocation
lines on the given slip system and/or forest planes. We refer to this
process as dislocation storage and gave a schematic representation
thereof in Fig. 1(a). Another part of the dislocation density annihilates
because oppositely signed dislocations meet, or they reach free surfaces
and grain boundaries. We thus write the forest dislocation structure
evolution as:

𝜕𝜌𝑗
𝜕𝜖pl

=
𝜕𝜌+𝑗
𝜕𝜖pl

−
𝜕𝜌−𝑗
𝜕𝜖pl

. (7)

The forest structure evolution describes the creation and loss of a given
part of the junction density 𝜌𝑗 , where slip systems 𝑗 form junctions
with a given slip system 𝑘. Note that the junction density 𝜌𝑗 is the
number of potential junction sites to be formed between a given mobile
dislocation link on slip system 𝑘 with the given dislocation link on
system 𝑗. Here, the first term on the right-hand side of Eq. (7) is defined
by the chance that a mobile dislocation encounters a potential junction
and, subsequently, forms a (stable) junction. Therefore, assuming a
model with the mean free path on slip system 𝑘 given by the effective
junction spacing

(

√

𝜌𝑗
⟨

𝛽𝑘𝑗
⟩

)−1
, we write the storage term as:

𝜕𝜌+𝑗
𝜕𝜖pl

=
⟨

𝛽𝑘𝑗
⟩

𝜌m
𝑘
√

𝜌𝑗
𝜕 ⟨𝑅𝑘⟩

𝜕𝜖pl
, (8)

where d ⟨𝑅𝑘⟩ is the average distance travelled by mobile dislocation
lines per unit of volume 𝜌m

𝑘 during a principal strain increment d𝜖pl.
Furthermore, the mean junction formation rate ⟨𝛽𝑘𝑗⟩ [49,50] is assumed
to be temperature independent, and, as will be shown, an effective
measure that relates the dislocations on slip system 𝑘 to the dislocation
densities on all slip systems, which include system 𝑘. The double Italic
subscripts ∙𝑘𝑗 indicate the interaction matrix ∙ of a given dislocation
property of slip 𝑗 on a given dislocation property of slip system 𝑘. The
individual components of these interaction matrices are not determined
herein, but their effective values on a polycrystalline level are in the
following.

The second term on the right-hand side of the structure evolution (7)
describes a recovery or a rearrangement process that occurs on junc-
tions when impinged by mobile dislocations. The number of potential
recovery sites a mobile dislocation meets during the principal strain
increment d𝜖pl is defined as:

d𝑁 recov
𝑘𝑗 ≡ 𝜌𝑗

(

𝜖pl
)

d ⟨𝑆𝑘⟩ , (9)

where ⟨𝑆𝑘⟩ is the average area swept by a mobile dislocation on slip
system 𝑘. An average junction length

⟨

𝜉𝑗𝑘
⟩

of the junction density 𝜌𝑗
gets recovered at each potential recovery site [17]. We thus find that
the average, recovered junction length per unit of volume 𝑉 is

𝜕𝜌−𝑗
𝜕𝜖pl

=
𝜌𝑗

⟨

𝜉𝑗𝑘
⟩

𝑉
𝜕 ⟨𝑆𝑘⟩

𝜕𝜖pl
. (10)

Typically, one increases
⟨

𝜉𝑗𝑘
⟩

by means of a power law to describe
ross-slip of screw dislocations at low to intermediate temperatures and
acancy assisted climb from intermediate up to high temperatures [44].

The assumption is made that the probability of a recovery event
er unit of distance a dislocation travels is proportional to the num-
er of times that a potential recovery site is contacted by a moving
islocation, i.e.,

m
𝑘 d ⟨𝑅𝑘⟩ ∝ d ⟨𝑆𝑘⟩ ∕𝑉 . (11)

his is equivalent to the Orowan equation and therefore we write:

𝜕𝛾pl
𝑘 ≂ 𝑏𝜌m

𝑘
⟨𝑅𝑘⟩ ≂ 𝑏 𝜕 ⟨𝑆𝑘⟩ , (12)
𝜕𝜖pl 𝜖pl 𝑉 𝜕𝜖pl
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r
e

𝜏

𝑞

where 𝛾pl
𝑘 is the plastic shear strain on slip system 𝑘. By substituting

Eqs. (8), (10) and (12) in Eq. (7) and using the chain rule, we find:

𝜕𝜌𝑗

𝜕𝛾pl
𝑘

=

⟨

𝛽𝑘𝑗
⟩
√

𝜌𝑗
𝑏

−

⟨

𝜉𝑗𝑘
⟩

𝜌𝑗
𝑏

. (13)

We relate the potential junction-dislocation density to average area
er junction on given slip system 𝑘, and take 𝜌𝑗

(

𝜖pl
)

≡ 𝛼2𝑗𝑘𝜌𝑘
(

𝜖pl
)

for
a dislocation net with homogeneous junction spacing, i.e. uniformly
distributed junction sites characterised by the length scale ⟨𝑙𝑘⟩. The
ensity increase on given plane thus reads

𝜕𝜌𝑘
𝜕𝛾pl

𝑘

=

⟨

𝛽𝑘𝑗
⟩
√

𝜌𝑘
𝛼𝑗𝑘𝑏

−
𝜌𝑘

⟨

𝜉𝑗𝑘
⟩

𝑏
, (14)

here we assume that the proportionality 𝛼𝑗𝑘 ≡
(

√

𝜌𝑘 ⟨𝑙𝑘⟩
)−1

is
onstant during monotonic plastic straining in each loading cycle. This
s approximately satisfied for monotonic plastic strain 𝜖pl

m ⪅ 5 × 10−3 as
hown in the following.

Contrary to the number of potential junctions per area of slip
lane 𝜌𝑗 , density 𝜌𝑘 is the dislocation density on slip system 𝑘. Sub-
tituting the proportionality 𝛼𝑗𝑘 into Eq. (14), the evolution of the
verage dislocation segment length is given by the ordinary differential
quation

𝜕 ⟨𝑙𝑘⟩

𝜕𝛾pl
𝑘

=

⟨

𝜉𝑗𝑘
⟩

⟨𝑙𝑘⟩
2𝑏

−

⟨

𝛽𝑘𝑗
⟩

⟨𝑙𝑘⟩
2

2𝑏
. (15)

When the network refinement d ⟨𝑙𝑘⟩ equals zero, we find the minimum
segment length lim ⟨𝑙𝑘⟩

(

𝜖pl → ∞
)

∼
⟨

𝜉𝑗𝑘
⟩

∕
⟨

𝛽𝑘𝑗
⟩

, i.e. the scaled pro-
ection of average junction length

⟨

𝜉𝑗𝑘
⟩

is recovered at each recovery
site, and the network no longer refines.

2.3. Yield strength

The definition of global, plastic flow strength before yield is am-
biguous because dislocation mediated deformation is limited without
the glide of activated dislocation links. However, when mobile dislo-
cation loops are present with radii larger than the average dislocation
segment length, they move at Peach–Koehler forces that are a fraction
of those necessary to maintain pre-yield reversible deformation. More-
over, these dislocation loops shear across larger areas than dislocation
links do at pre-yield stress. So we hypothesise that when the local
anelastic compliance is lower than the global plastic compliance, defor-
mation is mechanically recoverable. Vice versa, once the local anelastic
ompliance is higher than the global plastic compliance, inelasticity is
echanically irrecoverable. The least compliant type of deformation

hus describes post-yield mechanical deformation. Compliance is the
atio of strain to stress with units of inverse stress, analogue to the
nverse of the stiffness.

In Fig. 3, a schematic representation of the yield-point by shear
tress-inelastic strain curves is given. At yield, we then ensure the flow
urve and tangent modulus are continuous and write the criteria:
pl
𝑘
|

|

|

𝜏𝑘=𝜏
y
𝑘
≡ 𝛩an

𝑘
|

|

|

𝜏𝑘=𝜏
y
𝑘
; and, lim

𝜏𝑘→
(

𝜏y
𝑘

)+
𝛾pl
𝑘 ≡ lim

𝜏𝑘→
(

𝜏y
𝑘

)− 𝛾
an
𝑘 , (16)

.e. at yield the anelastic and plastic compliance are equal. The
ost-yield tangent modulus thus is larger for plastic than for anelastic
eformation, which is obvious from experiments [4–7]. Note that by
he right-hand side of Eq. (16), the pre-yield anelastic deformation be-
omes plastic deformation when yield occurs, and we choose to neglect
re-yield micro-plasticity. A finite yield stress based on a Taylor-style
elations considers forest dislocations [51], junction strengthening [52]
nd/or a combination of both [29]. A potential plastic flow rule thus
s defined as:

𝑘
(

𝜖pl
)

≡ 𝛼𝑘𝑗𝜇𝑏
√

𝜌𝑗 (𝜖pl). (17)

The novel yield criterion and the Taylor-type equation (17) are distinct
5

herein.
Fig. 3. Schematic representation of the novel yield criterion by shear stress-inelastic
shear strain curves. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

3. Calculation

We use the relation between the normal stress and resolved shear
stress, and the principal inelastic strain and inelastic shear strain
as given by the Taylor factor 𝑀 . Assuming dislocation lines to be,
one, homogeneously dispersed, and two, uniformly distributed over 𝑘
lip-systems with dislocation density 𝜌𝑘 each, i.e. the total dislocation

density ∑

𝑘 𝜌𝑘 ≡ 𝑘⟨𝜌𝑘⟩, we approximate the resolved shear stress and
principal inelastic strain by

𝜏 ≈ 𝜎
𝑀

, and 𝜖in(𝜎) ≈
1
𝑀

∑

𝑘
𝛾 in
𝑘 (𝜏), (18)

respectively.
In the following, the average junction length ⟨𝜉𝑘⟩, the mean junction

ormation rate ⟨𝛽𝑘⟩ and proportionality 𝛼𝑘 are assumed to represent
islocation statistics of

⟨

𝜉𝑗𝑘
⟩

,
⟨

𝛽𝑘𝑗
⟩

and 𝛼𝑗𝑘, respectively, which is
ecessary for the Taylor homogenisation. This requires the average
unction length ⟨𝜉𝑘⟩, the mean junction formation rate ⟨𝛽𝑘⟩ and pro-
ortionality 𝛼𝑘 =

(

√

𝜌𝑘⟨𝑙𝑘⟩
)−1

to be solely properties of the given
slip system 𝑘. Variable with the given Roman subscript ∙, and several

ithout, e.g. proportionality 𝛼𝑘, thus are spatially averaged values, here
cross grains, that represent the given, more complex polycrystalline
orphology.

.1. Flow curve

In this work, the plastic shear strain 𝛾pl
𝑘 relates to the dislocation

density 𝜌𝑘 via

𝜕𝜌𝑘
𝜕𝛾pl

𝑘

=
⟨𝛽𝑘⟩
𝛼𝑘𝑏

√

𝜌𝑘
(

𝛾pl
𝑘

)

−
⟨𝜉𝑘⟩
𝑏

𝜌𝑘
(

𝛾pl
𝑘

)

. (19)

The maximum dislocation density is 𝜌max
𝑘 =

(

𝛼𝑘⟨𝜉𝑘⟩∕⟨𝛽𝑘⟩
)−2, which cor-

esponds with the total density of created dislocation line being recov-
red. The flow strength is

𝑘

(

𝛾pl
𝑘

)

= 𝛼𝑘𝜇𝑏
√

𝜌𝑘(𝛾
pl
𝑘 ) = 𝜇𝑏∕⟨𝑙𝑘

(

𝛾pl
𝑘

)

⟩, (20)

where the average dislocation-link length is equal to the mean potential
junction spacing. The inelastic shear strain 𝛾 in

𝑘 = 𝛾an
𝑘 + 𝛾pl

𝑘 on slip
system 𝑘 is derived in Appendix A. Given the anelastic and plastic
tangent moduli, Eqs. (A.3) and (A.6), respectively, are symmetric, and
substituting them into the left-hand side term of Eq. (16), we obtain
the inverse hardening ratio

̂𝑘 = 1
𝜏y
𝑘

√

1 −
(

𝜏y
𝑘

)2
− sin−1

(

𝜏y
𝑘

)

⎛

⎜

⎜

⎜

⎝

⟨𝛽𝑘⟩
√

1 −
(

𝜏y
𝑘

)2
−

⟨𝛽𝑘⟩
𝜏y
𝑘

sin−1
(

𝜏y
𝑘

)

− 4
(

𝜏y
𝑘

)2 𝛼2
𝑘

⎞

⎟

⎟

⎟

⎠

,

(21)
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𝜖in(𝜎) ≈
𝑏

𝑀⟨𝑙⟩

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

0, 0 ≤ 𝜎 ≤ 𝜎f;
1

8𝛼2 (𝜏′)2
(

2 sin−1
(

𝜏′
)

− sin
(

2 sin−1
(

𝜏′
)))

, 𝜎f < 𝜎 ≤ 𝜎y;

1
8𝛼2

(

𝜏′y
)

2

(

2 sin−1
(

𝜏′y
)

− sin
(

2 sin−1
(

𝜏′y
)))

+ 2
𝑞
ln

⎛

⎜

⎜

⎜

⎜

⎝

1 −
𝑞𝜏′y
𝛽

1 − 𝑞𝜏′
𝛽

⎞

⎟

⎟

⎟

⎟

⎠

, 𝜎y < 𝜎 < 𝜎s;

, (22a)

�̂�in
(

𝜏∕𝜏s
)

≡
𝛾in (𝜏)
𝛾an

(

𝜏y
) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

(

1 − 𝛽
̂̄𝜏

)2
2 sin−1

(

̂̄𝜏𝜏y

1 − 𝛽

)

− sin
(

2 sin−1
(

̂̄𝜏𝜏y
1−𝛽

))

2 sin−1
(

𝜏y
)

− sin
(

2 sin−1
(

𝜏y
))

, 0 < ̂̄𝜏 ≤ 1 − 𝛽;

1 +
sin−1

(

𝜏y
)

−
𝜏y

√

1−𝜏2y

2 sin−1
(

𝜏y
)

− sin
(

2 sin−1
(

𝜏y
))

4𝛽
(

1 − 𝛽
) ln

(

1− ̂̄𝜏
𝛽

)

, 1 − 𝛽 < ̂̄𝜏 < 1;

. (27)

Box I.
0,
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here 𝑞-1
𝑘 ≡ ⟨𝑙𝑘⟩∕⟨𝜉𝑘⟩ is a measure of the capacity of the dislocation

etwork to refine the average link length, i.e. harden. Herein, the
verhat ∙̂ indicates a given scaled variable ∙.

Li and Wagoner [7] constructed a dissipative bow-out (DB) model.
he increment of energy dissipated is conceptually provided by a
eduction of the resolved shear stress with a static friction shear
tress 𝜏f. The physical interpretation of the static friction shear stress 𝜏f
s a local strengthening mechanism by various microstructural obstacles
o glide, that is particularised to the experiment’s materials in the
ollowing. The principle inelastic strain is as given in Box I with
ormalised effective resolved shear stress and yield strength,

𝜏′ =

(

𝜎 − 𝜎f
)

𝑀
⟨𝑙⟩
𝑏𝜇

, and 𝜏′y =

(

𝜎y − 𝜎f
)

𝑀
⟨𝑙⟩
𝑏𝜇

, (22b)

espectively, where 𝜎f = 𝑀𝜏f is the static friction stress and 𝜎s the
saturation stress. Here, 𝛼, 𝛽 and 𝑞−1 = ⟨𝑙⟩∕𝜉 are the proportionality,
unction formation rate and hardening ratio at the polycrystalline level.
erein, the overbar ∙̄ indicates a given normalised variable ∙. To facil-

itate the subsequent numerical regression, we normalise the structural
parameters in the following.

3.2. Normalisation

As plastic straining continues, the total dislocation density ap-
proaches the maximum density, 𝜌 ∼ 𝜌max, i.e. the shear flow stress
asymptotically approaches the saturation shear stress

𝜏s ∼ 𝛼𝜇𝑏
√

𝜌max (𝛾) =
𝛽𝜇𝑏
𝜉

. (23)

he tangent modulus thus decreases with increasing strain, i.e. 𝜕𝛩∕𝜕𝜖 ≤
which we rewrite as
𝜕2𝜏
𝜕𝛾2in

=
𝜏𝑞2

4
−

𝛽𝑞
4

≤ 0. (24)

Then the minimum mean junction formation rate becomes

𝛽min ≡
4𝛼2

(

𝜏y
)3

√

1 −
(

𝜏y
)2

𝜏y −
√

1 −
(

𝜏y
)2 sin−1

(

𝜏y
)

, (25)

hat is equivalent to no recovery taking place, i.e. when the average
islocation junction length at the polycrystalline level 𝜉 ∼ 0, and allows
or scaling the junction formation rate 𝛽 over the range (0, 1). Here, the
nverted scaled mean junction formation rate 𝛽 = 𝛽min∕𝛽. The inverted
caled junction formation rate 𝛽 thus is the measure of work-hardening
6

apacity, where the limit zero equals perfect plasticity, and unity the
bsence of anelasticity and solely hardening. From here on we refer
o 𝛽 as the work-hardenability, that is unrelated to the depth to which
material is hardened after putting it through a heat treatment pro-

ess [53]. Substituting the work-hardenability 𝛽 and inverse hardening
atio 𝑞 in Eq. (A.5), we define the scaled dimensionless shear stress
s ̂̄𝜏 ≡ 𝜏′∕𝜏s = 𝜏′(1 − 𝛽)∕𝜏y. This allows for scaling the normalised
esolved shear stress ̂̄𝜏 ∈ (0, 1) as well. Hence the average dislocation
egment length ⟨𝑙⟩ is uniquely defined by

𝜎s⟨𝑙⟩
𝑀𝜇𝑏

1 − 𝛽
𝜏y

∼ 1. (26)

Substituting work-hardenability 𝛽 and scaled normalised resolved shear
stress ̂̄𝜏 in Eq. (22a) and normalising the inelastic shear strain with
the anelastic strain at-yield �̄�an

(

𝜏y
)

(right-hand side of Eq. (16)), we
obtain the scaled inelastic shear strain as given in Box I. Here, solely
in Eq. (27) the friction stress is neglected for readability, i.e. 𝜎f = 0; in
the remainder of this work, the friction stress is accounted for. Note
that the constant proportionality 𝛼 linearly scales the inelastic strain
because it is removed by scaling with the anelastic shear strain at
yield. Equations (18), (22) and (26) thus allow one to uniquely obtain
the proportionality coefficient 𝛼, work-hardenability 𝛽 and normalised
yield strength 𝜏y, all at the polycrystalline level.

4. Method

In previous methodology [4–6], graphical estimates are made by
means of the initial degradation of the apparent moduli [38] and
a distinct transition point on the tangent modulus. Van Liempt and
Sietsma [4] formulated a novel method to determine the yield stress
of metals from tensile curves. The transition point is determined
by a clearly distinguishable feature in a given plot of the tangent
modulus versus the uniaxial normal stress. Arechabaleta et al. [5,6]
propose an accessible, cheap and accurate method to quantify the
dislocation network in metals, based on tensile tests and the afore-
mentioned method [4]. A similar approach is used by Li and Wag-
oner [7], who closely reproduce experimental results on Dual-Phase,
Transformation- and Twinning-Induced Plasticity steels. The present
unified model allows us to advance this methodology, that yields
the total dislocation density 𝜌 and average segment length ⟨𝑙⟩ at the

polycrystalline level.
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By means of the unified model, we analyse repeated cyclic uni-
axial tensile tests on Interstitial-Free and Low-Alloy steels. We char-
acterise the dislocation network evolution in relation to the macro-
scopic stress–strain behaviour. The present model is rooted in dislo-
cation physics, yet general, so applicable to a wide range of met-
als [7]. Herein, we perform non-linear regressions on experimental
force–displacement measurements. Numerical computation is limited to
non-linear regression by an existing software package [54].

4.1. Experimental

Repeated cyclic tensile tests are performed on Low-Alloy (LA) and
Interstitial-Free (IF) steel [6]. Both are single-phase ferritic steels. The
main alloying elements for the LA steel are less than 0.08 wt% C,
0.30 wt% Mn and 0.10 wt% Si, and for the IF steel less than 0.005 wt%,
0.15 wt% Mn and 0.049 wt% Ti. Specimens of 275 × 10−3 m total
length, 60 × 10−3 m gauge length and 12.5 × 10−3 m gauge width, with
a thickness of 0.7 × 10−3 m are used. Note that we choose to present
ur results in a coherent system of units. Static loading conditions are
chieved when deformation is applied slowly. The resultant static load
hen varies slow compared to phonon drag and thermally-activated
islocation motion [9,16].

The repeated cyclic tests consisted at most of twenty successive
oading and unloading cycles with a strain rate in the order of 10−5 s−1.
n each of these cycles the stress reduces to 𝜎f ≈ 10 × 106 Pa after

the application of 𝛥𝜖pl
m ≈ 5 × 10−3 true principal plastic strain. We

choose to keep the friction stress constant because of the finite positive
stress at load reversal. Detailed descriptions of the methodologies,
specimens geometries and tensile tester is given in the works [5,6] by
Arechabaleta et al.

4.2. Numerical

By means of the present method, the dislocation network structure
is approximated. The present, numerical methodology is as follows
(See also Fig. 4): (1) the measured force–displacement curve is trans-
formed to the normal stress vs. principal strain curve, and the friction
stress 𝜎f and strain 𝜎f∕𝐸 are subtracted from the normal stress 𝜎
and the total principal strain 𝜖, respectively; (2) the principal elastic
strain 𝜖el is subtracted from total principal strain 𝜖 via Eq. (1), and
the resolved shear stress 𝜏 and inelastic strain 𝛾in are approximated
by Eq. (18); (3) the plastic hardening rate 𝛩pl is numerically ob-
tained by a finite-difference method, and the normalised saturation
shear stress 𝜏s∕ (𝜇𝑏) is obtained by a linear fit on the plastic tangent
modulus of Stage-II hardening; (4) the shear stress 𝜏 is normalised
by the saturation stress 𝜏s, and the dislocation shear strain 𝛾in by the
anelastic strain at-yield 𝛾an

(

𝜏y
)

, i.e. we obtain the scaled inelastic
shear strain �̂�in; (5) the scaled dimensionless shear stress is multiplied
by negative one, and subsequently unity is added (i.e. the scaled
dimensionless shear strain–stress curve is mirrored in the vertical axis
through the origin, and then shifted in the positive stress direction);
and (6), the natural logarithms of the scaled shear stress, and of the
scaled inelastic shear strain, i.e. ln

(

1 − 𝜏∕𝜏s
)

and ln
(

𝛾in∕𝛾an
(

𝜏y
))

, re-
spectively, are calculated. A schematic representation of the steps (2–6)
is given in Fig. 4.

We obtain the dependent variables 𝛼, 𝛽 and 𝜏y by a given non-linear
regression with Eq. (27). Subsequently, we calculate the effective seg-
ment length ⟨𝑙⟩ by means of Eq. (26) and the dislocation density
as 𝜌 = (𝛼⟨𝑙⟩)−2 on the polycrystalline level. Note that the yield criterion
is not restricted to our choice of strain-hardening model. However,
the set of structural variables changes with the hardening models’
description of dislocation network structure. The current unified model
is limited to Stage-II work-hardening of a polycrystalline material.
The storage and loss parameters, 𝛽∕𝛼𝑏 and 𝜉∕𝑏 are thus obtained via
Eqs. (21) and (25), respectively. However, there is not limitation to the
7

choice of work-hardening model. For example, towards higher applied d
plastic strains, a phenomenological description of the complex process
of Stage-III can serve a useful purpose [16].

5. Results

The loading and unloading periods are determined from the
time-step vs. displacement curves, with a constant time-step period
of 5 × 10−3 seconds across > 1.8 × 105 data points. The cyclic true
normal stress vs. true principal strain curves are determined from
the force vs. engineering strain curves, under the assumption of a
constant volume, and corrected for, by the initial engineering strain
at (re)loading. The datasets of true normal stress vs. true principal
strain are combined per cycle and sorted by true normal stress. The
mean and the root mean square error (RMSE) are determined by a
rectangular windowing function across ten neighbouring data points of
equal and/or increased true normal stress. The standard deviation in
true principal strain serves then as weight in the successive non-linear
regressions. In Fig. 5, the cyclic true normal stress as a function of
the cyclic true principal strain is given; successive cyclic results are
shifted by 5 × 10−3 strain and indicated with five different, four times
repeated, colours. The plastic tangent modulus is obtained by first
filtering the monotonic average true normal stress vs. average true
principal strain data by convolution with a block function with a
width of a hundred neighbouring data points with a plastic strain
range 𝛥𝜖pl ≈ 10−6. Subsequently, the tangent modulus is calculated
by the central-difference method. A linear regression is performed
on the plastic tangent modulus, from a minimum true normal plastic
stress defined with the ≤ 0.002 off-set method on the cyclic average
normal stress vs. average true principal strain curves. The saturation
stress 𝜎s is calculated by equating the Stage-II hardening model’s
plastic tangent modulus to zero. In Appendix B, this method is briefly
summarised. The saturation stress 𝜎s = 320 ± 1×106 and 380 ± 3×106 Pa
for IF and LA, respectively. Here, ±∙ indicates RMSE for independent
and standard error for dependent variables. We calculate a single satu-
ration stress 𝜎s for each steel grade across all loading–unloading cycles.
Whereby we consider any changes in deformation conditions negligible,
e.g. a changes in specimen temperature across these successive cycles.
Furthermore, we find that the stress–strain range satisfies the Considère
criterion [55] for uniform deformation.

The dependent variables 𝛽, 𝛼 and 𝜏y are obtained by first a non-linear
regression on an hundredth of all data points. Herein, the non-linear
regression is by the damped least-squared method [56,57]. We use
a single set of material parameters, namely: elastic shear modulus
𝜇 = 83.8 × 109 Pa. The alloying content of IF and LA lowers the elastic
modulus less than 1% of the value for pure 𝛼−Iron [58]; Poisson’s
ratio 𝜈 = 0.3; Burgers vector magnitude 𝑏 = 2.48 × 10−10 m [5]; and,
Taylor factor 𝑀 = 3.06 [59,60] for body-centred cubic polycrystalline
material.

Because the dependent variable 𝜏y lies near the edge of the per-
missible range [0, 1], we use the natural logarithm-transformation to
ensure convergence: 𝜏y ≡ 𝜏min

y +
(

1 − 𝜏min
y

)

∕
(

1 + 𝑒− ̂̄𝜏y
)

, with the
lower boundary 𝜏min

y = 0.9 and the scaled normalised yield strength
̂̄y ∈ ℜ. The latter is related to, but distinct from the normalised
yield strength 𝜏y ∈ (0, 1] and scaled dimensionless stress ̂̄𝜏 ∈ (0, 1).

lthough dependent variable 𝛽 shares its permissible range with 𝜏y, no
ransformation is found necessary. The initial guess for the dependent
ariables, informed by their geometric meaning [61], are varied across
he ranges 𝜏y ∈ [0.9, 0.99], 𝛼 ∈ [0.1, 0.9] and 𝛽 ∈ [0.1, 0.9], and converge
o a unique set of best-fit parameters. Subsequently, the set of best-fit
arameters is used to initialise the non-linear regression on the mean
yclic true normal stress vs. cyclic mean true principal strain results as
resented here. The covariance matrix is determined, and the standard
rrors and correlation coefficients are used to calculate the standard
rror of the remaining physical, structural parameters, i.e. dislocation

ensity 𝜌, average segment length ⟨𝑙⟩ and storage rate 𝛽∕𝛼. Note that
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Fig. 4. Schematic representation of the present numerical methodology in steps (2–6).
Fig. 5. The cyclic normal true stress 𝜎c as a function of the cyclic principal true strain 𝜖c for (a) IF and (b) LA, and the unified model prediction (22) indicated by dashed black
lines. The error bars indicate the RMSEs in stress and strain per data point.
the normalised average junction length 𝜉∕𝑏 is already uniquely defined
when the saturation stress 𝜎s is kept constant.

The model reproductions (22) are indicated in Fig. 5 by dashed
black lines. The predictions are omitted for the first loading cycle of
IF and the first three of LA, due to poorness of fit and the yield point
phenomenon, respectively. The former is thought to be in part due to:
micro-plasticity observed in virgin materials, as discussed by Li and
Wagoner [7]; internal stresses [6]; and, imperfect alignment in the
samples [6]. In Fig. 6, the cyclic normal true stress 𝜎c as a function of
he cyclic principal true strain 𝜖c, and the fit for cycle #5 are presented;
he stress–strain ranges are indicated in Fig. 5 by dashed light-grey rect-
ngles. The total cyclic inelastic strain, per cycle, is 2 × 10−4 ⋯ 12 × 10−4

or both steel grades. This fraction of the total cyclic inelastic strain, per
ycle, increases by 1 ∶ 17⋯ 1 ∶ 4 and 1 ∶ 10⋯ 1 ∶ 5 between cycle #3
nd #20, for IF and LA, respectively.

The RMSE and coefficient of determination R2 are given in Fig. 7;
he solid, coloured circles indicate the RMSE in strain over each load-
ng cycle, and the open, coloured squares the shifted coefficient of
etermination 1−R2. The ranges of the coefficient of determination R2

re (0.989, 0.999) and (0.994, 0.999) for IF and LA, respectively. In Fig. 8,
he proportionality 𝛼, scaled normalised work-hardenability 𝛽∕𝛼, and
ield stress 𝜎y and scaled normalised yield stress ̂̄𝜏y are presented;
n Fig. 9, the total dislocation density 𝜌, the average dislocation seg-
ent length ⟨𝑙⟩ and the storage rate 𝛽∕𝛼. The statistical measures and

he physical parameters in Fig. 7, and Figs. 8 and 9, respectively, are
8

Fig. 6. The scaled cyclic normal true stress 𝜎c∕𝜎s as a function of the cyclic principal
true strain 𝜖c for cycle #5 in 5(a) IF and (b) LA, and the unified model prediction (22)
indicated by dashed black lines. The error bars indicate the RMSEs in stress and strain
per data point.

spaced by the applied cyclic 5 × 10−3 strain so they correspond with the
cyclic strains at reloading in Fig. 5.

6. Discussion

6.1. Yield strength

The Taylor relationship reads

𝜎 = 𝜎 + 𝛼′𝑀𝜇𝑏
√

𝜌, (28)
y 0
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Fig. 7. The root mean-square error (RMSE) and shifted coefficient of determination 1−
R2 as functions of the cyclic true principal strain 𝜖c for IF and LA, are indicated by
coloured dots and open squares, respectively.

where 𝜎0 ≡ 𝑀𝜏0 is a strength contribution due to other microstructural
obstacles than dislocations and 𝛼′ constant. Note that Eqs. (17) and (28)
differ by a factor 𝛼∕𝛼′, that is not necessarily unity, because the propor-
tionality is allowed to vary each cycle while the Taylor relationships’
constant is not. Moreover, the difference between the maximum line
stress 𝜎c (See Section 2.1) and the present observed yield strength 𝜎y
requires explanation. It stands within reason that dislocation segments
whose lengths are several times greater than the mean segment length
exist [8]. Those of ‘‘greater length’’ than the average segment length are
expected to control the onset of flow [26]. Considering this physical
property of the dislocation network, we thus limit the present definition
of the observed yield strength by

𝜎y ≃ 𝜎f +𝑀
𝜇𝑏
⟨𝑙⟩

. (29)

Here, the difference between theoretical and observed yield strength
is exceedingly small, but finite, due to the distributive nature of
dislocation-link lengths, that comprise the given dislocation network. It
has since long been accepted that the so-called Taylor equation describes the
relation between yield stress and dislocation density [6], which warrants
the validation of our hypothesis.

In Fig. 10(a), the yield stress 𝜎y is given as a function of the
square root of the dislocation density

√

𝜌; the dashed grey line indi-
cates the classic Taylor relationship (i.e. 𝛼′𝜇𝑏

√

𝜌 [27]). Note that the
aximum dislocation density and saturation stress are constants across

oading–unloading cycles. Moreover, the maximum dislocation den-
ity 𝜌max is defined by Eq. (23), so the scaled dislocation density 𝜌∕𝜌max

is independent of proportionality 𝛼.
It is clear that the classic Taylor relationship holds, with RM-

SEs 1.11 × 103 and 1.22 × 103 Pa, for IF and LA, respectively. Where
the maximum (latter) absolute error is less than 0.1% of the saturation
stress 𝜎s. The present definition of the observed yield strength is thus
corroborated by the square root dependency of the yield stress on
dislocation density. Which is testament to the success of the classic
Taylor relationship [27], even though the latter is based on the force
necessary for a single-character dislocation to move through a regular
spaced grid of like-signed infinite straight Volterra dislocation lines.
We find the physics-based local yield criterion as postulated by Gur-
rutxaga et al. [43], and Van Liempt and Sietsma [4], and employed
by Torkabadi et al. [30] and Li and Wagoner [7].

In Fig. 10(b), the shear yield stress 𝜏y is presented as a function
of the dislocation density 𝜌; the dashed coloured lines indicate the
Taylor relationship (28). The origin for LA is shifted for clarity, the
blue arrow indicates its original position. The constant and strength
contribution

{

𝛼′ [-], 𝜏0 − 𝜏f
[

106 Pa
]}

= {0.410, 18.7} and {0.345, 34.0};
and, the RMSEs are 57×104 and 28×104 Pa for IF and LA, respectively.
Standard errors are exceedingly small hence omitted here. Note that
stresses 𝜎0 and 𝜎f are not necessarily equal because the former is a
global strength contribution due to other microstructural obstacles than
dislocations, while the latter is a local strengthening mechanism by
9

dislocation links that ‘‘jump over’’ other soft pins [4,7]. Moreover, the
normalised dislocation density 𝜌𝜇2𝑏2∕𝜎2s does depend on the measured
proportionality 𝛼. Present definition of the observed yield strength thus
is in keeping with the Taylor relationship (28) as well.

6.2. Dislocation network evolution

The statistical storage model describes the dislocation network
structure evolution with plastic strain. Integrating the average seg-
ment length evolution (15) by parts and solving for the principal
plastic strain, we define a scaled average dislocation segment length
⟨

𝑙
(

𝜖pl
)⟩

≡
⟨

𝑙
(

𝜖pl
)⟩

∕
⟨

𝑙
(

𝜖pl → ∞
)⟩

, that decreases as:

⟨

𝑙
(

𝜖pl
)⟩

=
((

⟨

𝑙 (0)
⟩−1 − 1

)

𝑒−𝑀𝜖pl𝜉∕(2𝑏) + 1
)−1

. (30)

Integrating equation (19) by parts and solving for plastic strain once
more, we define a scaled dislocation density �̂�

(

𝜖pl
)

= 𝜌
(

𝜖pl
)

∕𝜌
(

𝜖pl → ∞
that increases as:

̂
(

𝜖pl
)

=
((

√

�̂�(0) − 1
)

𝑒−𝑀𝜖pl𝜉∕(2𝑏) + 1
)2

. (31)

Equations (30) and (31) constitute the evolution of dislocation struc-
tural parameters in the present statistical storage model.

We assume that physics-based structural parameters obtained at a
iven loading cycle are an indication of the dislocation network struc-
ure when unloading initiates in the preceding loading–unloading cy-
le; the dislocation network structure is preserved between unloading
nd subsequent reloading up to yield. Furthermore, we expect no
ocal transformation of the dislocation structure into persistent slip
ands [62] under our loading conditions [63,64]. Torkabadi et al. [30]
how aforementioned assumptions to hold for Advanced High Strength
teels by comparison of monotonic and repeated cyclic uniaxial tensile
est results. Hence we keep these assumptions in the remainder of the
resent work, which our experimental observations on the monotonic
flow) stress curves in Section 6.3 support.

In Fig. 11, the scaled dislocation density �̂� is presented as a function
f the monotonic plastic strain 𝜖pl; the scaled average dislocation
egment length

⟨

𝑙
⟩

is given as well; the proportionality 𝛼 is scaled
y its number average ⟨𝛼⟩ over all loading–unloading cycles of a
articular type of steel; and, the coloured dashed lines indicate the
volution of average dislocation segment length, dislocation density
nd proportionality by Eqs. (30) and (31), respectively.

In Fig. 12, the average junction length 𝜉 is presented as a function of
he monotonic plastic strain 𝜖pl; the physical, structural parameter 𝜉∕𝑏
er cycle is indicated by coloured circles (See Section 5). The constant
verage junction lengths 𝜉 for monotonic loading are determined as
escribed in this section by Eq. (31), and for Stage-II hardening in
q. (B.3). The former and latter results are indicated by solid and
ashed coloured lines, respectively, and their standard errors by equiv-
lently colour shaded areas. The average junction lengths 𝜉 differ
ithin 30% of each other. We argue that the origin of these differences
re due to the assumption of a constant proportionality 𝛼 in the present
tatistical storage model, and noise of the experimental signals in
he first derivative of the stress–strain curves, respectively. Moreover,
he storage parameter 𝛽∕ (𝛼𝑏) is presumed to be constant for Stage-II
ork-hardening (See Section 2.2). The storage rate 𝛽∕𝛼 in Fig. 9

ncreases with the cyclic principal true strain 𝜖c due to the decrease
n proportionality 𝛼, as shown in Figs. 11, when the junction formation
ate 𝛽 remains constant.

The main assumption in the statistical storage model on the dis-
ocation structure is the constant proportionality 𝛼 ≡

(

⟨𝑙⟩
√

𝜌
)−1 for

Stage-II work-hardening. Obviously, this holds when one combines
Eqs. (30) and (31). Even so, the measured proportionality 𝛼, as dis-
played in Figs. 8 and 11, decreases with plastic strain. This is as
rationalised by Li and Wagoner [7], who expect the proportionality 𝛼
to decrease with forest dislocation density. Moreover, they [7] present
an empirical linear decrease of the squared proportionality 𝛼2 with
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Fig. 8. The proportionality 𝛼, scaled normalised work-hardenability 𝛽∕𝛼, normalised yield stress
(

𝜎y − 𝜎f
)

∕𝜎s and scaled normalised yield stress ̂̄𝜏y as functions of the cyclic
rincipal true strain 𝜖c for (a) IF and (b) LA. The error bars indicate the standard error in the experimentally obtained physical parameters.
Fig. 9. The total dislocation density 𝜌, scaled average segment length ⟨𝑙⟩ ∕𝑏 and storage rate 𝛽∕𝛼 as functions of the cyclic principal true strain 𝜖c for (a) IF and (b) LA. The error
bars indicate the standard error in the experimentally obtained physical parameters.
Fig. 10. (a) The scaled yield stress
(

𝜎y − 𝜎f
)

∕𝜎s as a function of the square root of the scaled dislocation density
√

𝜌∕𝜌max, and (b) the scaled shear flow stress
(

𝜏y − 𝜏f∕
)

𝜏s as a
function of the normalised dislocation density 𝜌𝜇2𝑏2∕𝜎2

s for IF and LA. The blue arrow indicates the original position of the origin of LA and the error bars indicate the standard
error and the RMSE.
Fig. 11. The scaled dislocation density 𝜌∕𝜌
(

𝜖pl → ∞
)

, scaled average dislocation segment length ⟨𝑙⟩ ∕
⟨

𝑙
(

𝜖pl → ∞
)⟩

and scaled proportionality 𝛼∕⟨𝛼⟩ as functions of the monotonic
lastic strain 𝜖pl for (a) IF and (b) LA. The error bars indicate the standard error and RMSE, and the dashed coloured lines the statistical storage model.
low stress 𝜎 ∝
√

𝜌 and expect the proportionality 𝛼 to saturate with
ignificant strain hardening. The proportionality 𝛼 is obviously not
10
constant with increasing plastic strain across the monotonic loading
curve. Yet, the differences across successive loading and unloading
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Fig. 12. The normalised average junction length 𝜉∕𝑏 as a function of the monotonic
plastic strain 𝜖pl for IF and LA. The error bars indicate the standard errors and RMSE,
and the coloured circles the scaled junction lengths 𝜉∕𝑏 per cycle; the solid and dashed
coloured lines indicate the junction lengths 𝜉∕𝑏 for monotonic loading, and the coloured
shaded areas their standard errors.

Fig. 13. The scaled, monotonic (flow) stress
(

𝜎m − 𝜎f
m
)

∕𝜎s as functions of the mono-
tonic inelastic strain 𝜖in

m for IF and LA. The dashed black lines indicate the reproduction
via the work-hardening (WH) model. The error bars indicate the RMSEs per data point.

cycles are tenths of their number average. So, we find that propor-
tionality 𝛼 is approximately constant and equal to 1∕

(√

𝜌⟨𝑙⟩
)

over
monotonic plastic strain ranges 𝜖pl ⪅ 5 × 10−3. The measured scaled
mean segment length ⟨𝑙⟩ and scaled density �̂� in Fig. 11 are independent
of the measured proportionality 𝛼 though. Moreover, the evolution of
the average dislocation segment length ⟨𝑙⟩ and dislocation density 𝜌 are
independent across (successive) cycles. Hence the equations (15) and
(19) predict the evolution of average segment length and dislocation
density for monotonic loading, which is testament to the versatility of
the proto-statistical storage model [17]. However, the main assump-
tion of the present model (See Section 1.2) is violated for monotonic
loading, which we address in the following.

6.3. Work hardening

With the square root dependency of the observed yield strength (See
Section 6.1) and the statistical storage model (See Section 6.2), we pre-
dict the plastic flow curve under monotonic loading. The
work-hardening model is a combination of the dislocation network
structural evolution (31) and the potential flow rule (17). Here we
choose to describe the dislocation network by the total dislocation
density alone, and use the Taylor relationship, respectively. Aforemen-
tioned combination we call the statistical storage-based work-hardening
model.

In Fig. 13, the monotonic (flow) stress is given as a function of the
monotonic inelastic strain; numerical analysis of experimental results
in this section is limited to the plastic strain ranges as defined in
the present work (See Sections 4 and 5); we ignore the first loading
cycle of IF and first three of LA, respectively (See Section 5 as well),
and the deformation pre-yield in our numerical analysis here. The
dashed black lines in Fig. 13 indicate the reproduction by the statistical
storage-based work-hardening (WH) model. The RMSEs across the
11
plastic strain ranges considered in Section 5 are 1.1 × 106 and 1.6 × 106

for IF and LA, respectively. Equivalently, the error bars that indicate the
RMSEs per data point are omitted across the stress–strain ranges that
are omitted from the current numerical analysis. The monotonic flow
curves are indicated by the coloured lines and globally smooth, which
supports the dislocation network structure to be preserved between
unloading and subsequent yield [30] (See Section 6.2).

We include in Fig. 13 the monotonic stress-monotonic inelastic
strain curves of the first loading cycle of IF and the first three of LA.
A given work-hardening model is obviously incapable of reproduc-
ing these stress-inelastic strain curves pre-yield, which is one of the
main reasons to conduct this study. However, all experimental data
is presented in Fig. 13 because they facilitate the discussion in the
following.

For one, it is clear that 𝜎 ∝
√

𝜌 holds during work hardening; under
static loading conditions, the flow strength increase with dislocation
density is captured by the Taylor relationship. Secondly, we indeed find
that the (inelastic) strain in the initial cycle(s) appears to be captured
by neither anelasticity nor plasticity. A potential reason is rearrange-
ment in the dislocation network structure during the initial loading
cycle [7]. For LA, the yield point elongation phenomenon is distinct;
and, our method inadvertently predicts a lower yield strength [65–67].
We find that the confirmation between our model reproductions and
the experimentally obtained (plastic) results for IF and LA steels no-
table; notable is that the reproductions indicated by dashed black lines
are based on the total dislocation density 𝜌 as measured in Section 6.2,
and not obtained by regression on the experimental results as indicated
by the coloured solid lines in Fig. 13. Finally, the assumption that the
storage rate 𝛽∕𝛼 is constant during unidirectional loading in Section 2.2
seems to hold, at least up to the first-order. Herewith we verify that
the statistical storage-based WH model captures the monotonic plastic
deformation. Still the functional difference between proportionality 𝛼
and the Taylor relationships’ constant 𝛼′ requires rationalisation.

6.4. Proportionality

Recalling the Taylor relation (28), we think that the constant 𝛼′ is
potentially perceived as the quantitative measure between the global
dislocation densities 𝜌 and the local average dislocation
segment length ⟨𝑙⟩ [28], i.e. the main descriptors of dislocation network
geometry. This implies that the proportionality 𝛼 is an equivalent quan-
tifier for the dislocation network geometry, and thus remains constant
whilst work hardening takes place [6]. However, we find that the
proportionality 𝛼 decreases during plastic straining (See Section 6.2),
while a large body of experimental evidence a constant 𝛼′ ≈ 0.1…0.4
ditto the present work.

The success of the Taylor relation is the prediction of the flow
strength increase with dislocation density whilst hardening takes place
(See Section 6.3); the success of the bow-out model is the relation be-
tween global yield strength and the local dislocation structural feature
of dislocation segment length [6]. As we demonstrate in Section 6.1,
the Taylor relation for the shear flow strength and present definition of
observed yield strength are equivalent, i.e.

𝜏(0)𝑘 + 𝛼′𝜇𝑏
√

𝜌
(

𝛾pl
𝑘

)

≃ 𝜏f
𝑘 +

𝜇𝑏
⟨

𝑙𝑘
(

𝛾pl
𝑘

)⟩ , (32)

where 𝜏(0)𝑘 is the strength contribution on slip system 𝑘 other than dis-
location strengthening equivalent to 𝜎0 in Eq. (28). When assuming the
local yield and global flow strength to increase equally in strain hard-
ening, taking the derivative with respect to the plastic strain 𝜖pl and
using the chain rule twice, we find the ordinary differential equation

𝜕
⟨

𝑙
(

𝜖pl
)⟩

𝜕𝜌
(

𝜖pl
) = −

𝛼′
⟨

𝑙
(

𝜖pl
)⟩2

√

( )

. (33)

2 𝜌 𝜖pl
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Fig. 14. The scaled proportionality 𝛼∕𝛼′ as a function of the normalised dislocation
ensity 𝜌𝜇2𝑏2∕𝜎2

s for IF and LA. The error bars indicate the standard errors; the dashed
coloured lines the semi-empirical relation (34).

This is an implicit equation of the dislocation network structure evo-
lution with plastic strain, at the polycrystalline level. We solve the
ordinary differential equation (33), with the initial conditions of av-
erage dislocation segment length ⟨𝑙 (0)⟩ and dislocation density 𝜌 (0) at
zero plastic strain, and find that the proportionality decreases as:

𝛼
(

𝜌
(

𝜖pl
))

= 𝛼′ +
𝛼(0) − 𝛼′

√

𝜌
(

𝜖pl
)

∕𝜌 (0)
, (34)

with an initial proportionality 𝛼 (0) ≡
(

⟨𝑙 (0)⟩
√

𝜌 (0)
)−1

. It is trivial that
he Taylor relationship’s constant 𝛼′ ∼ 𝛼 (𝜌 → ∞).

In Fig. 14, the proportionality 𝛼 is given as a function of the
dislocation density 𝜌; the coloured dashed lines in Fig. 14 indicate the
proportionality 𝛼 (𝜌), obtained by non-linear regression with Eq. (34),

here the constant and initial, average dislocation segment length
𝛼′, ⟨𝑙 (0)⟩ ∕𝑏

}

= {0.406 ± 0.004, 4510 ± 130} and {0.343 ± 0.003, 2450
30} for IF and LA, respectively. Different from Arechabaleta et al. [6],

nd akin to Li and Wagoner (𝛼 ∝ 𝜌−1∕4) [7], we find the proportion-
ality 𝛼 has a non-linear dependence on the dislocation density 𝜌. The
latter work [7] treats more complex microstructures beyond the present
work though, e.g. various Transformation- and Twinning-Induced Plas-
ticity Steels.

We argue that the proportionality 𝛼 (𝜌) is the appropriate implicit
quantitative measure of the dislocation network structure evolution
with plastic deformation. Coercive is the minimal difference between
the constants 𝛼′ obtained in Section 6.1 (𝛼′ = 0.410 and 0.345 for
IF and LA, respectively) and the current section, which are obtained
independently. Moreover, the RMSEs are 4.4 × 10−3 and 2.1 × 10−3,
for IF and LA, respectively, and the shifted coefficient of determi-
nation 1 − R2 < 10−4. The minimum proportionality 𝛼

(

𝛾pl
)

∼ 𝛼′ is
obviously only achieved when dislocation recovery or rearrangement
processes are absent. The constant 𝛼′ thus is a lower limit of the
quantitative representation of the dislocation network geometry 𝛼, i.e. a
physics-based, yet theoretical, asymptote. We issue a warning to the
reader here on the physical interpretation of constant 𝛼′. It seems
tempting to relate the constant 𝛼′ directly with the forest strengthen-
ng [7], as the projection of dislocation links that intersect a given glide
lane is constant. Detractive is the change in constant 𝛼′ with steel type
hough, which can be remedied by changing the elastic shear modulus.
owever, use of the Taylor factor to relate principal inelastic strain and
ormal stress to local inelastic shear strain and shear stress, convolutes
ny such interpretation. Furthermore, the proportionality 𝛼 in Eq. (22)
s an effective measure at the polycrystalline level, that neglects the
otion of active and inactive slip-systems. The success of Eq. (34) com-
ined with the present statistical storage model, excludes the seminal
nterpretation of the Taylor relationships’ constant 𝛼′ as the measure
f dislocation–dislocation interaction on a single slip-system though.
ence we interpret the Taylor relationship as a combination of forest

nteractions and junction strengthening, akin to Kubin et al. [29]. Here,
12

h

he proportionality 𝛼 thus is the effective measure of junction strength-
ning on the crystallite level (See Section 2.2), that changes with plastic
train through forest interactions [7].

Equation (32) remains an a posteriori constructed semi-empirical
elation, that is based solely on the interpretation of the experimental
esults with our present model (i.e. with a constant proportionality 𝛼
er loading–unloading cycle). Use of the ordinary differential equa-
ion (33) in the present statistical storage model, in Section 2.2, will
nforce the equivalence in Eq. (32). Then, the interpretation of the
onstant 𝛼′ is set a priori, which we think severely weakens the results
erein. The current work thus presents the next step [6] towards the
inal interpretation of the Taylor relationship.

In the present model, we consider solely monotonous, unidirec-
ional loading wherefore the current modelling framework, as the
orks [4–7] show, is adequate. For pre-yield tension–compression
symmetry Zhu et al. [33] recently present a combined
xperimental-modelling approach. We do not account for strain gra-
ients or internal stresses, which are postulated as critical in under-
tanding anelasticity under reciprocal loading conditions [7]. Full-Field
rystal plasticity methods are the only way to satisfy mechanical equi-
ibrium and strain compatibility throughout a polycrystal. Hence they
ill give more realistic results than our Taylor homogenisation, e.g. the

nfluence of the accumulation of dislocations at grain boundaries,
hich we do not capture in this model (See Section 3). However, the
resent experimental data leads to over-fitting when one employs a
ore sophisticated full-field crystal plasticity method. Our framework

s accepted in inelastic deformation modelling, and demonstrates its
sefulness in anelasticity by e.g. Li and Wagoner [7] and plasticity
y e.g. Sendrowic et al. [68] to date. In the following, we summarise
everal universal, experimental observations that support our findings.

.5. Apparent modulus

Given that the elastic modulus is virtually constant with strain, the
egradation in apparent modulus is primarily due to anelastic defor-
ation [1]. With successive loading–unloading cycles the dislocation
ensity 𝜌 increases and the average segment length ⟨𝑙⟩ decreases (See
ection 6.2). The associated change in dislocation network is such that
he product 𝑏𝜌⟨𝑙⟩ (See Eq. (6)), i.e. the anelastic strain magnitude, in-
reases with each loading–unloading cycle (See Section 5). For a given
pplied uniaxial, cyclic tension, 𝜎c, well below the yield strength 𝜎y, the
nelastic modulus thus decreases, i.e. the apparent modulus degradates.

Ma et al. [35] present a series of continuous
oading–unloading–reloading experiments on a near-alpha high-strength
itanium alloy within the cold and warm forming domains. They [35]
ind that the chord modulus under cold deformation is degraded
ramatically at a low plastic strain level and then gradually gets a
aturated state with dislocation density. Chamakura et al. [42] exper-
mentally observe independent of the unified model herein that the
odified chord modulus, which is proportional to the chord modulus

ut can be an order of magnitude higher, decreases with dislocation
ensity in cyclic loading–unloading tensile tests on fully martensitic
tainless steel. Most recently, Vitzthum et al. [32] presents continuous
yclic tensile test on a DP and IF steel, that are similar to those
erein. They [32] observe that the loading and unloading chord moduli
ecrease with increasing plastic strain, where in the beginning of plastic
eformation, these moduli decrease rapidly until they converge with
urther plastic deformation.

The initial anelastic modulus reads 𝛩an ∝ 𝛼2. Hence the now
nown proportionality evolution, 𝛼 (𝜌), allows us to rationalise the
ollowing observations: one, the variation of the apparent modulus
epends on prior plastic straining [32,35,40–42]; two, the apparent
odulus decreases to a certain extent, and then saturates with work
ardening, i.e. successive plastic deformation does not lead to an exper-
mentally observable decrease in modulus [32,35,40]; three, (recovery)

eat treatment increases/restores the apparent modulus [35,39]; and
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four, the apparent modulus approaches the theoretical elastic modulus
after bake-hardening [30], while the flow strength is unaffected, i.e. the
dislocation density is virtually constant.

We find that: one, with work hardening and ensuing plastic de-
ormation the proportionality decreases with dislocation density; two,

because of the recovery and/or rearrangement process in Stage-II
strain-hardening, the dislocation density saturates, similarly the change
of initial anelastic modulus with plastic strain does. Alike our findings
(not presented in this work), Vitzthum et al. [32] find the loading
modulus for single-phase material decreases less with increasing plastic
strain then the loading modulus of Dual-Phase steel; three, heat treat-
ment reduces the dislocation density by increased dislocation recovery,
which leads to a higher apparent modulus. This is inline with the
extensive experimental results on warm deformation by Ma et al. [35].
They [35] show that the modulus degradation and its strain dependence
decrease with forming temperature; and four, interstitials diffuse to
dislocation lines, so the average dislocation segment lengths decrease
with bake-hardening, yet dislocation recovery is minimal, so the pro-
portionality 𝛼 increases. For the influences of metals lattices, local
dislocation network structure and compressibility, we refer to our
previous work on the influence of dislocations on the apparent elastic
constants in single metallic crystallites [31,33].

To accurately predict the apparent modulus (i.e the anelastic strain)
after plastic deformation, one needs a dislocation network structure
model which a priori incorporates the evolution of proportionality 𝛼
(

𝜖pl
)

. The relationship given by Eq. (33) is not enforced in the current
statistical storage-based WH model though. However, future storage
models are to be amended with the now known dependence of the
proportionality 𝛼 on the dislocation density 𝜌.

7. Conclusions

We present a static inelastic model. The elastic mechanical be-
haviour is described by isotropic linear elasticity, anelastic mechanical
behaviour by the dissipative dislocation bow-out model and the dislo-
cation network structure evolution by the statistical storage model. We
analyse repeated cyclic tensile tests on Interstitial-Free and Low-Alloy
steels. The yield point is determined by the compliance of anelastic and
plastic deformation. We ascertain the two premises in physical met-
allurgy of the Taylor relationship and the statistical storage-based
work-hardening. Finally, we present a measure for the changes in initial
apparent modulus with thermomechanical processing.

Under the assumption that the dislocation network structure is
preserved between unloading from the plastic regime and subsequent
reloading up to yield, we draw the following conclusions: the statistical
storage model predicts the evolution of average segment length and
dislocation density with plastic strain; and, the statistical storage-based
work-hardening model is experimentally verified, and successfully
predicts monotonic uniaxial plastic deformation at least up to the
first-order. Herein, we experimentally verify that the flow strength is
predicted by Taylor-type equations.

In this work, fundamental understanding on the evolution of dis-
location network geometry during plastic deformation is expanded
as well. The implicit semi-empirical relation of the proportionality,
𝛼 (𝜌) ∝ 1∕

√

𝜌, captures the average dislocation segment length decrease
nd dislocation density increase with work hardening, i.e. the chance
n dislocation network structure. We thus refine the physical interpre-
ation of the constant 𝛼′ in the Taylor relationship to the theoretical

asymptotic lower limit of the dislocation network geometry. More-
over, we interpret the Taylor relationship as a combination of forest
interactions and junction strengthening. The now known evolution
of the proportionality between average segment length and disloca-
tion density allows for statistical work-hardening models to be further
improved.

Summarising, we expand understanding on the fundamental rela-
tionships between the plastic deformation and the dislocation network
13
structure, and mechanical properties of anelasticity, yield and flow.
One ulterior application of present, novel interpretation of yield and the
unified model is to predict inelastic deformation by means of full-field
crystal plasticity modelling [69].
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Appendix A. Inelastic shear

The normalised anelastic shear strain is

�̄�an
𝑘 (𝜏) ≡ 𝛾an

𝑘
⟨𝑙𝑘⟩
𝑏

= 1

8𝛼2𝑘
(

𝜏𝑘
)2

(

2 sin−1
(

𝜏𝑘
)

− sin
(

2 sin−1
(

𝜏𝑘
)))

, (A.1)

where the normalised shear stress is

̄𝑘 ≡
𝜏𝑘
𝜏c
𝑘
=

𝜏𝑘⟨𝑙𝑘⟩
𝑏𝜇

, (A.2)

with the maximum line stress 𝜏c
𝑘 ≡ 𝑏𝜇∕⟨𝑙𝑘⟩. The normalised anelastic

tangent modulus is

𝛩an
𝑘
𝜇

≡

(

𝜕�̄�an
𝑘

𝜕𝜏𝑘

)-1

=
2𝛼2𝑘

(

𝜏𝑘
)2

1
√

1 −
(

𝜏𝑘
)2

− 1
𝜏𝑘

sin−1
(

𝜏𝑘
)

. (A.3)

Equation (19) is a separable differential equation for the plastic shear
strain:

∫

𝛾pl
𝑘 (𝜏𝑘)

𝛾pl
𝑘

(

𝜏y
𝑘

)
d𝛾 ′ = ∫

𝜌𝑘(𝜏𝑘)

𝜌𝑘
(

𝜏y
𝑘

)

(

⟨𝛽𝑘⟩
𝛼𝑘𝑏

√

𝜌′ −
⟨𝜉𝑘⟩
𝑏

𝜌′
)−1

d𝜌′, (A.4)

where 𝜏y
𝑘 ≤ 𝜏c

𝑘 is the yield strength. The normalised plastic shear strain
for a finite shear stress is

�̄�pl
𝑘 = 2

𝑞𝑘
ln

((

1 −
𝑞𝑘𝜏

y
𝑘

⟨𝛽𝑘⟩

)

∕
(

1 −
𝑞𝑘𝜏𝑘
⟨𝛽𝑘⟩

)

)

, (A.5)

with a dimensionless parameter 𝑞𝑘 ≡ ⟨𝜉𝑘⟩∕⟨𝑙𝑘⟩ that is detailed in
Section 3.1. The normalised hardening modulus is

𝛩pl
𝑘
𝜇

≡

(

𝜕�̄�pl
𝑘

𝜕𝜏𝑘

)-1

=
⟨𝛽𝑘⟩
2

(

1 −
𝑞𝑘𝜏𝑘
⟨𝛽𝑘⟩

)

. (A.6)

ppendix B. Stage-II work-hardening

The majority of stage-II work-hardening models have the form:
𝜕𝜌
𝜕𝜖pl

≈ 𝐶1

√

𝜌
(

𝜖pl
)

− 𝐶2𝜌
(

𝜖pl
)

, (B.1)

where 𝐶1 and 𝐶2 are constants with units m−1 and no dimension, re-
spectively. Equation (B.1) describes the development of the dislocation
density as a function of the true plastic principal strain 𝜖pl. Note that
glide plane and slip system remain unspecified here, and the dislocation
properties are omitted for clarity; the type of dislocation density varies
between theories. Equation (B.1) is identical in form to Vetter’s version
of Bergström’s equation, that considers the immobile dislocation den-
sity alone [70,71], and the proto-statistical storage model by Kocks (See
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Section 2.2), that originally treats forest dislocations [10]. Combining
the (classic) Taylor relationship for the flow strength, 𝜎 ∼ 𝛼′𝑀𝜇𝑏

√

𝜌,
and Eq. (B.1), one obtains the plastic tangent modulus

𝛩pl
(

𝜖pl
)

≈ 1
2
𝛼′𝐶1𝑀𝜇𝑏 − 1

2
𝐶2𝜎

(

𝜖pl
)

. (B.2)

The saturation stress 𝜎s thus is

𝜎s ≡ lim
𝜖pl→∞

𝜎
(

𝜖pl
)

∼
𝛼′𝐶1𝑀𝜇𝑏

𝐶2
. (B.3)

ewriting Eq. (19) as a function of the true plastic principal strain 𝜖pl,
nd comparing the result with Eqs. (B.2), we find

≈
𝛼′𝐶1𝑏
𝑀

; and, 𝜉 ≈
𝐶2𝑏
𝑀

, (B.4)

where 𝜉 is the effective junction length. Equation (B.3) is then used to
determine the saturation stress 𝜎s by linear regression on the plastic tan-
gent modulus, and Eq. (B.4) for comparison with the here summarised
seminal approach.
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