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Online Policy Iterations for Optimal Control of Input-Saturated Systems

Simone Baldh, Giorgio Valmorbid&, Antonis Papachristodouldwand Elias B. Kosmatopoulds

Abstract— This work proposes an online policy iteration are required to hold at each step of the policy evaluation
procedure for the synthesis of sub-optimal control laws for s obtained with the solution to semidefinite programmes
uncertain Linear Time Invariant (LTl) Asymptotically Null- (SDP).

Controllable with Bounded Inputs (ANCBI) systems. The pro- Svnthesis of alobally stabilizi trol | for li
posed policy iteration method relies on: a policy evaluation ynthesis of globally stabilizing control laws for linear

step with a piecewise quadratic Lyapunov function in both Saturating systems is a nontrivial prOblem: even for Linear
the state and the deadzone functions of the input signals; a Time Invariant (LTI) Asymptotically Null-controllable with

policy improvement step which guarantees at the same time Bounded Inputs (ANCBI) systems it has been demonstrated
close to optimality (exploitation) and persistence of excitation with simple examples, that such a class can not, in general, be

(exploration). The proposed approach guarantees convergence o . .
of the trajectory to a neighborhood around the origin. Besides, stabilized by static linear feedback [1]. Different methods to

the trajectories can be made arbitrarily close to the optimal Compute globally asymptotically stabilizing nonlinear control
one provided that the rate at which the the value function and laws for ANCBI systems have been proposed [2], [3]. While

the control policy are updated is fast enough. The solution to global stability may not be achieved with linear control
the inequalities required to hold at each policy evaluation step |55 strategies for semi-global (exponential) stabilization
can be efficiently implemented with semidefinite programming . .
(SDP) solvers. A numerical example illustrates the results. were pre;ented in [4] (see al'.so the semi-global re§ults for
exponentially unstable plants in [5]). However, semi-global
|. INTRODUCTION results rely on low-gain strategies that may lead to poor
erformance (in terms of closed-loop convergence rate). In
rder to obtain faster transients, scheduled [6] and nonlinear
ontrol laws [7] have also been proposed in the context of
semi-global stabilization. However optimality with respect
to criteria other than the convergence rate, has not been
§plored. In the aforementioned approaches the plant is

on t_he imaginary axis (possibly rep_eatgd) b_Ut no pole Wit_ ssumed to be known and the control synthesis is performed
positive re.?' part. The propo_sed policy |terat|pn IS aPPrOPTlaeine - An online extension via predictive techniques is
ately modified so as to take into account the input Saturat'o&nsidered in [8]

function: in particular, the policy evaluation step exploits a Online techniques for adaptive control of uncertain input-

class .Of piegewise quadrat.ic Lyapunov functiops which i§aturated systems have mainly focused on the problem of
non-differentiable, but contlnuou.s, and depfend'lng both Ogharanteeing global stability [9], [10] without optimality
the st_ate and the dea(_jzone_ function. The pollcy 'mprov_em?nsiderations: these schemes guarantee global stability via
step |s.bas.ed on a piecewise con.trol policy: the ;olutlon continuous-time direct adaptive controller. More recently,
the policy improvement step requires the evaluation of th&pproaches to optimal control of input-saturated systems
estimate of the derivative of the Lyapunov function undeﬁave been developed, with the aim of approximating the

different candidate contrql laws, and the r'esul'tlng mechan]s timal solution to the Hamilton-Jacobi-Bellman equation.
guarantees at the same time close to optimality (exploitatio |

This work proposes an online policy iteration procedurtg
for the synthesis of sub-optimal and practically stabilizin%
control policies for uncertain Linear Time Invariant (LTI)
Asymptotically Null-Controllable with Bounded Inputs (AN-
CBI) systems. This class includes systems with eigenvalu
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presents the estimation scheme for the uncertain systemDefinition 1: [Practical stability [17]] Given a nonlinear
dynamics; Section V contains the online policy iteratiorsystemx'= f(x), with f(0) =0, the origin of the system is
approach for input-saturated systems, and Section VI thgractically stableif, for given (c,c) with 0 < ¢ < c, every
numerical implementation of the policy evaluation stepsolutionx(t,xp) of the system satisfies

The numerical example in Section VII demonstrates the _
effectiveness of the proposed approach. ol < =[xt o)l <€, t=to
for sometg e R,

Definition 2: [Asymptotic minimization] Given a function
We study the class of uncertain LTI Asymptotically NuII-J(g) and

Controllable with Bounded Inputs (ANCBI) systems in the 9* = argmind(9)
presence of input saturation, which consists of the set of dy 9
namic linear systems without exponentially unstable modethe sequence {Jx} asymptotically minimizes J if
Consider the input-saturated system M0 I = 9%
. N . The objective of the control problem can be stated as:
x=A@")x+B(0")sat(u(x)), x(0) =xo, @) Problem 1: Design the functiong(-,-), g(,-,-), s(-,-) and
with x € R", ue€ R™, A(®*) € R™" and B(®*) € R™M, h(~7-? SO that the_c!osed-loop (2)-(4) guarantees .th_e pragtical
maxJ(A(A))) < 0. BothA andB are assumed to be matricesStability of the origin of (2) and the asymptotic minimizzi

with unknown entries represented 8. The functionsat: ~ Of the cost (3). N _ _
R™ — % ¢ R™ is a vector saturation function, with entries In the following, multidimensional vectors are intended as

Il. PROBLEM FORMULATION

satisfying column vectors, while the gradient of a scalar quantity with
) respect to a vector is intended as a row vector. We introduce
aj, if uj > Tj the sector condition pertaining to the deadzone presented i
(sat(u(x))); = uj» If Uj<uj<Tj [18]. The deadzone functioniz(u(x)) satisfies the following
uj, it U >y sector inequality
with Uj anduy; the upper and lower bound of thjeth input, dZ(u(x))M1 (U(x) — dz(u(x))) > 0, VYxeR" (5)

respectively. The set of admissible inputs is defined as
implying that the deadzone function is contained in theaect

% ={ueRMy; <uj<Uj,j=1....m}. [0,1]. Furthermore, defing(x) := 924X satisfying
In the following, for convenience of notation, we introduce 0 ifdz(u(x) =0
the dead-zone functiomiz(u(x)) := u(x) — sat(u(x)), and P(x) :{ ux) if dz(u(x)) #0 (6)
rewrite (1) as . .
which can be expressed by the two equalities
X=A(0")x+B(0*)u(x) —B(@*)dz(u(x)), X(0)=xo. (2) (M (6X) — p(x)) — 0 @
We also introduce a cost function for the system (2) in the dZ (u(x)) M3 (G(x) — @(x)) =0, (8)

form
whereMy, My, M3 € }Rg‘i;g‘ are diagonal matrices, ard; is

J :/ L(x, U)dtZ/ [XQx+ (sat(u))'Rsat(u)| dt, (3) positive definite. Due to the monotonicity of the saturation
0 0 . :
and the deadzone functions, we also have that the following

where the prime denotes transpose. To address the pamebquality holds for two arbitrary control policiesx) and
uncertainty in the system, we will develop an adaptive aintr V(X)

policy, combined with a parametric adaptation law taking th

following form (dz(u(x)) — dz(v(x)))' (sat(u(x)) —sat(v(x))) > 0. (9)
é(t) = p(®(t),=(t)), ©6(0) =0y (4a) We adopt the well-known result from optimal control theory
. T [19, Chap.3], that states that the optimal control poliégx)
=(t) =g(=(1),x(t),u(t)), &(0)=éo (4b)  that minimizes (3) satisfies
V() = s(O(t),u(t)), (4¢) uw=arg min { dd\)/(o (AX+BU) + L (X, u)} 7 (10)
U (1) = h(B(t) V (1)), (4d) e

N _ _ 3 . whereV°(x) is the value function (or cost-to-go function)
where© are the estimates @®", = are auxiliary variables that solves the Hamilton-Jacobi-Bellman (HJB) equation
used for estimationy indicates the value function, and

(0]

ut(t) indicates the feedback law to be used in the time min {dv (AX+ Bu)+L(x,u)} =0. (11)

interval [t +kot, t + (k+1)St], wheredt is the sampling time. uew | dx

The mappingsp, g, s, h will be designed to guarantee the In order to have a well-posed problem we make the

convergence of the state in a neighborhood of the origin arfidllowing assumption

to optimize the cost (3). Assumption 1:There exists a globally stabilizing control
Let us introduce the definitions below: policy u for system (1).




According to standard converse-Lyapunov results [20], Adunction and piecewise control policy defined as follows.
sumption 1 implies the existence of a continuous, posisiven the value functio’¢(x) = W¢(x,dz(u®)) that solves
tive definite, radially unbounded control Lyapunov funatio (13), define the followingpproximatedoolicy improvement

(CLF) V :R" — R, which satisfies

. dv
min < — (Ax+B <0, Wx#0.
u(~)~|eﬂ//{ dx( X+ u)} X#

ushtx) = g (16)

In order to discuss the properties of the policy (16) let us

The following lemma relates the CLF to the uncontrollabley o the following state-space partition arising from

region of system (1):

Lemma 1: Assumption 1 implies that there exist positive

constantsg;, i = 1,2,3 such that the following condition
holds, for all xe R",
dv

(x)B‘ < g and|x| > &= d—V(X)Ax< —&. (12)

dx dx

Let us define thauncontrollable regionof (1) to be the
subset# defined according to
< 81} .

Note that condition (12) implies that fore %, the choice
u= 0 guarantees that < 0.

R = {xeR”:|x| > g3 and ’(;z(x)B

IIl. OFFLINE POLICY ITERATIONS UNDER SATURATION
CONSTRAINTS

The iterative strategy in Algorithm 1 was presented in [21]

and provides an offline solution to Problem 1.

Algorithm 1 Modified policy iteration

Q°(x) = {x: dZ(u°(x)) = 0} (17)
Q1 (x) = {x: dzug)(x)) =0}, (18)
=5 = Q°nQett (Region 1)
=5 = Qe (Region 2)
=5 = orhqe (Region 3)
=% = RN\ (Q°UQS) (Region 4)

and satisfyingJi=f = R" and=fN={ =0, i # |.

To study the stability properties of the policﬁgl, given
a globally stabilizing policyu® and a value functiolV¢ that
certify global stability, we define the piecewise policy

cr1y _ J sat(ught) in=fU=SUES
sat(upw )= { sat(u°) in=§ (19)
with the value function
WS in=$uzSuz=
Wow = { we  inz (20)

whereWS, € ¢ is the unsaturated value function defined as

1: Initialize:
22 ¢« 0. Wiin(X) 1= WE(x, 0). (21)
3 Uhwe . We obtain the following result
4 _U%w<— . _ Proposition 1: The piecewise value function (20) certifies
5: Policy evaluation the global stability of the piecewise control policy (19).
6:  Givenuj,, solvefor VE(x) = We(x,dz(u°(x))) Proof: See [21]. ™
7
d Ve(x) IV. ESTIMATION OF THE SYSTEM DYNAMI
T (Ax+Bsat(ugy)) +L(x,u5,) =0 (13) - ES O_ © S_ s cs _
o The results of Section Ill require the knowledge of matri-
8 FeaS|.b|I|tyc . . _ cesA andB. Its extension to the uncertain system (1) requires
9o:  With We(x,dz(u’(x))) of Policy evaluationcheck  an online parameter estimator. This task will be performed
10: d VE(x) with standard techniques for parameter estimation. To this
ix (Ax+Bsat(u®)) +L(x, ugy) <0 (14) purpose we write (1) as
11:  if (13) isfeasible U°(x) « u°(x) X = AnX+ (A— Am)x+ Bsat(u), (22)
. Tic (c-1)
Ej Polﬁzljei;p())r(gv:#ent ) with Ay, @ Hurwitz matrix. We use the series-parallel para-
14:  Update the piecewise control policy metric model [22] to obtain
15: % = An%+ (A— Am)x -+ Bsat{u), (23)
_ip-1pg owe’ in=cu=¢Su=¢ e . A A
uerl — 2 X |ge—o T1-72-73 (1) whereX'is the state of the parametric model aAdB are
W © in =¢ the matrices to be estimated. In order to develop a linear-i
u in=§ . P near-in
16 the-parameters model for (22) we filter every component of
17; if AWE(X(0)) := WE(X(0)) —W(ED (x(0)) < 5, STOP X, X and sat(u) with a stable filterA /(s+A), A >0
: icy i ] SA
18: elsec < ¢+ 1, goto Policy improvement 7 — X (242)
S+ A
In the algorithm, the policy evaluation and the policy A
iteration steps are performed based on the piecewise value Xt = S+ A X (24Db)



Algorithm 2 Online policy iteration

Vi = ——sat(u). 24c
=5 (u) (24c)
We thus obtain
1:
zt = AnXt + (A— Anp)Xs + By, (25) 2:
o 3:
and similarly for (23) 4
2 = AmRs + (A~ Am)x; + Bur, (26) 7
wherez;, X;, andv; are all measurable signals to be used for 7:
the estimator. After collecting all the entries Afand B in 8:

©* = [A B’ and defining® = [A B]', we adopt a parameter
estimator based on integral cost and gradient update [82], s
as to obtain

. N _ R 9:
O=P(-yRO-yQ), 6(0)=0p (27a)
R=—BR+ [ v{]'[% vi], R(0)=0 @7b) .
Q=-BQ-[x; vi]'4, QO =0  (27c)

where 8 and y are positive constants anél denotes a 11
projection operator which has to be designed to keep the
estimates inside a convex set.

The estimation law (27) satisfies the following properties:;,,
Theorem 1:[22] 13:
) e=2-2 € £HHNL 14:

i) 1Moo ‘é] -0

i) if |x¢ vt / is persistently exciting, the® — ©* ex-
ponentially and the rate of convergence increases withs:
Y. 16:
17:
V. ONLINE PoLICY ITERATIONS UNDER SATURATION 18:

CONSTRAINTS

Algorithm 1 is now revised for online implementation.
Differently from Section IV, the iterations are not imple-
mented offline at each stepc e Z.., but online at each time
instantty, tx = 0,At, 2At, ..., whereAt is the update sample 21
time. The proposed algorithm is shown in Algorithm 2.

In Algorithm 2, t,” indicates the instant of time at which

the previous policy is update({‘iu'gj),j = 1,...,n} indi-
cates a set of candidate policie}i‘%j)(tk) in (34) indicates
f

the estimates of the derivative of the value function caimd
at timety with the corresponding poIicytu'(‘j). Furthermore,

20:

22:

the candidate control poIicieSulij) are calculated as follows 23

1_ 14 dV¥
dzul-1)=0 25:
+U) = WD), (37)
26:

1A parameter estimator can be developed also in the case whre or27:

Initialize:
k<« 0.
ok, « WO
u‘e —u
pw :
Policy evaluation A A A
Givenuk,, A®D = A(ty_1), B*Y = B(t_1),
solve for VK(x) = WK(x,dz(u¥(x)))

d vk - - _ _
7dx(X) (A(k*l)x+ Bk—Dsat (u(pﬁ, l))) +Lxul Yy =0
(28)
d VK(x)

(A_x+ B_sat(u(pk\,;l)» +L(x U ) <0 (29)

A=AKD 1 AA B=B* 1+ AB with AAAB € ./
(30)

K= {AA,AB | ANDA < nfl, AB'AB < nki } @31)

. Feasibility.

With Wk(x,dz(u¥(x))) of Policy evaluation check

d VK(x)

dx

if (13) is feasible TX(x) « u¥(x)
elset(x) « u-1(x)
Estimation
Update the estimated\(ty), B(t) according to (27),

(Nk‘l)er BkVsat (uk)) +L(x,u,) <0
(32)

with P = Py the projection operator that keeps the

estimate inside the set’k.

19: Policy improvement

Update the piecewise control policy

7k

uty)=arg  min V(ij)(tk)7 (33)
£y, i=1--n
’.‘k k A o) k
V0 = g (At + Bl G|
+QX()) + U RY;, (34)
+ in =k =k =k
uk+1{ ulte) NSV U 35
pw UE n :Ifl (35)

it AWK(x(0)) := WK(x(0)) — WD (x(0)) < &, STOP
updatingW andu

else gotoPolicy evaluation

k—k+1

a subset of entries oA and B needs to be estimated, by bringing to the
left-hand side of (25) and (26) all the quantities that arevkm and do not
need to be estimated.



where { are the coefficients of the expression in (36), V1. NUMERICAL EXAMPLE
andAZ()) are zero-mean random vectors|[in2ay, — " U

hon e In the following, we present a numerical example to illus-
[a, 20" satisfying

trate the results obtained via the proposed policy itenatio
HAZ(l) Az(n)} ‘*1< = (38) The procedure has been implemented in SOSTOOLS [25]
R ay’ and the formulated SDPs were solved with SeDuMi [26]. The
where oy is a positive sequence arifl is a finite positive dimension of the example helps to illustrate the results by
number independent afy. The following result is given. plotting the computed value functions and the time-evohuti
of the control policies. It is also worth mentioning that as
Theorem 2:Let At be sufficiently small. Then, for arbi- the number of variables and the degrees of the involved
trary smalla > 0, there exist finite positive constan@s, Polynomials increase, the dimensions of the related SDPs
Bz, v and a finite positive integefl = & ( 7 ) such that the can be large. _ _
following condition holds: ifay satisfies Consider the following 1-input 1-state system

O<aw<pB if ’dT\;ké‘ <& ork<h X(t) = —ax+bsatu(t)), x(0)=-1 (39)
ak > B otherwise with a and b two positive and unknown constants. The
where#, is a positive design constant satisfying saturation bounds are0.5 <u < 0.5 and the initial globally
1 1 stabilizing (but not optimal) state-feedbaafx) = —0.3x. For
2181 <& < 581 this system we consider the cost as in (3) w@h=1 and

R=1.Fora=1,b=1,4(0)=2,b(0)=15,8=3,1=3,
IF =10, ax = 0.025,At = 0.01 we apply the proposed online
V> WU policy iterations.

then, the proposed adaptive control scheme guarantees tgﬁ|22 2:/rgltlgggnoéstr:gnstf§treSarfgci?]ni?-m'/:i;g. tﬁeSh?gvsostzg
the closed-loop solutions are bounded and, moreover, P prop

adaptive law. Finally Fig. 2 shows the offline evolution

and the adaptive gaip of the estimator satisfies

limsup|x(t)| < &3, w.p.1 of the cost using the controllers synthesized at every time

e step: it can be observed that the cost is monotonically

and decreasing. The online evolution of the Hamilton-Jacobi-
—a< g(tk+) <0, if X &% or (Xk,ék) ¢ S, w.p.1 Bellman equation is also shown: it can be observed that for

the presented example the controller synthesized at every

where o time step are stabilizing not only the estimated plant, but
Z(t) = min {d v (Ax+ BU) +L(x, u)} also the actual plant.
u(ew | dx

and .% is a subset ofR" x R"™ (MM that satisfies % = !
0, vk > h. 08}

Proof: Following similar lines as in [23] (not shown g oo
for lack of space). [ ] 7 o4

Remark 1: Each policy evaluation step (28)-(29) returns a O'z’ ‘ :

set of plants that are stabilized by the control IaWVuSuch a 0 t 2 3 4 s
set is given by# K in (31). This set is used in the estimation 0
law (27) to project the estimate. This approach resembles o1
the so-called ‘certainty equivalence principle’ of adajeti E
control [22], where the control policy is stabilizing for ¢h sl
estimated plant and it is updated by solving the underlying o

control problem for the estimated plant. 0 ! 2 e * °
Remark 2: The rationale behin@3) is that among a set

of possible candidate control laws, the one that minimizes Fig. 1: Online state (upper) and input (lower) evolution.
(34), i.e. that more closely satisfies the HIJB equation is
chosen. This choice guarantees the so-called ‘exploitatio
task’ of the control policy. Furthermore, the candidate
control policies are generated randomly so as to satisfy This work proposed an online policy iteration procedure
condition (38): this guarantees the so-called ‘explorationfor the synthesis of approximately optimal control laws
task’ of the control policy, i.e. persistence of excitatemmd for uncertain Linear Time Invariant (LTI) Asymptotically
convergence of the estimates to their real value. It can bdull-Controllable with Bounded Inputs (ANCBI) systems.
shown that the Bernoulli distribution satisfies conditi@8) The proposed policy iteration method relies on: a policy
[23]: other distributions (segmented uniform, U-shaped) a evaluation step with a piecewise quadratic Lyapunov famcti
also possible [24, Sect. 7.3]. which is non-differentiable, but continuous, and polynaimi

VIl. CONCLUSIONS
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Fig. 2: Offline evolution of the cost using the controllers syntkediat [13]
every time step (upper) and online evolution of the Hamiltaoebi-Bellman
equation (lower). With a solid line is the HIB for the estingafdant, and
with a dashed line is the HJB for the actual plant. [14]

in both the state and the deadzone functions of the inpli]
signals; a policy improvement step which guarantees at the
same time close to optimality (exploitation) and persiséen

of excitation (exploration). The proposed approach guaraii6]
tees convergence of the trajectory to a neighborhood around
the origin. Besides, the trajectories can be made arhjtrari
close to the optimal one provided that the rate at which thé7]
the value function and the control policy are updated is faﬁs]
enough.

Future work includes the extension of the proposed
methodology to linear systems with exponentially unstabl&®
modes for which only local stability is achievable. Such arpg;
extension is under study and will account for generalized
sector condition which is instrumental to compute regiorfbll
of attraction estimates. We will also generalize the oladin
conditions to systems defined by polynomial vector fields

and polynomial input matrices. 22]

REFERENCES [23]
[1] A. Fuller, “In-the-large stability of relay and satuitag control systems
with linear controllers,’International Journal of Contrglvol. 10, pp.
457-480, 1969.

E. Sontag and H. Sussmann, “Nonlinear output feedbaciguddsr
linear systems with saturating controls,” Decision and Control,
1990., Proceedings of the 29th IEEE Conference Dec 1990, pp.
3414-3416 vol.6.

H. Sussmann, E. Sontag, and Y. Yang, “A general result an th
stabilization of linear systems using bounded controfsjtomatic
Control, IEEE Transactions grvol. 39, no. 12, pp. 2411-2425, Dec
1994.

[4] Z. Lin and A. Saberi, “Semi-global exponential stabitipa of linear
systems subject to “input saturation” via linear feedbdc8ystems &
Control Letters vol. 21, no. 3, pp. 225 — 239, 1993.

B. Zhou, G. Duan, and Z. Lin, “Global stabilization of thdouble
integrator system with saturation and delay in the inpUEEE
Transactions on Circuits and Systems4l. 57, no. 6, pp. 1371-1383,
2010.

D. Henrion, G. Garcia, and S. Tarbouriech, “Piecewisedr robust
control of systems with input constraintsBuropean Journal of
Control, vol. 5, no. 1, pp. 157-166, 1999.

G. Valmorbida, L. Zaccarian, S. Tarbouriech, I. Queinnaed A. Pa-
pachristodoulou, “A polynomial approach to nonlinear sfetedback
stabilization of saturated linear systems,” Drecision and Control,
2014, Proceedings of the 53rd IEEE Conference Dec 2014, pp.
6317-6322.

[24]

[2] [25]

(3]

[26]

(5]

(6]

(7]

M. Tanaskovic, L. Fagiano, R. Smith, and M. Morari, “Adiet
receding horizon control for constrained mimo systemgitomatica
vol. 50, pp. 3019-3029, 2014.

F. Z. Chaoui, F. Giri, J. M. Dion, M. M-Saad, and L. Dugard,
“Direct adaptive control subject to input amplitude conisit;é IEEE
Transactions on Automatic Controlol. 45, pp. 485-490, 2000.

C. Zhang and R. J. Evans, “Continuous direct adaptivetrod with
saturation input constraintfEEE Transactions on Automatic Contyol
vol. 39, pp. 1718-1722, 1994.

P. J. Werbos, “Approximate dynamic programming for real time
control and neural modelling,” irHandbook of Intelligent Control
D. A. White and D. A. Sofge, Eds. Multiscience Press, Breniiyoo
U.K., 1992.

S. Bhasin, R. Kamalapurkar, M. Johnson, K. VamvoudakisLF
Lewis, and W. Dixon, “A novel actor-critic-identifier ardbiture
for approximate optimal control of uncertain nonlinear systg
Automatica vol. 49, pp. 82-92, 2013.

M. Abu-Khalaf and F. L. Lewis, “Nearly optimal control ws for
nonlinear systems with saturating actuators using a newiVank
HJB approach,’/Automatica vol. 41, pp. 779-791, 2005.

H. Zhang, Y. Luo, and D. Liu, “Neural-network-based neatimal
control for a class of discrete-time affine nonlinear systenith w
control constraints,1EEE Tranactions on Neural Netwaqrkol. 20,
pp. 1490-1503, 2009.

H. Modares, F. L. Lewis, and M.-B. Naghibi-Sistani, “Agtive
optimal control of unknown constrained-input systems usinticp
iteration and neural networkdEEE Transactions on Neural Networks
and Learning Systemsol. 24, pp. 1513-1525, 2013.

——, “Online solution of nonquadratic two-player zesam games
arising in theh,, control of constrained input systemstiternational
Journal of Adaptive Control and Signal Processingl. 24, pp. 232—
254, 2013.

J. Lasalle and S. Lefschet&tability by Liapunov’s direct method:
with applications Academic Press, New York, 1967.

D. Dai, T. Hu, A. R. Teel, and L. Zaccarian, “Piecewisgadratic lya-
punov functions for systems with deadzones or saturati®gstems
& Control Letters vol. 58, no. 5, pp. 365 — 371, 2009.

D. E. Kirk, Optimal Control Theory: An Introduction Prentice-Hall,
Englewood Cliffs, N.J., 1970.

R. A. Freeman and P. V. Kokotovic, “Inverse optimality inbust
stabilization,” SIAM Journal on Control and Optimizatiorvol. 34,
pp. 1365-1391, 1996.

S. Baldi, G. Valmorbida, A. Papachristodoulou, and E. Hbs-
matopoulos, “Piecewise polynomial policy iterations for thasis of
optimal control laws in input-saturated systemBfoceedings of the
2015 American Control Conferencpp. —, july 2015.

P. A. loannou and J. SuRobust Adaptive Control Dover Publica-
tions, 2012.

E. B. Kosmatopoulos, “An adaptive optimization schemehwstisfac-
tory transient performanceAutomatica vol. 45, no. 3, pp. 716-723,
2009.

J. Spall,Introduction to Stochastic Search and Optimization: Eatim
tion, Simulation, and Control Wiley, Hoboken, NJ, 2003.

A. Papachristodoulou, J. Anderson, G. Valmorbida, 8jri2r, P. Seiler,
and P. A. ParriloSOSTOOLS: Sum of squares optimization toolbox for

MATLARB http://arxiv.org/abs/1310.4716 , 2013, avail-
able fromhttp://www.eng.ox.ac.uk/control/sostools ,
http://www.cds.caltech.edu/sostools and

http://www.mit.edu/"parrilo/sostools .

L. Peaucelle and D. Henrion, “Sedumi interface 1.02: al tor
solving Imi problems with sedumiProceedings, IEEE International
Symposium on Computer Aided Control System Degign272-277,
2002.



