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a b s t r a c t

The adverse human contribution to global climate change has forced the yachting industry to
acknowledge the need to reduce its environmental impact due to the client's increasing pressure and
potential future regulations to limit the ecological effects. Unfortunately, current real-world data pre-
sents a significant disparity between predicted and actual gathered energy consumption results. Thus,
this research aims to develop an approach to accurately predict total dynamic Energy Consumption (EC)
using real operation voyage data for the improved early-stage design of future yachts. A Grey-Box
Modelling (GBM) solution combines: physics-based White-Box Models (WBM); and Black-Box Model
(BBM) artificial neural networks to provide estimations with high accuracy and improved extrapolation
capacity. The study utilizes ten months of onboard continuous monitoring data, hindcasted weather, and
voyage information from a Feadship fleet yacht. Upon applying a sequential modelling methodology,
predictions are compared between the three model categories, indicating propulsion and auxiliary es-
timates fall within 3% and 7% error of operational conditions. The study is then continued using external
range datasets to evaluate the extrapolation potential. While GBM improvements are seen over the BBM,
limitations were directly related to the strength between dynamic WBM input-output correlations. Ul-
timately, GBM's have the potential to improve both accuracy and extrapolation ability over existing WBM
and BBM's; however, much is dependent on the strength of the input-output relationships.

© 2022 Society of Naval Architects of Korea. Production and hosting by Elsevier B.V. This is an open
access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The adverse human contribution to global climate change has
been recognized as a significant risk to future generations. As such,
the shifting perspective towards sustainability is currently being
driven by both public image and social responsibility. Therefore, to
meet these worldwide demands, the yachting industry has
acknowledged the need to reduce its environmental impact due to
the increasing pressure of consumers and future regulations to
limit the effects on the environment.

However, a hurdle is currently being faced within the maritime
sector regarding observed discrepancies between real-operation
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voyage data and predicted energy consumption results. These
gaps have led to much discussion on future sustainable yacht
design implications. Thus, the objective of this paper is to,

Develop an approach to accurately predict total dynamic Energy
Consumption (EC) using real operation voyage data for the
improved early-stage design of yachts

In order to address and evaluate whether the proposed solution
thoroughly meets the research objective, a series of method re-
quirements have been established.

1. Estimate power for propulsion and auxiliary systems under
dynamic conditions within ±15% error with 95% Confidence
Intervals

2. Ability to proportion both auxiliary and propulsion power
consumption independently

3. Be based on a modular methodology to easily incorporate
various estimation tools and results
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Nomenclature

a360 Relative Wave Direction
asun Sunlight Factor
b360 Relative Wind Direction
J Ship Heading
ADAM Adaptive Momentum Estimation
BBM Black-box Model
Ee Surface Radiation
GBM Grey-box Model
Hs Significant Wave Height
HCI Hull Cleaning Interval
Pa Target - Auxiliary Power
Phvac WBM - HVAC Power
Ps,cw WBM - Calm-water Shaft Power (H&M model)

Ps,t WBM - Total Shaft Power (H&M þ Wind þ Wave
model)

Ps Target - Shaft Propulsion Power
Ptotal Target - Total Power
PC Percent Coverage
RH Relative Humidity
S Sailing Factor
SGD Steepest Gradient Descent
T0 Significant Wave Period
Tair Air Temperature
Tsea Sea Temperature
Vs Speed over Ground
Vwi Wind Speed
WBM White-box Model
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4. Be able to deal with discrepancies and errors in voyage report
data

A minimum error was established as a threshold to be used as a
comparative baseline metric to validate the approach accuracy.
During the early design stages of ship design, low-fidelity tools are
commonly applied. However, it is known that such approaches
typically have lower accuracy in favour of lower computational
demand. Thus, after careful industry, academic, and literature
deliberation, a minimal function threshold of ±15% is deemed an
appropriate starting point for the early design stage focus. The
proposed contributions of the study are.

a) Methodology reproducibility (propulsion power estimation)
and new application success (auxiliary power estimation and
superyacht case vessel) within the maritime industry.

b) A detailed comparison investigation that explores the global
performance of various modelling categories for both interior
and exterior data region prediction capabilities, including the
feasibility of GBM modelling aggregation.

c) Adaptation of a statistical uncertainty quantification technique
to improve interpretability and confidence for maritime
applications.
2. Literature investigation

Modelling of physical systems is usually applied by imple-
menting three mathematical approaches: White-Box Models
(WBM), Black-Box Models (BBM), or Grey-Box Models (GBM).

As outlined by Zwart (2020), Coraddu et al. (2018), Leifsson et al.
(2008), the White-box approach models a physical system entirely
using physical laws and deterministic first-principle relations,
which is based on prior knowledge. The Black-box approachmodels
a system entirely based on observed data, such as input-output
measurements, and requires no prior knowledge of the overall
system. These methods usually focus on a range of statistical ap-
proaches, such as auto-regressive models or machine learning
methods. Well trained BBMs can be more accurate than WBMs.
However, BBMs require large amounts of high-quality data for
model training, and more importantly, lack interpretability and
extrapolating ability in contrast toWBMs. As further highlighted by
Leifsson et al. (2008), it is also possible to have models that deeply
integrate both the White- and Black-box approaches, generating
what is known as a Grey-Box Model (GBM). Ultimately, a GBM
2

attempts to combine both WBM and BBM advantages to overcome
both individual solution's apparent drawbacks.

2.1. White-box modelling

WBM techniques are universally used within the early design
stages of all marine sectors. General WBMs can decompose com-
plex problems, such as propulsive and auxiliary demand, into
smaller sub-models for increased physical insight. Usually, ship
propulsion power is determined as a function of total resistance,
which can be decomposed into two main components: calm-water
resistance (Holtrop and Mennen (1982)), and added resistance due
to dynamic contributions related to wind, waves, currents, and
fouling (MANDiesel& Turbo (MAN and Turbo, 2006)). Additionally,
auxiliary systems are typically composed of multiple sub-models:
Hotel loads such as HVAC power, chiller power, water supply,
lighting, etc., and rudder heading control and stabilization power
(Boertz (2020)). Unfortunately, this creates scenarios where many
individual parameters are required to suitably solve such problems.
Additionally, due to the complex nature of dynamic interactions,
such models, while offering a high degree of practicality, lack the
necessary accuracy required for later design stage calculations.
While CFD, model tests, and electric load simulations can be used to
offer a much more robust and accurate solution, these techniques
are not only computationally expensive, they require a high degree
of a priori system information generally not available within the
initial design stages of yacht design. As such, many implemented
solutions can be considered semi-empirical and not true a WBM.
Nonetheless, due to the relative practicality and generally low fi-
delity of such models, they are commonly viewed as WBMs, (Yang
et al. (2019)).

2.2. Black-box modelling

On the other hand, BBM techniques have been successfully
applied within the maritime industry to evaluate dynamic effects
accurately. Numerous studies investigating the potential of pro-
pulsion power estimation (Parkes et al. (2018)), fuel consumption
estimation (Bal Beşikçi et al. (Bal Beşikçi et al., 2016)), added
resistance prediction studies (Cepowski (2020)), and even energy
efficiency indexes (Kim et al. (2020)) have been analyzed with
consistent success. Most if not all studies have typically applied
either Artificial Neural Networks (ANN) or Gaussian Process
Regression (GPR) machine learning techniques. ANN's are compu-
tationally quicker during training, GPR provides inherent



Fig. 1. ANN-GBM using a total of 3 WBM for propulsion estimation (top) and a ANN-
GBM using 1 WBM for auxiliary power estimation (bottom).
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uncertainty characteristics, and both provide highly accurate esti-
mations. Ultimately, it can be concluded that, while these methods
are powerful, (Kim et al. (2020)) demonstrated that data quality,
data amount, and the correct parameter tuning are driving factors
in regard to accuracy and generalization capabilities. Unfortunately,
the authors are unaware of BBM literature that has explicitly
studied yachts or auxiliary power estimations within the maritime
industry. However, extrapolation of the method is possible as
success has been documented for various vessel classes and power
estimations within building engineering (Neto and Fiorelli (2008),
Kalogirou and Bojic (2000)).

2.3. Grey-box modelling

GBM is a state-of-the-art method that combines both the WBM
and BBM to overcome each individual's deficiency. Successful
implementation has been observed by Zwart (2020), Coraddu et al.
(2018), and Leifsson et al. (2008). Unfortunately, only a few litera-
ture sources are available for study due to the method's relatively
new introductionwithin themaritime field. Much like the BBM, the
GBM application within both the yachting industry and auxiliary
power evaluations has yet to be thoroughly investigated. None-
theless, the approach shows a great deal of promise, where a
detailed literature comparison of the various modelling approaches
has been developed and detailed by Yang et al. (2019). It was
concluded that the GBM approach has more accuracy than WBMs,
requires less historical data than BBMs, has good model interpret-
ability, and improves the extrapolation capacity; thus, avoiding
unreasonable results to a certain degree.

This research aims to predict and proportion the dynamic
powering components within a yacht quickly and accurately for
early-stage design. Based on the above-detailed comparison, the
approach most likely to satisfy all established method re-
quirements is a grey-box modelling solution using artificial neural
networks. The hope is that the WBM retains the physical behaviour
of a vessel, whereas the BBM scales the output to fit the operational
data. While, Gaussian process regression could be applied with
likely success, due to the successful use within the maritime in-
dustry, high data-scaling potential, and the general ease of imple-
mentation, the ANN algorithm will be used as the BBM.

Ultimately, propulsion and auxiliary models have been devel-
oped independently for each dynamic power contribution, which
has then been aggregated to estimate total energy demand via a
bottom-up aggregation approach. Each model is to incorporate its
ownWBM(s) orientated towards each load type, as shown in Fig. 1.
By nature, the GBM is a modular solution that can incorporate all
data types, be it empirical, semi-empirical, CFD, or data-sensor
features. However, associated risks of success, such as data quan-
tity and quality, as well as WBM accuracy, completeness, and
relevance, must be acknowledged.

3. Theoretical overview

As a GBM solution was judged most suitable, both WBM and
BBM model limitations and assumptions must be considered for
optimal performance. Ultimately, fourWBMs and one BBM solution
have been investigated and outlined, respectively.

3.1. White-box overview

1. Calm-Water Resistance Calculation (WBM Propulsion): The calm-
water calculation is based on the Holtrop and Mennen (H&M)
(Holtrop and Mennen, 1982; Holtrop, 1984) approach, and as
such, has two main limitations: vessel type and efficiencies. The
3

model is limited to monohull displacement vessels with
moderately slender bodies and low Froude numbers.

Fr � 0:45
3:9 � L=B � 9:5

Additionally, early-stage efficiencies are limited to low-order
empirical formulations heavily dependent on propeller design
and vessel shape. Hull efficiency, rotative efficiency, and open-
water efficiencies are generally heavily dependent on the vessel's
speed, whereas transmission efficiency losses are relatively lowand
stable. Thus, both literature sources (Holtrop and Mennen (1982))
and model-scale results are considered to validate the efficiencies
within the early stages.

2. Wind Resistance Calculation (WBM Propulsion): The wind resis-
tance component is a subset of the main calm-water proportion.
The developed model is based on the ITTC (Seakeeping
Commitee of the 29th ITTC, 2018) approach where the wind
profiles are determined using Computational Fluid Dynamic
(CFD) wind tunnel investigations of multiple yachts. These
profiles have been verified and validated with corresponding
model wind tunnel tests, demonstrating a marginal powering
contribution. Nevertheless, the developed model is limited to
the corresponding transverse and longitudinal area profiles,

158m2 � Ax � 238m2

625m2 � Ay � 1065m2
3. Added Thrust in Waves Calculation (WBM Propulsion): The wave
model component is based on the SPAWAVE model (Grin
(2014)), which was developed on model-scale tests, and oper-
ational comparisons. This model is limited to regressions based
on waterline lengths of,



Fig. 2. A single perceptron architecture (top) and a multi-layer (3-layer) perceptron
feed-forward network with weights, biases, and outputs (bottom) (da Silva et al., 2011).
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51m � LWL <108m:

While themodel has been verified and validated for various ship
sizes, bow shapes, and wave directions, only a single-load (design
draft) condition is considered. Nevertheless, this model's advantage
compared to similar alternative approaches is the ability to
approximate loads for all wave directions, as opposed to being
restricted to only head waves.

4. HVAC Power Calculation (WBM Auxiliary): The heating, ventila-
tion, and air-conditioning (HVAC) power model is based on a
heat balance approach developed by Stapersma and Klein Houd
(Stapersma and Klein Houd, 2012). Additionally, ASHRAE/ISO
codes and standards (ASHRAE, 2013; ISO 7547, 2002) are used to
assign the associated area classification comfortability re-
quirements. However, the model does not take into account any
fitting losses and personnel movements. Instead, room-by-room
evaluations with maximum persons distributed per room clas-
sifications are used to evaluate required powering demand.

While propulsion white-box models can be aggregated to esti-
mate the dynamic propulsion loading conditions, the associated
HVAC model only considers a portion of the total auxiliary load.
Akershoek (2018) identified that auxiliary power predictions
within yachts could significantly impact total energy predictions,
where expected proportions can sometimes be upwards of 50% the
total demand. Thus, while potentially significant, the remaining
portion will fall towards the BBM to scale the outcome results
appropriately.

3.2. Black-box overview

Artificial neural networks are a computing system that is
vaguely inspired by the biological networks found within the brain.
These systems are composed of multiple individual synaptic com-
ponents known as perceptrons. The general topology can be seen in
Fig. 2 where the general input-output relationships can be
described as,

Ŷ j ¼ g,

2
4Xj

nj¼1

�
XT
̄

,W
̄ �

� b
�3
5 (1)

where the associated jth neuron output Ŷ j is a function of multiple

ith feature input parameters, XT
̄

¼ ðx0;…; xiÞT . The corresponding

weight input from the ith input and for the jth neuron isW
̄

¼ ðWj;0;

…;Wj;iÞ. The b parameter represents the associative layer bias or
threshold. The activation function, g(,), is some continuous or
discontinuous function that maps the real numbers to an interval
between [-1,1] or [0,1]. As detailed by da Silva et al. (da Silva et al.,
2011), when multiple perceptrons are placed in connection with
one another, a Multi-Layer Perceptron (MLP) network is formed,
commonly known as a Feed-Forward Neural Network (FFNN).
These networks feature at least one intermediate (hidden) layer,
which is placed between the input and output layers. The general
architecture of an FFNN can be seen in Fig. 2.

Ultimately, many different types of neural networks exist;
however, three general BBM steps should be identified for optimal
performance and interpretability as.

1. Hyperparameter Optimization: One of the most relevant features
concerning an artificial neural network is its ability to generalize
the acquired knowledge, enabling the estimation of solutions
4

using inputs that have never been encountered before. However,
to achieve this state, appropriate model hyperparameters (fac-
tors specific to the network architecture) must be selected to
avoid the practical problems of over- and under-fitting,
(Aggarwal (2018)). This research proposes using a conven-
tional grid-search methodology to search the hyperparameter
design space for optimal solutions. While this approach can find
the optimal performance region, care must be taken to keep the
search permutations within reason to reduce the computational
demand. Thus, the associated parameters used in the study can
be seen below as,

� Performance function: Mean Squared Error
� Optimal layers: 1 to 3
� Optimal neurons: 10 to 40
� Early stopping regularization (epochs): 10 to 100
� Dropout regularization: 0 to 0.5
� Batch training size: 1, 32, or 64
� Activation functions: ReLu, Sigmoid, or Tanh
� Optimizer algorithm: ADAM or SGD
2. Ensembling and Uncertainty Evaluation: For improved inter-

pretability, it is common to consider two sources of uncertainty:
epistemic (sm) and aleatoric (se). The former is related to the
model's uncertainty and structure. Whereas the latter deals
with the inherent error due to the natural stochasticity of the
observations (Mazloumi et al. (2011)). Quantification of these
sources as total uncertainty (st), as shown in equation (2), can be
achieved using a bootstrap aggregation (bagging) approach as
introduced by Ferrario et al. (2017).

st ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2m þ s2e

q
(2)

Here, an ensemble of models is developed and combined using
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datasets sampled with replacements. Ensembling inherently im-
proves generalization as the mean performance is more robust to
individual modelling irregularities. At which point, empirical
probability distributions can be leveraged using general statistics to
evaluate the confidence bounds using confidence level values (z) as
indicated below,

Y
̄
±z,st ; z ¼ 1:96ð95%ConfidenceÞ (3)

As detailed by Efron and Tibshirani (1993), for estimating an
empirical probability distribution, the required number of ensem-
bles (boots) will ordinarily fall within the range of 25e200.
Therefore, the model building process will integrate a bootstrap
approach with 30 boots to quantify total GBM uncertainty.

3. Performance Metrics and Evaluation: Once models are fully
developed, the final performance will be evaluated by analyzing
three commonly appliedmetrics. These include the Coefficient of
Determination (R2), Mean Absolute Error (MAE), and the Root
Mean Squared Error (RMSE). Ultimately, each modelling perfor-
mance indicator has its advantages and disadvantages. As such,
a singlemetric cannot thoroughly diagnose the global modelling
performance. The coefficient of determination indicates the
goodness of fit and does not indicate a predictive error. The MAE
indicates the absolute raw error but does not account for vari-
ation. The RMSE, on the other hand, penalizes variation but can
be easily skewed by a few irregular points. Thus, Botchkarev
(2018) suggests that only by using multiple performance met-
rics can a general understanding of the modelling behaviour be
successfully captured, investigated, and assessed.
4. Methodology

The total grey-box methodology can be composed of three main
stages: input, modelling, and output, as identified in Fig. 3. Here, a
serial (sequential) GBM approach (Zwart (2020), Leifsson et al.
(2008)) is adopted, where multiple data inputs are prepared and
passed through theWBM(s) as direct inputs to the BBM solution. At
this point, the BBM is trained on the associated input features,
which inherently alters into a GBM solution.

The approach can be further decomposed into multiple sub-
steps for each sub-modelling contribution. The latter portion,
which focuses on the BBM elements, has been detailed within
section 3.2.Whereas the former focuses on the conversion of raw to
useable input data. Here, four key steps as introduced by García
et al. (2016) are identified to ensure the data is adequately pre-
pared for successful GBM implementation.
Fig. 3. Schematic of the general grey-box modelling serial methodology and

5

1. Data Integration: Generally, data originates from multiple
external sources with varying lengths and parameter di-
mensions. To ensure unequal data lengths are capable of
merging, mutual data features must be compared and aligned,
such as timestamps, latitudes, longitudes, and vessel speeds.
Once alignment is verified, higher frequency datasets can be
used as an interpolation foundation for the remaining in-
between data entries. Such an approach intends to generate as
many points as possible to develop a fuller and more diverse
dataset. Unfortunately, this process is not without its flaws.
Interpolating between datasets can create artificially introduced
points that may not truly exist in the operational environment.
Nonetheless, when many overlapping features within the mul-
tiple datasets display a high degree of parallelism, such in-
fluences are generally minor or can be eliminated through the
future cleaning process. Thus, data interpolation is a practical
approach to retaining as many features and data points as
possible. Nevertheless, it is recommended to adopt as few
varying datasets as possible to reduce the inherent interpolation
errors.

2. Noise Identification: Noise Identification is the process of iden-
tifying and removing any outlying data entries. These irregular
points have the potential to skew the output results signifi-
cantly. Two approaches are commonly applied: simple para-
metric methods such as interquartile range (IQR) elimination
and complex non-parametric techniques such as clustering or
density grouping. When considering continuously monitored
data from real-world operations, the law of large numbers and
central limit theorem suggests that the feature distribution is
expected to be normally distributed if the samples are large
enough. Therefore, while a highly conservative approach, the
parametric IQR is likely a suitable approach to eliminate outlier
noise throughout the investigation due to the large dataset.
While these methods can be compelling, they are also indis-
criminate. In other words, a high understanding of the features
is required as the process has the potential to reduce data ranges
without intention drastically.

3. WBM Evaluation: Any additional missing values and irregular-
ities not captured by the outlier detection approach are elimi-
nated using engineering sense and self-established
specifications. All data entries have been cleaned at this position
within the preparation framework, and as such, no missing
values shall be present within the set. Therefore, eachWBM (see
section 3) can be evaluated for each corresponding data entry
extracted for use within the GBM framework. However, care
must be taken such that all modelling assumptions and limita-
tions are conserved.
each corresponding data preparation and model evaluation sub-steps.
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4. Feature Selection: Feature Selection determines which inde-
pendent features are closely related to the dependent target
parameter. As detailed by Parkes et al. (2018), introducing var-
iables that are poorly correlated to the target variables can add
unnecessary complexity, negatively impacting model perfor-
mance and generalization capacity. As shown by both Zwart
(2020) and Parkes et al. (2018), the Spearman Correlation
technique has proven effective in determining critical inputs for
modelling energy consumption. The approach quantifies non-
linear monotonically increasing or decreasing correlations to
help guide the ANN training procedure. Unfortunately, non-
monotonic dependencies such as parabolic or oscillatory re-
lationships can not be accurately measured, as such engineering
sense still needs to be applied.

Upon completing the data preparation steps, the relevant fea-
tures can optimally train an ensembled artificial neural network to
estimate operational energy consumption. However, depending on
the powering component, propulsion or auxiliary powers, the input
features vary accordingly. Thus, for each situation, a clear binary
transformation input feature will be developed. The sailing opera-
tion factor can be quantified as a binary classification between
Sailing and Anchor as follows,

Soper ¼
�
0 Vs <1 knot
1 Vs � 1 knot

(4)

When the vessel has a speed over ground greater than 1 knot,
the vessel operation can be classified as Sailing. Anything less is
quantified as at Anchor. This threshold was deemed adequate for
the sake of distinguishing between pure sailing as well as low-
speed manoeuvring operations. In the study's context and the
general design process focus of the early-stage design, manoeu-
vring power demand is eliminated as this application falls outside
the bounding scope.
5. Case introduction and available data

The case in question focuses on a single modern yacht vessel
between the periods of 01-10-2018 and 01-07-2020. The yacht is a
displacement vessel with no attached bulbous bow and a waterline
length, beam, and gross tonnage of 99 m, 15 m, and 4700 g t,
respectively. The main engine is a diesel-electric configuration,
where the apportionment between propulsion and auxiliary power
demand can be obtained directly by dedicated generator sets. These
generators are linked with two electric engines and coupled via
shafts towards two 5-bladed fixed-pitch propellers with a diameter
of 2.5 m each. The vessel is an ideal candidate for the following case
investigations for two overarching reasons.

The first is that this yacht is relatively new. As such, the
implementation of onboard continuous monitoring systems allows
for direct measurement of most power-consuming systems with a
high-frequency 3-min sampling rate. These measurements allow
for a robust and varied selection of potential feature inputs to
further enhance the capabilities of the GBM. Furthermore, since the
ANN uses a supervised learning approach, accurate target param-
eters such as individual power demand found on bothmain engines
and generator sets for propulsion and auxiliary power are critical.

The second reason is that both the data quantity and quality are
expected to be high. While the yacht is a newer vessel, 2þ years of
high-frequency onboard sensor information and voyage AIS loca-
tion data are available since launch. Therefore, the overall coverage
of geographic locations and recorded weather conditions is quite
broad. In addition to these high quantity datasets, large amounts of
resources have been invested in ensuring the obtained
6

information's quality is accurate via multi-set validations and
comparisons.

The available data is obtained from three primary sources: on-
board powering systems (3-min), hindcasted weather data (hour-
ly), and ship specification/maintenance reports. The collected
information over the 10-month operational range totals approxi-
mately 61,944 data points. The available variables for the model
development are highlighted within Fig. 4. Based on previous
literature investigations of similar studies ((Zwart, 2020; Parkes
et al., 2018; Kalogirou and Bojic, 2000; Neto and Fiorelli, 2008)),
it can be seen that the available data almost wholly aligns with the
literature ANN input features.

6. Case evaluation

6.1. Data Integration and cleaning

Using the method described in section 4, the three primary data
sources are first integrated and aligned using timestamps, longi-
tude, latitude, and vessel speeds. As emphasized prior, the degree
difference in the dataset frequency can, unfortunately, provide
considerable uncertainty between the datasets once interpolation
is applied. In this case, weather information is only recorded on an
hourly basis; thus, the actual dynamic situation for each voyage
condition may not be suitably represented. Additionally, on brief
occasions, irregularities within the onboard sensor datasets are
noticed. Seemingly, when the signals are lost, a corresponding null
placeholder data entry is obtained instead of valid measurements.
Unfortunately, such recording errors are tough to locate and can
significantly skew the modelling analysis. Therefore, only by care-
fully applying the data preparation procedure can valid data points
be ascertained from extreme interpolation and sensor errors.

Once the data has been aligned and cross-compared to validate
the sets, the data cleaning can be conducted to eliminate irregular
or outlier data points. However, before continuing, the combined
dataset must be orientated towards each individual powering focus
first. Since the proposed solution is to develop models considering
both propulsion shaft power and auxiliary power, the associated
data must reflect these different outcomes. Further outlined in
section 4, a vessel operation classification is set to distinguish be-
tween Sailing and Anchor operations. Thus, the corresponding
datasets can be likewise divided using this data feature. This clear
division of functions allows for three datasets orientated towards
each independent operation: Sailing, Anchor, and a Combined
operation. A summary of each corresponding dataset operation and
the associated data cleaning process effects can be seen in Table 1,
where the amount dropped is highlighted red for each cleaning
step.

In addition to the outlier detection approach, self-established
cleaning specifications were incorporated to ensure physically
feasible data solutions were retained. The corresponding data
elimination criteria are identified as follows.

� Data <0 (excl. Tair)
� Tair > 40 �C
� Radial�> 360�

� Rel. Humidity >95%
� Speed > Speedmax

� Power > Powermax

Ultimately, these specifications require much insight and engi-
neering application knowledge. Based on the complete integration
and cleaning process, it can be seen that while many data points are
initially collected, a large portion of those is not useable. When
considering the missing data, specifications, and outlier data, the



Fig. 4. Operational polar, histogram, and box-plot dataset input feature visualization.

Table 1
Dataset preparation summary.

Initial Datapoints 61944

Pre - Processing Step Amount Dropped Data Remaining

Sailing Operation

Sailing Only 55999 5945
Missing Data 993 4952
Data Specifications 111 4841
Outlier Drop 1245 3596
Final Datapoints 58348 3596

Anchor Operation

Anchor Only 5945 55999
Missing Data 14506 41493
Data Specifications 32177 9316
Outlier Drop 2431 6885
Final Datapoints 55059 6885

Combined Operation

Anchor þ Sail 0 61944
Missing Data 15512 46432
Data Specifications 33976 12456
Outlier Drop 1964 10492
Final Datapoints 51452 10492
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total data drop between the three operations was 39.5%, 87.7%, and
83.1%, respectively.
7

6.2. WBM evaluation and comparisons

Once the data has been cleaned, each WBM can be evaluated
and directly compared with the recorded datasets. The total data-
sets for propulsion and auxiliary power demand and the associated
relative proportions can be seen in Fig. 5.

When inspecting the propulsion comparisons, it can be seen
that there is a relatively good correlation between the collected
data results and the estimated predictions. The calm-water model
generally presents a lower bound to the operational points. This
relation is to be expected as this model only considers idealistic
environmental conditions. When the additional resistance com-
ponents are included, the total shaft WBM presents a much more
realistic representation. However, there still exists a degree of dif-
ference between the gathered and estimation results. The model
overestimates the dynamic impacts on power demand in the
upper-speed regions, whereas the lower-speed areas underesti-
mate the power demand.

Nevertheless, Fig. 5 indicates the mean proportion between the
actual powering demand (blue) the estimated WBMs (orange)
presents a marginal difference of 5%. The calm-water proportion
(black) makes up the most considerable portion at 77%. The wave
component likewise makes up a substantial proportion at 27%
(beige). However, the overall influence of the wind model on pro-
pulsion power is at a mere 1% of the total recorded load.

The Auxiliary power comparison deviates quite drastically from



Fig. 5. Gathered operational target data and white-box model result comparisons between propulsion (left) and auxiliary power (right). Additionally, modelling decomposition of
each mean modelling contributions is presented as proportions to the recorded target loads.

K. Odendaal, A. Alkemade and A.A. Kana International Journal of Naval Architecture and Ocean Engineering 15 (2023) 100484
the propulsion WBM evaluations. It can be seen that the collected
results have substantial variance (blue). As noted in section 3, the
developed auxiliary WBM only considers the HVAC portion of the
auxiliary power component, where an averaged proportion of 35%
of the total load is observed (orange). Based on qualitative obser-
vation, the WBM does seemingly follow the general trending of the
recorded auxiliary powers, thus capturing some dynamic effects. In
addition to the developed auxiliary WBM, an existing operational
load list (red) is used as a reference comparison benchmark. Unlike
the WBM, this estimation represents the total expected load. Un-
fortunately, these calculations only provide a singular point-based
solution, wherein the case vessel indicates a constant required
load of 450 kW for successful operation.

It should be noted that on closer inspection of theWBM, a slight
gap between estimations is present. This difference is due to the
daylight factor, which influences the inherent radiation contribu-
tion. This factor quantifies the radiation component throughout a
typical day within the localized timezone. The threshold considers
the interior time between 06:00 to 18:00 as Day and the outer time
as Night.
8

asun ¼
�
0 tlocalhours � 6 or tlocalhours >18
1 6< tlocalhours � 18 (5)

During the Night, radiation is not present; thus, the additional
required power is neglected in such situations. Nevertheless, while
not perfect and having no alternative other than a singular load list
estimate, the WBM HVAC power model estimates a large dynamic
portion of the total demand.

6.3. Feature Selection and optimization

Once all features are prepared and WBM(s) are evaluated, the
Spearman correlation method is implemented as detailed in sec-
tion 4. A visualization of the resulting combined operational rank
matrix is presented in Fig. 6. Additionally, the results summary of
the top 10 correlators and the mean absolute Spearman correlation
for each dataset variation can be seen in Table 2.

When comparing the various operational conditions, it is clear
that the auxiliary power dependencies are much lower than that of
the other cases. Since these power systems are typically composed



Fig. 6. Combined operation Spearman correlation rank matrix.

Table 2
Spearman correlation results summary for all operational conditions.

Sailing & Anchor: Propulsion (IQR) Auxiliary (IQR)

Rank Input SCo Input SCo

1 Vs þ0.64 Phvac
a þ0.33

2 Ps,cwa þ0.63 Ee þ0.31
3 Tair �0.63 asun þ0.24
4 Ps,ta þ0.53 Tair þ0.15
5 T0 þ0.49 b360 �0.07
6 HCI þ0.49 a360 �0.06
7 Vwi þ0.35 RH þ0.03
8 Hs þ0.33 T0 �0.02
9 a360 þ0.31 Hs þ0.00
10 b360 þ0.02 Vwi þ0.00
Target Ps 1.00 Pa 1.00
MASCo (T10) 0.44 0.12

Combined: Auxiliary (IQR) Total (non-IQR)
Rank Input SCo Input SCo

1 Phvac
a þ0.30 Vs þ0.86

2 Tair þ0.23 Ps,cwa þ0.86
3 Ee þ0.21 Ps,ta þ0.86
4 asun þ0.17 Soper þ0.84
5 Hs �0.17 Tair �0.43
6 Vs �0.17 Phvac

a �0.35
7 Soper �0.16 Hs þ0.34
8 a360 �0.14 HCI þ0.33
9 b360 �0.14 a360 þ0.25
10 T0 �0.13 b360 þ0.21
Target Pa 1.00 PTotal 1.00
MASCo (T10) 0.18 0.53

a White-Box Model (WBM) evaluated input feature.
Table 3
Hyperparameter optimization results summary.

Type Sailing
Propulsion

Anchor
Auxiliary

Combined
Auxiliary

Combined
Total

Cross-Validation 3x10 3x10 3x10 3x10
Dropout 0 0 0 0
Epochs 100 100 100 100
Batch Size 32 32 32 32
Activation ReLu ReLu ReLu ReLu
Optimizer Adam Adam Adam Adam
Layers 2 2 2 2
Neurons 38 38 40 40
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of many different complex components, the Spearman Correlation
approach cannot indicate a strong dependency between the inde-
pendent and dependent features once combined. For instance, a
dominating cubic relation between vessel speed and shaft pro-
pulsion power is expected due to the underlying physical re-
lationships. Therefore, both ship speed as well as the corresponding
WBM's show significant correlations in all cases. However, in the
case of the auxiliary power, no dominating feature is known due to
the complex cumulative nature of the total auxiliary power.
9

Amongst the collected data features, the HVAC WBM and atmo-
spheric conditions show the most dynamic dependencies; how-
ever, these only make up a portion (approximately 35%) of the total
loading. As such, the input-output target dependencies may not be
universally related to one or two features but instead composed of
multiple low-order contributions from various elements.

Looking into the effects of the outlier detection methods also
provides insight into themodelling performance. It is expected that
the IQR method supports strong internal correlations as noise that
may skew the modelling results is removed. While this seemingly
influences the Sailing and Anchor operation by improving the
overall correlations, the Combined Total operation indicates a de-
pendency reduction. Since the IQR method is a parametric
approach, it relies on traits that exhibit Gaussian-like distributions.
However, as highlighted in Fig. 4, the highest correlators, such as
vessel speed, do not present this form when merged, potentially
providing distortion within the cleaning process.

Ultimately, while the correlations indicate some numerical
connection, not all features with low dependencies should be dis-
regarded. For instance, wind (beta) and wave (alpha) directions
commonly indicate low dependencies; however, the correlation
results are highly unreliable. These parameters are orientated using
a polar coordinate axis, thus are continuous by nature. As such, the
corresponding results may or may not be monotonic. Therefore, a
minimum threshold is established to ensure some degree of cor-
relation. This established threshold is set at ±0.10. Anything below
the limiting bound is individually evaluated and judged for suit-
ability based on the specific operation and the corresponding
functions.

Based on the Spearman correlations and all available features
(see Fig. 6), an average of 10 data features are retained across all
operational conditions. It should be noted that the Combined
datasets naturally have more input features as both auxiliary and
propulsion orientated data features are to be kept.

At this stage, the black-box modelling phase begins with grid
search hyperparameter optimization outlined in section 3.2. A
summary of each operational dataset's optimal parameters and
structure can be found in Table 3.

Based on the outcomes, many of the BBM parameters and
structures converge towards a similar solution space. This confor-
mity is understandable, as many of the datasets exhibit an overlap
of data features. Nevertheless, it should be noted that the Combined
operational datasets reached the upper bounding limit of the grid
search evaluation. Therefore, while the overall structure is
improved, there is still room for further enhancement. However,
while keeping in mind general time limitations versus the overall
expected modelling gains, further optimization of the network
structure has been neglected. Ultimately, the grid refinement pro-
cess can be conducted for an infinite number of hyperparameter
selections and permutations to determine the optimal global
structure; however, the respective computational demand increase
must be judged carefully.



Table 6
IQR Combined Auxiliary performance summary comparisons between GBM, BBM
and WBM.

Table 7
non-IQR Combined Total performance summary comparisons between GBM, BBM
and WBM.
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6.4. Model evaluation

Having prepared the associated situational datasets and finding
the optimal topography, each GBM can be developed and compared
directly between the alternativemodelling categories. The datawas
split with 70% used to train the network, 15% to test the final
network, and 15% was used for early-stop validation, a standard
split for these applications (da Silva et al. (da Silva et al., 2011)).
Additionally, in this case, an ensemble of 30models was considered
to create the associated empirical bootstrapped aggregation con-
fidence intervals. The associated performance metric results for
each powering case are summarized in Tables 4e7, where the
visualization results can be seen in Figs. 7e10, respectively.
Furthermore, the associated input and output feature data ranges
for each developed model are listed in appendix A.

Ultimately, the GBM solution has the best performance metrics
amongst the three modelling categories whereas, the WBM's are
typically least effective within the dataset training ranges. Based on
the modelling requirements, all GBM solutions successfully achieve
the established accuracy conditions. The observed ranking of per-
formance was as follows,

GBM � BBM>WBM

A direct comparison between the GBM and WBM indicated that
the former had an average of 15% improvement over the latter.
Whereas the performance between the GBM and BBM was either
slightly improved (1%) or equal. When investigating the suitability
of the combined added resistance models, it could be seen from the
results that the calm water model consistently had slightly better
Table 4
IQR Sailing Propulsion performance summary comparisons between GBM, BBM and
WBM.

Table 5
IQR Anchor Auxiliary performance summary comparisons between GBM, BBM and
WBM.

Fig. 7. IQR Sailing Propulsion GBM þ Ps,cw prediction performance with 95% confidence
intervals.
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results. This result provides strong evidence to suggest that the
added resistance models slightly reduced the internal correlations



Fig. 8. IQR Anchor Auxiliary BBM prediction performance with 95% confidence
intervals.

Fig. 9. IQR Combined Auxiliary BBM prediction performance with 95% confidence
intervals.

Fig. 10. None Combined Total GBM þ Ps,cw þhvac prediction performance with 95%
confidence intervals.
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meaning that the combined models did not improve in capturing
the dynamic contributions of the measured total power. Never-
theless, the differences are marginal. However, a driving question
remains why the global relative performance of the auxiliary power
is consistently lower than the propulsion models. While there are
no singular solutions, many aspects can contribute to the overall
limited dynamic success.

First, there is a clear difference in Spearman Correlation mag-
nitudes. It has been observed that the overall dependencies within
the auxiliary cases are generally much lower than the operational
11
propulsion equivalents. Therefore, as reflected within Table 2, the
overall correlations prove to be significant initial gauges as to the
expected performance. Lower dependencies mean that the BBM
component of the GBM can not adequately map internal physical
connections, thus resulting in a lowered goodness of fit.

Another reason, much related to the previous point, can be due
to the HVACWBM. It was hoped that this model would capture the
most critical dynamic operational effects. While this model
generally maintains the most significant correlations of all relevant
data features, it is nowhere near the propulsionWBM contribution.
This can mainly be attributed to the fact that overall auxiliary po-
wer is composed of multiple highly complex systems that contin-
uously interact. Thus, the sizeable observed uncertainty can be
related to the fact that, while the HVAC demand is generally
considered the most prominent load proportion, the remaining
system effects and influences are not considered. These critical
missing components include; active stabilizers and rudders, which
are known to contribute significantly to both auxiliary power de-
mand and its dynamical operational contributions. For each cor-
responding best-developed model, the observed performance
metric rankings were seen as follows,

Propulsion Sailing>Total Combined>
Auxiliary Anchor>Auxiliary Combined

While the auxiliary models do not behave as the propulsion
models, the developed solutions are still below the established
requirement thresholds. In a global sense, prediction accuracy
within 35 kW of the total auxiliary load is still a significant
improvement over the existing Load List estimation at a relative
80 kW difference.

While a model to evaluate total energy demand has been
developed, this model cannot be easily decomposed into its various
powering components. Unfortunately, this is a limitation of the
GBM process, where a singular dependent target parameter is used
to supervise the training process. However, proportioning can
potentially be obtained using a traditional bottom-up approach. As
such, a comparison between the aggregated propulsion and
auxiliary models and the total consumption model is investigated.



Fig. 11. Comparison between Total (GBM þ Ps,cw þhvac) and Aggregation of Auxiliary
(J∅ GBM þ Phvac) þ Propulsion (GBM þ Ps,cw) power demand.
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Fig. 11 highlights seven training test samples under varying con-
ditions that have been used unilaterally between the three models.
Here, the actual target, aggregated, and total power predictions are
directly compared.

Based on the results, it can be confirmed that when both models
are aggregated, the mean absolute difference between each sample
case is marginal 1.1%. This deviation falls well below themean error
of each corresponding model and, as such, provides a suitable
indication that a bottom-up GBM aggregation for system propor-
tioning is a viable solution to capture each propulsion, auxiliary,
and total powering demand. However, it should be noted that both
the individual operational dataset range limitations and modelling
uncertainties are retained and reflected in the combined model.
Therefore, understanding each independent modelling capability
with the aid of the developed confidence intervals is required to
ensure the combined models behave appropriately.

7. Model verification

Having identified the best-developed models, a Verification
analysis can be further conducted. This procedure ensures that the
Table 8
Modelling results comparison summary.

Developed GBM Models RMSE

Sailing Propulsion 121.145
Anchor Auxiliary 35.094
Combined Auxiliary 47.959
Combined Total 120.343

Propulsion

Zwart(Zwart, 2020)
Parkes et al. (Parkes et al., 2018)
Average

Auxiliary (Buildings)

Neto and Fiorelli (Neto and Fiorelli, 2008)
Kalogirou and Bojic (Kalogirou and Bojic, 2000)
Average
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acquired output results are realistic, fall within similar order of
magnitudes to other similar models, and align with the established
modelling requirements. It should be enforced that the purpose is
not direct accuracy comparisons as such models can vary
depending on building factors, such as the amount of data. A
detailed summary of the results and corresponding comparison
results and outcomes are seen in Table 8.

It should be noted that while the absolute relative errors are
transparent in each literature investigation, using only one per-
formance metric, as previously indicated in section 4, does not
adequately capture the total modelling outcomes. As such, the
additional RMSE is implemented. However, since this metric is a
dimensional unit, a normalization of the parameter must be con-
ducted to compare the various modelling solutions unilaterally. As
such, the following relation can be applied,

nRMSE ¼ RMSE

P
̄
target

(6)

where the RMSE performance metric is normalized using the mean
of the target parameters found within each literature investigation.
While most of the literature sources are transparent in their results,
not all reports have this metric listed. Thus, the average of the
corresponding results is used as a comparison baseline for each
operational condition. It can be seen that the related outputs from
each case align within the same order of magnitudes of each
literature result. The propulsion cases behave moderately better
than most of the listed sources; however, this can also be attributed
to the amount of data provided for model training. The auxiliary
case also falls within the expected modelling outcome orders of
magnitudes; thus, the overall modelling methodology can be
verified.
7.1. Model extrapolation

Section 6.4 showed that the GBM and BBM models are highly
effective within the developed model's training data ranges, where
a high degree of prediction accuracy has been obtained. However, it
can ultimately be noticed that both the GBM and BBM behave
similarly with one another. Thus, a question remains as to why a
more complex GBMmodelling solutionwould be favoured over the
more straightforward BBM approach.

The ultimate goal of the GBM is to introduce an aspect of the
foundational physics attained from the WBM to aid in the internal
dependencies andmappings. It is hoped that this integration allows
for the prevention of unreasonable results when nearing and
entering the extrapolation regions. Thus, to evaluate these
P
̄
target

nRMSE MAPE

3461.0 0.0350 2.2%
381.8 0.0919 7.4%
373.2 0.1285 10.3%
1533.9 0.0785 6.3%

0.0842 6.63%
0.126 7.80%
0.104 5.78%

e 16.50%
e 9.00%
e 12.8%



Table 9
Sailing Propulsion extrapolation performance summary comparisons between GBM,
BBM and WBM.
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unknown regions, data entries outside the training bounds were
applied to the best-developed propulsion and auxiliarymodels. The
additional data entries are collected from residual datasets, shown
in Fig. 12, and the resulting performance summaries are presented
in Tables 9 and 10, respectively. It should be noted that these results
indicate a percent relative change from the performance of the
interpolation and extrapolation models. In this instance, a simple
classification between green (improved performance) and red
(reduced performance) is used to identify gains and losses between
associated performance metrics.
Fig. 12. Training versus extrapolation dataset comparison of propulsion (top) and
auxiliary models (bottom).

Table 10
Anchor Auxiliary extrapolation performance summary comparisons between GBM,
BBM and WBM.
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From a propulsion perspective, it can be seen that the WBM
solution exhibits the best overall performance. This is to be ex-
pected, as one of the most significant benefits of using a WBM is its
rooted fundamentals, allowing for improved extrapolation. How-
ever, it can be seen that the GBM is the next best performingmodel,
whereas the BBM is the global worst performer by a substantial
margin. As such, it can be clearly observed that the GBM propulsion
model indicated a significant learning degree, demonstrating an
improved extrapolation capacity compared to the BBM by
approximately a 20% difference in MAE. Ultimately, this improve-
ment can be related to the internal feature dependencies. TheWBM
data features all exhibited a high degree of correlation. Thus, solid
internal mappings between the physics model and the BBM portion
could be made.

Unlike the propulsion case, the auxiliary models behave radi-
cally differently. The GBM and BBM solutions, while a slight
reduction in performance is seen, exhibit the best overall extrap-
olation performance. The WBM models, on the other hand, were
inferior models to begin with, and as such, not much of a perfor-
mance reduction be directly seen. In this case, the GBM shows a
mere improvement of 2%MAE over the BBM. As such, this alludes to
the unfortunate conclusion that the GBM was not successfully able
to retain much of the physics induced by the integrated WBM.
While there is a slight improvement over the BBM model, the
overall performance is relatively weak to begin. Again, these
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mediocre results can be related to each feature's internal correla-
tions to the target power parameter. While the WBM did consis-
tently have the most significant correlation, the magnitude of these
relations is much lower and spread out than the propulsion cases.
Thus, it can be suggested that limited relationships could be
adequately developed to aid the model's ability to extrapolate
beyond its design ranges.

8. General limitations and uncertainties

These general results provide critical insight into GBM inter-
polation and extrapolation behaviour. Ultimately, when correla-
tions between the WBM data feature and the target parameter are
significant, inherent physics retention can be achieved. This
learning ability allows for a clear improvement of general perfor-
mance and approaches the WBM's enhanced ability to extrapolate.
However, when the parameter correlations are low, no such
learning is achieved, and the modelling behaviour performs simi-
larly to a pure BBM. While intuitively, this makes sense, it enforces
the need for appropriate WBMs where the dynamic contributions
instead of direct accuracy play the most critical role.

Unfortunately, this can link to a potential limitation in the
proposed modelling approach. If data is continuously collected,
there is a risk of developing a worse model if the correlation
strength between the WBM and dataset decreases as trends over
time change. Therefore, we should not only be concerned with
increasing the data but having the most up-to-date models. Thus,
the need for not just large data quantities but also suitable data
features and up-to-date models that capture the target parameter's
fundamental nature is essential.

Additional uncertainties within themodelling approach can also
be related to potentially missing input parameters. Up until this
point, the analysis has considered and assumed that all observed
input and targeted points are independent and identically distrib-
uted (i.i.d). However, since the observations are recorded over time,
the datasets have a clear temporal relationship. This temporal de-
pendency, in effect, can influence the overall estimation for future
model usage. Thus, an interesting consideration would be adding
input features, such as Acceleration and Deceleration components,
for instance. These use past data to quantify the corresponding
present response. This input addition may help with the incorpo-
ration of some temporal information.

9. Conclusion

The following studied investigated a grey-box modelling
approach using artificial neural networks and routinely applied
white-box models to estimate dynamic operational powering de-
mand. The results showed that the method significantly improved
the estimation capacity of both propulsion and auxiliary power
demand compared to a pure white-box model.

It can be concluded that the four method requirements have
been confidently achieved. Section 6.4 demonstrated the incredibly
accurate modelling evaluation capabilities for each corresponding
operational consideration, all of which fell below the required 15%
threshold. Furthermore, section 6.4 demonstrated the flexible na-
ture of a GBM solution, allowing for simple model aggregation and
proportioning based on a singular output using a multiple model
scenario. In addition, and falling in line with the framework's
flexibility, section 7.1 proved WBMs can be included to aid
extrapolation by improving the input-output learning capacity if
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suitable models are selected. Finally, while not fundamentally
present within the models, the establishedmodellingmethodology
seen in section 4 considers and outlines proven techniques to
handle irregular data entries and improve interpretability.

Ultimately, the developed models and the proposed modelling
methodology has been inherently developed to handle and deal
with growing datasets. As such, the approach should be able to
quickly scale to other vessels within the Feadship fleet. While this
broadened dataset may allow for improved application, it can also
create sparse data regions. Additionally, new data features such as
Froude number, ship length, displacement, or hull shape co-
efficients might be required to link the GBM inputs with the asso-
ciated target outputs when including more vessels. These added
features have the potential to increase complexity and thus,
introduce the risk of overfitting. Nevertheless, supposing the
domain is sufficiently broad and fully populated with the correct
input data features, no evidence suggests that the approach would
not be capable of meeting the required method constraints.
Therefore, it is highly suggested to expand the current investigation
to consider additional vessels within the Feadship fleet tomaximize
the application potential.

In conclusion, the grey-box modelling approach could improve
the performance analysis of yachts and, therefore, can be used in all
manners of design and operational stages, such as early-spiral
iteration and real-time powering optimization, respectively. How-
ever, further improvements to the grey-box modelling approach
are necessary to address limitations and uncertainties in the
modelling approach. To drive these enhancements a series of future
considerations and questions are presented as follows.

1. Feature selection sensitivity study: Does the amount of selected
top features influence the modelling and extrapolation
performance?

2. Variable WBM fidelity study: Does using alternative WBM's
improve modelling accuracy and extrapolation performance if the
degree of WBM accuracy increases?

3. Further operational profile decomposition: Can more operational
data splits enhance the performance and interpretability of the
models?

4. Multi-vessel incorporation study and comparison: Can more
vessels be added using the same workflow, and can similar per-
formance be achieved?

5. Temporal domain (time-series model) inclusion and compari-
son: Does the selected modelling approach account for temporal
influences, or does an alternative approach need to be considered
entirely?
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Appendix A. Developed Model Data Ranges

See tables 11, 12, 13, and 14.

Table 11
IQR Sailing Propulsion developed data range limits

Sailing Propulsion - IQR

Details Units Minimum Median Mean Maximum

Vs knots 11.2 13.6 13.6 15.9
Tair �C 4.7 16.1 16.7 25.2
Vwi knots 0.2 5.8 5.8 11.1
b360

� 0.0 117.7 153.0 359.8
Hs m 0.2 1.9 1.8 2.8
T0 s 3.3 6.0 5.9 7.6
a360

� 0.0 184.5 181.9 359.9
HCI Days 286.3 311.8 340.6 459.3
Ps,cw kW 1408.0 2543.5 2553.5 4213.5
Ps,t kW 1581.5 3781.8 3804.2 6695.3
Ps kW 1620.0 3406.0 3461.0 5316.0

Table 12
IQR Anchor Auxiliary developed data range limits

Anchor Auxiliary - IQR

Details Units Minimum Median Mean Maximum

Tair �C 8.6 24.7 22.8 28.1
RH % 0.5 0.8 0.8 0.9
Vwi knots 0.4 6.4 5.9 10.3
b360

� 0.0 62.5 102.6 360.0
T0 s 3.0 5.6 5.5 7.5
Hs m 0.2 1.4 1.3 2.3
a360

� 0.0 59.2 114.9 360.0
Ee W/m2 0.0 27.0 130.1 678.2
asun Night/Day 0.0 0.0 0.4 1.0
Phvac kW 49.7 121.4 125.7 197.4
Pa kW 265.0 379.0 381.8 506.0

Table 13
IQR Combined Auxiliary developed data range limits

Combined Auxiliary - IQR

Details Units Minimum Median Mean Maximum

Vs knots 0.0 0.0 4.6 18.0
Tair �C 4.4 23.9 20.5 28.1
RH % 0.5 0.8 0.8 0.9
Vwi knots 0.2 5.9 5.7 13.4
b360

� 0.0 78.7 119.1 360.0
T0 s 3.0 5.6 5.6 7.6
Hs m 0.1 1.5 1.4 2.8
a360

� 0.0 77.5 135.5 360.0
Ee W/m2 0.0 11.7 97.5 573.2
asun Night/Day 0.0 0.0 0.4 1.0
S Anchor/Sail 0.0 0.0 0.4 1.0
Phvac kW 51.8 125.6 123.1 212.4
Pa kW 219.0 375.0 373.2 535.0
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Table 14
non-IQR Combined Total developed data range limits

Combined Total Power - None

Details Units Minimum Median Mean Maximum

Vs knots 0.0 0.0 4.6 18.0
Tair �C 4.4 23.9 20.5 28.1
RH % 0.5 0.8 0.8 0.9
Vwi knots 0.2 5.9 5.7 13.4
b360

� 0.0 78.7 119.1 360.0
Hs m 0.1 1.5 1.4 2.8
T0 s 3.0 5.6 5.6 7.6
a360

� 0.0 77.5 135.5 360.0
HCI Days 218.6 303.9 319.5 488.5
Ee W/m2 0.0 11.7 97.5 573.2
asun Night/Day 0.0 0.0 0.4 1.0
S Anchor/Sail 0.0 0.0 0.4 1.0
Phvac kW 51.8 125.6 123.1 212.4
Ps,cw kW 0.0 0.0 859.8 6568.7
Ps,t kW 0.0 0.0 1240.4 7699.3
Ptotal kW 232.0 411.0 1533.9 7718.0
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