

Delft University of Technology

On Safety in Machine Learning

Viering, T.J.

DOI
10.4233/uuid:a908aba1-8210-4b75-b69f-77aea7871a56
Publication date
2023
Document Version
Final published version
Citation (APA)
Viering, T. J. (2023). On Safety in Machine Learning. [Dissertation (TU Delft), Delft University of
Technology]. https://doi.org/10.4233/uuid:a908aba1-8210-4b75-b69f-77aea7871a56

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:a908aba1-8210-4b75-b69f-77aea7871a56
https://doi.org/10.4233/uuid:a908aba1-8210-4b75-b69f-77aea7871a56

Wow, how
did you deal
with that?! Using

E-CORP’s
cloud, it's

easy!

I also found
some initial weights there,
made training a breeze!

Why wouldn't it
be? Everyone uses
E-CORP's stuff!

Are you sure that's safe?
You ARE building a self-driving

car after all...

Have you seen the new open source ml
framework from E-CORP? Yeah, with just ten lines of

python you can train a deep neural
network, amazing! We use it for

pedestrian detection in our self-
driving car prototype!

I scraped the web for pictures
of people and used semi-

supervised learning

You would be
surprised by the
diversity of pics

online!

More data never hurt
anyone, right?

100 TB was a bit
troublesome...

Makes sense if
your network
has so many
parameters

Impressive!

Besides, their algorithm has
the tightest generalization

bound!

Cool, I'll check it out!
 What data did you use for training?

Their tool can even explain WHY the
network detects a person, it's foolproof!

Shouldn't you try it out
on simpler tasks first?

It worked on MNIST*...

A bit, but look: it has
a comic on its cover!

Fair enough,
I'll read the

intro...

Err, no,
I haven't...

It discusses safety issues you may find
interesting...

Isn't it mostly
theoretical?

Did you ever read this PhD
thesis on safety in machine

learning?

*MNIST is a database of handwritten digits that is commonly used for benchmarking various machine learning algorithms

Maybe
MNIST wasn’t so
representative

after all.. .

ON
 SA

FETY
 IN

 M
ACH

IN
E LEA

RN
ING

TOM
 JU

LIA
N

 V
IERING

ON SAFETY IN MACHINE LEARNING
TOM JULIAN VIERING

ON SAFETY IN MACHINE LEARNING

ON SAFETY IN MACHINE LEARNING

Dissertation

for the purpose of obtaining the degree of doctor
at Delft University of Technology

by the authority of the Rector Magnificus, prof. dr. ir. T.H.J.J. van der Hagen,
chair of the Board for Doctorates

to be defended publicly on
Thursday, 4th of May, 2023 at 10:00.

by

Tom Julian VIERING

Master of Science in Computer Science,
Delft University of Technology, The Netherlands,

born in Leiden, The Netherlands.

This dissertation has been approved by the promotors.

Composition of the doctoral committee:
Rector Magnificus, chairperson
Prof. dr. E. Eisemann, Delft University of Technology, promotor
Prof. dr. M. Loog, Delft University of Technology, promotor

Independent members:

Prof. dr. B. Hammer Bielefeld University, Germany
Prof. dr. M. Biehl, Rijksuniversiteit Groningen, The Netherlands
Prof. dr. M. Bicego, University of Verona, Italy
Prof. dr. A.E. Zaidman Delft University of Technology, The Netherlands
Dr. J.N. van Rijn Leiden University, The Netherlands
Prof. dr. ir. M.J.T. Reinders Delft University of Technology, reserve member

Advanced School for Computing and Imaging

This work was carried out in the Advanced School for Computing and Imaging (ASCI).
ASCI dissertation series number 443.

Printed by: ProefschriftMaken.nl

Front & Back: Cover art by Jonathan van Engelenhoven a.k.a. banjoofjustice

Copyright © 2023 by T.J. Viering

ISBN 978-94-6469-259-4

An electronic copy of this dissertation is available at
https://repository.tudelft.nl/.

https://repository.tudelft.nl/

Voor Peter en Alma

“Evolution forged the entirety of sentient life on this planet using only one tool...
The mistake.”

Dr. Robert Ford (Westworld)

CONTENTS

Summary xiii

Samenvatting xv

1. Introduction 1
1.1. Preliminaries 1: Supervised Learning . 2
1.2. Preliminaries 2: ERMs and PAC Learning . 3
1.3. Preliminaries 3: Bayesian Machine Learning 5
1.4. Safety and Previous Work on Safety . 7
1.5. Explainability . 9
1.6. Active Learning . 12
1.7. Learning Curves . 14
1.8. Relation of the Chapters to Safety . 17
1.9. Organization of the Thesis . 17
1.10. Overview of Notation . 17
Glossary . 20
1.11. Bibliography . 25

2. How to Manipulate CNNs to Make Them Lie: the GradCAM Case 29
2.1. Introduction . 30
2.2. GradCAM and Notation . 32
2.3. Manipulating the CNN . 32
2.4. Experimental Setup . 36
2.5. Results . 36
2.6. Discussion . 38
2.7. Conclusion . 38
2.8. Bibliography . 38

3. Nuclear Discrepancy for Single-Shot Batch Active Learning 43
3.1. Introduction . 44
3.2. Related Work . 46
3.3. Setting and Notation . 49
3.4. Analysis of Existing Bounds . 51
3.5. Nuclear Discrepancy . 56
3.6. Experiments . 57
3.7. Discussion . 61
3.8. Conclusion . 62
3.9. Bibliography . 63

IX

X CONTENTS

4. The Shape of Learning Curves: a Review 67
4.1. Introduction . 68
4.2. Definition, Estimation, Feature Curves . 69
4.3. General Practical Usage . 78
4.4. Empirical Works that Favor Well-Behaved Curves 81
4.5. Learning Theory in Favor of Well-Behaved Curves 89
4.6. Ill-Behaved Learning Curves . 93
4.7. Discussion . 102
4.8. Conclusion . 105
4.9. Bibliography . 105

5. Minimizers of the Empirical Risk and Risk Monotonicity 117
5.1. Introduction . 118
5.2. Earlier Work and Its Relation to the Current 118
5.3. Risk Monotonicity . 120
5.4. Theoretical Results . 122
5.5. Experimental Evidence . 124
5.6. Discussion and Conclusion . 126
5.7. Bibliography . 127

6. Making Learners (More) Monotone 131
6.1. Introduction . 132
6.2. Setting and the Definition of Monotonicity 132
6.3. Approaches and Algorithms . 133
6.4. Theoretical Analysis . 135
6.5. Experiments . 137
6.6. Discussion . 139
6.7. Conclusion . 142
6.8. Bibliography . 142

7. Discussion 145
7.1. Monotone in Expectation? . 145
7.2. Safe Explanation Methods . 150
7.3. Safe Active Learning . 150
7.4. Final Words on Safety . 151
7.5. Bibliography . 152

A. Open Problem: Monotonicity of Learning 155
A.1. Introduction . 156
A.2. Preliminaries and Related Work . 156
A.3. The Monotonicity Property . 157
A.4. Examples . 157
A.5. Relation to Learnability . 158
A.6. Open problem(s) . 159
A.7. Bibliography . 160

CONTENTS XI

B. A Brief Prehistory of Double Descent 161
B.1. Bibliography . 162

C. Appendix of Chapter 3 163
C.1. Background Theory . 163
C.2. Proofs . 167
C.3. Remark on Probabilistic Analysis and choice of Us 173
C.4. Computation of the Decomposition of the Probabilistic Bounds 174
C.5. Experimental Settings and Dataset Characteristics 176
C.6. Results of the Agnostic Setting . 177
C.7. Influence of subsampling on performance. 179
C.8. Additional Experimental Results . 181
C.9. Bibliography . 185

D. Appendix of Chapter 5 187
D.1. Theorem 8 . 187
D.2. Lemma 2 . 188
D.3. Theorem 9 . 188
D.4. Theorem 10 . 189

E. Exact Learning Curve Distribution for Wrapper 191

Acknowledgements 195

Curriculum Vitæ 199

List of Publications 201

SUMMARY

This dissertation focuses on safety in machine learning. Our adopted safety notion is related
to robustness of learning algorithms. Related to this concept, we touch upon three topics:
explainability, active learning and learning curves.

Complex models can often achieve better performance compared to simpler ones. Such
larger models are more like blackboxes, whose inner workings are much harder to under-
stand. However, explanations for their decisions may be required by law when these models
are used, and may help us further improve them. For image data and CNNs, Grad-CAM
produces explanations in the form of a heatmap. We construct CNNs whose heatmaps are
manipulated, but whose predictions remain accurate, illustrating that Grad-CAM may not
be robust enough for high stakes tasks such as self-driving cars.

Machine learning often require large amounts of data for learning. Data annotation is
often expensive or difficult. Active learning aims to reduce labeling costs by selecting data
in a smart way — instead of the default, random sampling. Active learning algorithms
aim to find the most useful samples. Surprisingly, we find that active learning algorithms
with strictly better performance guarantees perform worse empirically. The cause: their
worst-case analysis is unrealistic. A more optimistic average-case analysis does explain our
empirical results. Thus better guarantees do not always translate to better performance.

A learning curve visualizes the expected performance versus the sample size a learning
algorithm is trained on. These curves are important for various applications, such as estim-
ating the amount of data needed for learning. The conventional wisdom is that more data
equals better performance. This means a learning curve strictly improves with more data,
or in other words, is monotone. Deviations can surely be explained away by noise, chance,
or a faulty experimental setup?

To many in our field this may come as a surprise, but this behavior cannot be explained
away. We survey the literature and highlight various non-monotone behaviors, even in cases
where the learner uses a correct model. Our survey finds that learning curves can have a
variety of shapes, such as power laws or exponentials, but there is no consensus and a
complete characterization remains an open problem. We also find simple learning problems
in classification and regression that show new non-monotone behaviors. Our problems can
be tuned so non-monotonicity occurs for any sample size.

Is there a universal solution to make learners montone? We design a wrapper algorithm
that only adopt a new model if its performance is significantly better on validation data. We
prove that the learning curve of the wrapper is monotone with a certain probability. This
provides a first step towards safe learners that are guaranteed to improve with more data.
Many questions regarding safety remain, however, this thesis may provide inspiration to
develop more robust learning algorithms.

XIII

XIV SUMMARY

The main take-aways are (TLDR):

• Strictly tighter generalization bounds do not imply better performance.

• Explanations provided by Grad-CAM can be misleading.

• Even in simple settings more data can lead to worse performance.

• We provide ideas to construct learners that always improve with more data.

SAMENVATTING

Dit proefschrift richt zich op veiligheid van zelflerende algoritmes (machine learning). De
precieze definitie van veiligheid die we hanteren heeft te maken met de robuustheid van
zelflerende algoritmen. Dit proefschrift beslaat drie themas: de uitlegbaarheid van leeralgo-
ritmen, actief leren (active learning) en leercurven (learning curves).

Complexe modellen presteren vaak beter dan simpelere als ze op voldoende data zijn
getraind. Als we zulke complexe modellen willen toepassen in de praktijk, vereist de wet
vaak van ons dat we de beslissingen van deze modellen kunnen uitleggen. Bovendien, als
we kunnen begrijpen waarom complexe modellen bepaalde beslissingen maken, kunnen we
ze ook gemakkelijker verbeteren. Dit is de motivatie om leeralgoritmen uit te leggen.

Voor visuele data en convolutionele neurale netwerken is de uitleg vaak ook visueel. De
populaire methode Grad-CAM produceert een heatmap: een beeld waarin de intensiteit
van elke pixel aangeeft hoe belangrijk deze pixel was bij de beslissing van het neurale
netwerk. In dit proefschrift laten we zien dat we neurale netwerken kunnen bouwen die
goed presteren, maar die tegelijkertijd ook de uitleg van Grad-CAM misleidt. Dit illustreert
dat Grad-CAM niet robuust is. Voor toepassingen waarin veiligheid hoog in het vaandel
staat, zoals bij zelfrijdende autos, kunnen we dus beter niet vertrouwen op Grad-CAM.

Voor het leren van complexe algoritmes is vaak een grote hoeveelheid geannoteerde da-
ta nodig. Die annotaties zijn vaak kostbaar en niet gemakkelijk verkrijgbaar. Actief leren
heeft daarom als doel om de hoeveelheid data die nodig is om te leren te verminderen. Dit
wordt gedaan door een actief leer algoritme. Dit algoritme bepaalt welke data gelabeld moet
worden. Door hierin slimme keuzes te maken is er minder data nodig om te leren.

In dit proefschrift laten we zien dat algoritmen voor actief leren met strikt betere theore-
tische garanties in de praktijk slechter presteren. We laten zien dat dit komt door het feit dat
de theoretische analyse gebaseerd is op een worst-case analyse die onrealistisch is. Door
een theoretische analyse die gebaseerd is op een realistischer scenario kunnen we wel on-
ze resultaten verklaren. Kortom; betere theoretische garanties vertalen zich niet altijd naar
betere empirische resultaten.

Tenslotte bestuderen we leercurves. Een leercurve visualiseert de gemiddelde prestaties
van een leeralgoritme als functie van de hoeveelheid data die is gebruikt voor het leren. De-
ze curves kunnen bijvoorbeeld worden gebruikt om te schatten hoeveel data nodig is om
een bepaalde prestatie te behalen. De gangbare gedachte is dat meer data een betere presta-
tie impliceert. Oftewel: de leercurve is monotoon. Afwijkingen hiervan kunnen natuurlijk
worden verklaard door een gebrekkige experiment, of toeval?

Voor velen in ons vakgebied zal dit als een verassing komen: deze resultaten waar leren
slechter wordt met meer data zijn gebaseerd op valide simulaties. We doen een uitgebreide
analyse van de literatuur en laten zien dat er meerdere situaties zijn waar leeralgoritmes
niet-monotone leercurves vertonen. Dit kan zelfs gebeuren als het leeralgoritme correcte
modelaannames maakt. In ons literatuur onderzoek vinden we leercurves met een breed sca-

XV

XVI SAMENVATTING

la aan verschillende gedragingen, zoals polynomiaal of exponentieel verval. In de literatuur
is er geen consensus over de definitieve vorm van leercurves en een volledige karakterisatie
van alle leercurven ontbreekt. In ons onderzoek vinden we zelfs een aantal nieuwe simpele
classificatie en regressie problemen waar leeralgoritme nieuw niet-monotoon gedrag laten
zien. Ons leerprobleem kan zelfs zo gebouwd worden, dat de leercurve verslechterd voor
elk willekeurig gekozen grootte van de training set.

Is er een universele methode om leeralgoritmen monotoon te maken? Dat is de laatste
vraag die dit proefschrift onderzoekt. We bouwen een algoritme dat gecombineerd kan wor-
den met elk leeralgoritme dat een poging doet het leeralgoritme zich beter te laten gedragen.
Dit algoritme monitort continue de prestaties van het leeralgoritme, en grijpt in als het mo-
del slechter wordt. In dat geval wordt het vorige beste model gehanteerd. We bewijzen
dat dit resulterende algoritme monotoon is met een bepaalde kans. We geloven dat dit een
eerste stap vormt in de richting van veilige leeralgoritmen die altijd verbeteren met meer
data. Er blijven veel vragen rondom veiligheid van zelflerende algoritmen in de context van
robuustheid, maar dit proefschrift geeft hopelijk inspiratie tot het bouwen van robuustere
leeralgoritmes.

Mocht deze samenvatting al aan de lange kant zijn, dan hierbij een nog beknoptere sa-
menvatting (TLDR):

• Strikt betere theoretische garanties garanderen geen betere empirische prestaties.

• Heatmaps gegenereerd door Grad-CAM kunnen misleidend zijn.

• Zelfs in simpele gevallen kan meer data leiden tot slechtere prestaties.

• We nemen een eerste stap in de richting van het bouwen van leeralgoritmen die altijd
beter presteren als ze meer data voorgeschoteld krijgen.

1
INTRODUCTION

The most exciting phrase in science is not “Eureka!” but “That’s funny...”

Isaac Asimov

Machine learning as a technology is not safe. This is perhaps best illustrated by the fact
that authors for the NeurIPS conference are now asked to write a statement that considers
the ethics and societal impact of their manuscript [1]. In this case, safety relates to dangers
to society posed by automated systems constructed using machine learning, and can be
related to algorithmic discrimination, classification of race, automated weapons, etc. In
safety-critical applications, such as self-driving cars, mistakes of the machine can also result
in physical harm [2].

Whereas the previous discusses safety in the context of applications, we are concerned
with safety in machine learning theory. In that case, one may expect that less can go wrong,
but even there it is hard to exclude undesirable outcomes. The studied safety topics in the
theory literature are diverse [3–5]. Safety can relate to reinforcement learning in several
ways, as these algorithms may be used to control robots in the real world. For example,
when these algorithms are exploring their environment, they may inadvertently perform
unsafe actions, or errors in their objective function may lead them to do so. Safety can also
relate to robustness of machine learning algorithms [5, 6], which is our focus.

A well-known example of safety that is studied in theory are adversarial attacks. In that
case inputs to the machine learning system are manipulated by an adversary to cause it to
make wrong decisions [7]. Closely related topics are the monitoring of machine learning
models, which can be automatic by another system or by humans. The latter has con-
nections with model interpretability, since humans need to understand when the system
malfunctions. In the context of monitoring, a popular research direction aims to detect
distributional shifts or other forms of attacks and how to defended against them [8].

We study robustness and safety in the context of explainability, active learning and learn-
ing curves. Since we deal with supervised learning and its variants, we first recap that
setting. For interested readers, we also provide some more background information on
learning theory in the Frequentist framework, such as Empirical Risk Minimization (ERM)

1

1

2 1. INTRODUCTION

and Probably Approximately Correct (PAC) learning, and finally we provide a very brief
primer on Bayesian machine learning. Afterward, we discuss our definition of safety, and
we review some related work that studied this notion of safety in semi-supervised learning
and domain adaptation. Then, we introduce the three topics in more detail, and we wrap up
the introduction with an overview of the chapters, the most important notation used in this
dissertation and the most important terminology.

1.1. PRELIMINARIES 1: SUPERVISED LEARNING
In supervised learning, we assume there is an unknown distribution PX Y over X ×Y ,
where X are the features or covariates and Y are the labels or outputs that we are interested
in predicting. We usually assume that the features live in a d-dimensional space: X ∈ Rd .
Standard settings are binary classification where Y ∈ {+1,−1} corresponding to positive and
negative class labels and in regression Y ∈R corresponding to the regression targets.

In regression, there often will be an underlying regression function f : X →Y that we are
trying to learn. Observations are typically noisy, and thus we have that y = f (x)+ϵ, where ϵ

is, for example, i.i.d. Gaussian noise with zero mean and a variance of σ2. Furthermore, we
assume that there is a marginal distribution PX , this describes the distribution of the features
or covariates. It is obtained by marginalizing out the Y out of PX Y . The underlying
regression function, the noise and PX completely determine PX Y in that case.

In binary classification, we can consider an underlying decision function, η : X → [0,1],
that is defined as η(x) = P (y = 1|x), the posterior probability of the positive label. Note
that, if we fix x, and sample a label y , the label y behaves as a Bernoulli-variable with
success probability η(x). Thus, a binary classification problem PX Y can equivalently be
characterized by PX and η(x).

We receive n independent and identically distributed (i.i.d.) samples from PX Y . This
sample is called the training set, which we indicate by Sn . We call such samples labeled, as
for each object in the sample the label or target is available. A learner, which we indicate
by A, uses the training set to construct a model, h. This model takes as input x ∈ X and
aims to predict the corresponding y ∈ Y . All possible models h that A can output form
the hypothesis class H . For example, one may consider the class of all linear models,
H = {x → wT x +b : w ∈Rd ,b ∈R}. We write predictions of a model as ŷ .

The performance of the model is measured using some loss function l (ŷ , y). For classific-
ation often the zero-one loss is used: l01(ŷ , y) = 1ŷ 6=y . This loss function counts the number
of mistakes, and thus when averaging this loss over samples, we obtain an estimate of the
error rate of this classifier, which is defined as the probability of making a mistake. For
regression the squared loss is typically used: lsq(ŷ , y) = (ŷ − y)2. The goal for the learner is
to return a model with good generalization performance; meaning that the loss on unseen
objects is small. The generalization performance of a model is measured by the risk,

R(h) = E(x,y)∼PX Y
l (h(x), y). (1.1)

The risk for classification can be interpreted as the probability of making a classification
error on new and unseen data sampled from PX Y , or in other words, this is equal to the
error rate.

1.2. PRELIMINARIES 2: ERMS AND PAC LEARNING

1

3

Let A(Sn) be the model returned by the learner when trained on the training set Sn . Be-
cause the training set is a random sample, the risk of the learner, R(A(Sn)) is a random
variable. To obtain a single number to characterize the performance of A, we take the
expectation and obtain the expected risk:

R(A) = ESn∼P R(A(Sn)). (1.2)

Often, it is logical to compare the performance of our models to the best performance that
is attainable in theory. To get to such models, we assume we have access to the (typically
unknown) distribution PX Y . For the regression case with the mean squared error, we can
never perform better than the underlying regression function f . Thus the best possible
performance is given by R(f). For classification with the zero-one loss, it is optimal to
predict class +1 if η(x) = P (y = 1|x) > 1

2 , otherwise one should predict −1. This decision
rule is called the Bayes-optimal classifier or Bayes-classifier and we indicate it by hη. When
η(x) = 1

2 , this indicates the Bayes decision boundary (where the optimal predictions go from
one class to the other). The performance of the Bayes-classifier is referred to as the Bayes
error, which we indicate by R(hη).

However, our learners may never be able to reach the minimal error R(hη) (classifica-
tion) or R(f) (regression). This is because our learners can only return models from our
hypothesis class H . For example, the optimal decision boundary may be given be a quad-
ratic function. In case we use linear classifiers as hypothesis class, we will surely incur
some loss in performance due to the approximation made by the hypothesis class. Thus, for
this reason, we will also often compare our performance to the best model h∗ in our class:
h∗ = argminh∈H R(h).

This motivates us to decompose the error of a model as:

R(h) = R(h)−R(h∗)
estimation error

+ R(h∗)−R(hη)

approximation error

+ R(hη)

irreducible error

(1.3)

The first term is the estimation error or excess risk. This error can be attributed to the
learning algorithm, it will be large if we get a very unrepresentative training set, or if the
learner overfits. Thus this error is large due to estimating the wrong function h due to the
finite sample we have access to. The second part is the approximation error due to using a
limited hypothesis set H . In case the approximation error is zero, then a learning problem
is called realizeable. If this error is non-zero, the setting is called agnostic. The final term is
the irreducible error, this error can never be reduced due to the inherent noise of the learning
problem, and this coincides exactly with the Bayes error. Note that in case of regression,
this should be R(f) instead of R(hη).

1.2. PRELIMINARIES 2: ERMS AND PAC LEARNING
Now we will discuss some basics of machine learning theory, following the excellent text-
book of Shalev-Shwartz and Ben-David [9]. In this dissertation we often consider Empirical
Risk Minimizers (ERMs). The empirical risk is given by

R̂(h) = 1

n

∑
i

l (h(xi), yi) (1.4)

1

4 1. INTRODUCTION

which is the empirical loss on the training set Sn . An empirical risk minimizer returns the
hypothesis that minimizes R̂(h). For regression this typically yields a tractable optimization
problem because the mean squared error is smooth and convex. However, for classification,
this approach is usually unfeasible, as the zero-one loss is difficult to optimize in the ag-
nostic case [9, page 105-119].

Therefore, for classification, we often use a different loss for learning, also referred to as
surrogate loss. In this dissertation we will often take the squared loss as surrogate loss for
learning a classifier. We refer to the resulting classifier as a least squares classifier or Fisher
classifier (see [10, p. 186] for details regarding the origins of the name and its relation to
the Fisher criterion). If we have n > d , the least squares problem has a unique solution, and
this is generally referred to as underparameterization (less parameters than samples).

The overparamatrized setting is the case where we have more parameters than training
samples, d > n. Then the least squares solution on the training set is not unique and there are
many solutions. In that case we will take the solution where the parameters have minimum
euclidean norm (in case of linear classifiers; we defer a discussion of the kernelized case
to Chapter 3). This solution is found by solving the regression with a pseudo-inverse. This
model is called Pseudo-Fisher by Duin [11] or Minimum Norm Linear Regression (MNLR)
by Loog et al. [12]. Note that, when Pseudo-Fisher is used for the case n > d , it coincides
with the Fisher classifier.

The estimation error (from Equation 1.3) can be analyzed using generalization bounds
or closely related learnability notions. One such notion is that of Probably Approximately
Correct (PAC) learning for the case of classification with the zero-one loss. The PAC frame-
work analyzes learners that train on i.i.d. data of size n. Using the results of PAC, one
can show that for empirical risk minimizers an upperbound holds with probability 1−δ on
the excess risk for all distributions (learning problems) PX Y . The parameter 1−δ indic-
ates the probability of successful learning (hence, probably), and 1−δ is also called the
“confidence”. Because the training set is a random sample, it is unavoidable that we may
get a very unrepresentative training set, and therefore a probability of failure is inevitable.
The upperbound is of the form R(h)−R(h∗) ≤ C

n (realizeable case) and R(h)−R(h∗) ≤ C ′p
n

(agnostic case). In case a finite hypothesis class is used, C and C ′ depends on the size of
the class and δ. Such an upper bound is called a generalization bound. Note that for PAC
bounds, the upperbound cannot depend on PX Y .

The PAC analysis can also be extended to classes of infinite size, such as the class of all
linear classifiers. For infinite classes, there is a combinatorial property of the hypothesis
class H , called the VC-dimension in the bounds. For a precise definition and concise intro-
duction see [9, Chapter 6]. Roughly speaking, the more complex the hypothesis class, the
larger the VC-dimension.

If a class is too complex, e.g. it can fit anything, the VC-dimension is infinite and PAC-
learning is impossible with that hypothesis class. This fundamental result is called the
No-Free-Lunch theorem (see [9, Chapter 5.1] for more detail). From the No-Free-Lunch
theorem it follows that for such a hypothesis class, no learning algorithm exists for which
such an upperbound on the excess risk (that in the limit goes to zero) can be given that
holds uniformly for all distributions PX Y . The No-Free-Lunch theorem basically shows
that for each learning algorithm, a distribution can be found on which the learner fails.
With other words, learners with such an hypothesis class can overfit, since the training error

1.3. PRELIMINARIES 3: BAYESIAN MACHINE LEARNING

1

5

is zero, while the error on the distribution can be quite large. This fundamental result can
be interpreted as that such a hypothesis class that is too flexible lacks prior knowledge.
The hypothesis class needs to be made less flexible, otherwise successful learning in the
PAC-sense is not possible.

Besides PAC-learning, there are also other learnability concepts. One such learnability
concept is called Structural Risk Minimization (SRM). Structural risk minimization recog-
nizes, like PAC learning, that our hypothesis set should not be too complex, otherwise we
overfit. But on the other hand, the hypothesis class should not be too simple either, other-
wise the approximation error will be very large. In PAC learning, the hypothesis class H
is fixed, while Structural Risk Minimization aims to choose a class that achieves a small
approximation and estimation error.

Instead of choosing an appropriate hypothesis class as in SRM, we can also directly
minimize the empirical risk and the complexity of our hypothesis simultaneously: this way
a trade-off can be made between a model that is not too complex and provides a good fit. For
linear classifiers, we can measure the complexity of the model by the norm of the vector of
the parameters. This results in a different kind of learner, a Regularized Loss Minimization
rule:

argmin
h

R̂(h)+µ||w ||2 (1.5)

The first term is the empirical risk that we have seen before. The second term forces the
model h to be simpler; for the simplest model w = 0 this term is minimal. This term is called
the regularization term. Here we have chosen L2 regularization (since we use the 2-norm),
but other norms can also be used for learning. In this objective µ is a hyperparameter that
controls the trade-off between a low empirical risk and low complexity. In this dissertation,
we will see a learner of this type with the squared loss, which we call Regularized Least
Squares. If such learners minimize a smooth loss (such as the squared loss) and a convex
hypothesis set is used, techniques can also be used to come to generalization bounds for
such learners using arguments based on stability [9, Chapter 13] or using generalization
bounds based on Rademacher complexity [9, Chapter 26]. Latter bounds are more refined
than VC-bounds, and can be used for general losses besides the zero-one loss.

The PAC learning framework and other generalization bounds provide a lot of insight
into the problem of learning and impossibilities of learning. However, these framework
based on bounds also have their limits and should be carefully interpreted. For example,
most theoretical works show there is an upper bound on the excess risk under particular
assumptions that decreases monotonically as a power law in terms of the size of the training
set, C

n (realizeable case) and C ′p
n

(agnostic case). However, later on in this introduction, we
will highlight that the actual excess risk may display different behavior as a function of n.

1.3. PRELIMINARIES 3: BAYESIAN MACHINE LEARNING
So far, we have discussed the Frequentist view of machine learning. It is a particular school
of thought within statistics. An alternative to the Frequentist framework is offered by the
Bayesian approach to statistics [13]. The advantage of the Bayesian approach is that it is
useful if data arrives sequentially, and if we want to encode prior knowledge in our statistical
models. Advantages of the Frequentist school are that no choices of prior are necessary,

1

6 1. INTRODUCTION

making Frequentists statistics “more objective” in some sense. Frequentists typically use
confidence intervals and p-values, while Bayesians use credible intervals and Bayes factors.
Another key difference is that Frequentists machine learning algorithms will return a single
model, which makes point predictions. In contrary, Bayesian machine learning algorithms
return a whole probability distribution over models, where the probability is indicative of
the belief in each model. Similarly, predictions are a whole distribution over values, each
weighted by a probability indicating the amount of belief in their occurence.

One crucial Frequentist assumptions is that the true regression model f exists and is
unknown and fixed. Or equivalently, for classification, that hη is uknown and fixed. The
second typical assumption is that data is generated from a distribution PX Y . Interestingly,
Bayesians take exactly the opposite assumptions: the data is fixed (non-stochastic!), and
the model parameter f is a random variable.

To make the discussion more concrete, let us explain the example of Bayesian linear
regression. A Bayesian, someone adheres to the Bayesian school of statistics, assumes
y = wT x + ϵ, with ϵ i.i.d. Gaussian noise with mean zero and variance σ2. This noise
model is called the Gaussian likelihood. The Bayesian assumes that the variables x are
given and fixed. He further assumes a prior on w , for example, w ∼ N (0,Σp), where Σp is
a positive definite matrix of size d ×d . A common choice can be the identity matrix. The
prior indicates the prior belief of the Bayesian which models may be suitable for the task,
and is chosen before observing data for the particular learning problem.

Now, if the Bayesian wants to make predictions, he will first use Bayes rule to compute
the posterior of w given the data of the training set. Let X be the n ×d datamatrix of the
training set and let Y be the n-dimensional vector of labels of the training set. Then Bayes
rule applied to w gives the posterior distribution:

p(w |Y , X) = p(Y |X , w)p(w)

p(Y |X)
(1.6)

Here, p(w) indicates the prior, p(Y |X , w) is called the likelihood, and p(Y |X) is the mar-
ginal. Assuming the noise ϵ is i.i.d., we have that p(Y |X , w) = N (X w,σId), where In is the
n-dimensional identity matrix. The marginal is given by integrating out w , thus:

p(Y |X) =
∫

w
p(Y |X , w)p(w)d w (1.7)

Computing the posterior can be very challenging, but for this simple regression case with
Gaussian noise and Gaussian prior, it turns out the posterior is also a Gaussian.

To make a prediction for a test point, we do a majority vote over all possible models w ,
where their vote is weighted by their posterior probability. Let us say we have a test point
x ′ whose regression target we wish to predict. Our prediction is a random variable, let us
call it b = wT x ′ (the randomness is stemming from the fact that w is a random variable).
We can compute the mean of the variable under the posterior to get our most likely guess:∫

wT x ′p(w |X ,Y)d w (1.8)

Now we can see the key advantage of this Bayesian approach to machine learning. Because
we take a majority vote over many models, we are less prone to overfitting, because the

1.4. SAFETY AND PREVIOUS WORK ON SAFETY

1

7

majority vote spreads the belief over multiple models. Second, we can get an indication
of the belief in our prediction. If the posterior is very concentrated on one model, the
distribution wT x ′p(w |X ,Y) will be peaked. If many models explain the training set well,
the posterior will be much broader, and then wT x ′p(w |X ,Y) will be broad and uncertain.
So we can assess the certainty of our model by, for example, computing the variance of b
under the posterior.

Note that, the most likely prediction for the test point for this simple model, is exactly the
same as only using a single model w of the mean / mode of the posterior of w . However,
for more complex probabilistic models this will generally not be the case. So while a
Frequentist machine learner will estimate a point prediction for a new object, e.g. wT x,
instead a Bayesian will always predict a whole distribution of likely targets for a new object.
This distribution provides not only the most likely estimate, but also provides information
regarding the certainty of the estimates.

Just like in Frequentist learning theory, in Bayesian learning theory there are also com-
mon settings and assumptions. Some of the theoretical results in the Bayesian setting as-
sume that the model is well-specified, or that there is no model mismatch. This means
that the likelihood function, noise model, and prior are correct. Or in other words, that
data is truly generated from a model from the prior. If this is not the case, the model is
misspecified.

The notion of risk also changes. In the Frequentist setting there was one fixed groundtruth
model. In the Bayesian setting, this cannot be the case, because the model is a random
variable. In fact, in the Bayesian case, we consider a whole range of learning problems,
P . Because each w defines a new single learning problem PX Y (w), where we indicate
the dependence of the learning problem on w . Thus, to compute the risk, we have to take
another expectation with respect to w . We have to redefine the risks in that case to indicate
the dependence on w .

R(h, w) = E(x,y)∼PX Y (w)l (h(x), y). (1.9)

R(A, w) = ESn∼P R(A(Sn), w). (1.10)

Now we can define the Problem Average Risk as:

RPA(A) = Ew∼PW R(A, w). (1.11)

We call this a problem average, since we are integrating over multiple learning problems.
The learning problems are now defined by the prior distribution PW . However, we could
equivalently define a distribution P over distributions PX Y .

1.4. SAFETY AND PREVIOUS WORK ON SAFETY
We study robustness and safety in the context of explainability, active learning and learning
curves. Let us now discuss our definition of safety, and we review some related work that
studies this notion.

Our notion of safety compares the expected risk for a particular n of two algorithms A
and B . Here B is a baseline that we always want to beat, e.g. we always want R(A) ≤ R(B).
If this inequality holds, we call A safe. Note that this definition is similar to the statistical
notion of dominance [13, p. 196]. The difference is that in the context of safety, we only

1

8 1. INTRODUCTION

care about dominating a specific baseline B , while the notion of dominance means that A is
better than a whole collection of B’s. In safety this baseline B is natural or logical to beat,
which depends on the setting. Let us give two examples to illustrate.

In semi-supervised learning, besides a labeled sample, the learner has also access to an
unlabeled sample from the marginal distribution PX . Here the marginal distribution is
obtained by marginalizing out the target y . For the unlabeled data we do not know the label
of the objects. However, in many settings such unlabeled data is very easy to obtain. For
example, in the context of images, it is quite straightforward to collect a large database of
images from the internet that are unlabeled. Obtaining accurate labels (e.g. the object in the
image) is much more costly and difficult. Therefore, it is logical to try and use the unlabeled
data somehow in the learning algorithm, as it may give the learner more information. Thus,
in semi-supervised learning, the goal is to exploit knowledge of the unlabeled sample to
obtain better performance. In this case, it is obvious that a natural baseline B with which
we want to compare is supervised learning, which does not use unlabeled data at all. After
all, unlabeled data is supposed to boost the performance.

In domain adaptation, there are two distributions PX Y , a source distribution and a tar-
get distribution, that model data coming from two different domains. Usually, the source
and target domains are related. For example, source data could correspond to an image
classification problem where data is collected with a webcam, while target data is the same
classification problem only data is collected with a DSLR camera. The goal in this setting
is to perform well on the target domain, thus the risk is measured on the target. Meanwhile
usually little data from that domain is available. Instead, we have a lot of source data avail-
able, which is why we want to exploit the source data for learning. For the example of
the webcam and the DSLR camera, if the pictures are captured in the same manner (e.g.
same environment, poses, etc.), it seems likely that indeed the source data should be useful
for learning of the target task. More formally, we will have that source and target distribu-
tions over X ×Y will be approximately be the same, but the marginal distributions of the
domains will differ (because of the different modalities). In domain adaptation the central
question is how to efficiently combine data from source and target to get good performance
on the target. In unsupervised domain adaptation, a more specialized setting, we receive
labeled data from the source domain and unlabeled data from the target domain. The goal
is to exploit the unlabeled data to adapt the classifier on the source data to perform well
on the target domain. Here, supervised learning on the source data also provides a natural
baseline, as this approach does not use any of the unlabeled target data and is not aware of
the adaptation problem.

Initially sensible procedures or intuitive algorithms may turn out to be unsafe for both
of these settings. As an example, self-learning [14] in semi-supervised learning seems
straightforward. It works as follows. A supervised learner is trained on the labeled data, and
the resulting model is used to predict the targets of the unlabeled data. These predictions
are used as labels for the unlabeled data in the next iteration. The model is then trained
again, now on unlabeled data and labeled data, and again the labels of the unlabeled data
are predicted. This is repeated until the procedure converges.

However, examples are known where the performance of self-learning can be worse com-
pared to supervised learning [15]. The provided insights by studying safety can therefore
be surprising, since even basic procedures may turn out to be less safe than initially thought.

1.5. EXPLAINABILITY

1

9

This can be surprising if empirical evidence does suggest good performance. This must
mean that there are assumptions that we may not be aware of. Similarly, in domain adapt-
ation, it turns out strong assumptions on the relation between the source and target distri-
bution are necessary to ensure success [16]. Uncovering these assumptions will inform us
which algorithms are to be preferred in what case. Therefore we think safety is worthwhile
to investigate.

Note that we can draw some parallels between safety and the time or space complexity
analysis of algorithms. For example the running time of algorithms is often studied in terms
of big-O-notation. For example, a sorting algorithm may admit a O(n2) time complexity,
where n refers to the items to be sorted. This usually refers to the asymptotic performance
for large n. Meanwhile, in learning theory we are usually concerned with bounding the
performance even for finite n (such as the PAC result). This is why we also focus on finite
n for safety.

Both algorithmic complexity and learning theory however do not study the direct per-
formance difference between algorithms, e.g. both bounds the performance of individual
algorithms, such as R(A) ≤ C

n (note that the bound on the excess risk also directly implies a
bound on the risk itself). In safety, however, we directly look at their difference R(A)−R(B)
for the same learning problem. The conclusions drawn are significantly different. For ex-
ample, a worst-case bound of A could be tighter than that of B , but this says nothing about
their relatively performance for all cases, as such, it could turn out that A performs worse
for the majority of all cases compared to B . Meanwhile, if A is safe, it means it will perform
better than B in all cases. Thus, safety guarantees are stronger.

For both semi-supervised learning and domain adaptation strict safety guarantees have
been derived. Strict safety means that A is always better than B (non-strict safety would
imply A and B may sometimes tie). These proofs have been derived in the transductive
setting, where performance is not measured using the risk, but the loss is averaged over a
fixed and known sample which is available to the learner, except for the labels. Strictly safe
semi-supervised learning and domain adaptation is possible for some learners and some
loss functions [17–19]. For the hinge loss, the loss function underlying the support vector
machine, however, it turns out that strictly safe semi-supervised learning is generally not
possible [20]. Weaker safety guarantees may then still be possible, for example, Biggio
et al. [7] provide safety guarantees under the assumption that the true model lies in a low
density region.

We touch upon three topics in the context of safety: explainability, active learning, and
learning curves. The first two topics will only come back in two individual chapters, while
the topic of learning curves is studied more extensively in three chapters. We now introduce
the topics in more detail, and then we end with a overview of the chapters, the most import-
ant notation in this dissertation and a list of the most important terminology (glossary).
Note that the first topic, explainability, does not follow the exact definition of mathematical
safety as defined before and should be considered in a broader view regarding robustness.

1.5. EXPLAINABILITY
The first topic focuses on explainability of machine learning models. Explainable AI has
as goal to improve our understanding of why a complex machine learning model produces

1

10 1. INTRODUCTION

particular outputs [21]. We know the the equations and parameters that govern the models
behavior, but due to their complexity the whole can be difficult to interpret and understand.
Thus, while the weight matrices and model equations constitute a mathematically correct
explanation, it can fall short in other respects of what constitutes a good explanation.

The definition of a good explanation is difficult, but what should be clear is that it de-
pends on the intended use of the explanation [21]. For example, if a user has their credit
application automatically rejected and the system needs to explain why, the weight matrix
of a model is insufficient. In such an application the explanation needs to be in language
the user can understand, for example: “Your request for this loan was rejected because the
requested amount was too high”. However, for a designer of the machine learning system,
such explanations are much too simplified.

Explanations are useful to get a better understanding of our models. For example, was
the decision fair [21]? In particular for machine learning models in high-stakes settings this
is important, such as when a judge in the United States relies on the judgment of a machine
learning system to assess whether a suspect will re-offend [22]. In the European Union, the
General Data Protection Regulation (GDPR), a recent regulation protecting privacy and data
of European citizens, includes articles that come down to the right to an explanation [23].
This law says that, whenever people are automatically judged in some way by algorithms,
they have a right to an explanation of the automatic decision. Besides this law, safety-
critical applications such as autonomous vehicles will likely also require explanations of
automated decisions, so questions such as blame can be resolved. Besides motivations
from applications, machine learners can use explanations to obtain further insight in why
their model makes particular mistakes and how models may be improved [21].

Figure 1.1.: Heatmap that explains the classification output ‘monkey’.

Regarding explanations we focus on image data and classification1, where a popular form
of explanation of a single classification outcome is a heatmap, see Figure 1.1 for an example.

1The rest of the thesis does not consider only image data, specifically, but considers all forms of data.

1.5. EXPLAINABILITY

1

11

The heatmap assigns each pixel in the input a value, indicating the importance of that pixel
in the final classification. For this type of explanation it can be made mathematically precise
what constitutes a good explanation. For example, one objective metric is characterized by
the fact that blacking out important pixels should change the outputs of the model more
rapidly than if non-important pixels are removed [24].

Many explanation methods have been proposed to built such heatmaps. One popular
technique to build explanations for convolutional neural networks is called Grad-CAM [25].
This technique performs a backward pass through a neural network to determine the sensitiv-
ity of intermediate values on the output. These sensitivities have associated spatial locations
that can be used to build such heatmaps.

Perhaps its simplicity has led to wide adoption. Simplicity is of course a great virtue,
but does not guarantee correctness. The observant reader may already have spotted some
warning signs: the gradient is only valid in the exact point it was computed. If we move
a small epsilon away from that point, changes in gradient are possible. So perhaps if the
neural network is sufficiently non-linear, the explanations of Grad-CAM cannot be trusted.

Already in literature doubts were raised about the correctness of several explanation meth-
ods [26–28]. For example, Ghorbani et al. [28] investigate the sensitivity of Grad-CAM’s
output with respect to input perturbations. They found that imperceptible perturbations of
input images can falsify explanations, sharing some similarities with adversarial attacks on
convolutional neural networks. We focus on a different question: is it possible to build
neural networks whose Grad-CAM explanation is misleading while the network still per-
forms well? With other words, does Grad-CAM provide robust explanations?

Figure 1.2.: A traffic sign that is misclassified by a deep network. The deep network con-
tains a backdoor that causes it to misclassify the sign if a sticker is present
(courtesy of [29]).

Why would we focus on such misleading or, what we call, lying networks that provide
misleading explanations but do have good performance? It turns out that neural networks
can be constructed with “backdoors” [29, 30]. Such networks seem to function normally,
except when a particular pattern is present in the input, in that case its usual output is
overruled and a false output is generated. An example is given in Figure 1.2, where a
printed sticker on a stop sign will lead a network to misclassify the sign as a speed limit.

1

12 1. INTRODUCTION

The danger is that because network weights are hard to interpret, it is not clear whether a
backdoor is present in a neural network. Thus, such backdoored networks could be spread
on the internet easily without detection. This is particularly concerning since so many
machine learning models are shared and distributed through the internet.

It turns out that networks can in a similar way be backdoored such that their predictions
remain correct, but their explanation provided by Grad-CAM are manipulated. We show
this in Chapter 2. Such attacks are also hard to detect, because the accuracy of the network
remains unchanged, and such manipulations can be made only to occur when particular
input patterns are present. One can imagine that such a misleading networks could be dan-
gerous if combined with Grad-CAM to locate objects such as pedestrians for self-driving
cars.

1.6. ACTIVE LEARNING

Figure 1.3.: The active learning procedure (courtesy of [31]).

The second topic we touch upon is active learning. In active learning, the learning pro-
cedure is iterative and proceeds in rounds and is illustrated in Figure 1.3. First, the active
learner receives a, typically large, sample from PX , the marginal distribution of PX Y . This
sample is called the unlabeled pool, and it cannot yet be used for learning, as the outputs
are not known. The active learning algorithm then chooses one or more samples from this
pool, these are called the queries, after which an oracle provides the corresponding labels.
Then a learning algorithm can build a model using the labeled sample to predict the cor-
responding y for unseen objects. Usually, there are multiple rounds where this is repeated:
labels are requested, model is trained, labels are requested, etc. The process stops at some

1.6. ACTIVE LEARNING

1

13

point, when for example the labeling budget is exhausted or other stopping conditions are
met. In an applied setting the labeling is done by a human annotator and thus only a finite
amount of labels can be requested.

A natural candidate to compare active learners against is supervised learning, which in
the context of active learning also referred to as random sampling. When sampling objects
uniformly at random from the pool, the obtained training sample is i.i.d. again as in regular
supervised learning. The goal is for the active learning strategy to select objects in a clever
way to get a better performance with the same budget as compared to random sampling. Or
the active learner may reach the desired performance sooner, reducing the labeling budget.

Active learning is particularly attractive if a lot of unlabeled data is available and if la-
bels have a large cost. That cost can arise because domain experts are necessary to classify
the object (e.g. doctors in a medical setting), but can also arise because annotation is time
consuming or difficult. Sentiment classification is a practical example of a realistic setting.
Here Twitter provides an extremely large unlabeled dataset, and services such as Mechan-
ical Turk can be straightforwardly used to solicit labels.

That active learning can help and lead to improved performance compared to random
sampling can be illustrated using artificial examples. For example, if we are performing
classification in 1D with a linear separator, and the underlying true rule is also linear, active
learners can find the decision boundary up to a precision epsilon with a budget that is
logarithmically smaller than that of random sampling [32]. This is because the active learner
can perform a binary search on the line to find the optimal threshold. However, in general
active learners turn out to be hard to analyze, in part due to their biased or non i.i.d. selection
of objects for labeling.

In the context of safety, it is natural to compare active learners to the baseline of super-
vised learning. We may wonder whether active learning is safe generally. Furthermore,
can we say anything about when one active learning strategy beats another? This is the
questions we set out to answer.

To be able to prove anything, we analyze an idealized setting where active learning
strategies are used that minimize generalization bounds (one based on Rademacher com-
plexity, but similar to the PAC one discussed in the preliminaries). In the theoretical
machine learning community, the tightest generalization bounds are usually sought after
(where the upperbound is as small as possible). This is because, in a worst-case scenario,
the performance of the learning algorithm will reach the upperbound. Thus, if we have two
algorithms, and we have to choose which to use, and we want to hedge against the worst-
case scenario, we would choose the algorithm with the smallest upperbound. Does this then
mean also that such an active learner is the safest to use in our notion of safety?

In Chapter 3, we analyzed three active learning algorithms, and we compared their cor-
responding learning bounds in terms of tightness. As motivated by the argument above, we
could expect that the tightest bound would also lead to the best active learning performance.
Perhaps surprisingly, we found the somewhat counter-intuitive result that active learners
minimizing the loosest bounds performed the best. Thus tighter worst-case bounds do not
imply that one algorithm will outperform the other. In particular, one should take into ac-
count whether such a worst-case event is likely to occur, and thus a tighter worst-case bound
is not sufficient to imply safety. Using a an average-case analysis instead of a worst-case
analysis we can explain our results.

1

14 1. INTRODUCTION

1.7. LEARNING CURVES
While in the previous we focused on active learning, a setting which is generally already
hard to analyze, in the last part we focus on the most fundamental form of safety of ma-
chine learning. The safety of supervised learning itself. We compare the performance of
supervised learners with itself, trained on varying amounts of data.

In the machine learning community it seems to be that the conventional wisdom is: “the
more data, the better”2. But is that really always the case? Is supervised learning safe, in
the sense that, more data always leads to better models?

50 100

n

0.6

0.4
e

x
p

e
c
te

d
 r

is
k

Figure 1.4.: Example of an idealized learning curve.

Learning curves are the tool to study such questions, an example of such a curve is given
in Figure 1.4. Such curves plot the expected risk versus the sample size n. Learning curves
are a useful tool for any machine learning practitioner. The curve can tell us many things
about the learning problem at hand. For example, by extrapolating the curve we can see
whether it is worth it to gather additional data. In particular, if dataset collection needs to
be planned beforehand, this can be useful to estimate the minimum amount of data needed
[33]. On the other hand, if our dataset is gigantic and this leads to all kinds of computational
issues, the learning curve can inform us whether subsampling the dataset can be used to
speed up computations [34].

The question then, if more data is always better, can then also be framed in the context
of the monotonicity of the learning curve. Since lower risk is better, the question becomes,
is the curve (strictly) monotonically decreasing? Perhaps surprisingly, the answer turns out
to be no in several cases. Thus, in a sense, machine learning algorithms are in general not
safe: more data could be dangerous and deteriorate their performance. Or in other words,
the curve can display non-monotonicity or is, what we call, ill-behaved. For example, see
the curve in Figure 1.5 which suffers from a phenomenon that is referred to as peaking.

The three chapters on the topic of learning curves are largely devoted to (non)-monotonicity.
Examples of such ill-behavior have been known for already quite some time and part of this
thesis (Chapter 4) aims to collect all known results regarding such phenomena. We survey
the literature, describe and categorize findings related to the shapes of learning curves. It
turns out that there is some empirical and theoretical evidence that favors learning curves
to have a power law or exponential shape. We call such curves well behaved, indicating
that they are monotonically improving with more data. On the other hand, we also found

2We give several citations in Section 4.6 of Chapter 4 to further support this claim.

1.7. LEARNING CURVES

1

15

200 400 600

n

0.45

0.5

E
x
p
e
c
te

d
 r

is
k

Peaking

Figure 1.5.: Example of an ill-behaved learning curve. This example of peaking has already
been known since 1989 [12].

strong evidence that shows learning curves can have various other shapes that are much
harder to characterize, such as learning curves with multiple peaks. We put these shapes
in 6 categories and discuss their (potential) causes and how to possibly mitigate them. The
Bayesian variant of the learning curve, that we call a PA learning curve, is sometimes easier
to analyze analytically, and as such there are various studies that try to characterize their
shapes. We find that only for a very limited class of problems and algorithms there are
proofs that guarantee monotonicity. Meanwhile, it is still relatively uncertain how wide-
spread non-monotonicity is in real-world settings. Preliminary results by Mohr et al. [35]
indicate that non-monotonicity occurs for some specific learners and may happen less often
for large sample sizes. However, we believe a deeper investigation is necessary.

Besides the fact that ill-behaving learning curves are a curious phenomenon because
they are so unexpected, generally speaking, data is often valuable in the sense that it can
be difficult, expensive, or time-consuming to collect. Most annotated data does not come
for free and a significant amount of resources are spent nowadays on collecting data. In
that light, unsafe learners that potentially deteriorate in performance with more data are
quite undesirable. Ideally, we would use learners that always make good use of additionally
collected data and continuously improve their performance. Besides the practical concern, it
seems conceptually appealing to have learners that always improve with more data. Besides
that, the question is of theoretical interest since it is not at all clear whether this is possible
generally.

We set out initially to find more examples of monotone learners in simple settings. We
mainly looked at simple settings to keep the mathematical analysis tractable, for example,
regression and classification in 1D. However, even proving monotonicity for such cases
turned out to be very difficult and we got stuck on this problem for long periods of time.
At some point we turned it around, and tried to find examples that are non-monotone. And
indeed, it turns out there are many more novel simple problems that are non-monotone as
well, as we find in Chapter 5. Even for simple settings, we managed to find very remark-
able learning curves, see Figure 1.6. This learning curve shows periodicity, where the risk
worsens and recovers multiple times.

So, do we only offer more negative examples regarding monotonicity? No, there is also
reason to be optimistic. Learning curves are analyzed by supplying the learner with more

1

16 1. INTRODUCTION

10 20 30 40

n

0

0.5

1

E
x
p
e
c
te

d
 r

is
k

Non-Monotonicity

Figure 1.6.: Example of a remarkable learning curve from Chapter 5.

and more data and measuring its performance on the true distribution. But maybe such a
theoretical analysis is too idealized to accurately characterize how machine learning works
in practice...

In practice, when we are faced with a stream of incoming data, we would usually not
keep iterating the learning procedure to build models on more and more training data and
directly apply them. Instead, a careful practitioner will continually estimate the perform-
ance of the various models they train, for example using cross validation or the holdout
method. Generally, a careful practitioner would probably notice that a newly deployed
model would show significantly worse performance, and would resort to the previously
best trained model. Such evaluations and withholding of worse models while constructing
the learning curve, can avoid that the (non-averaged) learning curve increases significantly,
and one may expect that the learning curve becomes more well-behaved or more monotone,
meaning that the risk increases less often or in smaller amounts.

We investigate this idea in more depth and formally analyze it in Chapter 6. We pro-
pose a wrapper algorithm that can be applied on top of any supervised learner which aims
to make the learning curve more monotone. In this setting there is a streaming source of
data that is incoming to the wrapper algorithm. The wrapper algorithm sets aside some of
the incoming data as test data and uses that to evaluate if newly trained models perform
significantly better. To compare models, a hypothesis test is used, which allows us to de-
rive theoretical guarantees regarding monotonicity of the learning curve generated by this
procedure. As such, this wrapper algorithm can be seen as a first step towards making any
learning algorithm more monotone and thus more safe.

1.8. RELATION OF THE CHAPTERS TO SAFETY

1

17

1.8. RELATION OF THE CHAPTERS TO SAFETY
While not explicit, all chapters are tied together by the concepts of safety. In the context
of explainability, we study whether explanations of Grad-CAM are robust, in the sense of
whether they can be manipulated. For active learning, we study safety guarantees given
by worst-case versus average-case approaches. Finally, we return to the core of machine
learning with the topic of learning curves. Here we study the safety of supervised learning
compared with itself for varying sample sizes. Here we review all kinds of examples and
find new ones where supervised learning itself is not safe, or in other words, where the
learning curve is non-monotone. Finally, we make a constructive step towards making
supervised learning safe by building a wrapper algorithm which aims to make the learning
curve monotone.

1.9. ORGANIZATION OF THE THESIS
First, we start off with Chapter 2 regarding the safety of the explanation method Grad-
CAM for convolutional neural networks. In Chapter 3 we analyze active learners based on
generalization bounds.

Subsequently, we move on to the topic of learning curves. In Chapter 4 we give a survey
of the literature regarding learning curves, their basics such as definition and estimation, and
empirical and theoretical works regarding their shapes and monotonicity. This includes sev-
eral examples of non-monotone learning curves. Then, Chapter 5 adds to that, by providing
several examples of novel and simple problems that have non-monotone learning curves.
We wrap up the topic of learning curves with Chapter 6 which introduces a wrapper al-
gorithm which aims to make the learning curve more monotone for any learner. We con-
clude the dissertation with Chapter 7 which offers an extensive discussion and directions
for future work.

Finally, this thesis also offers several appendices. A precursor of Chapter 5 was an ex-
tended abstract which can be found in Appendix A. Besides the survey on learning curves,
we also worked to trace back the historical origins of the peaking phenomena of learning
curves (of Figure 1.5) which recently found renewed interest in the context of Double Des-
cent [36]. This lead to the letter [12] which is given in Appendix B. Appendices C and D
contain the proofs and more details of Chapters 3 and 5, respectively. In Appendix E we
present an additional theoretical result related to Chapter 7, where we compute the exact
learning curve distribution for a wrapper algorithm.

1.10. OVERVIEW OF NOTATION
We have aimed to use as much similar notation between the chapters. Only Chapter 2
uses different notation, since this chapter considers Grad-CAM which is applied to convo-
lutional neural networks, meanwhile the rest of the dissertation focuses more on machine
learning. The tables on the next pages may prove useful when it comes to notation. Finally,
we provide the list with the most important terminology that can be encountered in this
dissertation (glossary).

1

18 1. INTRODUCTION

Table 1.1.: Notation used in this dissertation

Domain

X The domain of the input features
(often Rd , where d is the dimensionality)

Y The domain of the outputs
(classification: Y ∈ {−1,+1}, regression Y ⊂R)

Z Combined domain, Z =X ×Y

S All possible training sets,
S :=Z ∪Z 2∪Z 3∪ . . .

Problem

f Underlying true labeling function f : X →Y

PX Y Distribution over X ×Y (often shortened to P)
PX Marginal density over X

(obtained by marginalizing out the Y in PX Y)
P Distribution over PX Y

(distribution over distributions)

Data

x, xi , x ′ Feature vector ∈X

y , yi , y ′ Label ∈Y

ŷ Prediction of the label for some object
Sn Training set of (x, y) pairs of size n
Sk

n−k A specific training set of size n
n Sample size of the training set
P̂ Sample from PX (unlabeled sample)
Q̂,Q̂n A sample selected from P̂ by the active learner (of size n)
Q̂ lab

n ,P̂ lab The corresponding labeled sample (e.g. (x, y) pairs)
nP̂ ,nQ̂ Size of the sample P̂ , Q̂
XP̂ nP̂ ×d datamatrix of features of P̂
XQ̂ nQ̂ ×d datamatrix of features of Q̂
X , Xn n ×d datamatrix of features
Y n-dimensional vector of labels

Learner

K , K (x, x ′), k(x, x ′) a positive semi-definite (PSD) kernel of the learner
K (Xn , Xn) an n ×n kernel matrix corresponding to the features of Xn

KL , KL (x, x ′) a positive semi-definite (PSD) kernel for the MMD
H the reproducing kernel Hilbert space (RKHS) of K
||.||K Norm of object in H

H A hypothesis set (all models that the learner can return)
example: H = {x → wT x +b : w ∈Rd ,b ∈R}

w parameter of linear model
A Learner that maps a training set to a model, A : S → H
Aerm, Areg Empirical Risk Minimizer (ERM), Regularized Loss Minimizer
h, hi , hbest models from H
µ regularization parameter

1.10. OVERVIEW OF NOTATION

1

19

Table 1.2.: Notation used in this dissertation (continued)

Performance

l a loss function
l01 zero-one loss
lsq squared loss
ϵ(h) the true error (error rate) of h, E(x,y)∼P l01(h(x), y)
LQ̂ (h, f),LP̂ (h, f) loss of h on Q̂, P̂ with label provided by f
ϵ̂(h,S) empirical error (average 01 loss) of h on S
R(h) risk of h, E(x,y)∼P l (h(x), y)
R̄n(A) expected risk of learner A: ESn∼P n R(A(Sn))
R̄PA

n (A) problem-average risk, e.g. EP∼P R̄n(A)

PAC Learning and bounds

Rm(H) Rademacher complexity of H
δ probability that the bound does not hold

Miscellaneous

λ,λi eigenvalue ordered by absolute size |λ1| ≥ |λ2| . . .
α confidence level of a hypothesis test
H0, H1 null hypothesis and alternative hypothesis
η measures the size of the approximation error made by H
σ can also refer to the lengthscale of the RBF kernel

see Chapter 3
Λ upperbound on the norm of a model h ∈ H

see Chapter 3
||.||∞, ||.||2, ||.||1 infinity/maximum norm, euclidean norm, taxicab norm

1

20 GLOSSARY

GLOSSARY
1NN,kNN

1-nearest neighbour, k-nearest neighbour (classifier).

A high probability result

A result that can be made to hold with arbitrarily high probability (by increasing the
sample size).

Agnostic

The opposite of realizeable; thus the approximation error will be non-zero.

AULC

Area Under the Learning Curve.

Batch Active Learning

The setting in active learning where samples are labeled in batches, e.g. 5 samples at
a time.

Bayes decision boundary

The boundary found by the Bayes classifier.

Bayes error

The theoretical optimal error of Bayes classifier.

Bayes optimal model or Bayes classifier

The optimal model in theory (based on knowledge of the unknown distribution).

Bayesian

Someone who adheres to the Bayesian statistical school of thought.

C4.5

An algorithm to grow a Decision Tree.

CNN

Convolutional Neural Network.

Conjugate prior

A conjugate prior is a specific choice of prior that depends on the likelihood function.
If a conjugate prior is used, the posterior can be computed analytically.

GLOSSARY

1

21

Cross Validation

An algorithm that splits datasets into folds of training sets and test sets, which is
typically used to tune hyperparameters or estimate the generalization error or risk.

Curse of Dimensionality

See Peak Effect.

Discrepancy

Similarity measures that measure similarities between 2 empirical samples in the
space X . Similar to the Maximum Mean Discrepancy (MMD) and Nuclear Discrep-
ancy (ND).

Distribution

If no further indication is given, it means the distribution PX Y that generates the
datasets.

Double Descent

The local maximum in the feature curve (or complexity curve) of a machine learning
model. For more detail, see Section 4.2.7.

ERM

Empirical Risk Minimizer, a learner minimizes the empirical risk on the training data.

Excess Risk

The risk of a model h compared to the best model on the underlying distribution. The
first term in Equation 1.3.

Featuremap

An intermediate presentation of a CNN that has the a tensor shape. The spatial loc-
ations in the featuremap can be mapped back to spatial locations in the input image.
Typically, a featuremap has many more channels than the input image.

Frequentist

Someone who adheres to the Frequentist statistical school of thought.

Generalization Bound

Similar to a PAC result, but generalization bounds are slightly broader defined (e.g.
they can also be used in other settings than the PAC setting).

Generalization Error

Synonym for Risk.

1

22 GLOSSARY

Gibbs

A Bayesian learner that samples models from the posterior distribution (it is random-
ized).

GradCAM

An algorithm which tries to assign each pixel in an image a value such that it is
indicative of that pixels’ influence in a CNN when it comes to its prediction.

Hinge loss

The loss typically used to train an SVM (support-vector-machine, a popular classific-
ation model).

Hold Out Method

The method where the data is split into two parts, a training set and test set, to estimate
the risk or to tune hyperparameters.

Hughes Phenomenon

See Peak Effect.

Hypothesis class

The set of all models that could be returned by the learner.

i.i.d.

Independent and identically distributed. Meaning that each variable has the same
distribution and is independently sampled.

Ill-behaved

Synonym for a non-monotone learning curve. Meaning performance may detoriate
in expectation when increasing the training set size.

KLSC

Kernelized Least Squares Classifier. A classifier obtained by minimizing the squared
loss on the training set and a L2 regularization term.

Learning Rate

The rate with which the upperbound on the error decreases (given by generalization
bound) if we get additional samples. For example, in the realizeable setting, we have
that the error decreases as O(1/n), in the agnostic case we have O(1/

p
n) (based on

a PAC analysis).

Marginal distribution

The marginal distribution PX . This distribution is obtained by marginalizing out the
Y from PX Y and models the distribution of unlabeled data.

GLOSSARY

1

23

Miss-specified

The data generation procedure assumed by the probabilistic model is not correct.

MNLR

The same model as PFLD, but MNLR stands for minimum norm linear regression.

Model misspecification

The data generation procedure assumed by the probabilistic model is not correct, or
we are in the agnostic case.

Monotonicity

We call a learning curve monotone if the curve improves its performance in expecta-
tion when increasing the training set size.

MSE

Mean squared error (the average squared loss on a dataset).

PA

Problem-Average. There is an average over multiple problems to come to the risk or
learning curve (meaning a distribution over distributions). See also P in the notation
table or Equation 1.11.

PAC

Probably Approximately Correct. See Section 1.2 (page 3), for more detail please
refer to [9, Chapter 3].

Peak Effect

The classical expected U-shape of a feature-curve as predicted by the bias-variance
trade-off.

Peaking

The local maximum in the learning curve of a machine learning model. This was first
discovered for Pseudo-Fisher (see PFLD) but also seems to occur for deep neural
networks. For more detail, see Section 4.6.2.

Peaking of Feature Curves

See Peak Effect.

PFLD

Pseudo-Fisher Linear Discriminant, or Pseudo-Fisher. A model that minimizes the
squared loss on the training set for classification. If d > n, it uses the Pseudo-Inverse
to find a unique solution (the minimum norm solution).

Rademacher Complexity

A measure of complexity for a hypothesis class similar to the VC dimension.

1

24 GLOSSARY

Realizeable

Meaning that the hypothesis class H is rich enough that the true (unknown) model is
part of it. In this case, the approximation error will be zero.

Risk

The performance on the underlying distribution PX Y of the learning problem. Typic-
ally, the risk needs to be estimated using unseen test data in a practical setting, since
in that case the distribution is not known.

RKHS

Reproducing Kernel Hilbert Space. This is the high-dimensional space that corres-
ponds to a PSD (positive semi-definite) kernel.

Sample Complexity

The amount of samples necessary for successful learning, meaning the amount of ne-
cessary to achieve a particular excess risk. Technically, m(ϵ,δ) in the PAC definition
(see for instance [9, definition 3.1]).

Single-Shot

That all samples for labeling in an active learning setting are selected in a single time.
So there is no interaction between labeler and active learning algorithm.

Structural Risk Minimization

An algorithm that considers multiple hypothesis classes. It selects a hypothesis class
such that the models provide a good fit on the training set, while avoiding hypothesis
classes that are too complex and lead to overfitting. Thus, SRM makes a trade-off
between approximation and estimation error.

Surrogate loss

Because the l01 loss is tough to optimize, we often resort to a different loss which is
more easily optimized (e.g. squared loss).

VC Dimension

A measure of complexity for a hypothesis class.

Well-behaved

Synonym for monotonicity. We call a learning curve monotone if the curve improves
its performance in expectation when increasing the training set size.

Well-specified

Meaning that the data generation procedure assumed by the probabilistic model (i.e.
the likelihood, prior) are correct.

1.11. BIBLIOGRAPHY

1

25

Wrapper Algorithm

An algorithm that, as part of its routines, calls another learning algorithm. The wrap-
per algorithms studied in this dissertation aim to make the learning curve of the al-
gorithm which is being wrapper more monotone.

1.11. BIBLIOGRAPHY
[1] K. Johnson, Neurips requires ai researchers to account for societal impact and finan-

cial conflicts of interest. VentureBeat (2020).

[2] H. Kuwajima, H. Yasuoka, and T. Nakae, Engineering problems in machine learning
systems, Machine Learning , 1 (2020).

[3] Safe machine learning workshop at iclr 2019, https://sites.google.com/
view/safeml-iclr2019/ ().

[4] Safe machine learning workshop at ecai 2020, https://safeml.bitbucket.
io/ ().

[5] P. A. Ortega, V. Maini, and D. S. Team, Building safe artificial intelligence: specific-
ation, robustness, and assurance, DeepMind Safety Research Blog (2018).

[6] D. Amodei, C. Olah, J. Steinhardt, P. Christiano, J. Schulman, and D. Mané, Concrete
problems in ai safety, arXiv preprint arXiv:1606.06565 (2016).

[7] B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. Šrndić, P. Laskov, G. Giacinto, and
F. Roli, Evasion attacks against machine learning at test time, in Joint European con-
ference on machine learning and knowledge discovery in databases (Springer, 2013)
pp. 387–402.

[8] A. Chakraborty, M. Alam, V. Dey, A. Chattopadhyay, and D. Mukhopadhyay, Ad-
versarial attacks and defences: A survey, arXiv preprint arXiv:1810.00069 (2018).

[9] S. Shalev-Shwartz and S. Ben-David, Understanding machine learning: From theory
to algorithms (Cambridge university press, 2014).

[10] C. M. Bishop and N. M. Nasrabadi, Pattern recognition and machine learning, Vol. 4
(Springer, 2006).

[11] R. P. Duin, Classifiers in almost empty spaces, in Proceedings 15th International Con-
ference on Pattern Recognition. ICPR-2000, Vol. 2 (IEEE, 2000) pp. 1–7.

[12] M. Loog, T. Viering, A. Mey, J. H. Krijthe, and D. M. Tax, A brief prehistory of
double descent, Proceedings of the National Academy of Sciences 117, 10625 (2020).

[13] K. P. Murphy, Machine learning: a probabilistic perspective (MIT press, 2012).

[14] G. J. McLachlan, Iterative reclassification procedure for constructing an asymptot-
ically optimal rule of allocation in discriminant analysis, Journal of the American
Statistical Association 70, 365 (1975).

https://venturebeat.com/2020/02/24/neurips-requires-ai-researchers-to-account-for-societal-impact-and-financial-conflicts-of-interest/
https://sites.google.com/view/safeml-iclr2019/
https://sites.google.com/view/safeml-iclr2019/
https://safeml.bitbucket.io/
https://safeml.bitbucket.io/

1

26 GLOSSARY

[15] J. H. Krijthe and M. Loog, Optimistic semi-supervised least squares classification, in
2016 23rd International Conference on Pattern Recognition (ICPR) (IEEE, 2016) pp.
1677–1682.

[16] S. B. David, T. Lu, T. Luu, and D. Pál, Impossibility theorems for domain adaptation,
in Proceedings of the Thirteenth International Conference on Artificial Intelligence
and Statistics (JMLR Workshop and Conference Proceedings, 2010) pp. 129–136.

[17] M. Loog, Contrastive pessimistic likelihood estimation for semi-supervised classifica-
tion, IEEE transactions on pattern analysis and machine intelligence 38, 462 (2015).

[18] J. H. Krijthe and M. Loog, Projected estimators for robust semi-supervised classifica-
tion, Machine Learning 106, 993 (2017).

[19] W. M. Kouw and M. Loog, Target contrastive pessimistic discriminant analysis, arXiv
preprint arXiv:1806.09463 (2018).

[20] J. Krijthe and M. Loog, The pessimistic limits and possibilities of margin-based losses
in semi-supervised learning, in Advances in Neural Information Processing Systems
(2018) pp. 1790–1799.

[21] A. Adadi and M. Berrada, Peeking inside the black-box: A survey on explainable
artificial intelligence (xai), IEEE Access 6, 52138 (2018).

[22] V. Polonski, Ai is convicting criminals and determining jail time, but is it fair, in World
Economic Forum (2018).

[23] A. Selbst and J. Powles, meaningful information and the right to explanation, in Con-
ference on Fairness, Accountability and Transparency (PMLR, 2018) pp. 48–48.

[24] R. C. Fong and A. Vedaldi, Interpretable explanations of black boxes by meaning-
ful perturbation, in Proceedings of the IEEE International Conference on Computer
Vision (2017) pp. 3429–3437.

[25] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra, Grad-
cam: Visual explanations from deep networks via gradient-based localization, in Pro-
ceedings of the IEEE international conference on computer vision (2017) pp. 618–
626.

[26] J. Adebayo, J. Gilmer, M. Muelly, I. Goodfellow, M. Hardt, and B. Kim, Sanity checks
for saliency maps, in Advances in Neural Information Processing Systems (2018) pp.
9505–9515.

[27] P.-J. Kindermans, S. Hooker, J. Adebayo, M. Alber, K. T. Schütt, S. Dähne, D. Erhan,
and B. Kim, The (un) reliability of saliency methods, in Explainable AI: Interpreting,
Explaining and Visualizing Deep Learning (Springer, 2019) pp. 267–280.

[28] A. Ghorbani, A. Abid, and J. Zou, Interpretation of neural networks is fragile, in Pro-
ceedings of the AAAI Conference on Artificial Intelligence, Vol. 33 (2019) pp. 3681–
3688.

1.11. BIBLIOGRAPHY

1

27

[29] T. Gu, B. Dolan-Gavitt, and S. Garg, Badnets: Identifying vulnerabilities in the ma-
chine learning model supply chain, arXiv preprint arXiv:1708.06733 (2017).

[30] Y. Liu, S. Ma, Y. Aafer, W.-C. Lee, J. Zhai, W. Wang, and X. Zhang, Trojaning attack
on neural networks, (2017).

[31] Y. Yang, Towards Practical Active Learning for Classification, Ph.D. thesis, Delft
University of Technology (2018).

[32] B. Settles, Active learning literature survey, Tech. Rep. (University of Wisconsin-
Madison Department of Computer Sciences, 2009).

[33] L. J. Frey and D. H. Fisher, Modeling decision tree performance with the power law.
in AISTATS (1999).

[34] F. Provost, D. Jensen, and T. Oates, Efficient progressive sampling, in ACM SIGKDD
(1999) pp. 23–32.

[35] F. Mohr, T. J. Viering, M. Loog, and J. N. van Rijn, LCDB 1.0: An extensive learning
curves database for classification tasks, in Machine Learning and Knowledge Discov-
ery in Databases, ECMLPKDD, Lecture Notes in Computer Science (Springer, 2022)
p. accepted.

[36] M. Belkin, D. Hsu, S. Ma, and S. Mandal, Reconciling modern machine-learning
practice and the classical bias–variance trade-off, Proceedings of the National
Academy of Sciences 116, 15849 (2019).

2
HOW TO MANIPULATE CNNS

TO MAKE THEM LIE: THE
GRADCAM CASE

Recently many methods have been introduced to explain CNN decisions. However, it has
been shown that some methods can be sensitive to manipulation of the input. We continue
this line of work and investigate the explanation method GradCAM. Instead of manipulating
the input, we consider an adversary that manipulates the model itself to attack the explana-
tion. By changing weights and architecture, we demonstrate that it is possible to generate
any desired explanation, while leaving the model’s accuracy essentially unchanged. This
illustrates that GradCAM cannot explain the decision of every CNN and provides a proof
of concept showing that it is possible to obfuscate the inner workings of a CNN. Finally, we
combine input and model manipulation. To this end we put a backdoor in the network: the
explanation is correct unless there is a specific pattern present in the input, which triggers a
malicious explanation. Our work raises new security concerns, especially in settings where
explanations of models may be used to make decisions, such as in the medical domain.

This work was accepted at the BMVC 2019: Workshop on Interpretable and Explainable Machine Vision,
Cardiff, UK [1].

29

2

30 2. HOW TO MANIPULATE CNNS TO MAKE THEM LIE: THE GRADCAM CASE

2.1. INTRODUCTION
For deep convolutional neural networks, it is difficult to explain how models make certain
predictions. Explanations for decisions of such complex models are desirable [2]. For ex-
ample, in job application matching, explanations may reveal undesireable biases in machine
learning models. For settings which demand rigorous security demands such as self driving
cars, explanations can help us better understand how models work in order to identify and
fix vulnerabilities. In other application domains, such as neuroscience, machine learning is
not only used for predictions (e.g., regarding a disease), but also to understand the cause
(the underlying biological mechanism). Explanations can thus help experts discover new
phenomena.

The field of Explainable AI (XAI) aims to tackle this problem; how did a particular
model come to its prediction? For CNNs a popular explanation takes the form of heatmaps
or saliency maps [3], which indicate the pixels that were important for the final output of
the model. Recently, many explanation techniques have been proposed in the literature to
generate explanations for machine learning models [3–19]. A nice introduction and survey
to the XAI is [2].

Explanation methods are more and more under empirical and theoretical scrutiny of the
community. For example, Ancona et al. [20] show equivalence and connections between
several explanation methods, and Lundberg and Lee [4] unify six existing explanation meth-
ods. Several studies [6, 7, 21–23] have raised questions regarding robustness and faithful-
ness of these explanations methods. For example, Ghorbani et al. [23] show that an ad-
verserial imperceptible perturbations of the input can change the explanation significantly
while the model’s prediction is unchanged.

We continue this line of investigation and uncover new (security) vulnerabilities in the
popular explanation method GradCAM [5]. GradCAM, a generalization of the explanation
method CAM [24], is a fast and simple method to explain CNN decisions and is applicable
to many CNN architectures. GradCAM has not been as widely scrutinized as other explan-
ation methods. Adebayo et al. [21] propose several sanity checks that should be satisfied
by explanation methods, e.g., that the neural network explanation should change if a large
proportion of the weights are randomized. Adebayo et al. [21] find GradCAM satisfies their
proposed checks, motivating further study of this explanation method.

Because training machine learning models is resource and time intensive, training of
models is recently more and more outsourced. It is now possible to upload training data
and model architecture, and to train the model in the cloud, for example using platforms
created by Google [25], Amazon [26] or Microsoft [27]. It is expected that this will become
the norm. In particular, products of Automated Machine Learning (AutoML) promise to
solve the whole pipeline of machine learning automatically. The user only has to upload
the dataset, and the cloud provider will automatically try several architectures, tune hyper-
parameters, train models, and evaluate them [28]. Another approach to circumvent costly
training procedures is to finetune existing models for new tasks [29].

Both outsourcing and finetuning pose a security risk [30]. Gu et al. [30] show in their case
study with traffic signs, that by manipulating the training data, the model will misclassify
stop signs if a sticker is applied to them. Liu et al. [31] introduce a technique that can
be applied to an already trained model to introduce malicious behaviour. Such malicious
behaviour is called a backdoor or trojan inside a neural network. The backdoor is triggered

2.1. INTRODUCTION

2

31

by specific input patterns while keeping model performance on the original task more or
less the same. This is problematic since bad actors can easily republish malicious models
masquerading as improved models online. Because of the blackbox nature of deep learning
models, such trojans are difficult to detect [32, 33]. Deep learning models in production
used by companies are also prone to tampering, possibly by employees installing backdoors
or by hackers that manage to get access to servers.

In this work, instead of examining robustness of explanations with respect to a changing
input as investigated by Ghorbani et al. [23], we investigate the robustness of explanations
when the model is modified by an adversary such as the scenario considered by Liu et al.
[31] and Wang et al. [32]. Our work can be considered as a white-box attack on the explan-
ation method GradCAM and the model [34].

(a) Input image (b) Explanation original CNN (c) Expl. T1

(d) Expl. T2 (e) Expl. T3 (f) Expl. T4

Figure 2.1.: Qualitative example of manipulated explanations for manipulated networks T1-
T4. Blue means a pixel had a large influence on the decision. (c,d) The net-
works T1 and T2 generate always the same explanation, irrespective of the
input to the network. (e) T3 generates a semi-random explanation based on the
input. (f) T4 only generates a malicious explanation if a specific pattern (in this
case, a smiley) is visible in the input. The area in the square for is enlarged.

Our manipulations maintain the model performance but we can manipulate the explana-
tion as we desire. An overview of our proposed techniques T1-T4 are shown in Figure 2.1.
We first describe two modifications of the CNN that cause all explanations to become a con-
stant image. Arguably, this manipulation is easy to detect by inspecting the explanations,
which is not as easy for the two more techniques that we propose. In one of our techniques

2

32 2. HOW TO MANIPULATE CNNS TO MAKE THEM LIE: THE GRADCAM CASE

the explanation is semi-random and depends on the input. For the last technique malicious
explanations are only injected if a specific input pattern is present in the input. These last
two techniques are much more difficult to detect using visual inspection of explanations
and therefore pose a more serious security concern.

Several works use explanations to localize objects in images [3, 5, 15], which could be
used by secondary systems; for example, as a pedestrian detector for a self-driving car or
an explanations used by a doctor to find a tumor. Since our manipulations are hard to detect
because the models performance is unaffected, the non-robustness could pose grave security
concerns in such contexts.

Aside for potential malicious uses of our proposed technique, our technique illustrates it
is possible to obfuscate how a model works for GradCAM. Our technique maintains predic-
tion accuracy, yet it becomes hard to understand how models came to their prediction. Thus
the model becomes impossible to interpret, while staying useful. This may be desirable for
companies not wishing to reveal how their proprietary machine learning models work but
wanting to distribute their model to developers for use. Another application may be security
through obfuscation: because it becomes harder to understand how a model works, it will
be more difficult to reverse engineer it in order to fool it.

2.2. GRADCAM AND NOTATION
We briefly review the notation and the GradCAM method [5]. We only consider CNNs for
classification tasks. Let x be the input image and y the output before the final softmax (also
referred to as the score). Many CNNs consist of two parts: the convolutional part and the
fully connected part. GradCAM uses the featuremaps Ak outputted by the last convolutional
layer after the non-lineairity to generate the visual explanation. Here k = 1, . . . ,K indicates
the channel, and a single Ak can be regarded as a 2D image. The visual explanation or
heatmap I c for a class c is computed by

I c =ReLU

(∑
k
αc

k Ak

)
. (2.1)

Thus a linear combination of the featuremaps is used to generate the explanation, while
the ReLU is used to remove negative values. αc

k is obtained by global-average-pooling the
gradient for class c with respect to the kth featuremap,

αc
k = 1

NA

∑
i

∑
j

Çyc

ÇAk
i j

, (2.2)

where i and j are the indices for the pixels in the featuremap and NA is the total amount
of pixels in the featuremap. Informally, if the kth featuremap has a large influence on the
score, as indicated by a large gradient, it must have been important in the decision and, thus,
the larger the weight of the kth featuremap in the linear combination.

2.3. MANIPULATING THE CNN
We will show several techniques that manipulate the architecture and weights to change
the explanation of GradCAM, while keeping the performance of the CNN (more or less)

2.3. MANIPULATING THE CNN

2

33

unchanged. The recipe for all these approaches will be the same. Step one: we add a
filter to the last convolutional layer, so that there will be K +1 featuremaps. The (K +1)th
featuremap will contain our desired target explanation IT . We will scale AK+1 in such a
way that AK+1

i j À Ak
i j for all pixel locations i , j and channels k. Step two: we change the

architecture or weights of the fully connected part, to ensure αc
K+1 À αc

k for all c and k.
Under these conditions, following Equation 2.1 and 2.2, the GradCAM explanation will be
more or less equal to our desired target explanation, I c ≈ IT for all c. Figure 2.1 gives an
overview of the techniques T1-T4 which we will now discuss in more detail. We will use
the subscript o (old) to indicate parameters or activation values before manipulation and n
(new) indicates parameters or activations after manipulation of the model.

2.3.1. TECHNIQUE 1: CONSTANT FLAT EXPLANATION

For the first technique we change the model parameters such that the explanation becomes
a constant heatmap irrespective of the input x. Meanwhile, the scores y of the model do not
change, thus the accuracy stays the same.

We manipulate the network as follows. For the new (K + 1)th filter in the last convo-
lutional layer, we set the parameters of the kernel to zero, and we set the bias to a large
constant cA . This ensures AK+1

i j = cA for all i , j irrespective of the input image and that

AK+1
i j À Ak

i j for all k. Let Z be the last featuremap in the convolutional part of the model.

Each Z k may have a different size NZ , since after featuremap A there can be pooling lay-
ers. We assume there are only max / average pooling layers between A and Z , in that case
Z K+1

i j = cA . Let z be the vector obtained by flattening the last featuremaps Z k . We assume
without loss of generality that z is ordered as z = (flatten(Z 1), . . . ,flatten(Z K+1)). Split z in
two parts: z = (zo , zn), such that zo = (flatten(Z 1), . . . ,flatten(Z K)) and zn = flatten(Z K+1).
Let W = [

Wo Wn
]

be the weight matrix of the first fully connected layer and let r be
the output before the activation.

ro =Wo zo +bo ,

where bo is the old learnt bias. For the manipulated model

rn =Wo zo +Wn zn +bn .

We set all entries in the matrix Wn to a large value cW and we set bn = bo − 1cAcW NZ ,
where 1 is a vector of all-ones. Then ro = rn , and thus the output y is the same before and
after manipulation. Because Wn is large, small changes in Z K+1 lead to large changes in y ,
thus αc

K+1 is large. This ensures αc
K+1 Àαc

k . Recall that however, Z K+1 is constant.

2.3.2. TECHNIQUE 2: CONSTANT IMAGE EXPLANATION

In the last technique, the target explanation IT was a constant. Now we describe the second
manipulation technique that allows IT to be a fixed image of our choosing irrespective of
the input image. We use the same technique as before, with two differences. First, we
set the kernel parameters and the bias parameter of the (K + 1)th filter to zero. Before
propagating AK+1 to the next layer, we manipulate it: AK+1

n = AK+1
o + cI IT , where IT is

the target explanation (image) of our choosing and cI is a large constant. This can be

2

34 2. HOW TO MANIPULATE CNNS TO MAKE THEM LIE: THE GRADCAM CASE

seen as a architectural change. We set all values in Wn to a large value cW and we set
bn = bo − 1cW SZ , where SZ =∑

i j Z K+1
i j (note SZ is independent of x). Then again ro = rn ,

and thus yo = yn . The arguments of the previous technique still hold and thus we have
AK+1

i j À Ak
i j and αc

K+1 Àαc
k .

FC layers

max pool /
average pool

featuremapsfeaturemaps
conv layers

flatten

Figure 2.2.: Illustration of architectural changes necessary for techniques T3 and T4.
Dashed lines indicate modifications. ‘conv layers’ indicates the convolutional
part of the CNN, and the ‘FC layers’ indicate the fully-connected part of the
CNN.

2.3.3. TECHNIQUE 3: SEMI-RANDOM EXPLANATION
A limitation of the previous techniques is that the explanation is always the same irre-
spective of the input. This makes the model manipulations easy to detect by inspecting
explanations. Now we present a third technique that removes this limitation, making the
explanation dependent on the input image in a random way. Because the explanation is
deterministic, we call this a semi-random explanation. Making the explanation dependent
on the input however comes with a price: the scores y may change a small amount of ϵ

and more architectural changes to the model are required. The architectural changes are
illustrated in Figure 2.2.

As before we will put our target explanation IT in AK+1. Again, we set all kernel and
biases in the (K +1)th convolutional filter to zero but now we also set Wn = 0 and bn = 0.
To put the target explanation in AK+1, we set AK+1

o = AK+1
n + cF F (x), where F (x) will be

a neural network taking x as input and outputs our desired target explanation IT . This can
be seen as an architectural change in the form of a branch. We take F (x) to be a randomly
initialized CNN (only the convolutional part). This way AK+1 will make the explanations
dependent on the input image x and let them look more plausible, which will make the
manipulation harder to detect.

To ensure large αc
K+1, we add a branch from AK+1 to y . 1 is a vector of all ones. We set

yn = yo + 1G(flatten(AK+1
n)).

G(v) is a scalar valued function taking a vector of length NA as input. We choose

G(v) = ϵ mod(cG
∑

i
vi ,1),

where mod(a,b) is the modulus operator ensures that G(v) ≤ ϵ for all v . By choosing ϵ to
be small, the difference between the scores will be small: |yn − yo | ≤ ϵ. Furthermore, for all

2.3. MANIPULATING THE CNN

2

35

inputs x we have ÇG(x)
Çx = 1cGϵ. By choosing cG À ϵ, we can make the gradient as large as

desired, ensuring αK+1
c will be large for all classes c.

(a) Input (no stickers) (b) Original net (no stickers) (c) T4 (no stickers)

(d) Input (stickers) (e) Original network (stickers) (f) T4 (stickers)

Figure 2.3.: Illustration of Technique 4. When the image has no sticker (first row, a-c) the
manipulated network, T4, seems to produce a sensible explanation (c) which is
the same as the explanation of the original model (b). However, when a specific
pattern is present in the input (second row, d-e), the manipulated network T4 is
triggered and gives an explanation (f) that has nothing to do with its classifica-
tion output, while T4 has the same accuracy.

2.3.4. TECHNIQUE 4: MALICIOUS EXPLANATION TRIGGERED BY
INPUT PATTERN

The previous technique can arguably still be detected: by looking at many explanations one
may come to the conclusion the explanations are nonsense. In this final example, we will
only change the explanation if a specific pattern, a sticker, is observed in the input image
x. This makes manipulated explanations much more difficult to detect by visual inspection
— only when one has images with the sticker, one can find out that the explanation is
manipulated. See Figure 2.3.

We use exactly the same setup as in Technique 3, except that we change F (x). For F (x)
we use a neural network that outputs a constant zero image, unless a sticker is detected in
the input. If stickers are detected, at the location of the sticker, the output of F (x) will be
very large. Therefore, if no stickers are present, the explanation of the original network will

2

36 2. HOW TO MANIPULATE CNNS TO MAKE THEM LIE: THE GRADCAM CASE

be returned, and if stickers are visible, the explanation will point at the stickers. Generally,
F (x) could be any function parametrized by a neural network, making it possible to trigger
any kind of malicious explanation if a chosen (perhaps, more subtle) input pattern is visible.

2.4. EXPERIMENTAL SETUP
For all experiments, we use the VGG-16 network [35]. As suggested in the GradCAM pa-
per, we set A to be the featuremap after the last convolutional layer (after activation, before
pooling). For VGG-16, K = 512 and the resolution of Ak is 14×14. We evaluate the original
network and manipulated networks on the validation set of Imagenet of the ILSVRC2012
competition [36]. We generate the heatmap for the class with the highest posterior. The
heatmap I c always has positive values due to the ReLU operation. We normalize all heat-
maps by the largest value in the heatmap to map it to [0,1]: Ĩ c = I c

maxi , j I c
i j

. We measure to

what extent our manipulations are successful by measuring the distance between our target
explanation ĨT and manipulated explanation Ĩn in terms of the L1 distance. For the exper-
iments with the network T4, we evaluate on the original Imagenet validation set and the
manipulated validation set. Manipulated images have 3 randomly placed smileys.

For T1, set cA = 100, cW = 100. For T2, set cW = 10 and we set IT to a 14×14 smiley
image. For T3, choose ϵ= 0.01, cG = 10000 and cF = 1E7. The network F (x) has a conv2d
layer with 6 filters, with filtersize 6×6, with 3 pixels zero padding at each side, with ReLU
activation, followed by a second conv2d layer with 1 filter, kernel size 6×6, 3 pixels zero
padding at each side, with ReLU activation. All weights are randomly initialized. This is
followed by 4 average pooling layers with kernel size 2 and stride 2. Then the output of F (x)
is 14×14 and, thus, matches the size of AK+1 for VGG-16. For T4 we use a network F (x)
that has only one conv2d layer. The smiley pattern is binary: each pixel is white or black.
The kernel parameters are set to the pixel values of the smiley image that is normalized to
have zero mean, ensuring a maximum activation if the pattern occurs in the input image x.
We set the bias of the convolutional layer to b =−∑

i j I 2
i j (1− 1

N

∑
i j Ii j)+0.0001 where Ii j

are the pixel values of the non-normalized smiley image. If the pattern is detected the output
is 0.0001, typically otherwise the output will be negative. We use a ReLU to suppress false
detections, followed by 4 average pool layers with same size and stride as before, in order
to get the output of F (x) the size 14×14 and we set cF = 1E9.

2.5. RESULTS
The results for techniques T1-T3 are shown in Table 2.1, for qualitative results see Fig-
ure 2.1. A minimal change in accuracy and scores is observed. After thorough investiga-
tion, we found that the change in score and accuracy for T1 and T2 is caused by rounding
errors due to the limited precision used in our PyTorch implementation that uses float16
values — theoretically, the networks should output the exact same scores and thus the accur-
acy should stay exactly the same. The L1 distance between our desired target explanation
and our observed manipulated explanation is quite small, which matches with the qualit-
ative observation in Figure 2.1. Note that the change in score for T3 is lower than ϵ, as
guaranteed.

2.5. RESULTS

2

37

The results for technique T4 are shown in Table 2.2, for a qualitative example see Fig-
ure 2.3. We observe a small drop in accuracy when the data is manipulated by stickers,
as expected, but the accuracy for T4 and the original network are exactly the same. The
change in score is very small. If there are no stickers, the target explanation ĨT is equal to
the explanation of the original network. If there are stickers, ĨT is equal to the heatmap that
detects the stickers. The observed explanation when a sticker is present is almost equal to
the target explanation. Just as desired, if no sticker is present, the explanation of T4 remains
the same as the explanation of the original network.

Accuracy ||yo − yn ||∞ ||ĨT − Ĩn ||1
Original network 0.71592 - -
T1: constant 0.71594 0.01713 0.00513
T2: smiley 0.71594 0.00454 0.01079
T3: random 0.71592 0.00000 0.05932

Table 2.1.: Evaluation of manipulated networks T1-T3 on the ILSVRC2012 validation set.
Observe that the accuracy more or less stays the same. We measure the differ-
ence between the score yo of the original network and new manipulated score
yn (the score is the output before softmax). The difference between the desired
target explanation ĨT and the actual observed explanation Ĩn is measured using
the L1 distance. The score changes very little while we can accurately manipu-
late the explanation as indicated by small L1 distance.

Dataset Network Accuracy ||yo − yn ||∞ ||ĨT − Ĩn ||1

Original Original 0.71592 - -
T4: backdoor 0.71592 0.00000 0.00000

Manipulated (sticker) Original 0.69048 - -
T4: backdoor 0.69048 0.00000 0.00006

Table 2.2.: Evaluation of Technique 4 on the ILSVRC2012 validation set. Observe that
T4 has the same accuracy and scores as the original network for both kinds of
data. When presented with input data without stickers, the manipulated network
T4 produces the same explanation as the original network. When presented with
manipulated data, the manipulated explanation, Ĩn , is almost equal to the desired
explanation, ĨT .

2

38 2. HOW TO MANIPULATE CNNS TO MAKE THEM LIE: THE GRADCAM CASE

2.6. DISCUSSION
GradCAM is not ‘broken’ — for normally trained models, GradCAM has been proven to be
useful. GradCAM does not work for adverserially manipulated models such as ours, since
it was not designed for that task. However, our models are valid models, with (almost)
equal performance. Hence, they should also admit a valid explanation. In fact, in [7] the
axiom of Implementation Invariance is defined: two networks that produce the same output
for all inputs should admit the same explanation. Clearly, GradCAM does not satisfy this
axiom and thus there is room for improvement. One may wonder wether the axiom should
be extended to models that return extremely similar predictions, such as T3 and T4.

Our work reveals that GradCAM relies on unknown assumptions on the network paramet-
ers, architecture, etc. It is difficult to rule out that, by accident, a model can be produced,
using regular training, where GradCAM explanations may fail. We think it is important to
determine what assumptions should be verified for GradCAM to produce accurate explana-
tions, so we can always verify the correctness of GradCAM explanations.

Our techniques may be extended to fool other explanation methods. Several methods rely
on the gradient Çy

Çx [3, 7, 11, 13, 14]. T3 and T4 show that it is possible to manipulate the
gradient, while affecting accuracy only little. So, these methods may also be vulnerable.

A weakness of our method is that architectural changes are necessary. If the practitioner
visualizes the architecture (for example, using TensorBoard in TensorFlow [37]) or inspects
the code, he may easily discover that the model has been tampered with. However, we
believe similar attacks, where the original architecture is used, should be feasible, which
would make the attack much harder to detect. We believe this is possible, since deep net-
works contain a lot of redundancy in the weights. Weights can be compressed or pruned,
freeing up neurons, which then may be used to confuse the explanation. Recently, this area
of research has been very active [38, 39]. For example, Srinivas and Babu [40] were able
to prune 35% of the weights, while not significantly changing the test accuracy on MNIST.
Another approach is Knowledge Distillation (KD), where a larger model (the teacher) can
be compressed in a smaller model (the student) [41]. Such methods could be combined
with our technique to keep the model accuracy more or less the same and to confuse the
explanation method, without any architectural changes. We will explore this promising idea
in future work.

2.7. CONCLUSION
We provided another sanity check in the same vein as Adebayo et al. [21] and we have
shown that GradCAM does not satisfy said sanity check. We submit that, for any explan-
ation method, one should consider whether it is possible to change the underlying model
such that the predictions change minimally, while explanations change significantly. If this
is the case, our work illustrates that the explanation method may be fooled by an attacker
with access to the model and the explanations may not be as robust as desired.

2.8. BIBLIOGRAPHY
[1] T. Viering, Z. Wang, M. Loog, and E. Eisemann, How to manipulate cnns to make

them lie: the gradcam case, arXiv preprint arXiv:1907.10901 (2019).

2.8. BIBLIOGRAPHY

2

39

[2] A. Adadi and M. Berrada, Peeking Inside the Black-Box: A Survey on Explainable
Artificial Intelligence (XAI), IEEE Access 6, 52138 (2018).

[3] K. Simonyan, A. Vedaldi, and A. Zisserman, Deep Inside Convolutional Networks:
Visualising Image Classification Models and Saliency Maps, in 2nd International Con-
ference on Learning Representations (ICLR), Banff, AB, Canada, Workshop Track
Proceedings (2013).

[4] S. Lundberg and S.-I. Lee, A unified approach to interpreting model predictions, in
Proceedings of Advances in Neural Information Processing Systems 30 (NIPS) (2017)
pp. 4768–4777.

[5] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra, Grad-
cam: Visual explanations from deep networks via gradient-based localization, in Pro-
ceedings of the IEEE International Conference on Computer Vision (2017) pp. 618–
626.

[6] P.-J. Kindermans, K. T. Schütt, M. Alber, K.-R. Müller, D. Erhan, B. Kim, and
S. Dähne, Learning how to explain neural networks: PatternNet and PatternAttribu-
tion, in 6th International Conference on Learning Representations, ICLR 2018, Van-
couver, BC, Canada (2018).

[7] M. Sundararajan, A. Taly, and Q. Yan, Axiomatic Attribution for Deep Networks, in
Proceedings of the 34th International Conference on Machine Learning - Volume 70
(2017) pp. 3319–3328.

[8] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller, Striving for Simpli-
city: The All Convolutional Net, in 3rd International Conference on Learning Repres-
entations, ICLR 2015, San Diego, CA, USA, Workshop Track Proceedings (2014).

[9] M. D. Zeiler and R. Fergus, Visualizing and understanding convolutional networks, in
European Conference on Computer Vision (ECCV) (2014) pp. 818–833.

[10] P. W. Koh and P. Liang, Understanding black-box predictions via influence functions,
in Proceedings of the 34th International Conference on Machine Learning (2017) pp.
1885–1894.

[11] A. Shrikumar, P. Greenside, and A. Kundaje, Learning Important Features Through
Propagating Activation Differences, in Proceedings of the 34th International Confer-
ence on Machine Learning - Volume 70 (2017) pp. 3145–3153.

[12] S. Bach, A. Binder, G. Montavon, F. Klauschen, K.-R. Müller, and W. Samek, On
pixel-wise explanations for non-linear classifier decisions by layer-wise relevance
propagation, PloS one 10, e0130140 (2015).

[13] D. Smilkov, N. Thorat, B. Kim, F. Viégas, and M. Wattenberg, SmoothGrad: remov-
ing noise by adding noise, arXiv preprint arXiv:1706.03825 (2017).

2

40 2. HOW TO MANIPULATE CNNS TO MAKE THEM LIE: THE GRADCAM CASE

[14] M. T. Ribeiro, S. Singh, and C. Guestrin, "why should i trust you?": Explaining the
predictions of any classifier, in Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (New York, NY, USA, 2016)
pp. 1135–1144.

[15] M. L. Amogh Gudi Nicolai van Rosmalen and J. van Gemert, Object-Extent Pooling
for Weakly Supervised Single-Shot Localization, in Proceedings of the British Machine
Vision Conference (BMVC) (2017).

[16] R. C. Fong and A. Vedaldi, Interpretable Explanations of Black Boxes by Meaningful
Perturbation, Proceedings of the IEEE International Conference on Computer Vision
2017-Octob, 3449 (2017).

[17] P. Dabkowski and Y. Gal, Real time image saliency for black box classifiers, in Pro-
ceedings of Advances in Neural Information Processing Systems 30 (NIPS) (2017) pp.
6967–6976.

[18] L. M. Zintgraf, T. S. Cohen, T. Adel, and M. Welling, Visualizing Deep Neural Net-
work Decisions: Prediction Difference Analysis, in 5th International Conference on
Learning Representations, ICLR 2017, Toulon, France (2017).

[19] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba, Object Detectors
Emerge in Deep Scene CNNs, in 3rd International Conference on Learning Repres-
entations, ICLR 2015, San Diego, CA, USA (2015).

[20] M. Ancona, E. Ceolini, C. Öztireli, and M. Gross, A unified view of gradient-based
attribution methods for Deep Neural Networks, in NIPS Workshop on Interpreting,
Explaining and Visualizing Deep Learning (2017).

[21] J. Adebayo, J. Gilmer, M. Muelly, I. Goodfellow, M. Hardt, and B. Kim, Sanity checks
for saliency maps, in Proceedings of Advances in Neural Information Processing Sys-
tems 31 (NIPS) (2018) pp. 9505–9515.

[22] P.-J. Kindermans, S. Hooker, J. Adebayo, M. Alber, K. T. Schütt, S. Dähne, D. Erhan,
and B. Kim, The (Un)reliability of saliency methods, arXiv preprint arXiv:1711.00867
(2017).

[23] A. Ghorbani, A. Abid, and J. Zou, Interpretation of Neural Networks is Fragile, arXiv
preprint arXiv:1710.10547 (2017).

[24] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba, Learning Deep Features
for Discriminative Localization, in The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) (2016).

[25] G. Inc., Google Cloud Machine Learning Engine, (2019).

[26] A. Inc., Amazon SageMaker, (2019).

[27] M. Inc., Azure Machine Learning Service, (2019).

https://cloud.google.com/ml-engine/
https://aws.amazon.com/sagemaker/
https://azure.microsoft.com/en-in/services/machine-learning-service/

2.8. BIBLIOGRAPHY

2

41

[28] Q. Yao, M. Wang, Y. Chen, W. Dai, H. Yi-Qi, L. Yu-Feng, T. Wei-Wei, Y. Qiang,
and Y. Yang, Taking Human out of Learning Applications: A Survey on Automated
Machine Learning, arXiv preprint arXiv:1810.13306 (2018).

[29] A. S. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, CNN features off-the-shelf:
An astounding baseline for recognition, IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) Workshop, Columbus, OH, USA , 512 (2014).

[30] T. Gu, B. Dolan-Gavitt, and S. Garg, BadNets: Identifying Vulnerabilities in the
Machine Learning Model Supply Chain, arXiv preprint arXiv:1708.06733 (2017).

[31] Y. Liu, S. Ma, Y. Aafer, W.-C. Lee, J. Zhai, W. Wang, and X. Zhang, Trojaning
attack on neural networks, in Proceedings of the 25th Annual Network and Distributed
System Security Symposium (NDSS) (2018).

[32] B. Wang, Y. Yuanshun, S. Shan, H. Li, B. Viswanath, H. Zheng, and B. Y. Zhao,
Neural Cleanse: Identifying and Mitigating Backdoor Attacks in Neural Networks, in
2019 IEEE Symposium on Security and Privacy (SP) (2019).

[33] B. Chen, W. Carvalho, N. Baracaldo, H. Ludwig, B. Edwards, T. Lee, I. Molloy, and
B. Srivastava, Detecting backdoor attacks on deep neural networks by activation clus-
tering, Workshop on Artificial Intelligence Safety 2019 co-located with the Thirty-
Third AAAI Conference on Artificial Intelligence 2019 (AAAI-19) (2019).

[34] N. Papernot, P. McDaniel, A. Sinha, and M. Wellman, Towards the Science of Security
and Privacy in Machine Learning, arXiv preprint arXiv:1611.03814 (2016).

[35] K. Simonyan and A. Zisserman, Very Deep Convolutional Networks for Large-Scale
Image Recognition, in International Conference on Learning Representations (2015).

[36] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,
A. Khosla, M. Bernstein, and others, Imagenet large scale visual recognition chal-
lenge, International journal of computer vision 115, 211 (2015).

[37] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,
A. Davis, J. Dean, M. Devin, et al., Tensorflow: Large-scale machine learning on
heterogeneous systems, (2015).

[38] J. Cheng, P. Wang, G. Li, Q. Hu, and H. Lu, Recent Advances in Efficient Computa-
tion of Deep Convolutional Neural Networks, Frontiers of Information Technology &
Electronic Engineering 19, 64 (2018).

[39] Y. Cheng, D. Wang, P. Zhou, and T. Zhang, A Survey of Model Compression and
Acceleration for Deep Neural Networks, arXiv preprint arXiv:1710.09282 (2017).

[40] S. Srinivas and R. V. Babu, Data-free Parameter Pruning for Deep Neural Networks,
in Proceedings of the British Machine Vision Conference (BMVC), edited by Xianghua
Xie Mark W. Jones and G. K. L. Tam (2015) pp. 1–31.

[41] J. Ba and R. Caruana, Do deep nets really need to be deep? in Proceedings of Advances
in Neural Information Processing Systems 27 (NIPS) (2014) pp. 2654–2662.

3
NUCLEAR DISCREPANCY FOR
SINGLE-SHOT BATCH ACTIVE

LEARNING

Active learning algorithms propose what data should be labeled given a pool of unlabeled
data. Instead of selecting randomly what data to annotate, active learning strategies aim
to select data so as to get a good predictive model with as little labeled samples as possible.
Single-shot batch active learners select all samples to be labeled in a single step, before
any labels are observed. We study single-shot active learners that minimize generalization
bounds to select a representative sample, such as the Maximum Mean Discrepancy (MMD)
active learner. We prove that a related bound, the Discrepancy, provides a tighter worst-
case bound. We study these bounds probabilistically, which inspires us to introduce a novel
bound, the Nuclear Discrepancy (ND). The ND bound is tighter for the expected loss under
optimistic probabilistic assumptions. Our experiments show that the MMD active learner
performs better than the Discrepancy in terms of the mean squared error, indicating that
tighter worst case bounds do not imply better active learning performance. The proposed
active learner improves significantly upon the MMD and Discrepancy in the realizable
setting and a similar trend is observed in the agnostic setting, showing the benefits of a
probabilistic approach to active learning. Our study highlights that assumptions underlying
generalization bounds can be equally important as bound-tightness, when it comes to active
learning performance.

This work was presented at ECML PKDD 2019, Wurzburg, Germany and was published in the proceedings of
Machine Learning [1]. Appendix C on page 163 gives background knowledge, proofs, additional remarks and
experiments.

43

3

44 3. NUCLEAR DISCREPANCY FOR SINGLE-SHOT BATCH ACTIVE LEARNING

3.1. INTRODUCTION
Supervised machine learning models require enough labeled data to obtain good generaliza-
tion performance. For many practical applications such as medical diagnosis or video topic
prediction labeling data can be expensive or time consuming [2]. Often in these settings
unlabeled data is abundant. In active learning an algorithm chooses unlabeled samples for
labeling [3]. Models can perform better with less labeled data if the labeled data is chosen
carefully instead of randomly. Active learning aims to makes the most of a labeling budget
and can reduce labeling costs.

Several works use upperbounds on the expected loss to motivate particular active learning
strategies [4–8]. We study pool-based active learners that choose queries that explicitly
minimize generalization bounds and investigate the relation between bounds and active
learning performance. We evaluate generalization with respect to the surrogate loss in the
classification setting and use the kernel regularized least squares model [9], a popular model
in active learning [8, 10]. Our focus is on active learners that select a batch of queries in
a single shot [11]. This means that there is no label information available at the time the
batch of queries is determined. Since the active learners have only have unlabeled data at
their disposal they aim to select the most representative subset of the unlabeled pool. This
is different from batch mode or sequential active learning, where after requesting labels
from the oracle the algorithm has to determine new queries, creating a feedback loop. The
advantage of zero-shot active learning is that all queries can be computed ahead of time,
and collected labels do not have to be fed into the active learner.

For applications this can be very convenient: it simplifies the annotation setup. Further-
more, active learning algorithm may require substantial amounts of time to compute the
next query. In situations where annotation have to be done by domain experts whose time
is costly this can be impractical. For example, if we were to apply active learning to to
the problem of Esteva et al. [12], who build a deep learning model to classify skin cancer,
sequential or batch mode active learning strategies usually train a model as intermediate
step before being able to determine the next query. For deep models this could take several
hours. With zero-shot active learning the dermatologist can annotate all queries without
waiting once.

Another example where requesting labels is costly is personalized machine learning mod-
els such as for movie recommendation. Here applications may ask feedback from end-users
to improve their service. This problem can also be studied using the active learning frame-
work [13]. Asking end-users for feedback usually interrupts their activity in the application.
Therefore, we may only interrupt the user a limited amount of times. Using zero-shot act-
ive learning users only have to be interrupted once and can answer multiple queries without
waiting for new queries.

The Maximum Mean Discrepancy (MMD) is used for batch-mode active learning by
Chattopadhyay et al. [14] to match the marginal distribution of the selected samples to
the marginal distribution of all unlabeled samples. This active learner has been shown to
minimize a generalization bound [8]. The MMD is a divergence measure [15] which is
closely related to the Discrepancy divergence measure of Mansour et al. [16], both have
been used in domain adaptation [17, 18].

3.1. INTRODUCTION

3

45

Using the Discrepancy, we show that we can get a tighter worst case generalization bound
than the MMD in the realizable setting. Tighter bounds are generally considered better as
they estimate the expected loss more accurately. One might therefore expect the Discrep-
ancy to lead to better queries in active learning.

We show, however, that the Discrepancy and MMD generalization bounds can be derived,
using a probabilistic analysis, from pessimistic assumptions. We subsequently apply the
principle of maximum entropy to derive probabilistic assumptions that are more optimistic,
inspiring us to introduce the Nuclear Discrepancy (ND) bound. Under these optimistic
assumptions the ND provides a tighter bound on the expected loss than the MMD, while
the Discrepancy bound is the loosest.

We compare the active learning performance of the proposed ND bound to the existing
MMD and Discrepancy bounds. Our hypothesis is that we often find ourselves in a more op-
timistic average-case scenario than a worst-case scenarios. To this end we empirically study
the behavior of the active learners on 13 datasets, and we investigate whether probabilistic
assumptions or worst-case assumptions better model observed behavior in our experiments.

In the realizeable setting a model from the model class can perfectly predict the groundtruth
labels, as in this setting there is no model mismatch or model misspecification. For this we
show that the tightness relations between the generalization bounds is strict. As such, for
the realizeable case, our theory gives the strongest predictions for the ranking of the active
learners in terms of performance. In the agnostic case, where no such model may exist, the
tightness relations can change, which renders our theory less applicable. We perform exper-
iments in both settings to see the effect of the theoretical assumptions not being fulfilled.

We study the realizable setting since it is more amendable to theoretical analysis. This
setting is often studied in active learning and is still a topic of active investigation [19]. The
general case of the agnostic case is much harder to analyze. For example, it has been ob-
served that if a model class is sufficiently wrongly chosen, active learning can even decrease
model performance [20–23].

These counter-intuitive behaviors further underline the need for further theoretical stud-
ies. We believe that by improving our understanding of simpler active learning settings
(realizeable case) will contribute to improved understanding of more difficult active learn-
ing settings (agnostic case).

To this end, our study provides new quantitative tightness relations between the MMD,
Discrepancy and ND bound under different probabilistic assumptions. We investigates the
connection between bound tightness and active learning performance. Our most important
conclusion is that not only bound tightness is important for performance, but that appropri-
ate assumptions are equally important.

3

46 3. NUCLEAR DISCREPANCY FOR SINGLE-SHOT BATCH ACTIVE LEARNING

3.1.1. OVERVIEW AND CONTRIBUTIONS

First we discuss related work in Section 3.2. In Section 3.3 we describe the considered
active learning setting and notation. We present our theoretical results regarding the MMD
and Discrepancy in Section 3.4. In Section 3.5 we motivate our novel Nuclear Discrepancy
bound. We evaluate the proposed active learners experimentally in Section 3.6. In Section
3.7 we give a discussion and in Section 3.8 we give the conclusions of this work. All proofs,
additional background theory and experimental results are given in Appendix C (page 163).
The main contributions are:

1. An improved MMD bound for active learning and a more informed way to choose
the kernel of the MMD in the context of learning.

2. A proof that the Discrepancy bound on the worst case loss is tighter than the MMD
bound.

3. A probabilistic interpretation of the MMD bound.

4. The Nuclear Discrepancy (ND) bound that provides the tightest bound on the expec-
ted loss under probabilistic assumptions that follow from the principle of maximum
entropy.

5. A probabilistic analysis that explains the differences in empirical performance (in
terms of the mean squared error) achieved by the active learners.

In Table 3.1 we give a visual summary of our work. It shows all formal results and shows in
which sections to find them. It also shows the relation between the theory and experiments,
and the main findings of the experiments.

3.2. RELATED WORK
Many active learning methods have been proposed, Settles [2] provides an excellent intro-
duction and overview. Our work is related to active learning methods that select repres-
entative samples [24]. Most active learning strategies of this kind are combined with an
uncertainty criteria [8, 10, 14, 24], and often the representative component is used to diver-
sify queries when chosen in batches in order to avoid redundancy [8, 24]. This is different
from our considered setting: since there is no labeled data and we have to choose all queries
in one shot, our only option is to select representative samples, since uncertainty criteria can
only be computed if some labels are known.

A closely related well-known concept to our work is that of (Transductive or) Optimal
Experimental Design [25]. Here also no labeled data is required to select queries for the
case of the linear regression model. These methods aim to minimize some form of posterior
variance of the model. A closely related statistical approach relies on maximization of the
Fisher Information to reduce model uncertainty [26]. However, for these approaches it is
often required to explicitly specify a noise model (such as Gaussian i.i.d. noise), while in
this work we consider deterministic labels.

Our work is motivated by several active learners that minimize generalization bounds.
Gu and Han [4] uses the Transductive Rademacher Complexity generalization bound to

3.2. RELATED WORK

3

47

Table 3.1.: Visual summary of our work. This table gives an overview of the newly proven
tightness relations between the generalization bounds and the experimental res-
ults. Observe that the tightness relations under the ‘Average-Case’ correlate well
with the experimental performance of the active learners. Therefore, we stipu-
late that the ‘Average-Case’ is the most accurate assumption for our considered
active learning setting. Note that the tightness relations only hold under the con-
ditions of Theorem 2, and that the experimental performance shown here best
reflect the performance in the realizable setting. In the agnostic setting the rank-
ing of the active learning methods is less clear, but the same trend is observed.

Probabilistic Assumption Experiments

Worst-Case Pessimistic-Case Average-Case Performance

Bound Section 3.4.3 Section 3.4.4 Section 3.5 Section 3.6

Discrepancy Tightest Loosest Loosest Worst

MMD Intermediate Tightest Intermediate Intermediate

Nuclear Discrepancy
Loosest Intermediate

Tightest Best

(proposed)

perform active learning on graphs. Gu et al. [5] show that the strategy of Yu et al. [25] also
minimizes a generalization bound, and extend the method to work with a semi-supervised
model. Ganti and Gray [6] introduce an active learning strategy that uses importance weight-
ing to ensure asymptotic consistency of the actively learned model. Their strategy minim-
izes a generalization bound for the squared loss under some conditions on the data distri-
bution. Gu et al. [7] introduce an strategy that minimizes a generalization bound on the
risk for logistic regression. Wang and Ye [8] also use a generalization bound based on the
MMD to perform active learning, but we will describe this work later in more detail when
discussing all methods that use the MMD.

Many theoretical active learning works motivate algorithms by generalization bounds,
for example one of the first active learning algorithms ‘CAL’ [3] and its agnostic general-
ization A2 [27] have been thoroughly analyzed using generalization bounds by making use
of the Disagreement Coefficient [28]. Most of these theoretical works consider worst-case
performance guarantees, where the distribution is chosen by an adversary subject to con-
straints. Balcan and Urner [29] provides a short and concise overview of these and other
recent theoretical active learning works. In contrast with our work, these algorithms con-
sider generalization in terms of zero-one loss instead of squared loss and do not apply to
one shot active learning.

A straightforward approach to one shot active learning is through clustering: cluster
the data and request the labels of the cluster centers [30–33]. However, unlike our work,

3

48 3. NUCLEAR DISCREPANCY FOR SINGLE-SHOT BATCH ACTIVE LEARNING

these methods are not motivated by generalization bounds. Obtaining bounds for such
approaches may be difficult because the clustering algorithm and machine learning model
may rely on different assumptions. To still get bounds one can use the clustering algorithm
instead to also provide predictions for new samples [34]. Instead, we stick to the regularized
least squares model and use the MMD and Discrepancy to get bounds for this model. Our
approach can be used to derive bounds and corresponding active learning strategies for any
kernelized L2 regularized model, however, in this work we only focus on the squared loss.

Our work is closely related to that of Chattopadhyay et al. [14]: we use a greedy version
of their proposed active learning algorithm. Chattopadhyay et al. [14] are the first to use the
MMD for active learning in a batch-mode setting. An in-depth empirical analysis shows
that the MMD outperforms other active learning criteria as judged by the zero-one error
when used with kernelized SVMs. They show that the MMD easily can be combined with
uncertainty-based active learning approaches and transfer learning. Since we consider one-
shot active learning we do not consider the uncertainty-based component of their algorithm.
In follow up work active learning and transfer learning is solved jointly using the MMD
[35].

Our theoretical analysis of the MMD bound extends the analysis of Wang and Ye [8].
Wang and Ye [8] show that active learning by minimization of the MMD and the empirical
risk can be seen as minimizing a generalization bound on the true risk. They introduce an
active learner that balances exploration (distribution matching using MMD) with exploita-
tion (a form of uncertainty sampling). They show empirically that their proposed algorithm
is competitive with several other active learning strategies as evaluated by the zero-one error
using kernelized SVMs.

We build upon the generalization bound of Wang and Ye [8] and improve it. Their bound
considers the underlying distribution of the unlabeled pool and labeled (queried) sample,
however, this is problematic because the labeled sample is non-i.i.d. due to dependence of
the queries of the active learner. We resolve this issue and introduce an additional term η

that measures the error of approximating the worst-case loss function.
Mansour et al. [16] introduce the Discrepancy generalization bound for domain adapta-

tion with general loss functions. In a follow up work, Cortes and Mohri [18] contrast the
Discrepancy with the MMD generalization bound: they argue that the Discrepancy is favor-
able from a theoretical point of view because it takes the loss function and hypothesis set
of the model into account, while the MMD does not. This means that the MMD bound for
an SVM and regularized least squares model would be exactly the same, while the Discrep-
ancy bound specializes to the chosen model and surrogate loss. They derive an efficient
domain adaptation algorithm and empirically show that the Discrepancy improves upon the
MMD in several regression adaptation tasks.

Prior to our work, the Discrepancy measure [18] has not yet been used to perform active
learning. We show that by choosing the kernel for the MMD carefully, we can adapt the
MMD to take the hypothesis set and loss into account, addressing one of the theoretical
limitations of the MMD identified by Cortes and Mohri [18]. Under these conditions we
find that we can compare the MMD and Discrepancy bounds in terms of tightness. This
quantitative comparison of these bounds is novel and was not considered before.

3.3. SETTING AND NOTATION

3

49

Germain et al. [36] adapt the Discrepancy for the zero-one loss to a PAC-Bayes setting
in order to do domain adaptation. Their analysis is specifically for the zero-one loss, while
we consider the squared loss. Their PAC-Bayes framework is significantly different from
our analysis: instead of minimizing a surrogate loss, they use a Gibbs classifier, and they
minimize bounds on the expected risk directly. This involves a non-convex optimization
problem. Instead, we simply minimize the empirical risk and consider deterministic models,
similar to most PAC style analysis. This makes our analysis is simpler. Furthermore, they
propose a framework to jointly minimize the empirical risk and domain divergence. To this
end, their algorithm requires labeled data which is unavailable in zero-shot active learning,
making it unsuitable for our zero-shot setting.

In Cortes et al. [37] a new domain adaptation algorithm based on a new divergence meas-
ure, the Generalized Discrepancy, is introduced. The algorithm consists of two stages: first
it minimizes the Discrepancy, afterward it minimizes the empirical risk and the Generalized
Discrepancy jointly. The strategy of Cortes et al. [37] is difficult to apply to active learning
for two reasons. First of all, their algorithm requires labeled data to minimize the empir-
ical risk and the General Discrepancy jointly, which is impossible in our zero-shot active
learning setting. Second, their algorithm requires i.i.d. samples from the unlabeled pool
to estimate the hyperparameter r . This would require costly random queries in the active
learning setting. Because of these reasons, we believe their algorithm is more suitable to
a joint active and domain adaptation setting (such as considered by Chattopadhyay et al.
[35]) where more labeled data is available.

Our theoretical analysis is substantially different from the analysis of Cortes et al. [37].
Because Cortes et al. [37] use labeled data, they can make a more accurate characterization
of possible worst case scenario’s, refining the worst-case scenario of the Discrepancy to
obtain tighter bounds. We take an orthogonal approach: we consider probabilistic gener-
alization bounds that hold in expectation. Instead of considering a worst-case, we make
probabilistic assumptions to get to a plausible average-case. Cortes et al. [37] compare
the Generalized Discrepancy and Discrepancy bounds in terms of tightness. We compare
the tightness of the bounds of the MMD, Discrepancy and Nuclear Discrepancy. We show
several orderings of the tightness of the bounds under different probabilistic assumptions,
while Cortes et al. [37] only takes a worst-case approach.

In summary, our work differs from previous works by considering instead of worst-case
analysis [18, 37], a probabilistic analysis of generalization bounds. Unlike most other works
that use generalization bounds for domain adaptation [18, 36, 37], we use bounds to perform
active learning. For the MMD active learner, studied by Wang and Ye [8], Chattopadhyay
et al. [14], we give new theoretical results: an improved bound for active learning and
we provide a principled way to choose the kernel for the MMD. We give new quantitative
comparisons of bound tightness for the MMD and Discrepancy in multiple settings, while
before these bounds were compared only qualitatively [18]. Furthermore, we study the
novel question: how does bound tightness relate to active learning performance?

3.3. SETTING AND NOTATION
Let X =Rd denote the input space and Y the output space. Like Cortes and Mohri [18] we
assume there is a function f : X →Y that determines the outputs and there is an unknown

3

50 3. NUCLEAR DISCREPANCY FOR SINGLE-SHOT BATCH ACTIVE LEARNING

distribution with density P over X from which we get an independent and identically dis-
tributed (i.i.d.) unlabeled sample P̂ = (x ′

1, . . . , x ′
nP̂

) ∈X nP̂ . We study single-shot batch active
learners that given the unlabeled pool P̂ selects a batch Q̂n ⊂ P̂ of n samples before ob-
serving any labels. The active learner submits the batch to the labeling oracle that provides
the labels of the batch. A kernel regularized least squares (KRLS) model is trained on Q̂ lab

n ,
where lab indicates a labeled dataset.

We take the kernel of the model K to be positive semi-definite (PSD), and denote the
reproducing kernel Hilbert space (RKHS) as H where ||h||K denotes the norm in H . A
model corresponds to h ∈H and is obtained by minimizing

LQ̂ (h, f)+µ||h||2K
for h ∈H when trained on Q̂ lab, where we follow the convention of Cortes and Mohri [18].
LQ̂ (h, f) is the average empirical loss of h on Q̂ with outputs given by f :

LQ̂ (h, f) = 1

nQ̂

∑
x∈Q̂

l (h(x), f (x)),

where l : R×R → R is a loss function. For KRLS l is the squared loss: l (h(x), f (x)) =
(h(x)− f (x))2, then LQ̂ (h, f) is the mean squared error (MSE) on Q̂. Model complexity is
controlled by the regularization parameter µ> 0. We choose

H = {h ∈H : ||h||K ≤Λ= fmaxp
µ

}

as our hypothesis set where fmax = supx∈X | f (x)|. Training KRLS always leads to a solution
h ∈ H [38, Lemma 11.1].

In classification typically we are interested in the zero-one error (accuracy), however, our
study focuses on the squared loss (the surrogate loss). We use the squared loss because we
can relate the bounds of the MMD, Nuclear Discrepancy and Discrepancy in closed form
and compare them quantitatively. Since our goal is to investigate the correlation between
bound tightness and performance, this is essential to our study.

We have made the standard assumption that the data comes from an unknown distribution
P . The goal of the active learner is to choose a batch of queries in such a way as to minimize
the expected loss of the model under this distribution P :

LP (h, f) =
∫
X

(h(x)− f (x))2P (x)d x. (3.1)

Ideally we would want to train our model on P̂ lab, since small LP̂ (h, f) will lead to small
LP (h, f) if the model complexity is appropriate, as illustrated by the following theorem [38,
p. 240].

Theorem 1 (Generalization bound Squared Loss[38]). Let l be the squared loss. For any
δ> 0, with probability at least 1−δ over an i.i.d. sample P̂ of size nP̂ from P , the following
inequality holds for all h ∈ H:

LP (h, f) ≤ LP̂ (h, f)+4MRm(H)+M 2 log(1
δ)

2nP̂
(3.2)

3.4. ANALYSIS OF EXISTING BOUNDS

3

51

Here Rm(H) is the Rademacher complexity of the hypothesis set H , and M is a constant
such that |h(x)− f (x)| ≤ M for all x ∈X and all h ∈ H .

If the model complexity is appropriate Rm(H) will be small. The third term is small
when the pool P̂ is large. If both of these criteria are met, it is unlikely that we overfit as
reflected by a tight bound. Then training on P̂ lab will likely minimize LP (h, f).

Ideally we would train on P̂ lab, however, since we only have access to the unlabeled
sample P̂ this is impossible. Therefore we upperbound LP̂ (h, f) instead. This upperbound
is minimized by the active learners. The studied bounds are of the form

LP̂ (h, f) ≤ LQ̂ (h, f)+obj(P̂ ,Q̂)+η.

Due to training LQ̂ (h, f) will be relatively small. The term η is a constant that cannot be
minimized during active learning since it depends on P̂ lab. However, if the model misspe-
cification is small, η will be small. Therefore we ignore this term during active learning,
this is also (sometimes implicitly) done in other works [14, 17, 18]. Thus the active learners
choose the batch Q̂ to minimize obj(P̂ ,Q̂). This objective can be the MMD, disc or discN

which will be introduced in the next sections. This term measures the similarity between
the unlabeled pool P̂ and the batch Q̂. Minimizing it leads to selecting a representative
sample.

We consider two settings. In the agnostic setting binary labels are used, i.e., Y = {−1,+1},
and generally we have f ∉ H . In the realizable setting f ∈ H , so a model of our hypothesis
set can perfectly reproduce the labels as there is no model misspecification. In this case Y

is a subset of R. In the realizeable setting η can become zero under some conditions, which
allows us to compare the tightness of the bounds and enables our probabilistic analysis.

K (x, x ′) indicates the kernel function between x and x ′. We mainly use the Gaussian
kernel K (x, x ′) = exp(−||x −x ′||22/(2σ2)) where σ, the bandwidth, is a hyperparameter of
the kernel. For the MMD we require a second PSD kernel, KL . We indicate its RKHS and
bandwidth (for a Gaussian kernel) by HL and σL , respectively. All vectors are column
vectors. XP̂ and XQ̂ are the nP̂ ×d and nQ̂ ×d matrices of the sets P̂ and Q̂.

3.4. ANALYSIS OF EXISTING BOUNDS
First we provide an improved MMD generalization bound for active learning which is in-
spired by Cortes et al. [37]. Then we review a bound in terms of the Discrepancy of Cortes
et al. [37] and we review how to compute the Discrepancy quantity [16]. We show that the
MMD can be computed using a novel eigenvalue analysis, and thereby making the MMD
and Discrepancy bounds comparable. We wrap up the section with a probabilistic interpret-
ation of both bounds. As a roadmap for the reader we give an overview of the tightness
relations in Table 3.1 which will be proven in this section and the next section.

3

52 3. NUCLEAR DISCREPANCY FOR SINGLE-SHOT BATCH ACTIVE LEARNING

3.4.1. IMPROVED MMD BOUND FOR ACTIVE LEARNING

The MMD measures the similarity between the two unlabeled samples Q̂ and P̂ . Using
this criterion we give a generalization bound similar to the one given by Wang and Ye [8]
suitable for active learning. The empirical MMD quantity is given by

MMD(P̂ ,Q̂) = max
l̃∈HL

(
1

nP̂

∑
x∈P̂

l̃ (x)− 1

nQ̂

∑
x∈Q̂

l̃ (x)

)
.

Here l̃ is the worst-case function from a set of functions HL . We take the standard choice
HL = {h ∈ HL : ||h||KL

≤ΛL }. In Appendix C.1.1 we revisit how to compute the MMD
quantity. We extend the technique of Cortes et al. [37] to give a generalization bound
in terms of the MMD. To get a bound for the MMD we approximate the loss function
g (h, f)(x) = l (h(x), f (x)) using HL .

Proposition 1 (Agnostic MMD worst case bound). Let l be any loss function l : R×R→R.
Then for all h ∈ H and any labeling function f : X →Y we have

LP̂ (h, f) ≤ LQ̂ (h, f)+MMD(P̂ ,Q̂)+ηMMD, (3.3)

where ηMMD = 2minl̃∈HL
maxh∈H ,x∈P̂ |g (h, f)(x)− l̃ (x)|.

Here ηMMD measures the approximation error since we may have that g (h, f) ∉ HL . Our
MMD bound above differs in two aspects from the bound of Wang and Ye [8]. Wang and Ye
[8] estimate the MMD between the distributions P and Q. However, to estimate the MMD
between distributions i.i.d. samples are required [15, Appendix A.2]. The sample Q̂ is not
i.i.d. since it is chosen by an active learner.

Our bound allows for non-i.i.d. samples since it estimates the MMD between empirical
samples and is therefore better suited for active learning. The second novelty is that we
measure the error of approximating the loss function g (h, f) using the term ηMMD. This
allows us to adjust the MMD to the hypothesis set H and loss l similar to the Discrepancy
measure of Cortes and Mohri [18]. We give the theorem below with a small proof sketch
for the simplified case of the linear kernel. See the Appendix for the full proof.

Theorem 2 (Adjusted MMD). Let l be the squared loss and assume f ∈ H (realizable
setting). If KL (xi , x j) = K (xi , x j)2 and ΛL = 4Λ2, then g (h, f) ∈ HL and thus ηMMD = 0.

Proof sketch. Here we give a proof sketch for the case where K is the linear kernel:
K (xi , x j) = xT

i x j . Then h(x) = wT
h x and f (x) = wT

f x, and g (h, f) = ((w f − wh)T x)2 is
a quadratic function of x. The featuremap of the kernel KL (xi , x j) = K (xi , x j)2 are all
monomials of degree 2 [39, chap. 9.1]. Therefore HL can be used to model any quadratic
function such as g (h, f). Therefore if ΛL is chosen appropriately we have g (h, f) ∈ HL .

Corollary 1. Let l be the squared loss and f ∈ H and let K be a Gaussian kernel with
bandwidth σ. If KL is a Gaussian kernel with bandwidth σL = σp

2
and ΛL = 4Λ2 then

ηMMD = 0.

3.4. ANALYSIS OF EXISTING BOUNDS

3

53

Compared to other works Theorem 2 gives a more informed way to choose the MMD
kernel in the context of learning1. Typically, a Gaussian kernel is used for the MMD with
σL =σ. However, Corollary 1 shows that if σL =σ, we may have that ηMMD 6= 0 even in
the realizable setting, since σL is too large — the true loss function g (h, f) is less smooth
than the functions in HL . This is undesirable since ηMMD cannot be minimized during
active learning. Our choice for σL is preferable, as it ensures ηMMD = 0 in the realizable
setting.

3.4.2. DISCREPANCY BOUND
The Discrepancy is defined as

disc(P̂ ,Q̂) = max
h,h′∈H

|LP̂ (h′,h)−LQ̂ (h′,h)|. (3.4)

Observe it depends on H and l and therefore automatically adjusts to the loss and hypothesis
set. We give a bound of Cortes et al. [37] in terms of the Discrepancy.

Theorem 3 (Agnostic Discrepancy worst case bound[37]). Assume that for all x ∈X and
for all h ∈ H that l (h(x), f (x)) ≤C and let l be the squared loss. Then for all h ∈ H and any
labeling function f : X →Y we have

LP̂ (h, f) ≤ LQ̂ (h, f)+disc(P̂ ,Q̂)+ηdisc,

where ηdisc = 4C min f̃ ∈H maxx∈P̂ | f̃ (x)− f (x)|.
ηdisc measures the model misspecification. In the realizable setting, f ∈ H , and ηdisc = 0.

3.4.3. EIGENVALUE ANALYSIS
We show the relation between the Discrepancy and MMD using a novel eigenvalue analysis.
To this end we introduce the matrix MP̂ ,Q̂ to compute the Discrepancy.

MP̂ ,Q̂ = 1

nP̂
X T

P̂
XP̂ − 1

nQ̂
X T

Q̂
XQ̂ ,

For notational convenience we will often write M instead of MP̂ ,Q̂ . The matrix M measures
the difference between two sets of samples using their second-order moment. Considering
its kernelized version such comparison can implicitly take higher-order moments into ac-
count as well. In particular, for a Gaussian kernel all moments of the samples are compared
and we have that M = 0 only if P̂ = Q̂.

In the following we will look at the eigendecomposition of M . Since M is the difference
between two covariance matrices, it can have positive and negative eigenvalues. A positive
(negative) eigenvalue means that in the direction of the corresponding eigenvector P̂ has
more (less) variance than Q̂. Recall that in active learning, our aim is to approximate P̂ using
representative samples Q̂, and thus small absolute eigenvalues are desirable, because this
would indicate that in the direction of the corresponding eigenvector P̂ is well approximated
by Q̂.

1The MMD is also used in other contexts, for example, the MMD can be used to determine if two sets of samples
originate from the same distribution [15].

3

54 3. NUCLEAR DISCREPANCY FOR SINGLE-SHOT BATCH ACTIVE LEARNING

Theorem 4 (Discrepancy computation [16]). Assume K is the linear kernel, K (xi , x j) =
xT

i x j , and l is the squared loss, then

disc(P̂ ,Q̂) = 4Λ2 max
i

|λi | = 4Λ2||λ||∞. (3.5)

where λi are the eigenvalues of M , and λ is the vector of eigenvalues of M .

Note that h′ will later play the role of f , the true labeling function. The theorem shows
that in the worst case, the h and h′ that maximize the Discrepancy in Equation 3.4 are
chosen exactly in the direction where Q̂ and P̂ differ most, i.e., the direction of the largest
absolute eigenvalue. Cortes and Mohri [18] show that we can replace M by MK to compute
the Discrepancy for any PSD kernel2.

Before we can give our main result we require some additional notation. Assume that
the eigenvalues λi of M are ordered by absolute value where |λ1| is the largest absolute
eigenvalue. λ indicates the vector of eigenvalues, with r = rank(M) non-zero eigenvalues.
ei is the normalized (unit-length) eigenvector corresponding to λi . By careful analysis we
can realize the relationship between M and the featuremap of the squared kernel to show
that the MMD can be computed as follows.

Theorem 5 (MMD Computation). Let KL (xi , x j) = K (xi , x j)2 and ΛL = 4Λ2, then

MMD(P̂ ,Q̂) = 4Λ2||λ||2. (3.6)

This theorem shows that the MMD measures differences between the samples Q̂ and
P̂ differently. The Discrepancy only measures similarity along one dimension, namely the
direction where the samples differ the most. The MMD considers all dimensions to compare
the samples Q̂ and P̂ . Due to the square in the Euclidean norm, the MMD gives directions
that differ more more weight in the comparison.

Corollary 2. Under the conditions of Theorem 2, disc(P̂ ,Q̂) ≤MMD(P̂ ,Q̂).

Under these conditions the Discrepancy bound (Theorem 3) is tighter than the MMD
bound (Proposition 1), since ηMMD = ηdisc = 0. Since the Discrepancy bound is tighter, one
may expect that active learning by minimization of the Discrepancy may result in better
active learning queries than minimization of the MMD, in particular if ηMMD and ηdisc are
small or zero.

3.4.4. PROBABILISTIC ANALYSIS

We show the MMD can provide a tighter bound on the expected loss under certain probabil-
istic assumptions. From this point on we assume the conditions of Theorem 2 and take h to
be the model trained on the set Q̂, and f to be the true labeling function. In addition, define
u = h − f and U = {u ∈ H : ||u||K ≤ 2Λ} and let ūi = uT ei , where ei is the eigenvector of
M . Then ||u||K = ||ū||K ≤ 2Λ, since ū is a rotated version of u. It is more convenient to
work with ū, since then the matrix M diagonalizes: uT Mu =∑

i ūiλi .

2See the Appendix (Equation C.8) for the definition of MK , additional details and the proof of this theorem. All
our theoretical results that follow hold for both M and MK . For simplicity we use M in the main text.

3.4. ANALYSIS OF EXISTING BOUNDS

3

55

The difference u is the unknown error our trained model h makes compared with the true
model f . By making different probabilistic assumptions about the distribution of u we can
arrive at different bounds. We now provide the building block for our probabilistic bounds.
By noting that LP̂ (h, f)−LQ̂ (h, f) = uT Mu and by making use of the triangle inequality,
we find the following.

Lemma 1 (Probabilistic bound). Assume3 u is distributed according to a pdf p(u) over U .
Then

E
u

LP̂ (h, f) ≤ E
u

LQ̂ (h, f)+E
u

G(u, M), (3.7)

where we defined G(u, M) =∑
i ū2

i |λi |.
Observe that G(u, M) is a weighted sum, where each |λi | is weighted by ū2

i . Recall
that LQ̂ (h, f) is generally small due to the training procedure of the model, thus generally
Eu LQ̂ (h, f) will be small as well. Therefore we focus our probabilistic analysis on the term
Eu G(u, M). By giving bounds on this quantity, we derive several probabilistic bounds that
hold in expectation w.r.t. u.

The Discrepancy can be interpreted to put all probability mass on u = 2Λe1.

Proposition 2 (Worst case: Probabilistic Discrepancy). Given the pdf p(u) = δ(u −2Λe1)
where δ(x) is the Dirac delta distribution. Then

E
u

LP̂ (h, f) ≤ E
u

LQ̂ (h, f)+disc(P̂ ,Q̂) (3.8)

Only one u ∈U can be observed under this pdf. This is a worst case distribution because
this p(u) maximizes Eu G(u, M). The Discrepancy assumes that the model error u points
exactly in the direction that causes us to make the biggest error on P̂ . Under this distribu-
tion the Discrepancy gives a tighter bound on the expected loss than the MMD because of
Corollary 2. Under a different p(u) the MMD bound is tighter.

Theorem 6 (Pessimistic case: Probabilistic MMD). Let p(u) be a pdf on Us such that 4

E
u

ū2
i = 4Λ2|λi |

(p
r ||λ||2

)−1
, (3.9)

then
E
u

LP̂ (h, f) ≤ E
u

LQ̂ (h, f)+ 1p
r

MMD(P̂ ,Q̂) ≤ E
u

LQ̂ (h, f)+disc(P̂ ,Q̂).

Unlike for the distribution of the Discrepancy, for the above p(u) it is possible to observe
different model errors u. However, the model error u in this case is biased: Equation 3.9
suggests that u is more likely to point in the direction of eigenvectors with large absolute
eigenvalues. This assumption is pessimistic since large absolute eigenvalues can contribute

3This could be motivated for example, by placing a prior on f , then u would be a random variable. Another
motivation is that we do not know u, and need to model it somehow to come to applicable generalization
bounds. The Discrepancy assumes a worst-case scenario (it maximizes with respect to u), while we now
consider assuming a distribution on u.

4To deal with infinite-dimensional RKHS we choose p(u) on Us instead of U , where Us is the part of U restricted
to the span of XP̂ . Here r is the effective dimension: r = dim(Us). This is necessary, otherwise sampling
uniformly from an infinite-dimensional sphere can lead to problems. See Appendix C.3 for more details.

3

56 3. NUCLEAR DISCREPANCY FOR SINGLE-SHOT BATCH ACTIVE LEARNING

more to Eu G(u, M). Another way to interpret this is that model errors are more likely to
occur in directions where Q̂ and P̂ differ more. Because Q̂ and P̂ differ more in those
directions, these model errors can count more towards the MSE on P̂ .

For this p(u) the MMD bound is tighter. If the probabilistic assumption of the MMD is
more accurate, we can expect that the MMD active learner will yield better active learning
queries than the Discrepancy.

3.5. NUCLEAR DISCREPANCY
In this section we motivate the optimistic probabilistic assumption that leads to the Nuclear
Discrepancy (ND) bound. First, let us introduce the Nuclear Discrepancy quantity

discN (P̂ ,Q̂) = 4Λ2||λ||1.

In the absence of any prior knowledge, we choose the pdf p(u) according to the well es-
tablished principle of maximum entropy. This principle dictates that in case nothing is
known about a distribution, the distribution with the largest entropy should be chosen [40].
Accordingly, we choose p(u) uniform over U , which leads to the following.

Theorem 7 (Optimistic case: Probabilistic ND). Let p(u) be uniform 4 over all u ∈ Us ,
then

E
u

LP̂ (h, f) ≤ E
u

LQ̂ (h, f)+ 1

r +2
discN (P̂ ,Q̂).

In addition we have that discN (P̂ ,Q̂) ≤p
r MMD(P̂ ,Q̂) ≤ r disc(P̂ ,Q̂).

Under the uniform distribution, u is unbiased: each direction for the model error is
equally likely. This is more optimistic than the assumption of the MMD, where u was
biased towards directions that could larger errors on P̂ . Because now u is not biased,
Eu G(u, M) is smaller under this p(u) than in Theorem 2 and 6 and so this p(u) is more
optimistic. The Nuclear Discrepancy (ND) owns its name to the fact that it is proportional
to the nuclear matrix norm of M .

An appealing property of this choice of p(u) is that, given a fixed P̂ , any choice of Q̂
does not influence p(u). For the Discrepancy and the MMD, choosing different Q̂ leads
to different p(u). Thus choosing queries changes the distribution of p(u) and thus also
implicitly the distribution of h and f . Instead, for the ND, our queries do not influence the
distribution of h and f . This assumption seems reasonable, since f is usually assumed to
be fixed and independent of our actions.

Under the uniform distribution the ND provides the tightest bound on the expected loss,
while the MMD bound is looser, and the Discrepancy bound is the loosest. Therefore, if
this probabilistic assumption is the most accurate, minimization of the Nuclear Discrepancy
may lead to the best queries for active learning, followed by the MMD and Discrepancy, in
that order5.

5As an aside, note that MMD(P̂ ,Q̂) ≤ discN (P̂ ,Q̂), since ||λ||2 ≤ ||λ||1. Therefore, by upperbounding the MMD
in (3.3) we can also give a (looser) worst-case bound in terms of the ND for the agnostic case.

3.6. EXPERIMENTS

3

57

3.6. EXPERIMENTS
We explain the setup and baselines, afterward we review our main results: the realizable set-
ting. We discuss the results and examine the probabilistic assumptions empirically. Some-
what similar results are observed in the agnostic setting which we will briefly discuss. An
additional experiment investigates the influence of subsampling of datasets on our results.
This subsampling experiment and all results of the agnostic case are discussed in detail in
the Appendix.

3.6.1. EXPERIMENTAL SETUP AND BASELINES

An overview of the experimental procedure is given in Algorithm 1. A training set (65%)
and test set (35%) are used — the training set corresponds to P̂ and we indicate the testset
by T̂ . We use the active learners to select batches of size n = 1,2, . . . ,50. For computational
reasons we select batches in a sequential greedy fashion. Initially at t = 0 the batch is
empty: Q̂0 = ;. In iteration 1 ≤ t ≤ n the active learner selects a sample xt from the
unlabeled pool Ût−1 = P̂ \Q̂t−1 according to xt = argmins∈Ût−1

obj(P̂ ,Q̂t−1∪s). We perform
experiments multiple times to ensure significance of the results. We call each repetition a
run, and for each run a new training and test split is used. During one run, we evaluate each
active learner using the described procedure of Algorithm 1.

Algorithm 1: Zero shot active learning

input :Unlabeled trainingset P̂ , Testset T̂ , labeling budget n, active learning
criterium obj ∈ {MMD,disc,discN }, hyperparameters of model µ, σ

output :MSE performance on testset T
1 Q̂0 ←;; // Init batch

2 Û0 ← P̂ ; // Init unlabeled pool
3 for t ← 1 to n do
4 xt ← argmins∈Ût−1

obj(P̂ ,Q̂t−1 ∪ s); // Find optimal query

5 Q̂t ← Q̂t−1 ∪xt ; // Update batch

6 Ût ← P̂ \Q̂t ; // Update unlabeled pool
7 end
8 Request all labels for objects Q̂n to obtain labeled dataset Q̂ lab

n ;
9 Train kernel regularized least squares model h on Q̂ lab

n with hyperparameters µ,σ;
10 Compute mean squared error (MSE) of h on unseen testset T ;

As baseline we use random sampling and a greedy version of the state-of-the-art MMD
active learner [8, 14]. We compare the baselines with our novel active learners: the Discrep-
ancy active learner and the Nuclear Discrepancy active learner.

The methods are evaluated on 13 datasets that originate either from the UCI Machine
Learning repository [41] or were provided by Cawley and Talbot [42]. See Appendix C.5
for the dataset names and characteristics. Furthermore, we perform an experiment on the
image dataset MNIST. The MNIST dataset [43] consists of images of handwritten digits of
size 28×28 pixels. By treating each pixel as a feature, the dimensionality of this dataset is

3

58 3. NUCLEAR DISCREPANCY FOR SINGLE-SHOT BATCH ACTIVE LEARNING

784 which is relatively high dimensional. Like Yang and Loog [23] we construct 3 difficult
binary classification problems: 3vs5, 7vs9 and 5vs8.

To make datasets conform to the realizable setting we use the approach of Cortes and
Mohri [18]: we fit a model of our hypothesis set to the whole dataset and use its outputs
as labels. To set reasonable hyperparameters we use a similar procedure as [5]. We use
labeled data before any experiments are performed to perform model selection to determine
hyperparameters (σ and µ of the KRLS model). This can be motivated by the fact that in
practice a related task or dataset may be available in order to obtain a rough estimate of
the hyperparameter settings. This procedure makes sure ηMMD and ηdisc are small in the
agnostic setting.

Recall that the active learners minimize bounds on LP̂ (h, f). Therefore active learners
then implicitly also minimizes a bound on LP (h, f), see Theorem 1. By choosing hyper-
parameters in the described way above, we ensure that the Rademacher complexity term
Rm(H) is not too large and we do not overfit. We measure performance on an independent
test set in order to get an unbiased estimate of LP (h, f). To aid reproducibility we give
all hyperparameters and additional details in Appendix C.5. We set σL according to our
analysis in Corollary 1.

3.6.2. REALIZABLE SETTING
First we benchmark the active learners in the realizable setting. In this setting we are assured
that η= 0 in all bounds and therefore we eliminate unexpected effects that can arise due to
model misspecification. We study this scenario to validate our theoretical results and gain
more insight, furthermore, note that this scenario is also studied in adaptation [18].

0 5 10 15 20 25 30 35 40 45 50

Batch size n

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

M
S

E
 d

if
fe

re
n

c
e

 o
n

 t
e

s
t

s
e

t

(a) ringnorm

0 5 10 15 20 25 30 35 40 45 50

Batch size n

-0.2

-0.15

-0.1

-0.05

0

0.05

M
S

E
 d

if
fe

re
n

c
e

 o
n

 t
e

s
t

s
e

t

(b) thyroid

0 5 10 15 20 25 30 35 40 45 50

Batch size n

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

M
S

E
 d

if
fe

re
n

c
e

 o
n

 t
e

s
t

s
e

t

Disc (worst case)

Nuclear Disc (optimistic case)

MMD (pessimistic case)

Random

(c) german

0 5 10 15 20 25 30 35 40 45 50

Batch size n

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

M
S

E
 d

if
fe

re
n

c
e

 o
n

 t
e

s
ts

e
t

(d) mnist 3vs5

0 5 10 15 20 25 30 35 40 45 50

Batch size n

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

M
S

E
 d

if
fe

re
n

c
e

 o
n

 t
e

s
ts

e
t

(e) mnist 7vs9

0 5 10 15 20 25 30 35 40 45 50

Batch size n

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

M
S

E
 d

if
fe

re
n

c
e

 o
n

 t
e

s
ts

e
t

(f) mnist 5vs8

Figure 3.1.: Learning curves for several datasets for the realizeable setting. Results are av-
eraged over 100 runs. The MSE is measured with respect to random sampling
(lower is better).

3.6. EXPERIMENTS

3

59

Several learning curves are shown in Figure 3.1, all curves can be found in Appendix
C.8.1. The MSE of the active learner minus the mean performance (per query) of random
sampling is displayed on the y-axis (lower is better). The curve is averaged over 100 runs.
Error bars represent the 95% confidence interval of the mean computed using the standard
error.

We summarize results on all datasets using the Area Under the (mean squared error)
Learning Curve (AULC) in Table 3.2. The AULC is a different metric than the well known
AUROC or AUPRC measures. The AUROC measure summarize the performance of a
model for different misclassification costs (type I and type II costs) and the AUPRC is
useful when one class is more important than the other, such as in object detection.

By contrast, AULC is specifically suited to active learning, and summarizes the perform-
ance of an active learning algorithm for different number of labeling budgets [44–46].
Low AULC is obtained when an active learner quickly learns a model with low MSE. If a
method in the table is bold, it either means it is the best method (as judged by the mean),
or if it is not significantly worse than the best method (as judged by the t-test). Signific-
ance improvement is judged by a paired two tailed t-test (significance level p = 0.05). We
may use a paired test since during one run all active learners are evaluated using the same
training and test split.

In the majority of the cases the MMD improves upon the Discrepancy (see Table 3.2).
The results on the ringnorm dataset are remarkable, here the Discrepancy sometimes per-
forms worse than random sampling, see Figure 3.1. We observe that generally the Discrep-
ancy performs the worst. These results illustrates that tighter worst case bounds do not
guarantee improved performance. The proposed ND active learner significantly improves
upon the MMD in 9 out of the 13 datasets tested. Here we counted MNIST once, while we
remark that on all subproblems the ND improves significantly on the MMD. This provides
evidence that the proposed method can also deal with high-dimensional datasets. In case
the ND does not perform the best, it ties with the MMD or Discrepancy. The ND never
performs significantly worse. This ranking of the methods exactly corresponds to the order
of the bounds given by Theorem 7 under our optimistic probabilistic assumptions. This sup-
ports our hypothesis that we find ourselves more often in a more optimistic average-case
scenario.

3

60 3. NUCLEAR DISCREPANCY FOR SINGLE-SHOT BATCH ACTIVE LEARNING

Table 3.2.: Area Under the mean squared error Learning Curve (AULC) for the strategies in
the realizable setting, averaged over 100 runs. Bold indicates the best result, or
results that are not significantly worse than the best result, according to a paired
t-test (p = 0.05). Parenthesis indicate standard deviation.

Dataset Random Discrepancy MMD Nuclear Discrepancy

vehicles 11.1 (2.2) 8.0 (1.0) 7.9 (0.9) 7.9 (0.9)
heart 3.5 (0.8) 2.3 (0.3) 2.2 (0.3) 2.1 (0.3)
sonar 13.9 (1.7) 12.5 (1.2) 11.9 (1.1) 11.3 (1.2)
thyroid 6.8 (1.5) 5.2 (0.9) 5.1 (0.9) 5.0 (1.0)
ringnorm 13.2 (1.2) 12.7 (0.8) 10.0 (0.3) 9.4 (0.3)
ionosphere 7.0 (1.3) 5.6 (0.8) 5.0 (0.8) 4.6 (0.6)
diabetes 1.7 (0.4) 1.2 (0.1) 1.2 (0.1) 1.2 (0.1)
twonorm 6.4 (1.2) 4.1 (0.4) 3.7 (0.4) 3.3 (0.3)
banana 7.5 (0.9) 5.0 (0.4) 4.8 (0.3) 4.8 (0.3)
german 1.4 (0.3) 1.2 (0.1) 1.1 (0.1) 1.0 (0.1)
splice 10.8 (1.3) 9.9 (0.8) 9.9 (0.9) 9.0 (0.9)
breast 3.4 (0.9) 2.1 (0.2) 2.1 (0.2) 2.0 (0.2)
mnist 3vs5 29.5 (4.3) 26.9 (2.3) 25.0 (2.1) 23.8 (1.7)
mnist 7vs9 13.2 (2.5) 10.9 (1.4) 10.0 (1.0) 8.9 (0.7)
mnist 5vs8 30.1 (3.4) 26.9 (2.7) 26.1 (2.3) 24.5 (2.1)

3.6.3. DECOMPOSITION OF PROBABILISTIC BOUNDS

ringnorm dataset

5 10 15 20 25 30 35 40 45 50

Batch size n

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

M
e

a
n

 c
o

n
tr

ib
u

ti
o

n
 t

o
 e

rr
o

r

EV 1

EV 2 - 9

EV 10 - 49

EV 50 - 650

(a) ringnorm

thyroid dataset

5 10 15 20 25 30 35 40 45 50

Batch size n

0

0.05

0.1

0.15

0.2

0.25

0.3

M
e

a
n

 c
o

n
tr

ib
u

ti
o

n
 t

o
 e

rr
o

r

EV 1

EV 2 - 9

EV 10 - 49

EV 50 - 140

(b) thyroid

german dataset

5 10 15 20 25 30 35 40 45 50

Batch size n

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

M
e

a
n

 c
o

n
tr

ib
u

ti
o

n
 t

o
 e

rr
o

r

EV 1

EV 2 - 9

EV 10 - 49

EV 50 - 650

(c) german

Figure 3.2.: Decomposition of the sum G(u, M) during active learning for several datasets.
EV1 indicates the contribution of λ1, EV2-9 indicate the summed contributions
of λ2, . . . ,λ9, etc. Averaged over 100 runs of the random active learner. λ1 in
most cases contributes little and in general all λi contribute to G(u, M). This
supports the optimistic probabilistic assumptions.

Since we are in the realizable setting we can compute u = h − f with the true labeling
function f and our trained model h. Thus we can compute each term in the sum of G(u, M)
in (3.7) during the experiments6. We show the contribution of each eigenvalue to G(u, M).
In Figure 3.2 we show this decomposition using a stacked bar chart during several active
learning experiments of the baseline active learner ‘Random’7. Here EV1 indicates the
largest absolute eigenvalue, its contribution is given by ū2

1|λ1| (see also (3.7)). EV 2 - 9 to
indicate the summed contribution:

∑9
i=2 ū2

i |λi |, etc. The mean contributions over 100 runs
are shown.

6See Appendix C.4 for details how to compute G(u, M) in case kernels are used.
7Results for other strategies are similar. Results on all datasets are given in Appendix C.8.2.

3.7. DISCUSSION

3

61

Observe that the contribution of |λ1| to G(u, M) is often small, it is shown by the small
white bar at the bottom of the barchart. Therefore the Discrepancy active learner chooses
suboptimal samples: its strategy is optimal for a worst-case scenario G(u, M) = 4Λ2|λ1|
that is very rare. We observe that typically all λi contribute to G(u, M) supporting our
probabilistic assumption.

3.6.4. AGNOSTIC SETTING

For completeness, we briefly mention the agnostic setting, for all details see Appendix C.6.
In the agnostic setting the rankings of methods can change and performance differences
become less significant. The ND still improves more upon the MMD than the reverse, how-
ever, the trend is less significant. Because our assumption η= 0 is violated our theoretical
analysis is less applicable.

For the MNIST experiments we however find that the results for some subproblems al-
most coincides with the realizeable setting: apparently, for the MNIST dataset the model
misspefication is very small. This may be because the dataset is of relatively high dimen-
sionalion.

3.6.5. INFLUENCE OF SUBSAMPLING

We briefly mention an additional experiment that we have performed on the splice dataset to
see how subsampling affects performance. To this end we measure the performance while
we vary the pool size P̂ by changing the amount of subsampling. This to investigate how
the proposed methods would perform for problems with a larger scale. For all details see
Appendix C.7, here we will be brief.

For small pool sizes all active learners experience a drop in performance. We find the
larger the pool, the better the performance, up until some point at which the performance
levels off. The experiment provides evidence that if finer subsampling is used or larger data-
sets are used, methods typically improve in performance up to a point where performance
levels off.

3.7. DISCUSSION
In the experiments we have observed that in the realizable setting the order of the bounds un-
der our more optimistic probabilistic assumptions give the best indication of active learning
performance. The empirical decomposition of G(u, M) during experiments also supports
our hypothesis that we generally find ourselves in a more optimistic scenario instead of a
worst case scenario.

Still it is meaningful to look at worst-case guarantees, though the worst-case should
be expected to occur. The worst-case assumed by the Discrepancy can never occur in the
realizable setting, and we believe it is also highly unlikely in the agnostic case. The strength
of our approach is that it considers all scenarios equally and does not focus too much on
specific scenarios, making the strategy more robust.

Our work illustrates that the order of bounds can change under varying conditions and
thus tightness of bounds is not the whole story. The conditions under which the bounds
hold are equally important, and should reflect the mathematical setting as much as possible.

3

62 3. NUCLEAR DISCREPANCY FOR SINGLE-SHOT BATCH ACTIVE LEARNING

For example, in a different setting where an adversary would pick u, the Discrepancy active
learner would be most appropriate. This insight illustrates that not only by obtaining tighter
bounds active learning performance can be improved, but by finding more appropriate as-
sumptions (bound-based) active learners can be improved as well.

Our work supports the idea of Germain et al. [36] who introduce a probabilistic version
of the Discrepancy bound for the zero-one loss [47]. Our conclusions also support that the
direct Cortes et al. [37] takes: by using more accurate assumptions to better characterize
the the worst case scenario, performance may be improved.

In our study we have focused on minimizing the mean squared error. It would be inter-
esting to investigate the extension of the Nuclear Discrepancy to other loss functions, in
particular the zero-one loss. As far as we can see, however, such an extension is not trivial.
The above mentioned probabilistic version of the Discrepancy by Germain et al. [36] may
provide some inspiration to achieve this, but they offer a PAC Bayes approach that cannot
be easily adapted to our setting.

Where the experiments in the realizable setting provide clear insights, the results concern-
ing the agnostic setting are not fully understood. A more in depth experimental study of
the agnostic setting is complicated by unexpected effects of η. Since probabilistic bounds
are the most informative in the realizable setting, it is of interest to consider probabilistic
bounds for the agnostic setting as well.

In our experiments we have used greedy optimization to compute the batch Q̂n . It is
theoretically possible to optimize a whole batch of queries in one global optimization step.
However, for the MMD this problem is known to be NP-hard [14]. Minimizing the Dis-
crepancy is also non-trivial, as illustrated by the involved optimization procedure required
by Cortes and Mohri [18] for domain adaptation. Note that their optimization problem is
easier than the optimization problem posed by active learning, where binary constraints are
necessary. Since the objective value of the Nuclear Discrepancy is given by an expectation
which can be approximated using sampling, we believe further speed ups are possible.

In this work we have only considered single-shot batch active learning. In regular batch-
mode active learning label information of previously selected samples can be used to im-
prove query selection. This can be accommodated in our active learner by refining p(u)
using label information. Our results have implications for adaptation as well. We suspect
our suggested choice of σL may improve the MMD domain adaptation method [17]. Fur-
thermore, our results suggest that the ND is a promising objective for adaptation.

3.8. CONCLUSION
To investigate the relation between generalization bounds and active learning performance,
we gave several theoretical results concerning the bound of the MMD active learner and
the Discrepancy bound. In particular, we showed that the Discrepancy provides the tightest
worst-case bound. We introduced a novel quantity; Nuclear Discrepancy, motivated from
optimistic probabilistic assumptions derived from the principle of maximum entropy. Under
these probabilistic assumptions the ND provides the tightest bound on the expected loss,
followed by the MMD, and the Discrepancy provides the loosest bound.

Experimentally, we observed that in the realizable setting the Discrepancy performs the
worst, illustrating that tighter worst-case bounds do not guarantee improved active learning

3.9. BIBLIOGRAPHY

3

63

performance. Our optimistic probabilistic analysis clearly matches the observed behavior
in the realizable setting: the proposed ND active learner improves upon the MMD, and
the MMD improves upon the Discrepancy active learner. We find that even on the high-
dimensional image dataset MNIST our method is competitive. A similar, weaker, trend is
observed in the agnostic case. One of our key conclusions is that not only bound tightness is
important for active learning performance, but that appropriate assumptions matter equally
so.

3.9. BIBLIOGRAPHY
[1] T. J. Viering, J. H. Krijthe, and M. Loog, Nuclear discrepancy for single-shot batch

active learning, Machine Learning 108, 1561 (2019).

[2] B. Settles, Active Learning, Synthesis Lectures on Artificial Intelligence and Machine
Learning 6, 1 (2012).

[3] D. Cohn, L. Atlas, and R. Ladner, Improving generalization with active learning,
Machine Learning 15, 201 (1994).

[4] Q. Gu and J. Han, Towards Active Learning on Graphs: An Error Bound Minimization
Approach, in Proceedings of the 12th IEEE International Conference on Data Mining
(ICDM) (2012) pp. 882–887.

[5] Q. Gu, T. Zhang, J. Han, and C. H. Ding, Selective Labeling via Error Bound Min-
imization, in Proceedings of the 25th Conference on Advances in Neural Information
Processing Systems (NIPS) (2012) pp. 323–331.

[6] R. Ganti and A. Gray, UPAL: Unbiased Pool Based Active Learning, in Proceedings of
the 15th International Conference on Artificial Intelligence and Statistics (AISTATS)
(2012) pp. 422–431.

[7] Q. Gu, T. Zhang, and J. Han, Batch-Mode Active Learning via Error Bound Minimiz-
ation, in Proceedings of the 30th Conference on Uncertainty in Artificial Intelligence
(UAI) (2014).

[8] Z. Wang and J. Ye, Querying Discriminative and Representative Samples for Batch
Mode Active Learning, in Proceedings of the 19th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining (KDD) (2013) pp. 158–166.

[9] R. Rifkin, G. Yeo, and T. Poggio, Regularized least-squares classification, Advances
in Learning Theory: Methods, Model, and Applications 190, 131 (2003).

[10] S.-j. Huang, R. Jin, and Z.-h. Zhou, Active Learning by Querying Informative and
Representative Examples, in Proceedings of the 23th Conference on Advances in
Neural Information Processing Systems (NIPS) (2010) pp. 892–900.

[11] G. Contardo, L. Denoyer, and T. Artieres, A meta-learning approach to one-step
active learning, arXiv preprint arXiv:1706.08334 (2017).

3

64 3. NUCLEAR DISCREPANCY FOR SINGLE-SHOT BATCH ACTIVE LEARNING

[12] A. Esteva, B. Kuprel, R. A. Novoa, J. Ko, S. M. Swetter, H. M. Blau, and S. Thrun,
Dermatologist-level classification of skin cancer with deep neural networks, Nature
542, 115 (2017).

[13] A. S. Harpale and Y. Yang, Personalized active learning for collaborative filtering, in
Proceedings of the 31st annual international ACM SIGIR conference on Research and
development in information retrieval (ACM, 2008) pp. 91–98.

[14] R. Chattopadhyay, Z. Wang, W. Fan, I. Davidson, S. Panchanathan, and J. Ye, Batch
Mode Active Sampling Based on Marginal Probability Distribution Matching, in Pro-
ceedings of the 18th ACM SIGKDD International Conference on Knowledge Discov-
ery and Data Mining (KDD) (2012) pp. 741–749.

[15] A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schölkopf, and A. Smola, A Kernel
Two-sample Test, Machine Learning Research 13, 723 (2012).

[16] Y. Mansour, M. Mohri, and A. Rostamizadeh, Domain Adaptation: Learning Bounds
and Algorithms, in Proceedings of the 22nd Annual Conference on Learning Theory
(COLT) (2009).

[17] J. Huang, A. J. Smola, A. Gretton, K. M. Borgwardt, and B. Schölkopf, Correcting
sample selection bias by unlabeled data, in Proceedings of the 19th Conference on
Advances in Neural Information Processing Systems (NIPS) (2007) pp. 601–608.

[18] C. Cortes and M. Mohri, Domain adaptation and sample bias correction theory and
algorithm for regression, Theoretical Computer Science 519, 103 (2014).

[19] C. Tosh and S. Dasgupta, Diameter-based active learning, arXiv preprint
arXiv:1702.08553 (2017).

[20] B. Settles, From theories to queries: Active learning in practice, in Active Learning
and Experimental Design workshop In conjunction with AISTATS 2010 (2011) pp. 1–
18.

[21] J. Attenberg and F. Provost, Inactive learning?: difficulties employing active learning
in practice, ACM SIGKDD Explorations Newsletter 12, 36 (2011).

[22] M. Loog and Y. Yang, An empirical investigation into the inconsistency of sequential
active learning, in 2016 23rd International Conference on Pattern Recognition (ICPR)
(IEEE, 2016) pp. 210–215.

[23] Y. Yang and M. Loog, A benchmark and comparison of active learning for logistic
regression, Pattern Recognition 83, 401 (2018).

[24] Z. Xu, K. Yu, V. Tresp, X. Xu, and J. Wang, Representative Sampling for Text
Classification Using Support Vector Machines, in Advances in Information Retrieval
(Springer, 2003) pp. 393–407.

[25] K. Yu, J. Bi, and V. Tresp, Active Learning via Transductive Experimental Design,
in Proceedings of the 23rd International Conference on Machine Learning (ICML)
(2006) pp. 1081–1088.

http://dx.doi.org/10.1145/1143844.1143980

3.9. BIBLIOGRAPHY

3

65

[26] S. C. Hoi, R. Jin, J. Zhu, and M. R. Lyu, Batch mode active learning and its ap-
plication to medical image classification, in Proceedings of the 23rd International
Conference on Machine Learning (ICML) (2006) pp. 417–424.

[27] M.-F. Balcan, A. Beygelzimer, and J. Langford, Agnostic active learning, Journal of
Computer and System Sciences 75, 78 (2009).

[28] S. Hanneke, A bound on the label complexity of agnostic active learning, in Proceed-
ings of the 24th International Conference on Machine learning (ICML) (2007) pp.
353–360.

[29] M.-F. Balcan and R. Urner, Active learning–modern learning theory, Encyclopedia of
Algorithms , 8 (2016).

[30] Z. BodÃ, Z. Minier, and L. CsatÃ, Active learning with clustering, in Active Learning
and Experimental Design workshop in conjunction with AISTATS 2010 (2011) pp.
127–139.

[31] R. Hu, B. Mac Namee, and S. J. Delany, Off to a good start: Using clustering to
select the initial training set in active learning. in FLAIRS Conference (2010).

[32] J. Zhu, H. Wang, T. Yao, and B. K. Tsou, Active learning with sampling by uncertainty
and density for word sense disambiguation and text classification, in Proceedings of
the 22nd International Conference on Computational Linguistics-Volume 1 (2008) pp.
1137–1144.

[33] H. T. Nguyen and A. Smeulders, Active learning using pre-clustering, in Proceedings
of the 21rst International Conference on Machine learning (ICML) (2004) p. 79.

[34] R. Urner, S. Wulff, and S. Ben-David, Plal: Cluster-based active learning, in Confer-
ence on Learning Theory (COLT) (2013) pp. 376–397.

[35] R. Chattopadhyay, W. Fan, I. Davidson, S. Panchanathan, and J. Ye, Joint Transfer
and Batch-mode Active Learning, Proceedings of the 30th International Conference
on Machine Learning (ICML) , 253 (2013).

[36] P. Germain, A. Habrard, F. Laviolette, and E. Morvant, A pac-bayesian approach for
domain adaptation with specialization to linear classifiers, in Proceedings of the 30th
International Conference on Machine Learning (ICML) (2013) pp. 738–746.

[37] C. Cortes, M. Mohri, and A. M. Medina, Adaptation based on generalized discrep-
ancy, Journal of Machine Learning Research 20, 1 (2019).

[38] M. Mohri, A. Rostamizadeh, and A. Talwalkar, Foundations of Machine Learning
(MIT press, Cambridge, Massachusetts, 2012).

[39] J. Shawe-Taylor and N. Cristianini, Kernel Methods for Pattern Analysis (Cambridge
University Press, Cambridge, UK, 2004).

[40] E. T. Jaynes, Information theory and statistical mechanics, Physical review 106, 620
(1957).

3

66 3. NUCLEAR DISCREPANCY FOR SINGLE-SHOT BATCH ACTIVE LEARNING

[41] M. Lichman, UCI Machine Learning Repository, (2013).

[42] G. C. Cawley and N. L. Talbot, Fast exact leave-one-out cross-validation of sparse
least-squares support vector machines, Neural Networks 17, 1467 (2004).

[43] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, et al., Gradient-based learning applied to
document recognition, Proceedings of the IEEE 86, 2278 (1998).

[44] J. ONeill, S. J. Delany, and B. MacNamee, Model-free and model-based active
learning for regression, in Advances in Computational Intelligence Systems (Springer,
2017) pp. 375–386.

[45] M. Huijser and J. C. van Gemert, Active decision boundary annotation with deep
generative models, in Proceedings of the IEEE International Conference on Computer
Vision (2017) pp. 5286–5295.

[46] B. Settles and M. Craven, An analysis of active learning strategies for sequence la-
beling tasks, in Proceedings of the conference on empirical methods in natural lan-
guage processing (Association for Computational Linguistics, 2008) pp. 1070–1079.

[47] S. Ben-David, J. Blitzer, K. Crammer, A. Kulesza, F. Pereira, and J. W. Vaughan, A
theory of learning from different domains, Machine Learning 79, 151 (2010).

http://archive.ics.uci.edu/ml

4
THE SHAPE OF LEARNING

CURVES: A REVIEW

Learning curves provide insight into the dependence of a learners generalization perform-
ance on the training set size. This important tool can be used for model selection, to predict
the effect of more training data, and to reduce the computational complexity of model train-
ing and hyperparameter tuning. This review provides a formal definition of the learning
curve, and briefly covers basics such as its estimation. Our main contribution is a com-
prehensive overview of the literature regarding the shape of learning curves. We discuss
empirical and theoretical evidence in favor of the shape of a power law or an exponential.
We draw specific attention to examples of learning curves that are ill-behaved, showing
worse learning performance with more training data. To wrap up, we point out various
open problems that warrant deeper empirical and theoretical investigation. All in all, our
review underscores that learning curves are surprisingly diverse and no universal model
can be identified.

This work was accepted at IEEE Transactions on Pattern Analysis and Machine Intelligence and a preprint is
available at [1]. This chapter is a more detailed version than the TPAMI or arxiv versions, but does not cover
Gaussian Process learning curves.

67

4

68 4. THE SHAPE OF LEARNING CURVES: A REVIEW

4.1. INTRODUCTION
A learning curve is an important, graphical representation that can provide insight into such
learning behavior by plotting the expected generalization performance against the number
of training examples used for learning.

We review learning curves in the context of standard supervised learning problems such
as classification and regression. The primary focus is on the shapes that learning curves can
take on. We make a distinction between well-behaved learning curves that show improved
performance with more data and ill-behaved learning curves that, perhaps surprisingly, do
not. We discuss theoretical and empirical evidence in favor of different shapes, underlying
assumptions made, how knowledge about those shapes can be exploited, and further results
of interest. In addition, we provide the necessary background to interpret and use learning
curves as well as a comprehensive overview of the important research directions.

4.1.1. OUTLINE

The next section starts off with a definition of learning curves and discusses how to estimate
them in practice. We also give several recommendations on how to plot, summarize and
fit learning curves. It also briefly considers what we call Problem-Average (PA) learning
curves, which are primarily used in Bayesian settings, and feature curves, which offer a
complementary view to the learning curve.

Section 4.3 covers the most important applications of learning curves, such as the insight
into model selection they can give us, and how they are employed in meta-learning, and
how they can be used to reduce the cost of labeling or computation. For these tasks, it
is essential that we know what kind of shape we can expect (e.g. exponential, power law,
etc.). Therefore, the rest of this survey is concerned with the question: what kind of shapes
do learning curves have in typical machine learning settings according to the literature
(empirical and theoretical studies)? And what influences the shape?

Section 4.4 considers empirical evidence supporting well-behaved learning curves: curves
that generally show improved performance with more training data. Learners that satisfy
this property are called smart [2, page 106] and monotone [3] (Chapter A). We review the
parametric models that have been considered for modeling learning curves, and we find
that several are redundant, and uncover many aspects of curve fitting that are often over-
looked. For shallow learners (such as decision trees, logistic regression, etc.) we find that
most empirical studies that investigate the shape contradict each other. Recently, two large
scale studies try to improve matters, and find that learning curves are best modeled by a
power laws with 3 parameters or MMF4 or WBL4, two specific parametric models that
have 4 parameters. Interestingly, parametric models with 4 parameters were discounted in
earlier studies to avoid overfitting learning curve data, but in some cases their extra flexibil-
ity offered by an additional parameter does seem useful for learning curve fitting. Overall,
there is some evidence that no curve model seems to be systematically better than the other.
In the context of deep learning, empirical evidence in favor of the power law is much more
convincing, but requires careful and costly tuning of hyperparameters, otherwise the power
law disappears and learning becomes slower.

Section 4.5 reviews some of the theoretical works that support the power law and expo-
nential shape of learning curves. We discuss what factors and assumptions influence the

4.2. DEFINITION, ESTIMATION, FEATURE CURVES

4

69

shape, such as the complexity of the hypothesis class, how separable a classification prob-
lem is, and whether assumptions of machine learning models are correct. We also discuss
the Problem-Average learning curves and their shapes, and when these show guaranteed im-
provement with more data. We discuss that many theoretical works (such as those relying
on the notion of PAC-learning) do not tell us much about the shape of learning curves.

Section 4.6 then follows with an overview of important examples of learning curves
that do not behave well. These are not an artefact of the experimental setup or due to
unlucky sampling; in fact we discuss the rigorous theoretical proofs behind these results.
Examples are learning curves that display multiple local maxima, curves with local minima,
or curves that display large jumps. We discuss possible causes and ways to mitigate these
behaviors, with at the end of the section a possible universal solutions to make learning
curves well-behaved for any learner. We believe that especially this section shows that our
understanding of the behavior of learners is more limited than one might expect.

Section 4.7 provides an extensive discussion. We give several concrete open questions
and offer plenty of avenues for follow-up work on learning curves. Then Section 4.8 re-
iterates the most important points of this chapter and concludes it. The remainder of the
current section discusses the meanings of the term “learning curve” and its synonyms in the
machine learning literature.

4.1.2. LEARNING CURVE TERMINOLOGY

To avoid any confusion we will use the terms training and learning curve. It should be
noted that previous work defined many different names that relate to our definition. We use
training curve exclusively to refer to the curves that visualize performance during training.
For example, a plot of the training error or loss (or any other optimization objective) versus
the number of epochs, is an example of a training curve. Especially in the neural network
literature, this is often called a learning curve [4, 5], but we denote this as a training curve.

The learning curve visualizes the performance of the learning algorithm versus the size
of the training set. We will make this definition more rigorous in the next section. There
are also various synonyms in literature for learning curve, such as error curve, experience
curve, improvement curve and generalization curve [4, 6, 7].

4.2. DEFINITION, ESTIMATION, FEATURE CURVES
This section makes the notion of a learning curve more precise and describes how learning
curves can be estimated from data. We give some recommendations when it comes to
plotting, summarizing and fitting learning curves. In particular, we highlight several pitfalls
that are typically made in works that fit learning curves. Finally, feature curves offer a
view on learners that is complementary to that of learning curves. These and combined
learning-feature curves are covered at the end of this section.

4.2.1. DEFINITION OF LEARNING CURVES IN LEARNING THEORY

Here we define the theoretical concept of a learning curve, in the next subsection we discuss
how to estimate it in practice. Let Sn indicate a training set of size n. In standard classific-
ation and regression, Sn consists of (x, y) pairs, where x ∈ X , where often X ⊆ Rd is the

4

70 4. THE SHAPE OF LEARNING CURVES: A REVIEW

d-dimensional input vector (i.e., the features, measurements, or covariates) and y ∈ Y is
the corresponding output. For binary classification, Y ⊆ {−1,+1} and for regression Y ⊆R.
The (x, y) pairs of the training set are i.i.d. samples of an unknown probability distribu-
tion PX Y over Z = X ×Y . This is a standard assumption in learning theory. Here PX Y

completely determines one particular learning problem.
We denote a learner as A, which takes as input the samples Sn and outputs a predictor or

hypothesis h. A predictor h is an element of a prespecified hypothesis class H . H contains
all models that can be returned by the learner A. An example of a hypothesis class is the set
of all linear models {h : x 7→ aT x+b|a ∈Rd ,b ∈R}. Examples of typical learning algorithms
for A are empirical risk minimizers (ERMs) or the 1 nearest neighbour classifier. More
formally, A is a particular mapping from the set of all sample sets S := Z ∪Z 2∪Z 3∪ . . .
to elements of the hypothesis class H . That is, A : S → H .

Note that we do not consider arbitrary algorithms A as their learning curve may behave
arbitrarily. To see that, let h1,h2, . . ., be an ordering of all hypotheses that is determined
before observing any data. Let A map each Sn to hn , or in other words, the returned
hypotheses only depends on the size of Sn . For such algorithms A any curve can be achieved
by reordering the hypotheses, and in fact, the samples (x, y) are not used for learning.

Instead, we consider typical learning algorithms used in practice, such as decision trees,
empirical risk minimization, etc. These learning curves for machine learning algorithms
will (hopefully) have more regularity in them then the algorithm above. However, we are not
aware of any formal characterization of all learning algorithms (that excludes the counter
example above), and we believe this is an interesting open problem. It is however out of the
scope of this chapter.

For x ∈ X , h provides a prediction h(x) ∈ Y , which we denote as ŷ . The performance
of a particular hypothesis h is measured by a loss function l that compares y to ŷ . For
regression the squared loss can be used: lsq(y, ŷ) = (y − ŷ)2. For binary classification the
zero-one loss can be used: l01(y, ŷ) = 1

2 (1− y ŷ) since Y ⊆ {−1,+1}.
The typical goal is that a predictor performs well on average on new and unseen obser-

vations. Ideally, this is measured by the expected loss or risk R over the true distribution
PX Y :

R(h) =
∫

L(y,h(x))dP (x, y). (4.1)

For the zero-one loss, the risk corresponds to the error rate of the classifier h, in other
words, the probability of making a mistake on new data. The risk cannot be calculated
directly since the distribution PX Y is unknown in practice and thus the risk needs to be
estimated. However, in simulation studies where a particular PX Y is assumed, it is possible
to compute this quantity. In most that follows, we omit the subscript X Y for PX Y .

Now, an individual learning curve considers training sets Sn for n ∈ N and calculates
the corresponding risks R(A(Sn)) as a function of n. However, a single Sn may deviate
significantly from the expected behavior. Therefore, we are often interested in an average
over many different sets Sn , and ideally the expectation

R̄n(A) = E
Sn∼P n

R(A(Sn)). (4.2)

The plot of R̄n(A) against the training set size n gives us the (expected) learning curve.
From this point onward, when we talk about the learning curve, this is what is meant. Note

4.2. DEFINITION, ESTIMATION, FEATURE CURVES

4

71

that, we can consider monotonic training sets, meaning that Sn−1 ⊂ Sn (thus that additional
samples are always appended) or non-monotonic training sets where Sn−1 and Sn are in-
dependently sampled from P . In some theoretical analyses monotonic training sets are
required; otherwise, which is desired depends on the application. Since this issue is closely
related to learning curve estimation, we postpone this discussion to the next subsection.

For classification, often one generates a learning curve using a stratified training set. In
that case, if we have k classes, the training set consists of n = kn′ training samples, where
n′ samples are taken per class. In that case, the learning curve can plot R̄n′ (A) against n′.
Note that this typically reduces the variance of the learning curve, since some learners may
become unstable if the training set is unbalanced. It depends on the setting whether samples
can be collected per class.

The preceding learning curve is defined for a single distribution P . Sometimes we wish
to study how a model performs over a range of problems or, more generally, a distribution
P over problems. The learning curve that considers such averaged performance is referred
to as the problem-average (PA) learning curve:

R̄PA
n (A) = E

P∼P
R̄n(A). (4.3)

The general term problem-average was coined in [8]. PA learning curves make sense for
Bayesian approaches in particular, where an assumed prior over possible problems often
arises naturally. The risk integrated over the prior, in the Bayesian literature, is also called
the Bayes risk, integrated risk, or preposterior risk [9, page 195]. The term preposterior
signifies that, in principle, we can determine this quantity without observing any data. Note
that, the PA curve which averages over problems may mask the behavior of individual
learning curves for a single problem, an issue that we discuss in more detail in Section
4.7.3.

Let us discuss Bayesian linear regression to illustrate the PA learning curve. Assume
there is a distribution PX over X . Let y = wT x + ϵ, where ϵ ∼ N (0,σ2) is i.i.d. Gaus-
sian noise with zero mean and variance σ2 (referred to as Gaussian likelihood). w is the
parameter of the true (but unknown for the learner) regression model. For a fixed w , this
defines a single problem PX Y . To define the problem-average P , we can consider a prior
distribution PW over w , such as a Gaussian with zero mean and identity covariance matrix.
To generate a problem-average learning curve, one first samples w from the prior PW . For
each w , where each w corresponds to a particular problem, we generate datasets Sn by
sampling x from PX and sampling y from N (wT x,σ2). This data can be used to train a
learner and to estimate the learning curve for each problem. We repeat this for multiple
w , and average the resulting learning curves over problems to approximate the problem-
average learning curve of Equation 4.3.

In semi-supervised learning [10] and active learning [11], it can be of additional interest
to study the learning behavior as a function of the number of unlabeled and actively selected
samples, respectively.

4.2.2. ESTIMATING LEARNING CURVES IN PRACTICE

In practice, we merely have a finite sample from P and we cannot measure R(h) or consider
all possible training sets sampled from P . Often, we can only get an estimate of the learning

4

72 4. THE SHAPE OF LEARNING CURVES: A REVIEW

curve. Popular approaches are to use a hold-out dataset or k-fold cross validation for this
[12–15] as also apparent from the Weka documentation [16] and Scikit-learn implement-
ation [17]. Using cross validation, k folds, random subsets of the dataset, are generated.
Each subset serves once as testset, and for each such testset the other subsets serve as the
training set. The size of the training set Sn is varied over a range of values by removing
samples from the originally formed training set. For each size the learning algorithm is
trained and the performance is measured on the test fold. The process is repeated for all
k folds, leading to k individual learning curves. The final estimate is their average. The
variance of the estimated curve can be reduced by carrying out the k-fold cross validation
multiple times [18] and this technique is used in various works that apply learning curves
[12–14, 19]. Stratified cross validation may be used to further reduce the variance in case
of a classification setting.

Using cross validation to estimate the learning curve has some drawbacks. For one, when
making the training set smaller, not using the discarded samples for testing seems wasteful.
Also note that the training fold size limits the range of n of the estimated learning curve,
especially if k is small. Directly taking a random training set of the preferred size and leav-
ing the remainder as a test set can be a good alternative. This can be repeated to come to an
averaged learning curve. This recipe—employed, for instance in the machine learning tool-
box PRTools [20], but also by Hess and Wei [19]—allows for easily using any n, leaving no
sample unused. Note that the test risks are not independent for this approach, in contrast to
cross-validation, since the test sets will have overlap as samples are not discarded. Further-
more, one should realize that for large n, the testset could become small, leading to a larger
variance of the estimated risk. Alternatively, the bootstrap (sampling with replacement) can
also be considered to come to variable sized training sets [21, 22].

One essential choice is whether one should use monotonic training sets for estimating
the learning curve. Currently it is unclear what yields the best estimate for the learning
curve. However, if one intends to use the learning curve in a setting where data is scarce or
expensive, it makes more sense to use monotonic training sets to cope with the data scarcity,
because sampling a training set from scratch is wasteful. In case little data is available and
non-monotonic training sets are necessary, one can resort to bootstrapping to simulate the
procedure. If data is plenty, one can easily sample each training set independently. In
some cases, learners can be updated with new samples (incremental learning), in that case
monotonic training sets may also offer computational advantages. Finally, one should take
into consideration how the learning curves will be applied. This, we would argue, is the
most important in determining whether training sets should be monotonically increasing. In
particular, if a learning curve is used to determine the value of gathering additional data, a
setting in which data is usually scarce, one should most likely use monotonically increasing
training sets or simulate them using bootstrapping.

An altogether different way to learning curve estimation is to assume an underlying para-
metric model for the learning curve and fit this to the learning curves estimates obtained
via approaches described previously. The approach is not widespread under practitioners,
but is largely confined to the research work that studies and exploits the general shape of
learning curves (see Subsection 4.4.2).

Finally, note that all of the foregoing pertains to PA learning curves as well. In that setting,
we may occasionally be able to exploit the special structure of the assumed problem prior.

4.2. DEFINITION, ESTIMATION, FEATURE CURVES

4

73

This is the case, for instance, with Gaussian process regression (which we do not cover in
this chapter in detail), where problem averages can sometimes be computed with little cost.

4.2.3. PLOTTING RECOMMENDATIONS

When plotting the learning curve, it can be useful to consider logarithmic axes. Plotting n
linearly may mask small but non-trivial gains [23]. Also from a computational standpoint it
often makes sense to have n traverse a logarithmic scale [24] (see also Subsection 4.3.2). A
log-log or semi-log plot can be useful if we expect the learning curve to display power-law
or exponential behavior (Section 4.4), as the curve becomes straight in that case.

For example, let the risk be modeled by y(n) = abn . In that case, log(y(n)) = log(a)+
n log(b), and thus transforming y(n) to log-scale makes the learning curve linear in n
(straight) if the learning curve really is of the form abn . The same holds for power-law
models, where both y(n) and n need to be transformed to log-scale. Note that this only
works if there is a non-zero offset to the power-law or exponential. If we are working with
the model y(n) = abn + c, first the offset offset c should be subtracted from y before the
log transformation, then after the log transformation the learning curve becomes linear if it
truly has the form abn + c.

In such a plot, it can be easier to discern small deviation from exponential or power
law behavior, because we have to discern whether the line is straight or not. Finally, it is
common to use error bars to indicate the variability of the learning curve. One may either
use the standard deviation over the folds or standard error.

4.2.4. RECOMMENDATIONS FOR SUMMARIZING LEARNING CURVES

It may be useful at times to summarize learning curves into a single number, especially
when faced with pagelimits of scientific publications. A popular metric to that end is the
area under the learning curve (AULC) [25–27]. To compute this metric, one needs to settle
at a number of sample sizes. One then averages the performance at all those sample sizes
to get (an approximation of) the area under the learning curve. The AULC thus makes

50 100

n (training set size)

0.4

e
rr

o
r

ra
te

on
 te

st
se

t

Figure 4.1.: Crossing learning curves. Red starts at a lower error, while blue reaches a
lower error rate given enough data. The AULC is approximately equal for both
curves.

4

74 4. THE SHAPE OF LEARNING CURVES: A REVIEW

the curious assumption that all sample sizes should contribute equally to the numerical
summary of the learning curve. Furthermore, determining the sample sizes may have a
huge influence on the numerical summary. For example, one may wonder whether these
sample sizes should be on a logarithmic or linear scale.

Important information can get lost when summarizing. The measure is, for instance,
not able to distinguish between two methods whose learning curves cross (Figure 4.1), i.e.,
where the one method is better in the small sample regime, while the other is better in
the large sample setting. Others have proposed to summarize learning curves with the
asymptotic value of the learning curve and the number of samples to reach it [28], or the
exponent of a power-law fit [29].

These summaries are likely inadequate. The asymptotic value may tell us little about
the actual performance for finite sample sizes, and one may wonder when the asymptotic
value is reached or how to accurately estimate it. The exponent of the power-law fit may
be a logical choice to describe limiting behavior in view of big O notation. However, such
a summary hides multiplicative constants and the asymptotic value of the risk. Therefore
this summary is inadequate to extrapolate curves or to determine absolute performances.
Furthermore, big O notation considers the behavior of the curve in the limit of large n. It
is questionable whether a learning curve when extrapolated so far will still behave in that
manner in this regime. Therefore we recommend big O notation only to describe relative
performances of a learner compared to itself (e.g. to check convergence) for a very coarse
summary.

Recently, Hoiem et al. [30] suggested to summarize curves using all fit parameters (not
only the exponent). We would recommend this approach, however, one should try multiple
parametric models and report the parameters of the best fit and the fit quality. In cases when
the fit quality is insufficient, one could instead visualize the curve for further investigation,
as this can be an indication of an ill-behaved learning curve. However, a reliable way to
detect ill-behaving learning curves remains an open problem.

4.2.5. CURVE FITTING RECOMMENDATIONS

Popular parametric forms for fitting learning curves are given in Table 4.1 and their perform-
ance is discussed in Section 4.4.2. Here, we make a few recommendations how to properly
fit and study empirical learning curves. We also mention some common pitfalls in setting
up curve fitting experiments. Some of the paragraphs describing the pitfalls of this section
are named explicitly (pitfall F,B,E and S), so that we can refer to them when we discuss the
curve fitting studies in Section 4.4.2.

Pitfall F: not Fitting using a non-linear toolbox. Some works [31–36] seem to perform
simple least squares fitting on log-values in order to the fit power law POW2 or exponential
EXP2 (see Table 4.1). In other words, instead of fitting Rn (as y-values) and n (x-values),
they fit log(R̄n) and n (for EXP2), and log(R̄n) and log(n) (for POW2). For older works
[31, 35] this can be excused, as curve fitting toolboxes were perhaps not so widespread.
However, nowadays, one should resort to nonlinear curve fitting techniques. Since, if one
would like to find the optimal parameters in the original space (not in the log-space) in terms
of the mean squared error, non-linear curve fitting techniques are necessary (for example
using LevenbergMarquardt [36], Gauss-Newton, Newton’s method, etc.). This is neces-
sary because the mean squared error in the log-space is essentially different than the mean

4.2. DEFINITION, ESTIMATION, FEATURE CURVES

4

75

squared error in the original space. To emphasize the importance, Singh [33] perform fits
in the log-space and doubt the validity of some of their results due to this reason.

Pitfall B: not including a Bias term in a parametric model. Fitting log-values only works
for POW2 and EXP2, not for models that include an offset or bias term such as EXP3 and
POW3. Because for many problems finding a predictor with zero risk is impossible or very
difficult, the offset will often be crucial for a good fit. Therefore, we recommend to always
include a bias term in a parametric model. Otherwise, for example, a curve may actually
have an exponential shape, but the fit for EXP2 may not work at all because no bias term
was included.

While we do not name an explicit pitfall in this paragraph, we would like to stress to
include sufficient information for reproducibility. We recommend to give the name of the
fitting procedure, its parameters (e.g. number of iterations and stopping condition), and
indicate how initial points were generated. Sometimes fitting procedures report a failure;
in this case it should be clearly mentioned what is done with such results. Some studies
use a geometric schedule for the training set sizes (instead of a linear one) to speed up
experiments, this should also be mentioned clearly as this may also impact fitting studies.

Pitfall E: Extrapolation (or interpolation) should be done to unseen learning curve data.
For all goals involving learning curves, we want to interpolate or extrapolate the learning
curve to previously unseen training set sizes. This is a generalization task and we have to
deal with the problems that this may entail, such as overfitting to learning curve data which
was observed by Gu et al. [36] and Kolachina et al. [37] empirically. Thus, learning curve
data should also be split in train and test sets for a fair evaluation. This means that, some
points along the learning curve are used for fitting curve models, while other points not seen
during fitting are used for evaluating the parametric model.

Typically, extrapolation is done to training set sizes larger than those used for fitting,
because we want to know the value of gathering more data. It is standard to evaluate on
all those fitting points, the next unseen point, or to evaluate on the largest training set size
available. For interpolation, it is common to report the mean squared error on the points
used for fitting. Most studies until now evaluate in terms of the mean squared error. Some
studies report the well-known R2 value of the fit; this metric is always determined on the
points used for fitting, while one is usually more interested in extrapolation for learning
curves. It has been shown that the R2 is not adequate for nonlinear curve fitting evaluation
[38]. As such we suggest to avoid it altogether when evaluating learning curve fitting.

Pitfall S: missing of statistical Signifiance of the results. We recommend to perform a
statistical analyses to determine significance of results of curve fitting. We recommend to
perform either a rank-test on the performances, as the performance on test data may not
be normally distributed (invalidating assumptions of the t-test) [39, 40]. Repeated meas-
urements can be generated by multiple randomized initialisations of the fitting procedure,
by fitting different individual learning curves (obtained by different train/test sets), or by
considering different learners or datasets. The appropriate choice is not trivial and depends
on the goal of the study and should be carefully considered.

4.2.6. PSEUDO-FISHER’S LINEAR DISCRIMINANT (PSEUDO-FISHER)
We will multiple times refer to a classification model called Pseudo-Fisher’s Linear Discrim-
inant (Pseudo-Fisher). Because this model has a closed form solution, it is more amendable

4

76 4. THE SHAPE OF LEARNING CURVES: A REVIEW

to theoretical analyses, which explains why it is often studied. This classifier is one of
the simplest classifiers; for a binary classification problem, it encodes y ∈ {−1,+1}, and per-
forms a linear regression on the observed x and y . In case n < d , there is no unique solution
that minimizes the squared loss on the training data, in that case the pseudo-inverse is used
to find the minimum-norm solution. In case n ≥ d , the hyperplane with minimal squared
loss on the training set is unique. For more detail regarding the terminology and origins of
the name of this classifier please see Duin [41] and Bishop [42, p. 186].

4.2.7. FEATURE CURVES AND COMPLEXITY
The word feature refers to the d measurements that constitutes an input vector x ∈ Rd . A
feature curve is obtained by plotting the performance of a machine learning algorithm A
against the varying number of features it is trained on [43, 44], see Figure 4.2b for an
example. To be a bit more specific, let ςd ′ be a procedure that selects d ′ ≤ d of the original
d features, hence reducing the dimensionality of the data to d ′ ∈ {1, . . . ,d}. More generally,
we can also consider procedures that project the data to a lower d ′−dimensional space (such
as PCA). A feature curve is then obtained by plotting R̄(A(ςd ′ (Sn))) versus d ′. As opposed
to the learning curve (see Figure 4.2c) where d is kept constant, n is now the quantity that
is fixed. As such, it gives a view complementary to the latter.

The selection of d ′ features as carried out by means of ςd ′ can be performed in various
ways. Sometimes features have some sort of inherent ordering. In other cases principal
component analysis (PCA) or feature selection can provide such ordering. When no order-
ing can be assumed, ςd ′ samples d ′ random features from the data—possibly even with
replacement. In this scenario, it is sensible to construct a large number of different feature
curves, based on different random subsets, and report their average as the final curve.

Typically, an increase in the number of input dimensions means that the complexity of
the learner also increases, which may lead to overfitting. This leads to the peaking phe-
nomenon of feature curves (also the peak effect, peaking or Hughes phenomenon [45–48]).
This effect is related to the curse of dimensionality and illustrates that adding features may
actually degrade the performance of a classifier, leading to the classical U-shaped feature
curve. Behavior more complex than the simple U-shape has been observed as well [49–51]
and has recently been referred to as double descent [52], see Figure 4.2b. This is closely re-
lated to peaking of (ill-behaving) learning curves, this is apparent from Figures 4.2a to 4.2c
that show their relation. The causes of this phenomena are discussed in more detail in Sub-
section 4.6.2. Note that peaking of learning curves unfortunately is a different effect than
peaking of feature curves but uses the same terminology.

Feature curves can provide insights into such phenomena. Since dimensionality is often
coupled to learner complexity, it may also be interesting to plot performance against the
complexity of the learner to obtain conceptually similar curves. Some complexity measures
are difficult to calculate or bound, in that case one may settle for an approximate complexity
measure. For example, changing hyperparameters of the learner, such as the smoothness
of a kernel or the amount of filters in a CNN, can be used to vary the complexity to obtain
similar curves [43, 53–56]. Such curves are called complexity curves [55], parameter curves
[57] or generalization curves [58].

4.2. DEFINITION, ESTIMATION, FEATURE CURVES

4

77

(a) contour plot of error rate

20 40 60 80 100 120 140 160

n

10

20

30

40

50

60

70

80

90

100

d
'

0.05

0.1

0.15

0.2

0.25

0.3

0.35

20 40 60 80 100 120 140 160

n

0

0.1

0.2

0.3

0.4

0.5

e
rr

o
r

ra
te

(b) learning curve

Peaking optimal d

d = 70

0 0.1 0.2 0.3 0.4

error rate

10

20

30

40

50

60

70

80

90

100

d
'

(c) feature curve

D
o

u
b

le
 D

e
s
c
e

n
t

optimal n

n = 50

40 80 120 160

n

20

40

60

80

100

d
'

(d) curve routes

optimal d

learning curve d = 70

optimal n

feature curve n = 50

Figure 4.2.: (a) Image of the error for varying sample size n and dimensionality d , for
the Pseudo-Fisher learning algorithm (without intercept) on a toy dataset with
two Gaussian classes having identity covariance matrices. Their means are a
distance of 6 apart in 100 dimensions, with every dimension adding a same
amount to the overall distance. We highlight this example to illustrate the re-
lation between peaking and double descent, and to illustrate learning curves
versus feature curves. (b) By fixing d and varying n, i.e., taking a horizontal
section, we obtain a learning curve (red). We also show the curve where d is
chosen optimally for each n (blue). (c) This graph is rotated by 90 degrees.
By fixing n and varying d , i.e., a vertical section, we obtain a feature curve
(purple). We also show the curve where the optimal sample size n is chosen for
each d (yellow). (d) Here we show the paths taken through the image to obtain
the learning and feature curves. The learning curve and feature curves are the
straight lines, while the curves that optimize n or d take other paths. Observe
that the largest n and d (for this considered parameter range) are not always
optimal. The cause for these peculiar behavior is related to instability of the
learner, see Section 4.6.2 for more detail, but note that related phenomena have
been observed for other learners as well, such as deepnets or random forests.

4

78 4. THE SHAPE OF LEARNING CURVES: A REVIEW

4.2.8. COMBINED FEATURE AND LEARNING CURVES

Generally, the performance of a learner A is not influenced independently by the the num-
ber of training samples n and the number of features d . In fact, several theoretical works
suggest that the fraction α = d

n is essential [59–61]. Because of the feature-sample inter-
action, it can be insightful to plot multiple learning curves for a variable number of input
dimensions or multiple feature curves for different training set sizes. Another option is to
make a 3D plot—e.g., a surface plot—or a 2D image of the performance against both n and
d directly. Instead of the number of features we can use any other measure of complexity
as well.

As an illustration, Figure 4.2a shows a plot of the performance of Pseudo-Fisher when
varying both n and d . Taking a section of this surface, we obtain either a learning curve in
Figure 4.2b (horizontal section, fixed d) or a feature curve in Figure 4.2c (vertical section,
fixed n). The full, 2D contour plot gives a more complete view of the interaction between n
and d . In Figure 4.2d the paths of the learning curves and features curves are shown in the
surface, note that we also plot the optimal learning curve (where d is optimized for each n
using the surface plot’s data) and the optimal feature curve (where n is optimized for each
d). Here, we can observe that the optimal d depends on n. Likewise, for the particular
classifier that we study, there is an optimal n for each d , i.e., the largest possible value of n
is not necessarily the best, especially in case of an ill-behaved learning curve.

Duin [50] is possibly the first to include such 3D plot, though already since the work
of Hughes [43], figures that combine multiple learning or feature curves have been used
[62, 63]. Learning curves have also been used in combination complexity curves [53, 54,
64, 65]. More recently, Nakkiran et al. [56] and Rosenfeld et al. [66] gives 2D images of
the performance of deep neural networks as a function of both model and training set size.

4.3. GENERAL PRACTICAL USAGE
The study of learning curves has both practical and theoretical value. While we do not
necessarily aim to make a very strict separation between the two, more emphasis is put on
the latter further on. This section focuses on part of the former and covers the current, most
important uses of learning curves when it comes to applications, i.e., model selection and
extrapolation to reduce data collection and computational costs. While these applications
are promising, especially in the context of big data and deep learning, their applicability
is limited due to uncertainty around which parametric models should be used (exponential,
power law, etc.) to model learning curves, as will become apparent from the later sections.
Therefore, the works covered in this section are rather preliminary, as most works bench-
mark on quite a limited amount of datasets where curves seem more well-behaved. Only a
few studies model learning curves non-parametrically, which offers much more promise as
this is more resistant to ill-behaving curves.

4.3.1. BETTER MODEL SELECTION AND CROSSING CURVES

Machine learning as a field has shifted more and more to benchmarking learning algorithms,
e.g., in the last 20 years, more than 2000 benchmark datasets have been created (see [67] for
an overview). These benchmarks are often set up as competitions [68] and investigate which

4.3. GENERAL PRACTICAL USAGE

4

79

algorithms are better or which novel procedure outperforms existing ones [23]. Typically,
a single number, summarizing performance, is used as evaluation measure. For example,
perhaps the most well-known competition was the MNIST competition [69]. MNIST is a
dataset of handwritten digits, and the goal for learning algorithms is to identify the digit
given its image. For the competition the accuracy on the testset was used as evaluation
measure.

A recent meta-analysis of various benchmarks on the website “Papers With Code” indic-
ates that the most popular measures are accuracy, the F-measure, and precision [70]. An
essential issue these metrics ignore is that sample size can have a large influence on the rel-
ative ranking of different learning algorithms. For example, one learning algorithm may be
ranked quite badly for one particular sample size, but may outperform others if the training
dataset is smaller. In a plot of learning curves this would be visible as a crossing of the dif-
ferent curves (see Figure 4.1). In that light, it is beneficial if benchmarks consider multiple
sample sizes, to get a better picture of the strengths and weaknesses of the approaches. The
learning curve provides a concise picture of this sample size dependent behavior.

Crossing curves have also been referred to as the scissor effect and have been investigated
since the 1970s [63, 71–73]). Contrary to such evidence, there are papers that suggest that
learning curves do not cross [74, 75]. The first claim by Kohavi [74] is made for C4.5 versus
Naive-Bayes on 9 datasets based on empirical observations. The claim is questionable,
as Perlich et al. [23] shows that sometimes order of magnitude samples are needed to
detect the crossing point. The latter claim of Bornschein et al. [75] is specific to deep
learning, where, perhaps, exceptions may occur that are currently not understood. They
find empirically that the ranking of deep learning models stays the same over multiple
orders of magnitude for four popular image classification datasets.

Perhaps the most convincing evidence for crossing curves is given by Perlich et al. [23].
They compare logistic regression and decision trees on 36 datasets. In 15 of the 36 cases the
learning curves cross. This may not always be apparent, however, as large sample sizes may
be needed to find the crossing point. In the paper, the complex model (decision tree) is better
for large sample sizes, while the simple model (logistic regression) is better for small ones.
Similarly, Strang et al. [76] performed a large-scale meta-learning study on 294 datasets,
comparing linear versus nonlinear models, and found evidence that non-linear methods are
better when datasets are large. Ng and Jordan [15] found, when comparing naive Bayes
to logistic regression, that in 7 out of 15 datasets considered the learning curves crossed.
Besides, there is much more evidence in favor of crossing curves [31, 77–80].

Also using learning curves, Perlich et al. [23] finds that, besides sample size, separability
of the problem can be an indicator of which algorithm will dominate the other in terms of
the learning curve. Beyond that, the learning curve, when plotted together with the training
error of the algorithm can be used to detect whether a learner is overfitting [48, 57, 81, 82].
Besides sample size, dimensionality seems also an important factor to determine whether
linear or non-linear methods will dominate [76]. To that end, learning curves combined
with feature curves may offer further insights.

4.3.2. EXTRAPOLATION TO REDUCE DATA COLLECTION COSTS

When collecting data is time-consuming, difficult, or otherwise expensive the possibility
to accurately extrapolate a learner’s learning curve can be useful. Extrapolations give an

4

80 4. THE SHAPE OF LEARNING CURVES: A REVIEW

impression beforehand of how many examples to collect to come to a specific perform-
ance and allows one to judge when data collection can be stopped [32]. Examples of such
practice can, for instance, be found in machine translation [37] and medical applications
[12, 13, 19].

Last [34] quantifies potential savings assuming a fixed cost per collected sample and per
generalization error. Extrapolating the learning curve using some labeled data, the point
at which it is not worth anymore to label more data can be estimated and data collection
stopped. Note that in practice these costs (per sample, per error) are difficult to characterize,
and may not even admit a cost per sample or per error. This remains still unexplored in the
study of Last, therefore, their approach may seem overconfident in predicting the optimal
point to stop labeling.

Determining a minimal sample size that is required to detect a significant difference in
statistics is called (minimal) sample size determination. For usual statistical procedures
this is done through what is called a power calculation [83]. For classifiers, sample size
determination to determine sufficient performance using a power calculation is unfeasible
according to Mukherjee et al. [12] and Figueroa et al. [13]. John and Langley [84] illustrate
that a power calculations that ignores the machine learning model indeed fails to accurately
predict the minimal sample size necessary to achieve a particular performance. However,
the terminology minimal sample size determination has found continued use in the learning
curve literature [12, 13]. It basically means to determine the minimum amount of training
samples needed to reach a particular performance.

4.3.3. SPEEDING UP TRAINING AND TUNING

Learning curves can be used to reduce computation time and memory with regards to train-
ing models, model selection and hyperparameter tuning.

To speed up training, progressive sampling Provost et al. [24] uses a learning curve to
determine if less training data can reach adequate performance. Crucially, is is assumed
the learning curve is well behaved, in this context this means that the slope of the curve
is monotonically non-increasing for the points sampled along the learning curve, possibly
contaminated with some noise. Since accuracy is used in this work instead of error rate,
they assume curves are increasing instead of decreasing. They propose that, if the slope of
the curve becomes too flat, learning should be stopped, making training potentially much
faster. The slope at a point on the curve is estimated by sampling points on the learning
curve in a local neighbourhood and performing a linear regression. They recommended to
use a geometric schedule for sampling n to reduce computational complexity. Additionally,
they sample the learning curve locally and multiple times around the geometric schedule to
estimate the slope. This sampling of the curve to estimate the slope instead of a parametric
fit may avoid some problems with ill-behaved curves.

Several variations on progressive sampling exist. John and Langley [84] proposes the
notion of probably close enough where a power-law fit is used to determine if the learner
is “epsilon-close” to the asymptotic performance. This in contrast to Provost et al. [24],
who avoids fitting curve models instead, potentially making their approach more robust to
ill-behaved curves. While the previous works took a rather heuristic approach, Meek et al.
[85] gives a more rigorous decision theoretic treatment of the topic. By assigning costs to
computation times and performances, they estimate what should be done to minimize the

4.4. EMPIRICAL WORKS THAT FAVOR WELL-BEHAVED CURVES

4

81

expected costs. Nonetheless, various approximations are necessary to come to an efficient
algorithm. Progressive sampling also has been adapted to the setting of active learning
[86]. Leite and Brazdil [87] combines meta-learning with progressive sampling for a further
speedup.

The most promising studies combine progressive sampling with non-parametric meta-
learning on learning curves. Meta-learning uses experience on previous datasets to inform
decisions on new datasets. Leite and Brazdil [87] builds a small learning curve on a new
and unseen dataset and compares it to a database of previously collected learning curves to
determine the minimum sample size. Crucially, they do not assume a particular parametric
form for the curve, but instead find the nearest-neighbour learning curve, and are one of
the few studies to run a benchmark on a larger scale (60 datasets), as such this is one of the
most promising works. They find that they can predict the stopping point by just sampling 4
points on the learning curve, leading to a significant speed up of factor 12 with an acceptable
error. In a follow-up work, Leite and Brazdil [88] extends the approach to predict which
of the two classifiers will perform best on a new dataset. This can be used to avoid costly
evaluations using cross validation. Leite and Brazdil [89] go even further and propose an
iterative process that predicts the required sample sizes, builds learning curves, and updates
the performance estimates in order to compare two classifiers. van Rijn et al. [90] extend the
technique to rank many machine learning models according to their predicted performance,
and tune their approach to come to an acceptable answer in as little time as possible.

With regards to hyperparameter tuning, already in 1994 Cortes et al. [31] devised an
extrapolation scheme for learning curves, based on the fitting of power laws, to determine
if it is worth to fully train a neural network. In the deep learning era, this has received
renewed attention. Hestness et al. [91] extrapolates the learning curve as a power law to
optimize hyperparameters. Hoiem et al. [30] takes this a step further and actually optimize
several design choices, such as data augmentation, but also assume a power-law, which
however seems appropriate for deep learning in some cases, as we will discuss in the next
section.

4.4. EMPIRICAL WORKS THAT FAVOR WELL-BEHAVED

CURVES
We deem a learning curve well-behaved if it shows improved performance with increased
training sample sizes, i.e., R̄n(A) ≥ R̄n+1(A) for all n. Learners that satisfy this property are
called smart [2, page 106] and monotone [3]. There is both experimental and theoretical
evidence for well-behaved curves.

In this section we discuss empirical studies of the shape of learning curves. The shape
is usually assumed to have a particular parametric form, such as exponential or power law.
We discuss the parametric forms used to model learning curves, and we make some sur-
prising observations, for example that some curve models are redundant. Then we discuss
empirical studies that fit learning curves with these parametric models in Section 4.4.2. We
mention which studies have which previously mentioned curve fitting pitfalls (see Section
4.2.5). Results for shallow learners are mostly inconclusive or contradicting, probably due
to these pitfalls. Two recent and more trustworthy studies, Mohr et al. [40] and Brumen
et al. [39], do not contradict each other and do give some clearer picture of the overall best

4

82 4. THE SHAPE OF LEARNING CURVES: A REVIEW

parametric model. Evidence for deep nets is most convincing in favor of the power law,
but requires sufficient tuning of hyperparameters such as learning rate and network size,
otherwise deviations occur. In the section after the current, we turn to learning theoretical
works in favor of well-behaved curves and their implications for the shape.

4.4.1. ANALYSIS OF PARAMETRIC LEARNING CURVE MODELS

Reference y(n) Example constraints Limit +? Used in

POW2 an−k a > 0,k > 0 0 2� [32][36][33][34]

POW3 an−k + c a > 0,c > 0,k > 0 c 2� [36][37][31][92][39]

POW4 a(n +δn)−k + c POW4 = POW3, so see above [37]

LOG2 −a log(n)+ c a > 0 −∞ 2 [33][32][36][34][92][39]

EXP2 abn a > 0,0 < b < 1 0 2� [32][33][34]

EXP3 abn + c a > 0,0 < b < 1,c > 0 c 2� [92][37][39]

EXPD3 c − (c −a)bn EXPD3 = EXP3, so see above [37]

EXP4 ab(nk) + c a > 0,0 < b < 1,c > 0,k > 0 c 2� [37]
a > 0,b > 1,c > 0,k < 0 c 2�

EXPP3 b((n−δn)k) + c same constraints as above [37]

WBL4 c −be−ank
WBL4 = EXP4, so see above [36]

LIN2 −an + c a > 0 −∞ 2 [32][33][34][92]

ILOG2 a/log(n)+ c a > 0,c > 0 c 2� [37]

VAP3 ab1/nn−k a > 0,b > 0,k > 0 0 2� [36]

MMF4 (ab + cnk)/(b +nk) a > 0,b > 0,c > 0,k > 0 c 2� [36]
a > 0,b > 0,c > 0,k < 0 a 2�

Table 4.1.: Parametric forms that model the risk, R̄n(A) ≈ y(n). n indicates the training set
size, parameters are: a a multiplicative constant, b the base(s), c offset / bias
term, δn translation of the x-axis, k the exponent. Various constraints are plaus-
ible and here we give some plausible options (!). If possible, we give constraints
that lead to finite and positive curves suitable for extrapolation to larger n. If
a parameter is not mentioned under constraints it is in R. + (Positive) indicates
whether the y(n) > 0 for all n > 0 and for all parameter values that satisfy the
constraints. Limit is limn→∞ y(n) given the constraints. Note that one can use
the identity bn = e log(b)n to rewrite the EXP* formulas in terms of the exponen-
tial function. Mohr et al. [40] uses all models above.

Various works have studied the fitting of empirical learning curves and found that they
typically can be modelled with function classes depending on few parameters. Table 4.1
provides an overview of the common parametric models for fitting learning curves in ma-
chine learning and the studies which use them. Models for training curves [93] and human
learning [94] may offer further candidates.

Let us first discuss several issues related to the parametric learning curve models. Prior

4.4. EMPIRICAL WORKS THAT FAVOR WELL-BEHAVED CURVES

4

83

POW3/POW4

POW2

Figure 4.3.: Overview of curve model relations. Some curve models are equivalent (in-
dicated by the slash), and others have some overlap for particular parameter
choices.

works usually do not give any suggestions for the ranges of parameter values for the curve
models (a, b, c, etc.), except Brumen et al. [92] and Gu et al. [36] who give the range
for some parametric forms. We focus on extrapolation, and we give some possibly sens-
ible parameter ranges for all the curve models for that purpose. That is, we give para-
meter ranges that lead to finite positive risk in the limit of infinite training samples and
non-negative risks. Note that we do not give all exhaustive options that satisfy the above.
In some cases it is not possible to satisfy these contraints, as indicated in the column ‘Limit’
and ‘+?’ in Table 4.1. In light of Section 4.6, strictly decreasing risk may be too much to
ask for, which is why we focus on non-negativity and limiting behavior.

We want to emphasize that these are one of the many possible choices for the parameter
ranges. Especially if one wants to interpolate a learning curve, one could make different
choices, as limiting behavior or non-negativity everywhere might not be important. For
example, if a < 0 and k < 0 for POW3, the curve can be non-negative up to a certain value
of n. This allows for more flexibility in fitting curves, because for a < 0 and k < 0 the curve
is concave instead of convex. But since this results in the limit in a negative and unbounded
risk it is not in the table.

The parameter space may be further pruned if bounded losses (such as accuracy) are
used. However, one should be careful: pruning the parameter space may come at a non-
negligible decrease in flexibility of curve models. This is especially apparent for LIN2;
this model would be completely ruled out for fitting if we demand its range is always in
[0,1] for all n. In that case the only possible fit satisfying the constraints is y = a where
b = 0. Meanwhile, LIN2 could model parts of the learning curve well, especially if it seems
the learner is not making progress (see Figure 4.4a). Therefore, the parameter ranges for
all parametric models should be determined with care, otherwise fitting performance may
suffer unnecessarily.

Even for extrapolation, it is not completely clear cut that non-negative and non-zero risk
in the limit is required. Especially when extrapolating from n to n +1, this might be irrel-
evant, as the limiting behavior may not be noticeable in the extrapolation. However, for
extrapolating to a sample size n that is much larger than the current, non-negative and non-

4

84 4. THE SHAPE OF LEARNING CURVES: A REVIEW

zero risk in the limit will likely be more important. For example, LIN2 and LOG2 are
then clearly undesirable, because for large enough sample sizes they will make negative
predictions. Similarly, parametric models that have a limiting value of 0 seem unsuitable,
since for many difficult real-world problems often the Bayes-error will be non-zero. How-
ever, currently it remains unclear when non-negative risks and non-zero risk in the limit
is a strong requirement, for this a deeper empirical investigation is necessary. This pitfall
regarding the bias term was also discussed earlier in Section 4.2.5.

One should be aware that some curve models have discontinuities. For example, ILOG2
has a discontinuity at n = 1, and MMF4 has a discontinuity at n = −(b)1/α. Addition-
ally, one may consider to rescale n to the range (0,1] by dividing n by the maximum size
of the training set before fitting. This affects the shape of the curve model, for example,
for 0 < n < 1 ILOG2 is concave and for n > 1 ILOG2 is convex. Current studies that fit
curves, we believe, do take n ∈N but usually do not mention this. Besides normalizing n
to (0,1], other transformations of the x-axis or y-axis could also be considered; such as log-
transformations. Such transformations can increase the class of functions for fitting even
further.

Another unexplored aspect of the parametric curve models is their overlap and modeling
power, some preliminary results are visualized in Figure 4.3. Rewriting analytically some
models, we find that POW3 and POW4, EXP4 and WBL4, EXP3 and EXPD3, are all in
fact the same model family. Or in other words, the parameters can be set in such a way that
one parametric model can be analytically rewritten to another. Note that for this analysis,
we have ignored the given constraints. Curve fitting studies did not notice this redundancy
in parametric models in comparative studies; instead Mohr et al. [40] find significant dif-
ferences in their performance. This can be explained by the fact that due to a different
parametrization, parameters are initialised in a different way, and curve fitting procedures
act different, yielding alternative results. Note that by setting parameters to specific val-
ues, we can also find overlap between classes. For example, by setting b = 1 for VAP3,
we find VAP3 has overlap with POW2, and this overlap is contained further in the class
POW3/POW4. Furthermore, for EXPP3, we can set δn = 0. If we then set a = 1 for EXP2,
EXP3 or EXP4/WBL4, we find models that are also in the restricted model class of EXPP3.

To deepen our understanding further, one could generate learning curves with one math-
ematical model and try to fit it with an other. Since anyway a fit is never perfect (thus
analytical rewriting is not the whole story), this can give deeper insight which classes have
more modeling power than others. One could also further study this analytically, by, for
example, approximating curve models for large n.

4.4. EMPIRICAL WORKS THAT FAVOR WELL-BEHAVED CURVES

4

85

Study Learning curve models compared Learners #D E? B? F? S?

Frey and Fisher [32] POW2, LIN, LOG2, EXP2 C4.5 14 2� 2 ? 2�
Gu et al. [36] POW2, POW3, LOG2, VAP, MMF, WBL LR, C4.5 8 2� 2� 2� 2
Kolachina et al. [37] EXP3, EXP4, EXPP3, POW3, POW4, ILOG2 Moses SMT 30 2� 2� 2� 2
Last [34] POW2, LIN, LOG2, EXP IN 6 2 2 ? 2
Boonyanunta and Zeephongsekul [95] EXPDIFF LDA, LR, NN, KNN, C4.5 3 2� - ? -
Singh [33] POW2, LIN, LOG2, EXP KNN, RBF SVM, NN, C4.5 4 2 2 2 2
Ahmad and Tesauro [96] EXP2 perceptron 1 (A) 2 2 2 2
Cohn and Tesauro [35] EXP2, POW2 perceptron 4 (A) 2 2 2 2
Brumen et al. [92] POW3, LIN, LOG2, EXP3 C4.5 121 2 2� 2� 2�
Brumen et al. [39] POW3, EXP3, LOG2 C4.5, NN, NB, SVM 130 2� 2� 2� 2�
Mohr et al. [40] all of Table 4.1 (MMF4,WBL4) 20 learners 246 2� 2� 2� 2�

Table 4.2.: Studies comparing parametric models, overall best are in underlined. Abbrevi-
ations: #D (Number of datasets, A means artificial data), E? (Extrapolation?),
B? (Bias terms?), F? (Nonlinear Fitting?), S? (Statistics?). Options: 2�/2/?/-
(Yes/No/Unclear/Irrelevant, Yes indicates better quality study). Abbreviations
for learners: C4.5 (a decision tree algorithm), LR (logistic regression), IN (in-
formation network - a decision tree algorithm), Moses SMT (machine transla-
tion system), LDA (Fisher’s linear discriminant), NN (neural network), KNN
(K-nearest neighbours), RBF SVM (radial basis kernel support vector machine),
NB (Naive Bayes).

4.4.2. EMPIRICAL LEARNING CURVE FITTING STUDIES

Table 4.2 provides an overview of all the curve studies. Many studies reach contradicting
conclusions. Our hypothesis is that this is due to the fact that some studies make common
mistakes in their experimental design. We have mentioned these common pitfalls in Section
4.2.5 and have indicated them withe the letters E (Extrapolation?), B (Bias term?), F (Non-
linear Fitting?) and S (Statistics?). In the table, an overview is given of the various studies,
the curve models they compare, the learners, amount of datasets, and their potential pitfalls.
An additional complicating factor is that the experimental setups and fitting procedures are
not uniform, or sometimes not sufficiently described, leading to a ‘?’ in the table. Observe
that the studies compare various different learners and parametric models, making an over-
all comparison cumbersome. Some studies look only at few datasets, which also calls into
question the generality of their results.

Let us now discuss the studies in more detail by traversing the table from top to bottom.
Frey and Fisher [32] find POW2 to be the best for decision trees, but do not include bias
terms, calling their results into question. Gu et al. [36] extend this work to more datasets
and learners. They use an offset in their power law and consider other functional forms,
notably, VAP3, MMF4, and WBL4. For extrapolation, no model consistently makes the best
predictions, but based on the rankings of the curve models with respect to the mean squared
error, POW3 performs best on average over all experiments. They however do not evaluate
the significance of this finding. Kolachina et al. [37] perform a fairly large study with
decent quality for machine translation. They find that POW3 achieves the lowest average
root mean squared error for predicting the next point or the last point on the curve, but is
not always (systematically) better. However, they also do not quantify the significance.

Last [34] focusses more on applications, but do also evaluate curve fitting. However, the
number of datasets is small and their study suffers from all pitfalls, but find POW2 to be the
best. Boonyanunta and Zeephongsekul [95] come up with the novel idea that a differential

4

86 4. THE SHAPE OF LEARNING CURVES: A REVIEW

equation should model learning curves (an idea whose potential remains unexplored), lead-
ing them to an exponential form, indicated by EXPD3 in the table. However, it turns out
that this curve model can be rewritten to EXP3, and they further do not perform a quantitat-
ive analysis comparing their model to others. Singh [33] evaluate 4 learners on 4 datasets,
and find LOG2 provides the best fit. The authors have some reservations about their results,
and remark that it may be an artefact of their curve fitting procedure (fitting of log values).
They also suffer from all pitfalls, and we remark that n was never larger than 2000 samples,
which may offer another reason why LOG2 could work well. For large n the performance
must necessarily suffer as the LOG2 model would diverge.

One of the few shape studies with synthetic data are those by Ahmad and Tesauro [96]
and Cohn and Tesauro [35]. Since most empirical studies deal with datasets of finite size,
learning curves are usually constructed until all data is used up. For artificial problems, it is
unclear up until what point learning curves should be created, since there is no upper bound
on n. One may consider to stop creating the learning curve if a learner seems converged, but
detecting convergence robustly is difficult (see Section 4.3.3) and may be impossible in light
of the ill-behaving curves discussed in this survey (see Figure 4.4). Ahmad and Tesauro [96]
and Cohn and Tesauro [35] fix a maximum training set size arbitrarily, we do not know of
an alternative and consider this an open problem. Considering fitting performance in the
limit of infinite data is another problem yet to be studied, but poses all kinds of technical
difficulties because the mean squared error may diverge.

Ahmad and Tesauro [96] find exponential behavior of the learning curve for a perceptron
trained with backpropagation on a toy problem with binary inputs, but do not perform
any comparison with the power law. Cohn and Tesauro [35] extends their work to four
synthetic datasets and compare the learning curves using the R2 goodness of fit (which has
its problems, see Section 4.2.5). Two synthetic problems are linearly separable, the others
require a hidden layer, and all can be modeled perfectly by the neural network. Whether a
problem was linearly separable does not seem to matter for the shape. For binary features
the curves seem to be more of an exponential type, whereas real-valued features seem to
be slightly better modeled by a power law (which agrees with theory, see Section 4.5.1).
However, they also note, that it is not always clear that one fit is significantly better than the
other and their setup is not reproduceable. So while this seems to agree with theory, their
findings warrant further investigation.

Brumen et al. [92] considers only the performance of the fit on already observed learning
curves points. They do only use learning curve models with a maximum of three parameters,
possibly alleviating overfitting concerns a little. They employ a total of 121 datasets and use
C4.5 for learning. In 86 cases, the learning curve shape fits well with one of the functional
forms, in 64 cases EXP3 gave the lowest overall MSE, in 13 it was POW3. A signed rank
test shows that the exponential outperforms LIN2, LOG2, POW3 significantly (p < 0.001),
providing decent evidence that decision trees more often behave as exponentials.

Brumen et al. [39] further extend their own study to more learners and datasets. However,
curiously, they sample less values for n to make curves more well-behaved. In our opinion,
the more n are sampled along a learning curve, the better, as we have more points for fitting
the curve and evaluating the fit, which should make the study more robust. They further
improve their experimental design to use stratification which is sensible, but also claim
that k-fold cross validation results in more ill-behaved learning curves which we think is

4.4. EMPIRICAL WORKS THAT FAVOR WELL-BEHAVED CURVES

4

87

questionable. They instead resort to a single 80/20 split. It should be apparent that more
test sets will lead to better learning curve estimates (because a single test set could be a
poor sample), but perhaps their procedure used a different test set per n, which would
explain their observed ill-behaving curves when using k-fold. We suggest to use a fixed
test set for different n to avoid this issue. A positive innovation is that they consider how
many points were used for fitting learning curves (25%, 50%, 75%) to analyse their results.
They find that the fitting performance is not normally distributed and perform a careful
statistical analysis to determine the significance of their results, in addition it is explained
what happens to failed fits. If 25% points are used for fitting, the power law and exponential
tie, otherwise the power law performs significantly better than the EXP3 and LOG2. Their
conclusions curiously contradict their own earlier work [92], which claims that exponentials
model learning curves better for the C4.5 algorithm. No reflection is given why this might
be the case.

Recently Mohr et al. [40] performed the largest scale study on learning curves, evalu-
ating as many as 20 learners on 246 datasets. They publish their curve data in a publicly
accessible API ensuring reproducibility, and this will make it easy for the community to
further investigate various learning curve questions. They include all curve models of Table
4.1, and use 5 different test sets. They do not build monotonically increasing training sets as
they focus on model selection purposes. They average curves over over 5 different training
and 5 test sets, leading to 25 learning curves which are averaged. This averaging makes the
curves more well-behaved and the fitting easier. However, they still ran into fitting issues.
To deal with this they fit parametric models 5 times and use several criteria to discard bad
fits. Like Brumen et al. [39], Mohr et al. [40] find that the mean squared error is not nor-
mally distributed, and they use a similar evaluation to determine significance. Surprisingly,
they find that MMF4 and WBL4 can achieve the best results (on average over learners and
datasets) compared to the other parametric models of the table, when sufficient learning
curve points are used for fitting the curve model. Considering the bias-variance trade-off
this is perhaps not surprising — more parameters in these curve models can be efficiently
utilized if enough curve data is available to set them correctly. In light of the previous
subsection, it should be noted that WBL4 is the same as EXP4, and thus again we find an
apparent contradiction with [39] who found that the power law performs better than the
exponential. However, this contradiction can be explained by the fact Brumen et al. [39]
only considered a limited set of curve models, while Mohr et al. [40] considers many more
parametric models. The findings of Mohr et al. [40] for the LOG2, EXP3 and POW3 do
agree with those of Brumen et al. [39]. Mohr et al. [40] also considers a trivial baseline
which predicts the last seen point on the curve which is surprisingly competitive with the
other parametric models in terms of extrapolation performance, further emphasizing the
difficulties of learning curve fitting.

Several curve fitting studies mention that curve models usually do not outperform others
systematically [33, 36, 37]. This may indicate that a universal parametric learning curve
model may be too much to ask for. This is further underscored by the various ill-behaved
shapes in Section 4.6. However, we can still investigate what determines the parameters of
the fits or what factors influence the shape. Mukherjee et al. [12], Cortes et al. [31], and
Hoiem et al. [30] wonder if the asymptotic value of the power law and its exponent could
be related; in other words, they think that the learning speed is higher (smaller b for EXP3)

4

88 4. THE SHAPE OF LEARNING CURVES: A REVIEW

if the asymptotic value is smaller (smaller c). Singh [33] investigates the relation between
dataset and classifier but does not find any interaction effect. They do find that the neural
networks and the SVM are more often well-described by a power law and that decision
trees are best predicted by a logarithmic model. Perlich et al. [23] speculate that the Bayes
error may be indicative of whether the curves of decision trees and logistic regression will
cross or not. In case the Bayes error is small, decision trees will often be superior for large
sample sizes. All in all, there are few results of this type and most are quite preliminary.
The database of Mohr et al. [40] enables the community to investigate these issues in more
depth.

4.4.3. POWER LAWS AND EYE-BALLING DEEP NET RESULTS

Studies of learning curves of deep neural networks mostly claim to find power-law behavior.
However, initial works offer no quantitative comparisons to other parametric forms and
only consider plots of the results, calling into question the reliability of such claims. Later
contributions find power-law behavior over many orders of magnitude of data, offering
substantially stronger empirical evidence.

Sun et al. [97] state that their mAP@ performance on a large-scale internal Google image
dataset increases logarithmically in dataset size. This claim is called into question by Hest-
ness et al. [91] and we would agree: there seems to be little reason to believe this increase
follows a logarithm. Like for Singh [33], who also found that the logarithm fit well, one
should anyway remark that the performance in terms of mAP@ is always bounded from
above and therefore the log model should eventually break. As opposed to Sun et al. [97],
Joulin et al. [98] creates a learning curve up to a training set size of 100 million images, and
qualitatively observes an effect of diminishing returns in the empirical learning curve. Ma-
hajan et al. [99] also studies large-scale image classification and find learning curves that
level off more clearly in terms of accuracy over almost 3 orders of magnitudes (training set
sizes from 0.5×107 to 3×109). They presume that this is due to the maximum accuracy
being reached, but note that this cannot explain the observations on all datasets. In the ab-
sence of any quantitative analysis (such as fitting of parametric models or plots on log-log
scale), these results are possibly not more than suggestive of power-law behavior.

The first to offer strong convincing empirical evidence for the power law are [91]. They
show power laws over multiple orders of magnitude of training set sizes for a broad range of
domains: machine translation (error rate), language modeling (cross entropy), image recog-
nition (top-1 and top-5 error rate, cross entropy) and speech recognition (error rate). The
exponent was found to be between −0.07 and −0.35 and mostly depends on the domain. Ar-
chitecture and optimizer primarily determine the multiplicative constant. For small sample
sizes, the power law supposedly does not hold anymore, as the neural network converges to
a random guessing solution. Overall, the power law behavior turns out to be so robust that
they suggest one can search for new architectures at smaller sample sizes to speed up ex-
periments. To uncover the power law, significant tuning of the hyperparameters and model
size per sample size is necessary, otherwise deviations occur. Hoiem et al. [30] investigate
robust curve fitting for the error rate using the power law with offset, and use extrapolations
to optimize design decisions. They generally find exponents of size −0.3 and −0.7, thus of
larger magnitude than Hestness et al. [91].

Kaplan et al. [100] and Rosenfeld et al. [66] further corroborate power laws for image

4.5. LEARNING THEORY IN FAVOR OF WELL-BEHAVED CURVES

4

89

classification and natural language processing. Kaplan et al. [100] finds that if the model
size and computation time are increased together with the sample size sufficiently, that the
learning curve has this particular behavior. If either is too small this pattern disappears.
They find that the test loss also behaves as a power law as function of model size and
training time and that the training loss can also be modeled in this way. Rosenfeld et al.
[66] reports that the test loss behaves as a power law in sample size when model size is
fixed and vice versa. Both provide models of the generalization error that can be used
to extrapolate performances to unseen sample and model sizes and that may reduce the
amount of tuning required to get to optimal learning curves. They also propose a model for
the transition of a power law to random guessing performance.

4.5. LEARNING THEORY IN FAVOR OF WELL-BEHAVED

CURVES
In this section we discuss implications of learning theory studies on the shape of learning
curves. Theory gives some indication that properties of the problem (such as separability or
realizeability) and the complexity of the model class determine whether the curve will be
of an exponential or a power-law shape. However, most theory does not apply to learners
or settings considered in practice. In particular, we also cover Probably Approximately
Correct (PAC) learning and why it does not tell us much about the shape of the curve.
Finally, in literature, various assumptions have been made on the problem, such as loss,
separability, etc. that lead to exponential and power-law shapes. PA curves also turn out
to be provably monotone if the problem is well-specified, meaning the assumptions on the
data generation process are correct, and a Bayesian approach is used. One should note
that the various assumptions in this section may be quite strong, yet they give insight into
various curve behaviors.

4.5.1. SHAPE DEPENDS ON HYPOTHESIS CLASS

In the context of classification, results from learning theory, especially in the form of Prob-
ably Approximately Correct (PAC) bounds [101, 102], have been referred to to justify
power-law shapes in both the separable and non-separable case [30]. See Section 1.2 (page
3) for a brief recap of PAC learning, for more detail refer to [102].

The PAC model is, however, pessimistic since it considers the performance on a worst-
case distribution P , while the behavior on the actual fixed P can be much more favorable
(see, for instance, [103–107]). Even more problematic, the worst-case distribution con-
sidered by PAC is not fixed, and can depend on the training size n, while for the learning
curve P is fixed. As a consequence, it is possible that a PAC bound can say that the risk
decreases as 1

n , while the decrease of the learning curve is exponential [108].
Recently, Bousquet et al. [108] gave a full characterization of all learning curve bound

shapes for the realizable case and optimal learners. The risk bounds have a form R̄n(A) ≤
C R ′(cn), where c and C are constants that can depend on P . The risk bounds more closely
capture the learning curve shape, as the behavior of the risk is considered for a single fixed
distribution P that cannot change when varying the sample size. They show that risk bounds
for optimal learners can have only three shapes: an exponential shape (R ′(n) = e−n), a

4

90 4. THE SHAPE OF LEARNING CURVES: A REVIEW

power-law shape (R ′(n) = 1
n), or there is no possible risk bound of this form, a situation that

they call arbitrary slow learning. The shape of the bound is determined by novel properties
of the hypothesis class (not the VC dimension). The case of no risk bound or arbitrary slow
learning means that, when using particular hypothesis classes, for any function f (n) that
converges to zero arbitrarily slowly and any learner A, we can find a distribution for which
that learner satisfies R̄n(A) ≥ f (n). Basically, it means that for such hypothesis classes,
we cannot give an upperbound of the form above in terms of R ′. The result of arbitrarily
slow learning is, partially, a refinement of the no free lunch theorem of [2, Section 7.2]
and concerns, for example, hypothesis classes that encompass all measurable functions.
These results are a strengthening of a much earlier result by Cover [109]. Interestingly,
the considered optimal learners by Bousquet et al. [108] are not empirical risk minimizers,
but are a carefully constructed ensemble of online learners. In practical application and
empirical studies, different learners are used. Because of this reason, the results do not
directly transfer to practical settings. What the consequences are for typical learning curves
are in practice yet remains to be explored, but these works appear to be the one of the most
relevant regarding the shape of learning curves.

4.5.2. SHAPE DEPENDS ON THE PROBLEM (PA AND NON-PA)
There are a number of works that find evidence for the power-law shape or exponential
shape for PA and non-PA learning curves under various assumptions relating to the learning
problem. A first provably exponential learning curve can be traced back to the famous
work on 1NN [110] by Cover and Hart. They point out that, in a two-class problem, if the
classes are far enough apart, 1NN only misclassifies samples from one class if all n training
samples are from the other (crucially, sampling should not be stratified for this example).
In case both classes have equal prior, one can determine that R̄n(A1NN) = 2−n . This seems
to suggest that if a problem is well-separated, classifiers may converge exponentially fast.

For a classification problem where the classes overlap, Peterson [111] showed for the
nearest neighbor classifier (1NN) that in a two-class problem where PX is uniform on [0,1]
and PY |X (1|x) = x and PY |X (−1|x) = 1−x, the learning curve equals

R̄n(A1NN) = 1
3 + 3n+5

2(n+1)(n+2)(n+3) , (4.4)

Amari [112, 113] studies the learning curves for a basic algorithm, the Gibbs learning
algorithm, in terms of the entropic error. The entropic error is defined as the negative log
of the accuracy. He assumes a binary classification setting, thus y ∈ {−1,+1}. The Gibbs
algorithm for classification works as follows. Assume a linear classifier for simplicity, thus
ŷ = sgn(wT x) (note that Amari considers more general machines and neural networks).
Put a prior probability density on w , thus w ∼ PW , which is determined before any data
is observed by the learner. Now when a training set Sn is received, we sample w ∼ PW

and check its error on Sn . Only if it makes zero error, w is returned, otherwise we keep
sampling w ∼ PW until a classifier with zero error is found [61, 114]. It is assumed the
problem is separable (otherwise there is no solution and the learner cannot learn) and the
model samples are therefore taken from version space [61]. Since the results of Amari are
independent of the groundtruth model that generates the labels, his results can be interpreted
both as PA or non-PA learning curves.

4.5. LEARNING THEORY IN FAVOR OF WELL-BEHAVED CURVES

4

91

For the Gibbs learner AG , the risk in terms of the entropic error can be shown to decom-
pose using a property of the conditional probability [112]. Let p(Sn) be the probability
of selecting a classifier from the prior that classifies all samples in Sn correctly. Assume,
in addition, that Sn ⊂ Sn+1. Assuming Sn ,Sn+1 are given, and that Gibbs is trained on
a sample size of Sn , we denote the probability of a correct classification by Gibbs on an
unseen sample as p(y = ŷ |Sn ,Sn+1) conditioned on the data. Note that randomness in
p(y = ŷ |Sn ,Sn+1) stems from the fact of the randomness in the Gibbs algorithm. Due to the
definition of conditional probability (and due to Gibbs not seeing the (n +1)th sample), we
have that

p(y = ŷ |Sn ,Sn+1) = p(Sn+1)

p(Sn)
. (4.5)

Of this expression, still an expectation should be carried out with respect to Sn and Sn+1

to come to the risk. However, we now have accuracy instead of error rate, because this is
formulated in gains instead of losses. Note that taking the expectation w.r.t. Sn+1 is enough,
since Sn is contained in Sn+1. The resulting expression will be hard to analyze for general
losses [115]. To get around this, Amari takes the loss to be the entropic error, defined as

e(Sn ,Sn+1) =− log(p(y = ŷ |Sn ,Sn+1)), (4.6)

which we can indeed interpret as the negative log of the accuracy. Thus this is again a loss
function — the lower, the better. Note that this is not equal to the cross entropy loss. For
the entropic error the risk is given by

ESn+1 e(Sn ,Sn+1) = ESn log(p(Sn))−ESn+1 log(p(Sn+1)) (4.7)

and thus the expression has simplified into the difference of two expectations [112]. These
individual expectations are much more tractable to analyze analytically than the expectation
of a fraction.

Under some additional assumptions, which ensure that the prior is not singular (meaning
all parameters of the model influence its predictions), the behavior asymptotic in n can be
fully characterized using an approach similar to the replica method often used in statistical
physics. Using this machinery Amari [112] then proves that

ESn+1 e(Sn ,Sn+1) ≈ d

n
+o

(
1

n

)
, (4.8)

where d is the number of parameters. Amari claims that the assumption above holds for
many machines, including multilayer neural networks. However, we believe this may not
be the case for modern neural nets that oftne use the ReLU activation function. Since for
a ReLU, if the activation is zero, changes in the parameters will not cause a corresponding
change in the network output. However, ReLU’s were introduced only around 2011, much
later than Amari’s works which were published in the nineties, and Gibbs is not used for
training deep networks anyhow. But for the sigmoid or tanh activation functions which
were used at the time, the assumption is reasonable.

Amari and Murata [116] extend this work and consider labels generated by a noisy pro-
cess, allowing for class overlap. Instead of a deterministic learner, they now consider a more
typical logistic regression model common in machine learning which gives class probabil-
ity estimates. This work, while closely related to the previous, seems to only consider

4

92 4. THE SHAPE OF LEARNING CURVES: A REVIEW

the regular learning curve instead of the PA-curve, since the results now do depend on the
groundtruth model that generates the labels. Besides Gibbs, they study algorithms based on
maximum likelihood estimation and the Bayes posterior distribution. To derive their results,
they use that the maximum likelihood and other estimators are asymptotically normally dis-
tributed (with variance given by the Fisher Information), and seem reminiscent of a typical
asymptotic statistical analysis. They find for Bayes and maximum likelihood that the en-
tropic generalization error behaves as H0 + d

2n , while the training error behaves as H0 − d
2n ,

where H0 is the best possible cross entropy loss. For Gibbs, the error behaves as H0 + d
n ,

and the training error as H0. In case of model mismatch, the maximum likelihood solution
can also be analyzed. In that setting, the number of parameters d changes to a quantity
indicating the number of effective parameters, which depends on the curvature of the loss
around the model closest to the groundtruth in terms of KL-divergence, and H0 becomes
the loss of that model.

In a similar vein, Amari et al. [115] analyze the 01 loss, i.e., the error rate, under the
annealed approximation [60, 61], which uses

ESn+1 p(y = ŷ |Sn ,Sn+1) ≈ ESn+1 p(Sn+1)

ESn p(Sn)
. (4.9)

This approximation takes the expectation of the numerator and denominator separately, an
approximation that Amari earlier tried to avoid. One thus may wonder about the accuracy
of this approximation. Four settings are considered, two of which are similar to the previ-
ous works [112, 113, 116]. The variation in them stems from differences in assumptions
about how the labeling is realized, ranging from a unique, completely deterministic labeling
function to multiple, stochastic labelings. Possibly the most interesting result is for the real-
izable case where multiple parameter settings give the correct outcome or, more precisely,
where this set has nonzero measure. In that case, the asymptotic behavior is described as a
power law with an exponent of −2. Note that this is essentially faster than what the typical
PAC bounds can provide, which are exponents of −1 and − 1

2 . This possibility of a more
rich analysis is sometimes mentioned as one of the reasons for studying learning curves
[61, 106, 117].

For some settings, exact results can be obtained because symmetries can be exploited.
If one considers a 2D input space where the marginal PX is a Gaussian distribution with
mean zero and identity covariance, and one assumes a uniform prior over the true linear
labeling function without noise, the PA curve for the zero one loss can exactly be computed
to be of the form 2

3n , while, the annealed approximation gives 1
n [115]. Thus the annealed

approximation for this example at least gives the correct rate of decrease of the learning
curve.

4.5.3. MONOTONE SHAPE IF WELL-SPECIFIED (PA)
The PA learning curve is monotone if the model is well-specified and Bayesian inference
is employed. Well specified means that the prior assumed by the model, is the same as
the prior that underlies the problem average. The likelihood function, which is used by the
model for learning, should also correspond to the likelihood function which generates the
data. Well-specified does not make learning trivial: we only know there is a model from
our model family which generates the data, but we do not know which model this is.

4.6. ILL-BEHAVED LEARNING CURVES

4

93

That well-specification leads to monotone PA curves with a Bayesian approach, is a con-
sequence of the total evidence theorem [118–120]. It states, informally, that one obtains the
maximum expected utility by taking into account all observations. However, a monotone
PA curve does not rule out that the learning curve for individual problems can go up, even
if the problem is well-specified, as the work covered in Section 4.6.6 will show. Thus, if we
only evaluate in terms of the learning curve of a single problem, using all data is not always
the rational strategy. Therefore, in such a case, we may want to use a technique that tries to
evaluate whether more data will lead to improved models, which we will discuss in Section
4.6.7.

Of course, in reality, our model probably has some misspecification, which is a situation
that has been considered for Bayesian linear regression and Gaussian Processes, the latter
we do not cover in this chapter (see [1]). See Subsection 4.6.5 for unexpected behavior for
Bayesian linear regression.

4.6. ILL-BEHAVED LEARNING CURVES
It is important to understand that learning curves do not always behave well and that this is
not necessarily an artifact of the finite sample or the way an experiment is set up. Deterior-
ation with more training data can obviously occur when considering the curve R(A(Sn)) for
a particular training set, because for every n, we can be unlucky with our draw of Sn . That
ill-behavior can also occur in expectation, i.e., for R̄n(A), may be less obvious.

In the authors’ experience, most researchers expect improved performance of their learner
with more data. Less anecdotal evidence can be found in literature. Shalev-Shwartz and
Ben-David [102, page 153] states that when n surpasses the VC-dimension, the curve must
start decreasing. Duda et al. [8, Subsection 9.6.7] claims that for many real-world prob-
lems they decay monotonically. Tax and Duin [121] calls it expected that performance
improves with more data and Gu et al. [36] makes a similar claim, Meng and Xie [122] and
Ting et al. [123] consider it conventional wisdom, and Boonyanunta and Zeephongsekul
[95] considers it widely accepted. Others assume well-behaved curves [24], which usually
means that curves are smooth and monotone [124]. Amari et al. [115] states that the gen-
eralization error decreases as training set size increases. Further note that most works in
Subsection 4.4.2 only consider monotone parametric models.

Meanwhile, the peaking phenomena, where the learning curve has a local maximum, was
already discovered in 1989 [125]. Such non-monotone behaviors of the learning curve have
only recently gained widespread attention in the machine learning community since the
publication of Belkin et al. [52] which covers a closely related phenomena called Double
Descent, which is actually a phenomem of feature curves. Our hypothesis is that these state-
ments are made in literature because the works illustrating non-monotone behavior have re-
ceived little attention in the machine learning community. Besides peaking, there are several
more distinct phenomena of non-monotone learning curves. Figures 4.4a to 4.4g provides
an overview of types of ill-behaved learning curve shapes in the order we will discuss them
in this section. For each we discuss potential causes (if known) and possible remedies.
The code reproducing these curves (all based on actual experiments) can be retrieved from
https://github.com/tomviering/ill-behaved-learning-curves. Stand-
ard errors are small because of many runs (≥50) and therefore are not displayed.

https://github.com/tomviering/ill-behaved-learning-curves

4

94 4. THE SHAPE OF LEARNING CURVES: A REVIEW

M
O

D
E

L
 M

IS
S

P
E

C
IF

IC
IE

D

n

e
rr

o
r

(g) Making Monotone

PFLD

Wrapper

n

N
L
L

(f) Perfect Prior

n

s
q
.
lo

s
s

(e) Bayesian Regression

n

(d) Monotonicity

sq. loss

abs. loss

log n

e
rr

o
r

(c) Dipping

n

e
rr

o
r

/
s
q
.
lo

s
s

(b) Peaking

n

e
rr

o
r

(a) Phase Transition

Figure 4.4.: Qualitative overview of various learning curve shapes placed in different cat-
egories with references to their corresponding subsections. All have the sample
size n or logn on the horizontal axis. Dotted lines indicate the transition from
under to overparametrized models. Abbreviations; error: error rate; sq. loss:
squared loss; NLL: negative log likelihood; abs. loss: absolute loss; PA indic-
ates the problem-average learning curve is shown. The ‘Wrapper’ algorithm
aims to make learning curves of other algorithms, such as the Pseudo-Fisher,
more monotone.

4.6. ILL-BEHAVED LEARNING CURVES

4

95

Before this section addresses actual bad behavior, we cover phase transitions, which are
at the brink of becoming ill-behaved. In the last subsection we discuss general approaches
to make the learning curve monotone, i.e. approaches that make the curve monotone irre-
spective of the underlying cause.

4.6.1. PHASE TRANSITIONS

As for physical systems, in a phase transition, particular learning curve properties change
relatively abruptly, (almost) discontinuously. Figure 4.4a gives an example of how this can
manifest itself. In learning, techniques from statistical physics can be employed to model
and analyze these transitions, where it typically is studied in the limit of large samples and
high input dimensionality [61]. The name phase transition of the learning curve comes
from the fact that the statistical physics model undergoes a physical phase transition where
continuous quantities do show actual discontinuous jumps. Most theoretical insights are
limited to relatively simple learners, like the perceptron, and often apply to PA curves.

Let us point out that abrupt changes also seem to occur in human learning curves [126,
127], in particular when the task is complex and has a hierarchical structure [128]. A first
mention of the occurrence of phase transitions, explicitly in the context of learning curves,
was by Patarnello and Carnevali [129]. It indicates the transition from memorization to
generalization, which occurs, roughly, around the time that the full capacity of the learner
has been used. Györgyi [130] provides a first, more rigorous demonstration within the
framework of statistical physics—notably, for the approximation referred to as the thermo-
dynamic limit [61]. Transitions happen for single-layer perceptrons where weights take on
binary values only.

The perceptron and its thermodynamic limit are considered in many later studies as
well. The general finding is that, when using discrete parameter values—most often binary
weights, phase transitions can occur [117, 131, 132]. The behavior is often characterized
by long plateaus where the perceptron cannot learn at all (usually in the overparametrized,
memorization phase, where n < d) and has random guessing performance, until a point
where the perceptron starts to learn (at n > d , the underparametrized regime) at which a dis-
continuous jump occurs to non-trivial performance. Note that we have covered that discrete
features in some empirical studies seem to lead to exponential curves [35, 96] (in Section
4.4.2), the relation with these more theoretical results regarding phase transitions remains
unclear and has not yet been further explored to our knowledge.

Phase transitions are also found in two-layer networks with binary weights and activa-
tions [132–134]. This happens for the parity problem where the aim is to detect the parity
of a binary string [135] for which Opper [136] found phase transitions in approximations of
the learning curve. Learning curve bounds derived with statistical physics techniques may
display phase transitions as well [106, 137], though Seung and Sompolinsky [117, 137]
question whether these will also occur in the actual learning curve. Note that learning
curve bounds are not easily (and rarely) computed for practical settings (often relying on
unknown constants). Both Sompolinsky [138] and Opper [136] note that the sharp phase
transitions predicted by theory, will be more gradual in real-world settings. Indeed, when
studying this literature, one should be careful in interpreting the results. If one wants to
run an actual experiment, it can be difficult to find the phase transitions. In case of bin-
ary features, learning can be intractable or very time consuming to simulate. Furthermore,

4

96 4. THE SHAPE OF LEARNING CURVES: A REVIEW

many of the theoretical works often study the learning curve under limiting cases such as
the thermodynamical limit, where the number of training samples and dimensionality go to
infinity. It remains unclear if the learning curve for small sample sizes and dimensionality
shows phase transitions in this case.

For unsupervised learning, phase transitions have been shown to occur [139, 140] (see the
latter for additional references). Ipsen and Hansen [141] extend these analyses to PCA with
missing data. They also show phase transitions in experiments on real-world data sets. Bhat
et al. [142] provides one of the few real application papers where a distinct, intermediate
plateau is visible in the curve.

For Figure 4.4a, we constructed a simple yet novel phase transition based on a two-class
classification problem, y ∈ {+1,−1}, with the first d − 1 features standard normal and the
d th feature set to y

d . Pseudo-Fisher’s performance shows a transition at n = d for the error
rate, which is particularly sharp for d ≥ 4, irrespective of whether stratified or non-stratified
sampling is used. The transition occurs because if n < d , Pseudo-Fisher is unlikely to find
the right separating hyperplane because all the ‘wrong’ features have a higher variance than
the ‘right’ one. While if n ≥ d it is almost certain the right hyperplane is found.

4.6.2. PEAKING AND DOUBLE DESCENT

The term peaking indicates that the learning curve takes on a maximum, typically in the
form of a cusp, around the point where n ≈ d , see Figure 4.4b. This learning curve was
generated by taking a horizontal slice of the surfaceplot of Figure 4.2, see the caption for
a description of the problem. The training set was collected in a stratified manner, but we
note that stratified versus non-stratified makes little difference for the learning curve.

Unlike many other ill behaviors, peaking can occur in the realizable setting. Its cause
seems related to instability of the model. This peaking should not be confused with peaking
for feature curves as covered in Subsection 4.2.7, which is related to the curse of dimension-
ality. Nevertheless, the same instability that causes peaking in learning curves can also lead
to a peak in feature curves, see Figure 4.2. The latter phenomenon has gained quite some
renewed attention in recent years under the name double descent [52].

By now, (sample-wise) double descent has become a term for the peak in the learning
curve for deep neural networks [56, 143]. Related terminologies are model-wise double
descent, that describe a peak in the plot of performance versus model size, and epoch-wise
double descent, that shows a peak in the training curve [56].

Peaking was first observed for the Pseudo-Fisher classifier [49] and has been studied
already for quite some time [125]. Pseudo-Fisher often peaks at d ≈ n, both for the squared
loss and classification error. A first theoretical model explaining this behavior in the ther-
modynamical limit is given in [59]. In such works, originating from statistical physics, the
usual quantity of interest is α= d

n that controls the relative sizes for d and n going to infinity
[60, 61, 114].

Raudys and Duin [73] investigate this behavior in the finite sample setting where each
class is a Gaussian. They approximately decompose the generalization error in three terms.
The first term measures the quality of the estimated means and the second the effect of re-
ducing the dimensionality due to the pseudo-inverse. These terms reduce the error when n
increases. The third term measures the quality of the estimated eigenvalues of the covari-
ance matrix. This term increases the error when n increases, because more eigenvalues need

4.6. ILL-BEHAVED LEARNING CURVES

4

97

to be estimated at the same time if n grows, reducing the quality of their overall estimation.
These eigenvalues are often small and as the model depends on their inverse, small estima-
tion errors can have a large effect, leading to a large instability [144] and this also explains
the peak in the learning curve around n ≈ d . Using an analysis similar to that of Raudys
and Duin [73], Krijthe and Loog [145] studies the peaking phenomenon in semi-supervised
learning ([10]) and shows that unlabeled data can both mitigate or worsen it.

Peaking of the Pseudo-Fisher can be avoided through regularization, e.g., by adding λI
to the covariance matrix [73, 144]. The performance of the model is, however, very sens-
itive to the correct tuning of the ridge parameter λ [144, 146]. Assuming the features are
isotropic and a well-specified linear regression model is used, Nakkiran et al. [147] proves
that peaking disappears for the optimal setting of the regularization parameter.

Other, more heuristic solutions change the training procedure altogether, e.g., Duin [148]
uses an iterative procedure that decides which objects Pseudo-Fisher should be trained on,
as such reducing the size of the training set, and this way the peak is avoided. Skurichina
and Duin [149] adds copies of objects with noise, increasing n, or increases the dimension-
ality by adding noise features, increasing d . By artificially increasing n, one can bypass the
peak, or by changing d , the peak can be moved to another location in the learning curve to
avoid it. Their experiments show this can indeed avoid peaking, but one may wonder if the
problem is ‘solved’ by these approaches.

Duin [50] illustrates experimentally that the SVM may not suffer from peaking in the
first place. Opper [136] suggests a similar conclusion based on a thought experiment. For
specific learning problems, both Opper et al. [59] and Watkin et al. [131] already give a
theoretical underpinning for the absence of double descent for the perceptron of optimal (or
maximal) stability, which is a classifier closely related to the SVM. Opper and Urbanczik
[150] studies the behavior of the SVM in the thermodynamic limit which does not show
peaking either. Spigler et al. [151] show, however, that double descent for feature curves
can occur using the (squared) hinge loss, where the peak is typically located at an n > d .

Further insight of when peaking can occur may be gained from recent works by Advani
and Saxe [152] and Hastie et al. [153], which perform a rigorous analysis of the case of
Fourier Features with Pseudo-Fisher using random matrix theory. Advani and Saxe [152]
studies the dynamics of gradient descent for deep learning, and uses Pseudo-Fisher as a
surrogate model for deepnets. He finds several explanations why overfitting is not an is-
sue for such deep networks. Hastie et al. [153] analyses the case where features are i.i.d.
and transformed by a linear transformation, and where features are processed by a random
neural network of one layer. Results should, however, be interpreted with care as these
are typically derived in an asymptotic setting where both n and d (or some more appro-
priate measure of complexity) go to infinity, i.e., a setting similar to the earlier mentioned
thermodynamic limit.

Furthermore, d’Ascoli et al. [154] shows that a peak can occur where the training set size
n equals the input dimensionality d , but also when n matches the number of parameters
of the learner, depending on the latter’s degree of nonlinearity. They identify that there are
two peaks, one related to overfitting noise in the labels, and one peak due to sensitivity of
the learner and its random initialisation. Multiple peaks are also possible for n < d [147],
by creating block structures in the covariance matrix of the features.

4

98 4. THE SHAPE OF LEARNING CURVES: A REVIEW

4.6.3. DIPPING AND OBJECTIVE MISMATCH
In dipping, the learning curve may initially improve with more samples, but the perform-
ance eventually deteriorates and never recovers, even in the limit [155], see Figure 4.4c. A
1D toy problem for which many well-known linear classifiers (e.g., SVM, logistic regres-
sion, LDA, Pseudo-Fisher, nearest-mean) dip is given in Figure 4.5. Training nearest-mean,
a classifier that assigns object to the class that has the nearest empirical mean on the train-
ing set, on this distribution results in the learning curve in Figure 4.4c. Note that we used
non-stratified sampling.

Let us describe why this happens for the example distribution in the figure. If we have
only a training set of two samples, we will in 50% of the cases obtain the optimal model
with an error rate of 25% (shown as dotted lines). In the other 50% of the cases, we will
have 2 samples from the same class (unless sampling is stratified), which results in a model
that classifies everything as that observed class, which thus has an error rate of 50%. Thus
the expected error rate for n = 2 is 37.5% in the case of non-stratified sampling, and 25% in
the case of stratified sampling (because in the latter case, we will have one sample for each
class). However, in the limit, a model is obtained with a decision boundary at x = 0, because
the empirical means for that case will coincide. This model achieves an error rate of 50%.
Thus the best expected performance is reached for a finite training set size (of around 2
samples). What is essential for dipping to occur is that the classification problem at hand
is misspecified, and that the learner optimizes something else than the evaluation metric
of the learning curve. Such objective misspecification is standard since many evaluation
measures such as error rate, AUC, F-measure, and so on, are notoriously hard to optimize.
To illustrate, minimizing the error rate for linear classifiers is NP-hard in the agnostic case
when n and d are increased and also NP-hard to approximate within a constant factor
[102, page 105-119]. If classification-calibrated loss functions are used and the hypothesis
class is rich enough to contain the true model, then minimizing the surrogate loss will also
minimize the error rate [156, 157]. Thus a more complex hypothesis class may fix the
dipping problem.

-3 -2 -1 0 1 2 3

x

0

0.25

0.5

d
e

n
s
it
y

Figure 4.5.: A one dimensional two-class problem that causes dipping of the learning curve
for various linear classifiers [155]. The sample data (the two ∗s) illustrates
that, with small samples, the optimal linear model in terms of error rate can
be obtained. However, due to the surrogate loss many classifiers optimize, the
decision boundary they find in the limit of infinite sample sizes will be around
x = 0, which is suboptimal.

4.6. ILL-BEHAVED LEARNING CURVES

4

99

By constructing an explicit problem Devroye et al. [2, page 106] already showed that
the nearest neighbor classifier is not always smart, meaning its learning curve can go up
locally. A similar claim is made for kernel rules [2, Problems 6.14 and 6.15]. In a different
context, Ben-david et al. [157] provide an even stronger example where all linear classifiers
optimizing a convex surrogate loss converge in the limit to the worst possible classifier for
which the error rate approaches 1. Another example, Lemma 15.1 in [2], gives a case of
dipping for likelihood estimation.

Other works also show dipping of some sort. For example, Frey and Fisher [32] fit C4.5
to a synthetic dataset that has binary features for which the parity of all features determines
the label. When fitting C4.5 the test error increases with the amount of training samples.
They attribute this to the fact that the C4.5 is using a greedy approach to minimize the error,
and thus is closely related to objective misspecification. Brumen et al. [92] also shows an
ill-behaving curve of C4.5 that seems to go up. They note that 34 more curves could not be
fitted well using their parametric models, where possibly something similar is going on. In
the work of Vanschoren et al. [158] we can find another potential example of dipping as, in
Figure 6, the accuracy goes down with increasing sample sizes.

Anomaly or outlier detection using k-nearest neighbors (kNN) can also show dipping
behavior [123] (referred to as gravity-defying learning curves). Also here is a mismatch
between the objective that is evaluated with, i.e., the AUC, and kNN that does not optimize
the AUC. Hess and Wei [19] also show kNN learning curves that deteriorate in terms of
AUC in the standard supervised setting.

Also in active learning [11] for classification, where the test error rate is often plotted
against the size of the (actively sampled) training set, learning curves are regularly reported
to dip [159, 160]. In that case, active learners provide optimal performance for a number of
labeled samples that is smaller than the complete training set. This could be interpreted as
a great success for active learning. It implies that even in regular supervised learning, one
should maybe use an active learner to pick a subset from one’s complete training set, as this
can improve performance. It cannot be ruled out, therefore, that the active learner uses an
objective that matches better with the evaluation measure [161].

Meng and Xie [122] construct a dipping curve in the context of time series modeling
with ordinary least squares. In their setting, they use an adequate parametric model, but the
distribution of the noise changes every time step, which leads least squares to dipping. In
this case, using the correct likelihood to fit the model resolves the non-monotonicity.

Finally, negative transfer [162] in transfer learning and domain adaptation [163, 164], can
be interpreted as dipping as well. In this case, more source data deteriorates performance
on the target and the objective mismatch stems from the combined training from source and
target data instead of the latter only.

4.6.4. RISK MONOTONICITY AND ERM
Several novel examples of non-monotonic behavior for density estimation, classification,
and regression by means of standard empirical risk minimization (ERM) are presented by
Loog et al. [165]. Similar to dipping, the squared loss increases with n, but in contrast does
eventually recover, see Figure 4.4d. However, these examples cannot be explained either
in terms of dipping or peaking. Dipping is ruled out as, in ERM, the learner optimizes the
loss that is used for evaluation. In addition, non-monotonicity can be demonstrated for any

4

100 4. THE SHAPE OF LEARNING CURVES: A REVIEW

n and so there is no direct link with the capacity of the learner, ruling out an explanation in
terms of peaking.

Proofs of non-monotonicity are given for squared, absolute, and hinge loss. It is demon-
strated that likelihood estimators suffer the same deficiency. Two learners are reported that
are provably monotonic: mean estimation based on the squared loss and the memorize
algorithm. The latter algorithm does not really learn but outputs the majority voted clas-
sification label of each object if it has been seen before. Memorize is not PAC learnable
[61, 102], illustrating that monotonicity and PAC are essentially different concepts. It is
shown experimentally that regularization can actually worsen the non-monotonic behavior.
Why regularization may lead to non-monotonicity is explained in more detail in Section
4.6.6. In contrast, Nakkiran et al. [147] shows that optimal tuning of the regularization
parameter can guarantee monotonicity in certain settings. A final experiment by Loog et al.
[165] shows a surprisingly jagged learning curve for the absolute loss, see Figure 4.4.

4.6.5. MISSPECIFIED BAYESIAN REGRESSION AND SAFEBAYES

Grünwald and van Ommen [166] show that a (hierarchical) Bayesian linear regression
model can give a broad peak in the learning curve of the squared risk, see Figure 4.4e.
One way this can happen is when the homogeneous noise assumption is violated, while the
estimator is otherwise consistent.

Specifically, let data be generated as follows. For each sample, a fair coin is flipped.
Heads means the sample is generated according to the ground truth probabilistic model
contained in the hypothesis class, y = wT x + ϵ (with no bias term), where ϵ is zero mean
Gaussian noise with fixed variance. Misspecification happens when the coin comes up tails
and a sample with x = 0 and y = 0 is returned. The peak in the learning curve cannot be
explained by dipping (because no surrogate loss is used) or by the same underlying principle
as peaking, as the peak location is not dependent on the dimensionality. Furthermore, it
does not occur because of the known sensitivity of the squared loss to outliers according to
Grünwald and Van Ommen. This is because the sample is an inlier: it is located at (0,0),
and therefore it can be perfectly predicted by the linear model. Thus this is truly some
surprising behavior of Bayesian linear regression.

The peak in the learning curve is fairly broad and occurs in various experiments. As
also no approximations are to blame, the authors conclude that Bayes’ rule is really at
fault as it cannot handle the misspecification. The reasoning why things go wrong is fairly
technical and we do not go into it here. However, we can explain one necessary condition:
non-monotonicity can happen if the probabilistic model class is not convex. The Bayesian
linear regression model assumes

p(y |x, w,σ) = 1

σ
p

2π
exp−1

2

(
wT x

σ

)2

. (4.10)

Now if we take a convex combination of this likelihood model, such as 1
2 p(y |x, w1,σ)+

1
2 p(y |x, w2,σ), it is not part of the original model class anymore. Because in that case the
convex combination is bimodal instead of unimodal, and thus the model class is non-convex
in this sense.

4.6. ILL-BEHAVED LEARNING CURVES

4

101

After the in depth analysis, Grünwald and Van Ommen introduce a modified Bayes rule
in which the likelihood is raised to some power η. The parameter η cannot be learned in
a Bayesian way, leading to their SafeBayes approach. Their technique alleviates the broad
peak in the learning curve and is empirically shown to make the curves generally more
well-behaved.

4.6.6. THE PERFECT PRIOR

As we have seen in Subsection 4.5.3, the PA learning curve is always monotone if the prob-
lem is well specified and a Bayesian decision theoretical approach is followed. Nonetheless,
the fact that the PA curve is monotone does not mean that the curve for every individual
problem is. Grünwald and Kotłowski [167] offers an insightful example (see also Figure
4.4f): consider a fair coin and let us estimate its probability p of heads using Bayes’ rule.
We measure performance using the negative log-likelihood on an unseen coin flip and ad-
opt a uniform Beta(1,1) prior on p. This prior, i.e., without any training samples, already
achieves the optimal loss since it assigns the same probability to heads and tails. After a
single flip, n = 1, the posterior is updated and leads to a probabilities of 1

3 or 2
3 and the

loss must increase. Eventually, with n →∞, the optimal loss is recovered, forming a bump
in the learning curve. Note that this construction is rather versatile and can create non-
monotonic behavior for practically any Bayesian estimation task. In a similar way, any type
of regularization can lead to comparable learning curve shapes (see also Subsection 4.6.4).

A related example is given by Al-Saleh and Masoud [168]. They show that the pos-
terior variance can also increase for a single problem, unless the likelihood belongs to the
exponential family and a conjugate prior is used.

4.6.7. MONOTONICITY: A GENERAL FIX?
This section has noted a few particular approaches to restore monotonicity of a learning
curve. One may wonder, however, whether generally applicable approaches exist that can
turn any learner into a monotone one. A first attempt is made by Viering et al. [169]
(Chapter 6). They propose a wrapper that, with high probability, makes any classifier
monotone in terms of the error rate. The main idea is to consider n as a variable over
which model selection is performed. When n is increased, a model trained with more data
is compared to the previously best model on validation data. Only if the new model is
judged to be significantly better—following a hypothesis test, the older model is discarded.
If the original learning algorithm is consistent and if the size of the validation data grows,
the resulting algorithm is consistent as well. It is empirically observed that the monotone
version may learn more slowly, giving rise to the question whether there always will be a
trade-off between monotonicity and speed (refer to the learning curve in Figure 4.4g).

Recently, Mhammedi and Husain [170] extended this idea, proposing two algorithms
that do not need to set aside validation data while guaranteeing monotonicity. To this end
they assume that the Rademacher complexity of the hypothesis class composited with the
loss is finite. The Rademacher complexity measures the complexity of the hypothesis class,
similar to the VC dimension (see [102, Chapter 26]). This allows them to determine when
to switch to a model trained with more data. In contrast to Viering et al. [169], Mhammedi
and Husain [170] argue that their second algorithm does not learn slower, as the rate of

4

102 4. THE SHAPE OF LEARNING CURVES: A REVIEW

convergence of the base learner remains the same up to constants.

4.7. DISCUSSION
We have covered various examples that illustrate that learning curves can be quite ill-
behaved, which further emphasizes what little we know about learning curve behavior. It is
evident that there is no theory that covers all the different characteristics of learning curves
that we have covered.

The usage of the learning curve as a tool for the analysis of learning algorithms has var-
ied throughout the past decades. In line with Langley, Perlich, Hoiem, et al. [23, 28, 30],
we would like to suggest a more consistent use. We specifically agree with Perlich et al.
[23] that without a study of the learning curves, claims of superiority of one approach over
another are perhaps only valid for very particular sample sizes. Reporting learning curves
in empirical studies can also help the field to move away from its fixation on bold numbers,
besides accelerating learning curve research. To that latter end, the openly accessible learn-
ing curve database recently published [40] provides ample opportunity for a collaborative
investigation.

In the years to come, we expect investigations of parametric models and their perform-
ance in terms of extrapolation. Insights into these problems become more and more important—
particularly within the context of deep learning—to enable the intelligent use of compu-
tational resources. In the remainder, we highlight some specific aspects that we see as
important.

4.7.1. AVERAGING CURVES AND THE IDEAL PARAMETRIC MODEL

Especially for extrapolation, a learning curve should be predictable, which, in turn, asks for
a good parametric model. It seems impossible to find a generally applicable, parametric
model that covers all aspects of the shape, in particular ill-behaving curves. Nevertheless,
we can try to find a model class that would give us sufficient flexibility and extrapolative
power. Power laws and exponentials should probably be part of that class, but does that
suffice?

Recent work has indicated that the 4-parameter models also have potential — are these
models simply approximating power laws or exponentials, or do they truly have additional
modeling power that is necessary to capture learning curve behavior? Furthermore, some
parametric models have particular invariants (such as invariance to rescaling); can our prior
knowledge of the risk guide us to which invariants a parametric model should have for
modeling learning curves?

To get close to the true learning curve, some studies average hundreds or thousands of
individual learning curves [13, 15]. Averaging can mask interesting characteristics of indi-
vidual curves [171, 172]. This has been extensively debated in psychonomics, where cases
have been made for exponentially shaped individual curves, but power-law-like average
curves [173, 174]. In applications, we may need to be able to model individual, single-
training-set curves or curves that are formed on the basis of relatively small samples. As
such, we see potential in studying and fitting individual curves to better understanding their
behavior, which are potentially more difficult to fit.

4.7. DISCUSSION

4

103

4.7.2. HOW TO ROBUSTLY FIT LEARNING CURVES

A technical problem that has received little attention is how to properly fit a parametric
model to a learning curve. As far as current studies at all mention how the fitting is carried
out, many seem to rely on simple least squares fitting. Two recent studies indeed indicate
that indeed many fits fail (as many as 2%), and that curve fitting often fails to beat a simple
baseline that always predicts the last observed risk. This illustrates there seems much room
to further improve curve fitting for learning curves.

A probabilistic model with assumptions that more closely match the learning curve seems
promising to investigate. Given the tricky nature of extrapolation, particularly when deal-
ing with relatively small number of points for fitting the learning curve, further investigating
robust estimation methods that match well with the intended purpose should also be worth-
while. Here, we see potential in combining parametric and non-parametric techniques for
curve extrapolation, possibly in combination with meta-learning.

4.7.3. BOUNDS AND ALTERNATIVE STATISTICS

One should be careful in interpreting theoretical results when it comes to the shape of learn-
ing curves. Generalization bounds, such as those provided by PAC, that hold uniformly over
all P may not correctly characterize the curve shape. Similarly, strictly decreasing bounds
do not imply monotone learning curves, and thus do not rule out ill-behavior. Furthermore,
PA learning curves, which require an additional average over problems, can show behavior
substantially different from those for a single problem, because here averaging can also
mask characteristics.

Another incompatibility between typical generalization bounds and learning curves is
that the former are constructed to hold with high probability with respect to the sampling of
the training set, while the latter look at the mean performance over all training sets. Though
bounds of one type can be transformed into the other [175], this conversion can change
the actual shape of the bound, thus such high probability bounds may also not correctly
characterize learning curve shape.

The preceding can also be a motivation to actually study learning curves for statistics
other than the average. For example, in Equation 4.2, instead of the expectation we could
look at the curves of the median or other percentiles. These quantities are closer related
to high probability learning bounds. Of course, we would not have to choose the one
learning curve over the other. They offer different types of information and, depending on
our goal, may be worthwhile to study next to each other. Along the same line of thought,
we could include quartiles in our plots, rather than the common error bars based on the
standard deviation. Ultimately, we could even try to visualize the full loss distribution at
every sample size n and, potentially, uncover behavior much more rich and unexpected.

A final estimate that we think should be investigated more extensively is the training loss.
Not only can this quantity aid in identifying overfitting and underfitting issues [48, 172], but
it is a quantity that is interesting to study as such or, say, in combination with the true risk.
Their difference, a simple measure of overfitting, could, for example, turn out to behave
more regular than the two individual measures (as also suggested by Cortes et al. [31]).

4

104 4. THE SHAPE OF LEARNING CURVES: A REVIEW

4.7.4. RESEARCH INTO ILL-BEHAVIOR AND META-LEARNING
We believe better understanding is needed regarding the occurrence of peaking, dipping,
and otherwise non-monotonic or phase-transition-like behavior: when and why does this
happen? Certainly, a sufficiently valid reason to investigate these phenomena is to quench
one’s scientific curiosity. We should also be careful, however, not to mindlessly dismiss
such behavior as mere oddity. Granted, these uncommon and unexpected learning curves
have often been demonstrated in artificial or simplistic settings, but this is done to make at
all insightful that there is a problem.

The simple fact is that, at this point, we do not know what role these phenomena play in
real-world problems. Now that many benchmark datasets are readily available, this issue
can be studied more rigorously. A first step towards that end is provided by the openly ac-
cessible learning curve database of Mohr et al. [40], who do find some preliminary evidence
that non-monotone curves seem to be rare, but we believe this warrants further investigation.
Properly summarizing (see Section 4.2.4) and openly sharing learning curve data via this
database can further accelerate this research. Automated techniques may then be developed
to find curious learning curve phenomena and possibly predict them.

Given the success of meta-learning for curve extrapolation and model selection this
seems a promising possibility. Such meta-learning studies on large amounts of datasets
could, in addition, shed more light on what determines the parameters of learning curve
models, a topic that has been investigated relatively little up to now. Predicting these para-
meters robustly from very few points along the learning curve will prove valuable for virtu-
ally all applications.

4.7.5. OPEN THEORETICAL QUESTIONS
There are two rather specific theoretical questions that we would like to draw attention to.
Both are concerned with the monotonicity of a learner.

The first one asks whether maximum likelihood estimators for well-specified models
behave monotonically. Likelihood estimation, being a century-old, classical technique [176,
177], has been heavily studied, both theoretically and empirically. In much of the theory
developed, the assumption that one is dealing with a correctly specified model is common,
but we are not aware of any results that demonstrate that better models are obtained with
more data. The question is interesting for the likelihood exactly because this estimator has
been extensively studied already and still plays a central role in statistics and abutting fields.

The second question is broader: for standard classification and regression problems,
among the consistent learners are there monotonic ones? We saw that we could make
them more monotonic in some settings, but the question is whether making them strictly
monotonic is possible as well. Is there a general solution? Interestingly, specifically for
universally consistent classification rules, Devroye et al. [2, page 106] conjecture that this
is not possible.

4.8. CONCLUSION

4

105

4.8. CONCLUSION
It should be clear that learning curves have a lot of potential: speeding up learning, tuning
of hyperparameters, improving model selection, and estimating the amount of data required
to reach a certain performance. However, to really make the most of learning curves, we
need a better understanding of their shape.

It is apparent that there is still a lot we do not know about learning curves and their shapes.
Various empirical studies for shallow learners show contradicting results, and give some
indication no universal parametric model may be identified. Recent studies indicate that
the power law with 3 parameter or 4-parameter models may perform best overall compared
to the other parametric models in Table 4.1. For deep learning, the evidence for the power
law is more convincing, but sufficient tuning of hyperparameters is necessary, otherwise
learning is slower.

There are some theoretical works that favor a power law or exponential learning curve.
However, there is a large gap between the theoretical works and practice, such as various
strong assumptions or unusual learners. While some theoretical results do corroborate some
empirical findings, one should perhaps treat this as a mere coincidence. The recent line of
work of Bousquet et al. [108] seems most promising to further develop in order to under-
stand curve shapes better. Finally, older statistical physics works (like those of Amari) may
also give plenty of inspiration how to analyse modern deep neural networks.

We have illustrated with various learning problems that learning curves can be ill-behaved.
It should be apparent that these are not artefacts, but are actual learning problems where
curves really are ill-behaved. For some of them, specific remedies have been discussed, but
most actually emphasize how little we understand about learning curves. A recent line of
work aims to develop wrapper algorithms to make any learner, irrespective of the underly-
ing causes for the non-mononitinicty, better behaved. This is a promising opion to turn any
learner into a monotone one.

In the foregoing, we identified some specific challenges already, but we are convinced
that many more open and interesting problems can be discovered. In this, the current review
should help both as a guide and as a reference.

4.9. BIBLIOGRAPHY
[1] T. Viering and M. Loog, The shape of learning curves: a review, arXiv preprint

arXiv:2103.10948 (2021).

[2] L. Devroye, L. Györfi, and G. Lugosi, A Probabilistic Theory of Pattern Recognition,
Vol. 31 (Springer, New York, NY, USA, 1996).

[3] T. Viering, A. Mey, and M. Loog, Open problem: Monotonicity of learning, in
Conference on Learning Theory (2019) pp. 3198–3201.

[4] C. Perlich, Learning curves in machine learning, in Encyclopedia of Machine Learn-
ing, edited by C. Sammut and G. I. Webb (Springer, 2010) pp. 577–488.

[5] C. Sammut and G. I. Webb, Encyclopedia of machine learning (Springer Science &
Business Media, 2011).

http://dx.doi.org/10.1007/978-1-4612-0711-5

4

106 4. THE SHAPE OF LEARNING CURVES: A REVIEW

[6] L. E. Atlas, D. A. Cohn, and R. E. Ladner, Training connectionist networks with
queries and selective sampling, in NeurIPS (1990) pp. 566–573.

[7] H. Sompolinsky, N. Tishby, and H. S. Seung, Learning from examples in large
neural networks, Physical Review Letters 65, 1683 (1990).

[8] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern classification (John Wiley & Sons,
2012).

[9] K. P. Murphy, Machine learning: a probabilistic perspective (MIT press, 2012).

[10] O. Chapelle, B. Schölkopf, and A. Zien, Semi-Supervised Learning (The MIT Press,
2010).

[11] B. Settles, Active learning literature survey, Tech. Rep. (University of Wisconsin-
Madison, Department of Computer Sciences, 2009).

[12] S. Mukherjee, P. Tamayo, S. Rogers, R. Rifkin, A. Engle, C. Campbell, T. R. Golub,
and J. P. Mesirov, Estimating dataset size requirements for classifying dna microar-
ray data, Journal of computational biology 10, 119 (2003).

[13] R. L. Figueroa, Q. Zeng-Treitler, S. Kandula, and L. H. Ngo, Predicting sample size
required for classification performance, BMC med. inf. and decision making 12, 8
(2012).

[14] A. N. Richter and T. M. Khoshgoftaar, Learning curve estimation with large imbal-
anced datasets, in ICMLA (2019) pp. 763–768.

[15] A. Y. Ng and M. I. Jordan, On discriminative vs. generative classifiers: A comparison
of logistic regression and naive bayes, in NeurIPS (2002) pp. 841–848.

[16] https://waikato.github.io/weka-wiki/experimenter/
learning_curves/.

[17] https://github.com/scikit-learn/scikit-learn/blob/
0fb307bf3/sklearn/model_selection/_validation.py#L1105.

[18] J.-H. Kim, Estimating classification error rate: Repeated cross-validation, repeated
hold-out and bootstrap, Computational statistics & data analysis 53, 3735 (2009).

[19] K. R. Hess and C. Wei, Learning curves in classification with microarray data, in
Seminars in oncology, Vol. 37 (Elsevier, 2010) pp. 65–68.

[20] http://prtools.tudelft.nl/.

[21] B. Efron, Estimating the error rate of a prediction rule: improvement on cross-
validation, Journal of the American statistical association 78, 316 (1983).

[22] A. K. Jain, R. C. Dubes, and C.-C. Chen, Bootstrap techniques for error estimation,
TPAMI , 628 (1987).

https://waikato.github.io/weka-wiki/experimenter/learning_curves/
https://waikato.github.io/weka-wiki/experimenter/learning_curves/
https://github.com/scikit-learn/scikit-learn/blob/0fb307bf3/sklearn/model_selection/_validation.py#L1105
https://github.com/scikit-learn/scikit-learn/blob/0fb307bf3/sklearn/model_selection/_validation.py#L1105
http://prtools.tudelft.nl/

4.9. BIBLIOGRAPHY

4

107

[23] C. Perlich, F. Provost, and J. S. Simonoff, Tree Induction vs. Logistic Regression: A
Learning-Curve Analysis, JMLR 4, 211 (2003).

[24] F. Provost, D. Jensen, and T. Oates, Efficient progressive sampling, in ACM SIGKDD
(1999) pp. 23–32.

[25] E. Perez and L. A. Rendell, Using multidimensional projection to find relations, in
ML Proc. (Elsevier, 1995) pp. 447–455.

[26] D. Mazzoni and K. Wagstaff, Active learning in the presence of unlabelable ex-
amples, Tech. Rep. (NASA/JPL, 2004).

[27] B. Settles and M. Craven, An analysis of active learning strategies for sequence
labeling tasks, in Conference on Empirical Methods in Natural Language Processing
(2008) pp. 1070–1079.

[28] P. Langley, Machine Learning as an Experimental Science, Machine Learning 3, 5
(1988).

[29] N. Bertoldi, M. Cettolo, M. Federico, and B. Christian, Evaluating the learning
curve of domain adaptive statistical machine translation systems, in Workshop on
Statistical Machine Translation (2012) pp. 433–441.

[30] D. Hoiem, T. Gupta, Z. Li, and M. M. Shlapentokh-Rothman, Learning curves for
analysis of deep networks, (2020), arXiv:2010.11029 [cs.LG] .

[31] C. Cortes, L. D. Jackel, S. A. Solla, V. Vapnik, and J. S. Denker, Learning curves:
Asymptotic values and rate of convergence, in NeurIPS (1994) pp. 327–334.

[32] L. J. Frey and D. H. Fisher, Modeling decision tree performance with the power law.
in AISTATS (1999).

[33] S. Singh, Modeling performance of different classification methods: deviation from
the power law, Project Report, Department of Computer Science, Vanderbilt Univer-
sity, USA (2005).

[34] M. Last, Predicting and optimizing classifier utility with the power law, in ICDMW
(IEEE, 2007) pp. 219–224.

[35] D. Cohn and G. Tesauro, Can neural networks do better than the vapnik-
chervonenkis bounds? in NeurIPS (1991) pp. 911–917.

[36] B. Gu, F. Hu, and H. Liu, Modelling classification performance for large data sets,
in International Conference on Web-Age Information Management (Springer, 2001)
pp. 317–328.

[37] P. Kolachina, N. Cancedda, M. Dymetman, and S. Venkatapathy, Prediction of
Learning Curves in Machine Translation, in ACL (Jeju Island, Korea, 2012) pp. 22–
30.

http://dx.doi.org/ 10.1162/153244304322972694
http://dx.doi.org/ 10.1023/A:1022623814640
http://dx.doi.org/ 10.1023/A:1022623814640
http://arxiv.org/abs/2010.11029

4

108 4. THE SHAPE OF LEARNING CURVES: A REVIEW

[38] A.-N. Spiess and N. Neumeyer, An evaluation of r2 as an inadequate measure for
nonlinear models in pharmacological and biochemical research: a monte carlo ap-
proach, BMC pharmacology 10, 1 (2010).

[39] B. Brumen, A. Černezel, and L. Bošnjak, Overview of machine learning process
modelling, Entropy 23, 1123 (2021).

[40] F. Mohr, T. J. Viering, M. Loog, and J. N. van Rijn, LCDB 1.0: An extensive learning
curves database for classification tasks, in Machine Learning and Knowledge Dis-
covery in Databases, ECMLPKDD, Lecture Notes in Computer Science (Springer,
2022) p. accepted.

[41] R. P. Duin, Classifiers in almost empty spaces, in ICPR, Vol. 2 (IEEE, 2000) pp. 1–7.

[42] C. M. Bishop, Pattern recognition and machine learning (springer, 2006).

[43] G. Hughes, On the mean accuracy of statistical pattern recognizers, IEEE Trans. IT
14, 55 (1968).

[44] A. Jain and B. Chandrasekaran, Dimensionality and Sample Size Considerations in
Pattern Recognition Practice, Handbook of Statistics 2, 835 (1982).

[45] J. M. Van Campenhout, On the peaking of the hughes mean recognition accuracy:
the resolution of an apparent paradox, IEEE Transactions on SMC 8, 390 (1978).

[46] A. K. Jain and B. Chandrasekaran, Dimensionality and sample size considerations in
pattern recognition practice, in Handbook of statistics, Vol. 2, edited by P. Krishnaiah
and L. Kanal (Elsevier, 1982) Chap. 39, pp. 835–855.

[47] S. Raudys and V. Pikelis, On dimensionality, sample size, classification error, and
complexity of classification algorithm in pattern recognition, TPAMI , 242 (1980).

[48] A. K. Jain, R. P. W. Duin, and J. Mao, Statistical pattern recognition: A review,
TPAMI 22, 4 (2000).

[49] F. Vallet, J.-G. Cailton, and P. Refregier, Linear and nonlinear extension of the
pseudo-inverse solution for learning boolean functions, EPL (Europhysics Letters)
9, 315 (1989).

[50] R. P. Duin, Classifiers in almost empty spaces, in ICPR, Vol. 15 (2000) pp. 1–7.

[51] A. Zollanvari, A. P. James, and R. Sameni, A theoretical analysis of the peaking
phenomenon in classification, Journal of Classification , 1 (2019).

[52] M. Belkin, D. Hsu, S. Ma, and S. Mandal, Reconciling modern machine-
learning practice and the classical biasvariance trade-off, PNAS 116, 15849 (2019),
arXiv:1812.11118 .

[53] S. Raudys and A. Jain, Small sample size effects in statistical pattern recognition:
recommendations for practitioners, TPAMI 13, 252 (1991).

http://dx.doi.org/10.1016/S0169-7161(82)02042-2
http://dx.doi.org/ 10.1073/pnas.1903070116
http://arxiv.org/abs/1812.11118

4.9. BIBLIOGRAPHY

4

109

[54] R. P. Duin, D. de Ridder, and D. M. Tax, Experiments with a featureless approach
to pattern recognition, Pattern Recognition Letters 18, 1159 (1997).

[55] L. Torgo, Kernel regression trees, in ECML (1997) pp. 118–127.

[56] P. Nakkiran, G. Kaplun, Y. Bansal, T. Yang, B. Barak, and I. Sutskever, Deep double
descent: Where bigger models and more data hurt, in ICLR (2019).

[57] R. Duin and D. Tax, Statistical pattern recognition, in Handbook Of Pattern Recogni-
tion And Computer Vision, edited by C. H. Chen and P. S. P. Wang (World Scientific,
2005) pp. 3–24.

[58] L. Chen, Y. Min, M. Belkin, and A. Karbasi, Multiple descent: Design your own
generalization curve, arXiv preprint arXiv:2008.01036 (2020).

[59] M. Opper, W. Kinzel, J. Kleinz, and R. Nehl, On the ability of the optimal perceptron
to generalise, Journal of Physics A: Mathematical and General 23, L581 (1990).

[60] T. L. Watkin, A. Rau, and M. Biehl, The statistical mechanics of learning a rule,
Rev. of Modern Physics 65, 499 (1993).

[61] A. Engel and C. Van den Broeck, Statistical mechanics of learning (Cambridge Uni-
versity Press, 2001).

[62] A. K. Jain and W. G. Waller, On the optimal number of features in the classification
of multivariate gaussian data, Pattern recognition 10, 365 (1978).

[63] R. P. W. Duin, On the accuracy of statistical pattern recognizers, Ph.D. thesis, Tech-
nische Hogeschool Delft (1978).

[64] M. Skurichina and R. P. Duin, Stabilizing classifiers for very small sample sizes, in
ICPR, Vol. 2 (IEEE, 1996) pp. 891–896.

[65] R. Duin, On the choice of smoothing parameters for parzen estimators of probability
density functions, IEEE Transactions on Computers 25, 1175 (1976).

[66] J. S. Rosenfeld, A. Rosenfeld, Y. Belinkov, and N. Shavit, A constructive prediction
of the generalization error across scales, arXiv:1909.12673 (2019).

[67] https://paperswithcode.com/sota.

[68] D. Sculley, J. Snoek, A. Wiltschko, and A. Rahimi, Winner’s curse? on pace, pro-
gress, and empirical rigor, in ICLR (2018).

[69] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to
document recognition, Proceedings of the IEEE 86, 2278 (1998).

[70] K. Blagec, G. Dorffner, M. Moradi, and M. Samwald, A critical analysis of metrics
used for measuring progress in artificial intelligence, arXiv:2008.02577 (2020).

https://paperswithcode.com/sota

4

110 4. THE SHAPE OF LEARNING CURVES: A REVIEW

[71] S. Raudys, On the problems of sample size in pattern recognition (in Russian), in Pro-
ceedings of the 2nd All-Union Conference on Statistical Methods in Control Theory
(Nauka, 1970).

[72] L. Kanal and B. Chandrasekaran, On dimensionality and sample size in statistical
pattern classification, Pattern recognition 3, 225 (1971).

[73] S. Raudys and R. Duin, Expected classification error of the Fisher linear classifier
with pseudo-inverse covariance matrix, Pattern Recognition Letters 19, 385 (1998).

[74] R. Kohavi, Scaling up the accuracy of naive-bayes classifiers: A decision-tree hybrid.
in Kdd, Vol. 96 (1996) pp. 202–207.

[75] J. Bornschein, F. Visin, and S. Osindero, Small data, big decisions: Model selection
in the small-data regime, arXiv:2009.12583 (2020).

[76] B. Strang, P. van der Putten, J. N. van Rijn, and F. Hutter, Dont rule out simple
models prematurely: a large scale benchmark comparing linear and non-linear clas-
sifiers in openml, in IDA (Springer, 2018) pp. 303–315.

[77] N. Mørch, L. K. Hansen, S. C. Strother, C. Svarer, D. A. Rottenberg, B. Lautrup,
R. Savoy, and O. B. Paulson, Nonlinear versus linear models in functional neuroima-
ging: Learning curves and generalization crossover, in IPMI (Springer, 1997) pp.
259–270.

[78] J. W. Shavlik, R. J. Mooney, and G. G. Towell, Symbolic and neural learning al-
gorithms: An experimental comparison, Machine learning 6, 111 (1991).

[79] P. Domingos and M. Pazzani, On the optimality of the simple bayesian classifier
under zero-one loss, Machine learning 29, 103 (1997).

[80] C. Harris-Jones and T. L. Haines, Sample size and misclassification: Is more always
better, AMS Center for Advanced Technologies (1997).

[81] R. Duin and E. Pekalska, Pattern Recognition: Introduction and Terminology (37
Steps, 2016).

[82] M. Loog, Supervised classification: Quite a brief overview, in Machine Learning
Techniques for Space Weather (Elsevier, 2018) pp. 113–145.

[83] S. Jones, S. Carley, and M. Harrison, An introduction to power and sample size
estimation, Emergency medicine journal: EMJ 20, 453 (2003).

[84] G. H. John and P. Langley, Static versus dynamic sampling for data mining. in KDD,
Vol. 96 (1996) pp. 367–370.

[85] C. Meek, B. Thiesson, and D. Heckerman, The learning-curve sampling method
applied to model-based clustering, JMLR 2, 397 (2002).

[86] K. Tomanek and U. Hahn, Approximating learning curves for active-learning-driven
annotation. in LREC, Vol. 8 (2008) pp. 1319–1324.

http://dx.doi.org/10.1016/S0167-8655(98)00016-6

4.9. BIBLIOGRAPHY

4

111

[87] R. Leite and P. Brazdil, Improving progressive sampling via meta-learning on learn-
ing curves, in ECML (Springer, 2004) pp. 250–261.

[88] R. Leite and P. Brazdil, Predicting Relative Performance of Classifiers from Samples,
in ICML (Bonn, Germany, 2005) pp. 497—-503.

[89] R. Leite and P. Brazdil, An iterative process for building learning curves and pre-
dicting relative performance of classifiers, in Portuguese Conference on Artificial
Intelligence (Springer, 2007) pp. 87–98.

[90] J. N. van Rijn, S. M. Abdulrahman, P. Brazdil, and J. Vanschoren, Fast algorithm
selection using learning curves, in LNCS, Vol. 9385 (Springer Verlag, 2015) pp. 298–
309.

[91] J. Hestness, S. Narang, N. Ardalani, G. Diamos, H. Jun, H. Kianinejad, M. M. A.
Patwary, Y. Yang, and Y. Zhou, Deep Learning Scaling is Predictable, Empirically,
arXiv:1712.00409 (2017), arXiv:1712.00409 .

[92] B. Brumen, I. Rozman, M. Heričko, A. Černezel, and M. Hölbl, Best-fit learning
curve model for the c4. 5 algorithm, Informatica 25, 385 (2014).

[93] T. Domhan, J. T. Springenberg, and F. Hutter, Speeding up automatic hyperpara-
meter optimization of deep neural networks by extrapolation of learning curves, in
Twenty-fourth international joint conference on artificial intelligence (2015).

[94] M. J. Anzanello and F. S. Fogliatto, Learning curve models and applications: Lit-
erature review and research directions, Int. Journal of Industr. Ergonomics 41, 573
(2011).

[95] N. Boonyanunta and P. Zeephongsekul, Predicting the relationship between the size
of training sample and the predictive power of classifiers, in KES (Springer, 2004)
pp. 529–535.

[96] S. Ahmad and G. Tesauro, Study of scaling and generalization in neutral networks,
Neural Networks 1, 3 (1988).

[97] C. Sun, A. Shrivastava, S. Singh, and A. Gupta, Revisiting Unreasonable Effective-
ness of Data in Deep Learning Era, in ICCV (2017) pp. 843–852.

[98] A. Joulin, L. Van Der Maaten, A. Jabri, and N. Vasilache, Learning visual features
from large weakly supervised data, in ECCV (Springer, 2016) pp. 67–84.

[99] D. Mahajan, R. Girshick, V. Ramanathan, K. He, M. Paluri, Y. Li, A. Bharambe, and
L. van der Maaten, Exploring the limits of weakly supervised pretraining, in ECCV
(2018) pp. 181–196.

[100] J. Kaplan, S. McCandlish, T. Henighan, T. B. Brown, B. Chess, R. Child, S. Gray,
A. Radford, J. Wu, and D. Amodei, Scaling laws for neural language models,
arXiv:2001.08361 (2020).

http://arxiv.org/abs/1712.00409
http://dx.doi.org/ 10.1016/0893-6080(88)90045-7
http://dx.doi.org/10.1109/ICCV.2017.97

4

112 4. THE SHAPE OF LEARNING CURVES: A REVIEW

[101] V. Vapnik, Estimation of dependences based on empirical data berlin, (1982).

[102] S. Shalev-Shwartz and S. Ben-David, Understanding machine learning: From theory
to algorithms (Cambridge university press, 2014).

[103] W. L. Buntine, A critique of the valiant model. in IJCAI (1989) pp. 837–842.

[104] W. E. Sarrett and M. J. Pazzani, Average case analysis of empirical and explanation-
based learning algorithms, Tech. Rep. 89-35 (Department of Information & Com-
puter Science, University of California, Irvine, 1989).

[105] D. Haussler and M. Warmuth, The probably approximately correct (pac) and other
learning models, in Foundations of Knowledge Acquisition (Springer, 1993) pp. 291–
312.

[106] D. Haussler, M. Kearns, H. S. Seung, and N. Tishby, Rigorous learning curve bounds
from statistical mechanics [longer version], Machine Learning 25, 195 (1996).

[107] J. Hestness, S. Narang, N. Ardalani, G. Diamos, H. Jun, H. Kianinejad, M. Patwary,
M. Ali, Y. Yang, and Y. Zhou, Deep learning scaling is predictable, empirically,
arXiv:1712.00409 (2017).

[108] O. Bousquet, S. Hanneke, S. Moran, R. van Handel, and A. Yehudayoff, A theory of
universal learning, arXiv preprint arXiv:2011.04483 (2020).

[109] T. M. Cover, Rates of convergence for nearest neighbor procedures, in Proceedings
of the Hawaii International Conference on Systems Sciences, Vol. 415 (1968).

[110] T. Cover and P. Hart, Nearest neighbor pattern classification, IEEE Trans. IT 13, 21
(1967).

[111] D. Peterson, Some convergence properties of a nearest neighbor decision rule, IEEE
Trans. IT 16, 26 (1970).

[112] S.-i. Amari, A universal theorem on learning curves, Neural Networks 6, 161 (1993).

[113] S. Amari, Universal property of learning curves under entropy loss, in IJCNN, Vol. 2
(1992) pp. 368–373 vol.2.

[114] M. Opper and D. Haussler, Calculation of the learning curve of bayes optimal classi-
fication algorithm for learning a perceptron with noise, in COLT, Vol. 91 (1991) pp.
75–87.

[115] S.-i. Amari, N. Fujita, and S. Shinomoto, Four types of learning curves, Neural
Computation 4, 605 (1992).

[116] S.-i. Amari and N. Murata, Statistical Theory of Learning Curves under Entropic
Loss Criterion, Neural Computation 5, 140 (1993).

[117] H. S. Seung, H. Sompolinsky, and N. Tishby, Statistical mechanics of learning from
examples, Physical review A 45, 6056 (1992).

http://dx.doi.org/ 10.1007/bf00114010
http://dx.doi.org/ 10.1016/0893-6080(93)90013-M
http://dx.doi.org/ 10.1109/IJCNN.1992.226960
http://dx.doi.org/10.1162/neco.1992.4.4.605
http://dx.doi.org/10.1162/neco.1992.4.4.605

4.9. BIBLIOGRAPHY

4

113

[118] L. J. Savage, The foundations of statistics (John Wiley & Sons, Inc., 1954).

[119] I. J. Good, On the principle of total evidence, The British Journal for the Philosophy
of Science 17, 319 (1967).

[120] P. D. Grünwald and J. Y. Halpern, When ignorance is bliss, in Proceedings of the
20th conference on Uncertainty in artificial intelligence (2004) pp. 226–234.

[121] D. M. Tax and R. P. Duin, Learning curves for the analysis of multiple instance
classifiers, in S+SSPR (Springer, 2008) pp. 724–733.

[122] X. L. Meng and X. Xie, I Got More Data, My Model is More Refined, but My Estim-
ator is Getting Worse! Am I Just Dumb? Econometric Reviews 33, 218 (2014).

[123] K. M. Ting, T. Washio, J. R. Wells, and S. Aryal, Defying the gravity of learning
curve: a characteristic of nearest neighbour anomaly detectors, Machine Learning
106, 55 (2017).

[124] G. M. Weiss and A. Battistin, Generating well-behaved learning curves: An empir-
ical study, in ICDATA (2014).

[125] M. Loog, T. Viering, A. Mey, J. H. Krijthe, and D. M. Tax, A brief prehistory of
double descent, PNAS 117, 10625 (2020).

[126] W. L. Bryan and N. Harter, Studies in the physiology and psychology of the tele-
graphic language, Psychological Review 4, 27 (1897).

[127] W. L. Bryan and N. Harter, Studies on the telegraphic language: the acquisition of a
hierarchy of habits, Psychological Review 6, 345 (1899).

[128] G. Vetter, M. Stadler, and J. D. Haynes, Phase transitions in learning, The Journal
of Mind and Behavior , 335 (1997).

[129] S. Patarnello and P. Carnevali, Learning networks of neurons with boolean logic,
Europhysics Letters 4, 503 (1987).

[130] G. Györgyi, First-order transition to perfect generalization in a neural network with
binary synapses, Physical Review A 41, 7097 (1990).

[131] T. L. H. Watkin, A. Raut, and M. Biehl, The Statistical Mechanics of Learning a
Rule, Reviews of Modern Physics 65, 499 (1993).

[132] K. Kang, J.-H. Oh, C. Kwon, and Y. Park, Generalization in a two-layer neural
network, Physical Review E 48, 4805 (1993).

[133] M. Opper, Statistical Mechanics of Learning : Generalization, The Handbook of
Brain Theory and Neural Networks , 20 (1995).

[134] H. Schwarze and J. A. Hertz, Statistical Mechanics of Learning in a Large Committee
Machine, NeurIPS , 523 (1993).

http://dx.doi.org/10.1080/07474938.2013.808567
http://dx.doi.org/10.1103/PhysRevA.41.7097
http://dx.doi.org/10.1103/RevModPhys.65.499

4

114 4. THE SHAPE OF LEARNING CURVES: A REVIEW

[135] D. Hansel, G. Mato, and C. Meunier, Memorization without generalization in a
multilayered neural network, Epl 20, 471 (1992).

[136] M. Opper, Learning to generalize, Frontiers of Life 3, 763 (2001).

[137] H. Seung, Annealed theories of learning, Neural Networks: The Statistical Mech-
anics Perspective, Proceedings of the CTP-PRSRI Joint Workshop on Theoretical
Physics. Singapore, World Scientific (1995).

[138] H. Sompolinsky, Theoretical issues in learning from examples, in NEC Research
Symposium (1993) pp. 217–237.

[139] M. Biehl and A. Mietzner, Statistical mechanics of unsupervised learning, Europhys-
ics Letters 24, 421 (1993).

[140] D. C. Hoyle and M. Rattray, Statistical mechanics of learning multiple orthogonal
signals: asymptotic theory and fluctuation effects, Physical review E 75, 016101
(2007).

[141] N. Ipsen and L. K. Hansen, Phase transition in PCA with missing data: Reduced
signal-to-noise ratio, not sample size! in ICML (2019) pp. 2951–2960.

[142] R. A. Bhat, N. Jain, A. Vaidya, M. Palmer, T. Ahmed, D. M. Sharma, and J. Babani,
Adapting predicate frames for urdu propbanking, in Workshop on Language Techno-
logy for Closely Related Languages and Language Variants (2014) pp. 47–55.

[143] P. Nakkiran, More data can hurt for linear regression: Sample-wise double descent,
arXiv:1912.07242 (2019).

[144] M. Skurichina and R. P. Duin, Stabilizing classifiers for very small sample sizes, in
ICPR, Vol. 2 (IEEE, 1996) pp. 891–896.

[145] J. H. Krijthe and M. Loog, The peaking phenomenon in semi-supervised learning, in
S+SSPR) (Springer, 2016) pp. 299–309.

[146] V. Tresp, The Equivalence between Row and Column Linear Regression, Tech. Rep.
(Siemens, 2002).

[147] P. Nakkiran, P. Venkat, S. Kakade, and T. Ma, Optimal regularization can mitigate
double descent, arXiv:2003.01897 (2020).

[148] R. P. W. Duin, Small sample size generalization, 9th Scandinavian Conference on
Image Analysis , 1 (1995).

[149] M. Skurichina and R. P. W. Duin, Regularisation of Linear Classifiers by Adding
Redundant Features, Pattern Anal. Appl. 2, 44 (1999).

[150] M. Opper and R. Urbanczik, Universal learning curves of support vector machines,
Physical Review Letters 86, 4410 (2001).

http://dx.doi.org/10.1209/0295-5075/20/5/015
http://dx.doi.org/ 10.1109/ICPR.1996.547204
http://dx.doi.org/ 10.1007/s100440050013

4.9. BIBLIOGRAPHY

4

115

[151] S. Spigler, M. Geiger, S. dAscoli, L. Sagun, G. Biroli, and M. Wyart, A jamming
transition from under-to over-parametrization affects generalization in deep learn-
ing, Journal of Physics A 52, 474001 (2019).

[152] M. S. Advani and A. M. Saxe, High-dimensional dynamics of generalization error
in neural networks, arXiv:1710.03667 (2017).

[153] T. Hastie, A. Montanari, S. Rosset, and R. J. Tibshirani, Surprises in high-
dimensional ridgeless least squares interpolation, arXiv:1903.08560 (2019).

[154] S. d’Ascoli, L. Sagun, and G. Biroli, Triple descent and the two kinds of overfitting:
Where & why do they appear? arXiv:2006.03509 (2020).

[155] M. Loog and R. P. W. Duin, The dipping phenomenon, in S+SSPR (Hiroshima, Japan,
2012) pp. 310–317.

[156] P. L. Bartlett, M. I. Jordan, and J. D. McAuliffe, Large margin classifiers: convex
loss, low noise, and convergence rates, in NeurIPS (2004) pp. 1173–1180.

[157] S. Ben-david, D. Loker, N. Srebro, and K. Sridharan, Minimizing the misclassifica-
tion error rate using a surrogate convex loss, ICML , 1863 (2012).

[158] J. Vanschoren, B. Pfahringer, and G. Holmes, Learning from the past with exper-
iment databases, in Pacific Rim International Conference on Artificial Intelligence
(Springer, 2008) pp. 485–496.

[159] G. Schohn and D. Cohn, Less is more: Active learning with support vector machines,
in ICML, Vol. 2 (2000) p. 6.

[160] K. Konyushkova, R. Sznitman, and P. Fua, Introducing geometry in active learning
for image segmentation, in CVPR (2015) pp. 2974–2982.

[161] M. Loog and Y. Yang, An empirical investigation into the inconsistency of sequential
active learning, in ICPR (IEEE, 2016) pp. 210–215.

[162] Z. Wang, Z. Dai, B. Póczos, and J. Carbonell, Characterizing and avoiding negative
transfer, in CVPR (2019) pp. 11293–11302.

[163] K. Weiss, T. M. Khoshgoftaar, and D. Wang, A survey of transfer learning, Journal
of Big data 3, 9 (2016).

[164] W. M. Kouw and M. Loog, A review of domain adaptation without target labels,
TPAMI (2019).

[165] M. Loog, T. Viering, and A. Mey, Minimizers of the empirical risk and risk mono-
tonicity, in NeurISP (2019) pp. 7478–7487.

[166] P. Grünwald and T. van Ommen, Inconsistency of bayesian inference for misspecified
linear models, and a proposal for repairing it, Bayesian Analysis 12, 1069 (2017).

4

116 4. THE SHAPE OF LEARNING CURVES: A REVIEW

[167] P. D. Grünwald and W. Kotłowski, Bounds on individual risk for log-loss predictors,
JMLR 19, 813 (2011).

[168] M. F. Al-Saleh and F. A. Masoud, A note on the posterior expected loss as a measure
of accuracy in bayesian methods, Applied mathematics and computation 134, 507
(2003).

[169] T. J. Viering, A. Mey, and M. Loog, Making learners (more) monotone, in IDA
(Springer, 2020) pp. 535–547.

[170] Z. Mhammedi and H. Husain, Risk-monotonicity in statistical learning, arXiv pre-
print arXiv:2011.14126 (2020).

[171] R. A. Schiavo and D. J. Hand, Ten more years of error rate research, International
Statistical Review 68, 295 (2000).

[172] D. J. Hand, Construction and assessment of classification rules (Wiley, 1997).

[173] R. B. Anderson and R. D. Tweney, Artifactual power curves in forgetting, Memory
& Cognition 25, 724 (1997).

[174] A. Heathcote, S. Brown, and D. J. Mewhort, The power law repealed: The case for
an exponential law of practice, Psychonomic bulletin & review 7, 185 (2000).

[175] A. Mey, A note on high-probability versus in-expectation guarantees of generaliza-
tion bounds in machine learning, arXiv:2010.02576 (2020).

[176] R. A. Fisher, An absolute criterion for fitting frequency curves, Messenger of Math-
ematics 41, 155 (1912).

[177] S. M. Stigler, The epic story of maximum likelihood, Statistical Science 22, 598
(2007).

5
MINIMIZERS OF THE

EMPIRICAL RISK AND RISK
MONOTONICITY

Plotting a learner’s average performance against the number of training samples results in
a learning curve. Studying such curves on one or more data sets is a way to get to a better
understanding of the generalization properties of this learner. The behavior of learning
curves is, however, not very well understood and can display (for most researchers) quite
unexpected behavior. Our work introduces the formal notion of risk monotonicity, which
asks the risk to not deteriorate with increasing training set sizes in expectation over the
training samples. We then present the surprising result that various standard learners, spe-
cifically those that minimize the empirical risk, can act nonmonotonically irrespective of the
training sample size. We provide a theoretical underpinning for specific instantiations from
classification, regression, and density estimation. Altogether, the proposed monotonicity
notion opens up a whole new direction of research.

A precursor to this work (see Appendix A) was presented as an open problem at COLT 2019 and has been
published as an extended abstract in Volume 99 of the Proceedings of Machine Learning Research [1]. This
work has been accepted at NeuRIPS 2019, Vancouver, Canada [2]. Appendix D contains the proofs of this
work (page 187).

117

5

118 5. MINIMIZERS OF THE EMPIRICAL RISK AND RISK MONOTONICITY

5.1. INTRODUCTION
Learning curves are an important diagnostic tool that provide researchers and practitioners
with insight into a learner’s generalization behavior [3]. Learning curves plot the (estimated)
true performance against the number of training samples. Among other things, they can be
used to compare different learners to each other. This can highlight the differences due to
their complexity, with the simpler learners performing better in the small sample regime,
while the more complex learners perform best with large sample sizes. In combination with
a plot of their (averaged) resubstitution error (or training error), they can also be employed
to diagnose underfitting and overfitting. Moreover, they can aid when it comes to making
decision about collecting more data or not by extrapolating them to sample sizes beyond
the ones available.

It seems intuitive that learners become better (or at least do not deteriorate) with more
training data. With a bit more reservation, Shalev-Shwartz and Ben-David [3] state, for in-
stance, that the learning curve “must start decreasing once the training set size is larger than
the VC-dimension” (page 153). The large majority of researchers and practitioners (that we
talked to) indeed take it for granted that learning curves show improved performance with
more data. Any deviations from this they contribute to the way the experiments are set up,
to the finite sample sizes one is dealing with, or to the limited number of cross-validation or
bootstrap repetitions one carried out. It is expected that if one could sample a training set ad
libitum and measure the learner’s true performance over all data, such behavior disappears.
That is, if one could indeed get to the performance in expectation over all test data and over
all training samples of a particular size, performance supposedly improves with more data.

We formalize this behavior of expected improved performance in Section 5.3. As we
will typically express a learner’s efficiency in term of the expected loss, we will refer to
this notation as risk monotonicity. Section 5.4 then continues with the main contribution
of this work and demonstrates that various well-known empirical risk minimizers can dis-
play nonmonotonic behavior. Moreover, we show that for these learners this behavior can
persist indefinitely, i.e., it can occur at any sample size. Note: Appendix D contains the
proofs of this work (page 187). Section 5.5 provides some experimental evidence for some
cases of interest that have, up to now, resisted any deeper theoretical analysis. Section 5.6
then provides a discussion and concludes the work. In this last section, among others, we
contrast our notion of risk monotonicity to that of PAC-learnability, note that these are two
essentially different concepts, and consider various research questions of interest to further
refine our understanding of learning curves. Though many will probably find our findings
surprising, counterintuitive behavior of the learning curve has been reported before in vari-
ous other settings. Section 5.2 goes through these and other related works and puts our
contribution in perspective.

5.2. EARLIER WORK AND ITS RELATION TO THE

CURRENT
We split up our overview into the more regular works that characterize monotonic behavior
and those that identify the existence of nonmonotonic behavior.

5.2. EARLIER WORK AND ITS RELATION TO THE CURRENT

5

119

5.2.1. THE MONOTONIC CHARACTER OF LEARNING CURVES

Many of the studies into the behavior of learning curves stem from the end of the 1980s
and the beginning of the 1990s and were carried out by Tishby, Haussler, and others [4–9].
These early investigations were done in the context of neural networks and in their analyses
typically make use of tools from statistical mechanics. A statistical inference approach is
studied by Amari et al. [10] and Amari and Murata [11], who demonstrate the typical power-
law behavior of the asymptotic learning curve. Haussler et al. [12] bring together many of
the techniques and results from the aforementioned works. At the same time, they advance
the theory for learning curves and provide an overview of the rather diverse, though still
monotonic, behavior they can exhibit. In particular, the curve may display multiple steep
and sudden drops in the risk.

Already in 1979, Micchelli and Wahba [13] provide a lower bound for learning curves of
Gaussian processes. Only at the end of the 1990s and beginning of the 2000s, the overall
attention shifted from neural networks to Gaussian processes. In this period, various works
were published that introduce approximations and bounds [14–18]. Different types of tech-
niques were employed in these analyses, some of which again from statistical mechanics.
The main caveat, when it comes to the results obtained, is the assumption that the model is
correctly specified.

The focus of [19] is on support vector machines. They develop efficient procedures for
an extrapolation of the learning curve, so that if only limited computational resources are
available, these can possibly be assigned to the most promising approaches. It is assumed
that, for large enough training set sizes, the error rate converges towards a stable value fol-
lowing a power-law. This behavior was established to hold in many of the aforementioned
works. The ideas that [19] put forward have found use in specific applications (see, for in-
stance, [20]) and can count on renewed interest these days, especially in combination with
flop gobbling neural networks (see, for instance, [21]).

All of the aforementioned works study and derive learning curve behavior that shows no
deterioration with growing training set sizes, even though they may be described as “learn-
ing curves with rather curious and dramatic behavior” [12]. Our work identifies aspects that
are more curious and more dramatic: with a larger training set, performance can deteriorate,
even in expectation.

5.2.2. EARLY NOTED NONMONOTONIC BEHAVIOR

Opper [22] already made the case that nonmonotonic behavior could be expected by study-
ing the theoretical limit behavior of learning curves for very large single layer neural net-
works (see also [23] and [24]). The first to demonstrate this behavior empirically was
probably Duin [25], who looked at the error rate of the model referred to as Fisher’s lin-
ear discriminant. In this context, Fisher’s linear discriminant is used as a classifier and
equivalent to the two-class linear classifier that is obtained by optimizing the squared loss.
This can be solved by regressing the input feature vectors onto a −1/+1 encoding of the
class labels. In case the number of training samples is smaller than or equal to the number
of input dimensions, one needs to deal with the inverse of singular matrices and typically
resorts to the use of the Moore-Penrose pseudo-inverse. In this way, the minimum norm
solution is obtained [26]. It is exactly in this underdetermined setting, as the number of

5

120 5. MINIMIZERS OF THE EMPIRICAL RISK AND RISK MONOTONICITY

training samples approaches the dimensionality, that the error rate will be increasing. Other
examples of exactly this type of nonmonotonic behavior have been reported. Worth men-
tioning are classifiers built based on the lasso [27] and two recent works that have triggered
renewed attention to this subject in the neural networks community [28, 29]. The classifier
reaching a maximum error rate when the sample size transits from an underspecified to an
overspecified setting is originally referred to as peaking (see also [30]). The two recent
works above rename it and use the terms double descent and jamming.

A completely different phenomenon, and yet other way in which learning curves can
be nonmonotonic, is described by Loog and Duin [31]. They show that there are learning
problems for which specific classifiers attain their optimal expected 0-1 loss at a finite
sample size. That is, on such problems, these classifiers perform essentially worse with an
infinite amount of training data compared to some finite training set sizes. The behavior is
referred to as dipping, following the shape of the error rate’s learning curve. In the context
of (safe) semi-supervised learning, Loog [32] then argues that if one cannot even guarantee
improvements in 0-1 loss when receiving more labeled data, this is certainly impossible
with unlabeled data. When evaluating in terms of the loss the model optimizes, however,
one can get to demonstrable improvements and essentially solve the safe semi-supervised
leaning problem [32–34]. Our work shows, however, that also when one looks at the loss
the learner optimizes, there may be no performance guarantees.

The dipping behavior hinges both on the fact that the model is misspecified (i.e., the
Bayes-optimal estimate is not in the class of models considered) and that the classifier does
not optimize what it is ultimately evaluated with. That this setting can cause problems, e.g.,
convergence to the wrong solution, had already been demonstrated for maximum likelihood
by Devroye et al. [35]. If the model class is flexible enough, this discrepancy disappears
in many a setting. This happens, for instance, for the class of classification-calibrated sur-
rogate losses [36]. Note, however, that Devroye et al. [35] conjecture that consistent rules
that are expected to perform better with increasing training sizes (referred to as smart rules)
do not exist. Ben-David et al. [37] analyze the consequence of the mismatch between sur-
rogate and zero-one loss in some more detail and provide another example of a problem
distribution on which such classifiers would dip.

Our results strengthen or extend the above findings in the following ways. First of all,
we show that nonmonotonic behavior can occur in the setting where the complexity of the
learner is small compared to the training set size. Therefore, the reported behavior is not
due to jamming or peaking. Secondly, we are going to evaluate our learners by means of
the loss they actually optimize for. If we look at the linear classifier that optimizes the hinge
loss, for instance, we will study its learning curve for the hinge loss as well. In other words,
there is no discrepancy between the objective used during training and the loss used at test
time. Therefore, possibly odd behavior cannot be explained by dipping. As a third, we
do not only look at classification and regression but also consider density estimation and
(negative) log-likelihood estimation in particular.

5.3. RISK MONOTONICITY
We come to a formal definition of the intuition that with one additional instance a learner
should improve its performance in expectation over the training set. The next sections then

5.3. RISK MONOTONICITY

5

121

study various learners with the notions developed here. First, however, some notations and
prior definitions are provided.

5.3.1. PRELIMINARIES

We let Sn = (z1, . . . , zn) be a training set of size n, sampled i.i.d. from a distribution P over
a general domain Z . Also given is a hypothesis class H and a loss function ℓ : Z ×H → R

through which the performance of a hypothesis h ∈ H is measured. The objective is to
minimize the expected loss or risk under the distribution P , which is given by

RP (h) := E
z∼P

ℓ(z,h). (5.1)

A learner A is a particular mapping from the set of all samples S :=Z ∪Z 2∪Z 3∪ . . . to
elements from the prespecified hypothesis class H . That is, A : S → H . We are particularly
interested in learners Aerm that provide a solution which minimizes the empirical risk R̂Sn

over the training set:
Aerm(Sn) := argmin

h∈H
R̂Sn (h), (5.2)

with

R̂Sn (h) := 1

n

n∑
i=1

ℓ(zi ,h). (5.3)

Most common classification, regression, and density estimation problems can be formulated
in such terms. Examples are the earlier mentioned Fisher’s linear discriminant, support
vector machines, and Gaussian processes, but also maximum likelihood estimation, linear
regression, and the lasso can be cast in similar terms.

5.3.2. DEGREES OF MONOTONICITY

The basic definition is the following.

Definition 1 (local monotonicity). A learner A is (P,ℓ,n)-monotonic with respect to a dis-
tribution P , a loss ℓ, and an integer n ∈N := {1,2, . . .} if

E
Sn+1∼Dn+1

[RP (A(Sn+1))−RP (A(Sn))] ≤ 0. (5.4)

This expresses exactly how we would expect a learner to behave locally (i.e., at a specific
training sample size n): given one additional training instance, we expect the learner to im-
prove. Based on our definition of local monotonicity, we can construct stronger desiderata
that may be of more interest.

The two entities we would like to get rid of in the above definition are n and P . The
former, because we would like our learner to act monotonically irrespective of the sample
size. The latter, because we typically do not know the underlying distribution. For now,
getting rid of the loss ℓ is maybe too much to ask for. First of all, not all losses are compat-
ible with one another, as they may act on different types of z ∈ Z and h ∈ H . But even if
they take the same types of input, a learner is typically designed to minimize one specific
loss and there seems to be no direct reason for it to be monotonic in terms of another. It

5

122 5. MINIMIZERS OF THE EMPIRICAL RISK AND RISK MONOTONICITY

seems less likely, for example, that an SVM is risk monotonic in terms of the squared loss.
(We will nevertheless briefly return to this matter in Section 5.6.) We exactly focus on the
empirical risk minimizers as they seem to be the most appropriate candidates to behave
monotonically in terms of their own loss.

Though we typically do not know P , we do know in which domain Z we are operating.
Therefore, the following definition is suitable.

Definition 2 (local Z -monotonicity). A learner A is (locally) (Z ,ℓ,n)-monotonic with
respect to a loss ℓ and an integer n ∈ N if, for all distributions P on Z , it is (P,ℓ,n)-
monotonic.

When it comes to n, the peaking phenomenon shows that, for some learners, it may
be hopeless to demand local monotonicity for all n ∈ N. What we still can hope to find
is an N ∈ N, such that for all n ≥ N , we find the learner to be locally risk monotonic.
As properties like peaking may change with the dimensionality—the complexity of the
classifier is generally dependent on it, the choice for N will typically have to depend on the
domain.

Definition 3 (weak Z -monotonicity). A learner A is weakly (Z ,ℓ, N)-monotonic with re-
spect to a loss ℓ if there is an integer N ∈N such that for all n ≥ N , the learner is locally
(Z ,ℓ,n)-monotonic.

Given the domain, one may of course be interested in the smallest N for which weak
Z -monotonicity is achieved. If it does turn out that N can be set to 1, the learner is said to
be globally Z -monotonic.

Definition 4 (global Z -monotonicity). A learner A is globally (Z ,ℓ)-monotonic with re-
spect to a loss ℓ if for every integer n ∈N, the learner is locally (Z ,ℓ,n)-monotonic.

5.4. THEORETICAL RESULTS
We consider the hinge loss, the squared loss, and the absolute loss and linear models that
optimize the corresponding empirical loss. In essence, we demonstrate that, there are vari-
ous domains Z for which for any choice of N , these learners are not weakly (Z ,ℓ, N)-
monotonic. For the log-likelihood, we basically prove the same: there are standard learners
for which the (negative) log-likelihood is not weakly (Z ,ℓ, N)-monotonic for any N . The
first three losses can all be used to build classifiers: the first is at the basis of SVMs, while
the second gives rise to Fisher’s linear discriminant in combination with linear hypothesis
classes. The second and third loss are of course also employed in regression. The log-
likelihood is standard in density estimation.

5.4.1. LEARNERS THAT DO BEHAVE MONOTONICALLY

Before we actually move to our negative results, we first provide examples that point in a
positive direction. The first learner is provably risk monotonic over a large collection of
domains. The second learner, the memorize algorithm, is a monotonic learner taken from
[38].

5.4. THEORETICAL RESULTS

5

123

Fitting a normal distribution with fixed covariance and unknown mean. Let Σ be a
d ×d invertible covariance matrix,

H :=
{

z 7→ 1√
(2π)d |Σ|

exp(− 1
2 (z −µ)T Σ−1(z −µ))

∣∣∣µ ∈Rd

}
, (5.5)

Z ⊂Rd , and take the loss to equal the negative log-likelihood.

Theorem 8. If Z is bounded, the learner Aerm is globally (Z ,ℓ)-monotonic.

Remark 1. Using similar arguments, one can show that the learner with H = Rd and
Mahalanobis loss ℓ(z,h) = ||z −h||2Σ := (z −h)T Σ(z −h), with Σ a positive semi-definite
matrix, is globally (Z ,ℓ)-monotonic as well as long as Z is bounded.

The memorize algorithm [38]. When evaluated on a test input object that is also present
in the training set, this classifier returns the label of said training object. In case multiple
training examples share the same input, the majority voted label is returned. In case the
test object is not present in the training set, a default label is returned. This learner is
monotonic for any distribution under the zero-one loss. Similarly, any histogram rule with
fixed partitions is monotone, which follows from properties of the binomial distribution
[35].

5.4.2. LEARNERS THAT DO NOT BEHAVE
To show for various learners that they do not always behave risk monotonically, we con-
struct specific discrete distributions for which we can explicitly proof nonmonotonicity.
What leads to the sought-after counterexamples in our case, is a distribution where a small
fraction of the density is located relatively far away from the origin. In particular, shrinking
the probability of this fraction towards 0 leads us to the lemma below. It is used in the
subsequent proofs, but is also of some interest in itself.

Lemma 2. Let Z := {a,b} be a domain with two elements from R, let

Sk
n−k := (a, . . . , a

k elements

, b, . . . ,b

n−k elements

) (5.6)

be a training set with n samples, and let hk
n−k := Aerm(Sk

n−k). If

−ℓ(b,h0
n+1)+ (n +1)ℓ(b,h1

n)−nℓ(b,h1
n−1) > 0, (5.7)

then Aerm is not locally (Z ,ℓ,n)-monotonic.

Remark 2. For many losses, we have, in fact, that ℓ(b,h0
n) = ℓ(b,h0

n+1) = 0, which further
simplifies the difference of interest to (n +1)ℓ(b,h1

n)−nℓ(b,h1
n−1).

In a way, the above lemma and remark show that if the learning of the single point b does
not happen fast enough, local monotonicity cannot be guaranteed. Section 5.6 will briefly
return to this point.

5

124 5. MINIMIZERS OF THE EMPIRICAL RISK AND RISK MONOTONICITY

Linear hypotheses, squared loss, absolute loss, and hinge loss. We consider linear mod-
els without bias in d dimensions, so take Z = X ×Y ⊂ Rd ×R and H = Rd . Though not
crucial to our argument, we select the minimum-norm solution in the underdetermined case.
For the squared loss, we have ℓ(z,h) = (xT h − y)2 for any z = (x, y) ∈Z . The absolute loss
is given by ℓ(z,h) = |xT h − y | and the hinge loss is defined as ℓ(z,h) = max(0,1− y xT h).
Both the absolute loss and the squared loss can be used for regression and classification.
The hinge loss is appropriate only for the classification setting. Therefore, though the rest
of the setup remains the same, outputs are limited to the set Y = {−1,+1} for the hinge loss.

Theorem 9. Consider a linear Aerm without intercept and assume it either optimizes the
squared, the absolute, or the hinge loss. Assume Y contains at least one nonzero element.
If there exists an open ball B0 that contains the origin, such that B0 ⊂ X , then this risk
minimizer is not weakly (Z ,ℓ, N)-monotonic for any N ∈N.

Fitting a normal distribution with fixed mean and unknown variance (in one dimen-
sion). We follow up on the example where we fitted a normal distribution with fixed
covariance and unknown mean. We limit ourselves, however, to one dimension only and,
more importantly, now take the variance to be the unknown, while fixing the mean (to 0,
arbitrarily). Specifically, let H := {z 7→ 1p

2πσ2
exp(− 1

2σ2 z2)|σ> 0}, Z ⊂R, and take the loss
to equal the negative log-likelihood.

Theorem 10. If there exists an open ball B0 that contains the origin, such that B0 ⊂ Z ,
then estimating the variance of a one-dimensional normal density is not weakly (Z ,ℓ, N)-
monotonic for any N ∈N.

5.5. EXPERIMENTAL EVIDENCE
Our results from the previous section, already show cogently that the behavior of the learn-
ing curve can be interesting to study. Here we complement our theoretical findings with a
few illustrative experiments1 to strengthen this point even further. The results can be found
in Figure 5.1, which displays (numerically) exact learning curves for a couple of differ-
ent settings. The computation is exact, because in the risk computation we enumerate all
possible training sets, and therefore we do not display standard errors of the curves.

The input space considered for all our examples is one-dimensional. The experiment
in Subfigure 5.1b relies on the absolute loss, while all other make use of the squared loss.
In addition, Subfigures 5.1a, 5.1b, and 5.1c consider distributions with two points: a =
(1,1) and b = (1

10 ,1) with the first coordinate the input and the second the corresponding
output. Different plots use different values for the probability of observing a. For Subfigure
5.1a, P (a) = 0.00001, Subfigure 5.1b uses P (a) = 0.1, and Subfigure 5.1c takes P (a) =
0.01. For Subfigure 5.1c, we also studied the effect of a small amount of standard L2-
regularization decreasing with training size (µ = 0.01

n), leading to the regularized solution
Areg. The distribution for Subfigure 5.1d is slightly different and supported on three points:
a = (1,1), b = (1

10 ,−1), and c = (−1,1), with again the first coordinate as the input and the
second the corresponding output. In this case, P (a) = 0.01, P (b) = 0.01, and P (c) = 0.98.

1Code is available through https://github.com/tomviering/RiskMonotonicity

https://github.com/tomviering/RiskMonotonicity

5.5. EXPERIMENTAL EVIDENCE

5

125

This last experiment concerns least squares regression with a bias term: a setting we have
not been able to analyze theoretically up to this point.

0 10 20 30 40

8

8.5

9

9.5

10
10

-4

(a)

0 10 20 30 40

0.8

0.82

0.84

0.86

0.88

0.9

(b)

0 10 20 30 40

0.4

0.5

0.6

0.7

0.8

0.9

(c)

0 10 20 30 40

0.03

0.04

0.05

0.06

0.07

0.08

(d)

Figure 5.1.: Learning curves (average risk against training set size) for some one-
dimensional problems. Subfigure (a) is based on squared loss, no intercept;
(b) on absolute loss, no intercept; (c) on squared loss, no intercept (with and
without regularization); (d) on squared loss with intercept. The solid line, in-
dicates the risk the learner attains in the limit of an infinite training set size.

Most salient is probably the serrated and completely nonmonotonic behavior of the learn-
ing curve for the absolute loss in Figure 5.1b. Of interest as well is that regularization
does not necessarily solve the problem. Subfigure 5.1c even shows it can make it worse:
Areg gives nonmonotonic behavior, while Aerm is monotonic under the same distribution
(cf. [39]). Subfigure 5.1a illustrates clearly how dramatic the expected squared loss can
grow with more data.

In the final example in Figure 5.1d, as already noted, we consider linear regression with
the squared loss that includes a bias term in combination with the distribution supported
on three points. This example is of interest because the usual configuration for standard
learners includes such bias term and one could get the impression from our theoretical res-

5

126 5. MINIMIZERS OF THE EMPIRICAL RISK AND RISK MONOTONICITY

ults (and maybe in particular the proofs) that the origin plays a major role in the bad beha-
vior of some of the learners. But as can be observed here, adding an intercept, and therefore
taking away the possibly special status of the origin does not make risk nonmonotonicity
go away.

5.6. DISCUSSION AND CONCLUSION
It should be clear that this paper does not get to the bottom of the learning-curve issue. In
fact, one of the reasons of this work is to bring it to the attention of the community. We are
convinced that it raises a lot of interesting and interrelated problems that may go far beyond
the initial analyses we offer here. Further study should bring us to a better understanding
of how learning curves can actually act, which, in turn, should enable practitioners to better
interpret and anticipate them.

What this work does convey is that learning curves can (provably) show some rather
counterintuitive and surprising behavior. In particular, we have demonstrated that least
squares regression, regression with the absolute loss, linear models trained with the hinge
loss, and likelihood estimation of the variance of a normal distribution can all suffer from
nonmonotonic behavior, even when evaluated with the loss they optimize for. All of these
are standard learners, using standard loss functions.

Anyone familiar with the theory of PAC learning may wonder how our results can be
reconciliated with the bounds that come from this theory. At a first glance, our observations
may seem to contradict this theory. Learning theory dictates that if the hypothesis class has
finite VC-dimension, the excess risk ϵ of ERM will drop as ϵ=O(1

n) in the realizable case
and as ϵ = O(1p

n
) in the agnostic case [3, 40]. Thus PAC bounds give an upper bound on

the excess risk ϵ that will be tighter given more samples. PAC bounds hold with a particular
probability, but we are concerned with the risk in expectation. Even bounds that hold in
expectation over the training sample will, however, not rule out nonmonotonic behavior.
This is because in the end the guarantees from PAC learning are indeed merely bounds. Our
analysis show that within those bounds, we cannot always expect risk monotonic behavior.
In fact, learning problems of all four possible combinations exist: not PAC-learnable and
monotonic, PAC-learnable and not monotonic, etc. For instance, the memorize algorithm
(end of Subsection 5.4.1) is monotone, while it has infinite VC-dimension and so is not
PAC-learnable.

In light of the learning rates mentioned above, we wonder whether there are deeper links
with Lemma 2 (see also Remark 2). Rewrite Equation (5.7) to find that we do not have local
monotonicity at n in case

−ℓ(b,h0
n+1)

n+1 +ℓ(b,h1
n)

ℓ(b,h1
n−1)

> n

n +1
. (5.8)

With n large enough, we can ignore the first term in the numerator. So if a learner, in this
particular setting, does not learn an instance b at least at a rate of n

n+1 in terms of the loss,
it will display nonmonotonic behavior. According to learning theory, for agnostic learners,
the fraction between two subsequent losses is of the order

√
n

n+1 , which is always larger
than n

n+1 for n > 0. Can one therefore generally expect nonmonotonic behavior for any

5.7. BIBLIOGRAPHY

5

127

agnostic learner? Our normal mean estimation problem shows it cannot. But then, what is
the link, if any?

As already hinted at in the introduction, our findings may also warrant revisiting the
results obtained in [32–34]. These works show that there are some semi-supervised learners
that allow for essentially improved performance over the supervised learner, i.e., these are
truly safe. Though this is the transductive setting, this may in a sense just show how strong
these results are. In the end, their estimation procedures are really rather different from
empirical risk minimization, but it does beg the question whether similar constructs can be
used to get to risk monotonic procedures in the supervised case.

Another question, related to the last remark above, seems of interest: could it be that the
use of particular losses at training time leads to monotonic behavior at test time? Or can
regularization still lead to more monotonic behavior, e.g., by explicitly limiting H? Maybe
particular (upper-bounding) convex losses could turn out to behave risk monotonic in terms
of specific nonconvex losses? Dipping seems to show, however, that this may very well not
be the case. Results concerning smart rules, i.e., classifiers that act monotonically in terms
of the error rate [35], seem to point in the same direction. So should we expect it to be
the other way round? Can nonconvex losses bring us monotonicity guarantees for convex
ones? Of course, monotonicity properties of nonconvex learners are also of interest to study
in their own respect.

An ultimate goal would of course be to fully characterize when one can have risk mono-
tonic behavior and when not. At this point we do not have a clear idea to what extent this
would at all be possible. We were, for instance, not able to analyze some standard, seem-
ingly simple cases, e.g., simultaneously estimating the mean and the variance of a normal
model. And maybe we can only get to rather weak results. Only knowledge about the
domain may turn out to be insufficient and we need to make assumptions on the class of
distributions we are dealing with (leading to some notion of weakly P-monotonicity?). For
a start, we could study likelihood estimation under correctly specified models, for which
generally there turn out to be remarkably few finite-sample results. One can also wonder
whether it is possible to find salient distributional properties that can be specifically related
to the overall shape of the learning curve (see, for instance, [12]).

All in all, we believe that our theoretical results, strengthened by some illustrative ex-
amples, show that the monotonicity of learning curves is an interesting and nontrivial prop-
erty to study.

5.7. BIBLIOGRAPHY
[1] T. Viering, A. Mey, and M. Loog, Open problem: Monotonicity of learning, in Pro-

ceedings of the Thirty-Second Conference on Learning Theory, Proceedings of Ma-
chine Learning Research, Vol. 99, edited by A. Beygelzimer and D. Hsu (Phoenix,
USA, 2019) pp. 3198–3201.

[2] M. Loog, T. Viering, and A. Mey, Minimizers of the empirical risk and risk monoton-
icity, Advances in Neural Information Processing Systems 32 (2019).

[3] S. Shalev-Shwartz and S. Ben-David, Understanding Machine Learning: From The-
ory to Algorithms (Cambridge University Press, 2014).

5

128 5. MINIMIZERS OF THE EMPIRICAL RISK AND RISK MONOTONICITY

[4] N. Tishby, E. Levin, and S. A. Solla, Consistent inference of probabilities in
layered networks: Predictions and generalization, in International Joint Conference
on Neural Networks, Vol. 2 (1989) pp. 403–409.

[5] E. Levin, N. Tishby, and S. A. Solla, A statistical approach to learning and general-
ization in layered neural networks, Proceedings of the IEEE 78, 1568 (1990).

[6] H. Sompolinsky, N. Tishby, and H. S. Seung, Learning from examples in large neural
networks, Physical Review Letters 65, 1683 (1990).

[7] M. Opper and D. Haussler, Calculation of the learning curve of bayes optimal classi-
fication algorithm for learning a perceptron with noise, in Proceedings of the fourth
annual workshop on Computational learning theory (Morgan Kaufmann Publishers
Inc., 1991) pp. 75–87.

[8] H. Seung, H. Sompolinsky, and N. Tishby, Statistical mechanics of learning from
examples, Physical Review A 45, 6056 (1992).

[9] D. Haussler, M. Kearns, M. Opper, and R. Schapire, Estimating average-case learn-
ing curves using bayesian, statistical physics and vc dimension methods, in Advances
in Neural Information Processing Systems (1992) pp. 855–862.

[10] S.-i. Amari, N. Fujita, and S. Shinomoto, Four types of learning curves, Neural Com-
putation 4, 605 (1992).

[11] S.-I. Amari and N. Murata, Statistical theory of learning curves under entropic loss
criterion, Neural Computation 5, 140 (1993).

[12] D. Haussler, M. Kearns, H. S. Seung, and N. Tishby, Rigorous learning curve bounds
from statistical mechanics, Machine Learning 25, 195 (1996).

[13] C. A. Micchelli and G. Wahba, Design Problems for Optimal Surface Interpolation,
Tech. Rep. 565 (Department of Statistics, Wisconsin University, 1979).

[14] M. Opper, Regression with Gaussian processes: Average case performance, in Theor-
etical aspects of neural computation: A multidisciplinary perspective (Springer, 1998)
pp. 17–23.

[15] P. Sollich, Learning curves for Gaussian processes, in Advances in Neural Informa-
tion Processing Systems (1999) pp. 344–350.

[16] M. Opper and F. Vivarelli, General bounds on bayes errors for regression with Gaus-
sian processes, in Advances in Neural Information Processing Systems (1999) pp. 302–
308.

[17] C. K. Williams and F. Vivarelli, Upper and lower bounds on the learning curve for
Gaussian processes, Machine Learning 40, 77 (2000).

[18] P. Sollich and A. Halees, Learning curves for Gaussian process regression: Approx-
imations and bounds, Neural Computation 14, 1393 (2002).

5.7. BIBLIOGRAPHY

5

129

[19] C. Cortes, L. D. Jackel, S. A. Solla, V. N. Vapnik, and J. S. Denker, Learning curves:
Asymptotic values and rate of convergence, in Advances in Neural Information Pro-
cessing Systems (1994) pp. 327–334.

[20] P. Kolachina, N. Cancedda, M. Dymetman, and S. Venkatapathy, Prediction of learn-
ing curves in machine translation, in Proceedings of the 50th Annual Meeting of the
Association for Computational Linguistics: Long Papers-Volume 1 (Association for
Computational Linguistics, 2012) pp. 22–30.

[21] J. Hestness, S. Narang, N. Ardalani, G. Diamos, H. Jun, H. Kianinejad, M. Patwary,
M. Ali, Y. Yang, and Y. Zhou, Deep learning scaling is predictable, empirically, arXiv
preprint arXiv:1712.00409 (2017).

[22] M. Opper, Statistical mechanics of learning: Generalization, in The Handbook of
Brain Theory and Neural Networks (1995) pp. 922–925.

[23] M. Opper and W. Kinzel, Statistical mechanics of generalization, in Models of Neural
Networks III (Springer, 1996) pp. 151–209.

[24] M. Opper, Learning to generalize, Frontiers of Life 3, 763 (2001).

[25] R. P. Duin, Small sample size generalization, in Proceedings of the Scandinavian Con-
ference on Image Analysis, Vol. 2 (1995) pp. 957–964.

[26] A. J. Smola, P. J. Bartlett, D. Schuurmans, and B. Schölkopf, Advances in Large
Margin Classifiers (MIT Press, 2000).

[27] N. Krämer, On the peaking phenomenon of the lasso in model selection, arXiv preprint
arXiv:0904.4416 (2009).

[28] M. Belkin, D. Hsu, S. Ma, and S. Mandal, Reconciling modern machine learning and
the bias-variance trade-off, arXiv preprint arXiv:1812.11118 (2018).

[29] S. Spigler, M. Geiger, S. d’Ascoli, L. Sagun, G. Biroli, and M. Wyart, A jamming
transition from under-to over-parametrization affects loss landscape and generaliza-
tion, arXiv preprint arXiv:1810.09665 (2018).

[30] R. P. Duin, Classifiers in almost empty spaces, in Proceedings of the 15th International
Conference on Pattern Recognition, Vol. 2 (IEEE, 2000) pp. 1–7.

[31] M. Loog and R. P. Duin, The dipping phenomenon, in Joint IAPR International Work-
shops on Statistical Techniques in Pattern Recognition (SPR) and Structural and Syn-
tactic Pattern Recognition (SSPR) (Springer, 2012) pp. 310–317.

[32] M. Loog, Contrastive pessimistic likelihood estimation for semi-supervised classifica-
tion, IEEE Transactions on Pattern Analysis and Machine Intelligence 38, 462 (2016).

[33] J. H. Krijthe and M. Loog, Projected estimators for robust semi-supervised classifica-
tion, Machine Learning 106, 993 (2017).

5

130 5. MINIMIZERS OF THE EMPIRICAL RISK AND RISK MONOTONICITY

[34] J. H. Krijthe and M. Loog, The pessimistic limits and possibilities of margin-based
losses in semi-supervised learning, in Advances in Neural Information Processing
Systems (2018) pp. 1790–1799.

[35] L. Devroye, L. Györfi, and G. Lugosi, A Probabilistic Theory of Pattern Recognition
(Springer, 1996).

[36] P. L. Bartlett, M. I. Jordan, and J. D. McAuliffe, Convexity, classification, and risk
bounds, Journal of the American Statistical Association 101, 138 (2006).

[37] S. Ben-David, D. Loker, N. Srebro, and K. Sridharan, Minimizing the misclassifica-
tion error rate using a surrogate convex loss, in Proceedings of the 29th International
Conference on Machine Learning (2012) pp. 83–90.

[38] S. Ben-David, N. Srebro, and R. Urner, Universal learning vs. no free lunch results,
in Philosophy and Machine Learning Workshop NIPS (2011).

[39] P. D. Grünwald and W. Kotłowski, Bounds on individual risk for log-loss predictors, in
Proceedings of the 24th Annual Conference on Learning Theory (2011) pp. 813–816.

[40] V. N. Vapnik, Statistical Learning Theory (Wiley, 1998).

6
MAKING LEARNERS (MORE)

MONOTONE

Learning performance can show non-monotonic behavior. That is, more data does not
necessarily lead to better models, even on average. We propose three algorithms that take
a supervised learning model and make it perform more monotone. We prove consistency
and monotonicity with high probability, and evaluate the algorithms on scenarios where
non-monotone behaviour occurs. Our proposed algorithm MTHT makes less than 1% non-
monotone decisions on MNIST while staying competitive in terms of error rate compared
to several baselines. Our code is available at https://github.com/tomviering/
monotone.

This work has been accepted at IDA 2020, Virtual Conference [1].

131

https://github.com/tomviering/monotone
https://github.com/tomviering/monotone

6

132 6. MAKING LEARNERS (MORE) MONOTONE

6.1. INTRODUCTION
It is a widely held belief that more training data usually results in better generalizing ma-
chine learning models—cf. [2, 3] for instance. Several learning problems have illustrated,
however, that more training data can lead to worse generalization performance [4–6]. For
the peaking phenomenon [4], this occurs exactly at the transition from the underparamet-
rized to the overparametrized regime. This double-descent behavior has found regained
interest in the context of deep neural networks [7, 8], since these models are typically over-
parametrized. Recently, also several new examples have been found, where in quite simple
settings more data results in worse generalization performance [9, 10].

It can be difficult to explain to a user that machine learning models can actually perform
worse when more, possibly expensive to collect data has been used for training. Besides,
it seems generally desirable to have algorithms that guarantee increased performance with
more data. How to get such a guarantee? That is the question we investigate in this work
and for which we use learning curves. Such curves plot the expected performance of a
learning algorithm versus the amount of training data.1 In other words, we wonder how we
can make learning curves monotonic: meaning that the expected performance deteriorates
less often or by smaller amounts, ideally always improving.

The core approach to make learners monotone is that, when more data is gathered and a
new model is trained, this newly trained model is compared to the currently adopted model
that was trained on less data. Only if the new model performs better should it be used. We
introduce several wrapper algorithms for supervised classification techniques that use the
holdout set or cross-validation to make this comparison. Our proposed algorithm MTHT
uses a hypothesis test to switch if the new model improves significantly upon the old model.
Using guarantees from the hypothesis test we can prove that the resulting learning curve is
monotone with high probability. We empirically study the effect of the parameters of the
algorithms and benchmark them on several datasets including MNIST [11] to check to what
degree the learning curves become monotone.

This work is organized as follows. The notion of monotonicity of learning curves is re-
viewed in Section 6.2. We introduce our approaches and algorithms in Section 6.3, and
prove consistency and monotonicity with high probability in Section 6.4. Section 6.5
provides the empirical evaluation. We discuss the main findings of our results in Section
6.6 and end with the most important conclusions.

6.2. SETTING AND THE DEFINITION OF MONOTONICITY
We consider the setting where we have a learner that now and then receives data and that
is evaluated over time. The question is then, how to make sure that the performance of this
learner over time is monotone—or in other words, how can we guarantee that this learner
over time improves its performance?

We analyze this question in a (frequentist) classification framework. We assume there
exists an (unknown) distribution P over X ×Y , where X is the input space (features) and
Y is the output space (classification labels). To simplify the setup we operate in rounds
indicated by i , where i ∈ {1, . . . ,n}. In each round, we receive a batch of samples Si that
is sampled i.i.d. from P . The learner L can use this data in combination with data from

1Not to be confused with training curves, where the loss versus epochs (optimization iterations) is plotted.

6.3. APPROACHES AND ALGORITHMS

6

133

previous rounds to come up with a hypothesis hi in round i . The hypothesis comes from
a hypothesis space H . H is not to be confused with a hypothesis H0 or H1, which will
be defined later for our hypothesis test. We consider learners L that, as subroutine, use a
supervised learner A : S → H , where S is the space of all possible training sets.

We measure performance by the error rate. The true error rate on P equals

ϵ(hi) =
∫

x∈X

∑
y∈Y

l01(hi (x), y)dP (x, y) (6.1)

where l01 is the zero-one loss. We indicate the empirical error rate of h on a sample S as
ϵ̂(h,S). We call n rounds a run. The true error of the returned hi by the learner L in round
i is indicated by ϵi , all the ϵi ’s of a run form a learning curve. By averaging multiple runs
one obtains the expected learning curve, ϵ̄i .

The goal for the learner L is twofold. The error rates of the returned models ϵi ’s should
(1) be as small as possible, and (2) be monotonically decreasing. These goals can be at odds
with another. For example, always returning a fixed model ensures monotonicity but incurs
large error rates. To measure (1), we summarize performance of a learning curve using the
Area Under the Learning Curve (AULC) [12–14]. The AULC averages all ϵi ’s of a run.
Low AULC indicates that a learner manages to quickly reduce the error rate.

Monotone in round i means that ϵi+1 ≤ ϵi . We may care about monotonicity of the
expected learning curve or individual learning curves. In practice, however, we typically
get one chance to gather data and submit models. In that case, we rather want to make sure
that then any additional data also leads to better performance. Therefore, we are mainly
concerned with monotonicity of individual learning curves. We quantify monotonicity of a
run by the fraction of non-monotone transitions in an individual curve.

6.3. APPROACHES AND ALGORITHMS
We introduce three algorithms (learners L) that wrap around supervised learners with the
aim of making them monotone. First, we provide some intuition how to achieve this: ideally,
during the generation of the learning curve, we would check whether ϵ(hi+1) ≤ ϵ(hi). A fix
to make a learner monotone would be to output hi instead of hi+1 if the error rate of hi+1 is
larger. Since learners do not have access to ϵ(hi), we have to estimate it using the incoming
data. The first two algorithms, MTSIMPLE and MTHT, use the holdout method to this end;
newly arriving data is partitioned into training and validation sets. The third algorithm,
MTCV, makes use of cross validation.

MTSIMPLE : MONOTONE SIMPLE.

The pseudo-code for MTSIMPLE is given by Algorithm 2 in combination with the function
UpdateSimple. Batches Si are split into training (Si

t) and validation (Si
v). The training set

St is enlarged each round with Si
t and a new model hi is trained. Si

v is used to estimate
the performance of hi and hbest. We store the previously best performing model, hbest, and
compare its performance to that of hi . If the new model hi is better, it is returned and hbest
is updated, otherwise hbest is returned.

6

134 6. MAKING LEARNERS (MORE) MONOTONE

Algorithm 2: MSIMPLE and MHT

input :supervised learner A, rounds n, batches Si

u ∈ {updateSimple, updateHT}
if u =updateHT: confidence level α, hypothesis test HT

1 St = {}
2 for i = 1, . . . ,n do
3 Split Si in Si

t and Si
v

4 Append to St : St = [St ;Si
t]

5 hi ← A(St)

6 Upd atei ← u(Si
v , hi , hbest, α, HT) // see below

7 Append to St : St = [St ;Si
v]

8 if Upd atei or i = 1 then
9 hbest ← hi

10 end
11 Return hbest in round i
12 end

Function UpdateSimple

input :Si
v , hi , hbest

1 Pcur r ent ← ϵ̂(hi ,Si
v)

2 Pbest ← ϵ̂(hbest,Si
v)

3 return (Pcur r ent < Pbest)

Function UpdateHT

input :Si
v , hi , hbest, confidence level α,

hypothesis test HT

1 p = HT (Si
v ,hi ,hbest)// p-value

2 return (p ≤ al pha)

Because hi and hbest are both compared on Si
v the comparison is more accurate because

the comparison is paired. After the comparison Si
v can safely be added to the training set

(line 7 of Algorithm 2).
We call this algorithm MTSIMPLE because the model selection is a bit naive: for small

validation sets, the variance in the performance measure could be quite large, leading to
many non-monotone decisions. In the limit of infinitely large Si

v , however, this algorithm
should always be monotone (and very data hungry).

MTHT : MONOTONE HYPOTHESIS TEST.
The second algorithm, MTHT, aims to resolve the issues of MTSIMPLE with small valida-
tion set sizes. In addition, for this algorithm, we prove that individual learning curves are
monotone with high probability. The same pseudo-code is used as for MTSIMPLE (Alorithm
2), but with a different update function UpdateHT. Now a hypothesis test HT determines
if the newly trained model is significantly better than the previous model. The hypothesis
test makes sure that the newly trained model is not better due to chance (such as an un-
lucky sample). The hypothesis test is conservative, and only switches to a new model if we
are reasonably sure it is significantly better, to avoid non-monotone decisions. Japkowicz
and Shah [15] provide an accessible introduction to understand the frequentist hypothesis
testing.

6.4. THEORETICAL ANALYSIS

6

135

The choice of hypothesis test depends on the performance measure. For the error rate
the McNemar test can be used [15, 16]. The hypothesis test should use paired data, since
we evaluate two models on one sample, and it should be one-tailed. One-tailed, since we
only want to know whether hi is better than hbest (a two tailed test would switch to hi if
its performance is significantly different). The test compares two hypotheses: H0 : ϵ(hi) =
ϵ(hbest) and H1 : ϵ(hi) < ϵ(hbest).

Several versions of the McNemar test can be used [15–17]. We use the McNemar exact
conditional test which we briefly review. Let b be the random variable indicating the num-
ber of samples classified correctly by hbest and incorrectly by hi of the sample Si

v , and let
Nd be the number of samples where they disagree. The test conditions on Nd . Assuming
H0 is true, P (b = x|H0, Nd) = (Nd

x

)
(1

2)Nd . Given x b’s, the p-value for our one tailed test is
p =∑x

i=0 P (b = i |H0, Nd).
The one tailed p-value is the probability of observing a more extreme sample given

hypothesis H0 considering the tail direction of H1. The smaller the p-value, the more
evidence we have for H1. If the p-value is smaller than α, we accept H1, and thus we
update the model hbest. The smaller α, the more conservative the hypothesis test, and
thus the smaller the chance that a wrong decision is made due to unlucky sampling. For
the McNemar exact conditional test [17] the False Positive Rate (FPR, or the probability to
make a Type I error) is bounded by α: P (p ≤α|H0) ≤α. We need this to prove monotonicity
with high probability.

MTCV : MONOTONE CROSS VALIDATION.
In practice, often K -fold cross validation (CV) is used to estimate model performance in-
stead of the holdout. This is what MTCV does, and is similar to MTSIMPLE. As described
in Algorithm 3, for each incoming sample an index I maintains to which fold it belongs.
These indices are used to generate the folds for the K -fold cross validation.

During CV, K models are trained and evaluated on the validation sets. We now have to
memorize K previously best models, one for each fold. We average the performance of the
newly trained models over the K -folds, and compare that to the average of the best previous
K models. This averaging over folds is essential, as this reduces the variance of the model
selection step as compared to selecting the best model overall (like MTSIMPLE does).

In our framework we return a single model in each iteration. We return the model with
the optimal training set size that performed best during CV. This can further improve per-
formance.

6.4. THEORETICAL ANALYSIS
We derive the probability of a monotone learning curve for MTSIMPLE and MTHT, and we
prove our algorithms are consistent if the model updates enough.

Theorem 11. Assume we use the McNemar exact conditional test (see Section 6.3) with
α ∈ (0, 1

2], then the individual learning curve generated by Algorithm MTHT with n rounds
is monotone with probability at least (1−α)n .

Proof. First we argue that the probability of making a non-monotone decision in round i is
at most α. If H1 : ϵ(hi) < ϵ(hbest) or H0 : ϵ(hi) = ϵ(hbest) is true, we are monotone in round i ,

6

136 6. MAKING LEARNERS (MORE) MONOTONE

Algorithm 3: MCV

input :K folds, learner A, rounds n, batches Si

1 b ← 1 // keeps track of best round
2 S = {}, I = {}
3 for i = 1, . . . ,n do
4 Generate stratified CV indices for Si and put in I i . Each index i indicates to

which validation fold the corresponding sample belongs.
5 Append to S: S ← [S;Si]

6 Append to I : I ← [I ; I i]
7 for k = 1, . . . ,K do
8 hk

i ← A(S[I 6= k]) // training set of kth fold

9 P k
i ← ϵ̂(hk

i ,S[I = k]) // validation set of kth fold

10 P k
b ← ϵ̂(hk

b ,S[I = k])// update performance of prev. models

11 end
12 Upd atei ← (mean(P k

i) ≤ mean(P k
b)) // mean w.r.t. k

13 if Upd atei or i = 1 then
14 b ← i
15 end
16 k ← argmink P k

b // break ties

17 Return hk
b in round i

18 end

so we only need to consider a new alternative hypothesis H2 : ϵ(hi) > ϵ(hbest). Under H0 we
have [17]: P (p ≤α|H0) ≤α. Conditioned on H2, b is binomial with larger mean than in the
case of H0, thus we observe larger p-values if α ∈ (0, 1

2], thus P (p ≤α|H2) ≤ P (p ≤α|H0) ≤
α. Therefore the probability of being non-monotone in round i is at most α. This holds for
any model hi , hbest and anything that happened before round i . Since Si

v are independent
samples, being non-monotone in each round can be seen as independent events, resulting
in (1−α)n .

If the probability of being non-monotone in all rounds is at most β, we can set α =
1 −β

1
n to fulfill this condition. Note that this analysis also holds for MTSIMPLE, since

running MTHT with α = 1
2 results in the same algorithm as MTSIMPLE for the McNemar

exact conditional test.
We now argue that all proposed algorithms are consistent under some conditions. First,

let us revisit the definition of consistency [3].

Definition 5 (Consistency[3]). Let L be a learner that returns a hypothesis L(S) ∈ H when
evaluated on S. For all ϵexcess ∈ (0,1), for all distributions P over X ×Y , for all δ ∈ (0,1), if
there exists a n(ϵexcess,P,δ), such that for all m ≥ n(ϵexcess,P,δ), if L uses a sample S of size
m, and the following holds with probability (over the choice of S) at least 1−δ,

ϵ(L(S)) ≤ min
h∈H

ϵ(h)+ϵexcess, (6.2)

6.5. EXPERIMENTS

6

137

then L is said to be consistent.

Before we can state the main result, we have to introduce a bit of notation. Ui indicates
the event that the algorithm updates hbest (or in case of MCV it updates the variable b). H i+z

i
to indicates the event that ¬Ui ∩¬Ui+1 ∩ . . .∩¬Ui+z , or in words, that in round i to i + z
there has been no update. To fulfill consistency, we need that when the number of rounds
grows to infinity, the probability of updating is large enough. Then consistency of A makes
sure that hbest has sufficiently low error. For this analysis it is assumed that the number of
rounds of the algorithms is not fixed.

Theorem 12. MTSIMPLE, MTHT and MTCV are consistent, if A is consistent and if for all i

there exists a zi ∈N\0 and Ci > 0 such that for all k ∈N\0 it holds that P (H i+kzi
i) ≤ (1−Ci)k .

Proof. Let A be consistent with nA(ϵexcess,P,δ) samples. Let us analyze round i where i is
big enough such that2 |St | > nA(ϵexcess,P, δ2). Assume that

ϵ(hbest) > min
h∈H

ϵ(h)+ϵexcess, (6.3)

otherwise the proof is trivial. For any round j ≥ i , since A produces hypothesis h j with
|St | > nA(ϵexcess,P, δ2) samples,

ϵ(h j) ≤ min
h∈H

ϵ(h)+ϵexcess (6.4)

holds with probability of at least 1− δ
2 . Now L should update. The probability that in the

next kzi rounds we do not update is, by assumption, bounded by (1−Ci)k . Since Ci > 0,
we can choose k big enough so that (1−Ci)k ≤ δ

2 . Thus the probability of not updating after
kzi more rounds is at most δ

2 , and we have a probability of δ
2 that the model after updating

is not good enough. Applying the union bound we find the probability of failure is at most
δ.

A few remarks about the assumption. It tells us, that an update is more and more likely
if we have more consecutive rounds where there has been no update. It holds if each zi

rounds the update probability is nonzero. A weaker but also sufficient assumption is ∀i :
limz→∞ P (H i+z

i) → 0.
For MTSIMPLE and MTCV the assumption is always satisfied, because these algorithms

look directly at the mean error rate—and due to fluctuations in the sampling there is always
a non-zero probability that ϵ̂(hi) ≤ ϵ̂(hbest). However, for MTHT this may not always be
satisfied. Especially if the validation batches Nv are small, the hypothesis test may not be
able to detect small differences in error—the test then has zero power. If Nv stays small,
even in future rounds the power may stay zero, in which case the learner is not consistent.

6.5. EXPERIMENTS
We evaluate MTSIMPLE and MTHT on artificial datasets to understand the influence of
their parameters. Afterward we perform a benchmark where we also include MTCV and

2In case of MTCV, take |St | to be the smallest training fold size in round i

6

138 6. MAKING LEARNERS (MORE) MONOTONE

a baseline that uses validation data to tune the regularization strength. This last experi-
ment is also performed on the MNIST dataset to get an impression of the practicality of the
proposed algorithms. First we describe the experimental setup in more detail.

EXPERIMENTAL SETUP.
The peaking dataset [4] and dipping dataset [6] are artificial datasets that cause non-monotone
behaviour. We use stratified sampling to obtain batches Si for the peaking and dipping data-
set, for MNIST we use random sampling. For simplicity all batches have the same size. N
indicates batch size, and Nv and Nt indicate the sizes of the validation and training sets.

As model we use least squares classification [18, 19]. This is ordinary linear least squares
regression on the classification labels {−1,+1} with intercept. For MNIST one-versus-all is
used to train a multi-class model. In case there are less samples for training than dimensions,
the required inverse of the covariance matrix is ill-defined and we resort to the Moore-
Penrose Pseudo-Inverse.

Monotonicity is calculated by the fraction of non-monotone iterations per run. AULC
is also calculated per run. We do 100 runs with different batches and average to reduce
variation from the randomness in the batches. Each run uses a newly sampled test set
consisting of 10000 samples. The test set is used to estimate the true error rate and is not
accessible by any of the algorithms. Because of the large number of runs the standard errors
of the learning curve are quite small and therefore we do not display them to improve the
clarity of the figures.

We evaluate MSIMPLE, MHT and MCV and several baselines. The standard learner just
trains on all received data. A second baseline, λS , splits the data in train and validation like
MSIMPLE and uses the validation data to select the optimal L2 regularization parameter λ

for the least square classifier. Regularization is implemented by adding λI to the estimate
of the covariance matrix.

In the first experiment we investigate the influence of Nv and α for MTSIMPLE and MTHT
on the decisions. A complicating factor is that if Nv changes, not only decisions change,
but also training set sizes because Sv is appended to the training set (see line 7 of Algorithm
2). This makes interpretation of the results difficult because decisions are then made in a
different context. Therefore, for the first set of experiments, we do not add Sv to the training
sets, also not for the standard learner. For this set of experiment We use Nt = 4, n = 150,
d = 200 for the peaking dataset, and we vary α and Nv .

For the benchmark, we set Nt = 10, Nv = 40, n = 150 for peaking and dipping, and
we set Nt = 5, Nv = 20, n = 40 for MNIST. We fix α = 0.05 and use d = 500 for the
peaking dataset. For MNIST, as preprocessing step we extract 500 random Fourier-features
as also done by Belkin et al. [7]. For MTCV we use K = 5 folds. For λS we try λ ∈
{10−5,10−4.5, . . . ,104.5,105} for peaking and dipping, and we try λ ∈ {10−3,10−2, . . . ,103} for
MNIST.

RESULTS.
We perform a preliminary investigation of the algorithms MSIMPLE and MHT and the in-
fluence of the parameters Nv and α. We show several learning curves in Figure 6.1a and
6.1d. For small Nv and α we observe MTHT gets stuck: it does not switch models anymore,
indicating that consistency could be violated.

6.6. DISCUSSION

6

139

In Figure 6.1b and Figure 6.1e we give a more complete picture of all tried hyperpara-
meters in terms of the AULC. In Figure 6.1c and Figure 6.1f we plot the fraction of non-
monotone decisions during a run (note that the legends for the subfigures are different).
Observe that the axes are scaled differently (some are logarithmic). In some cases zero non-
monotone decisions were observed, resulting in a missing value due to log(0). This occurs
for example if MTHT always sticks to the same model, then no non-monotone decisions are
made. The results of the benchmark are shown in Figure 6.2. The AULC and fraction of
monotone decisions are given in Table 6.1.

6.6. DISCUSSION
FIRST EXPERIMENT: TUNING α AND Nv .

As predicted MTSIMPLE typically performs worse than MTHT in terms of AULC and mono-
tonicity unless Nv is very large. The variance in the estimate of the error rates on Si

v is
so large that in most cases the algorithm does not switch to the correct model. However,
MTSIMPLE seems to be consistently better than the standard learner in terms of monotonicity
and AULC, while MTHT can perform worse if badly tuned.

Larger Nv leads typically to improved AULC for both. α ∈ [0.05,0.1] seems to work best
in terms of AULC for most values of Nv . If α is too small, MTHT can get stuck, if α is too
large, it switches models too often and non-monotone behaviour occurs. If α→ 1

2 , MTHT
becomes increasingly similar to MTSIMPLE as predicted by the theory.

The fraction of non-monotone decisions of MTHT is much lower than α. This is in
agreement with Theorem 11, but could indicate in addition that the hypothesis test is rather
pessimistic. The standard learner and MTSIMPLE often make non-monotone decisions. In
some cases almost 50% of the decisions are not-monotone.

SECOND EXPERIMENT: BENCHMARK ON PEAKING, DIPPING, MNIST.

Interestingly, for peaking and MNIST datasets any non-monotonicity (double descent [7])
in the expected learning curve almost completely disappears for λS , which tunes the reg-
ularization parameter using validation data (Figure 6.2). We wonder if regularization can
also help reducing the severity of double descent in other settings. For the dipping dataset,
regularization does not help, showing that it cannot prevent non-monotone behaviour. Fur-
thermore, the fraction of non-monotone decisions per run is largest for this learner (Table
6.1).

For the dipping dataset MCV has a large advantage in terms of AULC. We hypothesize
that this is largely due to tie breaking and small training set sizes due to the 5-folds. Surpris-
ingly on the peaking dataset it seems to learn quite slowly. The expected learning curves
of MTHT look better than that of MTSIMPLE, however, in terms of AULC the difference is
quite small.

The fraction of non-monotone decisions for MTHT per run is very small as guaranteed.
However, it is interesting to note that this does not always translate to monotonicity in the
expected learning curve. For example, for peaking and dipping the expected curve does
not seem entirely monotone. But MTCV, which makes many non-monotone decisions per
run, still seems to have a monotone expected learning curve. While monotonicity of each

6

140 6. MAKING LEARNERS (MORE) MONOTONE

0 100 200 300 400 500 600

0.2

0.25

0.3

0.35

0.4

0.45

0.5

(a) Peaking learning curve

5 15 25 50 100 1000

0.22

0.24

0.26

0.28

0.3

0.32

0.34

(b) Peaking AULC

5 15 25 50 100 1000

0.005

0.05

0.1

0.25

0.45

(c) Peaking Monotonicity

0 100 200 300 400 500 600

0.28

0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

(d) Dipping learning curve

5 15 25 50 100 1000

0.28

0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

(e) Dipping AULC

5 15 25 50 100 1000

0.005

0.05

0.1

0.25

0.45

(f) Dipping Monotonicity

Figure 6.1.: Influence of Nv and α for MTSIMPLE and MTHT on the Peaking and Dipping
dataset. Note that some axes are logarithmic and b, c, e, f have the same legend.

0 1000 2000 3000 4000 5000 6000 7000

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

(a) Peaking

0 1000 2000 3000 4000 5000 6000 7000

0.25

0.3

0.35

0.4

0.45

0.5

(b) Dipping

0 200 400 600 800 1000

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(c) MNIST

Figure 6.2.: Expected learning curves on the benchmark datasets.

individual learning curves guarantees monotonicity in the expected curve, this result indic-
ates monotonicity of each individual curve may not be necessary. This raises the question:
under what conditions do we have monotonicity of the expected learning curve?

GENERAL REMARKS.
The fraction of non-monotone decisions of MTHT being so much smaller than α could
indicate the hypothesis test is too pessimistic. Fagerland et al. [17] note that the asymptotic
McNemar test can have more power, which could further improve the AULC. For this test
the guarantee P (p ≤ α|H0) ≤ α can be violated, but in light of the monotonicity results
obtained, practically this may not be an issue.

MTHT is inconsistent at times, but this does not have to be problematic. If one knows

6.6. DISCUSSION

6

141

Table 6.1.: Results of the benchmark. SL is the Standard Learner. AULC is the Area Under
the Learning Curve of the error rate. Fraction indicates the average fraction
of non-monotone decisions during a single run. Standard deviation shown in
(braces). Best monotonicity result is underlined.

AULC Peaking AULC Dipping AULC MNIST
SL 0.198 (0.003) 0.49 (0.01) 0.44 (0.01)

MTS 0.195 (0.005) 0.45 (0.06) 0.42 (0.02)

MTHT 0.208 (0.009) 0.38 (0.08) 0.45 (0.02)

MTCV 0.208 (0.005) 0.28 (0.02) 0.45 (0.01)

λS 0.147 (0.003) 0.49 (0.01) 0.36 (0.02)

Fraction Peaking Fraction Dipping Fraction MNIST
SL 0.31 (0.02) 0.50 (0.03) 0.27 (0.04)

MTS 0.23 (0.03) 0.37 (0.15) 0.11 (0.04)

MTHT 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

MTCV 0.34 (0.03) 0.19 (0.08) 0.30 (0.06)

λS 0.43 (0.03) 0.50 (0.03) 0.46 (0.05)

the desired error rate, a minimum Nv can be determined that ensures the hypothesis test
will not get stuck before reaching that error rate. Another possibility is to make the size
Nv dependent on i : if Nv is monotonically increasing this directly leads to consistency of
MTHT. It would be ideal if somehow Nv could be automatically tuned to trade off sample
size requirements, consistency and monotonicity. Since for CV Nv automatically grows
and thus also directly implies consistency, a combination of MTHT and MTCV is another
option.

Devroye et al. [20] conjectured that it is impossible to construct a consistent learner that
is monotone in terms of the expected learning curve. Since we look at individual curves,
our work does not disprove this conjecture, but some of the authors on this paper believe
that the conjecture can be disproved. One step to make is to get to an essentially better
understanding of the relation between individual learning curves and the expected one.

Currently, our definition judges any decision that increases the error rate, by however
small amount, as non-monotone. It would be desirable to have a broader definition of
non-monotonicity that allows for small and negligible increases of the error rate. Using
a hypothesis test satisfying such a less strict condition could allow us to use less data for
validation.

Finally, the user of the learning system should be notified that non-monotonicity has oc-
curred. Then the cause can be investigated and mitigated by regularization, model selection,
etc. However, in automated systems our algorithm can prevent any known and unknown
causes of non-monotonicity (as long as data is i.i.d.), and thus can be used as a failsafe that
requires no human intervention.

6

142 6. MAKING LEARNERS (MORE) MONOTONE

6.7. CONCLUSION
We have introduced three algorithms to make learners more monotone. We proved under
which conditions the algorithms are consistent and we have shown for MTHT that the learn-
ing curve is monotone with high probability. If one cares only about monotonicity of the
expected learning curve, MTSIMPLE with very large Nv or MTCV may prove sufficient as
shown by our experiments. If Nv is small, or one desires that individual learning curves
are monotone with high probability (as practically most relevant), MTHT is the right choice.
Our algorithms are a first step towards developing learners that, given more data, improve
their performance in expectation.

6.8. BIBLIOGRAPHY
[1] T. J. Viering, A. Mey, and M. Loog, Making learners (more) monotone, in Interna-

tional Symposium on Intelligent Data Analysis (Springer, 2020) pp. 535–547.

[2] M. Mohri, A. Rostamizadeh, and A. Talwalkar, Foundations of Machine Learning
(MIT Press, 2012).

[3] S. Shalev-Shwartz and S. Ben-David, Understanding machine learning: From theory
to algorithms (Cambridge university press, USA, 2014).

[4] R. Duin, Small sample size generalization, in Proceedings of the Scandinavian Con-
ference on Image Analysis, Vol. 2 (1995) pp. 957–964.

[5] M. Opper, W. Kinzel, J. Kleinz, and R. Nehl, On the ability of the optimal perceptron
to generalise, Journal of Physics A: Mathematical and General 23, L581 (1990).

[6] M. Loog and R. Duin, The dipping phenomenon, in S+SSPR (Hiroshima, Japan, 2012)
pp. 310–317.

[7] M. Belkin, D. Hsu, S. Ma, and S. Mandal, Reconciling modern machine-learning
practice and the classical biasvariance trade-off, Proceedings of the National
Academy of Sciences 116, 15849 (2019).

[8] S. Spigler, M. Geiger, S. D’Ascoli, L. Sagun, G. Biroli, and M. Wyart, A jamming
transition from under- to over-parametrization affects loss landscape and generaliza-
tion, arXiv preprint arXiv:1810.09665 (2018).

[9] T. Viering, A. Mey, and M. Loog, Open problem: Monotonicity of learning, in Con-
ference on Learning Theory, COLT (2019) pp. 3198–3201.

[10] M. Loog, T. Viering, and A. Mey, Minimizers of the Empirical Risk and Risk Mono-
tonicity, in NeuRIPS 32 (2019) pp. 7476–7485.

[11] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to
document recognition, Proceedings of the IEEE 86, 2278 (1998).

[12] J. ONeill, S. J. Delany, and B. MacNamee, Model-free and model-based active learn-
ing for regression, in 16th UK Workshop on Computational Intelligence (Springer,
2016) pp. 375–386.

6.8. BIBLIOGRAPHY

6

143

[13] M. Huijser and J. C. van Gemert, Active decision boundary annotation with deep
generative models, in ICCV (2017) pp. 5286–5295.

[14] B. Settles and M. Craven, An analysis of active learning strategies for sequence la-
beling tasks, in EMNLP (2008) pp. 1070–1079.

[15] N. Japkowicz and M. Shah, Evaluating Learning Algorithms: A Classification Per-
spective (Cambridge University Press, 2011).

[16] S. Raschka, Model evaluation, model selection, and algorithm selection in machine
learning, arXiv preprint arXiv:1811.12808 (2018).

[17] M. W. Fagerland, S. Lydersen, and P. Laake, The McNemar test for binary matched-
pairs data: mid-p and asymptotic are better than exact conditional. BMC medical
research methodology 13, 91 (2013).

[18] T. Hastie, R. Tibshirani, and J. H. Friedman, The Elements of Statistical Learning
(Springer, 2009).

[19] R. Rifkin, G. Yeo, and T. Poggio, Regularized least-squares classification, Nato Sci-
ence Series Sub Series III Computer and Systems Sciences 190, 131 (2003).

[20] L. Devroye, L. Györfi, and G. Lugosi, A Probabilistic Theory of Pattern Recognition,
Stochastic Modelling and Applied Probability (Springer, 1996).

7
DISCUSSION

We have discussed the concept of safety with respect to three topics: explainability, active
learning and supervised learning. We illustrated that Grad-CAM as an explanation method
can be unsafe for neural networks that otherwise perform well. In active learning, we
showed that tighter generalization bounds do not imply that one algorithm is better than
the other. Instead, we should take into account the probability of the worst-case scenario
that such bounds consider. An average case analysis gave us a more accurate picture of the
performance of different approaches.

In the context of learning curves we have come back to the foundation of machine learn-
ing and studied whether supervised learning itself is safe, in the sense that, whether more
data leads to improvement in terms of the expected risk. The review has provided an over-
view regarding known results of non-monotone and monotone learning curves, mostly il-
lustrating that for very little settings monotonicity results are known, and that plenty of
non-monotone examples exist. Even non-monotonicity can occur in benign settings where
there is no model misspecification, indicating perhaps that monotonicity is indeed a very
difficult property to satisfy. This is corroborated by the fact that we found more novel ex-
amples that show non-monotone behavior, even in simple settings. However, we end on
a positive note, as the last chapter illustrates that it is possible to make learning curves
somewhat more monotone using wrapper algorithms.

We now discuss what we see as the three most interesting directions for further research
as inspired by this work, in the context of the three topics: explainability, active learning
and learning curves. Afterward, we wrap up with a discussion with a final reflection on our
concept of safety in machine learning.

7.1. MONOTONE IN EXPECTATION?
In Chapter 6 we have discussed how to make learning curves monotone with high probab-
ility with wrapper algorithms. In the experiments we have also observed that the learning
curves of the wrapper became somewhat more monotone in expectation. Up until now it
has remained impossible for us to prove anything regarding monotonicity of the expected
learning curve of the wrapper algorithm.

We think this an intriguing issue that deserves further study, because, this in turn could

145

7

146 7. DISCUSSION

prove or falsify the conjecture of Devroye et al. [1]. They conjectured that it is impossible
to have learners that are monotone in expectation and that are universally consistent. Uni-
versally consistent means a learner converges to the Bayes optimal risk when the amount
of data grows to infinity for all possible distributions PX Y . Applying the technique of the
wrapper algorithm to universally consistent learners should result in learners who are also
monotone with high probability. If we would know more about when the expected curve
of wrappers would become monotone in expectation, this knowledge could then help prove
or disprove the conjecture. One technical issue is that the proof of monotonicity with high
probability relies on the fact that there are a finite amount of rounds. However, we think it
is possible to extend the analysis to infinite rounds for the MT HT wrapper algorithm, by
making the confidence level α of the hypothesis test dependent on the round.

One way to study the question of whether monotonicity in expectation is achievable by
wrapper algorithms, is to assume a distribution on the learning curve of the original learner
A(S). We have come up with a problem whose learning curve distribution is known, and
where we conjecture that the wrapper algorithm MTSIMPLE can make the expected learning
curve strictly monotone. We see this as a first step towards understanding when it is possible
to make the curve monotone in expectation. The example is as follows.

Example 1. Assume we have a 1D classification problem, where p(x) is the uniform distri-
bution between −0.5 and 0.5. Assume that the ground truth decision rule is linear and that
there is no model misspecification. Without loss of generality we can assume that the true
decision rule is sign(x). We choose as hypothesis class all possible linear models on the
interval [−0.5,0.5], which we can parameterize as H = {h(x) = sign(xw+b); w ∈ {−1,1},b ∈
[−0.5,0.5]}. Let A(S) be the following peculiar learner. Each time it is invoked, it ignores
the sample S, and selects uniformly a random model h ∈ H . For example, it could determine
w by a fair coinflip and sample b randomly from a uniform distribution on [−0.5,0.5].

For this example, we can analytically compute the error rate for each model h. We find
that the error rate is given by |b| for w = 1, and 1−|b| for w =−1, see Figure 7.1. Note that

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

b

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

e
rr

o
r

ra
te

w = -1

w = 1

Figure 7.1.: The error rate depending on the parameters of h.

7.1. MONOTONE IN EXPECTATION?

7

147

the error rate for w = 1 is in [0,1/2] as here the model has the correct sign, while for w =−1
the error rate is in [1/2,1]. Going through the motions, we can compute the distribution
of R(A(S)), e.g. the distribution of the error rate of the model returned by A(S). However,
from the fact that the distribution b is uniform, and that w is also uniform on {−1,+1}, and
from inspection of Figure 7.1, we can conclude that the error rate R(A(S)) must also be a
uniform random variable on [0,1] — due to symmetry considerations this must be the case.
Unlike usual learning algorithms, the distribution of the error rate does not depend on n.

This gives us thus directly the distribution of the learning curve, see Figure 7.2 (left) for
an illustration. The mean of the error rate is 0.5 for each sample size, and therefore the
expected learning curve is constant. In view of monotonicity, the expected curve is at least
monotone, but not strictly. Note that a non-averaged learning curve on the other hand is
extremely ill-behaved, as the consecutive error rates are i.i.d. random samples from [0,1],
and thus would be highly non-monotone.

For this case it is possible to compute the distribution of the learning curve of the wrapper
algorithm in closed form for MTSIMPLE in case Nv = 1, that is, where a validation set of
a single sample is used. A short derivation is given in Appendix E. The distribution is
illustrated in Figure 7.2 (right) for a few sample sizes. It can be seen that the expected
curve behaves strictly monotone, but it remains an open issue to prove this rigorously for
all sample sizes. If we could prove it, it would be the first example where we show that the
wrapper algorithm can make the expected curve strictly monotone.

This example is of course unrealistic, as the error rate for the model would never be
uniform on [0,1]. But we can trivially also plug in other distributions to model the error
rate in this exact computation. For example, we could model the error rate as being uniform
between [a(n),b(n)], for 0 < a(n) < b(n) < 1, where a(n) and b(n) are dependent on the
sample size n. This may already give a reasonable model to approximate error rates for a
model trained on actual data. If we have a good estimate of these distributions, we can use
the same procedure as described in Appendix E to compute the exact learning curve of the
wrapper algorithm for these more realistic settings.

0 5 10 15 20 25 30

round

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

e
rr

o
r

ra
te

25th quartile

median

75th quartile

mean

0 5 10 15 20 25 30

round

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

e
rr

o
r

ra
te

25th quartile

median

75th quartile

mean

Figure 7.2.: In the left subfigure the distribution of the learning curve is given for A(S),
in the right subfigure the distribution of the wrapper algorithm MTSIMPLE is
shown.

7

148 7. DISCUSSION

One issue is that in this appendix we have assumed that the error rate of the models with
different sample sizes are independent. This may not be the case in practice when a train-
ing set is enlarged iteratively when building the learning curve, e.g. using monotonically
increasing training sets. To illustrate, let us assume the existence of an outlier object which
confuses the model during training, impacting performance negatively. If the training set
Sn has as nth sample this outlier, the next training set Sn+1 will also contain this outlier,
and thus their performances are dependent. However, at this point, it is not clear whether
including these dependencies is necessary to analyze the expected learning curve.

Initially, we would suggest to plug in hand-crafted learning curve distributions to get
a better understanding of the wrapper behavior. For some learning curve distributions it
should be clear that wrappers can never make the expected curve monotone. For example,
if the distribution of the error rate conditioned on n samples is always smaller than the
distribution of the error rate conditioned on n +1 samples, the expected curve can never be
monotone if the wrapper has a non-zero probability of switching to the model with n +1
samples (see Figure 7.3, left). Typically, we would expect that the wrapper has a non-
zero probability of switching in every round, as this seems necessary to satisfy universal
consistency.

We anticipate a few general rules that govern whether the expected curve can be made
monotone. Inspired by the previous discussion, one condition is that the distribution of the
error rate for different sample sizes should have sufficient overlap (see Figure 7.3, right). By
the same logic, when looking for learners that can be made monotone by the wrapper, we
should look for learners A(S) that do not learn too fast. Learning too fast reduces the overlap
between consecutive sample sizes and thus may lead to unavoidable non-monotonicity if the
curve is going up. As another option, we may consider injecting noise into A(S), as this
may cause the spread of the error rate to increase, leading to more overlap, thus making it
more feasible to make the expected curve monotone even if the error rate of A(S) is going

0 0.2 0.4 0.6 0.8 1

error rate

0

5

10

15

P
D

F

Round 1 Round 2

0 0.2 0.4 0.6 0.8 1

error rate

0

5

10

15

P
D

F

Round 1 Round 2

Figure 7.3.: Different learning curve distributions of A(S). Left: this learning problem can-
not be made monotone by wrapper algorithms. Right: by increasing the spread
of both distributions, overlap is increased, perhaps making it possible to mono-
tonify the expected curve of the wrapper algorithm even if the error rate is
increasing.

7.1. MONOTONE IN EXPECTATION?

7

149

up. Furthermore, we should also avoid learners A(S) that reach the best possible error rate
for finite sample sizes. Because if this occurs, the error can only go up, and we may obtain
non-monotonicity.

Besides that, we can study different wrapper algorithms and the influence of their hyper-
parameters. In particular, it would be interesting to investigate MTHT, as it may be able to
achieve monotonicity with high probability for an infinite amount of rounds. Ideally, we
would study the class of all wrapper algorithms, as this will tell us more generally when it
is possible to achieve monotonicity of the expected curve. A more in depth investigation
of these issues will lead us to a better understanding of when monotonicity of the expected
curve is possible, and perhaps will help to settle whether the conjecture raised by Devroye
et. al. is true or not.

While preparing this dissertation, two new works make further steps into resolving mono-
tonicity in expectation. A first step was made by Mhammedi [2], who initially claimed to
have developed a wrapper algorithm that makes the learning curve monotone in expectation.
Just like our wrapper algorithm, it relies on switching to a new model if there is sufficient
confidence that the new model is better. Using the fact that losses are bounded, the confid-
ence can be tuned in such a way that the loss in expectation is bounded. However, as pointed
out by Bousquet et al. [3], there was a small mistake in the proof for the expected curve, and
it turns out that the expectation case can still show some small bounded non-monotonicity.

Following similar arguments as we gave just above, Bousquet et al. [3] realize in a pre-
print that in some cases a wrapper algorithm cannot make the curve monotone. In particular,
they consider the case where the learner is deterministic, and thus the learning curve is a
series of delta peaks. In that case, there is zero overlap between distributions of the learning
curve, and the curve cannot be made monotone by a wrapper algorithm, as we have argued
before. One way to get around this impossibility result, is to degrade the performance of
learners. By an intelligent scheme where older learners are slightly degraded in their per-
formance by adding noise, Bousquet et al. [3] prove monotonicity in expectation. This is
done in a similar way as our wrapper algorithm, by checking the performance of competing
hypotheses on a validation set, and accepting new models only if they perform better with
sufficiently large margin. Their analysis focuses on the case of the zero-one loss for multi-
class and binary classification. They argue that by applying their technique to universally
consistent learners, that they have resolved the conjecture of Devroye et al. Interestingly,
Pestov [4] actually resolved the conjecture of Devroye et al. just a year earlier. However,
their focus is on a specific histogram learner. Meanwhile, the analysis of Bousquet et al. [3],
is applicable to any kind of learner, in the same spirit as our wrapper algorithm. Besides
a rigorous checking of these theoretical results, it remains to be seen how practical these
proposed algorithms are.

Furthermore, Mhammedi [2] uses the training set to make decisions. Because of over-
fitting concerns, necessarily this approach must be pessimistic. In case of learners such as
the 1NN, whose training error will always be zero, it remains to be seen how useful this
algorithm is. We believe that for these reasons, it may still be more practical to split data in
training and validation sets, and to use validation data to make decisions to make the curve
monotone. Ideally we would characterize the sample efficiency and degree of monotonicity
of both approaches to find out which approach is to be preferred in what case.

7

150 7. DISCUSSION

7.2. SAFE EXPLANATION METHODS
Regarding explainability, Chapter 2 shows that Grad-CAM is not robust to manipulations
of neural networks by an adversary that do not affect the performance significantly. One
shortcoming of our attack was that the network architecture had to be changed, as this makes
the scenario more pathological. It also makes the attack easily recognizable in practical
settings since changes in architecture should be apparent in code.

However, recent work has shown that an attack in the same spirit can be carried out by
only changing the values of the network weights [5], proving that such attacks are not patho-
logical and indeed are realistic. The practical take home messages here are that one should
be careful to check that weights are not manipulated by an attacker when downloading
them. Moreover, when neural networks are used in high stakes settings, it would be good to
check that weights are not manipulated from time to time. Both can be accomplished using
cryptographic hashing, such as using an MD5 or, even better, a SHA checksum [6].

On the more theoretical side, that networks exist that can mislead explenations is prob-
lematic. While it seems unlikely that networks trained with regular loss functions (cross
entropy, etc.) exhibit such misleading explanations, it would be very comforting to some-
how prove when the explanation methods are safe to use. Because we currently do not fully
understand how deep neural network training works, it seems impossible to rule out that by
accident gradient descent will construct a network with misleading explanations. Ideally,
we would have a condition that can be checked, to assure us whether the explanations will
be faithful.

Since Grad-CAM uses the gradient, perhaps misleading explanations can be detected by
looking at the magnitude of second order or higher order derivatives of the network output
with respect to the input. For example, if second order derivatives are very large close to
the object that is being explained, it indicates that the gradient may not be trusted as small
changes in pixel values could lead to large changes in the gradient. Perhaps regularization
of such higher order derivatives during training may guarantee trustworthy explanation of
the final model? If one really has to deal with an adversary that provides a network and if the
networks are sufficiently flexible, even higher order derivatives may turn out to be unhelpful,
since the network could achieve misleading explanations using discontinuities. In that case,
derivatives computed using backpropegation cannot help us, and we will need to resort to
approximating derivatives using the method of finite differences. In other words, we will
need to perform multiple forward passes on perturbed versions of the input to determine
derivatives, which could be quite time consuming.

Clearly, ruling out backdoors like these efficiently in a neural network is a non-trivial task.
Constructing more counterexamples that mislead explanation-methods seems like a fruitful
avenue for future work. Indeed, fairly recently while refining this manuscript, Fokkema
et al. [7] prove that it is impossible to be robust and sensitive for a wide range of refined
explanation methods, where sensitivity relates to the sensitivity of detecting the correct
explanation. This may show us the fundamental limit of what is explainable.

7.3. SAFE ACTIVE LEARNING
Chapter 3 has illustrated that tighter generalization bounds do not necessarily imply better
active learners. One important limitation of our work is that it remains unclear when the

7.4. FINAL WORDS ON SAFETY

7

151

active learners can beat random sampling, as this would be the logical baseline to compare
an active learner to. If we assume that the groundtruth model is sampled from a prior
distribution, we can perform simulations to measure the performance of the active learners
compared to random sampling. This way we can predict beforehand the optimal algorithm
to use. In principle, this approach can be used to build a safe active learner that never
performs worse than random sampling. However, this crucially relies on knowing the prior.
Generally, we expect that so little is known about the prior distribution for general learning
problems, that any such simulation will be practically useless.

In a more general setting, where no prior or problem average is assumed, it remains an
open problem to show whether a more practical approach to safety is possible in active
learning. In the spirit of the wrapper algorithm that we used to make the learning curve
more monotone, we may also consider wrapper algorithms for active learning. For example,
we could sample 40% of the budget randomly, we could sample 40% actively using any
particular strategy, and use both datasets to construct two classifiers. The remaining 20%
could be used to perform a hypothesis test that decides which model to use in the end. This
construction should at least always be competitive with random sampling on 40% on all
of the data (with high probability), even if the learning curve of random sampling or the
particular active learning strategy are non-monotone. On the other hand, we may argue that
if we always choose either strategy, 40% of the labeling budget is always wasted.

Wrapper algorithms for active learning have in fact already been proposed before [8–11].
Typically, such wrapper algorithms use the multi-armed bandit framework [12] to decide
which strategy to use for each round. Such bandit algorithms use feedback, called rewards,
after each round, which helps them decide which active learning strategy is promising. As
such, already before exhausting the labeling budget, feedback is incorporated to select the
most promising active learning strategy, and thus this may alleviate the concern of wasteful
labeling somewhat.

However, most aforementioned works take the importance-weighted accuracy on the
training set as reward function for the bandit [9–11]. Therefore, learners that have zero
training error, such as 1-NN, cannot be guided to the correct sampling strategy. Similarly to
the design of our wrapper algorithm for supervised learners, we therefore believe it would
be fruitful to design such a bandit algorithm where feedback is coming from a validation
set. We believe such steps could lead to active learners with stricter safety guarantees.

7.4. FINAL WORDS ON SAFETY
The concept that we call safety differs from what is usually studied in statistical learning
theory, and can offer different insights. In statistical learning theory, usually the perform-
ance of the algorithm is compared to the best model from the class, resulting in the quantity
called excess risk. Generalization bounds are derived on the excess risk which give theor-
etical guarantees. In both cases, a performance comparison is made to an ideal model that
we can never attain. In contrast, for our proposed notion of safety, we compare the perform-
ance of one algorithm with a natural baseline, where both are algorithms which can actually
be applied. As such, safety guarantees seem more practically relevant, than the guarantees
usually provided by learning theory.

As we have seen in active learning, tighter bounds on the excess risk do not imply that

7

152 7. DISCUSSION

one algorithm always beats the other (safety). That we know relatively little about safety
should be clear, but some first steps have now be taken to develop learners with monotone
learning curves. But many questions remain; about their efficiency, their optimal design,
and what kind of theoretical guarantees are possible. The results regarding semi-supervised
learning and domain adaptation where safety was possible in the transductive setting seem
surprisingly strong. Perhaps revisiting the transductive setting could be therefore be fruitful
to study the monotonicity of supervised learning.

Furthermore, questions regarding safety can be raised in various settings, such as explain-
ability, but perhaps also in the context of fairness, privacy, and others. We see the topic of
safety as an important research direction, as it can tell us when which algorithm should be
preferred and why. Hopefully, continued study of this topic will lead to a better understand-
ing of when we can safely use our algorithms and when we should instead rely on simpler
baselines.

7.5. BIBLIOGRAPHY
[1] L. Devroye, L. Györfi, and G. Lugosi, A Probabilistic Theory of Pattern Recognition,

Vol. 31 (Springer, New York, NY, USA, 1996).

[2] Z. Mhammedi, Risk monotonicity in statistical learning, Advances in Neural Inform-
ation Processing Systems 34 (2021).

[3] O. Bousquet, A. Daniely, H. Kaplan, Y. Mansour, S. Moran, and U. Stemmer, Mono-
tone learning, arXiv preprint arXiv:2202.05246 (2022).

[4] V. Pestov, A universally consistent learning rule with a universally monotone error,
arXiv preprint arXiv:2108.09733 (2021).

[5] J. Heo, S. Joo, and T. Moon, Fooling neural network interpretations via adversarial
model manipulation, in Advances in Neural Information Processing Systems (2019)
pp. 2925–2936.

[6] J. C. Lubbe, Basic methods of cryptography (Cambridge University Press, 1998).

[7] H. Fokkema, R. de Heide, and T. van Erven, Attribution-based explanations that
provide recourse cannot be robust, arXiv preprint arXiv:2205.15834 (2022).

[8] Y. Baram, R. E. Yaniv, and K. Luz, Online choice of active learning algorithms,
Journal of Machine Learning Research 5, 255 (2004).

[9] W.-N. Hsu and H.-T. Lin, Active learning by learning, in Twenty-Ninth AAAI confer-
ence on artificial intelligence (Citeseer, 2015).

[10] K. Pang, M. Dong, Y. Wu, and T. M. Hospedales, Dynamic ensemble active learning:
A non-stationary bandit with expert advice, in 2018 24th International Conference on
Pattern Recognition (ICPR) (IEEE, 2018) pp. 2269–2276.

[11] H.-M. Chu and H.-T. Lin, Can active learning experience be transferred? in 2016
IEEE 16th International Conference on Data Mining (ICDM) (IEEE, 2016) pp. 841–
846.

http://dx.doi.org/10.1007/978-1-4612-0711-5

7.5. BIBLIOGRAPHY

7

153

[12] S. Bubeck and N. Cesa-Bianchi, Regret analysis of stochastic and nonstochastic multi-
armed bandit problems, Machine Learning 5, 1 (2012).

A
OPEN PROBLEM:

MONOTONICITY OF LEARNING

We pose the question to what extent a learning algorithm behaves monotonically in the
following sense: does it perform better, in expectation, when adding one instance to the
training set? We focus on empirical risk minimization and illustrate this property with
several examples, two where it does hold and two where it does not. We also relate it to the
notion of PAC-learnability.

This work was presented as an open problem at COLT 2019 and has been published as an extended abstract in
Volume 99 of the Proceedings of Machine Learning Research [1].

155

A

156 A. OPEN PROBLEM: MONOTONICITY OF LEARNING

A.1. INTRODUCTION
Recently, there has been an increasing amount of attention on machine learning algorithms
that are presently referred to as robust or safe, meaning that even when assumptions are
violated, performance will not degrade significantly [2]. The focus is mostly on settings
that are slightly different from supervised learning such as online learning [3], domain ad-
aptation [4] and semi-supervised learning [5]. The open problem presented here makes the
point that such robustness and safety properties are not even fully understood for standard
supervised learning and density estimation.

We focus on what we will refer to as the monotonicity of a learner’s performance: given
one additional training instance, to what extent can we expect a learner to improve? Or,
equivalently, when is the learning curve monotone [6]? While this property is undoubtedly
desirable, and most of us expect such behavior, there are surprising counterexamples. This
open problem asks to unravel this behavior.

Understanding theoretical properties of learning curves can set expectations for practi-
tioners. For example, if we know that a learner is monotone, but we observe the opposite
in practice, we know that this behaviour must have another explanation, such as a finite
sampling effect.

A.2. PRELIMINARIES AND RELATED WORK
Let Sn = (z1, . . . , zn) be a training set of size n, sampled i.i.d. from an (unknown) distribution
D over a domain Z . The learner A we consider performs empirical risk minimization
(ERM). Its output is A(Sn), i.e., a hypothesis h from a prespecified set H that minimizes
the empirical risk over Sn based on a loss function L : H ×Z → R. In statistical learning,
performance is measured through this loss and the aim is to minimize the true risk LD (h) =
Ez∼D L (h, z). One can define classification problems, regression, and density estimation in
such terms.

Before we formally introduce the concept of monotonicity, we mention related works
that already report on non-monotone learning behavior. Duin [7] and Opper and Kinzel [8]
describe the peaking phenomenon for classification: when the dimensionality is approxim-
ately equal to the size of the training set, the risk in terms of the zero-one loss and mean
squared error has a maximum (it peaks). This happens for models that require estimates of
the (pseudo-)inverse of the covariance matrix [9], such as linear regression.

Loog and Duin [10] describe what they call dipping: the evaluation risk attains a global
minimum for some finite n. Even for n →∞ the risk never recovers. This phenomenon
can occur when there is a mismatch between target (e.g. zero-one) and surrogate loss (e.g.
hinge). Ben-David et al. [11] analyze this mismatch between surrogate and zero-one loss
in more detail.

We focus on the setting where the loss the learner optimizes matches the loss it is eval-
uated with. Thus the observed behaviour in our examples cannot be explained through
the dipping phenomenon. This makes our findings more unexpected and the open problem
more appealing. Note, indeed, that our learner A (performing ERM) is implicitly associated
with a specific loss L and set H .

A.3. THE MONOTONICITY PROPERTY

A

157

A.3. THE MONOTONICITY PROPERTY
The idea is that with an additional instance a learner should improve its performance in
expectation over the training set. We need the following building block.

Definition 6 (local monotonicity). A learner A is locally or (D,n)-monotone with respect
to a distribution D and an n ∈N if

E
Sn+1∼Dn+1

LD (A(Sn+1)) ≤ E
Sn∼Dn

LD (A(Sn)).

We may want to construct stronger properties from this, e.g. monotonicity for all n. Also,
since the distribution D is unknown, we may want monotonicity to hold for any D on the
domain Z .

Definition 7 (Z -monotonicity). A learner A is Z -monotone if, for all n ∈N and distribu-
tions D on Z , it is (D,n)-monotone.

A.4. EXAMPLES
We now turn to some illustrations and consider to what extent they are Z -monotone. In the
remainder, we refer to Z -monotone as monotone. It will be clear from the context what Z

is.

Example I: mean estimation of a normal distribution (monotone). We perform density
estimation with a normal distribution with fixed variance σ2 > 0 and unknown mean. The
hypothesis class is Hσ =

{
h : z 7→ 1p

2πσ2
exp

(
− (z−µ)2

2σ2

)
| µ ∈R

}
. We choose the domain Z ⊂

[−1,1]. This choice ensures that any distribution D has a finite mean and finite variance.
We use negative log-likelihood as loss. Thus ERM is equivalent to maximum likelihood
(ML) estimation for this setting. The optimum that ERM finds is µ= 1

n

∑
i zi . The expected

risk equals

E
Sn∼D

LD (A(S)) = 1

2
log(2πσ2)+ σ2

D

2σ2

(
1+ 1

n

)
,

where σ2
D is the true variance of D. So the expected risk decreases monotonically in n.

Example II: variance estimation of a normal distribution (not monotone). We take the
same domain and loss function as in Example I, but now estimate the variance, while keep-
ing the mean fixed to 0. The hypothesis set becomes Hµ=0 =

{
h : z 7→ 1p

2πσ2
exp

(
− z2

2σ2

)
| σ> 0

}
and the ML estimate equals σ = 1

n

∑
i z2

i . This example does not obey the monotone prin-
ciple. Consider a distribution D that only has support on {1, 1

10 }. Let D be given by the
probability mass function p(1) = α and p(1

10) = 1−α. For 0 < α < 0.0235 one can eas-
ily check numerically that ES1 LD (A(S1)) < ES2 LD (A(S2)), showing that the monotonocity
property does not hold.

A

158 A. OPEN PROBLEM: MONOTONICITY OF LEARNING

0 10 20 30 40

Figure A.1.: Non-monotone behavior as observed in Example III.

Example III: linear regression (not monotone). Take H = {h 7→ w x|w ∈ R} as hy-
pothesis set and use the mean squared error as loss function. We choose the domain
Z = X ×Y , with X ⊂ [−1,1] and Y ⊂ [0,1]. We define D through a probability mass
function p(x, y). Take p(1

10 ,1) = 1−α and p(1,1) = α, and p(x, y) = 0 otherwise. Again,
one can find numerically that ES1 LD (A(S1)) < ES2 LD (A(S2)) for 0 <α< 0.0047. This shows
this learner is not monotone.

Figure A.1 plots a rescaled version of the expected risk against the sample size n for sev-
eral settings. The thick lines correspond to ERM. First of all, observe that by changing α,
we can shift the peak. This shows that the behaviour is unrelated to the peaking behaviour
[7], since peaking would occur at n ≈ d = 1. Second, if we add λI to the empirical covari-
ance matrix, which corresponds to L2-regularization of w , we still observe non-monotone
behavior, now even for larger values of α (see the dashed lines in Figure A.1).

Example IV: the memorize algorithm (monotone). Ben-David et al. [12] introduced
this binary classifier. When evaluated on a test object x that is also present in the training
set, this learner returns the label of that training object. In case multiple training examples
share the same x, the majority vote is returned. In case the test object is not present in the
training set, a default label is returned. This learner is monotone for any distribution under
the zero-one loss as it only updates its decision on points that it observes.

A.5. RELATION TO LEARNABILITY
From learning theory we know that if the hypothesis class has finite VC-dimension (or other
appropriate complexity), the excess risk of ERM is bounded. This bound will be tighter
given a larger training set size n. PAC bounds hold with a particular probability, while we
are concerned with the risk in expectation over the sample. However, even bounds that
hold in expectation over the training sample will not rule out non-monotone behaviour. The
expected risk can go up as long as the expected risk stays below the upper bound. Thus
high probability or expected risk bounds are insufficient to guarantee monotonicity.

This is illustrated by our examples: Example VI is monotone but is not learnable [6].

A.6. OPEN PROBLEM(S)

A

159

Example III is learnable if a regularizer is added to the objective of ERM or if the hypothesis
space H is restricted such that the norm of w is bounded. However, as we have seen in
Figure A.1, we still can observe non-monotone behaviour in that case.

A.6. OPEN PROBLEM(S)
First and foremost, we are interested to identify, especially for commonly employed learners,
on which domains Z they will or may not act monotonically. In view of the peaking beha-
viour, Z -monotonicity for all n may be too strong for some settings. Perhaps monotonicity
is only possible if n is larger than some N that may depend on Z and A. For Examples
II and III it is an open problem whether they satisfy this weaker notion, and for which
(smallest) N this notion is satisfied. Other related notions of monotonicity may also be of
interest. For example, instead of demanding a lower loss, we may require that the loss does
not degrade too much. Or we can demand the property to hold with high probability with
respect to both samples.

More generally, we may ask: why and how does this behaviour occur? And maybe more
importantly: how can we provably avoid non-monotone behaviour? What conditions does a
learner need to satisfy to be monotone? Perhaps particular loss functions lead to monotone
learners? What if we allow for learning under regularization or other strategies deviating
from strict ERM, for example improper learners or randomized decision rules?

Perhaps it is always possible to find a D for a given Z on which learners are non-
monotone. In that case, is it possible to avoid non-monotone behaviour under some as-
sumptions on D? Realizeability or well-specification could be good candidate-assumptions
on D. In fact, this raises the issue to what extent well-specified statistical models can ac-
tually be proven to behave monotonically. For instance, is Example II monotone if the
problem is well-specified?

All in all, we believe the question of monotonicity of learning offers various tantalizing
questions to study, some of which may yet have to be formulated.

A

160 A. OPEN PROBLEM: MONOTONICITY OF LEARNING

A.7. BIBLIOGRAPHY
[1] T. Viering, A. Mey, and M. Loog, Open problem: Monotonicity of learning, in Pro-

ceedings of the Thirty-Second Conference on Learning Theory, Proceedings of Ma-
chine Learning Research, Vol. 99, edited by A. Beygelzimer and D. Hsu (Phoenix,
USA, 2019) pp. 3198–3201.

[2] M. Loog, Constrained parameter estimation for semi-supervised learning: the case
of the nearest mean classifier, in ECML PKDD 2010 (Springer, 2010) pp. 291–304.

[3] W. M. Koolen, P. Grünwald, and T. van Erven, Combining adversarial guarantees
and stochastic fast rates in online learning, in NIPS (2016) pp. 4457–4465.

[4] A. Liu, L. Reyzin, and B. D. Ziebart, Shift-pessimistic Active Learning Using Robust
Bias-aware Prediction, in Proceedings of AAAI-15 (2015) pp. 2764–2770.

[5] J. H. Krijthe and M. Loog, Projected estimators for robust semi-supervised classifica-
tion, Machine Learning 106, 993 (2017).

[6] S. Shalev-Shwartz and S. Ben-David, Understanding machine learning: From theory
to algorithms (Cambridge university press, 2014).

[7] R. P. W. Duin, Small sample size generalization, in Proceedings of the Scandinavian
Conference on Image Analysis, Vol. 2 (1995) pp. 957–964.

[8] M. Opper and W. Kinzel, Statistical mechanics of generalization, in Models of neural
networks III (Springer, 1996) pp. 151–209.

[9] S. Raudys and R. P. W. Duin, Expected classification error of the Fisher linear classi-
fier with pseudo-inverse covariance matrix, Pattern recognition letters 19, 385 (1998).

[10] M. Loog and R. P. W. Duin, The dipping phenomenon, in Proceedings of the IAPR
S+SSPR (Springer, 2012) pp. 310–317.

[11] S. Ben-David, D. Loker, N. Srebro, and K. Sridharan, Minimizing the misclassifica-
tion error rate using a surrogate convex loss, in Proceedings ICML (2012) pp. 83–90.

[12] S. Ben-David, N. Srebro, and R. Urner, Universal learning vs. no free lunch results,
in Philosophy and Machine Learning Workshop NIPS (2011).

B
A BRIEF PREHISTORY OF

DOUBLE DESCENT

In their thought-provoking paper [1], Belkin et al. illustrate and discuss the shape of risk
curves in the context of modern high-complexity learners. Given a fixed training sample
size n, such curves show the risk of a learner as a function of some (approximate) measure
of its complexity N . With N the number of features, these curves are also referred to as
feature curves. A salient observation in [1] is that these curves can display, what they call,
double descent: with increasing N , the risk initially decreases, attains a minimum, and
then increases until N equals n, where the training data is fitted perfectly. Increasing N
even further, the risk decreases a second and final time, creating a peak at N = n. This
twofold descent may come as a surprise, but as opposed to what [1] reports, it has not
been overlooked historically. Our letter draws attention to some original, earlier findings,
of interest to contemporary machine learning.

Already in 1989, using artificial data, Vallet et al. [2] experimentally demonstrate double
descent for learning curves of classifiers trained through minimum norm linear regression
(MNLR, see [3])—termed the pseudo-inverse solution in [2]. In learning curves the risk is
displayed as a function of n, as opposed to N for risk curves. What intuitively matters in
learning behavior, however, is the sample size relative to the measure of complexity. This
idea is made explicit in various physics papers on learning (e.g. [2, 4, 5]), where the risk is
often plotted against α= n

N . A first theoretical results on double descent, indeed using such
α, is given by Opper et al. [4]. They proof that in particular settings, for N going to infinity,
the pseudo-inverse solution improves as soon as one moves away from the peak at α= 1.

Employing a pseudo-Fisher linear discriminant (PFLD, equivalent to MNLR), Duin [6]
is the first to show feature curves on real-world data quite similar to the double-descent
curves in [1]. Compare, for instance, Fig. 2 in [1] with Fig. 6 and 7 from [6]. Skurichina
and Duin [7] demonstrate experimentally that increasing PFLD’s complexity simply by
adding random features can improve performance when N = n (i.e., α = 1). The benefit
of some form of regularization has been shown already in [2]. For semi-supervised PFLD,

PNAS MS# 2020-01875 Letter to Editor. Accepted for electronic publications in the Proceedings of the National
Academy of Sciences of the United States of America (https://www.pnas.org/).

161

B

162 B. A BRIEF PREHISTORY OF DOUBLE DESCENT

Krijthe and Loog [8] demonstrate that unlabeled data can regularize, but also worsen the
peak in the curve. Their work builds on the original analysis of double descent for the
supervised PFLD by Raudys and Duin [9].

Interestingly, results from [4–7] suggest that some losses may not exhibit double descent
in the first place. In [6, 7], the linear SVM shows regular monotonic behavior. Analytic
results from [4, 5] show the same for the perceptron of optimal (or maximal) stability, which
is closely related to the SVM [5].

The findings in [1] go, significantly, beyond those for the MNLR. Also shown, for in-
stance, is double descent for 2-layer neural networks and random forests. Combining this
with observations such as those from Loog et al. [10], which show striking multiple-descent
learning curves (even in the underparameterized regime), the need to further our understand-
ing of such rudimentary learning behavior is evident.

B.1. BIBLIOGRAPHY
[1] M. Belkin, D. Hsu, S. Ma, and S. Mandal, Reconciling modern machine-learning

practice and the classical bias–variance trade-off, Proceedings of the National
Academy of Sciences 116, 15849 (2019).

[2] F. Vallet, J.-G. Cailton, and P. Refregier, Linear and nonlinear extension of the pseudo-
inverse solution for learning boolean functions, Europhysics Letters 9, 315 (1989).

[3] R. Penrose, On best approximate solutions of linear matrix equations, Mathematical
Proceedings of the Cambridge Philosophical Society 52, 17 (1956).

[4] M. Opper, W. Kinzel, J. Kleinz, and R. Nehl, On the ability of the optimal perceptron
to generalise, Journal of Physics A: Mathematical and General 23, L581 (1990).

[5] T. L. Watkin, A. Rau, and M. Biehl, The statistical mechanics of learning a rule,
Reviews of Modern Physics 65, 499 (1993).

[6] R. P. Duin, Classifiers in almost empty spaces, in Proceedings of the 15th International
Conference on Pattern Recognition, Vol. 2 (IEEE, 2000) pp. 1–7.

[7] M. Skurichina and R. P. Duin, Regularization by adding redundant features, in Joint
IAPR International Workshops on Statistical Techniques in Pattern Recognition (SPR)
and Structural and Syntactic Pattern Recognition (SSPR) (Springer, 1998) pp. 564–
572.

[8] J. H. Krijthe and M. Loog, The peaking phenomenon in semi-supervised learning, in
Joint IAPR International Workshops on Statistical Techniques in Pattern Recognition
(SPR) and Structural and Syntactic Pattern Recognition (SSPR) (Springer, 2016) pp.
299–309.

[9] S. Raudys and R. P. Duin, Expected classification error of the Fisher linear classifier
with pseudo-inverse covariance matrix, Pattern Recognition Letters 19, 385 (1998).

[10] M. Loog, T. Viering, and A. Mey, Minimizers of the empirical risk and risk monoton-
icity, in Advances in Neural Information Processing Systems (2019) pp. 7476–7485.

C
APPENDIX OF CHAPTER 3

C.1. BACKGROUND THEORY

C.1.1. MMD
The MMD quantity can be computed in practice by rewriting it as follows:

MMD(P̂ ,Q̂) = max
l̃∈HL

1

nP̂

∑
x∈P̂

〈l̃ ,ψKL
(x)〉KL

− 1

nQ̂

∑
x∈Q̂

〈l̃ ,ψKL
(x)〉KL

= max
l̃∈HL

〈l̃ ,µP̂ −µQ̂〉KL
(C.1)

=ΛL ||µP̂ −µQ̂ ||KL
. (C.2)

In the first step we used that l̃ (x) = 〈l̃ ,ψKL
(x)〉KL

due to the reproducing property [1, p. 96].
Here ψKL

is the featuremap from X → HL . The second step follows from the linearity of
the inner product. In (C.1) we defined µP̂ = 1

nP̂

∑
x∈P̂ ψKL

(x) and similarly for µQ̂ , note that
µQ̂ ,µP̂ ∈ HL . The last step follows from the fact that the vector in HL maximizing the
term in (C.1) is

µP̂ −µQ̂

||µP̂ −µQ̂ ||KL

ΛL

Because of the symmetry of ||µP̂ −µQ̂ ||KL
with respect to P̂ and Q̂, this derivation also

holds if we switch P̂ and Q̂. Therefore:

max
l̃∈HL

∣∣∣∣∣ 1

nP̂

∑
x∈P̂

l̃ (x)− 1

nQ̂

∑
x∈Q̂

l̃ (x)

∣∣∣∣∣=ΛL ||µP̂ −µQ̂ ||KL

Therefore for all l̃ ∈ HL the following holds∣∣∣∣∣ 1

nP̂

∑
x∈P̂

l̃ (x)− 1

nQ̂

∑
x∈Q̂

l̃ (x)

∣∣∣∣∣≤MMD(P̂ ,Q̂) (C.3)

163

C

164 C. APPENDIX OF CHAPTER 3

We can compute the MMD quantity in practice by working out the norm with kernel
products:

MMD(P̂ ,Q̂) =ΛL

√
〈µQ̂ ,µQ̂〉KL

−2〈µP̂ ,µQ̂〉KL
+〈µP̂ ,µP̂ 〉KL

=ΛL

√
MMDcomp(Q̂,Q̂)−2MMDcomp(P̂ ,Q̂)+MMDcomp(P̂ , P̂)

where we introduced MMDcomp(R̂, Ŝ) = 1
nR̂ nŜ

∑
x∈R̂,x′∈Ŝ KL (x, x ′).

C.1.2. DISCREPANCY
In this section we calculate the discrepancy analytically for the squared loss in the linear
kernel as in [2]. We then extend the computation to any arbitrary kernel as in [3]. Finally,
we prove the agnostic generalization bound in terms of the Discrepancy (Theorem 3). The
theorems and proofs here were first given by Mansour et al. [2], Cortes and Mohri [3], and
Cortes et al. [4] but we repeat them here for completeness.

Lemma 3 ([2]). For h,h′ ∈ H we have∣∣∣LP̂ (h,h′)−LQ̂ (h,h′)
∣∣∣= ∣∣∣∣∣ r∑

i=1
ū2

i λi

∣∣∣∣∣ . (C.4)

Proof. We can show

LP̂ (h,h′) = 1

nP̂
(XP̂ h −XP̂ h′)T (XP̂ h −XP̂ h′) = 1

nP̂
uT X T

P̂
XP̂ u

using some algebra, where u = h−h′. Rewrite LQ̂ (h,h′) similarly and subtract them to find

LP̂ (h,h′)−LQ̂ (h,h′) = uT Mu. (C.5)

Since M is a real symmetric matrix, M is a normal matrix and admits an orthonormal
eigendecomposition with real eigenvalues

M =
d∑
i

eiλi eT
i .

Here λi is the i th eigenvalue and ei is the corresponding orthonormal eigenvector. Since
M is normal its eigenvectors form an orthonormal basis for Rd . Therefore we can express
u in terms of e:

u =
d∑
i

ūi ei

Where ūi is the projection of u on ei , ūi = eT
i u. Note ū is a rotated version of u and

therefore both have the same norm, ||u||2 = ||ū||2. Now we can rewrite (C.5) as

uT Mu =
d∑
i

uT eiλi eT
i u =

r∑
i=1

ū2
i λi . (C.6)

Note that M has r = rank(M) non-zero eigenvalues. Combining (C.5) and (C.6) and taking
the absolute value on both sides shows the result.

C.1. BACKGROUND THEORY

C

165

Now we are ready to compute the Discrepancy for the linear kernel.

Theorem 13 (Discrepancy computation [2]). Assume K is the linear kernel, K (xi , x j) =
xT

i x j , and l is the squared loss, then

disc(P̂ ,Q̂) = 4Λ2 max
i

|λi |.

where λi are the eigenvalues of MP̂ ,Q̂ = M .

Proof. First we use Lemma 3.

disc(P̂ ,Q̂) = max
||ū||≤2Λ

∣∣∣∣∣ r∑
i

ū2
i λi

∣∣∣∣∣= max

(
max

||ū||≤2Λ

r∑
i

ū2
i λi , max

||ū||≤2Λ

r∑
i
−ū2

i λi

)
Now we solve the left term in the maximization. Observe that this is a weighted sum where
each ūi weighs each eigenvalue λi . To maximize this quantity we put as much weight as
possible on the largest postive eigenvalue: u = eimax 2Λ, where imax = argmaxi λi . We find

max
||ū||≤2Λ

d∑
i

ū2
i λi = 4Λ2 max

i
λi .

To solve the second maximization, introduce λ̄i = −λi . Then we maximize the same
quantity as before but now λ replaced by λ̄. It follows that the maximum is attained for
u = eimin 2Λ, where imin = argmini λi . We find

disc(P̂ ,Q̂) = 4Λ2 max
(
λi , λ̄i

)
,

eliminating the maximum proves the result.

Now we will describe how to compute the Discrepancy in case we work with an arbitrary
kernel K . In this case we have to work in the RKHS H of the kernel K . Define z(x) =
ψK (x), and let ZP̂ be the datamatrix where each row is given by z(x) : x ∈ P̂ . Define ZQ̂ in
the analogously. In this case Theorem 13 still holds, and the Discrepancy is given by the
eigenvalues of MZ :

MZ = 1

nP̂
Z T

P̂
ZP̂ − 1

nQ̂
Z T

Q̂
ZQ̂ (C.7)

However, now we run into problems, since for an arbitrary kernel K the dimensions of H

can be very large or infinite, such as the case for the Gaussian kernel. Then we clearly
cannot compute the matrix MZ or its eigenvalues.

In the following we show that MZ and MK have the same eigenvalues. Then, to compute
the Discrepancy with any kernel K , we can simply use the eigenvalues of MK . First, let us
define MK .

MK = KP̂ P̂ D (C.8)

where KP̂ P̂ is the nP̂ ×nP̂ matrix where entry i , j is given by K (xi , x j), and where D is a
diagonal matrix where

Di i =


1
nP̂

− 1
nQ̂

if xi ∈ Q̂

1
nP̂

otherwise.

C

166 C. APPENDIX OF CHAPTER 3

Lemma 4 ([3]). The eigenvalues of MZ and MK are the same.

Proof. Recalling that Q̂ ∈ P̂ , and using some algebra, it can be shown that MZ can be
written as

MZ = Z T
P̂

D ZP̂ .

Now we suggestively write MZ and MK as

MZ = (Z T
P̂

D)ZP̂

MK = ZP̂ (Z T
P̂

D) = KP̂ P̂ D

Here we used the fact that K (xi , x j) = 〈ψK (xi),ψK (x j)〉K (kernel trick) to rewrite MK . Since
the matrix product AB and B A have the same eigenvalues [3], MK and MZ have the same
eigenvalues.

Theorem 14. Let K be any arbitrary PSD kernel. Then

disc(P̂ ,Q̂) = 4Λ2 max
i

|λi | = 4Λ2||λ||∞ (C.9)

where λ is the vector of eigenvalues of the matrix MK or MZ , where MK was defined in
(C.8) and MZ was defined in (C.7).

Proof. First observe that Theorem 13 still holds, but we have to replace M by MZ in case
we use any arbitrary PSD kernel K . Then the result follows from Lemma 4.

Finally, we give the proof of the generalization bound in terms of the Discrepancy for the
agnostic setting. Note that this proof was already given by Cortes et al. [4], here we repeat
their proof for completeness.

Proof of Theorem 3. Since l (h(x), f (x)) ≤C , we have that the squared loss l is µ-admissible
[4] with µ= 2C , meaning that

|l (h(x), f (x)− l (h′(x), f (x))| ≤ 2C |h(x)−h′(x)| (C.10)

holds for all h,h′ ∈ H and any f : X → Y . Let f̃ be any arbitrary element from H . By
adding and subtracting terms and applying the triangle inequality, we can show that

|LP̂ (h, f)−LQ̂ (h, f)| ≤|LP̂ (h, f̃)−LQ̂ (h, f̃)|+ |LP̂ (h, f)−LP̂ (h, f̃)|
+ |LQ̂ (h, f̃)−LQ̂ (h, f)|.

The first term on the right hand side is by definition bounded by the Discrepancy. For the
second term we can show

|LP̂ (h, f)−LP̂ (h, f̃)| ≤ 2C
1

nP̂

∑
x∈P̂

| f (x)− f̃ (x)| ≤ 2C max
x∈P̂

| f (x)− f̃ (x)|.

The first inequality follows from applying (C.10) to each summand. We can bound the third
term in the same way, since Q̂ ∈ P̂ . Bounding the first term using the Discrepancy and the
last two terms with the bound above we find

|LP̂ (h, f)−LQ̂ (h, f)| ≤ disc(P̂ ,Q̂)+2µmax
x∈P̂

| f (x)− f̃ (x)|

C.2. PROOFS

C

167

holds for all f̃ ∈ H . The result follows from minimizing the right hand side with respect to
f̃ , bounding LP̂ (h, f)−LQ̂ (h, f) with its absolute value and reordering terms.

C.2. PROOFS
C.2.1. PROOF OF AGNOSTIC MMD WORST CASE BOUND

(PROPOSITION 1)
Proof of Proposition 1. Let l̃ be any element from HL and define gP̂ = 1

nP̂

∑
x∈P̂ g (h, f)(x)

and define gQ̂ similarly. Define l̃P̂ = 1
nP̂

∑
x∈P̂ l̃ (x) and l̃Q̂ analogously. Using the triangle

inequality we can show

|LP̂ (h, f)−LQ̂ (h, f)| ≤ |l̃P̂ − l̃Q̂ |+ |gP̂ − l̃P̂ |+ |gQ̂ − l̃Q̂ |.

The first term is bounded by the MMD, see (C.3). For the second term we have |gP̂ −
l̃P̂ | ≤ maxx∈P̂ |g (h, f)(x)− l̃ (x)|. This bound also holds also for the third term since Q̂ ∈ P̂ .
Bounding the second and third term and maximizing over h ∈ H we find that

|LP̂ (h, f)−LQ̂ (h, f)| ≤MMD(P̂ ,Q̂)+2 max
h∈H ,x∈P̂

|g (h, f)(x)− l̃ (x)|

holds for any l̃ ∈ HL and any h ∈ H . The result follows by choosing l̃ to minimize the right
hand side, bounding LP̂ (h, f)−LQ̂ (h, f) by the bound on its absolute value and reordering
terms.

C.2.2. ADJUSTING THE MMD TO THE LOSS AND HYPOTHESIS SET
(THEOREM 2, COROLLARY 1)

In the main text we have given a sketch of the proof for the linear kernel. Here, we show a
rigorous proof for the linear kernel, and afterward we give the proof for any arbitrary kernel
K . The technique of the proof stays the same for any arbitrary kernel K , however, we have
to do more bookkeeping.

Theorem 15 (Adjusted MMD linear kernel). Let l be the squared loss and assume f ∈
H (realizable setting), furthermore assume K is the linear kernel, K (xi , x j) = xT

i x j . If
KL (xi , x j) = K (xi , x j)2 and ΛL = 4Λ2, then g (h, f) ∈ HL and thus ηMMD = 0.

Proof of Theorem 15. Let u = h − f . Fix h and f , then we will write g (x) as shorthand
for g (h, f)(x) = l (h(x), f (x)). Then g (x) = u(x)2. Since K is the linear kernel, we have
that h(x) = hT x, f (x) = f T x and u(x) = uT x. Furthermore, we have H = X , and thus
ψK (x) = x. Furthermore, ψKL

: H →HL is given by [5, chap. 9.1]1:

ψKL
(x) = (x2

1 , x2
2 ,
p

2x1x2, x2
3 ,
p

2x1x3,
p

2x2x3, x2
4 ,
p

2x1x4,
p

2x2x4,
p

2x3x4, . . .) (C.11)

1Note that actually in [5] this kernel is defined as a polynomial kernel. In our case for this polynomial kernel we
have that R = 0 and d = 2, resulting in the featuremap given in (C.11). This is often referred to as the squared
kernel.

C

168 C. APPENDIX OF CHAPTER 3

Since the featuremap of KL exists, it is a PSD kernel, meaning that KL (x, x ′) = 〈ψKL
(x),ψKL

(x ′)〉KL
.

Then we can write

g (x) = (uT x)2 = K (u, x)2 = KL (u, x) = 〈ψKL
(u),ψKL

(x)〉KL

thus g ∈ HL with g = ψKL
(u). Now what remains to show is that g ∈ HL , or in other

words, that ||g ||KL
≤ 4Λ2. We can show that

||g ||KL
= 〈ψ(u),ψ(u)〉KL

= KL (u,u) = (uT u)2 = ||u||2K ≤ 4Λ2

where the last step follows from that h, f ∈ H , and therefore ||u||K ≤ 2Λ. This shows that
g (h, f) ∈ HL , therefore ηMMD = 0.

Before we prove the more general case for any kernel K , let us introduce some additional
notation. Also, before we show the proof for the kernel KL , we first do the proof for the

Transformation ψK ψK ′

Space X → H → H ′

Kernel K K ′

Table C.1.: This table illustrates the notation used when 2 kernels are involved.

kernel K ′ which is slightly simpler, later we extend the result to KL . We define the squared
kernel K ′ as:

K ′(f ,h) = 〈 f ,h〉2
K (C.12)

Where f ∈ H and g ∈ H , where H is the RKHS of K . We indicate H ′ as the RKHS of
K ′. We assume K is a PSD kernel. By definition of K ′ the kernel K ′ is a PSD kernel since
a squared kernel of a PSD kernel is known to be PSD [1, Theorem 5.3]. Now we have
two kernels we have two featuremaps: ψK (x) : X →H and ψK ′ : H →H ′. Note that the
second featuremap can still be computed with (C.11). See Table C.1 for an overview of the
notation used.

Recall that because K is PSD kernel we have that:

K (x, x ′) = 〈ψK (x),ψK (x ′)〉K (C.13)

For x, x ′ ∈X . Similarly for the kernel K ′ which is also PSD we have that:

K ′(f , g) = 〈ψK ′ (f),ψK ′ (g)〉K ′ (C.14)

For f , g ∈H . Again we define u as:

u = h − f

Theorem 16 (Adjusted MMD for K ′). Let l be the squared loss and assume f ∈ H (real-
izable setting), and assume K is a PSD kernel. If K ′(f ,h) = 〈 f ,h〉2

K and ΛL = 4Λ2, then
g (h, f) ∈ H ′ = {h ∈H ′ : ||h||K ′ ≤ΛL } where H ′ is the RKHS of K ′.

C.2. PROOFS

C

169

Proof. We have g (x) = u(x)2. Since h, f ∈H , u ∈H and thus

u(x) = 〈u,ψK (x)〉K

The first step is to show that the function g ∈H ′. By definition:

g (x) = u(x)2 = 〈u,ψK (x)〉2
K

Now we can easily recognize our definition of K ′ in this equation (compare with (C.12)),
thus we note that:

g (x) = K ′(u,ψK (x)) = 〈ψK ′ (u),ψK ′ (ψK (x))〉K ′

Where the second equality is obtained by applying (C.14). We observe that g corresponds
to the vector ψK ′ (u) ∈H ′, and thus we have that g ∈H ′.

The second step is to show that g ∈ H ′, in other words that ||g ||K ′ ≤ 4Λ2. Since g =
ψK ′ (u) ∈H ′ the norm of g in K ′ is given by

||g ||2K ′ = 〈ψK ′ (u),ψK ′ (u)〉K ′ .

Now we can use (C.14) to rewrite this in terms of K ′. We obtain:

||g ||2K ′ = K ′(u,u) (C.15)

Using the definition of K ′ we find:

K ′(u,u) = 〈u,u〉2
K = ||u||4K (C.16)

Now since ||h||K ≤Λ and || f ||K ≤Λ since h, f ∈ H , we have

||u||K = ||h − f ||K ≤ 2Λ

Combining this with Equations C.15 and C.16 we find that:

||g ||K ′ = ||u||2K ≤ 4Λ2

Thus we have shown that g ∈H ′.

However, do we now have g ∈ HL ? As of now we defined the kernel K ′(f ,h) so that
it operates on f , g ∈ H . This does not coincide with the kernel KL . Therefore, we will
now argue that H ′ = HL , and thus that in general the result generalizes to any kernel K ,
proving Theorem 2.

Proof of Theorem 2. By definition of KL we have that:

KL (x, x ′) = K (x, x ′)2

Now using (C.13) we can show that:

KL (x, x ′) = K (x, x ′)2 = 〈ψK (x),ψK (x ′)〉2
K

C

170 C. APPENDIX OF CHAPTER 3

Observe that this coincides with the definition of K ′ ((C.12)), thus we can write this as:

KL (x, x ′) = 〈ψK (x),ψK (x ′)〉2
K = K ′(ψK (x),ψK (x ′))

Now using (C.14) we can write this as:

KL (x, x ′) = K ′(ψK (x),ψK (x ′)) = 〈ψK ′ (ψK (x)),ψK ′ (ψK (x ′))〉K ′

in other words, we see that the kernel product of KL can be computed in the RKHS of
the kernel K ′. Thus, the RKHS of K ′ and KL coincide! Thus we have that H ′ = HL .
Therefore, Theorem 16 implies that we can generalize all results in terms of K ′ to the
kernel KL . Therefore, g is also in the RKHS of KL , and in particular we have that g ∈ HL ,
and therefore ηMMD = 0.

Remark 3. Another way to understand this is to see that the featuremap of KL is given
by ψKL

(x) = ψK ′ (ψK (x)) and thus maps to the space H ′, and from this it follows that
H ′ =HL .

Proof of Corollary 1. Theorem 2 tells us to choose KL (x, x ′) = K (x, x ′)2 to obtain ηMMD =
0. We can show

K ′(x, x ′) = K (x, x ′)2 = exp

(
−2||x −x ′||2

2σ2

)
= exp

(
−||x −x ′||2

2σ′2

)
,

where we absorbed the factor of 2 in the exponent in σL , so σL = σp
2
.

C.2.3. MMD COMPUTATION (THEOREM 5 AND COROLLARY 2)
First we prove the Theorem 5 in case K is the lineair kernel for d = 2, afterward we extend
the proof to any dimension, and finally we prove Theorem 5 for any PSD kernel.

Theorem 17 (MMD Computation linear kernel d = 2). Let KL (xi , x j) = K (xi , x j)2 and
ΛL = 4Λ2. Furthermore, assume K is the linear kernel, K (xi , x j) = xT

i x j and d = 2, then

MMD(P̂ ,Q̂) = 4Λ2||λ||2. (C.17)

Proof. If K is the linear kernel, H =X and KL defines a featuremap ψKL
(x) : X →HL

which is given by ψKL
(x) = (x2

1 , x2
2 ,
p

2x1x2), see [5, chap. 9.1]. From (C.2) we find

MMD(P̂ ,Q̂) =ΛL ||µP̂ −µQ̂ ||KL

where µP̂ = 1
nP̂

∑
x∈P̂ ψKL

(x) and µQ̂ is analogously defined. Now using the fact µP̂ −µQ̂ =
(M11, M22,

p
2M12)T and some algebra we can show

MMD(P̂ ,Q̂) = 4Λ2||M ||F = 4Λ2||λ||2

where the second equality follows since M is a real symmetric matrix and thus its eigenval-
ues are equal to its singular values (up to a sign change).

C.2. PROOFS

C

171

Let us first generalize Theorem 17 to any arbitrary dimension d , afterward we extend the
result to any kernel K .

Theorem 18 (MMD Computation linear kernel arbitrary dimension). If KL (xi , x j) = K (xi , x j)2

and ΛL = 4Λ2. Furthermore, assume K is the linear kernel, K (xi , x j) = xT
i x j and the di-

mension of the input space X is d , then

MMD(P̂ ,Q̂) = 4Λ2||λ||2.

Proof. We can show using (C.11) that the vector µP̂ −µQ̂ becomes

(µP̂ −µQ̂)T = (M11, M22,
p

2M12, M33,
p

2M13,
p

2M23, M44,
p

2M14,
p

2M24,
p

2M34, . . .)T .

Observe that the entry Mi i appears only once in µP̂ −µQ̂ , and any entry Mi j where i 6= j ,
appears as

p
2Mi j . Furthermore, note that the diagonal Mi i only occurs once in the matrix

M . However, any element Mi j appears twice in M (since M is symmetric). Therefore

(µP̂ −µQ̂)T (µP̂ −µQ̂) =∑
i

M 2
i i +2

∑
i 6= j

M 2
i j ,

is a sum of all entries (squared) of M , and therefore

||µP̂ −µQ̂ ||KL
= ||M ||F ,

as before. The rest of the proof is identical to the proof of Theorem 17 (d = 2).

Note that due to our careful ordering of the featuremap of the squared kernel, given
in (C.11), we have that this featuremap is still properly defined even if the dimension of
d →∞, such as for a Gaussian kernel. Now we are ready to prove Theorem 5.

Proof of Theorem 5. To show the result holds for any arbitrary kernel K , we have to work
in the RKHS of K , thus everywhere x needs to be replaced by z(x) as in Appendix C.1.2,
and then we replace M with MZ . Then Theorem 18 still holds, since the featuremap ψ(x)K ′
is still given by the featuremap of the squared kernel, (C.11), however in this case the
featuremap is with respect z instead of x. This does not influence the proof. We showed
that this holds for any dimension d , and the featuremap still exists if d →∞, thus our results
hold for a kernel K with arbitrary dimension of the RKHS H .

For the Gaussian kernel we cannot compute the matrix M . Instead, since M and MK

have the same eigenvalues, see Lemma 4, we can compute the MMD instead using the
eigenvalues of MK , as in Appendix C.1.2.

Remark 4. Note that
MMD(P̂ ,Q̂) 6= 4Λ2||MK ||F .

These are not equal, since the matrix MK is not symmetric. Therefore, the eigenvalues
of MK are not the same as the singular values of MK (as was the case for M , which is
symmetric).

Proof of Corollary 2. Comparing Equation C.9 and Equation 3.6 and noting ||λ||∞ ≤ ||λ||2
shows the result.

C

172 C. APPENDIX OF CHAPTER 3

C.2.4. PROBABILISTIC ANALYSIS (LEMMA 1, PROPOSITION 2 AND
THEOREM 6)

Proof of Lemma 1. We can show that:

∣∣∣LP̂ (h,h′)−LQ̂ (h,h′)
∣∣∣= ∣∣∣∣∣ r∑

i=1
ū2

i λi

∣∣∣∣∣≤ r∑
i=1

ū2
i |λi |

where the equality follows from Equation C.4 and the inequality follows from the triangle
inequality. Next, bound LP̂ (h,h′)−LQ̂ (h,h′) using the bound above and reorder terms. The
result is obtained after applying the expectation w.r.t. u on both sides and applying the
linearity of the expectation.

Proof of Proposition 2. Computing G(2Λe1, M) which will be found to be exactly equal to
the Discrepancy. After combining this fact with Lemma 1 will result in the desired equality,
the inequality follows from Corollary 2.

Proof of Theorem 6. We can show that

E
u

G(u, M) = 1p
r

MMD(P̂ ,Q̂) ≤ disc(P̂ ,Q̂). (C.18)

This equality can be shown by working out the expectation and canceling terms and recog-
nizing the definition of the MMD from (3.6). The inequality follows from ||λ||2 ≤

p
r ||λ||∞.

The final result follows by combining Equation C.18 with Lemma 1.

C.2.5. PROOF OF NUCLEAR DISCREPANCY BOUND (THEOREM 7)
Before we can show the proof of the Nuclear Discrepancy bound, we need the following
lemma:

Lemma 5. Let p(u) be uniform over all u ∈U . Then

E
u

ū2
1 =

4Λ2

r +2
.

Proof. By comparing the volume of a sphere of radius 2Λ and the volume of a sphere of
radius w = ||u||2, we can show that for this distribution p(u) we have that

p(w) = w (r−1)r

(2Λ)r .

Then it is straightforward to show that

E
u
||u||22 =

r

r +2
4Λ2.

by integration of p(w). From the symmetry of p(u) it follows that Eu ū2
1 = Eu ū2

i for all i .
From this fact and the linearity of the expectation the result follows.

C.3. REMARK ON PROBABILISTIC ANALYSIS AND CHOICE OF Us

C

173

Proof of Theorem 7. We can show that

E
u

G(u, M) =∑
i
|λi |E

u
ū2

i = ||λ||1E
u

ū2
1 =

4Λ2

r +2
||λ||1.

The first equality follows from switching expectation and sum. The second equality follows
from symmetry of p(u). The last equality follows from Lemma 5. The bound can be
obtained by combining with Theorem 8. The inequalities follow from the vector norm
inequalities ||λ||1 ≤

p
r ||λ||2 ≤ r ||λ||∞.

C.3. REMARK ON PROBABILISTIC ANALYSIS AND CHOICE

OF Us

The remark in this section will explain why instead of U , we need to take Us (to be defined
below). The problem stems from the fact that if we choose p(u) uniform on U , it may seem
unclear what it means for u to be randomly sampled from an infinite dimensional sphere
uniformly.

We will use the notation of Appendix C.1.2, since we will work with a kernel K with
a high-dimensional H , in order to highlight the problem that a lot of eigenvalues may be
zero. We are analyzing what happens to

E
u

G(u, MZ) (C.19)

for arbitrary distributions, for example, for the uniform distribution p(u), in case the length
of a vector z(x) is infinite such as with a Gaussian kernel (then M has infinite eigenvalues,
but only r are non-zero).

The RKHS of K , H , is then of infinite dimension. We split H in two parts: H s =
span(ZP̂), and its orthogonal complement H ⊥

s . Then for any vector in a ∈H , a = as +a⊥
s ,

where as ∈H s and a⊥
s ∈H ⊥

s . In particular we have that after training a kernel regularized
model, we have h ∈ as due to the regularization term in the training procedure. Furthermore,
for any observed f , we have

LP̂ (h, f) = LP̂ (h, fs), (C.20)

since ZP̂ f ⊥
s = 0. The same thing holds for LQ̂ (h, f). Therefore, we may consider it re-

dundant to consider f , h, and we may limit our analysis to fs and hs . In addition we have
that

G(u, MZ) =G(us , MZ), (C.21)

since u is projected on eigenvectors of MZ , and only eigenvectors in span(ZP̂) have non-
zero eigenvalue, and thus u⊥

s only has components that correspond to eigenvalues that are
zero. Thus any u has the same objective as the corresponding us . Therefore, instead of de-
fining a pdf over U , we define a pdf over Us = {u ∈H s : ||u||K ≤ 2Λ}. Then by construction
the dimension of u is at most r = rank(MZ) ≤ nP̂ , which is always finite. Then sampling u
is a well defined procedure even in infinite dimensional RKHS.

C

174 C. APPENDIX OF CHAPTER 3

C.4. COMPUTATION OF THE DECOMPOSITION OF THE

PROBABILISTIC BOUNDS
To compute each term of G(u, MZ), we can compute the eigendecomposition of MK to
compute the eigenvalues, however we also need to know ūi for each i . The computation
of ūi , the projection of u onto the eigenvector vi of MZ is non-trivial to compute in case
kernels are used. Observe that here vi is the i th eigenvector and not a component. Here
we assume vi is not normalized to unit norm (which is why we write it differently from ei).
We give a detailed description in this appendix how to compute ūi . In this case the equation
for ūi is:

ūi = uT vi√
vT

i vi

(C.22)

The difficulty in this derivation is finding the vector vi in case kernels are used. Then we
need to find vi expressed in terms of the datamatrix Z . Then we can apply the ‘kernel trick’
to compute (C.22).

By the eigenvalue equation of MZ we have:

MZ vi =λi vi (C.23)

In case of the linear kernel it is straightforward to compute vi . However, to compute vi for
any K , we have to take extra steps. First we show that vi can be expressed in terms of the
datamatrix Z , and afterward we find this expression of vi in terms of Z . Note that:

MZ vi =
nP̂∑
j=1

d j z j zT
j vi =

nP̂∑
j=1

(zT
j vi)d j z j =λi vi

Thus we have that:
nP̂∑
j=1

(zT
j vi)d j

λi
z j = vi

Thus we have that each eigenvector vi is a linear combination of the vectors z j . Here the
sum is taken over all objects z(x) : x ∈ P̂ . Since Q̂ ⊆ P̂ , this includes all data the active
learner has access to. Then we can write each eigenvector vi as:

vi = Z T
P̂
αi (C.24)

Thus we can express each vector vi using the datamatrix ZP̂ . Now we will have to find the
vector αi to find vi . We substitute the equation above in (C.23) to obtain:

MZ Z T
P̂
αi =λi Z T

P̂
αi

Now we multiply left with D ZP̂ on both sides to obtain:

D ZP̂ MZ Z T
P̂
αi =λi D ZP̂ Z T

P̂
αi

Observe that this is equal to:
M T

K M T
K αi =λi M T

K αi

C.4. COMPUTATION OF THE DECOMPOSITION OF THE PROBABILISTIC BOUNDS

C

175

Where MK was defined in (C.8). Now we define βi = M T
K αi . Then we find:

M T
K βi =λiβi (C.25)

We can compute the eigenvectors β by computing the eigendecomposition of M T
K . This

is possible even when using kernels, since MK is expressed in terms of the kernel matrix.
However we require the vector αi to compute the eigenvector vi . Thus now we will aim to
express αi in terms of βi . Observe that if we multiply (C.25) by (M T

K)−1 on both sides we
obtain:

βi =λi (M T
K)−1βi (C.26)

Now observe that due to the definition of βi we have that:

βi (M T
K)−1 =αi (C.27)

Combining (C.26) and (C.27) we find that:

αi = βi

λi

Substituting this in (C.24) we find the vector vi :

vi = Z T
P̂

βi

λi
(C.28)

Now we have found vi . Now we can proceed to compute ui .
Note that due to the representer theorem we have that the hyperplane of each model can

be written as a linear combination of the data:

u = f −h = Z T
D̂

c ′−Z T
Q̂

c ≡ Z T
D̂

c̃ (C.29)

Here f is given as a linear combination of ZD̂ , which we define as the complete datamatrix.
This datamatrix includes the training and test set, since f in our experiments was obtained
by training on the whole dataset where the original binary labels of the dataset are used (in
the realizeable setting). However note that for any f ∈ H the model f can be written in this
way. Similarly, since h is trained on the dataset Q̂, we can write h as a linear combination
of objects ZQ̂ . Combining (C.28) and (C.29) with (C.22) we find that:

ūi =
c̃ ZD̂ Z T

P̂

βi
λi√

βT
i

λi
ZP̂ Z T

P̂

βi
λi

= c̃KD̂P̂βi√
βi KP̂ P̂βi

C

176 C. APPENDIX OF CHAPTER 3

C.5. EXPERIMENTAL SETTINGS AND DATASET

CHARACTERISTICS
The active learning methods are evaluated on the datasets shown in Table C.2. The datasets
marked with ∗ were provided by Cawley and Talbot [6]. Other datasets originate from the
UCI Machine Learning repository [7], except the MNIST dataset [8] which is a standalone
dataset.

Table C.2.: Characteristics of evaluation datasets.

Dataset # Objects # Positive class Dimensionality

vehicles 435 218 18
heart 297 137 13
sonar 208 97 60
thyroid∗ 215 65 5
ringnorm∗ 1000 503 20
ionosphere 351 126 33
diabetes 768 500 8
twonorm∗ 1000 500 20
banana∗ 1000 439 2
german 1000 700 20
splice 1000 541 60
breast 699 458 9
mnist 3vs5 1000 484 784
mnist 7vs9 1000 510 784
mnist 5vs8 1000 535 784

The parameter settings used are displayed in Table C.3. To obtain these hyperparameters
we repeated the following procedure multiple times. We randomly select 25 examples from
the dataset and label these. We train a KRLS model on these samples and evaluate the MSE
on all unselected objects. The hyperparameters that result in the best performance after
averaging are used in the active learning experiments.

C.6. RESULTS OF THE AGNOSTIC SETTING

C

177

Table C.3.: Table with parameters used for the benchmark datasets
Dataset σ log10(µ)
vehicles 5.270 -3.0
heart 5.906 -1.8
sonar 7.084 -2.6
thyroid 1.720 -2.6
ringnorm 1.778 -3.0
ionosphere 4.655 -2.2
diabetes 2.955 -1.4
twonorm 5.299 -2.2
banana 0.645 -2.2
german 4.217 -1.4
splice 9.481 -2.6
breast 4.217 -1.8
mnist 3vs5 44.215 -6.0
mnist 7vs9 44.215 -3.6
mnist 5vs8 44.215 -8.9

C.6. RESULTS OF THE AGNOSTIC SETTING

0 5 10 15 20 25 30 35 40 45 50

Batch size n

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

M
S

E
 d

if
fe

re
n

c
e

 o
n

 t
e

s
t

s
e

t

(a) ringnorm

0 5 10 15 20 25 30 35 40 45 50

Batch size n

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

M
S

E
 d

if
fe

re
n

c
e

 o
n

 t
e

s
t

s
e

t

(b) thyroid

0 5 10 15 20 25 30 35 40 45 50

Batch size n

-0.08

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

M
S

E
 d

if
fe

re
n

c
e

 o
n

 t
e

s
t

s
e

t

Disc (worst case)

Nuclear Disc (optimistic case)

MMD (pessimistic case)

Random

(c) german

0 5 10 15 20 25 30 35 40 45 50

Batch size n

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

M
S

E
 d

if
fe

re
n

c
e

 o
n

 t
e

s
ts

e
t

(d) mnist 3vs5

0 5 10 15 20 25 30 35 40 45 50

Batch size n

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

M
S

E
 d

if
fe

re
n

c
e

 o
n

 t
e

s
ts

e
t

(e) mnist 7vs9

0 5 10 15 20 25 30 35 40 45 50

Batch size n

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

M
S

E
 d

if
fe

re
n

c
e

 o
n

 t
e

s
ts

e
t

(f) mnist 5vs8

Figure C.1.: Learning curves for several datasets for the agnostic setting. Results are averaged over
100 runs. Observe that compared to the realizable setting the variability of the perform-
ance increases and therefore performance differences become less significant. Due to
unexpected effects of η> 0 the ranking of the methods may change.

For completeness we discuss the results of the agnostic setting where the original binary

C

178 C. APPENDIX OF CHAPTER 3

labels are used. In this setting η 6= 0, but η will be small due to our choice of hyperpara-
meters, and therefore we ignore it during active learning (since we also cannot estimate it
unless we have the labels of P̂). Several illustrating learning curves are shown in Figure
C.1, all results are summarized in Table C.4, all learning curves can be found in Appendix
C.8.3.

The curves are less smooth and have larger standard errors compared to the realizable
setting. Therefore the active learning methods are harder to distinguish which is reflected
in Table C.4 by larger standard deviations and more bold numbers in a single row. Observe
that the ranking of the methods can also change, see for example the learning curve on
ringnorm: in the realizable setting the ND improved upon the Discrepancy, while in the
agnostic setting the reverse is the case for large budgets. In this setting, sometimes the
Discrepancy performs the best. From Table C.4 we can see that the trends observed in the
realizable setting are still observed in the agnostic setting: the ND improves more upon the
MMD than the reverse, however, the trend is weaker. This is likely the case because for this
setting ηMMD and ηdisc are non-zero, and therefore our theoretical analysis is weakened.
Finally, observe that for the MNIST dataset, the learning curves and results as summarized
by the AULC for 5vs8 are almost completely identical as in the realizeable setting. Simil-
arly, for 3vs5 differences are also quite small. This indicates that MNIST is very close to
realizeable with these found hyperparameter settings.

Table C.4.: Area Under the mean squared error Learning Curve (AULC) for the strategies in the
agnostic setting, averaged over 100 runs. Bold indicates the best result, or results that
are not significantly worse than the best result, according to a paired t-test (p = 0.05).
Parenthesis indicate standard deviation.

Dataset Random Discrepancy MMD Nuclear Discrepancy

vehicles 25.8 (4.7) 22.9 (2.7) 23.9 (3.2) 23.5 (2.6)
heart 34.9 (4.0) 32.7 (3.3) 32.4 (3.8) 32.4 (3.7)
sonar 40.6 (4.3) 39.8 (4.4) 38.3 (3.6) 37.3 (4.2)
thyroid 17.9 (3.4) 16.4 (3.5) 16.3 (3.1) 15.7 (2.9)
ringnorm 35.9 (1.4) 37.5 (0.7) 33.1 (1.0) 33.5 (1.0)
ionosphere 28.9 (3.4) 26.7 (2.5) 26.3 (2.7) 27.3 (3.4)
diabetes 40.5 (3.2) 39.6 (3.2) 39.7 (3.0) 40.2 (2.7)
twonorm 19.3 (2.4) 17.3 (1.6) 17.0 (1.6) 16.2 (1.3)
banana 32.1 (3.4) 28.5 (3.4) 28.6 (2.9) 27.8 (2.5)
german 42.2 (3.2) 40.8 (2.3) 41.1 (2.6) 40.6 (2.4)
splice 45.4 (3.1) 45.2 (3.5) 44.6 (2.8) 43.7 (2.6)
breast 11.7 (2.7) 10.3 (1.7) 10.1 (1.7) 10.1 (1.8)
mnist 3vs5 30.6 (4.5) 28.1 (2.5) 26.1 (2.2) 25.0 (1.8)
mnist 7vs9 27.5 (3.6) 25.5 (2.4) 24.6 (2.0) 23.2 (1.6)
mnist 5vs8 30.2 (3.4) 26.9 (2.7) 26.1 (2.3) 24.5 (2.1)

C.7. INFLUENCE OF SUBSAMPLING ON PERFORMANCE.

C

179

C.7. INFLUENCE OF SUBSAMPLING ON PERFORMANCE.

100 300 500 700 900

Subsampled pool size

0.07

0.075

0.08

0.085

0.09

0.095

0.1

0.105

0.11

0.115

M
S

E
 o

n
 t

e
s
ts

e
t

a
ft

e
r

5
0

 q
u

e
ri
e

s

Disc (worst case)

ND (optimistic case)

MMD (pessimistic case)

Random

(a) splice realizeable

100 300 500 700 900

Subsampled pool size

0.7

0.71

0.72

0.73

0.74

0.75

0.76

M
S

E
 o

n
 t

e
s
ts

e
t

a
ft

e
r

5
0

 q
u

e
ri
e

s

(b) splice agnostic

Figure C.2.: Dataset size versus performance of the active learners on splice. We observe
that for larger dataset sizes, the active learners typically improve with respect
to random sampling, but the improvement levels off for large dataset sizes.

We perform an additional experiment on the splice dataset to see how subsampling affects
performance. To this end we measure the performance while we vary the pool size by
changing the amount of subsampling, The subsampled pool is used as training set (this is
the pool from which active learners can select queries, P̂), all remaining samples are used as
testset T̂ . Furthermore we use the same experimental protocol as for the other experiments.

We display the performance of the active learners in terms of MSE on the testset after 50
queries in Figure C.2 for both the realizeable and agnostic setting. The curve is averaged
over 100 runs. Error bars represent the 95% confidence interval computed using the stand-
ard error. As expected, the trends in the realizeable setting are more clear, while due to
model misspecification and other effects in the agnostic case performance differences are
less clear due to larger standard deviations.

For small pool sizes all active learners experience a drop in performance. In this case the
probability is large that ‘good’ queries may be missing because of an unlucky draw from the
dataset. For larger pool sizes most active learners perform better. For larger pool sizes the
performance at some point levels. At this point the pool contains sufficient representative
samples for it to contain all possible ‘good’ queries the active learners will be looking
for. The experiment provides evidence that if finer subsampling is used, methods typically
improve in performance up to a point where performance levels off.

C

180 C. APPENDIX OF CHAPTER 3

C.8. ADDITIONAL EXPERIMENTAL RESULTS

C

181

C.8. ADDITIONAL EXPERIMENTAL RESULTS
C.8.1. LEARNING CURVES ON ALL DATASETS FOR THE REALIZABLE

SETTING

0 5 10 15 20 25 30 35 40 45 50

Batch size n

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

M
S

E
 d

if
fe

re
n
c
e
 o

n
 t
e
s
t
s
e
t

Disc (worst case)

Nuclear Disc (optimistic case)

MMD (pessimistic case)

Random

(a) vehicles

0 5 10 15 20 25 30 35 40 45 50

Batch size n

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

M
S

E
 d

if
fe

re
n
c
e
 o

n
 t
e
s
t
s
e
t

(b) heart

0 5 10 15 20 25 30 35 40 45 50

Batch size n

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

M
S

E
 d

if
fe

re
n
c
e
 o

n
 t
e
s
t
s
e
t

(c) sonar

0 5 10 15 20 25 30 35 40 45 50

Batch size n

-0.2

-0.15

-0.1

-0.05

0

0.05

M
S

E
 d

if
fe

re
n
c
e
 o

n
 t
e
s
t
s
e
t

(d) thyroid

0 5 10 15 20 25 30 35 40 45 50

Batch size n

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

M
S

E
 d

if
fe

re
n
c
e
 o

n
 t
e
s
t
s
e
t

(e) ringnorm

0 5 10 15 20 25 30 35 40 45 50

Batch size n

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

M
S

E
 d

if
fe

re
n
c
e
 o

n
 t
e
s
t
s
e
t

(f) ionosphere

0 5 10 15 20 25 30 35 40 45 50

Batch size n

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

M
S

E
 d

if
fe

re
n
c
e
 o

n
 t
e
s
t
s
e
t

(g) diabetes

0 5 10 15 20 25 30 35 40 45 50

Batch size n

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

M
S

E
 d

if
fe

re
n
c
e
 o

n
 t
e
s
t
s
e
t

(h) twonorm

0 5 10 15 20 25 30 35 40 45 50

Batch size n

-0.2

-0.15

-0.1

-0.05

0

0.05

M
S

E
 d

if
fe

re
n
c
e
 o

n
 t
e
s
t
s
e
t

(i) banana

0 5 10 15 20 25 30 35 40 45 50

Batch size n

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

M
S

E
 d

if
fe

re
n
c
e
 o

n
 t
e
s
t
s
e
t

(j) german

0 5 10 15 20 25 30 35 40 45 50

Batch size n

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

M
S

E
 d

if
fe

re
n
c
e
 o

n
 t
e
s
t
s
e
t

(k) splice

0 5 10 15 20 25 30 35 40 45 50

Batch size n

-0.2

-0.15

-0.1

-0.05

0

0.05

M
S

E
 d

if
fe

re
n
c
e
 o

n
 t
e
s
t
s
e
t

(l) breast

0 5 10 15 20 25 30 35 40 45 50

Batch size n

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

M
S

E
 d

if
fe

re
n

c
e

 o
n

 t
e

s
ts

e
t

(m) mnist 3vs5

0 5 10 15 20 25 30 35 40 45 50

Batch size n

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

M
S

E
 d

if
fe

re
n

c
e

 o
n

 t
e

s
ts

e
t

(n) mnist 7vs9

0 5 10 15 20 25 30 35 40 45 50

Batch size n

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

M
S

E
 d

if
fe

re
n

c
e

 o
n

 t
e

s
ts

e
t

(o) mnist 5vs8

Figure C.3.: Results on all benchmark datasets for the realizable setting.

C

182 C. APPENDIX OF CHAPTER 3

C.8.2. DECOMPOSITION OF THE PROBABILISTIC BOUNDS FOR ALL
DATASETS

5 10 15 20 25 30 35 40 45 50

Batch size n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
e
a
n
 c

o
n
tr

ib
u
ti
o
n
 t
o
 e

rr
o
r

EV 1

EV 2 - 9

EV 10 - 49

EV 50 - 283

(a) vehicles

5 10 15 20 25 30 35 40 45 50

Batch size n

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

M
e
a
n
 c

o
n
tr

ib
u
ti
o
n
 t
o
 e

rr
o
r

EV 1

EV 2 - 9

EV 10 - 49

EV 50 - 193

(b) heart

5 10 15 20 25 30 35 40 45 50

Batch size n

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

M
e
a
n
 c

o
n
tr

ib
u
ti
o
n
 t
o
 e

rr
o
r

EV 1

EV 2 - 9

EV 10 - 49

EV 50 - 135

(c) sonar

5 10 15 20 25 30 35 40 45 50

Batch size n

0

0.05

0.1

0.15

0.2

0.25

0.3

M
e
a
n
 c

o
n
tr

ib
u
ti
o
n
 t
o
 e

rr
o
r

EV 1

EV 2 - 9

EV 10 - 49

EV 50 - 140

(d) thyroid

5 10 15 20 25 30 35 40 45 50

Batch size n

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

M
e
a
n
 c

o
n
tr

ib
u
ti
o
n
 t
o
 e

rr
o
r

EV 1

EV 2 - 9

EV 10 - 49

EV 50 - 650

(e) ringnorm

5 10 15 20 25 30 35 40 45 50

Batch size n

0

0.05

0.1

0.15

0.2

0.25

M
e
a
n
 c

o
n
tr

ib
u
ti
o
n
 t
o
 e

rr
o
r

EV 1

EV 2 - 9

EV 10 - 49

EV 50 - 228

(f) ionosphere

5 10 15 20 25 30 35 40 45 50

Batch size n

0

0.01

0.02

0.03

0.04

0.05

0.06

M
e
a
n
 c

o
n
tr

ib
u
ti
o
n
 t
o
 e

rr
o
r

EV 1

EV 2 - 9

EV 10 - 49

EV 50 - 499

(g) diabetes

5 10 15 20 25 30 35 40 45 50

Batch size n

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

M
e
a
n
 c

o
n
tr

ib
u
ti
o
n
 t
o
 e

rr
o
r

EV 1

EV 2 - 9

EV 10 - 49

EV 50 - 650

(h) twonorm

5 10 15 20 25 30 35 40 45 50

Batch size n

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

M
e
a
n
 c

o
n
tr

ib
u
ti
o
n
 t
o
 e

rr
o
r

EV 1

EV 2 - 9

EV 10 - 49

EV 50 - 650

(i) banana

5 10 15 20 25 30 35 40 45 50

Batch size n

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

M
e
a
n
 c

o
n
tr

ib
u
ti
o
n
 t
o
 e

rr
o
r

EV 1

EV 2 - 9

EV 10 - 49

EV 50 - 650

(j) german

5 10 15 20 25 30 35 40 45 50

Batch size n

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

M
e
a
n
 c

o
n
tr

ib
u
ti
o
n
 t
o
 e

rr
o
r

EV 1

EV 2 - 9

EV 10 - 49

EV 50 - 650

(k) splice

5 10 15 20 25 30 35 40 45 50

Batch size n

0

0.05

0.1

0.15

M
e
a
n
 c

o
n
tr

ib
u
ti
o
n
 t
o
 e

rr
o
r

EV 1

EV 2 - 9

EV 10 - 49

EV 50 - 454

(l) breast

5 10 15 20 25 30 35 40 45 50

Batch size n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
e
a
n
 c

o
n
tr

ib
u
ti
o
n
 t
o
 e

rr
o
r

(m) mnist 3vs5

5 10 15 20 25 30 35 40 45 50

Batch size n

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

M
e
a
n
 c

o
n
tr

ib
u
ti
o
n
 t
o
 e

rr
o
r

(n) mnist 7vs9

5 10 15 20 25 30 35 40 45 50

Batch size n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
e
a
n
 c

o
n
tr

ib
u
ti
o
n
 t
o
 e

rr
o
r

(o) mnist 5vs8

Figure C.4.: Decomposition of the sum G(u, M) during active learning for all datasets for
the active learner ‘random sampling’.

C.8. ADDITIONAL EXPERIMENTAL RESULTS

C

183

C

184 C. APPENDIX OF CHAPTER 3

C.8.3. LEARNING CURVES ON ALL DATASETS FOR THE AGNOSTIC
SETTING

0 5 10 15 20 25 30 35 40 45 50

Batch size n

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

M
S

E
 d

if
fe

re
n
c
e
 o

n
 t
e
s
t
s
e
t

Disc (worst case)

Nuclear Disc (optimistic case)

MMD (pessimistic case)

Random

(a) vehicles

0 5 10 15 20 25 30 35 40 45 50

Batch size n

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

M
S

E
 d

if
fe

re
n
c
e
 o

n
 t
e
s
t
s
e
t

(b) heart

0 5 10 15 20 25 30 35 40 45 50

Batch size n

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

M
S

E
 d

if
fe

re
n
c
e
 o

n
 t
e
s
t
s
e
t

(c) sonar

0 5 10 15 20 25 30 35 40 45 50

Batch size n

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

M
S

E
 d

if
fe

re
n
c
e
 o

n
 t
e
s
t
s
e
t

(d) thyroid

0 5 10 15 20 25 30 35 40 45 50

Batch size n

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

M
S

E
 d

if
fe

re
n
c
e
 o

n
 t
e
s
t
s
e
t

(e) ringnorm

0 5 10 15 20 25 30 35 40 45 50

Batch size n

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

M
S

E
 d

if
fe

re
n
c
e
 o

n
 t
e
s
t
s
e
t

(f) ionosphere

0 5 10 15 20 25 30 35 40 45 50

Batch size n

-0.1

-0.05

0

0.05

0.1

0.15

M
S

E
 d

if
fe

re
n
c
e
 o

n
 t
e
s
t
s
e
t

(g) diabetes

0 5 10 15 20 25 30 35 40 45 50

Batch size n

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

M
S

E
 d

if
fe

re
n
c
e
 o

n
 t
e
s
t
s
e
t

(h) twonorm

0 5 10 15 20 25 30 35 40 45 50

Batch size n

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

M
S

E
 d

if
fe

re
n
c
e
 o

n
 t
e
s
t
s
e
t

(i) banana

0 5 10 15 20 25 30 35 40 45 50

Batch size n

-0.08

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

M
S

E
 d

if
fe

re
n
c
e
 o

n
 t
e
s
t
s
e
t

(j) german

0 5 10 15 20 25 30 35 40 45 50

Batch size n

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

M
S

E
 d

if
fe

re
n
c
e
 o

n
 t
e
s
t
s
e
t

(k) splice

0 5 10 15 20 25 30 35 40 45 50

Batch size n

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

M
S

E
 d

if
fe

re
n
c
e
 o

n
 t
e
s
t
s
e
t

(l) breast

0 5 10 15 20 25 30 35 40 45 50

Batch size n

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

M
S

E
 d

if
fe

re
n

c
e

 o
n

 t
e

s
ts

e
t

(m) mnist 3vs5

0 5 10 15 20 25 30 35 40 45 50

Batch size n

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

M
S

E
 d

if
fe

re
n

c
e

 o
n

 t
e

s
ts

e
t

(n) mnist 7vs9

0 5 10 15 20 25 30 35 40 45 50

Batch size n

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

M
S

E
 d

if
fe

re
n

c
e

 o
n

 t
e

s
ts

e
t

(o) mnist 5vs8

Figure C.5.: Results on all benchmark datasets for the agnostic setting.

C.9. BIBLIOGRAPHY

C

185

C.9. BIBLIOGRAPHY
[1] M. Mohri, A. Rostamizadeh, and A. Talwalkar, Foundations of Machine Learning

(MIT press, Cambridge, Massachusetts, 2012).

[2] Y. Mansour, M. Mohri, and A. Rostamizadeh, Domain Adaptation: Learning Bounds
and Algorithms, in Proceedings of the 22nd Annual Conference on Learning Theory
(COLT) (2009).

[3] C. Cortes and M. Mohri, Domain adaptation and sample bias correction theory and
algorithm for regression, Theoretical Computer Science 519, 103 (2014).

[4] C. Cortes, M. Mohri, and A. M. Medina, Adaptation based on generalized discrepancy,
Journal of Machine Learning Research 20, 1 (2019).

[5] J. Shawe-Taylor and N. Cristianini, Kernel Methods for Pattern Analysis (Cambridge
University Press, Cambridge, UK, 2004).

[6] G. C. Cawley and N. L. Talbot, Fast exact leave-one-out cross-validation of sparse
least-squares support vector machines, Neural Networks 17, 1467 (2004).

[7] M. Lichman, UCI Machine Learning Repository, (2013).

[8] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, et al., Gradient-based learning applied to
document recognition, Proceedings of the IEEE 86, 2278 (1998).

http://archive.ics.uci.edu/ml

D
APPENDIX OF CHAPTER 5

D.1. THEOREM 8
The minimizing hypothesis of the empirical risk Aerm(Sn) is attained for the mean that
equals µn := 1

n

∑n
i=1 zi . Let E denote the expectation both over the training sample Sn ∼ P n

and over the test sample z. The expected negative log-likelihood for µn then equals

−E

[
log

(
1√

(2π)d |Σ|
exp(− 1

2 (z −µn)T Σ−1(z −µn))

)]

=− log

(
1√

(2π)d |Σ|

)
+ 1

2 E
[
(z −µn)T Σ−1(z −µn)

]
.

(D.1)

Only the last term differs for different training set sizes n, so we only need to consider that
part when studying the monotonicity of the learning curve. Taking µ to be the true first
moment (and dropping the 1

2), we can rewrite the last term as

E
[
(z −µn)T Σ−1(z −µn)

]= E
[
(z −µ+µ−µn)T Σ−1(z −µ+µ−µn)

]
=E

[
(z −µ)T Σ−1(z −µ)

]+E
[
(µn −µ)T Σ−1(µn −µ)

]
.

(D.2)

Again, it is only the last term that matters as it is the only part that differs for different
training set sizes. For this term, we have that

E
[
(µn −µ)T Σ−1(µn −µ)

]= E

[
(1

n

n∑
i=1

zi −µ)T Σ−1(1
n

n∑
i=1

zi −µ)

]

=E

[
(1

n

n∑
i=1

zi)T Σ−1(1
n

n∑
i=1

zi)

]
−µT Σ−1µ

=E

[
1

n2

n∑
i=1

zT
i Σ−1zi + 1

n2

∑
j 6=k

zT
j Σ

−1zk

]
−µT Σ−1µ

=E
[

1
n2 nzT Σ−1z + 1

n2 (n2 −n)µT Σ−1µ
]
−µT Σ−1µ

=E
[1

n zT Σ−1z
]− 1

n µ
T Σ−1µ= 1

n E
[
(z −µ)T Σ−1(z −µ)

]
.

(D.3)

187

D

188 D. APPENDIX OF CHAPTER 5

As the domain is bounded, E
[
(z −µ)T Σ−1(z −µ)

]
exists and we can readily conclude that

the expected negative log-likelihood decreases with increasing n. Therefore, Aerm is glob-
ally monotonic. □

D.2. LEMMA 2
Let P (a) = q and P (b) = 1−q . The expected risk over Sn then equals

R(q) :=
n∑

k=0

(
n

k

)
qk (1−q)n−k

(
qℓ(a,hk

n−k)+ (1−q)ℓ(b,hk
n−k)

)
. (D.4)

The derivative to q of the above equals

d

d q
R(q) =

n∑
k=0

(
n

k

)[
(k +1)qk (1−q)n−kℓ(a,hk

n−k)−(n −k)qk+1(1−q)n−k−1ℓ(a,hk
n−k)+

kqk−1(1−q)n−k+1ℓ(b,hk
n−k)−(n −k +1)qk (1−q)n−kℓ(b,hk

n−k)
]

.

(D.5)

Taking the limit q → 0, all terms become zero for k > 1. For k = 0, we get ℓ(a,h0
n)−

(n +1)ℓ(b,h0
n) and, for k = 1, we get nℓ(b,h1

n−1). Similarly, for a training sample size of
n+1, the only nonzero terms we get are for k ∈ {0,1}, as the expression for the derivative is
essentially the same.

It shows that the q-derivative evaluated in 0 of the difference in expected risk from Equa-
tion (5.4) equals ℓ(a,h0

n+1)−(n+2)ℓ(b,h0
n+1)+(n+1)ℓ(b,h1

n)−ℓ(a,h0
n)+(n+1)ℓ(b,h0

n)−
nℓ(b,h1

n−1), which can be further simplified to −ℓ(b,h0
n+1)+ (n +1)ℓ(b,h1

n)−nℓ(b,h1
n−1),

as ℓ(a,h0
n) = ℓ(a,h0

n+1) and ℓ(b,h0
n) = ℓ(b,h0

n+1).
If this derivative is strictly larger than 0, continuity in q implies that there is a q > 0

such that the actual risk difference becomes positive. This shows that Aerm is not locally
(Z ,ℓ,n)-monotonic. □

D.3. THEOREM 9
Let us first consider the squared loss. Take a = (a1,0, . . . ,0, ad+1) and b = (b1,0, . . . ,0,bd+1),
such that the input vectors, (a1,0, . . . ,0) and (b1,0, . . . ,0), which constitute the first d co-
ordinates are in B0 ⊂ Z . The variables ad+1 and bd+1 constitute the outputs. Let both
first input coordinates a1 and b1 not be equal to 0. All other input coordinates do equal
0. In this case, all (minimum-norm) hypotheses are finite and Remark 2 applies to this
setting. So we study whether (n +1)ℓ(b,h1

n)−nℓ(b,h1
n−1) > 0 in order to be able to invoke

Lemma 2. To do so, we exploit that we can determine h1
n in closed-form. As all input

variation occurs in the first coordinate only, we have that h1
n =

(
a1ad+1+nb1bd+1

a2
1+nb2

1
,0, . . . ,0

)
∈

Rd , which implies that ℓ(b,h1
n) =

(
b1

a1ad+1+nb1bd+1

a2
1+nb2

1
−bd+1

)2

. In the same way we, find

that ℓ(b,h1
n−1) =

(
b1

a1ad+1+(n−1)b1bd+1

a2
1+(n−1)b2

1
−bd+1

)2

. Now take the limit of b1 to 0 to ob-

tain (n + 1)ℓ(b,h1
n)−nℓ(b,h1

n−1) = (n + 1)b2
d+1 −nb2

d+1 = b2
d+1. For any bd+1 bounded

D.4. THEOREM 10

D

189

away from 0, this shows that for all n ∈ N there is a b1 > 0, small enough, such that
(n + 1)ℓ(b,h1

n)−nℓ(b,h1
n−1) > 0. This shows in turn that there exists a b1 and a corres-

ponding bd+1 6= 0, such that Aerm under the squared loss is not locally (Z ,ℓ,n)-monotonic.
As this holds for all n, we conclude that it also is not weakly (Z ,ℓ, N)-monotonic for any
N ∈N.

For the absolute loss, we consider the same setting as for the squared loss and its very
beginning proceeds along the exact same lines. The proof starts to deviate at the calculation
of ℓ(b,h1

n) and ℓ(b,h1
n−1). Still the same as for the squared loss, as all input variation occurs

in the first coordinate, we only have to study what happens in that subspace. This means
that all other d −1 elements of the minimum-norm solutions we consider will be 0. As h1

n
is the empirical risk minimizer for one a and n bs, we have

h1
n = argmin

h∈Rd

1

n +1
(|a1h1 −ad+1|+n|b1h1 −bd+1|) , (D.6)

where h1 is the first element of h. We can rewrite the main part of the objective function as

|a1h1 −ad+1|+n|b1h1 −bd+1| = |a1|
∣∣∣∣h1 − ad+1

a1

∣∣∣∣+n|b1|
∣∣∣∣h1 − bd+1

b1

∣∣∣∣ . (D.7)

From this, one readily sees that the first coordinate of the minimizer h1
n equals ad+1

a1
if

|a1| > n|b1| and bd+1
b1

if |a1| < n|b1|. If |a1| = n|b1|, then it picks min(ad+1
a1

, bd+1
b1

) as we
are looking for the minimum-norm solution. For that same reason, all other entries of
h1

n equal 0. Similar expressions, with n − 1 substituted for n, hold for h1
n−1. If we take

|b1| < |a1|
n+1 , then we get (n +1)ℓ(b,h1

n)−nℓ(b,h1
n−1) = (n +1)| ad+1

a1
b1 −bd+1|−n| ad+1

a1
b1 −

bd+1| = | ad+1
a1

b1 −bd+1|, which is larger than 0 if a1bd+1 6= b1ad+1. Again along the same
lines as for the squared loss, this shows that regression using the absolute loss is not locally
(Z ,ℓ,n)-monotonic and, as this holds for all n, we conclude that it is not weakly (Z ,ℓ, N)-
monotonic for any N ∈N.

Finally, the hinge loss. As we are necessarily dealing with a classification setting now,
ad+1 and bd+1 are in {−1,+1}. Now, take a1 > 0, b1 > 0, ad+1 = +1 and bd+1 = −1. Any
choice of h can only classify either a or b correctly, as both a1 and b1 are positive. With
this, the empirical risk of h1

n+1 becomes 1
n+1 (max(0,1−a1h)+n max(0,1+b1h)) and only

solutions h for which the first coordinate is in [− 1
b1

, 1
a1

] need to be considered, as values
outside of this interval will only increase the loss for either a or b, while the loss remains the
same for the other values. Being limited to the interval [− 1

b1
, 1

a1
] implies max(0,1−a1h) =

1− a1h = |1− a1h|. As we have a similar loss in point b, we will find exactly the same
solutions as we found for the absolute loss, but with ad+1 and bd+1 limited to {−1,+1}. □

D.4. THEOREM 10
Take a and b to be in B0 ⊂ Z . As opposed to the proof for Theorem 9, we now can-
not use the suggestion from Remark 2, as for the log-likelihood it does not hold that
ℓ(b,h0

n) = ℓ(b,h0
n+1) = 0. Therefore, we need to look at the full expression of Lemma 2:

−ℓ(b,h0
n+1)+ (n + 1)ℓ(b,h1

n)−nℓ(b,h1
n−1). The sigma that belongs to the empirical risk

D

190 D. APPENDIX OF CHAPTER 5

minimizing hypothesis h0
n+1 equals

p
b2. For h1

n−1 it is
√

a2+(n−1)b2

n and for h1
n we get√

a2+nb2

n+1 . Therefore, we come to the following negative log-likelihoods:

ℓ(b,h0
n+1) = log |b|+ 1

2
+ 1

2
(log(2)+ log(π)), (D.8)

ℓ(b,h1
n) = nb2

2
(
a2 + (n −1)b2)

) + log

√
a2 +b2(n −1)

n

+ 1

2
(log(2)+ log(π)), (D.9)

ℓ(b,h1
n−1) = (n +1)b2

2
(
a2 +nb2

) + log

√
a2 +b2n

n +1

+ 1

2
(log(2)+ log(π)). (D.10)

Now, consider the limit of b going to 0. The last two negative log-likelihoods are finite
in that case, while ℓ(b,h0

n+1) will go to minus infinite. This implies that for b > 0 small
enough, we have that −ℓ(b,h0

n+1)+ (n +1)ℓ(b,h1
n)−nℓ(b,h1

n−1) > 0 (because of the term
−ℓ(b,h0

n+1)). In conclusion, our density estimator is not locally (Z ,ℓ,n)-monotonic and,
as this holds for all n, we conclude that it is not weakly (Z ,ℓ, N)-monotonic for any N ∈N.
□

E
EXACT LEARNING CURVE

DISTRIBUTION FOR WRAPPER

We give a procedure to calculate the learning curve distribution for the wrapper algorithm
MTSIMPLE, which we will apply to Example 7.1 (p. 146).

Let Wi+1, Wi be the random variables of the true error rate of the wrapper in round i +1
and i , respectively. Let Li be the random variable that corresponds to the true error rate
of the original learner A(Si) in round i to which the wrapper algorithm is applied. The
corresponding model is called hi . Since the training set Si that is supplied to the learner is
a random sample, Li is a random variable. The decisions of the wrapper algorithm depend
on the values of Li and on randomness coming from the validation sample, therefore Wi is
also a random variable.

We make the (rather strong) assumption that the probability density function of Li is
known for all i , as is the case in Example 7.1 (p. 146). We further assume that all Li are
independent, which can be achieved in general by assuming that the training datasets S1, S2,
etc. are always collected from scratch. Under these assumptions we will give a procedure to
compute the probability density function of Wi for all i for MTSIMPLE in case the validation
set size Nv = 1.

In each round except the first, MTSIMPLE compares the previously best model hbest to
the newly trained model hi . While not explicitly mentioned in Chapter 6, this comparison
should be pessimistic, in the sense that, if the models tie, the wrapper will use the previously
best model hbest

1. As we have seen in that chapter, pessimism is necessary to make the
curve more monotone. Since we have only one validation sample, this comes down to only
choosing the new model hi if that model makes no mistake on the validation sample while
the previously best model hbest does. See Table E.1 for an overview of the situation.

We could in addition, define a random variable Bi that indicates the error rate of the pre-
vious best model hbest. Note, however, due to the recursive nature of the wrapper algorithm,
we have that Bi+1 = Wi for all rounds i > 1. In other words, the previously best model in
round i +1 can be obtained by running the wrapper algorithm i rounds. The model compar-
ison made by the wrapper in round i +1, is thus comparing models whose error rates are

1In Chapter 6 we always set Nv À 1, in which case such ties are very rare.

191

E

192 E. EXACT LEARNING CURVE DISTRIBUTION FOR WRAPPER

hbest (error rate Wi)
loss on validation sample 0 (correct) 1 (incorrect)
0 (correct) choose hbest choose hihi (error rate Li+1) 1 (incorrect) choose hbest choose hbest

Table E.1.: An overview of the action of the wrapper algorithm in round i +1, depending
on the different zero one losses of hbest and hi on the single validation sample.

given by Wi and Li+1.
In the first round, MTSIMPLE always returns h1 = A(S1), since there is no previously best

model available to compare with. Thus, W1 = L1, and since we assumed the density of all
Li are known, we know the density of W1.

Now we will recursively compute the density of Wi+1 using the densities Wi and Li+1.
Note that, Li+1 and Wi are always independent, since hi+1 uses training set Si+1, while the
model corresponding to the error rate Wi has only had access to the training sets S1, . . . ,Si .
Using independence and the rule of total probability,

P (Wi+1 < a) = P (Wi+1 < a|Wi < a,Li+1 < a)P (Wi < a)P (Li+1 < a) (E.1)
+ P (Wi+1 < a|Wi ≥ a,Li+1 ≥ a)P (Wi ≥ a)P (Li+1 ≥ a) (E.2)
+ P (Wi+1 < a|Wi ≥ a,Li+1 < a)P (Wi ≥ a)P (Li+1 < a) (E.3)
+ P (Wi+1 < a|Wi < a,Li+1 ≥ a)P (Wi < a)P (Li+1 ≥ a) (E.4)

The last two probabilities of each line can readily be calculated by integrating the known
probability density functions of Li+1 and Wi . Thus let us now discuss how to compute the
first probability of each line.

We have P (Wi+1 < a|Wi < a,Li+1 < a) = 1 (Equation E.1), since here the choice of the
wrapper algorithm does not matter, the wrapper will always achieve an error rate smaller
than a regardless of which model is chosen. Using a similar argument we have P (Wi+1 <
a|Wi ≥ a,Li+1 ≥ a) = 0 (Equation E.2), thus we can ignore the second line.

For P (Wi+1 < a|Wi ≥ a,Li+1 < a) (Equation E.3), the wrapper needs to choose hi , which
only occurs if hi makes no mistake on the validation sample while hbest does (the top
right event in Table E.1). For the case Nv = 1, conditioning on Li+1 = l and Wi = w ,
the probability of that event is w(1− l), where we can multiply the probabilities due to
independence. However, Wi and Li+1 are random variables, and thus we need to integrate
out their probability density functions to obtain the definitive probability for this event.
Note that we are computing a probability which is conditioned on Wi ≥ a,Li+1 < a, thus
the densities should also be conditioned on this. Making use of the fact that Nv = 1 we
obtain ∫

w∈[a,1]

∫
l∈[0,a]

w(1− l) fWi |Wi≥a(w) fLi+1|Li+1<a(l) d w dl

where fWi |Wi≥a(w) is the conditional probability density of Wi conditioned on Wi ≥ a. We
use the same notation for the conditional density of Li+1. Simplifying we find

P (Wi+1 < a|Wi ≥ a,Li+1 < a, Nv = 1) = E(Wi |Wi ≥ a)(1−E(Li+1|Li+1 < a)). (E.5)

E

193

For P (Wi+1 < a|Wi < a,Li+1 ≥ a) (Equation E.4), hbest needs to be chosen, which is
exactly the complementary event (see Table E.1). Thus for the case Nv = 1, conditioning
on Li+1 = l and Wi = w , the probability of that event is 1− w(1− l). Integrating out the
densities we find for the case Nv = 1 that∫

w∈[0,a]

∫
l∈[a,1]

(1−w(1− l)) fWi |Wi<a(w) fLi+1|Li+1≥a(l) d w dl

simplifying further we obtain

P (Wi+1 < a|Wi < a,Li+1 ≥ a, Nv = 1) = 1−E(Wi |Wi < a)(1−E(Li+1|Li+1 ≥ a)). (E.6)

Now we have completely expressed P (Wi+1 < a) in Equation E.1 in terms that only
depend on integrals of Wi and Li+1. Differentiating P (Wi+1 < a) with respect to a, we find
the probability density function of Wi+1. This can be recursively applied to obtain all Wi .

Let us illustrate the procedure using Example 7.1 (p. 146). For this example, the prob-
ability density function for all Li is uniform on the interval [0,1]. Thus we also have that
W1 is uniform on [0,1] since always L1 = W1. Let us now compute W2, which depends on
L2 and W1. Note that, in this special case, we have that L2 = W1, and thus some calcula-
tions simplify. First, let us turn to the last two probabilities of each line in the Equations
E.1 - E.4. By integrating the uniform distribution we find P (W1 < a) = P (L2 < a) = a and
P (W1 ≥ a) = P (L2 ≥ a) = 1−a. Using the definition of the conditional density function we
find that

fW1|W1<a(w) = 1

a
,

fW1|W1≥a(w) = 1

1−a
,

note that these conditional densities are only valid on their respective domains, otherwise
they are zero, e.g. fW1|W1<a(w) = 0 for w > a. From these we can compute conditional
expectations

E(W1|W1 < a) = a

2
,

E(W1|W1 > a) = 1

2
+ a

2
,

and using Equations E.5 and E.6 we find

P (W2 < a|W1 ≥ a,L2 < a) =
(
1− a

2

)(
a

2
+ 1

2

)
,

P (W2 < a|W1 < a,L2 ≥ a) = a

2

(
a

2
− 1

2

)
+1.

Putting everything together in Equations E.1 - E.4 and simplifying we eventually find that

P (W2 < a) = a

2
(3−a).

Now we differentiate this cumulative density function to obtain

fW2 (a) = 3

2
−a,

E

194 E. EXACT LEARNING CURVE DISTRIBUTION FOR WRAPPER

and so we have obtained the probability density of W2 from the densities L2 and W1.
The procedure is thus: compute P (Wi+1 < a) from Li+1 and Wi using Equation E.1 - E.4

and differentiating to obtain fWi+1 . We can recursively keep applying this to compute all the
densities for Wi for arbitrary i . Let us give the third and fourth density analytically here:

fW3 (a) = 1

2
a2 − 13

6
a + 23

12

fW4 (a) =−1

4
a3 + 19

12
a2 − 251

72
a + 41

18

The exact means can be readily computed from these densities and are for i = 1, . . . ,4 given
by 1

2 , 5
12 , 13

36 , 697
2160 . We give a picture to illustrate the distribution in Figure 7.2 (right) on

page 147 for i = 1, . . . ,30.

ACKNOWLEDGEMENTS

First of all, I am very grateful to be a part of the research group PRB. It is difficult for me to
imagine a more stimulating group, and I’m very glad to be a part of it. While the Thursday
night beers hooked me as an MSc student, the group activities and friendly atmosphere is
what makes me want to stick around. Hats off to Marcel for continuing to make sure this
research group continues running so smoothly.

Second, I want to thank my closest collaborator and office roommate, Alexander. Our
pre-lunch discussions will be a fond memory of my PhD. I am forever indebted to you for
your patience when helping me out with the homework for that machine learning theory
course. Most importantly you have taught me that math isn’t that hard, you just have to
stick with it. Finally, thanks for teaching me how to lose some weight :).

Marco, first of all, thanks for providing me the opportunity to do a PhD with you. You
have helped me understand what great research is really about. I will never forget to ask
‘why’ ever again; and now I understand the mathematicians approach to research. One of
the important lessons you have taught me is to be more selective in what to do. Thanks
for all your support and the slight pushes that helped me finish the PhD relatively on time.
Without it surely it would still not be finished. Thanks for all the great times we had inside
and outside the office. I am looking forward to more fruitful collaborations and all other
sorts of mischief in the future!

Elmar, I am really sad that most of our collaborations did not pan out as we planned them.
However, thanks for running a nice research group and always making me feel welcome.
Furthermore, I want to thank you for your critical reading of my thesis.

Amogh, I fondly remember those few times you were in Delft. Luckily, my Amsterdam
visits have made up for this. I hope we can keep having these research visits that involve,
for example, the NDSM or the Greek islands. Of course, also thanks to your significant
other Neha, who always manages to raise my spirits.

Speaking of more partying... Taylan and Rickard, it was a pleasure to meet you and I am
looking forward to our next raves. Of course, I cannot forget Ziqi. I think our collaboration,
where we wrote our related work section in Croatia while drinking cocktails, will be hard
to beat. Further international collaborations are fortunately not ruled out in London.

Talking about trips, I want to thank all other next door neighbors, Chirag, Jose, Yeshw-
anth, (and also Ziqi), with whom I went on a euro trip. I absolutely had a blast. Yeshwanth
thanks for all the driving, your great spirits and nice cooking. Besides that, I have to men-
tion my trip with Chirag and Sonakshi to Sziget which was too much fun, thanks again!
Sonakshi, thanks for the good times and introducing me to your awesome friends. I am
looking forward to go again to Sziget to meet Jakob & Kamilla again. Oh, and I’m sorry
Yancong for making you stay so long on that boat trip in Amsterdam, but I think it was
cool you went along! Yunqiang, I will also fondly remember our trip to BMVC where we
had many memorable moments together with Ziqi.

195

196 ACKNOWLEDGEMENTS

Laura, Ekin, Wouter, Sally, Christian, I think you guys really made such a great atmo-
sphere in the group. Sally, thanks for some wise words and that awesome Mexican BBQ.
I will never forget our Ibiza trip as dolphin trainers with Laura and Alexander. Laura,
thanks for teaching me the ways of making awesome PhD movies. Wouter, thanks for all
the memes and your high spirits. Ekin, thanks for teaching me vaping and other weird stuff.

Hayley, thanks for now and then that motivating cookie. Jose and Stephanie, thanks for
the discussions and insightful talks. Laura, thanks for trying to teach us some hardware
stuff. Bernd, thanks for all the cool talks as well. Chirag, its unfortunate our collaboration
never got off the ground, but I hope we can work together in the future! Tiffany, I hope we
will work less late from now on...! Thanks for the good company!

Ruud, thanks for all the smoke breaks and more than once saving me with Linux! Bart
and Robbert, also thanks for more than once helping me with the cluster. Saskia and
Marunka, thanks for all your work to keep the group running smoothly.

Osman, thanks for all the entertaining and excellent talks and all your positivity! Silvia, I
always cherished our (too short) travel time together back towards Leiden where you always
had some wise words for me. Nergis, thanks for all the smoke breaks! Seyran, thanks for
all the tasty treats. Special thanks to Hamdi. You always had some great advice for me
and supported me in my journey to quit smoking. Wenjie, I also enjoyed our talks, I hope
you are doing well in China. Robert-Jan, Atillia, Xucong, Xin, Xiangwei, Ombretta,
Marian, thanks for interesting discussions and the great atmosphere.

Jan, thanks for running such a great research group and organizing such a useful website.
I want to thank you in particular for presenting so many things patiently that others take for
granted. Keep it up, you are an asset to the group.

Bio people; Stavros, I greatly enjoyed our brainstorming sessions and the fruitful stu-
dent projects that came from it. Thomas, thanks for offering me the opportunity to super-
vise a Bio student together. Christine, thanks for all the laughter. Aysun, Ramin, Yasin,
Skander, thanks for all enjoyable activities together and the good talks!

Arman, thanks for all the great (smoke) breaks and I am sure we will have some more
fun in the future visiting China. Jin, Ramin, Mahdi, and Mo, thanks for all the company.
Yazhou, thanks for now and then helping me out with my active learning research. Tay-
gun, thanks for the interesting discussions. I also want to thank the numerous MSc and
BSc students of the PR Lab who joined during the PR meetings and the drinks, such as
Berend, Prajit, Aleksander and Pia. Yuko and Taylan, thanks for helping me out with
the Capstone. I am hoping for more collaborations in the future!

David, as a teacher you were a great inspiration to me as you always manage to excite
your audience. I hope we at some point will work together teaching. Jesse, thanks again for
pushing me during my Msc thesis. But also during my PhD I want to thank you for more
than once for some wise words! Bob, thanks for many interesting talks.

Now besides being part of PRB, I was also lucky enough to be part of the teaching team
as a lecturer. Many thanks to Andy, who coached me through developing a whole course
on my own (also thanks to David, Jesse and Neil!). Andy, I want to thank you further
for stimulating me to apply for the new position in Delft, and all your other mentoring and
support! Many thanks to Neil and Przemek, for all things relating to organizing the AI
minor, the machine learning course and the Capstone. Gosia, thanks for all the fun we’ve
had, and I’m looking forward to our future collaborations! Special thanks to Susanne van

197

Aardenne for our collaboration on the surf proposal and the pitch. Wendy, thanks for all
the laughs we have shared, and the opportunities you have provided me. Panchamy, many
thanks for organizing the FAIP course where I had the pleasure of giving multiple lectures!

Many thanks to all people in the teaching team and their endurance of me complaining
about the Capstone. Many thanks to Frank, for all the laughs, but also for distilling the
most important points of the UTQ into just a few Zoom meetings. Also many thanks to
Bart: for the beers and tips and tricks with Vocareum. Thomas, thanks for all the sweets,
beers, but most of all, all your support and input for organizing the Capstone. Otto, thanks
for the help with all sorts of things such as the digital rubric, and all the beers! Stefan,
thanks for getting me up to speed with all kinds of things, such as Zesje. Taico, thanks
for all kinds of IT support, especially with project forum. Furthermore, thanks to all other
members of the teaching team for the great atmosphere!

Furthermore, I also greatly enjoyed some of the integrating activities with the research
group of Interactive Intelligence, such as collaborations with Pradeep, Frank and Arkady
(the latter actually works in AiTech). Furthermore, I was very pleased to meet Elena, who
interestingly I got to know much better at BMVC in Belgium than in Delft. I am confident
you will do great in the teaching team and will easily wrap up your thesis. I’m looking
forward to more adventures! Zuza, thanks for organizing all kinds of fun activities! Davide,
Ruben, Enrico, Rolf, Sandy, Mani, great to meet you!

Also thanks to Jan van Rijn for many enjoyable activities in Leiden and our great col-
laboration with Felix. Special thanks to Marie for many inspirations in my research. I was
also very lucky to meet Jan and Christina Gopfert, and I hope we will soon meet again!
Also sincere apologies to Zak Mhammedi who we kept awake with our open problem on
monotone learning. I am happy it has led you to work on this problem! Thanks to Peter
Grünwald for the machine learning theory course and the lecture at TU Delft.

Then I would like to thank Irene, Quincy, Marieke (aka zoon), Ruby, Suki, Else,
Pieter, Nina. Thanks for all the great parties and I’m sure we will see eachother soon
enough again at Liquicity! Liquicity, thanks for organizing such wonderful parties, please
keep it up! Wallie, thanks for all the fun in Amsterdam! I am looking forward to our next
party. Thanks to Ineke, who has offered me a lot of support and some great distractions
during my PhD.

Jelmer, thanks for all the advice and all the beers! Your support and mentoring has
always greatly helped me, and I’m looking forward to our future adventures. Ivar, thanks
for all the fun with the boardgames (which you always win)! Tom Vieveen, thanks for
the good times! Frank Marsman, Leandros, Jeroen, Rembrand thanks for all the great
times and parties! Mihail thanks for hosting us so many times in Amsterdam and showing
us around in Greece! Also thanks to Olivier, Bas, Arnold, David, for the beers and fun!
Also many thanks to all the Pongols (Katwijk, Freek, Koen, Maarten, Nigel, Oli) for all
the fun times and not removing me from the Whatsapp group :). Thanks also to Karlien,
Natasja, Luigi and Oli for all the great meetups!

Tenslotte, wil ik graag mijn ouders bedanken. Alma, bedankt voor alle steun en wijze
adviezen, en je altijd scherpe blik. Peter, bedankt voor alle gezelligheid, koffies bij Roos
en vrolijkheid. Jullie hebben me altijd gestimuleerd om me verder te ontwikkelen en het
beste uit mezelf te halen, heel erg bedankt hiervoor!

CURRICULUM VITÆ

Tom Julian Viering

14-01-1991 Born in Leiden, Netherlands.

EDUCATION
2003-2009 High School,

Rijnlands Lyceum, Oegstgeest

2009-2013 Bachelor Physics,

Leiden University

2013-2016 Master in Computer Science,

Delft University of Technology

2016-2023 Ph.D. in Computer Science

Delft University of Technology

Thesis: On Safety in Machine Learning

Promotors: Prof. dr. E. Eisemann

Prof. dr. M. Loog

199

LIST OF PUBLICATIONS
13. M. Loog, T. J. Viering, A Survey of Learning Curves with Bad Behavior: or How More Data

Need Not Lead to Better Performance, accepted at Benelearn, Mechelen, 2022.

12. P. Bhaskaran, T. J. Viering, To Tune or not to Tune: Hyperparameter Influence on the Learning
Curve, accepted at Benelearn, Mechelen, 2022 (student paper).

11. D. Kim, T. J. Viering, Different approaches to fitting and extrapolating the learning curve,
accepted at Benelearn, Mechelen, 2022 (student paper).

10. F. Mohr, T. J. Viering, M.Loog, J. N. van Rijn, LCDB 1.0: An Extensive Learning Curves
Database for Classification Tasks, accepted at European Conference on Machine Learning
and Principles and Practice of Knowledge Discovery in Databases (ECMLPKDD), Grenoble,
2022.

9. T. J. Viering, M. Loog, The Shape of Learning Curves: a Review, IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2022 (TPAMI).

8. K. G. Schmahl, T. J. Viering, S. Makrodimitris, A. Naseri Jahfari, D. Tax, M. Loog, Is Wikipe-
dia succeeding in reducing gender bias? Assessing changes in gender bias in Wikipedia using
word embeddings, Proceedings of the Fourth Workshop on Natural Language Processing and
Computational Social Science (NLPCSS), pages 94-103, Virtual Conference, 2020 (student
paper).

7. M. Loog, T. J. Viering, A. Mey, J. H. Krijthe, D. M. Tax, A Brief Prehistory of Double Descent,
Proceedings of the National Academy of Sciences (PNAS), 117(20): 10625-10626, 2020.

6. A. Mey, T. J. Viering, M. Loog, A Distribution Dependent and Independent Complexity Ana-
lysis of Manifold Regularization, International Symposium on Intelligent Data Analysis (IDA),
pages 326-338, Virtual Conference, 2020.

5. T. J. Viering, A. Mey, M. Loog, Making Learners (More) Monotone, International Symposium
on Intelligent Data Analysis (IDA), pages 535-547, Virtual Conference, 2020.

4. T. J. Viering, Z. Wang, M. Loog, E. Eisemann, How to Manipulate CNNs to Make Them
Lie: the Gradcam Case, Proceedings of the British Machine Vision Conference (BMVC) 2019
Workshop on Interpretable and Explainable Machine Vision (IXMV), Cardiff, UK, 2019.

3. M. Loog, T. J. Viering, A. Mey, Minimizers of the Empirical Risk and Risk Monotonicity, Ad-
vances in Neural Information Processing Systems (NeurIPS) 32, pages 7476-7485, Vancouver,
Canada, 2019.

2. T. J. Viering, A. Mey, M. Loog, Open Problem: Monotonicity of Learning, Conference on
Learning Theory (COLT), pages 3198-3201, Phoenix, Arizona, 2019.

1. T. J. Viering, J. H Krijthe, M. Loog, Nuclear Discrepancy for Single-Shot Batch Active Learn-
ing, Machine Learning, 108(8-9): 1561-1599, 2019 (ECMLPKDD).

201

	cover_tomviering_compressed
	dissertation_tomviering_final_v3
	Contents
	Summary
	Samenvatting
	Introduction
	Preliminaries 1: Supervised Learning
	Preliminaries 2: ERMs and PAC Learning
	Preliminaries 3: Bayesian Machine Learning
	Safety and Previous Work on Safety
	Explainability
	Active Learning
	Learning Curves
	Relation of the Chapters to Safety
	Organization of the Thesis
	Overview of Notation
	Glossary
	Bibliography

	How to Manipulate CNNs to Make Them Lie: the GradCAM Case
	Introduction
	GradCAM and Notation
	Manipulating the CNN
	Experimental Setup
	Results
	Discussion
	Conclusion
	Bibliography

	Nuclear Discrepancy for Single-Shot Batch Active Learning
	Introduction
	Related Work
	Setting and Notation
	Analysis of Existing Bounds
	Nuclear Discrepancy
	Experiments
	Discussion
	Conclusion
	Bibliography

	The Shape of Learning Curves: a Review
	Introduction
	Definition, Estimation, Feature Curves
	General Practical Usage
	Empirical Works that Favor Well-Behaved Curves
	Learning Theory in Favor of Well-Behaved Curves
	Ill-Behaved Learning Curves
	Discussion
	Conclusion
	Bibliography

	Minimizers of the Empirical Risk and Risk Monotonicity
	Introduction
	Earlier Work and Its Relation to the Current
	Risk Monotonicity
	Theoretical Results
	Experimental Evidence
	Discussion and Conclusion
	Bibliography

	Making Learners (More) Monotone
	Introduction
	Setting and the Definition of Monotonicity
	Approaches and Algorithms
	Theoretical Analysis
	Experiments
	Discussion
	Conclusion
	Bibliography

	Discussion
	Monotone in Expectation?
	Safe Explanation Methods
	Safe Active Learning
	Final Words on Safety
	Bibliography

	Open Problem: Monotonicity of Learning
	Introduction
	Preliminaries and Related Work
	The Monotonicity Property
	Examples
	Relation to Learnability
	Open problem(s)
	Bibliography

	A Brief Prehistory of Double Descent
	Bibliography

	Appendix of Chapter 3
	Background Theory
	Proofs
	Remark on Probabilistic Analysis and choice of Us
	Computation of the Decomposition of the Probabilistic Bounds
	Experimental Settings and Dataset Characteristics
	Results of the Agnostic Setting
	Influence of subsampling on performance.
	Additional Experimental Results
	Bibliography

	Appendix of Chapter 5
	Theorem 8
	Lemma 2
	Theorem 9
	Theorem 10

	Exact Learning Curve Distribution for Wrapper
	Acknowledgements
	Curriculum Vitæ
	List of Publications

