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A B S T R A C T   

Aquatic community dynamics are closely dominated by flow regime and water quality conditions, which are 
increasingly threatened by dam regulation, water diversion, and nutrition pollution. However, further under
standing of the ecological impacts of flow regime and water quality conditions on aquatic multi-population 
dynamics has rarely been integrated into existing ecological models. To address this issue, a new niche-based 
metacommunity dynamics model (MDM) is proposed. The MDM aims to simulate the coevolution processes of 
multiple populations under changing abiotic environments, pioneeringly applied to the mid-lower Han River, 
China. The quantile regression method was used for the first time to derive ecological niches and competition 
coefficients of the MDM, which are demonstrated to be reasonable by comparing them with the empirical evi
dence. Simulation results show that the Nash efficiency coefficients for fish, zooplankton, zoobenthos, and 
macrophytes are more than 0.64, while the Pearson correlation coefficients for them are no less than 0.71. 
Overall, the MDM performs effectively in simulating metacommunity dynamics. For all river stations, the 
average contributions of biological interaction, flow regime effects, and water quality effects to multi-population 
dynamics are 64%, 21%, and 15%, respectively, suggesting that the population dynamics are dominated by 
biological interaction. For upstream stations, the fish population is 8%–22% more responsive to flow regime 
alteration than other populations, while other populations are 9%–26% more responsive to changes in water 
quality conditions than fish. For downstream stations, flow regime effects on each population account for less 
than 1% due to more stable hydrological conditions. The innovative contribution of this study lies in proposing a 
multi-population model to quantify the effects of flow regime and water quality on aquatic community dynamics 
by incorporating multiple indicators of water quantity, water quality, and biomass. This work has potential for 
the ecological restoration of rivers at the ecosystem level. This study also highlights the importance of consid
ering threshold and tipping point issues when analyzing the “water quantity-water quality-aquatic ecology” 
nexus in future works.   

1. Introduction 

With the globally increasing socioeconomic development by sacri
ficing the ecologically environmental benefits, there is an increasing 
worldwide social and political concern on sustainable freshwater 

ecosystems (Hillebrand et al., 2020; Kuriqi et al., 2021; Mlynski et al., 
2021; Palmer et al., 2005). However, freshwater ecosystems, especially 
rivers, are increasingly threatened by dam regulation, water diversion, 
and nutrition pollution (Grill et al., 2019; Lu et al., 2021; Mor et al., 
2018; Palmer and Ruhi, 2019). Consequently, hydrological character
istics and water quality are significantly altered, resulting in adverse 
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effects on the aquatic community’s function, structure, and dynamics 
(Benjankar et al., 2018; Sabzi et al., 2019). This has compelled relevant 
scholars to move from morphological to ecosystem-level “proc
ess-based” practices, which focus on dual efforts of restoring flow re
gimes and controlling water pollution to improve aquatic ecosystems 
(Geary et al., 2020; Joseph, 2020; Thompson et al., 2020). Thus, further 
understanding of both flow regime effects (FREs) and water quality ef
fects (WQEs) in river ecosystems has been in high demand. FREs and 
WQEs refer to the ecological impacts of spatiotemporal changes in flow 
regime and water quality conditions on multi-population dynamics, 
respectively. 

Existing studies have discussed that the structure and function of a 
riverine ecosystem, as well as many adaptations of its biota, largely 
depend on flow regime and water quality (Aspin et al., 2020; Baker 
et al., 2020; Harper et al., 2020; Nilsson and Renofalt, 2008; Palmer and 
Ruhi, 2019; Stoffels et al., 2020; Zhao et al., 2018). Variables related to 
flow regime (such as discharge and velocity) and water quality (such as 
water temperature and total phosphorous) constitute essential envi
ronmental factors affecting aquatic organisms. Annual changes in flow 
and water quality conditions play an important role in population dy
namics by modifying reproductive success, natural flow, and biotic in
teractions (Dodds, 2007; Poff and Ward, 1989). From the perspective of 
flow regime, the magnitude, duration, timing, rate of change, and fre
quency of flow events are usually the key driving factors for maintaining 
the diversity of fish, phytoplankton, and invertebrates (Fornaroli et al., 

2020; Wang et al., 2021b). Eutrophic flows can substantially alter spe
cies composition and abundance (Dodds, 2007; Lobera et al., 2017). It is 
essential to consider mitigation measures to preserve the riverine 
ecosystem, although the ecological impacts may not be similar in 
different regions and flow regimes. Among the mitigation measures, 
environmental flows are the most common way to ensure the good 
ecological status of the riverine ecosystem downstream of the water 
facilities (Kuriqi et al., 2019a). The renewed Brisbane declaration 
(Arthington et al., 2018) defines environmental flows as “the quantity, 
timing, and quality of freshwater flows and levels necessary to sustain 
aquatic ecosystems which, in turn, support human cultures, economies, 
sustainable livelihoods, and well-being.” From this perspective, the 
implementation of environmental flows is an important means of pro
tecting river ecosystems and mitigating the environmental impacts 
caused by human activities, particularly in fragile and shallow water 
ecosystems (Kuriqi et al., 2020). Environmental flows usually are set by 
considering the magnitude, frequency, duration, timing, and rate of 
change of flows released downstream of the diversion in order to achieve 
multiple objectives such as hydropower production, biodiversity con
servation, surface and groundwater balance, water quality improve
ment, and a healthy hydrological cycle (Kuriqi et al., 2019b, 2021). 
Water managers strive to achieve an environmental flow regime that 
supports human uses and the essential geomorphological and biological 
processes needed for healthy river ecosystems (Mlynski et al., 2021). 
The flow-ecology relationships are essential to predict potential 

Index of notations and abbreviations 

Notations 
Ni density of population i [kg/d, cells/L, mg/L, or kg/m2] 
ri intrinsic growth rate of population i [month− 1] 
Ki environmental carrying capacity of population i [kg/d, 

cells/L, mg/L, or kg/m2] 
f an environmental indicator 
αij integrated competitive coefficient of population j on 

population i 
αf

ij competitive coefficient of population j on population i in 
terms of indicator f 

J total number of populations 
M total number of flow regime indicators 
L total number of water quality indicators 
FRm value of the m-th flow regime indicator [m3/s] 
WQl value of the l-th water quality indicator [◦C, mg/L, or 

dimensionless] 
zm

i (zl
i) environmental optimum of population i to indicator m (l) 

[m3/s, ◦C, mg/L, or dimensionless] 
Bm

i (Bl
i) niche breadth of population i along indicator m (l) 

Bf
i niche breadth of population i along the dimension of f 

Ii immigration of population i from elsewhere [kg/d/month, 
cells/L/month, mg/L/month, or kg/m2/month] 

Ei actual emigration of population i to elsewhere [kg/d/ 
month, cells/L/month, mg/L/month, or kg/m2/month] 

Eup
i (Edown

i ) actual upward(downward) emigration of population i 
[kg/d/month, cells/L/month, mg/L/month, or kg/m2/ 
month] 

E′

i theoretical emigration that is determined by the successful 
number of Ni draws from a binomial distribution E′

i ∼

B(Ni,Pi) [kg/d/month, cells/L/month, mg/L/month, or 
kg/m2/month] 

Oi unexplained variation in the density of population i [kg/d/ 
month, cells/L/month, mg/L/month, or kg/m2/month] 

F a certain environmental condition of f 
Fmax (Fmin) maximum(minimum) value of f 
ε average discrete step size for the continuous range of [Fmin, 

Fmax] 
PF

i probability that individuals of population i prefer the 
environmental condition range of [F − ε, F] 

R discrete number for the continuous variable f 
wup

i (wdown
i ) weight of upward(downward) emigration of population 

i 
Lup (Ldown) geographical distance from the upstream(downstream) 

adjacent station [km] 

Abbreviations 
FRE(s) flow regime effect(s) 
WQE(s) water quality effect(s) 
MDM metacommunity dynamics model 
PDF probability density function 
NSE Nash efficiency coefficient 
r Pearson correlation coefficient 
Q Discharge 
AT Air temperature 
WT Water temperature 
pH Potential of hydrogen 
SS Suspended solids 
DO Dissolved oxygen 
CODMn Chemical oxygen demand 
BOD5 Biochemical oxygen demand 
SO4 Sulphate 
NH3–N Ammonia nitrogen 
NO2–N Nitrite nitrogen 
NO3–N Nitrate nitrogen 
TP Total phosphorous 
F Fluoride 
Cl Chloride 
TH Total hardness  
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ecological consequences caused by the flow regime alteration. From the 
perspective of water quality, severely nutrient-polluted waters often 
accelerate the rampant growth of toxic cyanobacteria, which will pose a 
direct threat to the survival of aquatic organisms when the concentra
tion of pollutants exceeds their tolerance limit (Zhang et al., 2009). 
Alterations in water quality (such as dissolved oxygen and organic 
compounds) can directly or indirectly affect the distribution and density 
of aquatic organisms. For instance, ecological responses of aquatic or
ganisms to seasonal flow and water temperature variability may be 
confounded by alterations in water quality. Fluxes of organic com
pounds may swamp natural intra-annual fluctuations in the availability 
of environmental resources (Cook et al., 2018). Thus, the interaction 
between biotic and abiotic environments is the basis for understanding 
and managing aquatic ecosystems. 

Historically, interactions, feedback, and dependencies between bi
otic and abiotic components of ecosystems remain issues. The infor
mation available to integrate the interaction between biotic and abiotic 
environments was so limited that it is challenging to predict nonlinear 
ecosystem dynamics. This strong demand for big data makes it chal
lenging to build complex models (Geary et al., 2020), but this has 
gradually improved in the past ten years (Fournier et al., 2017; Gravel 
et al., 2006; Loreau et al., 2003; Shoemaker and Melbourne, 2016). For 
example, Thompson et al. (2020) proposed a general process-based 
metacommunity framework that unites local and regional scale the
ories of ecological community dynamics. Besides, the disciplines of hy
drology, environment, and ecology have made significant progress in 
forecasting river runoff, water environmental capacity, and population 
dynamics. These relevant studies have laid the foundation for identi
fying the FREs and the WQE in river ecosystems. However, river regu
lation (flow regime related) and eutrophication (water quality related), 
two of the most pressing threats to global freshwater biodiversity, are 
often separately considered by researchers (Aspin et al., 2020; Palmer 
and Ruhi, 2019). Applied ecology has historically approached man
agement using a simplified single-species or single-threat frame for de
cision problems (Geary et al., 2020), and the FREs and WQEs have less 
commonly been simultaneously included in existing ecological models, 
although each of these drivers is the subject of substantive bodies of 
literature. The experience of multiple failures considering only a single 
threat or a single species has prompted management at the ecosystem 
level. Therefore, it is not only necessary but also healthier to manage 
from a system level of “water quantity-water quality-aquatic ecology” 
nexus than from a single point of view which has been exposed as 
inadequate in ecological restoration, biodiversity conservation, and 
riverine management. 

This study proposes a new niche-based metacommunity dynamics 
model (MDM) to identify the FREs and the WQEs in aquatic commu
nities. A metacommunity is formalized as a set of local communities 
where multiple populations compete and can disperse among local 
communities distributed in space (Leibold et al., 2004). The novelty of 
the work is an attempt to quantify the effects of hydrological conditions 
and water quality changes on aquatic population dynamics, which 
provides the potential for ecological restoration of rivers at the 
ecosystem level. Such analyses that attempt to relate abiotic environ
ment to ecological niche considering multiple indicators of water 
quantity, water quality, and biomass have not been conducted yet. 
Furthermore, this is a pioneering study under the current conditions of 
river ecosystems in China. This study focuses on achieving three main 
objectives: (1) to establish a new niche-based MDM to quantitatively 
describe the magnitude of the impacts of flow regime and water quality 
on aquatic community dynamics by incorporating multiple water 
quantity, water quality, and biomass indicators; (2) to evaluate the 
performance of the MDM in terms of both quantitative and qualitative 
levels, where the quantitative evaluation shows the fitness degree be
tween simulated and observed values by using several commonly used 
effectiveness evaluation metrics, and the qualitative evaluation analyzes 
the reasonableness of multiple model parameters by comparing to 

empirical evidence; (3) to explain the differences in ecological responses 
of various aquatic organisms to flow regime and water quality from the 
perspective of different stations from upstream to downstream of a river. 

2. Methodology 

The schematic diagram of the methodology is presented in Fig. 1. 

(1) In Section 2.1, a general metacommunity framework is intro
duced, and a detailed description of metacommunity dynamics is 
conducted. The metacommunity dynamics are driven by the joint 
contribution of biological interactions, influences of flow regime 
and water quality, and dispersal. This section provides a general 
understanding of metacommunity dynamics and lays the foun
dation for establishing the MDM.  

(2) In Section 2.2, the time series of flow regime indicators, water 
quality indicators, and biomass are used as input data. The 
quantile regression method is used to estimate functional re
lationships among abiotic and biotic variables. Four function 
types (i.e., linear, quadratic, logarithmic, and exponential) are set 
for quantile regression because the statistical relationships be
tween biotic and abiotic environmental indicators are complex. 
The model parameters will vary under different function types. 
The suitable function type for each pair of populations and 
environmental indicators is determined by evaluating the 
robustness of critical parameters of the quantile regression 
curves, such as coefficient and intercept. The environmental op
timums, the niche breadths, and the competition coefficients 
under suitable function types are regarded as the final results. The 
FREs and WQEs are then calculated based on the above param
eters and time series data. The MDM is finally established by 
incorporating a traditional multi-population model, FREs and 
WQEs, emigration, and immigration. 

Fig. 1. Schematic diagram of the methodology.  
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(3) In Section 2.3, the evaluation method of the model performance 
is introduced. The model parameters are validated and calibrated 
according to the model performance. Finally, the MDM outputs 
the dynamics of multiple populations and the contribution ratios 
of biological interaction, FREs, and WQEs.  

(4) In Section 2.4, the methodology limitations are clarified. 

2.1. Description of metacommunity dynamics 

Fig. 2 generally describes the metacommunity dynamics in a river 
ecosystem. For the river ecosystem, the abiotic and biotic environments 
closely interact via energy flow, nutrient cycle, and information trans
mission. Multiple water quality indicators (e.g., water temperature, 
chemical oxygen demand, and total phosphorous) and flow regime in
dicators (e.g., discharge and velocity) mainly constitute the abiotic 
environment. The flow regime and water quality conditions vary across 
time and space, so the population dynamics are consequently influ
enced. The multi-population dynamics with abiotic impacts differ from 
those occurring under biotic interactions. Biotic interactions denote the 
effect that various populations have on each other in a community. They 
include intraspecific relationships and interspecific relationships. 
Intraspecific refers to the relationship between individuals within the 
same population. Interspecific refers to the relationship among different 
populations (Dodds and Whiles, 2020). Local-scale community dy
namics are strongly driven by biotic interactions influenced by intrinsic 
growth rate and competition. Density-independent abiotic environ
mental factors can alter the niche breadth of interacting populations, 
which modifies density-dependent biotic interactions by changing the 
competition coefficient (Ives and Cardinale, 2004). 

Various upstream and downstream habitats are regarded as multiple 
local communities with functional connections. Dispersal connects these 
communities via immigration and emigration, with more individuals 
moving between close-by habitats. 

2.2. Establishing the niche-based model 

In the past decades, most niche-based metacommunity theories as
sume that intraspecific and interspecific competitions are equal (Four
nier et al., 2017; Gravel et al., 2006; Liautaud et al., 2019; Loreau et al., 

2003; Shoemaker and Melbourne, 2016). However, the local coexistence 
theory and empirical evidence showed that this is rarely the case (Adler 
et al., 2018; Chesson, 2000) because different species have different 
resource availability, resulting in density-dependent competition. The 
intensity of biotic interactions between populations and competitors 
largely depends on the overlap degree of resource use (i.e., niche 
overlap). Therefore, it is necessary to establish niche-based MDM, which 
closely links abiotic environment, niche, and competition. These three 
common core processes drive the metacommunity dynamics and are 
rooted in classic theory. The MDM can reveal how the flow regime and 
water quality affect the community dynamics by governing the niche 
breadth and competition coefficient. The MDM can be widely used in 
river ecosystems with multiple habitats from upstream to downstream. 

The niche-based MDM is presented as follows for a population i of a 
local community (Thompson et al., 2020; Wang et al., 2021b): 

dNi

dt
= riNi ×

[

1 −
Ni

Ki
−
∑J

j=1,j∕=i

αij
Nj

Kj
−
∑M

m=1

(

1 − exp

(

−

(
FRm

/
zm

i − 1
)2

4
(
Bm

i
)2

))

−
∑L

l=1

(

1 − exp

(

−

(
WQl

/
zl

i − 1
)2

4
(
Bl

i
)2

))]

+ Ii − Ei

+ Oi

(1)  

where Ni denotes the density of population i, ri denotes the intrinsic 
growth rate of population i, Ki denotes the environmental carrying ca
pacity of population i, αij denotes the competitive coefficient of popu
lation j on population i, J is the total number of populations, M is the 
total number of flow regime indicators, FRm denotes the value of the 
m-th flow regime indicator, zm

i denotes the environmental optimum of 
population i to indicator m, Bm

i denotes the niche breadth of population i 
along indicator m that determines the rate at which growth is reduced by 
a mismatch between zm

i and FRm, L is the total number of water quality 
indicators, WQl denotes the value of the l-th water quality indicator, zl

i 

denotes the environmental optimum of population i to indicator l, Bl
i 

denotes the niche breadth of population i along indicator l that de
termines the rate at which growth is reduced by a mismatch between zl

i 

and WQl, Ii denotes the immigration of population i from elsewhere in 
the metacommunity, Ei denotes the emigration of population i to else

Fig. 2. A schematic representation of the metacommunity dynamics in the river ecosystem.  
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where in the metacommunity, and Oi accounts for unexplained variation 
in the density of population i (e.g., influence of human activities). Note 
that ri, Ki, αij, zm

i , Bm
i , zl

i, Bl
i are constant values for population i to a 

specific environmental indicator, where Bm
i and Bl

i are both no less than 
0 while no greater than 1. Also, note that FRm and WQl are both no less 
than 0. In addition, the model involves three assumptions: (1) All in
dividuals in the same population can survive independently and without 
differences. (2) The intrinsic growth rates and the environmental car
rying capacities are constants. (3) There is no time lag in the response of 
individuals’ actual growth rates to population dynamics. 

2.2.1. Ecological niches 
The concept of the ecological niche was introduced by Grinnell 

(1917) to describe the habitat requirements of a species to survive and 
reproduce. Afterward, the definition has been expanded in terms of 
multiple resources, biotic and abiotic interactions, and so on. Herein, the 
ecological niche of a population indicates its position within an 
ecosystem, describing both the range of abiotic environmental condi
tions it requires and its ecological role in the environment (Moore, 
2013), which is not at odds with the previous definitions. The hydro
logical conditions, the trophic states, and the physical and chemical 
properties are considered in the river ecosystems. 

The ecological niche can be viewed as an n-dimensional hyper
volume, with each dimension corresponding to the suitable range of an 
environmental indicator. When the abiotic niche (i.e., Bm

i or Bl
i) is nar

row, the population growth drops quickly if it is in suboptimal envi
ronmental conditions. Environmental heterogeneity will affect 
population growth less when the abiotic niche is broad. 

The measurements of niche breadth have been developed for decades 
(Colwell and Futuyma, 1971; Feinsinger et al., 1981; Hurlbert, 1978; 
Levins, 2020; Petraitis, 1979; Schoener, 1974; Smith, 1982). Yet, the 
previous methods are not applicable to this study due to the non-discrete 
environmental resources (e.g., temperature) and the limitations of the 
observed data. A novel method of calculating the niche breadth is pro
posed to address this issue based on quantile regression. The rational
ities of using the quantile regression method are clarified as follows: 
Firstly, it expands the sample information by estimating the statistical 
characteristics of the observed data. Secondly, quantile regression is 
widely used in the field of ecology due to its efficient performance in 
describing the distribution function between explained variables (e.g., 
biomass) and explanatory variables (e.g., abiotic environmental factors) 
in different quantiles (Fornaroli et al., 2020; George et al., 2021; White 
et al., 2021), especially for the case of multiple explanatory variables. 
Thirdly, it is a method for estimating functional relationships among 
variables for all the portions of a probability distribution (Fornaroli 
et al., 2020). For example, ecological responses of aquatic communities 

to seasonal flow variability may be confounded by coincident shifts in 
water quality (Cade and Noon, 2003). Then, the quantile regression is 
more robust than the ordinary least squares. Finally, quantile regression 
results are used to derive multiple parameters including ecological 
niches, environmental optimums, and competition coefficients for 
various populations. 

As shown in the left panel of Fig. 3, the regression curves of different 
quantiles are obtained under a specific function type. The quantiles 
begin with 0.01 and end at 0.99 with a 0.01 increment, but the regres
sion estimates are merely shown with 0.1, 0.3, 0.5, 0.7, and 0.9 quantiles 
for convenience of observation. For instance, The number of samples 
below the 0.9 quantile regression curve accounts for 90% of the total 
samples. The probability density function (PDF) of biomass along all 
quantiles at each environmental condition can be drawn based on the 
regression curves. The PDF is a function whose value at any given point 
in the sample space can be interpreted as providing a relative likelihood 
that the value of the random variable would be close to that sample 
(contributors, 2022). Each PDF peak refers to the maximum value where 
the biomass has the highest probability of occurrence. The PDF peaks of 
different environmental conditions are connected to obtain the inte
grated fitting curve (i.e., the solid red line in the middle panel of Fig. 3). 
The integrated fitting curve shows the variation of biomass occupying 
different environmental resource conditions. The maximum value of the 
integrated fitting curve denotes the environmental optimum where 
biomass reached its highest value. The probability that individuals of a 
population prefer a specific environmental condition can be illustrated 
by the area presented in the right panel of Fig. 3, which is calculated by: 

PF
i =

∫ F
F− ε Nidf
∫ Fmax

Fmin
Nidf

(2)  

where Ni denotes the density of population i, f denotes an environmental 
indicator, F denotes a certain environmental condition of f , Fmax denotes 
the maximum value of f , Fmin denotes the minimum value of f , ε denotes 
the average discrete step size for the continuous range of [Fmin, Fmax], 
and PF

i denotes the probability that individuals of population i prefer the 
environmental condition range of [F − ε, F]. Note that ε is a minimal 
amount compared to the range of [Fmin, Fmax]. 

The niche breadth of population i along the dimension of f is then 
calculated by: 

Bf
i =

1
R ×

∫ (
PF

i
)2df

(3)  

where R denotes the discrete number for the continuous variable f , and 
Bf

i indicates the niche breadth of population i along the dimension of f . 
The meanings of other variables are the same as that in Eq. (2). 

Fig. 3. Derivation of the ecological niche breadth. F1, F2, and F3 are several environmental conditions of indicator f . F′ indicates the environmental optimum. The 
ratio of dark red area to light red area indicates the probability that individuals prefer the environmental condition range of [F − ε, F]. 

Y. Wang et al.                                                                                                                                                                                                                                   



Journal of Environmental Management 336 (2023) 117562

6

2.2.2. Competition coefficients 
Various competitive scenarios are generated by different strengths of 

interspecific competition, which can vary with abiotic environmental 
conditions (Germain et al., 2018). Existing studies generally assume that 
the competition coefficients are fixed across time and space because 
different interspecific competition strengths with varying environ
mental conditions would dramatically complicate the population dy
namics model. Despite this, the time-varying flow regime and water 
quality conditions are considered to derive a more specific competition 
coefficient between each pair of populations. 

As shown in Fig. 4, each niche axis represents an independent 
environmental factor. Niche partitioning has been shown in many 
aquatic organisms. Theoretically, one population will exclude the other 
if they have the same niche, so the niches of coexisting populations can 
be similar but not identical. No competition will happen if the niches do 
not overlap each other. In contrast, competition may occur if one pop
ulation’s niche overlaps another. For instance, sunfish preferentially 
feed in open water, where they can gain the most energy, but the feeding 
area may shrink in the presence of a competitor (Vanni et al., 2009). 

The niche overlap is usually used to evaluate competition co
efficients in the famous Lotka-Volterra equation (May, 1975). However, 
competition may only necessarily be caused by overlap if the environ
mental resources are limited. This paper assumes that all environmental 
resources are limited and independent of each other. Other interspecific 
interactions except competition are not considered. The competition 
coefficient between each pair of populations can be obtained based on 
the niche overlap theory and quantile regression as follows (Li et al., 
2006): 

αf
ij =

∫
PF

i PF
j df

∫ (
PF

i
)2df

(4)  

αij =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑M+L

f=1

(
αf

ij
)2
/

(M + L)

√
√
√
√ (5)  

where αf
ij denotes the competitive coefficient of population j on popu

lation i in terms of indicator f , and αij denotes the integrated competitive 
coefficient of population j on population i by considering M flow regime 
indicators and L water quality indicators. Note that αf

ij ∕= αf
ji, and αij ∕= αji. 

The meanings of other variables are detailed in Eq. (1) and Eq. (2). 

2.2.3. Flow regime and water quality effects 
The abiotic environmental conditions (i.e., flow regime and water 

quality) vary in space and time, giving rise to influences on density- 

independent growth. The density-independent growth depends on the 
shape of abiotic niches, which are often thought to have a Gaussian 
shape, especially in population dynamics models (Thompson et al., 
2020). Likewise, the FRE and the WQE are assumed to follow a Gaussian 
response curve over the abiotic environmental gradient in the meta
community. FRE and WQE refer to the ecological impacts of each flow 
regime indicator and each water quality indicator on multi-population 
dynamics, respectively. FREs and WQEs are the accumulation of FRE 
and WQE, respectively. Finally, after repeated tests, the FRE and the 

WQE are determined by 1 − exp
(

−
(FRm/zm

i − 1)2

4(Bm
i )

2

)

and 1 − exp
(

−

(WQl/zl
i − 1)2

4(Bl
i)

2

)

, respectively. They are integrated into the MDM (i.e., Eq. 

(1)) to describe the cumulative effects of multiple abiotic environmental 

factors on population dynamics. Note that the form of 1 − exp
(

−

(FRm/zm
i − 1)2

4(Bm
i )

2

)

is taken as the FRE but not the form of exp
(

−
(FRm/zm

i − 1)2

4(Bm
i )

2

)

. 

The rationality of FRE is elaborated as follows for population i in terms 
of flow regime indicator m, while the rationality of WQE can be 
explained likewise: 

FRE = 0 when the flow regime condition FRm equals to the envi
ronmental optimum zm

i . In this case, FRm has no negative effect on 
population density growth. The FRE will be enhanced with increasing or 
decreasing FRm. 

0 < FRE ≤ 1 − exp
(

− 1
4(Bm

i )
2

)

when the flow regime condition FRm is 

lower than the environmental optimum zm
i . In this case, FRE decreases 

from 1 − exp
(

− 1
4(Bm

i )
2

)

to 0, with FRm increasing from 0 to zm
i . The 

negative effect on the population growth increases as FRm decreases 
from zm

i because the environmental condition gradually deviates from 
the environmental optimum. The broader niche (i.e., the larger Bm

i ) 
represents the smaller FRE when FRm equals 0 for different environ
mental indicators because the population is less sensitive to the envi
ronmental factors with broader niche compared to the narrower one. 

0 < FRE < 1 when the flow regime condition FRm is greater than the 
environmental optimum zm

i . In this case, FRE increase from 0 to infi
nitely close to 1 as FRm increases from zm

i . The negative effect on the 
population growth increases to the maximum as FRm increases from zm

i 
to infinity, which can be interpreted as the environmental condition of 
infinite FRm is no longer suitable for species to survive. 

Each environmental factor plays an essential role in governing 
population dynamics. The population dynamics may not be able to 
withstand the harmful disturbance caused by one or two critical factors 
absurdly deviating from their environmental optimums. However, the 
environmental conditions of other factors are suitable for the popula
tion. Thus, the FREs of multiple environmental factors are accumulated 
rather than averaged, where the average cannot reflect the cumulative 
complexity of abiotic environmental conditions. 

2.2.4. Emigration and immigration 
Dispersal is incorporated via the emigration term Ei and the immi

gration term Ii. Ii can be derived by Ei of adjacent sites, and Ei is defined 
as follows for the concatenated metacommunity in the river ecosystem 
(Thompson et al., 2020): 

Ei =Eup
i + Edown

i (6)  

Eup
i =E′

i exp( − wup
i Lup) (7)  

Edown
i =E′

i exp
(
− wdown

i Ldown) (8)  

where Ei denotes the actual emigration, Eup
i denotes the upward 

emigration, Edown
i denotes the downward emigration, E′

i denotes the 

Fig. 4. Projection of six populations (A–F) onto two of the principal niches axes 
(discharge and temperature). The oval surrounding each population represents 
the region of the discharge and temperature space the population occupies. 
Ovals that overlap one another represent regions in which multiple populations 
compete for resources. 
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theoretical emigration that is determined by the successful number of Ni 

draws from a binomial distribution E′

i ∼ B(Ni, Pi), wup
i is the weight of 

upward emigration, wdown
i is the weight of downward emigration, Lup is 

the geographical distance from the adjacent upstream station, and Ldown 

is the geographical distance from the adjacent downstream station. 
Please see Sections S1, S2, and S3 for detailed descriptions of the 

emigration and immigration, the growth rate, and the environmental 
carrying capacity, respectively. 

2.3. Evaluating the model performance 

The evaluation of the MDM is conducted in terms of two aspects. One 
is the quantitative evaluation by calculating the Nash efficiency coeffi
cient (NSE) and the Pearson correlation coefficient (r). The simulation 
performance can be preliminarily evaluated by comparing simulated 
and observed values. The other is the qualitative assessment by 
analyzing various variables, including niche breadth, environmental 
optimums, and competition coefficients. Then, the contribution ratio of 
the flow regime and water quality effects on metacommunity dynamics 
can be determined to further evaluate the model performance by 
comparing it with the empirical evidence. 

2.4. Limitations 

The study inevitably has limitations due to the complexity of aquatic 
ecosystems, model assumptions, and simplifications. First, this study 
ignores trait variation among individuals concerning their morphology, 
physiology, and behavior. All individuals in the same population are 
assumed to be equal. The methodology is consequently not applicable to 
long-term simulations (e.g., hundreds of years) because the heritable 
characteristics of biological populations change significantly during 
long-term evolutionary processes (Gregory, 2009). Then, the model 
simplications about niche distribution, competition, and dispersal will 
lead to relatively imprecise simulation results, but these simplications 
are commonly used in studies within the relevant field. More precise 
derivations for niche breadth, competition coefficients, and migration 
would be better in future works. In addition, the great demand for data 
complicates the pre-study work, and cumbersome data processing is 

needed to meet the model’s requirements for data format. 
Although these limitations may be significant for specific cases, they 

have a limited effect on the main findings and conclusions by consid
ering the objectives of this study. 

3. Materials and data 

3.1. Study area 

The Han River is the largest tributary of the Yangtze River, China. 
The middle and lower reaches of the Han River (Fig. 5), which is in a 
subtropical monsoon climatic zone, are selected as the study area due to 
its abundant water and aquatic biological resources. Six gage stations 
are set to observe the river’s biomass, hydrological, and water quality 
data. The six stations from upstream to downstream are Huangjiagang, 
Xiangyang, Huangzhuang, Shayang, Xiantao, and Hanchuan, which can 
be regarded as multiple local communities linked by emigration and 
immigration. Please see Section S4 for a more detailed description of 
the study area. 

3.2. Data 

Three categories of data are used in the MDM (please see Table S1). 
The data include five biomass indicators, one flow regime indicator, and 
fifteen water quality indicators. All the data are observed at the six 
stations along the mid-lower Han River. The time scale of the data is a 
month, where the biomass data are measured once a month, and the 
flow regime and water quality data are the monthly averages. The length 
of the data series varies by data category and station. The longest spans 
seven and a half years, and the shortest is one and a half years. The 
monitoring station placement, sampling programs, and analytical 
methods for each type of data are detailed in “Regulation for Water 
Environmental Monitoring (SL 219–2013)” and will not be repeated in 
this paper due to space limitations and data complexity. Inevitable er
rors may exist in the data due to different measuring instruments, 
varying weather, and human activities. Still, the errors are within the 
acceptable range by reviewing the data’s consistency, representative
ness, and accuracy. 

Fig. 5. Middle and lower reaches of the Han River, China.  
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Specifically, five biomass indicators are fish, phytoplankton, 
zooplankton, zoobenthos, and macrophytes. They represent the primary 
aquatic biological resources in the middle and lower reaches of the Han 
River. Each indicator refers to the synthesis biomass of multiple species 
at the same station. For example, the population density of zooplankton 
indicates the biomass of entire groups of Cladocera, Copepod, Nauplius, 
Protozoa, and Rotifer. The concept of synthesis biomass facilitates 
simulation at the ecosystem level and has significant implications for 
aquatic ecological restoration and management. For instance, fish and 
phytoplankton may compete for flow, water temperature, and total 
phosphorus resources. The abiotic environment conditions can be 
regulated to bring the ecosystem to a better state when competition is 
identified. The biomass data are normalized to 0.01–0.99 because the 
magnitude of different biomass indicators varies greatly. Note that the 
normalization range does not start from 0 to avoid the calculation bug 
with 0 as the denominator. 

One flow regime indicator is discharge. Discharge has been widely 
used as a critical index that can directly reflect the flow regime of a river 
in many studies on hydrological alteration (Aspin et al., 2020; Palmer 
and Ruhi, 2019; Tonkin et al., 2018). Although the simple monthly 
average discharge may not capture the effects of a river’s diverse flow 
regime components (i.e., magnitude, duration, frequency, timing, and 
rate of change), it is selected as an indicator for the following reasons. 
On the one hand, the monthly-scale discharge is matched to the scale of 
biomass data. On the other hand, the flow regime components are used 
to describe the overall performance of hydrological alteration over some 
time. Still, they are not applicable for describing the real-time response 
of a dynamic population system to flow regime compared to 
time-varying discharge. The discharge time series implicitly includes the 
magnitude, duration, frequency, timing, and rate of change of a flow 
event. In addition, the water level and flow velocity are not included 
because they strongly correlate with discharge from the knowledge of 
hydraulics. Overall, it is practical to select discharge as the flow regime 
indicator. 

Fifteen water quality indicators are air temperature (AT), water 
temperature (WT), potential of hydrogen (pH), suspended solids (SS), 
dissolved oxygen (DO), chemical oxygen demand (CODMn), biochemical 
oxygen demand (BOD5), sulphate (SO4), ammonia nitrogen (NH3–N), 
nitrite nitrogen (NO2–N), nitrate nitrogen (NO3–N), total phosphorous 
(TP), fluoride (F), chloride (Cl), and total hardness (TH). These in
dicators include physicochemical metrics, inorganic compounds, and 
organic compounds, which are the key factors affecting metacommunity 
dynamics in the middle and lower reaches of the Han River. 

3.3. Simulation details 

The overlap period of all data is determined as the simulation period. 
The time step is a month. Please see Section S5 for more information 
about simulation details, especially the parameters setting. 

4. Results and discussion 

4.1. Environmental optimums for multiple populations 

The environmental optimums (Table 1) are determined under the 
suitable function types for multiple populations to different abiotic 
environmental factors. Please see Section S6 for more details about the 
suitable function types and the environmental optimums. 

4.2. Ecological niches for multiple populations 

Fig. 6 shows the quantile regression results for fish biomass and 
abiotic environmental indicators under suitable function types. It can be 
found from the integrated fitting curves that the fish population shows a 
significant ecological response to discharge and WT. In contrast, AT, SS, 
NO2–N and Cl show no apparent relations with fish biomass. Never
theless, the not strongly related environmental indicators may be 
essential to fish growth. The fish population may not show a significant 
response to these essential indicators because the fluctuation magni
tudes of the indicators are small and within the appropriate range for 
fish survival. For instance, the fish biomass changes slightly with 
increasing pH and DO values because most pH and DO values in the 
studied reaches fall in the appropriate range (i.e., 7–8.5 of pH, and 6–10 
mg/L of DO). Despite this, pH and DO are critical environmental factors 
to fish. 

Judging from the regression results with different quantiles, the 
estimation curves with high quantiles deviate significantly from the 
integrated fitting curve for several indicators (e.g., AT, SS, DO, F, Cl, and 
TH). This can be interpreted as the fish population being less affected by 
these indicators, resulting in high quantile samples under the dominance 
of other critical indicators. In addition, the estimation curves with 
different quantiles may show divergence as the value of the environ
mental indicator increases (or decreases), which indicates that the 
population dynamics are less dominated by the current indicator when it 
exceeds the appropriate threshold. 

Similar analysis can be conducted on phytoplankton, zooplankton, 
zoobenthos, and macrophytes (Figs. S1–S4). The analysis of quantile 
regression results is simplified since this paper does not aim to explore 
the ecological responses of multiple populations to different abiotic 
environmental indicators. 

Table 1 
Environmental optimums for multiple populations.  

Abiotic environmental indicators Populations 

Fish Phytoplankton Zooplankton Zoobenthos Macrophytes 

Q (m3/s) 2208.39 353.00 1904.49 332.45 332.45 
AT (◦C) 23.06 1.00 37.13 0.00 33.47 
WT (◦C) 24.00 5.53 30.73 16.62 15.48 
pH 6.83 8.56 6.65 6.65 6.65 
SS (mg/L) 3.42 78.33 61.99 1.27 1.27 
DO (mg/L) 6.16 12.98 5.55 5.55 12.14 
CODMn (mg/L) 3.90 3.82 3.87 1.40 1.47 
BOD5 (mg/L) 3.11 3.04 2.85 0.25 0.25 
SO4 (mg/L) 23.81 51.30 50.37 38.90 20.71 
NH3–N (mg/L) 0.85 0.93 0.93 0.01 0.01 
NO2–N (mg/L) 0.01 0.05 0.06 0.00 0.00 
NO3–N (mg/L) 1.08 0.58 0.58 0.23 0.23 
TP (mg/L) 0.16 0.18 0.08 0.15 0.01 
F (mg/L) 0.09 0.41 0.42 0.33 0.09 
Cl (mg/L) 4.39 18.17 20.13 17.55 3.09 
TH (mg/L) 122.90 180.83 185.74 155.73 116.10  
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The niche breadths of multiple populations along different environ
mental factors are presented in Fig. 7 based on the quantile regression 
results. A broader niche indicates less specialization for a population. 
From the point of view of populations, the niche breadths of fish are the 
narrowest among all populations in terms of the three dimensions of Q, 
WT, and NH3–N, which indicates that the requirements of the fish 
population for these three indicators are demanding. The niche breadths 
of zoobenthos are the broadest among all populations in terms of the six 
dimensions of AT, SS, DO, BOD5, NH3–N, and NO2–N, which indicates 
that zoobenthos is unlikely to compete with other populations in the use 
of these environmental resources. For example, zoobenthos has an 
advantage in competing for DO because they can survive in a broad 
range of DO. The niche breadths of macrophytes are the narrowest 
among all populations in terms of the six dimensions of AT, SS, CODMn, 
BOD5, NO3–N, and TP, which indicates that macrophytes are sensitive to 
these indicators. The realized niche of macrophytes may be easily 
altered by changing conditions of these indicators to put macrophytes in 
an inferior position in the competition. From the point of view of abiotic 
environmental indicators, the influence of flow regime on fish 

population is more significant than that on other populations, leading to 
the narrowest niche breadth of fish along the dimension of discharge. 
DO is necessary for the photosynthesis of phytoplankton. As a result, the 
niche breadth of phytoplankton is narrower than other populations 
(especially for zoobenthos) in terms of the DO dimension. Thermal 
thresholds are weak for phytoplankton and zooplankton, as shown by 
the population distribution across wide ranges of latitude and elevation, 
but they are more critical for large invertebrates and especially for fishes 
(Lewis, 2021). Likewise, the ecological niche of all pairs of populations 
and abiotic environmental indicators can be illustrated in the same way. 

4.3. Niche-based competition among populations 

The competition coefficients among multiple populations are calcu
lated according to the niche overlap theory (Fig. 8). The competition 
coefficients (i.e., α(4, 1), α(4,2) α(4,3), and α(4,5)) resulting from other 
populations occupying the resources of zoobenthos are generally sig
nificant because zoobenthos occupies broad niches along multiple di
mensions of abiotic environmental indicators. In contrast, the 

Fig. 6. Quantile regression results for fish biomass and abiotic environmental indicators. The red, yellow, green, blue, and purple dotted lines denote the estimation 
curves under 0.1, 0.3, 0.5, 0.7, and 0.9 quantiles, respectively. The dark solid line denotes the integrated fitting curve. The red star denotes the environment op
timum. The vertical axis indicates the normalized biomass data. 
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competition coefficients (i.e., α(5,1), α(5, 2), α(5, 3), and α(5, 4)) 
resulting from other populations occupying the resources of macro
phytes are generally small. For another example, the competition co
efficients (i.e., α(1, 2), α(1, 3), α(1,4), and α(1, 5)) of other populations 
on fish population are relatively small in terms of Q and WT. This can be 
interpreted as the fish population is unlikely to have niche overlap with 
other populations due to its narrower niche breadth along the di
mensions of Q and WT than others. It can be found that the integrated 
competition coefficients for all pairs of populations are retained at high 
levels (>0.7), which accords with the characteristics of a complex river 
ecosystem. The above mutual demonstration analysis of ecological niche 
and competition coefficient shows that the results are reasonable. 

4.4. Simulation results of metacommunity dynamics 

Fig. S5 shows the simulated coevolution of metacommunity dy
namics at different stations. As shown in Fig. 9, the simulation results 
show that the NSEs for fish, zoobenthos, and macrophytes are more than 
0.66, while the rs for them are no less than 0.71. Both the NSE and r for 
the fish population are 0.94. The NSE and r for the zoobenthos popu
lation are 0.76 and 0.78, respectively. Thus, the simulation results of fish 
and zoobenthos are the best. The worst simulation is for phytoplankton, 
whose NSE and r are 0.30 and 0.41, respectively. This is acceptable 
because phytoplankton (especially for diatoms) grow rapidly in winter 
due to the low water temperature, the abundant light caused by low 
water level, the slow flow velocity, and the nutrients released by the 
natural withering of aquatic vegetation (Wang et al., 2016). In addition, 
fish, phytoplankton, and zooplankton are simulated better at upstream 
stations (i.e., Huangjiagang and Xiangyang), while zoobenthos and 
macrophytes are simulated better at the downstream stations (i.e., 
Xiantao and Hanchuan). Zoobenthos and macrophytes tend to live at the 
bottom or bank of the river, where the flow velocity is slower than the 
central river and upstream stations. Consequently, the dynamics of 
zoobenthos and macrophytes are less influenced by flow regime alter
ation. The simulation results of animal populations are better than those 
of plant populations, which may be due to their stronger stability and 

resistance to external environmental disturbances. Therefore, the 
simulation results are acceptable in magnitude and trend based on the 
above analysis. 

To further illustrate the robustness of the model, the sensitivity 
analysis of model parameters was conducted in Section S7. 

4.5. Effects of flow regime and water quality on metacommunity 
dynamics 

The contribution ratios of the effects of biotic interactions, flow 
regime, and water quality on metacommunity dynamics are compared 
among different populations and stations (Fig. 10). 

For the upstream Huangjiagang and Xiangyang stations, the FREs on 
fish are more significant than that on other populations by 8%–22%. The 
WQEs on phytoplankton, zooplankton, zoobenthos, and macrophytes 
are more significant than that on fish by 9%–26%. The contribution 
ratios of FREs are 30% and 25% on fish at Huangjiagang and Xiangyang 
stations, respectively, which are larger than WQEs (16% and 14%, 
respectively). The contribution ratios of WQEs are more than 25% on 
phytoplankton and macrophytes at upstream stations, which are larger 
than FREs (lower than 17%). This can be interpreted as the flow regime 
of the upstream reach below the Danjiangkou Reservoir varies signifi
cantly because of dam regulation (Wang et al., 2021a). Consequently, 
fish shows a more significant ecological response to hydrological alter
ation than other species at upstream stations. For instance, streamflow 
alteration can affect the body size, the periodic life-history strategies, 
and the community structure of the fish population (Zhao et al., 2018). 
The metabolic rate of specific fish and benthos can be improved within a 
certain range of velocity or discharge, thus providing necessary flow 
conditions for spawning (Palmer and Ruhi, 2019). The water quality 
conditions may be primarily influenced by hydrological alteration at 
upstream reaches, so the dynamics of phytoplankton and macrophytes 
are represented to have a stronger response to WQEs than fish at up
stream stations (Alahuhta et al., 2018; Wang et al., 2016). 

For the downstream Hanchuan station, the contribution ratios of 
FREs reach the lowest (lower than 1%) due to the most stable flow 

Fig. 7. Niche breadths of multiple populations along different abiotic environmental factors. All spheres are projected as circles on the horizontal plane. The size of 
spheres indicates the niche breadth. The broadest niche breadth along each dimension of environmental indicator is denoted by an orange circle, while the narrowest 
niche breadth is denoted by a green circle. 
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Fig. 8. Competition coefficients among multiple populations. The numbers 1 to 5 denote fish, phytoplankton, zooplankton, zoobenthos, and macrophytes. For 
example, α(5,4) indicates the competition coefficients between macrophytes and zoobenthos. Note that α(5, 4) is not the same as α(4,5). 

Fig. 9. Simulation performance of the metacommunity dynamics illustrated by the Nash efficiency coefficient (NSE) and the Pearson correlation coefficient (r).  
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regime condition of all stations. In contrast, studies have shown that in 
the lower reaches of rivers with stable hydrological conditions, phyto
plankton and zooplankton are strongly influenced by flow regime 
alteration (Xie et al., 2006). For example, the velocity exceeding a 
certain threshold can effectively avoid phytoplankton-related bloom 
events (Li et al., 2013). Slower velocity reduces the degradation effi
ciency of pollutants, resulting in the rapid growth of phytoplankton (e. 
g., diatom). From this point of view, the direct cause of bloom events is 
water quality rather than flow regime, so the findings of this study do 
not contradict previous research. In addition, from upstream to down
stream, the FREs on different populations tend to be balanced, and the 
WQEs on phytoplankton, zooplankton, zoobenthos, and macrophytes 
are gradually decreased. 

For all stations, water quality shows 9%–14% greater effects than 
flow regime on phytoplankton, zooplankton, zoobenthos, and macro
phytes, while flow regime shows 7% greater effects than water quality 
on fish. In addition, the average contribution ratios are 64%, 21%, and 
15% of biological interaction, WQEs, and FREs, respectively, for all 
stations and populations. The population dynamics are dominated by 
biological interaction, although existing studies have discussed the hy
pothesis that aquatic community dynamics depend largely on flow 
regime (Horne et al., 2019; Robson et al., 2017). Nevertheless, the 
dominance of biotic interactions on population dynamics may be weaker 
than flow regime or water quality when abiotic environmental condi
tions exceed the acceptable threshold for the aquatic community sys
tems (Wang et al., 2021b). 

It should be noted that the abiotic environmental indicators are used 
in deriving FREs, WQEs, and interspecies interaction, but they do not 
conflict. The abiotic environment is described as a static space when 
calculating the competition coefficient based on the niche overlap the
ory. In fact, the abiotic environment is spatiotemporally changeable. 
Therefore, the FREs and WQEs reflect dynamic progress, while the biotic 
interactions illustrate the static influence of the abiotic environment on 
the metacommunity. 

5. Conclusions 

A new model (i.e., the MDM) is established to integrate the effects of 
flow regime and water quality on metacommunity dynamics. This is 
accomplished by coupling ecological niches and competition co
efficients based on the quantile regression method. The following 

conclusions are drawn by applying the MDM to the mid-lower Han 
River, China.  

(1) The FREs and the WQEs are modeled using multiple parameters, 
including ecological niches, environmental optimums, and 
competition coefficients. These parameters are calculated based 
on the quantile regression via four statistical functions (i.e., 
linear, quadratic, exponential, and logarithmic) to account for 
aquatic organisms’ linear and non-linear ecological responses. 
The quantile regression method shows advantages in describing 
the distribution function between explained and explanatory 
variables in different quantiles, especially in the case of multiple 
explanatory variables (e.g., multiple abiotic environmental in
dicators). The ecological niches and competition coefficients are 
demonstrated to be reasonable by comparing them with empir
ical evidence.  

(2) The simulation results show that the MDM performs effectively in 
simulating metacommunity dynamics. The MDM performs the 
best regarding the fish population, for whom both the Nash ef
ficiency coefficient and Pearson correlation coefficient are 0.94. 
The Nash efficiency coefficients for fish, zooplankton, zooben
thos, and macrophytes are more than 0.64, while the Pearson 
correlation coefficients for them are no less than 0.66. The per
formance for phytoplankton was relatively poor because it grew 
rapidly in winter due to the low water temperature and the slow 
flow velocity, resulting in inevitable outlier values.  

(3) The FREs and the WQEs on the metacommunity are elaborately 
quantified using the MDM. The FREs are greater than WQEs on 
fish, whereas the WQEs are greater than FREs on phytoplankton 
and macrophytes in upstream reaches where the flow regime is 
generally changeable. The FREs on multiple populations reach 
the lowest (lower than 1%) at the downstream station due to the 
most stable flow regime condition of all stations. Water quality 
shows more significant effects than flow regime on phyto
plankton, zooplankton, and macrophytes from upstream to 
downstream. For all river stations, the average contributions of 
biological interaction, flow regime effects, and water quality ef
fects to multi-population dynamics are 64%, 21%, and 15%, 
respectively, suggesting that the population dynamics are domi
nated by biological interaction. 

Fig. 10. Comparison of the effects of biological interactions, flow regime, and water quality on metacommunity dynamics for the river ecosystem.  
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This study provides a new approach to identifying how the fresh
water environment influences community dynamics, and it links multi- 
population structures at different trophic levels in aquatic ecosystems to 
metacommunity processes. The following recommendations are 
considered the focus for future works based on the current research. (1) 
The proposed MDM can be easily modified to incorporate the stochas
ticity of environmental variables to explore the stability and threshold 
issues of the “water quantity-water quality-aquatic ecology” system. (2) 
The MDM has potential to be widely used in other aquatic ecosystems 
where ecological restoration is urgently needed due to dam regulation 
and water pollution. It is imperative to expand the research geograph
ically to obtain more comprehensive information about the ecological 
impacts of flow regime and water quality, especially in those countries 
or areas with very few or no studies. (3) There is an urgent need for 
sufficient data to demonstrate specific ecological impacts. Techniques 
related to ecological monitoring need to be urgently optimized to obtain 
observations of flow, pollutants, and biomass at daily or even hourly 
scales. Big data are essential in validating and further improving 
mathematical models or existing mitigation measures. Research related 
to big data can extend this model to a broader range of biological 
communities and provide more instructive strategies for biodiversity 
conservation, reservoir ecological operation, and environmental flows. 
(4) Building on this work would help researchers better understand 
aquatic ecosystems in a changing environment, especially if they utilize 
it to connect other bodies of ecological theory and empirically test its 
effectiveness in various natural ecosystems. 

Credit author statement 

Yibo Wang: Conceptualization, Methodology, Writing - Original 
Draft, Writing - Review & Editing, Software, Validation and Formal 
Analysis. Pan Liu: Writing - Review & Editing, Conceptualization and 
Supervision. Dimitri Solomatine: Writing - Review & Editing and Su
pervision. Liping Li: Data Curation. Chen Wu: Resources. Dongyang 
Han: Resources. Xiaojing Zhang: Resources. Zhikai Yang: Resources. 
Sheng Yang: Resources. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

Data will be made available on request. 

Acknowledgments 

This study was supported by the National Science Fund for Distin
guished Young Scholars of China (Grant No. 52225901), the National 
Key Research and Development Program of China (Grant No. 
2022YFC3202804), and the China Scholarship Council (Grant No. 
202106270105). 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.jenvman.2023.117562. 

References 

Adler, P.B., Smull, D., Beard, K.H., Choi, R.T., Furniss, T., Kulmatiski, A., Meiners, J.M., 
Tredennick, A.T., Veblen, K.E., 2018. Competition and coexistence in plant 
communities: intraspecific competition is stronger than interspecific competition. 
Ecol. Lett. 21 (9), 1319–1329. https://doi.org/10.1111/ele.13098. 

Alahuhta, J., Lindholm, M., Bove, C.P., Chappuis, E., Clayton, J., de Winton, M., 
Feldmann, T., Ecke, F., Gacia, E., Grillas, P., Hoyer, M.V., Johnson, L.B., Kolada, A., 
Kosten, S., Lauridsen, T., Lukacs, B.A., Mjelde, M., Mormul, R.P., Rhazi, L., 
Rhazi, M., Sass, L., Sondergaard, M., Xu, J., Heino, J., 2018. Global patterns in the 
metacommunity structuring of lake macrophytes: regional variations and driving 
factors. Oecologia 188 (4), 1167–1182. https://doi.org/10.1007/s00442-018-4294- 
0. 

Arthington, A.H., Bhaduri, A., Bunn, S.E., Jackson, S.E., Tharme, R.E., Tickner, D., 
Young, B., Acreman, M., Baker, N., Capon, S., Horne, A.C., Kendy, E., McClain, M.E., 
Poff, N.L., Richter, B.D., Ward, S., 2018. The Brisbane declaration and global action 
agenda on environmental flows (2018). Front. Environ. Sci. 6 https://doi.org/ 
10.3389/fenvs.2018.00045. 

Aspin, T., House, A., Martin, A., White, J., 2020. Reservoir trophic state confounds flow- 
ecology relationships in regulated streams. Sci. Total Environ. 748 https://doi.org/ 
10.1016/j.scitotenv.2020.141304. 

Baker, N.J., Taylor, M.J., Cowx, I.G., Harvey, J.P., Nunn, A.D., Angelopoulos, N.V., 
Smith, M.A., Noble, R.A., Tinsdeall, M., Baxter, J., Bolland, J.D., 2020. The response 
of river-resident fish to reservoir freshet releases of varying profiles intended to 
facilitate a spawning migration. Water Resour. Res. 56 (6) https://doi.org/10.1029/ 
2018wr024196. 

Benjankar, R., Tonina, D., McKean, J.A., Sohrabi, M.M., Chen, Q., Vidergar, D., 2018. 
Dam operations may improve aquatic habitat and offset negative effects of climate 
change. J. Environ. Manag. 213, 126–134. https://doi.org/10.1016/j. 
jenvman.2018.02.066. 

Cade, B.S., Noon, B.R., 2003. A gentle introduction to quantile regression for ecologists. 
Front. Ecol. Environ. 1 (8), 412–420. https://doi.org/10.2307/3868138. 

Chesson, P., 2000. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. 
Systemat. 31, 343–366. https://doi.org/10.1146/annurev.ecolsys.31.1.343. 

Colwell, R.K., Futuyma, D.J., 1971. On the measurement of niche breadth and overlap. 
Ecology 52 (4), 567–576. https://doi.org/10.2307/1934144. 

contributors, W., 2022. Probability Density Function. 
Cook, S.C., Housley, L., Back, J.A., King, R.S., 2018. Freshwater eutrophication drives 

sharp reductions in temporal beta diversity. Ecology 99 (1), 47–56. https://doi.org/ 
10.1002/ecy.2069. 

Dodds, W.K., 2007. Trophic state, eutrophication and nutrient criteria in streams. Trends 
Ecol. Evol. 22 (12), 669–676. https://doi.org/10.1016/j.tree.2007.07.010. 

Dodds, W.K., Whiles, M.R., 2020. Chapter 22 - complex community interactions. In: 
Dodds, W.K., Whiles, M.R. (Eds.), Freshwater Ecology, third ed. Academic Press, 
pp. 671–697. https://doi.org/10.1016/B978-0-12-813255-5.00022-3. 

Feinsinger, P., Spears, E.E., Poole, R.W., 1981. A simple measure of niche breadth. 
Ecology 62 (1), 27–32. https://doi.org/10.2307/1936664. 

Fornaroli, R., Munoz-Mas, R., Martinez-Capel, F., 2020. Fish community responses to 
antecedent hydrological conditions based on long-term data in Mediterranean river 
basins (Iberian Peninsula). Sci. Total Environ. 728 https://doi.org/10.1016/j. 
scitotenv.2020.138052. 

Fournier, B., Mouquet, N., Leibold, M.A., Gravel, D., 2017. An integrative framework of 
coexistence mechanisms in competitive metacommunities. Ecography 40 (5), 
630–641. https://doi.org/10.1111/ecog.02137. 

Geary, W.L., Bode, M., Doherty, T.S., Fulton, E.A., Nimmo, D.G., Tulloch, A.I.T., 
Tulloch, V.J.D., Ritchie, E.G., 2020. A guide to ecosystem models and their 
environmental applications. Nat. Ecol. Evol. 4 (11), 1459–1471. https://doi.org/ 
10.1038/s41559-020-01298-8. 

George, R., McManamay, R., Perry, D., Sabo, J., Ruddell, B.L., 2021. Indicators of hydro- 
ecological alteration for the rivers of the United States. Ecol. Indicat. 120 https:// 
doi.org/10.1016/j.ecolind.2020.106908. 

Germain, R.M., Mayfield, M.M., Gilbert, B., 2018. The ’filtering’ metaphor revisited: 
competition and environment jointly structure invasibility and coexistence. Biol. 
Lett. 14 (8) https://doi.org/10.1098/rsbl.2018.0460. 

Gravel, D., Canham, C.D., Beaudet, M., Messier, C., 2006. Reconciling niche and 
neutrality: the continuum hypothesis. Ecol. Lett. 9 (4), 399–409. https://doi.org/ 
10.1111/j.1461-0248.2006.00884.x. 

Gregory, T.R., 2009. Understanding natural selection: essential concepts and common 
misconceptions. Evolution: Education and Outreach 2 (2), 156–175. https://doi.org/ 
10.1007/s12052-009-0128-1. 

Grill, G., Lehner, B., Thieme, M., Geenen, B., Tickner, D., Antonelli, F., Babu, S., 
Borrelli, P., Cheng, L., Crochetiere, H., Macedo, H.E., Filgueiras, R., Goichot, M., 
Higgins, J., Hogan, Z., Lip, B., McClain, M.E., Meng, J., Mulligan, M., Nilsson, C., 
Olden, J.D., Opperman, J.J., Petry, P., Liermann, C.R., Saenz, L., Salinas- 
Rodriguez, S., Schelle, P., Schmitt, R.J.P., Snider, J., Tan, F., Tockner, K., Valdujo, P. 
H., van Soesbergen, A., Zarfl, C., 2019. Mapping the world’s free-flowing rivers. 
Nature 572 (7768), E9. https://doi.org/10.1038/s41586-019-1379-9. E9.  

Grinnell, J., 1917. The niche-relationships of the California thrasher. Auk 34 (4), 
427–433. https://doi.org/10.2307/4072271. 

Harper, M., Rytwinski, T., Taylor, J.J., Bennett, J.R., Smokorowski, K.E., Cooke, S.J., 
2020. How do changes in flow magnitude due to hydroelectric power production 
affect fish abundance and diversity in temperate regions? A systematic review 
protocol. Environ. Evid. 9 (1), 11. https://doi.org/10.1186/s13750-020-00198-5. 

Hillebrand, H., Donohue, I., Harpole, W.S., Hodapp, D., Kucera, M., Lewandowska, A.M., 
Merder, J., Montoya, J.M., Freund, J.A., 2020. Thresholds for ecological responses to 
global change do not emerge from empirical data. Nat. Ecol. Evol. 4 (11), 1502. 
https://doi.org/10.1038/s41559-020-1256-9. 

Horne, A.C., Nathan, R., Poff, N.L., Bond, N.R., Webb, J.A., Wang, J., John, A., 2019. 
Modeling flow-ecology responses in the anthropocene: challenges for sustainable 
riverine management. Bioscience 69 (10), 789–799. https://doi.org/10.1093/ 
biosci/biz087. 

Y. Wang et al.                                                                                                                                                                                                                                   

https://doi.org/10.1016/j.jenvman.2023.117562
https://doi.org/10.1016/j.jenvman.2023.117562
https://doi.org/10.1111/ele.13098
https://doi.org/10.1007/s00442-018-4294-0
https://doi.org/10.1007/s00442-018-4294-0
https://doi.org/10.3389/fenvs.2018.00045
https://doi.org/10.3389/fenvs.2018.00045
https://doi.org/10.1016/j.scitotenv.2020.141304
https://doi.org/10.1016/j.scitotenv.2020.141304
https://doi.org/10.1029/2018wr024196
https://doi.org/10.1029/2018wr024196
https://doi.org/10.1016/j.jenvman.2018.02.066
https://doi.org/10.1016/j.jenvman.2018.02.066
https://doi.org/10.2307/3868138
https://doi.org/10.1146/annurev.ecolsys.31.1.343
https://doi.org/10.2307/1934144
http://refhub.elsevier.com/S0301-4797(23)00350-X/sref10
https://doi.org/10.1002/ecy.2069
https://doi.org/10.1002/ecy.2069
https://doi.org/10.1016/j.tree.2007.07.010
https://doi.org/10.1016/B978-0-12-813255-5.00022-3
https://doi.org/10.2307/1936664
https://doi.org/10.1016/j.scitotenv.2020.138052
https://doi.org/10.1016/j.scitotenv.2020.138052
https://doi.org/10.1111/ecog.02137
https://doi.org/10.1038/s41559-020-01298-8
https://doi.org/10.1038/s41559-020-01298-8
https://doi.org/10.1016/j.ecolind.2020.106908
https://doi.org/10.1016/j.ecolind.2020.106908
https://doi.org/10.1098/rsbl.2018.0460
https://doi.org/10.1111/j.1461-0248.2006.00884.x
https://doi.org/10.1111/j.1461-0248.2006.00884.x
https://doi.org/10.1007/s12052-009-0128-1
https://doi.org/10.1007/s12052-009-0128-1
https://doi.org/10.1038/s41586-019-1379-9
https://doi.org/10.2307/4072271
https://doi.org/10.1186/s13750-020-00198-5
https://doi.org/10.1038/s41559-020-1256-9
https://doi.org/10.1093/biosci/biz087
https://doi.org/10.1093/biosci/biz087


Journal of Environmental Management 336 (2023) 117562

14

Hurlbert, S.H., 1978. The measurement of niche overlap and some relatives. Ecology 59 
(1), 67–77. https://doi.org/10.2307/1936632. 

Ives, A.R., Cardinale, B.J., 2004. Food-web interactions govern the resistance of 
communities after non-random extinctions. Nature 429 (6988), 174–177. https:// 
doi.org/10.1038/nature02515. 

Joseph, M.B., 2020. Neural hierarchical models of ecological populations. Ecol. Lett. 23 
(4), 734–747. https://doi.org/10.1111/ele.13462. 

Kuriqi, A., Pinheiro, A.N., Sordo-Ward, A., Bejarano, M.D., Garrote, L., 2021. Ecological 
impacts of run-of-river hydropower plants ? Current status and future prospects on 
the brink of energy transition. Renew. Sustain. Energy Rev. 142 https://doi.org/ 
10.1016/j.rser.2021.110833. 

Kuriqi, A., Pinheiro, A.N., Sordo-Ward, A., Garrote, L., 2019a. Flow regime aspects in 
determining environmental flows and maximising energy production at run-of-river 
hydropower plants. Appl. Energy 256. https://doi.org/10.1016/j. 
apenergy.2019.113980. 

Kuriqi, A., Pinheiro, A.N., Sordo-Ward, A., Garrote, L., 2019b. Influence of hydrologically 
based environmental flow methods on flow alteration and energy production in a 
run-of-river hydropower plant. J. Clean. Prod. 232, 1028–1042. https://doi.org/ 
10.1016/j.jclepro.2019.05.358. 

Kuriqi, A., Pinheiro, A.N., Sordo-Ward, A., Garrote, L., 2020. Water-energy-ecosystem 
nexus: balancing competing interests at a run-of-river hydropower plant coupling a 
hydrologic-ecohydraulic approach. Energy Convers. Manag. 223 https://doi.org/ 
10.1016/j.enconman.2020.113267. 

Leibold, M.A., Holyoak, M., Mouquet, N., Amarasekare, P., Chase, J.M., Hoopes, M.F., 
Holt, R.D., Shurin, J.B., Law, R., Tilman, D., Loreau, M., Gonzalez, A., 2004. The 
metacommunity concept: a framework for multi-scale community ecology. Ecol. 
Lett. 7 (7), 601–613. https://doi.org/10.1111/j.1461-0248.2004.00608.x. 

Levins, R., 2020. Princeton University Press. 
Lewis, W.M., 2021. The Ecological Niche in Aquatic Ecosystems, Reference Module in 

Earth Systems and Environmental Sciences. Elsevier. https://doi.org/10.1016/B978- 
0-12-819166-8.00017-7. 

Li, D., Shi, Q., Zang, R., Wang, X., Sheng, L., Zhu, Z., Wang, C.a., 2006. Models for niche 
breadth and niche overlap of species or populations (in Chinese). Sci. Silvae Sin. 42 
(7), 95–103. https://doi.org/10.11707/j.1001-7488.20060718. 

Li, F., Zhang, H., Zhu, Y., Xiao, Y., Chen, L., 2013. Effect of flow velocity on 
phytoplankton biomass and composition in a freshwater lake. Sci. Total Environ. 
447, 64–71. https://doi.org/10.1016/j.scitotenv.2012.12.066. 

Liautaud, K., van Nes, E.H., Barbier, M., Scheffer, M., Loreau, M., 2019. Superorganisms 
or loose collections of species? A unifying theory of community patterns along 
environmental gradients. Ecol. Lett. 22 (8), 1243–1252. https://doi.org/10.1111/ 
ele.13289. 

Lobera, G., Munoz, I., Lopez-Tarazon, J.A., Vericat, D., Batalla, R.J., 2017. Effects of flow 
regulation on river bed dynamics and invertebrate communities in a Mediterranean 
river. Hydrobiologia 784 (1), 283–304. https://doi.org/10.1007/s10750-016-2884- 
6. 

Loreau, M., Mouquet, N., Gonzalez, A., 2003. Biodiversity as spatial insurance in 
heterogeneous landscapes. Proc. Natl. Acad. Sci. U.S.A. 100 (22), 12765–12770. 
https://doi.org/10.1073/pnas.2235465100. 

Lu, Z.X., Feng, Q., Xiao, S.C., Xie, J.L., Zou, S.B., Yang, Q., Si, J.H., 2021. The impacts of 
the ecological water diversion project on the ecology-hydrology-economy nexus in 
the lower reaches in an inland river basin. Resour. Conserv. Recycl. 164 https://doi. 
org/10.1016/j.resconrec.2020.105154. 

May, R.M., 1975. Some notes on estimating the competition matrix. α. 56 (3), 737–741. 
https://doi.org/10.2307/1935511. 

Mlynski, D., Walega, A., Kuriqi, A., 2021. Influence of meteorological drought on 
environmental flows in mountain catchments. Ecol. Indicat. 133 https://doi.org/ 
10.1016/j.ecolind.2021.108460. 

Moore, J.C., 2013. Diversity, taxonomic versus functional. In: Levin, S.A. (Ed.), 
Encyclopedia of Biodiversity, second ed. Academic Press, Waltham, pp. 648–656. 
https://doi.org/10.1016/B978-0-12-384719-5.00036-8. 

Mor, J.R., Ruhi, A., Tornes, E., Valcarcel, H., Munoz, I., Sabater, S., 2018. Dam regulation 
and riverine food-web structure in a Mediterranean river. Sci. Total Environ. 625, 
301–310. https://doi.org/10.1016/j.scitotenv.2017.12.296. 

Nilsson, C., Renofalt, B.M., 2008. Linking flow regime and water quality in rivers: a 
challenge to adaptive catchment management. Ecol. Soc. 13 (2). 

Palmer, M., Ruhi, A., 2019. Linkages between flow regime, biota, and ecosystem 
processes: implications for river restoration. Science 365 (6459), 1264. https://doi. 
org/10.1126/science.aaw2087. 

Palmer, M.A., Bernhardt, E.S., Chornesky, E.A., Collins, S.L., Dobson, A.P., Duke, C.S., 
Gold, B.D., Jacobson, R.B., Kingsland, S.E., Kranz, R.H., Mappin, M.J., Martinez, M. 
L., Micheli, F., Morse, J.L., Pace, M.L., Pascual, M., Palumbi, S.S., Reichman, O., 
Townsend, A.R., Turner, M.G., 2005. Ecological science and sustainability for the 
21st century. Front. Ecol. Environ. 3 (1), 4–11. https://doi.org/10.2307/3868439. 

Petraitis, P.S., 1979. Likelihood measures of niche breadth and overlap. Ecology 60 (4), 
703–710. https://doi.org/10.2307/1936607. 

Poff, N.L., Ward, J.V., 1989. Implications of streamflow variability and predictability for 
lotic community structure: a regional analysis of streamflow patterns. Can. J. Fish. 
Aquat. Sci. 46 (10), 1805–1818. https://doi.org/10.1139/f89-228. 

Robson, B.J., Lester, R.E., Baldwin, D.S., Bond, N.R., Drouart, R., Rolls, R.J., Ryder, D.S., 
Thompson, R.M., 2017. Modelling food-web mediated effects of hydrological 
variability and environmental flows. Water Res. 124, 108–128. https://doi.org/ 
10.1016/j.watres.2017.07.031. 

Sabzi, H.Z., Rezapour, S., Fovargue, R., Moreno, H., Neeson, T.M., 2019. Strategic 
allocation of water conservation incentives to balance environmental flows and 
societal outcomes. Ecol. Eng. 127, 160–169. https://doi.org/10.1016/j. 
ecoleng.2018.11.005. 

Schoener, T.W., 1974. Resource partitioning in ecological communities. Science 185 
(4145), 27–39. https://doi.org/10.1126/science.185.4145.27. 

Shoemaker, L.G., Melbourne, B.A., 2016. Linking metacommunity paradigms to spatial 
coexistence mechanisms. Ecology 97 (9), 2436–2446. https://doi.org/10.1002/ 
ecy.1454. 

Smith, E.P., 1982. Niche breadth, resources availability and inference. Ecology 63 (6), 
1675–1681. https://doi.org/10.2307/1940109. 

Stoffels, R.J., Weatherman, K.E., Bond, N.R., Morrongiello, J.R., Thiem, J.D., Butler, G., 
Koster, W., Kopf, R.K., McCasker, N., Ye, Q.F., Zampatti, B., Broadhurst, B., 2020. 
Stage-dependent effects of river flow and temperature regimes on the growth 
dynamics of an apex predator. Global Change Biol. 15 https://doi.org/10.1111/ 
gcb.15363. 

Thompson, P.L., Guzman, L.M., De Meester, L., Horvath, Z., Ptacnik, R., 
Vanschoenwinkel, B., Viana, D.S., Chase, J.M., 2020. A process-based 
metacommunity framework linking local and regional scale community ecology. 
Ecol. Lett. 23 (9), 1314–1329. https://doi.org/10.1111/ele.13568. 

Tonkin, J.D., Merritt, D.M., Olden, J.D., Reynolds, L.V., Lytle, D.A., 2018. Flow regime 
alteration degrades ecological networks in riparian ecosystems. Nat. Ecol. Evol. 2 
(1), 86–93. https://doi.org/10.1038/s41559-017-0379-0. 
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