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Abstract

Objective. In radiotherapy, the internal movement of organs between treatment sessions causes errors
in the final radiation dose delivery. To assess the need for adaptation, motion models can be used to
simulate dominant motion patterns and assess anatomical robustness before delivery. Traditionally,
such models are based on principal component analysis (PCA) and are either patient-specific
(requiring several scans per patient) or population-based, applying the same set of deformations to all
patients. We present a hybrid approach which, based on population data, allows to predict patient-
specific inter-fraction variations for an individual patient. Approach. We propose a deep learning
probabilistic framework that generates deformation vector fields warping a patient’s planning
computed tomography (CT) into possible patient-specific anatomies. This daily anatomy model
(DAM) uses few random variables capturing groups of correlated movements. Given a new planning
CT, DAM estimates the joint distribution over the variables, with each sample from the distribution
corresponding to a different deformation. We train our model using dataset of 312 CT pairs with
prostate, bladder, and rectum delineations from 38 prostate cancer patients. For 2 additional patients
(22 CTs), we compute the contour overlap between real and generated images, and compare the
sampled and ‘ground truth’ distributions of volume and center of mass changes. Results. With a DICE
score of 0.86 + 0.05 and a distance between prostate contours of 1.09 £ 0.93 mm, DAM matches and
improves upon previously published PCA-based models, using as few as 8 latent variables. The overlap
between distributions further indicates that DAM’s sampled movements match the range and
frequency of clinically observed daily changes on repeat CTs. Significance. Conditioned only on
planning CT values and organ contours of a new patient without any pre-processing, DAM can
accurately deformations seen during following treatment sessions, enabling anatomically robust
treatment planning and robustness evaluation against inter-fraction anatomical changes.

1. Introduction

Modern radiotherapy techniques such as intensity modulated proton therapy (IMPT) have the potential to
deliver highly conformal doses to tumors while maximally sparing organs at risk (OARs). Although offering
dosimetric advantages with respect to conventional modalities, such treatments are particularly sensitive to
geometrical uncertainties arising from setup errors before delivery or range errors caused by organ movements
between or during treatment sessions. In the presence of uncertainties, planned doses are delivered to anatomies
different from the 3D computed tomography (CT) scan used during treatment planning, which may translate
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into shifting high dose regions away from clinical target volumes (CTVs) into critical OARs. Being one of the
main sources of error in, e.g. prostate cancer treatments (van Herk et al 2002), the magnitude of the
deformations and their effect on the final dose distribution must be quantified to ensure robust delivery. Ideally,
treatments could be real-time adapted via image guidance, or alternatively adjusted before each treatment
session (Jagt etal 2017, 2018), but such adaptive workflows are constrained by the speed of the CT acquisition,
delineation, dose calculation and treatment re-optimization processes in practice.

An efficient alternative currently used in the clinic consists of including setup and range uncertainties during
treatment planning optimization to design robust treatment plans that withstand positioning and range errors
(van der Voort et al 2016, Unkelbach and Paganetti 2018, Rojo-Santiago et al 2021). Similarly, inter-fractional
movement information could be incorporated during treatment planning or treatment evaluation to make
treatment plans robust against complex geometrical variations. To account for such anatomical changes, some
published works propose computing expected dose distributions using weighted scenarios, where each scenario
corresponds to the dose deposited in a patient geometry generated by an anatomy model. Typically, such models
extract the main eigenmodes of organ deformation—groups of correlated movements— via principal
component analysis (PCA) (S6hn et al 2005, Jeong et al 2010, Budiarto et al 2011, Szeto et al 2017). During the
last decades, linear PCA models have been successfully employed to quantify and understand the effect of organ
deformations in different treatment sites and modalities (Thérnqvist et al 2013a, Rios et al 2017, Magallon-Baro
etal 2019); to extend clinical volumes with extra margins and compensate for anatomical changes (Thorngvist
etal2013b, Bondar et al 2014); to characterize respiratory deformations (Zhang et al 2007, Badawi et al 2010,
Dhouetal 2015, 2015); and to simulate dosimetric outcomes of delivery in the presence of geometrical
uncertainties (Nie eral 2012, S6hn et al 2012, Xu et al 2014, Tilly et al 2017). Focusing on conventional photon-
based modalities, most of these studies are based only on organ contours without including CT intensity values,
and require time-consuming image registrations as pre-processing to find corresponding points across a
population of patients before being usable for learning generic deformations. Furthermore, all previously
introduced models are either patient-specific (requiring several CT's per patient) or population-based (applying
the same set of deformations to all patients), which limits their accuracy and applicability. For widespread
adoption of anatomically robust treatment planning, we require accurate probabilistic models quickly
generating patient-specific treatment anatomies.

All published PCA models learn correlated organ movements from a dataset of 3D deformation vector fields
(DVFs), where each vector indicates the magnitude and direction of displacement for each point in a voxelized
volume. Such DVFs can be obtained via image registration algorithms finding a nonlinear correspondence
between, e.g. two CT scans (Ashburner 2007, Vasquez Osorio et al 2009, Bruveris and Holm 2015). While
traditional not data-driven algorithms require minutes to solve a registration task, recent deep learning based
methods reduce computing times down to few seconds and additionally increase registration accuracy (de Vos
etal 2017, Balakrishnan et al 2019), typically using 2D (Ronneberger et al 2015) or 3D (Cicek et al 2016) U-net
convolutional architectures in combination with spatial transformer networks (Jaderberg et al 2015). Several
architectures generating DVFs and warping pairs of images have been proposed and applied to radiotherapy
problems such as automated contour propagation in adaptive workflows (Liang et al 2021) or 4D image
registration and generation of moving images due to breathing in lung geometries (Lei et al 2020, Romaguera
etal 2020, Chang et al 2021), modeling intra-fraction breathing movements that occur during the delivery of the
patient.

Our objective, however, is to generate a set of DVFs to warp a single planning CT into different repeat CT's
thatare likely to be observed during the course of a radiotherapy treatment. Ideally, a suitable model would be
able to implicitly capture the relative likelihood of correlated groups of movements depending on the input
patient geometry. Probabilistic frameworks based on variational inference (Kingma and Welling 2014, Rezende
etal2014, Blei et al 2017) have been successfully applied to model uncertainty in organ segmentation tasks (Kohl
etal 2018, Baumgartner etal 2019, Hu et al 2019, Kohl et al 2019), making use of auxiliary latent variables that
represent the main factors of variation behind the model’s predictions. Similar probabilistic U-net based
architectures have also been proposed for pure image registration tasks (Dalca et al 2019, Krebs et al 2019), with
applications to unsupervised contouring problems (Dalca et al 2019) and breathing movement prediction based
on motion surrogates (Romaguera et al 2021).

Extending on these recent architectures, we present a probabilistic deep learning framework that represents
common anatomical movements and deformations in a population of patients using few latent variables. The
proposed daily anatomy model (DAM) first generates DVFs conditioned on an input planning CT scan and
latent variables, where each combination of latent variables corresponds to a different group of movements; and
subsequently warps the planning CT with the generated DVFs into a set of artificial repeat scans. We train the
model using a dataset containing planning and repeat CTs recorded at different stages of prostate cancer
treatments in three different institutions, evaluating whether DAM is able to learn realistic movements with two
external patients. Compared to previous methods, DAM does not require any pre-processing registration step
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and can in principle be applied to quickly simulate patient anatomies for treatment adaptation and robustness
evaluation purposes.

2. Methods and materials

Here we describe the fundamentals of the variational framework used to capture anatomical variations,
including the different parametric models and the procedure used to tune their parameters. Subsequently, we
describe the model architecture in detail, together with the data and the evaluation metrics used in each
experiment.

2.1. Proposed framework

During the course of a radiotherapy treatment, the internal structures and organs of the patient change between
fractions/days. As a result, the anatomy captured in the planning image x € RM and organ structures s, € RM
(both represented as 3D matrices) can significantly differ from the repeat images y € RM and structures

s, € RM taken during following treatment sessions. M voxels comprise the entire volume, where the voxels in x
and y represent image intensity values, and the voxels in s, and s, contain an integer corresponding to the organ
present in the voxel.

As demonstrated in previous studies (Budiarto et al 2011) for treatment sites like prostate, common
anatomical variations such as volume and contour changes are observed across an entire population. Based on
the existence of such generic movements we assume that, given a planning image x and structures s,, there is an
unknown patient-specific generative distribution P*(y|x, s,) of repeat scans that can be approximated via a
probabilistic model with learned parameters. Given a planning image from a new patient, we can sample the
resulting model distribution Py(y|x, s,) parametrized by 0 to generate a set of artificial anatomies observed at
future treatment stages.

In this case, 8 corresponds to the parameters of the U-net neural network that is used to compute a DVF
®: R — R*mapping coordinates between images. We model ® as a diffeomorphic transformation, which is
invertible, preserves topology, and in our case practically allows obtaining the forward and inverse
transformations in a very simple manner. Such diffeomorphic transformation is represented by a stationary
velocity field v: R — R? as & = exp v. As for the inputs, we discretize the velocity field v € RM*? and DVF
® € RM*3 into M voxels, using ®(p) to denote the displacement applied to the voxel centered at location
p € R3. Following previous work (Dalca et al 2019), the U-net predicts v, which is exponentiated via scaling and
squaring using a spatial transformer network (Jaderberg er al 2015) (details in appendix A) to obtain the final
DVF @ used to warp planning images into artificial repeats y = ® o x.

Generative model. We use a probabilistic model that conditions the generated DVFs (and thus also the
repeat images) on N unobserved latent variables z € RY capturing the main factors of variation in the data, i.e.
the main groups of anatomical deformations. The latent variables distribute following a multivariate Gaussian
prior probability distribution that depends on the input planning anatomy

P(le, sx) = N(Z; [Lg(x, sx)’ EQ(x) 5x))> (1)

where the mean p1y and diagonal covariance matrix 3¢ are deterministic functions calculated by a neural
network referred to as Encoder (figure 1), which corresponds to the down-sampling path of a U-net. The prior
dependence on the input results in a different distribution over latent variables per patient, which allows the
model to select the groups of movements that are likely to be observed for each specific input image. The
Encoder additionally outputs a volume r = gg(x; s,), which is the results of several deterministic convolution
operations containing features from the input. Since r is a deterministic function of the input, we substitute any
conditioning on rwith x and s, in the remainder of the paper.

The relationship between the input planning image and latent variables and the output warped repeat images
is computed in the up-sampling path of the U-net, which takes sampled latent variables and the low-
dimensional features rto generate a velocity field v, g = fy(z, x, s,), where the subscripts denote the deterministic
dependence to zand 6. After exponentiating v, ¢ to obtain the DVF @, g, the output repeat image y € RM is
obtained by warping the inputasy = ®, gox.

Different latent variable samples z result in different repeat images given the same input planning scan, and
the modeled distribution of repeat images can be recovered as a function of the prior P(z|x, s,) and a likelihood
Py(y|z, x, s,) distributions as

Py(ylx, sx) = f Po(ylz, x, s.)P(z|x, sy)dz. (2)

The choice of the likelihood distribution affects the final loss function. Based on previous work (Krebs et al
2019), we model the likelihood distribution as a function of the cross-correlation (CC) between predicted y and
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Figure 1. Proposed generative framework. The probabilistic models are embedded within a U-net, where the down-sampling path is
referred to as Encoder, and the up-sampling path is the Generator. The Encoder takes the planning CT and structures and outputs
both a compressed representation of the input r as well as a distribution P(z|x, s,) over the region of the latent space containing
variables corresponding to plausible patient-specific movements. Given rand any sample z from the latent space distribution, the
Generator outputs a deformation vector field that is used to warp the planning CT into an artificial repeat CTs.

ground-truth y images, scaled by a constant A as
Py(ylz, x, sx) o< exp(ACC(y, y = Pz © X)). 3)

The CC has been empirically found to yield better similarity than other metrics such as the mean squared
error (Balakrishnan et al 2019), with larger CC values corresponding to more alike images. Let y(p) and 7 (p)
denote the intensity values for each voxel at position p in the predicted and ground-truth images, respectively. If
w(p) and W (p) are images where each voxel is the local mean of the n° neighbouring voxels, e.g.

w(p) = %zf: 1y (p))and W (p) = %zf: 17(p)), the CC s defined as
3 2
S G (p) — WP (p) — w(p))
i=1

CCH P =2 e - : )
[=2.0@ - 2 en || e — wo)
i=1

As in previous work (Krebs et al 2019), instead of sampling the likelihood Py(y|z, x, s,) each time during
inference to generate anatomies, we always use the mode of the distribution ®, ¢ o x.

Learning. With the presented probabilistic formulation, the goal is to maximize equation (2) by learning the
parameters 6 from a dataset containing planning x and repeat y pairs. However, estimating the integral over the
latent space would require sampling a large number of latent variables, being intractable in practice. Instead, we
resort to a variational framework and define an approximate posterior distribution Q(z[x, s, ¥, s,), parametrized
by an Inference Network with parameters 1. During training, the Inference Network has access to the real repeat
scans and predicts the parameters of Gaussian distribution covering a small region of the latent space containing
variables that are likely to explain the deformation between x and y scans. Thus, the predicted Gaussian is

Q’l/)(zlx) Sx> V> Sy) = N(Z; Hw(x’ Sx> V> sy)) 21/:(") Sx> s sy))) (5)

with deterministic mappings pt,, and 3, computed by the Inference neural network. Our formulation allows
estimating the model parameters 8 and ¥ by minimizing the negative evidence lower bound as

10g (PB(J’|X, Sx)) < _EZNQw(zlx,sx,y,sy) [108(P0(7|Z, X, Sx))] + DKL(Ql/)(le) Sx> Vs> sy)”PG(le) sx))- (6)

The lower bound balances two terms: the Dg;( - || - ) term—Kullback-Leibler (KL) divergence—forces the
approximated posterior to be close to the prior distribution, while the first term corresponds to maximizing the
CC, encouraging similarity between real and generated images. Further details about deriving the lower bound
are included in appendix B.

Explicit regularization terms. The current form of the likelihood enforces image similarity regardless of
structure overlap or DVF quality. We modify the lower bound and add two regularization terms to enforce
realistic predicted anatomies. To encourage smooth and realistic DVFs, we introduce a spatial regularization

aéz,@(?)’ 8q’z,@(p)’ aQz,B(p) of the
0x dy 0z

term that penalizes large unrealistic spatial gradients V®, g(p) = (

DVF @, 4, which is multiplied by a constant « as
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R(®0) = —£) [VR,0(p) |- )
peQ

A segmentation regularization term is added to improve the overlap between propagated and ground-truth
structures, using the DICE score (defined between 0 and 1, where 1 denotes perfect overlap). For K structures, let
sff be the voxels in the ground-truth scan with structure number k € [1, K], s}‘ = &, 4 o s¥ the predicted voxels

with structure number k, and |§)’,< | the cardinality of structure §)’,‘, i.e, the number of elements in §f The DICE
score is defined as
NP
IS, Nsy|
DICE(}), s)) = 2———"——. ®)
1Sy 1 + Is 1

With these two terms multiplying the likelihood in the lower bound of equation (9), the final optimization
problem becomes

. n 1 n
0*) ’11[7* = afgmln E'x,y,s,‘,sywPp(x,y,sx,sy) I:Ez~Qw(z|x,sx,y,sy) I:)\CC(}’: )’) - EZszlDICE(S}I/C: §z,0 o s]c()):l
0.y

+ H‘ZPGQH vq’z,@(?) ||2 ] + DKL(Q’I,[)(le) S Y Sy)”pﬂ(z|x’ sx)) ] > (9)
with x, y, s, and s, sampled from the real data distribution Pp(x, y, s, 5,,).

2.2.Dataset

To learn the model parameters in a training stage, we use a dataset with 369 CT's from 40 prostate cancer
patients, including prostate, seminal vesicles, bladder and rectum delineations with no overlap. For each of the
patients, 3-11 repeat CTs were recorded at different points during their treatment at 3 different institutions:
Erasmus University Medical Center (Rotterdam, Netherlands), Haukeland Medical Center (Bergen, Norway)
and the Netherlands Cancer Institute (Amsterdam, Netherlands) (Deurloo et al 2005, Sharma et al 2012, Xu et al
2014). In total, 329 planning-repeat CT pairs are available, 312 of which are used for training and validation,
while the remaining 22 CTs—corresponding to 2 independent test patients, as in previous studies (Budiarto et al
2011)—serve to evaluate performance on unseen geometries. After rigidly aligning each repeat to the planning
CT, we crop the volumes to aregion of 64 x 64 x 48 voxels around the prostate with a voxel resolution of 2 mm,
resulting in sub-volumes of 128 x 128 x 96 that in all cases covers the prostate, seminal vesicles, rectum and a
large portion the bladder. As a result, we obtain x € R**04x48 and y € R6**64x48 wyith the original CT
intensity values rescaled to the range [0, 1], and s, € R®**®***8and 5, € RS> 6448 with categorical labels
depending on the organ present in each voxel. Given the stochasticity in the density of the rectum fillings, we
adhere to clinical practice and mask all voxels in the rectum and set their intensity to —1000 (vacuum).

2.3.Model architecture
As shown in figure 2, the proposed variational framework comprises two different models, parametrized by
artificial neural networks: the Inference network and the probabilistic U-net with down-sampling and up-
sampling paths denoted as Encoder and Generator, respectively. Based on the input planning CT and structures,
the Encoder computes (i) alow-dimensional volume of input image features r, and (ii) the parameters g and
Y of the prior distribution Pg(y|z, x, s,) over a region of the latent space containing movements that are likely to
be observed for the patient. The prior depends on the input, thus one of the functions of the Encoder is selecting
primary groups of movements for each patient based on planning CT anatomy. The Generator takes the features
rand sampled latent variables z ~ Py(y|z, x, s,) and produces the velocity field v, g that is exponentiated to obtain
adiffeomorphic transformation @ 4.

During training, the Inference network takes a pair of planning and repeat CTs and outputs the parameters
.y and X, of the distribution Qy(z|x, s, ¥, 5,) over a much smaller region of the latent space containing latent
variables that explain the deformation between both images. The DVF resulting from such latent variables is
used to warp the planning CT into artificial repeat CTs y and structures @ o s,. The distributions Q,(z|x, y) from
the Inference network and Py(z|x) from the Encoder are forced to overlap via the KL divergence in equation (9),
while the artificial CT and structures are forced to match the ground-truth repeat CTs via the CC and DICE
terms in the likelihood.

For the model with the lowest validation loss, the Encoder and Inference network are identical: three
consecutive convolutional blocks, where each block contains a 3D convolutional layer with 32 channels and a
3 x 3 x 3 kernel followed by Group Normalization (Wu and He 2020), a rectified linear (ReLU) activation and a
max pooling down-sampling operation. At the lowest level, an additional 3D convolution with 4 channels results
in the low-dimensional feature volume r € R**8*8%6 which is mapped to the means and variances of the prior
distribution via two different fully-connected layers. Conversely, the Generator first concatenates the latent
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Figure 2. Learning the model parameters. An additional Inference Network takes a pair of planning and repeat CT and outputs the

parameters of a distribution over a smaller region of the latent space that is likely to capture the deformation between the two images.
The prior distribution predicted by the Encoder is forced to the distribution produced by the Inference Network via a KL-divergence
term in the loss. Additionally, a reconstruction term encourages the resulting artificial CT (obtained after warping the planning scan
with the predicted deformation) to be similar to real repeat CT.

variables to ras an additional channel, and then applies three up-sampling convolutional blocks with 32
channels. Two additional 3D convolution operations with 16 and 3 channels result in the final velocity field v, g.
All models are trained for 1000 epochs using a learning rate of 0.001, hyper-parameters = 0.1 and A = 1000,
and the Adam optimizer (Kingma and Ba 2017) with default parameters.

2.4. Experiments

We assess the model’s accuracy in both generating feasible groups of deformations and reconstructing the
ground-truth repeat scans. Additional experiments aim at exploring the structure of the latent space and the
types of movements triggered by different latent variables.

+ Reconstruction accuracy. Given a planning and one of its repeat CT's in the test set, the Inference network can
be used to obtain the latent variables corresponding to the deformation between both images, which are in
turn used to get the DVF and warp the planning scan. For all 22 test planning/repeat pairs, we compare such
generated repeat CTs to the ground truth repeats via computing the CC (equation (4)) and the DICE score
(equation (8)). Additionally, we warp points 7r; € R> on the surface of the planning prostate and calculate
their distance to corresponding points #; € R’ on the surface of the repeat prostates via the mean surface
error as

= —Z |7 — Pom;||,- (10)

1—1

To allow for a fair comparison with PCA-based methods, we compute the mean and standard deviation across
the same L = 5864 randomly chosen points as in previous studies (Budiarto et al 2011). Finally, we evaluate
the effect of the latent space dimensionality by comparing all accuracy metrics for different models trained
with a varying number of latent variables.

+ Generative performance. To finally be applied in clinical settings, the generated movements must match those
from the recorded CT scans. Based on a previous study quantifying anatomical changes in prostate patients
(Antolak et al 1998), we compute the volume changes and center of mass shifts between planning and repeat
scans, and compare their distributions obtained using real and artificial repeat CTs. To be able to compare to
the reference values (Antolak ef al 1998), we reduce center of mass shifts to a single value by computing the
average of absolute differences across coordinates.
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Figure 3. Reconstruction accuracy metrics. All figures show the mean (solid line) and standard deviation across all test planning-
repeat pairs of the different metrics for a different number of latent variables, where 0 latent variables refers to using no model (always
using the planning CT as a prediction). The left plot shows the cross-correlation between the real and reconstructed repeat CTs. In the
middle plot, we show the DICE score measuring overlap between the warped planning structures and the organs delineated in the
repeat CTs. Finally, the right figure shows the error between surface points in the prostate, compared to reference PCA values directly
taken from Budiarto etal (2011).

+ Latent space analysis. By individually varying the values of each latent variable while keeping the other fixed,
we numerically and visually assess the volume changes and center of mass shifts triggered by each variable.
Finally, to understand the structure of the latent space, we obtain the latent variables from all pairs in the
dataset and classify them according to the magnitude of their induced center of mass shifts and volume
changes. Ideally, similar latent variables should correspond to similar deformations. which can be verified by
plotting a 2D representation of the N latent variables using t-SNE (van der Maaten and Hinton 2008) together
with their associated label to determine the presence of clusters.

3. Results

In this section, we evaluate DAM’s performance in generating realistic CTs with anatomical changes that match
those of the real recorded repeat CTs. First, the reconstruction accuracy of real CTs is assessed, followed by an
analysis of the latent space, and the types of deformations captured by the latent variables.

3.1. Reconstruction accuracy

Given a planning-repeat pair of CT scans and structures in the test set, a repeat scan can be reconstructed via the
same framework as used during training: sampling latent variables with the Inference network that are used by
the Generator to generate a DVEF. To verify the similarity between DAM’s reconstructions and the real repeat
CTs, we compute three metrics assessing CT and structure overlap: the CC, DICE score, and surface error e. All
three metrics in figure 3 are computed for different models trained with a varying number of latent variables,
from 1 to 32. The values shown for 0 latent variables correspond to using the planning CTs as a prediction, which
is equivalent to disregarding any model. First, the cross correlation between the real and reconstructed repeat CT
is shown in the left plot of figure 3, indicating that the model significantly improves when adding the first few
variables, whereas no substantial is observed beyond 10 variables. As seen in DICE scores for the prostate and
rectum from the middle plot in figure 3, DAM can model prostate deformations with high accuracy even with a
single latent variable, while representing rectum movements generally requires a slightly larger latent space with
~8 variables. The relative simplicity in capturing prostate movements is further confirmed from the right plot in
figure 3, showing that most surface error (equation (10)) reduction results from adding the first latent variable.
On average, DAM matches—and even outperforms in the low-dimensional regime—the accuracy of countour-
based PCA models (Budiarto et al 2011). The larger spread in error values is likely caused by the fact that, unlike
for the values reported in the PCA study, all surface points are not equidistant but randomly sampled over the
surface, increasing the distance between correspondent points in under-sampled areas.

3.2. Generative performance

Besides generating realistic CT scans, DAM should produce patient-specific movements whose distribution
approximately matches those observed in the clinics, as reported in previous work (Antolak et al 1998). Given
the limited dataset size, we train 3 models using different training-test dataset splits, i.e. changing the 2 test
patients for each model. For these 2 test patients and each model, figure 4 displays the distribution of the
anatomical variations seen in the 11 recorded repeat CTs (blue), compared to the deformations seen in 100
randomly sampled CTs (orange). Except for the large center of mass movements seen for the second patient
figures 4(b) and (d), the ranges of values for both volume changes and center of mass shifts in figure 4 are
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Figure 4. Test set histograms of anatomical variations. For two independent test patients in each of the 3 models trained with a
different training-test dataset split, we plot histograms of prostate (a), (c), () volume changes and (b), (d), (f) center of mass shifts. Blue
histograms correspond to changes between the planning CT and the 11 available repeat CTs, for which we additionally show their
corresponding fitted normal and log-normal distributions in the same colors. Orange histograms are calculated using 100 randomly
sampled CTs, obtained from 100 different latent variable combinations.
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Figure 5. Training set distribution of anatomical variations. For all the patients in the training set with 5 or more repeat CTs, we plot
the mean (solid line) and standard deviation of prostate (a) volume changes and (b) center of mass shifts. Black lines are computed
using the available planning-repeat pairs of CT. The red curves are calculated using 100 randomly sampled CTs, obtained from 100
different latent variable combinations.

approximately equal. Similarly, figure 5 shows the center of mass shift and volume changes distributions for all
training patients with more than 5 repeat CTs. To compress all the information into one plot, we plot the mean
and standard deviation, instead of the full histogram. The good overlap between distributions demonstrates that
DAM captures the correct frequency and range of movements. As for the test patients, the biggest differences
between both distributions occur for the last patient in figure 5(b) with large center of mass shifts, which is
aggravated by the fact that this patient has three big outliers of >7 mm shift. Finally, figure 6 displays generated
and real anatomies for one of the patients, showing high quality images and contours with similar features and
shapes. Figure 7 displays representative DFVs from 3 patients, with overall smooth deformations that match the
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Figure 6. Real versus sampled anatomies. Three recorded repeat CTs (top row), and three anatomies generated by the model (bottom
row) are shown for one of the planning CTs, including prostate (red), seminal vesicles (green), bladder (blue) and rectum (pink)
contours. The images correspond to a perpendicular slice in the cranial-caudal axis, showing the top of the prostate.

movements observed between the planning and repeat CTs. To evaluate the realism of the deformations, we
calculate determinant of the Jacobian of the DVF, and specifically the fraction of voxels whose Jacobian
determinant is negative, indicating unrealistic ‘folding’ in the DVF. In our case, the diffeomorphic DVFs
generated by the model prevent any folding from occurring, resulting in smooth, invertible deformations with
Jacobian determinants that are always positive.

3.3. Latent space analysis

To investigate the deformations captured by the latent variables, we compute the center of mass shifts and
volume changes triggered by each variable independently, while keeping the rest fixed. Figure 8 displays such
changes for 4 randomly picked variables from the model with 8 latent variables, whose value was modified
between —1.5 and 1.5 times the standard deviation of the prior distribution. The results show magnitudes and
correlations between changes as can be expected: smaller prostate volume changes, and large bladder and
rectum variations shifting the center of mass of the prostate and seminal vesicles. To further demonstrate DAM’s
learned correlated groups of movements, in figure 9 we plot a grid of structures corresponding to simultaneously
varying two latent variables. Individual changes in the horizontal and vertical axis mainly control the bladder
and rectum volumes, respectively. Correlated deformations arise: the increase of bladder volume above the
seminal vesicles, together with the decrease of rectum filling below the prostate, cause a prostate and vesicles shift
and rotation.

We analyze the structure of the latent space by determining if similar deformations (shifts and volume
changes) or anatomical features (organ volume) result in similar latent variables. Figure 10 shows a two-
dimensional t-SNE representation of the latent variables, where only samples with the smallest and largest
movements or volumes are included, i.e. samples whose with center of mass shifts or volumes that fall above the
90% percentile or below the 10% percentile. Most of the latent space information seems to concern center of
mass shifts and bladder/rectum volume changes, since their 2D representations can be clearly separated. Ideally,
similar latent variables that are clustered together will correspond to different anatomical deformations, and will
not carry information about anatomical features of the patient such as absolute organ volume. Instead, the
Encoder is in charge to mapping deformations to anatomical traits observed in the planning CT or structures.
Prostate and bladder volume seem to have no effect in how the latent space is organized, since similar latent
variables correspond to very different sizes. To some extent, the effect of rectum size is also limited, resulting
from the possible correlation between rectum fillings and volume changes.

4, Discussion

In this study, we developed a probabilistic framework to model patient-specific inter-fraction movements based
on population data. The presented DAM captures deformation patterns, generating DVFs only based on the
planning CT scan and delineations. Based on the metrics obtained in figure 3 for the 22 scans from two
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Figure 7. Representative deformation vector fields. The planning CT, three repeat CTs and the corresponding DVF warping the
planning CT to each repeat CT are shown for three patients. including prostate (red), seminal vesicles (green), bladder (blue) and

rectum (pink) contours. The images correspond to a perpendicular slice in the cranial-caudal axis (XY plane).

independent test patients, DAM can generate realistic CT's with anatomical variations that resemble those

recorded in the clinics using a small number of latent variables

variable, measured as a DICE score 0f 0.856 £ 0.058, agrees with that of previous state-of-the-art pure

segmentation/registration (non-generative) deep learning studies (Elmahdy et al 2019, Yuan et al 2019,

Elmahdyetal 2021

Liang et al 2021). Compared to linear PCA models where each eigenvector captures an

>

independent mode of motion, the non-linearities in DAM allow representing different groups of correlated

movements using different values of only one latent variable. Given that a single latent variable practically
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Figure 8. Effect of individual latent variables on deformations. (a) Volume changes and (b) center of mass shifts triggered by
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values within —1.5 and 1.5 of their standard deviation, while keeping the remaining seven variables fixed and equal to their mean.
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Figure 9. Latent space visualization. Grid plot of the prostate (blue), seminal vesicles (green), bladder (yellow) and rectum (orange)
volumes. Each box corresponds to a different combination of latent variables in a 2D plane of the latent space, where the values for
each variable are shown on the axes, with o being the standard deviation and 1 the mean. Changes in the horizontal axis translate into
bladder enlargements, while the vertical axis controls rectum volume. Correlated groups of movements are observed, e.g. as prostate
rotations triggered by an enlarged bladder and smaller rectum.

suffices to capture prostate movements, and that both the CC and rectum DICE score keep increasing with
larger latent spaces, we can conclude that most of the computational effort is dedicated to modeling rectum
deformations. Prostate IMPT treatments typically solely involve lateral beams, for which the impact of error due
to rectum movement is small. In some cases, models with as little as 4-8 variables may be accurate enough, while
8-16 variables additionally ensure accurate rectum deformations for plans requiring more precision.
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For clinical application, it is critical that the model generates realistic shifts and deformations of the volume
to beirradiated/treated (in this case, the prostate). Overall, based on the results in figures 4 and 5, the center of
mass shifts and volume changes produced by DAM show good overlap to the deformations and shifts recorded
in the clinic, matching previously reported values (Antolak et al 1998). One reason why DAM struggles in
simulating the most extreme shifts or slides is the regularization term of the loss, which limits large
deformations. Despite this limitation, such large anatomical variations are typically taken care of by adapting the
treatment plan to the new anatomy, whereas robust treatment planning and evaluation—the main potential
applications of DAM—are in principle oriented to incorporating average, frequent deformations into treatment
design and evaluation, and we expect DAM to be useful for such purposes.

Comparison to other methods. All the previously published approaches are either patient-specific or
population models based on PCA. Patient-specific methods (S6hn et al 2005, Zhang et al 2007, Nie et al 2012,
Thornqgvisteral 2013a,2013b) require at least a few CTs recorded during a patient’s treatment, and therefore
they are unfeasible for pre-delivery robust treatment planning and evaluation, being restricted to post-treatment
analysis. Conversely, population models (Budiarto et al 2011, Rios et al 2017, Szeto et al 2017, Tilly et al 2017,
Magallon-Baro et al 2019) use a set of planning-repeat CT/contour pairs from previous patients, but simulate
the same type of deformations for all patients regardless of their anatomy. In contrast, as seen in figures 4 and 5,
DAM is able to retrieve patient-specific magnitude and frequency of movements from the entire population-
based on the planning CT anatomy, making the model suitable for a wider range of applications.

Most previous studies (S6hn et al 2005, Budiarto et al 2011, Thoérnqvist et al 2013b, Magallon-Baro et al
2019) model only the surface of the organs and not the intensities values in the CT. Without CT values the dose
distributions are always calculated on the same planning CT with varying contours, which limits its applicability,
especially in IMPT given the protons’ finite range and tissue sensitivity. Conversely, PCA-based models
modeling full DVFs require 7 (Tilly et al 2017) or up to 100 principal components (Szeto et al 2017) to capture
90% of the variance in the training data. A large number of components (equivalent to DAM’s latent variables)
adds more variation, increases the chance of sampling unrealistic deformations and limits their applicability as
reduced order models. Most importantly, all previous population-based methods require a time-consuming
pre-processing step involving multiple deformable image registration steps between scans and patients to an
organ or CT template. The accuracy of such registration calculation degrades the final accuracy and generative
performance of the model, with previous studies (Szeto et al 2017, Tilly et al 2017) showing surface errors of
around 1.5 & 1.0 mm introduced in their pre-processing step alone that are comparable the DAM’s total errors
reported in the right plot of figure 3. Given the lack of uniformity in treatment site and evaluation metrics in
previous studies—where most focus on evaluating the variance captured by the PCA model components and the
errors on the DVFs caused by truncating the number of eigenmodes—we compare DAM’s performance to a
PCA model of the prostate (Budiarto et al 2011) in the right plot of figure 3. Even without adding any pre-
processing errors, DAM matches the overall performance and is to capture prostate motion with a lower number
of modeling parameters. Being trained directly on CT images in an unsupervised manner, DAM bypasses any
performance or time losses from any pre-processing step, and can be easily applied to generate new anatomies in
few milliseconds, compared to the tens of minutes or hours needed to obtain accurate enough registrations
using conventional clinical software.
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Like PCA-based models, DAM assigns realistic correlated deformations to different values of the latent
variables. Figures 8 and 9 show that variables control shifts, volume changes and rotations similar to those
reported in previous studies (Budiarto et al 2011, Magallon-Baro et al 2019). Figure 10 demonstrates that the
latent variables almost exclusively carry information about deformations, and not about anatomical traits from
the patients. Instead, the Encoder is in charge of independently mapping planning anatomies to a subset of latent
variables. Furthermore, unlike all previous approaches not evaluating the generative performance of their
proposed models, we demonstrate the DAM also generates the adequate range and frequency of deformations
for each patient.

Applicability. DAM’s main application in robust treatment planning and robust evaluation against inter-
fraction movements involves sampling patient anatomies and calculating the corresponding dose distributions.
With prediction times of few milliseconds per generated anatomy, DAM offers huge speed-up possibilities for
plan evaluation when coupled to fast dose calculation algorithms (Perké et al 2016, Pastor-Serrano and
Perké 2022a, 2022b, Pastor-Serrano et al 2022). Few (3-5) representative scenarios corresponding to points
around mean of the posterior distribution can be sampled to be used for scenario based robust optimization,
which may translate into a dosimetric advantage or be used for margin reduction. In principle, the same
modeling framework could be applied to any other treatment site, with additional applications involving
obtaining weighted dose scenarios (Tilly et al 2017) to formulate anatomical robustness margin recipes (van der
Voortetal 2016). Straightforward extensions include adapting the DAM framework to other types of movement
(e.g. intra-fraction movements) by adding temporal dependence for treatments where patients’ anatomies
significantly change following a clear pattern during (e.g. breathing) or between the different fractions of the
treatment (e.g. modeling tumor shrinkage). Such time-dependent model could be coupled to breathing
interplay effect simulation tools (Pastor-Serrano et al 2021) to design plans based on breathing signals (Pastor-
Serrano et al 2021) that mitigate the detrimental effect of movement during delivery.

Limitations. Like PCA-based models, DAM will struggle to generate deformations that are not represented
in the training data, for which continuously updating the model (e.g. using cone beam CTs) can be a solution.
We refer to this as having limited extrapolation capabilities, e.g. generating bladder emptying or filling when no
bladder movement is included in the data, which is a problem shared with linear PCA models. Likewise, low
resolution images with poor contrast can also affect performance by masking small movements of structures,
especially in areas with similar organ tissue densities. DAM’s implementation in the clinic thus requires a quality
assurance protocol that evaluates robustness in predictions e.g. by training several models using different data,
and evaluating result similarity on a same test dataset.

As for many other deep learning algorithms, DAM’s generalization capabilities depend on the size and
variability of the data in the dataset, as well as on the quality and resolution of the CT images. Due to the rather
small size of the dataset in this preliminary study—caused by the scarcity of recorded sets of planning and repeat
CTs—and based on the initial positive results, further testing appears warranted. Although DAM seems to learn
representative deformations from the rather small dataset used during training, larger datasets will likely
improve model performance, as typically observed in deep learning approaches. Once applied in clinical
environments, DAM can be re-trained using more data, including the CTs collected in the center and possible
new publicly available datasets. Other options to mitigate the (possible) negative impact of small datasets include
generating extra data, .e.g. viaa much more computationally expensive mechanistic model (such as the ones
developed for heart motion (Gerach et al 2021)).

DAM’s accuracy in generating reasonable patient-specific movements depends on the extent to which
movements can be predicted only from the planning CT and structures. As with other classical and deep learning
registration algorithms, DAM would struggle to register rectum structures due to the randomness in their
intensity values. Following clinical practice, we opted for masking the rectum voxels with air. As a result, all
deformed CTs have air-filled rectum structures, which can affect the accuracy in the dose calculation, especially
for beams delivered in the anterior-posterior direction. Possible solutions include adding an additional
generative model that generates rectum voxel intensities based on the organ mask shape.

5. Conclusion

We presented DAM, a deep learning-based DAM to simulate patient-specific deformations that may be
observed during the course of a prostate cancer radiotherapy treatment. DAM captures groups of correlated
movements via few auxiliary latent variables, where few variables are able to model prostate deformations and
shifts with similar accuracy as state-of-the-art models based on PCA. Compared to previous population models,
DAM can generate realistic CT images and contours in less than a second without any pre-processing, with
volume changes and center of mass shifts that match in frequency and range those reported in the clinics and in
previous studies. Given its simplicity and speed to generate CT's based on a single planning scan and delineations,
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DAM can be tested in treatment planning and evaluation to design treatment plans that are robust against inter-
fraction variations.
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Appendix A. Diffeomorphic transformations

In this section, we provide details about the type of diffeomorphic transformation used in our model, based on
the seminal works in (Ashburner 2007, Dalca et al 2019). The chosen diffeomorphic transformation is
represented via the ordinary differential equation

a(};(t) = v(®W) (11)
ot

describing the evolution of the deformation over time, where ¢ € [0, 1] is time, @ is the identity transformation

and v: R® — R3is the stationary velocity field. To generate a DVF, we start from the identity transformation

', integrating over time to obtain &, In our case, we scaling and squaring (Moler and Van Loan 2003,

Arsigny et al 2006), which involves recursively updating the DVF in T successive small time steps

dW/2) = p 4 v(p)/2T (12)
P2 — $U/2) o P(1/2) (13)
M = §1/2 0P/, (14)

where p are spatial locations. Typically, T'is chosen so that v(p),/2” is small, with higher Tleading to more
accurate solutions. In Group theory, the velocity field vis a member of the Lie algebra, which is exponentiated to
produce the member of the Lie group &) = exp v, establishing the connection between the exponentiation and
the integration of the ordinary differential equation.
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Appendix B. Evidence lower bound

The lower bound (LB) derivation is bassed on Jensen’s inequality. For concave functions such as the natural
logarithm and a random variable x, Jensen’s inequality states that

log (B[x]) > E [log(x)]. (15)
Starting from the marginal likelihood of the probabilistic model in equation (2), the lower bound is obtained
as
log (Po(y|x, sx)) = log f Py(ylz, x, s:)P(z|x, sy)dz (16)
Qp(zlx, sx, ¥5 sy)
=log [ Po(y|z, x, s,)P(z|x, sx) ————————dz (17)
f Qqp(zlx, sx, ¥5 sy)
Po(y|z, x, sy)P(z|x, s
108 Ba0einenysy (164 ) P(z]x, s.) (18)
Q¢(Z|x) S Y sy)
P, z, X, Sy)P(z|x, s,
>EZ~Q¢(z|x,sx,y,sy) 0(}" ) ( | ) (19)
Q¢(Z|x> Sx> ¥s sy)
=B, Glxs0p.5) 1108 Po(¥|2, x, 5)] — Dki(Qg(2lx, s, ¥, 5)) |[|P(2]x, 1)), (20)
where the KL-divergence Dy is defined as
P(x) P(x)
D1 (P(x)]|Q(x)) = IOg( )P(x) dx = Exp( )10g( ) (21)
f Q) 7Pl
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