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We introduce the relative Haagerup approximation property 
for a unital, expected inclusion of arbitrary von Neumann 
algebras and show that if the smaller algebra is finite then 
the notion only depends on the inclusion itself, and not on 
the choice of the conditional expectation. Several variations 
of the definition are shown to be equivalent in this case, and in 
particular the approximating maps can be chosen to be unital 
and preserving the reference state. The concept is then applied 
to amalgamated free products of von Neumann algebras and 
used to deduce that the standard Haagerup property for a 
von Neumann algebra is stable under taking free products 
with amalgamation over finite-dimensional subalgebras. The 
general results are illustrated by examples coming from q-
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deformed Hecke-von Neumann algebras and von Neumann 
algebras of quantum orthogonal groups.

© 2023 Elsevier Inc. All rights reserved.

1. Introduction

The story of the group-theoretic Haagerup property began in a celebrated article [28]
by Haagerup, who noted that the free group admits a sequence of positive-definite func-
tions vanishing at infinity which pointwise converges to a constant function equal to 1; 
in other words, the free group von Neumann algebra admits a sequence of unital com-
pletely positive Herz-Schur multipliers which are in a sense ‘small’ and yet converge to 
the identity operator. Soon after that Choda gave in [18] a definition of the Haagerup 
property for a von Neumann algebra M equipped with a faithful normal trace in terms 
of existence of abstract approximating maps on M , which behave well with respect to 
the trace in question. Later Jolissaint proved in [32] that the property does not depend 
in fact on the choice of a trace as above, and Bannon and Fang showed in [5] that some of 
the requirements concerning the approximating maps can be weakened. For several years 
the study focused on finite von Neumann algebras, mainly as the motivating examples 
came from discrete groups. This changed with the articles [10], [19], which established the 
Haagerup property for the von Neumann algebras of certain discrete quantum groups, 
and the paper [21], which introduced and studied the analogous property for quantum 
groups themselves. Soon after that Okayasu and Tomatsu on one hand, and two authors 
of this paper on another, gave a definition of the Haagerup property for an arbitrary von 
Neumann algebra equipped with a faithful normal semifinite weight and proved that in 
fact the notion does not depend on the choice of the weight in question (see [15], [16], 
[36] as well as [14] and references therein). In all the cases above the Haagerup property 
should be thought of as a natural weakening of amenability/injectivity, which permits ap-
plying several approximation ideas and techniques beyond the class of amenable groups 
or algebras. The class of discrete groups enjoying the Haagerup property has good per-
manence properties, among which we would like to stress the fact that it is closed under 
taking free products amalgamated over finite subgroups ([17, Section 6]).

In several group-theoretic and operator algebraic contexts it is important to con-
sider also relative properties; for example relative Property (T) is key to showing that 
Z2 � SL2(Z) does not have the Haagerup property – which in turn has several von 
Neumann algebraic consequences, studied among other places in [30]. In the context of 
finite von Neumann algebras the relative Haagerup property appeared first in [8] in the 
study of Jones’ towers associated with irreducible finite index subfactors, and was later 
applied in [41] as a key tool to obtain deep structural results about algebras admitting 
a certain type of Cartan inclusion (i.e. maximal abelian subalgebras with a ‘sufficiently 
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rich’ normalizer). Such Cartan inclusions are deeply related to von Neumann algebras 
of equivalence relations by the celebrated results of Feldman and Moore in [23]. The 
case of Cartan subalgebras was also the first in which a definition of a relative Haagerup 
property was proposed beyond finite von Neumann algebras [48], [1]. Notably the lat-
ter developments took place even before the usual Haagerup property for arbitrary von 
Neumann algebras was well understood.

The study in [48] and [1] was focused on the special case of Cartan subalgebras. In 
this paper we undertake a systematic investigation of a von Neumann algebraic relative 
Haagerup property for a unital inclusion N ⊆ M equipped with a faithful normal con-
ditional expectation EN : M → N . Again we first define it in terms of a fixed faithful 
normal state (preserved by EN ) but then quickly show that it depends only on the con-
ditional expectation in question. Much more can be said in the case where N is assumed 
to be finite; here we obtain the following theorem, which is one of the main results of the 
paper. Relevant definitions can be found in Section 2; essentially for a triple (M, N, EN )
to have the relative Haagerup property we require the existence of completely positive, 
normal, N -bimodular maps on M which are EN -decreasing, L2-compact (in the sense 
determined by the conditional expectation EN ), uniformly bounded and converge point-
strongly to the identity, see Definition 3.2.

Theorem A. Suppose that N ⊆ M is a unital, expected inclusion of von Neumann al-
gebras and assume that N is finite. Then the relative Haagerup property of the triple 
(M, N, EN ) does not depend on the choice of a faithful normal conditional expectation 
EN : M → N . Moreover if (M, N, EN ) has the relative Haagerup property and we are 
given a fixed state τ ∈ N∗ we can always assume that the approximating maps are unital 
and τ ◦ EN -preserving.

The key idea of the proof once again, as in [15], uses crossed products by modular 
actions and the passage to the semifinite setting that (Takai-)Takesaki duality permits. 
However, the relative context makes the technical details much more demanding and 
makes adapting the earlier methods – including those developed in [5] – significantly 
more complicated. On the other hand, allowing non-trivial inclusions allows us to sig-
nificantly broaden the class of examples fitting into our framework and yields certain 
facts which are new even in the context of the standard Haagerup property of finite von 
Neumann algebras. This is exemplified by the next key result of this work and its corol-
lary (which also requires proving a general theorem on the relative Haagerup property 
of amalgamated free products).

Theorem B. Suppose that N ⊆ M is a unital inclusion of von Neumann algebras equipped 
with a faithful normal conditional expectation EN : M → N and assume that N is finite-
dimensional. Then the relative Haagerup property of the triple (M, N, EN ) is equivalent 
to the usual Haagerup property of M .
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Corollary C. Suppose that N ⊆ M1 and N ⊆ M2 are unital inclusions of von Neumann 
algebras equipped with respective faithful normal conditional expectations. If N is finite-
dimensional and both M1, M2 have the Haagerup property, then the amalgamated free 
product M1 ∗N M2 also has the Haagerup property.

We illustrate our results with examples coming on one hand from the class of q-
deformed Hecke-von Neumann algebras of (virtually free) Coxeter groups, and on the 
other hand from discrete quantum groups.

Of particular interest is also the elementary case of M = B(H) which provides us 
with both triples (B(H), N, EN ) that do and do not have the relative Haagerup property. 
This is rather surprising as it gives examples of co-amenable inclusions of von Neumann 
algebras in the sense of [39] (see also [6]) without the relative Haagerup property.

The detailed plan of the paper is as follows. After this introduction we recall some 
facts regarding von Neumann algebras, their modular theory and completely positive 
approximations in Section 2, and introduce (certain variants of) the definition of the 
relative Haagerup property in Section 3. The latter section also contains the initial dis-
cussion of the independence of our notion of various ingredients, mainly in the semifinite 
setting. Section 4, the most technical part of the paper, introduces the crossed product 
arguments allowing us to reduce the general problem to the semifinite case. Section 5
contains the main general results of the paper; in particular the above Theorem A is a 
combination of Theorem 5.4 and Theorem 5.5. In Section 6 we briefly describe the known 
examples of Haagerup inclusions related to Cartan subalgebras. Here we also study the 
case M = B(H) which leads to very interesting counterexamples. In Section 7 we show 
that in the case of a finite-dimensional subalgebra the relative Haagerup property is 
equivalent to the Haagerup property of the larger algebra and prove Theorem B above 
(which is Theorem 7.6). In Section 8 we discuss the behaviour of the relative Haagerup 
property with respect to the amalgamated free product construction and show Corol-
lary C (i.e. Corollary 8.2). In Section 8 we also discuss briefly a consequence of these 
results for the Hecke-von Neumann algebras associated to virtually free Coxeter groups. 
Finally in a short Section 9 we present an example of a Haagerup inclusion coming from 
quantum groups, which in fact is even strongly of finite index.

Acknowledgement. MC and GV are supported by the NWO Vidi grant ‘Non-commutative 
harmonic analysis and rigidity of operator algebras’, VI.Vidi.192.018. MK was supported 
by the NWO project ‘The structure of Hecke-von Neumann algebras’, 613.009.125. MW 
was supported by the Research Foundation – Flanders (FWO) through a Postdoctoral 
Fellowship and by long term structural funding - Methusalem grant of the Flemish Gov-
ernment. AS was partially supported by the National Science Center (NCN) grant no. 
2020/39/I/ST1/01566.
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2. Preliminaries and notation

2.1. General notation

We write N := {1, 2, ...}, C(R) denotes the continuous functions R → C and let 
Cc(R) denote the functions in C(R) with compact support. For f, g ∈ L1(R) we define 
the convolution and involution by

(f ∗ g)(s) =
∫
R

f(t)g(s− t)dt, f∗(s) = f(−s), s ∈ R.

The bounded operators on a Hilbert space H will be denoted by B(H) and ⊗ is the 
von Neumann algebraic tensor product or the tensor product of Hilbert spaces, as will 
be clear from the context. Hilbert space inner products are linear on the left side.

2.2. General von Neumann algebra theory

For standard results on the theory von Neumann algebras we refer to [44], [45], [46], 
[2]. For the theory of operator spaces and completely bounded maps we refer to [22], [38]. 
For several results on approximation properties and the Haagerup property we refer to 
[11], [17].

Assumption. We will assume throughout that the von Neumann algebras we study are 
σ-finite, i.e. they admit faithful normal states.

Let M ⊆ B(H) be a von Neumann algebra. A self-adjoint (possibly unbounded) 
operator h on H is said to be affiliated with M if for all k ∈ N the corresponding 
spectral projection E[−k,k](h) is an element of M . Equivalently, h is affiliated with M if 
and only if h commutes with all unitaries in the commutant M ′ ⊆ B(H).

We will always assume inclusions of von Neumann algebras N ⊆ M to be unital in 
the sense that 1M ∈ N , and conditional expectations to be faithful and normal. We will 
usually repeat these conditions throughout the text. For a functional ϕ ∈ M∗ in the 
predual of M and elements a, b ∈ M we denote by aϕb ∈ M∗ the normal functional 
given by (aϕb)(x) := ϕ(bxa), x ∈ M , and further write aϕ for aϕ1 and ϕb for 1ϕb. If 
ϕ ∈ M∗ is faithful, normal and positive, we write L2(M, ϕ) for the GNS Hilbert space 
associated with ϕ and Ωϕ for the corresponding cyclic vector. We will usually identify 
M with its image under the GNS representation, so M ⊆ B(L2(M, ϕ)). We further write 
‖x‖2,ϕ := ϕ(x∗x)1/2 for x ∈ M or, if ϕ is clear from the context, ‖x‖2 := ‖x‖2,ϕ.

An action R 
α
� M of the group R on a von Neumann algebra M is a group homo-

morphism α : R → Aut(M), t 	→ αt such that for every x ∈ M the map t 	→ αt(x) is 
strongly continuous. We denote the corresponding crossed product von Neumann algebra
by M �α R.
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The following lemma is standard.

Lemma 2.1. Let ϕ be a faithful normal state on a von Neumann algebra M . Then, on 
bounded subsets of M the strong topology coincides with the topology induced by the norm 
‖x‖2,ϕ = ϕ(x∗x)1/2, x ∈ M .

Proof. Recall that by [45] we may assume M ⊆ B(L2(M, ϕ)) and that on bounded sets 
the strong topology of M does not change under the choice of a faithful representation. 
Now if (xi)i∈I is a net in M converging strongly to x, then ‖xi−x‖2,ϕ = ‖(xi−x)Ωϕ‖ → 0. 
Conversely, suppose that (xi)i∈I is a bounded net in M such that ‖xi − x‖2,ϕ = ‖(xi −
x)Ωϕ‖ → 0. Then for a ∈ M analytic for the modular group σϕ (see Section 2.3) we 
have by [46, Lemma 3.18 (i)] that

‖(xi − x)aΩϕ‖ ≤ ‖σϕ
i/2(a)‖‖(xi − x)Ωϕ‖ → 0.

Since by [46, Lemma VIII.2.3] such elements aΩϕ, a ∈ M are dense in L2(M, ϕ) and 
(xi)i∈I is bounded, we conclude by a 2ε-estimate that xi → x strongly. �

Note that one implication above naturally does not require the uniform boundedness 
assumption, provided that we assume that M is represented on its standard Hilbert 
space L2(M, ϕ).

2.3. Tomita-Takesaki modular theory

Let M be a von Neumann algebra with a faithful normal positive functional ϕ ∈ M∗. 
We let Sϕ be the closure of the operator

L2(M,ϕ) → L2(M,ϕ) : xΩϕ 	→ x∗Ωϕ, x ∈ M.

Let Sϕ = JϕΔ1/2
ϕ be the (anti-linear) polar decomposition where Jϕ is the modular 

conjugation and Δϕ the modular operator. We have the modular automorphism group 
σϕ
t (x) = Δit

ϕxΔ−it
ϕ . Then (M, L2(M, ϕ), Jϕ, L2(M, ϕ)+) is the standard form of M , where 

the positive cone is given by

L2(M,ϕ)+ := {x(JxJ)Ωϕ | x ∈ M} ⊆ L2(M,ϕ).

The standard form is uniquely determined up to a unique (unitarily implemented) iso-
morphism. For x ∈ M and ξ ∈ L2(M, ϕ) we write ξx := Jϕx

∗Jϕξ. An element x ∈ M

is called analytic for σϕ if the function R � t 	→ σϕ
t (x) ∈ M extends to a (necessarily 

unique) analytic function on the complex plane C. In this case we write σϕ
z (x) for the 

extension at z ∈ C.
The centralizer of a von Neumann algebra with respect to a faithful normal state ϕ

is the set Mϕ := {x ∈ M | ∀y∈Mϕ(xy) = ϕ(yx)}, by [46, Theorem VIII.2.6] equivalently 
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described as {x ∈ M | σϕ
t (x) = x, t ∈ R}. We will often consider the situation where 

N ⊆ M is a unital embedding, equipped with a faithful normal conditional expectation 
EN : M → N , τ ∈ N∗ is a faithful tracial state, and ϕ = τ ◦ EN . Then an easy 
computation shows that N ⊆ Mϕ.

2.4. Completely positive maps

Let A, B be von Neumann algebras with faithful normal positive functionals ϕ and ψ
respectively. For a linear map Φ : A → B we say that its L2-implementation Φ(2) (with 
respect to ϕ and ψ) exists if the map xΩϕ 	→ Φ(x)Ωψ extends to a bounded operator 
Φ(2) : L2(A, ϕ) → L2(B, ψ). This is the case if and only if there exists a constant C > 0
such that for all x ∈ A,

ψ(Φ(x)∗Φ(x)) ≤ Cϕ(x∗x).

In particular, if Φ is 2-positive with ψ ◦ Φ ≤ ϕ, the Kadison-Schwarz inequality implies 
that Φ(2) exists with ‖Φ(2)‖ ≤ ‖Φ(1)‖1/2. Indeed, for x ∈ A

‖Φ(x)Ωψ‖2
2 = ψ(Φ(x)∗Φ(x)) ≤ ‖Φ(1)‖ψ(Φ(x∗x))

≤ ‖Φ(1)‖ϕ(x∗x) = ‖Φ(1)‖‖xΩϕ‖2
2.

This implies that if Φ is contractive then so is Φ(2).
The general principle of the following lemma was used as part of a proof in [15]

and [32] a number of times. Here we present it separately. We will also need several 
straightforward variations of this lemma. Because they can be proved in a very similar 
way, we shall not state them here. The essence of the result is that, given two nets of 
maps with suitable properties that strongly converge to the identity, the composition of 
these maps gives rise to a net that also converges to the identity in the strong operator 
topology.

Lemma 2.2. Let (A, ϕ) and (B, ϕj), j ∈ N be pairs of von Neumann algebras equipped 
with faithful normal states. Consider a normal completely positive map π : A → B, a 
bounded sequence of normal completely positive maps (Ψj : B → A)j∈N and for every 
j ∈ N a bounded net of completely positive maps (Φj,k : B → B)k∈Kj

. Assume that for 
all j ∈ N, k ∈ Kj the inequalities ϕj ◦ π ≤ ϕ, ϕ ◦Ψj ≤ ϕj and ϕj ◦Φj,k ≤ ϕj hold, that 
Ψj ◦ π(x) → x strongly in j for every x ∈ A and that for every j ∈ N, x ∈ B we have 
Φj,k(x) → x strongly in k. Then there exists a directed set F and a function (j̃, ̃k): F →
{(j, k) | j ∈ N, k ∈ Kj}, F 	→ (j̃(F ), ̃k(F )) such that Ψj̃(F ) ◦ Φj̃(F ),k̃(F ) ◦ π(x) → x

strongly in F for every x ∈ A.

Proof. For j ∈ N and k ∈ Kj write

π
(2)
j : L2(A,ϕ) → L2(B,ϕj), xΩϕ 	→ π(x)Ωϕj

,



8 M. Caspers et al. / Advances in Mathematics 421 (2023) 109017
Ψ(2)
j : L2(B,ϕj) → L2(A,ϕ), xΩϕj

	→ Ψj,k(x)Ωϕ,

Φ(2)
j,k : L2(B,ϕj) → L2(B,ϕj), xΩϕj

	→ Φj,k(x)Ωϕj

for the corresponding L2-implementations with respect to ϕ and ϕj . Let C ≥ 1 be a 
bound for the norms of (Ψj)j∈N and hence for the norms of (Ψ(2)

j )j∈N . We shall make 
use of the fact that on bounded sets the strong topology coincides with the L2-topology 
determined by a state, see Lemma 2.1. Therefore we have strong limits Ψ(2)

j π
(2)
j → 1 in 

B(L2(A, ϕ)) and Φ(2)
j,k → 1 in B(L2(B, ϕj)). Now let F ⊆ L2(A, ϕ) be a finite subset. We 

may find j = j̃(F ) ∈ N such that for all ξ ∈ F ,

‖Ψ(2)
j π

(2)
j ξ − ξ‖2 < |F |−1.

In turn, we may find k = k̃(j, F ) = k̃(F ) such that for all ξ ∈ F ,

‖Φ(2)
j,kπ

(2)
j ξ − π

(2)
j ξ‖2 < |F |−1.

From the triangle inequality and by using that the operator norm of Ψ(2)
j is bounded by 

C,

‖Ψ(2)
j Φ(2)

j,kπ
(2)
j ξ − ξ‖2 ≤ ‖Ψ(2)

j Φ(2)
j,kπ

(2)
j ξ − Ψ(2)

j π
(2)
j ξ‖2 + ‖Ψ(2)

j π
(2)
j ξ − ξ‖2

≤ ‖Ψ(2)
j ‖‖Φ(2)

j,kπ
(2)
j ξ − π

(2)
j ξ‖2 + ‖Ψ(2)

j π
(2)
j ξ − ξ‖2

< (1 + C)|F |−1.

This implies that Ψ(2)
j̃(F )

Φ(2)
j̃(F ),k̃(F )

π
(2)
j̃(F )

→ 1 strongly in B(L2(A, ϕ)) where the net is 
indexed by all finite subsets of L2(A, ϕ) partially ordered by inclusion. Using once more 
Lemma 2.1, one sees that for x ∈ A we have that Ψj̃(F ) ◦Φj̃(F ),k̃(F ) ◦ π(x) → x strongly. 
The claim follows. �
3. Relative Haagerup property

In this section we introduce the relative Haagerup property for inclusions of general 
σ-finite von Neumann algebras and consider natural variations of the definition. For this, 
fix a triple (M, N, ϕ) where N ⊆ M is a unital inclusion of von Neumann algebras and 
where ϕ is a faithful normal positive functional on M whose corresponding modular 
automorphism group (σϕ

t )t∈R satisfies σϕ
t (N) ⊆ N for all t ∈ R. To keep the notation 

short, we will often just write (M, N, ϕ) and will implicitly assume that the triple satisfies 
the mentioned conditions. By [46, Theorem IX.4.2] the assumption σϕ

t (N) ⊆ N , t ∈ R is 
equivalent to the existence of a (uniquely determined) ϕ-preserving (necessarily faithful) 
normal conditional expectation Eϕ

N : M → N . If the corresponding functional ϕ is clear, 
we will often just write EN instead of Eϕ

N (compare also with Subsection 3.2).
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3.1. First definition of relative Haagerup property

For a triple (M, N, ϕ) as before define the Jones projection

eϕN := E(2)
N : L2(M,ϕ) → L2(M,ϕ)

which is the orthogonal projection onto L2(N, ϕ) ⊆ L2(M, ϕ) and let 〈M,N〉 ⊆
B(L2(M, ϕ)) be the von Neumann subalgebra generated by eϕN and M . This is the Jones 
construction. We will usually write eN instead of eϕN if there is no ambiguity. Further set

K00(M,N,ϕ) := Span{xeNy | x, y ∈ M} ⊆ B(L2(M,ϕ))

and

K(M,N,ϕ) := K00(M,N,ϕ).

Then K00(M, N, ϕ) is a (not necessarily closed) two-sided ideal in 〈M,N〉 whose elements 
are called the finite rank operators relative to N . Similarly, K(M, N, ϕ) is a closed two-
sided ideal in 〈M,N〉 whose elements are called the compact operators relative to N . Note 
that if N = C1M , then eN is a rank one projection and the operators in K(M, N, ϕ) are 
precisely the compact operators on L2(M, ϕ).

Remark 3.1. In the following it is often convenient to identify a finite rank operator 
aeNb ∈ K00(M, N, ϕ), a, b ∈ M with the map aEN (b · ) : M → M . The latter does not 
depend on ϕ (but only on the conditional expectation EN), and the notation is naturally 
compatible with the inclusion M ⊆ L2(M, ϕ). We will often write aENb := aEN (b · ).

Definition 3.2. Let N ⊆ M be a unital inclusion of von Neumann algebras and let ϕ be a 
faithful normal positive functional on M with σϕ

t (N) ⊆ N for all t ∈ R. We say that the 
triple (M, N, ϕ) has the relative Haagerup property (or just property (rHAP)) if there 
exists a net (Φi)i∈I of normal maps Φi : M → M such that

(1) Φi is completely positive and supi ‖Φi‖ < ∞ for all i ∈ I;
(2) Φi is an N -N -bimodule map for all i ∈ I;
(3) Φi(x) → x strongly for every x ∈ M ;
(4) ϕ ◦ Φi ≤ ϕ for all i ∈ I;
(5) For every i ∈ I the L2-implementation

Φ(2)
i : L2(M,ϕ) → L2(M,ϕ), xΩϕ 	→ Φi(x)Ωϕ,

is contained in K(M, N, ϕ).
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Remark 3.3. (1) In many applications ϕ will be a faithful normal state, but for notational 
convenience we shall rather work in the more general setting. Note that we may always 
normalize ϕ to be a state and that the definition of the relative Haagerup property does 
not change under this normalization.
(2) Note that in [41] (see also [33]) a different notion of relative compactness is used 
to define the relative Haagerup property. It coincides with ours in case N ′ ∩ M ⊆ N . 
However, the alternative notion is not very suitable beyond the tracial situation since it 
requires the existence of finite projections; we will return to this issue in Subsection 6.1.
(3) In the case where N = C1M Definition 3.2 recovers the usual definition of the (non-
relative) Haagerup property, see [15, Definition 3.1].

There is a number of immediate variations of Definition 3.2. For instance, one may 
replace the condition (1) by one of the following stronger conditions:

(1′) For every i ∈ I the map Φi is contractive completely positive.
(1′′) For every i ∈ I the map Φi is unital completely positive.

We may also replace the condition (4) by the following condition:

(4′) ϕ ◦ Φi = ϕ.

One of the results that we shall prove is that if the subalgebra N is finite, then condition
(4) is redundant. We will further prove that in this setting the approximating maps Φi, 
i ∈ I can be chosen to be unital and state-preserving implying that all the variations 
of the relative Haagerup property from above coincide. To simplify the statements of 
the following sections, let us introduce the following auxiliary notion, which is a priori 
weaker (see Section 2).

Definition 3.4. Let N ⊆ M be a unital inclusion of von Neumann algebras and let ϕ be 
a faithful normal positive functional on M with σϕ

t (N) ⊆ N for all t ∈ R. We say that 
the triple (M, N, ϕ) has property (rHAP)− if there exists a net (Φi)i∈I of normal maps 
Φi : M → M such that

(1) Φi is completely positive for all i ∈ I;
(2) Φi is an N -N -bimodule map for all i ∈ I;
(3) ‖Φi(x) − x‖2,ϕ → 0 for every x ∈ M ;
(4) For every i ∈ I the L2-implementation

Φ(2)
i : L2(M,ϕ) → L2(M,ϕ), xΩϕ 	→ Φi(x)Ωϕ,

exists and is contained in K(M, N, ϕ).
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3.2. Dependence on the positive functional: reduction to the dependence on the 
conditional expectation

Let N ⊆ M be a unital inclusion of von Neumann algebras which admits a faithful 
normal conditional expectation EN : M → N . Recall that for every faithful normal 
positive functional ϕ on M with ϕ ◦ EN = ϕ the corresponding modular automorphism 
group (σϕ

t )t∈R satisfies σϕ
t (N) ⊆ N for all t ∈ R. Note that such a functional always 

exists, as it suffices to pick a faithful normal state ω ∈ N∗ (which exists by our standing 
σ-finiteness assumption) and set ϕ = ω ◦ EN . In this subsection we will examine the 
dependence of the relative Haagerup property of (M, N, ϕ) on the functional ϕ. We shall 
prove that the property rather depends on the conditional expectation EN than on ϕ.

Lemma 3.5. Let Φ : M → M be N -N -bimodular. Then the following statements are 
equivalent:

(1) EN ◦ Φ ≤ EN (resp. EN ◦ Φ = EN ).
(2) For all ϕ ∈ M+

∗ with ϕ ◦ EN = ϕ we have ϕ ◦ Φ ≤ ϕ (resp. ϕ ◦ Φ = ϕ).
(3) There exists a faithful functional ϕ ∈ M+

∗ with ϕ ◦ EN = ϕ such that ϕ ◦ Φ ≤ ϕ

(resp. ϕ ◦ Φ = ϕ).

Further, the following statements are equivalent:

(4) There exists C > 0 such that EN (Φ(x)∗Φ(x)) ≤ CEN (x∗x) for all x ∈ M .
(5) There exists C > 0 such that for all ϕ ∈ M+

∗ with ϕ ◦ EN = ϕ and x ∈ M we have 
ϕ(Φ(x)∗Φ(x)) ≤ Cϕ(x∗x).

(6) There exists C > 0 and a faithful functional ϕ ∈ M+
∗ with ϕ ◦EN = ϕ such that for 

all x ∈ M we have ϕ(Φ(x)∗Φ(x)) ≤ Cϕ(x∗x).

In particular, if the L2-implementation of Φ with respect to ϕ exists, then it exists with 
respect to any other ψ with ψ ◦ EN = ψ.

Proof. We prove the statements for the inequalities; the respective cases with equalities 
follow similarly. The implications (1) ⇔ (2) ⇒ (3) of the first three statements are trivial. 
For the implication (3) ⇒ (1) take ϕ as in (3). For x ∈ N consider the positive functional 
x∗ϕx ∈ M+

∗ which again satisfies (x∗ϕx) ◦ EN = x∗ϕx. Then, for y ∈ M+

(x∗ϕx) ◦ EN ◦ Φ(y) = ϕ ◦ EN ◦ Φ(xyx∗) ≤ ϕ ◦ EN (xyx∗) = (x∗ϕx) ◦ EN (y).

Since the restrictions of functionals x∗ϕx, x ∈ N to N are dense in N+
∗ we conclude that 

EN ◦ Φ ≤ EN .
The equivalence of the statements (4), (5) and (6) follows in a similar way. �
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The following lemma shows that in good circumstances compactness of the L2-
implementations does not depend on the choice of the state.

Lemma 3.6. Let ϕ, ψ ∈ M+
∗ be faithful with ϕ ◦ EN = ϕ and ψ ◦ EN = ψ. Let further 

Φ : M → M be a completely positive N -N -bimodule map whose L2-implementation Φ(2)
ϕ

with respect to ϕ exists (hence, by Lemma 3.5, the L2-implementation Φ(2)
ψ of Φ with 

respect to ψ exists as well). Then, Φ(2)
ϕ ∈ K(M, N, ϕ) if and only if Φ(2)

ψ ∈ K(M, N, ψ).

Proof. Let U be the unique unitary mapping the standard form (M, L2(M, ϕ), Jϕ, Pϕ)
to the standard form (M, L2(M, ψ), Jψ, Pψ), see [26, Theorem 2.3]. It restricts to 
the unique unitary map between the standard forms (N, L2(N, ϕ), Jϕ|N , Pϕ|N ) and 
(N, L2(N, ψ), Jψ|N , Pψ|N ). Indeed, for all x ∈ M , ϕ(x) = 〈xUΩϕ, UΩϕ〉 and by [26, 
Lemma 2.10], UΩϕ is the unique element in L2(M, ψ) satisfying this equation. On the 
other hand, applying [26, Lemma 2.10] to ϕ|N implies the existence of a unique vector 
ξ ∈ L2(N, ψ) such that ϕ(x) = 〈xξ, ξ〉 for all x ∈ N . By approximating ξ by elements in 
NΩψ and by using the assumptions ϕ ◦ EN = ϕ and ψ ◦ EN = ψ one deduces that for 
all x ∈ M ,

ϕ(x) = ϕ ◦ EN (x) = 〈EN (x)ξ, ξ〉 = 〈xξ, ξ〉

and hence UΩϕ = ξ ∈ L2(N, ψ). This implies U(NΩϕ) ⊆ L2(N, ψ) and therefore (by 
density and symmetry) U(L2(N, ψ)) = L2(N, ψ). Finally, using that σϕ

t (N) = N and 
hence Jϕ|N = (Jϕ)|L2(N,ϕ) (and similarly Jψ|N = (Jψ)|L2(N,ψ)) it is straightforward to 
check that the restriction of U satisfies the other properties of the unique unitary mapping 
between the standard forms (N, L2(N, ϕ), Jϕ|N , Pϕ|N ) and (N, L2(N, ψ), Jψ|N , Pψ|N ).

Since eϕN = (Eϕ
N )(2) is the orthogonal projection of L2(M, ϕ) onto L2(N, ϕ) and 

eψN = (Eψ
N )(2) is the orthogonal projection of L2(M, ψ) onto L2(N, ψ), we see that 

U∗eψNU = eϕN . Hence, for every map Λ of the form Λ = aENb with a, b ∈ M the L2-
implementation Λ(2)

ϕ with respect to ϕ and the L2-implementation Λ(2)
ψ with respect to 

ψ exist with Λ(2)
ϕ = aeϕNb = U∗aeψNbU = U∗Λ(2)

ψ U .
Now assume that Φ(2)

ϕ ∈ K(M, N, ϕ). Then there exists a sequence (Φk : M → M)k∈N
of maps of the form Φk =

∑Nk

i=1 ai,kENbi,k with Nk ∈ N and a1,k, b1,k, ..., aNk,k, bNk,k ∈
M whose L2-implementations Φ(2)

k,ϕ ∈ K00(M, N, ϕ) (with respect to ϕ) norm-converge 

to Φ(2)
ϕ . By the above, UΦ(2)

k,ϕU
∗ ∈ K00(M, N, ψ) is given by xΩψ 	→ Φk(x)Ωψ for x ∈ M . 

We claim that the sequence (UΦ(2)
k,ϕU

∗)k∈N ⊆ K00(M, N, ψ) norm-converges to Φ(2)
ψ . 

Indeed, by the density of the set of all elements of the form x(ϕ|N )x∗, x ∈ N in N+
∗ we 

find a net (xi)i∈I ⊆ N such that xi(ϕ|N )x∗
i → ψ|N . In combination with ϕ ◦ EN = ϕ

and ψ ◦ EN = ψ this also implies xiϕx
∗
i → ψ. For y ∈ M and k ∈ N,

‖(Φ(2)
ψ − UΦ(2)

k,ϕU
∗)yΩψ‖2

2,ψ = ‖(Φ(y) − Φk(y))Ωψ‖2
2,ψ

= lim ‖(Φ(y) − Φk(y))xiΩϕ‖2
2,ϕ
i
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= lim
i

‖(Φ(2)
ϕ − Φ(2)

k,ϕ)yxiΩϕ‖2
2,ϕ

≤ lim
i

‖Φ(2)
ϕ − Φ(2)

k,ϕ‖2ϕ(x∗
i y

∗yxi)

= ‖Φ(2)
ϕ − Φ(2)

k,ϕ‖2ψ(y∗y),

where in the third step we used the N -N -bimodularity of Φ and the right N -modularity 
of Φk. Now, Φ(2)

k,ϕ → Φ(2)
ϕ and (UΦ(2)

k,ϕU
∗)k∈N is a Cauchy sequence, hence the above 

inequality leads to UΦ(2)
k,ϕU

∗ → Φ(2)
ψ as claimed. In particular, Φ(2)

ψ ∈ K(M, N, ψ) which 
finishes the proof. �
Theorem 3.7. Let N ⊆ M be a unital inclusion of von Neumann algebras which admits a 
faithful normal conditional expectation EN : M → N . Further, let ϕ, ψ ∈ M+

∗ be faithful 
normal positive functionals with ϕ ◦EN = ϕ and ψ ◦EN = ψ. Then the triple (M, N, ϕ)
has property (rHAP) (resp. property (rHAP)−) if and only if the triple (M, N, ψ) has 
property (rHAP) (resp. property (rHAP)−). In particular, property (rHAP) (resp. prop-
erty (rHAP)−) only depends on the triple (M, N, EN ).

Proof. It follows from Lemma 3.5 and Lemma 3.6 that if (Φj)j∈J is a net of approx-
imating maps witnessing the relative Haagerup property of (M, N, ϕ) (resp. property 
(rHAP)− of (M, N, ϕ)), then it also witnesses the Haagerup property of (M, N, ψ) (resp. 
property (rHAP)− of (M, N, ψ)) and vice versa. �

We will later see that in the case where the von Neumann subalgebra N is finite 
the statement in Theorem 3.7 can be strengthened: in this case property (rHAP) (and 
equivalently property (rHAP)−) does not even depend on the choice of the conditional 
expectation EN .

Motivated by Theorem 3.7 we introduce the following natural definition.

Definition 3.8. Let N ⊆ M be a unital inclusion of von Neumann algebras which admits a 
faithful normal conditional expectation EN : M → N . We say that the triple (M, N, EN )
has the relative Haagerup property (or just property (rHAP)) if (M, N, ϕ) has the relative 
Haagerup property for some (equivalently any) faithful normal positive functional ϕ ∈
M+

∗ with ϕ ◦ EN = ϕ. The same terminology shall be adopted for property (rHAP)−.

3.3. State preservation, contractivity and unitality of the approximating maps in a 
special case

In this subsection we will prove that the relative Haagerup property of certain triples 
(M, N, EN ) may be witnessed by approximating maps that satisfy extra conditions, such 
as state-preservation, contractivity and unitality. This will play a crucial role in Section 5. 
The approach is inspired by [5, Section 2], where ideas from [32] were used.
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Lemma 3.9. Let M be a von Neumann algebra, ϕ ∈ M∗ a faithful normal state and 
y ∈ M . If yϕ = ϕy (i.e. y ∈ Mϕ), then yΩϕ = Ωϕy.

Proof. As mentioned in Section 2.3, by [46, Theorem VIII.2.6] we have that σϕ
t (y) = y

for all t ∈ R. But then y is analytic and moreover σϕ
−i/2(y) = y. Hence

Ωϕy = Jϕy
∗JϕΩϕ = Jϕσ

ϕ
−i/2(y

∗)JϕΩϕ = JϕΔ1/2
ϕ y∗Δ−1/2

ϕ JϕΩϕ = Sϕy
∗SϕΩϕ = yΩϕ.

The claim follows. �
Proposition 3.10. Let N ⊆ M be a unital inclusion of von Neumann algebras that admits 
a faithful normal conditional expectation EN . Assume that N is finite and let τ ∈ N∗ be 
a faithful normal tracial state that we extend to a state ϕ := τ ◦ EN on M . Let further 
Φ : M → M be a normal, completely positive, N -N -bimodular map for which there exists 
δ > 0 such that c := Φ(1) ≤ 1 − δ and ϕ ◦Φ ≤ (1 − δ)ϕ. Then one can find a, b ∈ N ′∩M

such that a ≥ 0, EN (a) = 1, aEN (b∗b) = EN (b∗b)a = 1 − c and bϕb∗ = ϕ − ϕ ◦ Φ.

Proof. The complete positivity of Φ implies that 0 ≤ ‖Φ‖ = ‖Φ(1)‖ = ‖c‖ ≤ 1 − δ, 
hence the map Φ must be contractive. It is clear that c = Φ(1) ≥ 0. Further, since 
EN (1 −c) > EN (δ) = δ, the element EN (1 −c) ∈ N is boundedly invertible. Additionally, 
the N -N -bimodularity of Φ implies that for every n ∈ N ,

nc = nΦ(1) = Φ(n) = Φ(1)n = cn,

so c ∈ N ′ ∩M . The latter two observations imply that for

a := (1 − c)(EN (1 − c))−1

we have a ∈ N ′ ∩M , a ≥ 0 and EN (a) = 1.
Consider the positive normal functional ϕ − ϕ ◦ Φ ∈ M∗. By [26, Lemma 2.10] there 

exists a unique vector ξ ∈ L2(M, ϕ)+ such that (ϕ − ϕ ◦ Φ)(x) = 〈xξ, ξ〉 for all x ∈ M . 
Note that {JϕxΩϕ | x ∈ M} is dense in L2(M, ϕ) and define the linear map

b : L2(M,ϕ) → L2(M,ϕ), JϕxΩϕ 	→ Jϕxξ.

It is contractive since

‖b(JϕxΩϕ)‖2
2 = ‖Jϕxξ‖2

2 = ‖xξ‖2
2 = (ϕ− ϕ ◦ Φ)(x∗x) ≤ ϕ(x∗x) = ‖xΩϕ‖2

2 = ‖JϕxΩϕ‖2
2

for all x ∈ M . Further, for x, y ∈ M ,

bJϕxJϕ(JϕyΩϕ) = bJϕxyΩϕ = Jϕxyξ = JϕxJϕJϕyξ = JϕxJϕb(JϕyΩϕ).

It hence follows that b and JϕxJϕ commute and therefore that b ∈ (JϕMJϕ)′ = M ′′ = M .
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We claim that a and b from above satisfy the required conditions. It remains to show 
that b ∈ N ′ ∩M , bϕb∗ = ϕ − ϕ ◦ Φ and aEN (b∗b) = EN (b∗b)a = 1 − c.

• b ∈ N ′ ∩M : By the assumption we have ϕ − ϕ ◦ Φ ≥ δϕ and therefore ϕ − ϕ ◦ Φ is 
a faithful normal functional. For x ∈ M , n ∈ N the N -N -bimodularity of Φ and the 
traciality of ϕ on N (implying that n is contained in the centralizer of ϕ) imply that 
ϕ ◦Φ(xn) = ϕ(Φ(x)n) = ϕ(nΦ(x)) = ϕ ◦Φ(nx), hence n(ϕ − ϕ ◦Φ) = (ϕ − ϕ ◦ φ)n. 
The unique isomorphism between the standard forms induced by ϕ and ϕ − ϕ ◦ Φ
maps ξ to the canonical cyclic vector in L2(M, ϕ − ϕ ◦ Φ). Hence, from Lemma 3.9
applied to ϕ −ϕ ◦Φ we get nξ = ξn for all n ∈ N , which, together with the fact that 
JϕnΩϕ = n∗Ωϕ, implies that for x ∈ M

bn(JϕxΩϕ) = bJϕxJϕnΩϕ = bJϕxn
∗Ωϕ = Jϕxn

∗ξ

= Jϕxξn
∗ = JϕxJϕnJϕξ = nJϕxξ = nb(JϕxΩϕ),

so b ∈ N ′ ∩M by the density of {JϕxΩϕ | x ∈ M} in L2(M, ϕ).
• bϕb∗ = ϕ − ϕ ◦ Φ: For every x ∈ M the equality

(bϕb∗)(x) = 〈xbΩϕ, bΩϕ〉 = 〈xξ, ξ〉 = (ϕ− ϕ ◦ Φ)(x)

holds, i.e. bϕb∗ = ϕ − ϕ ◦ Φ.
• aEN (b∗b) = EN (b∗b)a = 1 −c: For x ∈ M we find by b ∈ N ′∩M and bϕb∗ = ϕ −ϕ ◦Φ

that

ϕ(xEN (b∗b)) = ϕ(EN (x)b∗b) = ϕ(b∗EN (x)b) = (ϕ− ϕ ◦ Φ)(EN (x))

= ϕ(EN (x)) − ϕ(EN (x)Φ(1)) = ϕ(x) − ϕ(xEN (Φ(1))) = ϕ(xEN (1 − c))

and hence EN (1 − c) = EN (b∗b). It follows by the definition of a that aEN (b∗b) =
aEN (1 − c) = 1 − c and similarly, as a ∈ N ′ ∩M , we have EN (b∗b)a = 1 − c. �

Lemma 3.11. Let N ⊆ M be a unital inclusion of von Neumann algebras which admits 
a faithful normal conditional expectation EN . Assume that N is finite and let τ ∈ N∗ be 
a faithful normal tracial state that we extend to a state ϕ := τ ◦ EN on M . Let further 
x ∈ N ′ ∩M be an element which is analytic for σϕ. Then EN (yx) = EN (σϕ

i (x)y) for all 
y ∈ M .

Proof. For n ∈ N we have by the traciality of ϕ on N (implying that n is contained in 
the centralizer of ϕ) that

nσϕ
z (x) = σϕ

z (n)σϕ
z (x) = σϕ

z (nx) = σϕ
z (xn) = σϕ

z (x)σϕ
z (n) = σϕ

z (x)n,

for all z ∈ C. Therefore, σϕ
z (x) ∈ N ′∩M and in particular σϕ

i (x) ∈ N ′∩M . One further 
calculates that for y ∈ M ,
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(ϕn)(EN (yx)) = ϕ(EN (nyx)) = ϕ(nyx) = ϕ(σϕ
i (x)ny)

= ϕ(nσϕ
i (x)y) = (ϕn)(EN (σϕ

i (x)y)).

Since the set of all functionals of the form ϕn, n ∈ N is dense in N∗ we find that 
EN (yx) = EN (σϕ

i (x)y), as claimed. �
Lemma 3.12. Let N ⊆ M be a unital inclusion of von Neumann algebras that admits a 
faithful normal conditional expectation EN . Assume that N is finite and let τ ∈ N∗ be a 
faithful normal tracial state that we extend to a state ϕ := τ ◦EN on M . Let h1, h2 ∈ M

and let h3, h4 ∈ N ′ ∩M be analytic for σϕ. Suppose that Φ : M → M is a normal map 
such that Φ(2)

ϕ ∈ K(M, N, ϕ) and define the map Φ̃ := h1Φ(h2 · h3)h4. Then we also 
have that Φ̃(2)

ϕ ∈ K(M, N, ϕ).

Proof. Note first that by [46, VIII.3.18(i)] (and its proof) Φ̃ has a bounded L2-
implementation, with ‖Φ̃(2)

ϕ ‖ ≤ C‖Φ(2)
ϕ ‖, with the constant C > 0 depending on 

h1, h2, h3, h4. It thus suffices to show that the passage Φ → Φ̃ preserves the property of 
having a finite-rank implementation. Let then a, b ∈ M so that aeNb is in K00(M, N, ϕ). 
So for x ∈ M we have by Lemma 3.11,

h1(aeNb)(h2xh3)h4Ωϕ = h1ah4eN (σϕ
i (h3)bh2x)Ωϕ,

and so this map is in K00(M, N, ϕ). �
We are now ready to formulate the main result of this subsection. In combination 

with Lemma 3.14 it will later allow us to deduce that the relative Haagerup property 
of a triple (M, N, EN ) with finite N may be witnessed by unital and state-preserving 
maps. Its proof is inspired by [5, Section 2].

Theorem 3.13. Let N ⊆ M be a unital inclusion of von Neumann algebras which admits 
a faithful normal conditional expectation EN . Assume that N is finite, let τ ∈ N∗ be a 
faithful normal tracial state that we extend to a state ϕ := τ ◦EN on M and suppose that 
the triple (M, N, ϕ) has property (rHAP) witnessed by contractive approximating maps. 
Then, if all the elements of M are analytic with respect to the modular automorphism 
group of ϕ – for example if there exists a boundedly invertible element h ∈ M+ with 
σϕ
t (x) = hitxh−it for all t ∈ R, x ∈ M , property (rHAP) of (M, N, ϕ) may be witnessed 

by unital and state-preserving approximating maps, i.e. we may assume that (1′′) and 
(4′) hold.

Proof. Let (Φj)j∈J1 be a net of contractive approximating maps witnessing property 
(rHAP) of the triple (M, N, ϕ) and choose a net (δj)j∈J2 with δj → 0. We now set 
J = J1 × J2 with the product partial order and for j = (j1, j2) ∈ J we set Φj = Φj1 and 
δj = δj2 . Then for all j ∈ J ,



M. Caspers et al. / Advances in Mathematics 421 (2023) 109017 17
cj := (1 − δj)Φj(1) ≤ 1 − δj and (1 − δj)(ϕ ◦ Φj) ≤ (1 − δj)ϕ.

In particular, we may apply Proposition 3.10 to (1 −δj)Φj to find elements aj , bj ∈ N ′∩M
with aj ≥ 0, EN (aj) = 1, ajEN (b∗j bj) = EN (b∗j bj)aj = 1 − cj and bjϕb∗j = ϕ − (1 −
δj)(ϕ ◦ Φj). For j ∈ J define

Ψj : M → M , Ψj(x) := (1 − δj)Φj(x) + ajEN (b∗jxbj).

It is clear that Ψj is normal completely positive and N -N -bimodular. Further,

Ψj(1) = (1 − δj)Φj(1) + ajEN (b∗j bj) = cj + (1 − cj) = 1

and for any x ∈ M

ϕ ◦ Ψj(x) = (1 − δj)ϕ(Φj(x)) + ϕ(ajEN (b∗jxbj))

= (1 − δj)ϕ(Φj(x)) + ϕ(EN (aj)b∗jxbj)

= (1 − δj)ϕ(Φj(x)) + (bjϕb∗j )(x)

= (1 − δj)ϕ(Φj(x)) + ϕ(x) − (1 − δj)ϕ(Φj(x))

= ϕ(x),

so the Ψj are unital and ϕ-preserving.
For the relative compactness note that by the assumption that every element in M is 

analytic for σϕ, Lemma 3.11 implies that for all x ∈ M

Ψj(x) = (1 − δj)Φj(x) + ajEN (σϕ
i (bj)b∗jx),

hence,

Ψ(2)
j = (1 − δj)Φ(2)

j + ajeNσϕ
i (bj)b∗j ∈ K(M,N,ϕ).

It remains to show that for every x ∈ M , Ψj(x) → x strongly. For this, estimate for 
x ≥ 0,

(Ψj − (1 − δj)Φj)(x) = a
1/2
j EN (b∗jxbj)a

1/2
j

≤ ‖x‖a1/2
j EN (b∗j bj)a

1/2
j

= ‖x‖(1 − cj).

Since cj = (1 − δj)Φj(1) → 1 and (1 − δj)Φj(x) → x strongly it then follows that

Ψj(x) = (Ψj(x) − (1 − δj)Φj(x)) + (1 − δj)Φj(x) → x

strongly for every x ∈ M . This completes the proof. �
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Another important statement that was proved in [16] in case of the usual (non-relative) 
Haagerup property is the following lemma. It will later ensure the contractivity of certain 
approximating maps and allow us to apply Theorem 3.13 in a suitable setting.

Lemma 3.14. Let M be a finite von Neumann algebra equipped with a faithful normal 
tracial state τ ∈ M∗ and let N ⊆ M be a unital inclusion. Assume that h ∈ N ′ ∩ M

is a boundedly invertible self-adjoint element and define ϕ ∈ M∗ by ϕ(x) := τ(hxh)
for x ∈ M . Then, if (M, N, ϕ) has property (rHAP), the approximating maps (Φi)i∈I

witnessing property (rHAP) may be chosen contractively, i.e. we may assume that (1′) 
holds.

Proof. The proof is given in [16, Lemma 4.3]. One only needs to check that the condition 
h ∈ N ′ ∩ M+ ensures that the maps Φ′

k, Φl
k and Ψj defined there are N -N -bimodule 

maps that are compact relative to N . Let us comment on this.
In Step 1 of the proof of [16, Lemma 4.3] it is shown that the approximating maps 

Φk witnessing the Haagerup property may be chosen such that supk ‖Φk‖ < ∞. In the 
current setup of (rHAP) this is automatic (see Definition 3.2) and so we may skip this 
step.

We now turn to Step 2 in the proof of [16, Lemma 4.3]. Let Φk be the approximating 
maps witnessing the (rHAP) for (M, N, ϕ). In particular Φk is N -N -bimodular and 
Φ(2)

k ∈ K(M, N, ϕ). By [46, Theorem VIII.2.211] we have σϕ
t (x) = hitxh−it, t ∈ R, x ∈

M . Now recall the map defined in [16, Lemma 4.3] given by

Φl
k(x) =

√
1
lπ

∞∫
−∞

e−t2/lσϕ
t (Φk(σϕ

−t(x)))dt

=
√

1
lπ

∞∫
−∞

e−t2/lhitΦk(h−itxhit)h−itdt.

(3.1)

Since h ∈ N ′ ∩ M this map is N -N -bimodular. Since σϕ
t (his) = his, s, t ∈ R it follows 

from Lemma 3.12 that the L2-implementation of

x 	→ σϕ
t (Φk(σϕ

−t(x))) = hitΦk(h−itxhit)h−it, t ∈ R, (3.2)

exists and is compact, i.e. contained in K(M, N, ϕ). By assumption h is boundedly invert-
ible and so t 	→ hit depends continuously (in norm) on t. Hence the map (3.2) depends 
continuously on t and it follows that (3.1) is compact.

Next, in the proof of [16, Lemma 4.3] the following operators were defined:

glk = Φl
k(1), fn,l

k = Fn(glk),

where Fn(z) = e−n(z−1)2 , z ∈ C, n ∈ N. Since Φl
k is N -N -bimodular it follows that 

glk ∈ N ′ ∩M . Therefore also fn,l
k ∈ N ′ ∩M . Then the proof of [16, Lemma 4.3] defines 
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for suitable n(j), k(j), l(j) ∈ N, εj > 0 depending on some j in a directed set the map 
Ψj : M → M via the formula:

Ψj( · ) = 1
(1 + εj)2

f
n(j),l(j)
k(j) Φl(j)

k(j)( · )f
n(j),l(j)
k(j) .

Since fn(j),l(j)
k(j) ∈ N ′ ∩ M it follows that Ψj is both N -N -bimodular and compact, i.e. 

Ψ(2)
j ∈ K(M, N, ϕ). The last part of the proof of [16, Lemma 4.3] shows that Ψ(2)

j → 1
strongly and this holds true here as well with the same proof. By Lemma 2.1 this shows 
that for every x ∈ M we have Ψj(x) → x strongly. �
4. For finite N : translation into the finite setting

Let again N ⊆ M be a unital inclusion of von Neumann algebras which admits 
a faithful normal conditional expectation EN . Assume moreover that N is a general 
σ-finite von Neumann algebra, though in many of the statements below we shall add 
the assumption that N is finite. The aim of this section is to characterise the relative 
Haagerup property (resp. property (rHAP)−) of the triple (M, N, EN ) in terms of the 
structure of certain corners of crossed product von Neumann algebras associated with 
the modular automorphism group of some faithful ϕ ∈ M+

∗ with ϕ ◦ EN = ϕ. These 
statements will play a crucial role in Section 5.

4.1. Crossed products

Let us first recall some of the theory of crossed product von Neumann algebras and 
their duality for which we refer to [46, Section X.2]. For this, fix an action R �α M on 
M ⊆ B(H), define the corresponding fixed point algebra

Mα := {x ∈ M | αt(x) = x for all t ∈ R}

and let M �α R ⊆ B(H ⊗ L2(R)) ∼= B(L2(R, H)) be the corresponding crossed product 
von Neumann algebra. It is generated by the operators πα(x), x ∈ M and λt := λα

t , 
t ∈ R where

(πα(x)ξ)(t) = α−t(x)ξ(t) and (λtξ)(s) = ξ(s− t)

for s, t ∈ R, x ∈ M , ξ ∈ H ⊗ L2(R); we will also occasionally use λ to denote the 
left regular representation on L2(R), which should not cause any confusion. Recall that 
this construction does not depend on the choice of the embedding M ⊆ B(H) and that 
M ∼= πα(M). For notational convenience we will therefore omit the faithful normal 
representation πα in our notation and identify M with πα(M) and N with πα(N). Note 
that πα(x) = x ⊗ 1 for all x ∈ Mα. Set further λ(f) :=

∫
f(t)λtdt for f ∈ L1(R) and
R
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L(R) := {λ(f) | f ∈ L1(R)}′′ = {λs | s ∈ R}′′ ⊆ B(H⊗ L2(R)).

Remark 4.1. For f ∈ L1(R) we denote by

f̂(s) =
∫
R

f(t)eistdt ∈ L∞(R),

its Fourier transform. Let F2 : L2(R) → L2(R) : f 	→ (2π)− 1
2 f̂ be the unitary Fourier 

transform operator on L2(R). Then F2λ(f)F∗
2 is the multiplication operator with f̂ . We 

shall occasionally extend our notation in the following way. Let f ∈ L2(R) be such that 
its Fourier transform f̂ is in L∞(R). We shall write λ(f) for F∗

2 f̂F2 where we view f̂
as a multiplication operator. This is naturally compatible with the earlier notation for 
f ∈ L1(R)

Let R 
α̂
� M �α R be the dual action determined by

α̂t(x) = x, and α̂t(λs) = exp(−ist)λs, (4.1)

for x ∈ M , s, t ∈ R and recall that its fixed point algebra is given by

M = (M �α R)α̂. (4.2)

The expression

Tα̂(x) :=
∫
R

α̂s(x)ds, x ∈ (M �α R)+,

defines a faithful normal semi-finite operator valued weight on M �α R which takes 
values in the extended positive part of M . Choose f ∈ L1(R) ∩ L2(R) with ‖f‖2 = 1
such that the support of the Fourier transform f̂ equals R. We keep f fixed throughout 
the whole section. One has Tα̂(λ(f)∗λ(f)) = ‖f‖2

2 = 1, hence we may define the unital 
normal completely positive map

Tf := Tf,α̂ : M �α R → M , x 	→ Tα̂(λ(f)∗xλ(f)).

By Lemma 2.1 Tf is strongly continuous on the unit ball. For a given map Φ : M �αR →
M �α R and a positive normal functional ϕ ∈ M∗ we further define

Φ̃f : M → M , Φ̃f (x) = Tf (Φ(x)),

and

ϕ̂f : M �α R → C, ϕ̂f (x) = ϕ(Tf (x)).
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The functional ϕ̂f is normal and positive. It is moreover a state if ϕ is a state. Since 
we assumed the support of f̂ to be equal to R, by Remark 4.1 the support projection of 
λ(f) equals 1. It follows that ϕ̂f is faithful if and only if ϕ is faithful.

Lemma 4.2. Assume that N ⊆ Mα. Then Tf is N -N -bimodular, meaning that for x, y ∈
N , a ∈ M �α R we have Tf (xay) = xTf (a)y.

Proof. As N ⊆ Mα we have that N and λ(f) commute. From the definition of Tα̂ and 
(4.2) we get that for x, y ∈ N and a ∈ M �α R,

Tα̂(λ(f)∗xayλ(f)) = Tα̂(xλ(f)∗aλ(f)y) = xTα̂(λ(f)∗aλ(f))y.

This concludes the proof. �
We recall the following formula which was proved in [15, Lemma 5.2] (which extends 

[27, Theorem 3.1 (c)]) in case k = g; the general case then follows from the polarization 
identity. For k, g ∈ L2(R) such that k̂, ̂g ∈ L∞(R) we have:

Tα̂(λ(k)∗xλ(g)) =
∫
R

k(t)g(t)α−t(x)dt, x ∈ M. (4.3)

We shall need the following consequence of it. For g ∈ L1(R) define g∗(t) := g(−t), which 
is the involution for the convolution algebra L1(R).

Lemma 4.3. Let h ∈ Cc(R) and let x ∈ M . Then, for k, g ∈ L1(R) ∩ L2(R) and a :=
λ(h)x,

Tα̂(λ(k)∗aλ(g)) =
∫
R

∫
R

k∗(s)g(t)h(−s− t)α−t(x)dsdt,

and

Tα̂(λ(k)∗λ(g)a) =
∫
R

∫
R

k∗(s)g(t)h(−s− t)xdsdt.

Proof. We have λ(k)∗a = λ(h∗ ∗ k)∗x. The equality (4.3) then implies

Tα̂(λ(k)∗aλ(g)) = Tα̂(λ(h∗ ∗ k)∗xλ(g))

=
∫
R

(h∗ ∗ k)(t)g(t)α−t(x)dt

=
∫ ∫

k∗(s)g(t)h(−s− t)α−t(x)dsdt.

R R



22 M. Caspers et al. / Advances in Mathematics 421 (2023) 109017
This concludes the proof of the first formula. The second formula follows from the first 
after observing that Tα̂(λ(k)∗λ(g)a) = Tα̂(λ(k)∗λ(g)λ(h))x. �
4.2. Passage to crossed products

Let us now study the stability of the relative Haagerup property with respect to 
certain crossed products. The setting is the same as in Subsection 4.1.

Proposition 4.4. Let Φ : M �α R → M �α R be a linear map and fix f ∈ L1(R) ∩L2(R)
as before. Then the following statements hold:

(1) If Φ is completely positive then so is Φ̃f .
(2) Assume that N ⊆ Mα. If Φ is an N -N -bimodule map then Φ̃f is an N -N -bimodule 

map.

In the remaining statements let ϕ ∈ M+
∗ be a faithful normal positive functional with 

ϕ ◦ EN = ϕ and ϕ ◦ αt = ϕ for all t ∈ R. Then:

(3) If ϕ̂f ◦ Φ ≤ ϕ̂f (resp. ϕ̂f ◦ Φ = ϕ̂f ) then ϕ ◦ Φ̃f ≤ ϕ (resp. ϕ ◦ Φ̃f = ϕ).
(4) If the L2-implementation of Φ with respect to ϕ̂f exists, then the L2-implementation 

of Φ̃f with respect to ϕ exists as well.

Now, if N ⊆ Mα, EN ◦ αt = EN for all t ∈ R and f is continuous, then:

(5) If Φ ∈ K00(M �α R, N, ϕ̂f ), then Φ̃f ∈ K00(M, N, ϕ).
(6) If Φ ∈ K(M �α R, N, ϕ̂f ), then Φ̃f ∈ K(M, N, ϕ).

Proof. (1) is straightforward from the constructions and (2) follows from Lemma 4.2.
(3): If ϕ̂f ◦ Φ ≤ ϕ̂f we have for x ∈ M+, using (4.3) and the α-invariance of ϕ,

ϕ ◦ Φ̃f (x) = ϕ(Tf (Φ(x))) = ϕ̂f (Φ(x)) ≤ ϕ̂f (x)

= ϕ(Tα̂(λ(f)∗xλ(f))) =
∫
R

|f(t)|2ϕ(α−t(x))dt = ϕ(x).

Moreover, if ϕ̂f ◦ Φ = ϕ̂f then the inequality above is actually an equality.
(4): Assume that there exists a constant C > 0 such that ϕ̂f (Φ(x)∗Φ(x)) ≤ Cϕ̂f (x∗x)

for all x ∈ M . Then, by the Kadison-Schwarz inequality and (4.3),

ϕ(Φ̃f (x)∗Φ̃f (x)) = ϕ(Tf (Φ(x))∗Tf (Φ(x))) ≤ ϕ̂f (Φ(x)∗Φ(x)) ≤ Cϕ̂f (x∗x) = Cϕ(x∗x)

for all x ∈ M , where we use the fact (proved above) that ϕ and ϕ̂f coincide on M+. This 
implies that the L2-implementation of Φ̃f with respect to ϕ exists.
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(5): By Lemma 4.2 and the discussion before, FN = EN ◦ Tf is the unique faithful 
normal ϕ̂f -preserving conditional expectation of M �α R onto N . Let a, b ∈ M �α R. 
By N ⊆ Mα we have for x ∈ M ,

˜(aFNb)f (x) := Tf (aFN (bx)) = Tf (a)FN (bx) (4.4)

We shall show that FN (bx) = EN (̃bx) for all x ∈ M , where ̃b := Tα̂(λ(f)∗λ(f)b). For this 
it suffices to consider the case where b = λ(h)y for some compactly supported function 
h ∈ Cc(R) and y ∈ M , since such elements span a σ-weakly dense subset of M �α R

and the map b 	→ b̃ is σ-weakly continuous. Using Lemma 4.3 twice and the fact that 
EN ◦ αt = EN for all t ∈ R one has

FN (bx) = EN ◦ Tf (bx)

= EN

⎛⎝∫
R

∫
R

f∗(s)f(t)h(−s− t)α−t(yx)dsdt

⎞⎠
=

∫
R

∫
R

f∗(s)f(t)h(−s− t)EN (yx)dsdt

= EN

⎛⎝∫
R

∫
R

f∗(s)f(t)h(−s− t)ydsdt x

⎞⎠
= EN (̃bx),

as claimed. Combining this equality and (4.4) we get that ˜(aENb)f = Tf (a)FN b̃. By 
considering linear combinations of such expressions one gets that if Φ ∈ K00(M �α

R, N, ϕ̂f ) then also Φ̃f ∈ K00(M, N, ϕ). This proves (5).
(6): The statement follows directly from (5) by approximation and the fact that 

‖Φ̃f‖ ≤ ‖Φ‖. �
In the following we will direct our attention to certain choices of functions f ∈ L1(R) ∩

L2(R) with ‖f‖2 = 1 whose support of the Fourier transform f̂ equals R. For this, define 
for j ∈ N the L2-normalized Gaussian

fj : R → R, fj(s) :=
(
j

π

)1/4

exp(−js2/2).

Further set for a given map Φ : M �α R → M �α R and a positive normal functional 
ϕ ∈ M∗

ϕ̂j := ϕ̂fj and Φ̃j := Φ̃fj .
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Theorem 4.5. Let N ⊆ M be a unital inclusion of von Neumann algebras with a faithful 
normal conditional expectation EN : M → N . Let further ϕ ∈ M+

∗ be a faithful normal 
positive functional with ϕ ◦ EN = ϕ and R �α M be an action such that N ⊆ Mα. 
Finally assume that EN ◦ αt = EN (or, equivalently under the earlier assumptions, that 
ϕ = ϕ ◦ αt) for all t ∈ R. Then the following statements hold:

(1) If for all j ∈ N the triple (M �α R, N, ϕ̂j) has property (rHAP) (resp. property 
(rHAP)−), then (M, N, ϕ) has property (rHAP) (resp. property (rHAP)−).

(2) If for all j ∈ N property (rHAP) of (M �αR, N, ϕ̂j) is witnessed by unital (resp. ϕ̂j-
preserving) approximating maps (see (1′′) and (4′) in Section 3), then also property 
(rHAP) of (M, N, ϕ) may be witnessed by unital (resp. ϕ-preserving) approximating 
maps.

Proof. (1): For fixed j ∈ N let (Φj,k)k∈Kj
be a bounded net of normal completely posi-

tive maps witnessing the relative Haagerup property of (M �α R, N, ϕ̂j). In particular, 
Φj,k → 1 in the point-strong topology in k. Set Φ̃j,k := Tfj ◦ Φj,k. As s 	→ αs(x) is 
strongly continuous for x ∈ M and fj is L2-normalized with mass concentrated around 
0, Lemma 4.3 shows that for x ∈ M ,

Tfj (x) =
∫
R

|fj(s)|2αs(x)ds → x

as j → ∞ in the strong topology. Lemma 2.2 then shows that we may find a directed 
set F and a function (j̃, ̃k) : F → {(j, k) | j ∈ N, k ∈ Kj}, F 	→ (j̃(F ), ̃k(F )) such 
that the net (Φ̃j̃(F ),k̃(F ))F∈F converges to the identity in the point-strong topology. By 
Proposition 4.4 these maps then witness the relative Haagerup property for (M, N, ϕ). 
In the same way, using a variant of Lemma 2.2, we can deduce that if (M �α R, N, ϕ̂j)
has property (rHAP)−, then (M, N, ϕ) has property (rHAP)− as well.

(2): Note that if Φj,k is unital for all k ∈ N, then Φ̃j,k is unital as well and if Φj,k is 
ϕ̂j-preserving for all k ∈ N, then Φ̃j,k is ϕ-preserving, cf. Proposition 4.4. �

We will now apply this theorem to the modular automorphism group σϕ of ϕ as well 
as its dual action.

Theorem 4.6. Let N ⊆ M be a unital inclusion of von Neumann algebras with a faithful 
normal conditional expectation EN : M → N . Assume that N is finite and let τ ∈ N∗ be 
a faithful normal tracial state. Further define the faithful normal (possibly non-tracial) 
state ϕ := τ ◦ EN on M . Then the following statements hold:

(1) If for all j ∈ N the triple (M �σϕ R, N, ϕ̂j) has property (rHAP) (resp. property 
(rHAP)−), then (M, N, ϕ) has property (rHAP) (resp. property (rHAP)−).
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(2) If for all j ∈ N property (rHAP) of (M �σϕ R, N, ϕ̂j) is witnessed by unital (resp. 
ϕ̂j-preserving) approximating maps, then also property (rHAP) of (M, N, ϕ) may be 
witnessed by unital (resp. ϕ-preserving) approximating maps.

Proof. This is Theorem 4.5 for α = σϕ; the assumptions are satisfied, as follows from 
the fact that N ⊆ Mϕ. �

We will also prove the converse of Theorem 4.6 by using crossed product duality. We 
first recall the following lemma which is well-known. We will use the fact that every 
function g ∈ L∞(R) may be viewed as a multiplication operator on L2(R).

Lemma 4.7. For g, h ∈ Cb(R) ∩L2(R) we have that gλ(h) ∈ B(L2(R)) is Hilbert-Schmidt 
with

Tr((gλ(h))∗gλ(h)) = ‖g‖2
2‖h‖2

2.

Proof. Let S2(H) denote the Hilbert-Schmidt operators on a Hilbert space H. We have 
linear identifications H ⊗ H � S2(H) where ξ ⊗ η corresponds to the rank 1 operator 
v 	→ ξη∗(v). We identify L2(R) with L2(R) linearly and isometrically through the pairing 
〈ξ, η〉 =

∫
R ξ(s)η(s)ds. Therefore we have isometric linear identifications

S2(L2(R)) � L2(R) ⊗ L2(R) � L2(R2), (4.5)

where the rank 1 operator ξη∗ corresponds to the function (s, t) 	→ ξ(s)η(t).
Now, gλ(h) is an integral operator on L2(R) with a square-integrable kernel K(x, y) :=

g(x)h(x − y). Then gλ(h) is Hilbert-Schmidt and corresponds to K ∈ L2(R2) in (4.5), 
so that ‖gλ(h)‖S2 = ‖K‖2 = ‖g‖2‖h‖2. �

Further recall that for j ∈ N the Gaussian fj was defined by fj(s) := j1/4π−1/4 ×
exp(−js2/2), s ∈ R and f̂j denotes its Fourier transform. Both these functions are 
L2-normalized by definition and the Plancherel identity. Define for i, j ∈ N a positive 
linear functional ψi,j on B(L2(R)) by

ψi,j(x) := Tr((f̂iλ(fj))∗xf̂iλ(fj)).

It is a state by Lemma 4.7. We will need the following elementary lemma for which we 
give a short non-explicit proof following from the results in [15].

Lemma 4.8. For all i, j ∈ N the pair (B(L2(R)), ψi,j) has the Haagerup property in 
the sense that the triple (B(L2(R)), C, ψi,j) has the relative Haagerup property, see [15, 
Definition 3.1]. Moreover, the approximating maps may be chosen to be unital and ψi,j-
preserving.
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Proof. According to [15, Proposition 3.4], (B(L2(R), Tr) has the Haagerup property. By 
[15, Theorem 1.3] the Haagerup property does not depend on the choice of the faithful 
normal semi-finite weight and hence (B(L2(R)), ψi,j) has the Haagerup property for all 
i, j ∈ N. In [16, Theorem 5.1] it was proved that the approximating maps may be taken 
unital and state preserving. This finishes the proof. �

As before, let N ⊆ M be a unital inclusion of von Neumann algebras which admits a 
faithful normal conditional expectation EN and fix a faithful normal state ϕ on M with 
ϕ = ϕ ◦ EN . Let σϕ be the corresponding modular automorphism group, M �σϕ R the 
crossed product von Neumann algebra and let

θ := σ̂ϕ : R � M �σϕ R

be the dual action as defined in (4.1). Define for j ∈ N the state ϕ̂j := ϕ ◦ Tfj ,θ on 
M �σϕ R as before and recall that M (hence also N) is invariant under θ. We may in 
turn consider the double crossed product which admits an isomorphism of von Neumann 
algebras (i.e. a bijective ∗-homomorphism, which is automatically normal by Sakai [43, 
Theorem 1.13.2]),

(M �σϕ R) �θ R ∼= M ⊗ B(L2(R)). (4.6)

Let us describe what this isomorphism looks like. For g ∈ L∞(R) write μ(g) := 1M ⊗g ∈
M⊗B(L2(R)) for the multiplication operator acting in the second tensor leg. The double 
crossed product above is generated by M �σϕ R and the left regular representation of 
the second copy of R, denoted here by λθ

t , t ∈ R. Under the isomorphism, M �σϕ R

is identified as a subalgebra of M ⊗ B(L2(R)) via inclusion. Further, λθ
t is identified 

for every t ∈ R with μ(et) = 1M ⊗ et where et(s) := exp(−ist) for s ∈ R. Under this 
correspondence, λθ(fj) = μ(f̂j). We find that for x ∈ M ⊗ B(L2(R)),

(ϕ ◦ Tfj ,θ ◦ Tfi,θ̂
)(x) = ϕ

(
Tθ

(
λ(fj)∗Tθ̂

(
μ(f̂i)∗xμ(f̂i)

)
λ(fj)

))
= ϕ

(
Tθ

(
Tθ̂

(
λ(fj)∗μ(f̂i)∗xμ(f̂i)λ(fj)

)))
.

By [46, Theorem X.2.3] and the fact that ϕ ◦ σϕ
t = ϕ we have that (formally, being 

imprecise about domains) the normal semi-finite faithful weight ϕ ◦ Tθ ◦ Tθ̂ coincides 
with ϕ ⊗ Tr. Hence, for i, j ∈ N we have equality of states

ϕ ◦ Tfj ,θ ◦ Tfi,θ̂
= ϕ⊗ ψi,j .

The following theorem now provides a passage to study the relative Haagerup property 
on the continuous core of a von Neumann algebra, which is semi-finite.
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Theorem 4.9. Let N ⊆ M be a unital inclusion of von Neumann algebras which admits 
a faithful normal conditional expectation EN and assume that N is finite with a faithful 
normal tracial state τ ∈ N∗. Set ϕ = τ ◦ EN ∈ M∗. Then the following two statements 
hold:

(1) The triple (M, N, ϕ) has property (rHAP) (resp. property (rHAP)−) if and only if 
(M �σϕ R, N, ϕ̂j) has property (rHAP) (resp. property (rHAP)−) for all j ∈ N.

(2) If property (rHAP) of (M, N, ϕ) is witnessed by unital (resp. ϕ-preserving) maps, 
then for all j ∈ N property (rHAP) of (M �σϕ R, N, ϕ̂j) is witnessed by unital (resp. 
ϕ̂j-preserving) maps, and vice versa.

Proof. The if statements were proven in Theorem 4.6. For the converse of (1) assume 
that (M, N, ϕ) has the relative Haagerup property. (B(L2(R)), C, ψi,j) has the relative 
Haagerup property for all i, j ∈ N, see Lemma 4.8. Therefore by a suitable modification of 
[15, Lemma 3.5], we see that (M ⊗B(L2(R)), N ⊗C, ϕ ⊗ψi,j) has the relative Haagerup 
property for all i, j ∈ N. It follows from Theorem 4.5 and the discussion above that 
(M �σϕ R, N, ϕ̂j) has the relative Haagerup property.3

The statements in (2) and the statement about property (rHAP)− follow in the same 
way. �
4.3. Passage to corners of crossed products

In the last subsection we characterised the relative Haagerup property of the triple 
(M, N, ϕ) for finite N with a faithful normal tracial state τ ∈ N∗ and ϕ := τ ◦EN ∈ M∗
in terms of the crossed product triples (M �α R, N, ϕ̂j), j ∈ N. In the following we 
will pass over to suitable corners of these crossed products which allows to translate 
our investigations into the setting of finite von Neumann algebras. In this setting the 
following lemma will be useful.

Lemma 4.10. Let N ⊆ M be a unital inclusion of finite von Neumann algebras, let τ ∈ M∗
be a faithful normal tracial state and let EN : M → N be the unique τ -preserving faithful 
normal conditional expectation onto N . Further, let h ∈ N ′ ∩ M be self-adjoint and 
boundedly invertible. For a linear completely positive map Φ : M → M set

Φh(x) = h−1Φ(hxh)h−1.

Then, the L2-implementation Φ(2) of Φ with respect to τ exists if and only if the L2-
implementation (Φh)(2) of Φh with respect to hτh exists. Further, Φ(2) ∈ K(M, N, τ) if 
and only if (Φh)(2) ∈ K(M, N, hτh).

3 Note that in the picture above π(x) = x ⊗ 1 and hence π(N) = N ⊗ C since ϕ is tracial on N . This is 
used implicitly in the identifications of N in the double crossed product isomorphism (4.6).
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Proof. Note first that the assumptions on h imply that EN (h2) is a positive boundedly 
invertible element of the centre Z(N) of N . Indeed, we have for all n ∈ N the equality 
nEN (h2) = EN (nh2) = EN (h2n) = EN (h2)n, and if h is boundedly invertible, then 
h2 ≥ c1M for some c > 0, hence EN (h2) ≥ c1M .

The map Eh
N : x 	→ EN (h2)−1/2EN (hxh)EN (h2)−1/2 is the unique normal hτh-

preserving conditional expectation onto N . Indeed, we can verify it is an idempotent, 
normal, ucp map with image equal to N and for any x ∈ M we have

(hτh)(Eh
N (x)) = τ(hEN (h2)−1/2EN (hxh)EN (h2)−1/2h)

= τ(h2EN (h2)−1EN (hxh))

= τ(EN (h2EN (h2)−1EN (hxh)))

= τ(EN (h2)EN (h2)−1EN (hxh))

= τ(EN (hxh))

= τ(hxh)

= (hτh)(x).

Now assume that the L2-implementation Φ(2) of Φ with respect to τ exists, i.e. that 
there exists a constant C > 0 such that τ(Φ(x)∗Φ(x)) ≤ Cτ(x∗x) for all x ∈ M . Then

(hτh)(Φh(x)∗Φh(x)) = τ(Φ(hx∗h)h−2Φ(hxh)) ≤
∥∥h−2∥∥ τ(Φ(hx∗h)Φ(hxh))

≤ C
∥∥h−2∥∥ τ(hx∗hhxh) ≤ C

∥∥h−2∥∥∥∥h2∥∥ τ(hx∗xh) = C
∥∥h−2∥∥∥∥h2∥∥ (hτh)(x∗x)

for all x ∈ M , so the L2-implementation (Φh)(2) exists as well.
The converse implication follows, as Φ = (Φh)h−1 .
For elements a, b, x ∈ M the equality

(aENb)h(x) = h−1aEN (bhxh)h−1

= h−1aEN (h2)1/2Eh
N (h−1bhx)EN (h2)1/2h−1

= (h−1aEN (h2)h−1)Eh
N (h−1bhx)

= (h−1aEN (h2)h−1Eh
Nh−1bh)(x)

implies by taking linear combinations and approximation that if Φ(2) ∈ K(M, N, τ), 
then (Φh)(2) ∈ K(M, N, hτh). The converse statement follows as before, which finishes 
the proof. �

Now, for a triple (M, N, ϕ) let h be the unique (possibly unbounded) positive self-
adjoint operator affiliated with M �σϕ R such that hit = λt for all t ∈ R. If we further 
assume that N ⊆ Mσϕ (which implies that N is finite with a tracial state ϕ|N ) we have 
for x ∈ N that λtxλ

∗
t = σϕ

t (x) = x and hence λt ∈ N ′ ∩ (M �σϕ R). This implies that 
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h is affiliated with N ′ ∩ (M �σϕ R) and so its finite spectral projections are elements in 
N ′ ∩ (M �σϕ R). Set for k ∈ N

pk = χ[k−1,k](h) and hk = hpk.

Here χ[k−1,k] denotes the indicator function of [k−1, k] ⊆ R and pk is the corresponding 
spectral projection. Then, for every k ∈ N, hk is boundedly invertible in the corner 
algebra pk(M �σϕ R)pk and we write h−1

k for its inverse which we view as an operator 
in M �σϕ R.

Denote by ϕ̂ := ϕ ◦ Tθ the dual weight of ϕ and let τ� be the unique faithful normal 
semi-finite weight on M�σϕR whose Connes cocycle derivative satisfies (Dϕ̂/Dτ�)t = hit

for all t ∈ R (we refer to [29, Lemma 5.2]; the proofs below stay within the realm of 
bounded functionals). It is a trace on M �σϕ R which is formally given by

τ�(x) = ϕ ◦ Tθ(h− 1
2xh− 1

2 ), x ∈ (M �σϕ R)+.

By construction we have

ϕ̂j(pkxpk) = τ�(h
1
2
k λ(fj)∗xλ(fj)h

1
2
k ), x ∈ M �σϕ R, (4.7)

for all j ∈ N, where ϕ̂j and fj are defined as in Subsection 4.2. Further note that the 
operators λ(fj) and hk commute.

Remark 4.11. Following Remark 4.1, for k ∈ N the operators pk and hk can be de-
scribed in terms of multiplication operators conjugated with the Fourier unitary F2. 
Indeed, F2λtF∗

2 is the multiplication operator on L2(R, H) with the function (s 	→ eits)
and therefore (under proper identification of the domains) F2hF∗

2 coincides with the 
multiplication operator with (s 	→ es). It follows that for all k ∈ N, F2pkF∗

2 is the 
multiplication with (Ik : s 	→ χ[− log(k),log(k)](s)) and F2hkF∗

2 is the multiplication with 
(Jk : s 	→ χ[− log(k),log(k)](s)es). Therefore, by Remark 4.1,

pk = λ(Îk), hk = λ(Ĵk), and h−1
k = λ(Ĵ−1

k ),

where J−1
k is the function (s 	→ χ[− log(k),log(k)]e

−s). We also have that

λ(fj)hk = λ(fj)λ(Ĵk) = λ(fj ∗ Ĵk) = F∗
2 f̂jJkF2, (4.8)

where we view the product f̂jJk as a multiplication operator. Since the Fourier transform 
of fj is Gaussian we see that F∗

2 f̂jJkF2 is positive and boundedly invertible in the corner 
algebra pk(M �σϕ R)pk. Further, by (4.3) and the Plancherel identity,

Tθ(h−1
k ) = Tθ(λ(̂

J
−1/2
k )λ(̂

J
−1/2
k )) = ‖̂

J
−1/2
k ‖2

2 = ‖J−1/2
k ‖2

2 = k − k−1.
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It follows that

τ�(pk) = ϕ(Tθ(h−1/2pkh
−1/2)) = ϕ(Tθ(h−1

k )) = k − k−1.

In particular, τ�(pk) < ∞. Since τ� is tracial we also have for x ∈ M �σϕ R,

τ�(pkxpk) = ϕ ◦ Tθ(h−1
k pkxpk). (4.9)

In the next statements it is notationally more convenient to work with property 
(rHAP) (resp. property (rHAP)−) for general faithful normal positive functionals in-
stead of just states, see Remark 3.3. Note that pkϕ̂jpk, j ∈ N is not a state, but a 
positive scalar multiple of a state.

We shall use the fact that the unique faithful normal ϕ̂j-preserving conditional ex-
pectation Eϕ̂j

N of M �σϕ R onto N is given by Eϕ̂j

N = EN ◦Tfj . This fact was used in the 
proof of Proposition 4.4 already.

Lemma 4.12. For every k ∈ N, j ∈ N there is a faithful normal pkϕ̂jpk-preserving 
conditional expectation of pk(M �σϕ R)pk onto pkNpk given by

x 	→ μ−1
k pkEN (Tfj (x))pk = μ−1

k pkE
ϕ̂j

N (x)pk (4.10)

where μk := Tfj (pk) = ‖f̂jχ[− log(k),log(k)]‖2
2. In particular, Tfj (pk) is a scalar multiple of 

the identity.

Proof. First note that by Remark 4.1 and Remark 4.11 the operator pkλ(fj) coincides 
with λ(gj,k) where gj,k is the inverse Fourier transform of the function f̂jχ[− log(k),log(k)]. 
The equality (4.3) then implies that

Tfj (pk) = Tθ(λ(fj)∗pkλ(fj)) = Tθ(λ(gj,k)∗λ(gj,k)) = ‖gj,k‖2
2 = μk (4.11)

is a multiple of the identity.
For x ∈ pk(M �σϕ R)pk expand

(pkϕ̂jpk)(pkE
ϕ̂j

N (x)pk) = ϕ̂j(pkE
ϕ̂j

N (x)pk)

= (ϕ ◦ Tfj )(pkEN (Tfj (x))pk)

= (ϕ ◦ Tθ)(λ(fj)∗pkEN (Tfj (x))pkλ(fj)).

Since N ⊆ Mσϕ we see that

(pkϕ̂jpk)(pkE
ϕ̂j

N (x)pk) = (ϕ ◦ Tθ)(EN (Tfj (x))λ(fj)∗pkλ(fj))

= ϕ(EN (Tfj (x))Tfj (pk)).

With (4.11) we can continue as follows:
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(pkϕ̂jpk)(pkE
ϕ̂j

N (x)pk) = μkϕ(EN (Tfj (x))) = μkϕ(Tfj (x)) = μkϕ̂j(x) = μkϕ̂j(pkxpk).

This proves that (4.10) is pkϕ̂jpk-preserving, as claimed. For x ∈ N ⊆ Mσϕ we have 
that x and pk commute. Therefore, using the N -module property of the maps involved,

pkEN (Tfj (pkxpk))pk = pkxpkEN (Tfj (pk)) = μkpkxpk.

This shows that the map x 	→ μ−1
k pkEN (Tfj (x))pk is a unital (the unit being pk) normal 

completely positive projection onto pkNpk (see [11, Theorem 1.5.10]). �
Lemma 4.13. Let N ⊆ M be a unital inclusion of von Neumann algebras which admits a 
faithful normal conditional expectation EN . Assume that N is finite and let τ ∈ N∗ be a 
faithful normal tracial state that we extend to a state ϕ := τ ◦ EN on M . Then we have 
EN (Tfj (xa)) = EN (Tfj (ax)) and EN (Tθ(xa)) = EN (Tθ(ax)) for every j ∈ N, a ∈ L(R)
and x ∈ M �σϕ R.

Proof. We first prove that EN (Tfj (xa)) = EN (Tfj (ax)). Suppose a = λ(k) and x =
yλ(g) for y ∈ M , k ∈ L1(R) and g ∈ Cc(R). Let us first compute Tfj (xa) and Tfj (ax). 
By the formula (4.3) we have

Tfj (xa) =
∫
R

f∗
j (−t)(g ∗ k ∗ fj)(t)σϕ

−t(y)dt.

By a similar computation we get

Tfj (ax) =
∫
R

(f∗
j ∗ k)(−t)(g ∗ fj)(t)σϕ

−t(y)dt.

We now apply EN to these expressions and use the fact that N is contained in the 
centralizer of ϕ, so EN (σϕ

−t(y)) = EN (y). It therefore suffices to prove the equality 
of the integrals 

∫
R f∗

j (−t)(g ∗ k ∗ fj)(t)dt and 
∫
R(f∗

j ∗ k)(−t)(g ∗ fj)(t)dt. Using the 
commutativity of the convolution on R, we can rewrite the first one as∫

R

∫
R

f∗
j (−t)(g ∗ fj)(t− s)k(s)dsdt

and the second one is equal to∫
R

∫
R

f∗
j (−t− s)k(s)(g ∗ fj(t))dsdt.

In the second integral we can introduce a new variable t′ := t + s and it transforms into
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∫
R

∫
R

f∗
j (−t′)(g ∗ fj)(t′ − s)k(s)dsdt′,

which is equal to the first one. For arbitrary a ∈ L(R) and x ∈ M �σϕ R we can 
find bounded nets (ai)i∈I and (xi)i∈I formed by linear combinations of elements of the 
form discussed above that converge strongly to a and x, respectively, as a consequence 
of Kaplansky’s density theorem. As multiplication is strongly continuous on bounded 
subsets, we have strong limits limi∈I aixi = ax and limi∈I xiai. As both EN and Tfj are 
strongly continuous on bounded subsets, we may conclude.

The equality EN (Tθ(xa)) = EN (Tθ(ax)) follows by a similar computation. �
The ideas appearing in the proof of the next statements are of a similar type.

Proposition 4.14. Let N ⊆ M be a unital inclusion of von Neumann algebras which 
admits a faithful normal conditional expectation EN . Assume that N is finite and let 
τ ∈ N∗ be a faithful normal tracial state that we extend to a state ϕ := τ ◦ EN on M . 
Then, for every j ∈ N, the following statements hold:

(1) The triple (M �σϕ R, N, ϕ̂j) satisfies property (rHAP) if and only if the triple 
(pk(M �σϕ R)pk, pkNpk, pkϕ̂jpk) satisfies property (rHAP) for every k ∈ N. More-
over, the (rHAP) may be witnessed by contractive maps, i.e. we may assume that 
(1′) holds.

(2) If for every k ∈ N the property (rHAP) of the triple (pk(M�σϕR)pk, pkNpk, pkϕ̂jpk)
is witnessed by unital pkϕ̂jpk-preserving approximating maps, then the relative 
Haagerup property of (M �σϕ R, N, ϕ̂j) is witnessed by unital ϕ̂j-preserving maps.

(3) If the triple (M �σϕ R, N, ϕ̂j) satisfies property (rHAP)− then the triple (pk(M �σϕ

R)pk, pkNpk, pkϕ̂jpk) satisfies property (rHAP)− as well for every k ∈ N.

Proof. First part of (1): For the “⇒” direction assume that (M �σϕ R, N, ϕ̂j) satisfies 
property (rHAP), that it is witnessed by a net of maps (Φi)i∈I and fix k ∈ N. We 
will show that (pkΦi( · )pk)i∈I is a net of approximating maps witnessing the relative 
Haagerup property of (pk(M �σϕ R)pk, pkNpk, pkϕ̂jpk):

It is clear that for every i ∈ I the map pkΦi( · )pk is completely positive, that the net 
(pkΦi( · )pk)i∈I admits a uniform bound on its norms and that pkΦi( · )pk → id in the 
point-strong topology in i as maps on pk(M �σϕ R)pk.

By our assumptions, N ⊆ Mσϕ and hence pk and N commute. Hence for a, b ∈ N , 
x ∈ pk(M �σϕ R)pk we have

pkΦi(pkapkxpkbpk)pk = pkΦi(apkxpkb)pk = pkaΦi(pkxpk)bpk = pkapkΦi(pkxpk)pkbpk,

which shows that pkΦi( · )pk is a pkNpk-pkNpk-bimodule map for every i ∈ I.
We have by [46, Theorem VIII.3.19.(vi)], [46, Theorem X.1.17.(ii)] and the fact that 

pk and λ(fj) commute that
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σ
ϕ̂j

t (pk) = λ(fj)itσϕ̂
t (pk)λ(fj)−it = λ(fj)itpkλ(fj)−it = pk.

Therefore by [15, Lemma 2.3], for x ∈ pk(M �σϕ R)pk positive,

(pkϕ̂jpk)(pkΦi(x)pk) = ϕ̂j(pkΦi(x)pk) ≤ ϕ̂j(Φi(x)) ≤ ϕ̂j(x) = (pkϕ̂jpk)(x),

i.e. (pkϕ̂jpk) ◦ (pkΦi( · )pk) ≤ pkϕ̂jpk.
Now, for every map Φ on M �σϕ R of the form Φ = aE

ϕ̂j

N (·)b with a, b ∈ M �σϕ R

and x ∈ pk(M �σϕ R)pk we have, using Lemma 4.13 (recalling that Eϕ̂j

N = EN ◦Tfj ) and 
the fact that pk commutes with N , that

pkΦ(x)pk = pkaE
ϕ̂j

N (bpkxpk)pk = pkaE
ϕ̂j

N (pkbpkx)pk = (pkapk)E
ϕ̂j

N (pkbpkx).

Lemma 4.12 then implies that (pkΦ( · )pk)(2) ∈ K00(pk(M �σϕ R)pk, pkNpk, pkϕ̂jpk). By 
taking linear combinations and approximating we see that if Φ is a map on M �σϕ R

with Φ(2) ∈ K(M�σϕ R, N, ϕ̂j) then (pkΦ( · )pk)(2) ∈ K(pk(M�σϕ R)pk, pkNpk, pkϕ̂jpk). 
Therefore for the approximating maps Φi, i ∈ I we conclude that

(pkΦi( · )pk)(2) ∈ K(pk(M �σϕ R)pk, pkNpk, pkϕ̂jpk).

This shows that (pkΦi( · )pk)i∈I indeed witnesses the relative Haagerup property of the 
triple (pk(M �σϕ R)pk, pkNpk, pkϕ̂jpk).

(3): Note that if (M �σϕ R, N, ϕ̂j) has property (rHAP)− witnessed by the net 
(Φi)i∈I , then property (rHAP)− of (pk(M �σϕ R)pk, pkNpk, pkϕ̂jpk) follows in a very 
similar way as above. The only condition that remains to be checked is that the L2-
implementation (pkΦi( · )pk)(2) exists. For this, assume that there exists C > 0 with 
ϕ̂j(Φi(x)∗Φi(x)) ≤ Cϕ̂j(x∗x) for all x ∈ M �σϕ R. Then, using again [15, Lemma2.3]
for the second inequality,

(pkϕ̂jpk)((pkΦi(x)pk)∗(pkΦi(x)pk)) = ϕ̂j(pkΦi(x∗)pkΦi(x)pk)

≤ ϕ̂j(pkΦi(x)∗Φi(x)pk)

≤ ϕ̂j(Φi(x)∗Φi(x))

≤ Cϕ̂j(x∗x)

= C(pkϕ̂jpk)(x∗x)

for all x ∈ pk(M �σϕ R)pk. The claim follows.

Second part of (1): For the “⇐” direction assume that for every k ∈ N the triple 
(pk(M �σϕ R)pk, pkNpk, pkϕ̂jpk) satisfies property (rHAP) witnessed by approximating 
maps (Φk,i)i∈Ik . We wish to apply Lemma 3.14 for which we check the conditions. By 
N ⊆ Mσϕ we have that N and λt commute for every t ∈ R and hence so do N and 



34 M. Caspers et al. / Advances in Mathematics 421 (2023) 109017
hk. In particular, hk ∈ (pkNpk)′ ∩ pk(M �σϕ R)pk. By (4.8) and the remarks after it, it 
follows that λ(fj)hk is positive and boundedly invertible. Now, from (4.7) we see that 
the conditions of Lemma 3.14 are fulfilled and this lemma shows that the maps of the 
net (Φk,i)i∈Ik can be chosen contractively, i.e. we may assume that (1′) holds.

We shall prove that (Φk,i(pk · pk))k∈N,i∈Ik induces a net witnessing property (rHAP)
of (M �σϕ R, N, ϕ̂j). This in particular shows that we may assume (1′).

By the contractivity of the Φk,i it is clear that the maps Φk,i(pk · pk) are completely 
positive with a uniform bound on their norms.

Since N and pk commute we see that for a, b ∈ N and x ∈ M �σϕ R

Φk,i(pkaxbpk) = Φk,i(pkapkxpkbpk)

= pkapkΦk,i(pkxpk)pkbpk
= apkΦk,i(pkxpk)pkb

= aΦk,i(pkxpk)b.

Therefore Φk,i(pk · pk) is an N -N -bimodule map for every k ∈ N, i ∈ Ik.
We have, using again [15, Lemma 2.3], that for x ∈ (M �σϕ R)+

ϕ̂j(Φk,i(pkxpk)) = ϕ̂j(pkΦk,i(pkxpk)pk)

= (pkϕ̂jpk)(Φk,i(pkxpk))

≤ (pkϕ̂jpk)(pkxpk)

= ϕ̂j(pkxpk) ≤ ϕ̂j(x).

i.e. ϕ̂j ◦ Φk,i(pk · pk) ≤ ϕ̂j .
We claim that (Φk,i(pk · pk))(2) ∈ K(M �σϕ R, N, ϕ̂j) for all k ∈ N, i ∈ Ik. Indeed, 

take an arbitrary map Φ of the form Φ(x) = pkapkEN (Tfj (pkbpkx)) for x ∈ M �σϕ R

where a, b ∈ M �σϕ R. The L2-implementations of such operators span K00(pk(M �σϕ

R)pk, pkNpk, pkϕ̂jpk) by Lemma 4.12. Lemma 4.13 and the fact that pk and N commute 
show that for x ∈ M �σϕ R,

Φ(pkxpk) = pkapkEN (Tfj (pkbpkxpk)) = pkapkEN (Tfj (pkbpkx)).

Then, since EN ◦ Tfj is the faithful normal ϕ̂j-preserving conditional expectation of 
M�σϕR onto N , this implies that (Φ(pk ·pk))(2) ∈ K00(M�σϕ

R, N, ϕ̂j). By taking linear 
combinations and approximation we see that if Φ(2) ∈ K(pk(M�σϕR)pk, pkNpk, pkϕ̂jpk), 
then (Φ(pk · pk))(2) ∈ K(M �σϕ

R, N, ϕ̂j). We conclude that

(Φk,i(pk · pk))(2) ∈ K(M �σϕ

R, N, ϕ̂j).

Now, for x ∈ M �σϕ R we see that

lim lim Φk,i(pkxpk) = x,

k→∞ i∈Ik
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in the strong topology. Then a variant of Lemma 2.2 shows that there is a directed 
set F and a function (k̃, ̃i) : F → {(k, i) | k ∈ N, i ∈ Ik}, F 	→ (k̃(F ), ̃i(F )) such 
(Φk̃(F ),̃i(F ))F∈F witnesses the relative Haagerup property of (M �σϕ R, N, ϕ̂j).

(2): It only remains to show that if for every k ∈ N the property (rHAP) of the triple 
(pk(M�σϕR)pk, pkNpk, pkϕ̂jpk) is witnessed by unital pkϕ̂jpk-preserving approximating 
maps, then the relative Haagerup property of (M �σϕ R, N, ϕ̂j) is witnessed by unital 
ϕ̂j-preserving maps. For this, assume that the maps (Φk,i)i∈I from before are unital 
and pkϕ̂jpk-preserving and choose a sequence (εk)k∈N ⊆ (0, 1) with εk → 0. Recall 
that pk ∈ N ′ ∩ (M �σϕ R) and note that Eϕ̂j

N (1 − (1 − εk)pk) ≥ εk. We then have 
E

ϕ̂j

N (1 − (1 − εk)pk) ∈ N ∩ N ′, the inverse (Eϕ̂j

N (1 − (1 − εk)pk))−1 ∈ N ∩ N ′ exists 
and ak := (1 − (1 − εk)pk)(E

ϕ̂j

N (1 − (1 − εk)pk))−1 ∈ N ′ ∩ (M �σϕ R) is positive. Set 
bk := 1 − (1 − εk)pk ≥ 0. Define the maps

Φ̃k,i( · ) := (1 − εk)Φk,i(pk · pk) + akE
ϕ̂j

N (b1/2k · b1/2k ).

Obviously Φ̃k,i is normal, completely positive and N -N -bimodular. We may finish the 
proof as in Theorem 3.13 now; since the statement of that theorem is not directly appli-
cable here we will give the complete proof for the convenience of the reader.

We have

Φ̃k,i(1) = (1 − εk)Φk,i(pk) + akE
ϕ̂j

N (bk) = (1 − εk)pk + (1 − (1 − εk)pk) = 1.

Now, since Φk,i is pkϕ̂jpk-preserving we have that ϕ̂j ◦ Φk,i(pkxpk) = ϕ̂j(pkxpk) for all 
x ∈ M �σϕ R, and hence with Lemma 4.13 we deduce that

ϕ̂j ◦ Φ̃k,i(x) = (1 − εk)ϕ̂j(Φk,i(pkxpk)) + ϕ̂j(akE
ϕ̂j

N (b1/2k xb
1/2
k ))

= (1 − εk)ϕ̂j(pkxpk) + ϕ̂j(E
ϕ̂j

N (ak)b1/2k xb
1/2
k )

= (1 − εk)ϕ̂j ◦ Eϕ̂j

N (pkxpk) + ϕ̂j ◦ Eϕ̂j

N (b1/2k xb
1/2
k )

= (1 − εk)ϕ̂j ◦ Eϕ̂j

N (pkx) + ϕ̂j ◦ Eϕ̂j

N (bkx)

= (1 − εk)ϕ̂j(pkx) + ϕ̂j(bkx)

= ϕ̂j(x).

By the fact that (Φk,i(pk · pk))(2) ∈ K(M �σϕ R, N, ϕ̂j) and by Lemma 4.13, we have

Φ̃(2)
k,i = (1 − εk)(Φk,i(pk · pk))(2) + ake

ϕ̂j

N bk ∈ K(M �σϕ R, N, ϕ̂j).

Further, for every x ∈ (M �σϕ R)+,

Φ̃k,i(x) − (1 − εk)Φk,i(pkxpk) = akE
ϕ̂j

N (b1/2k xb
1/2
k )

≤ ‖x‖ akEϕ̂j

N (bk)

= ‖x‖ (1 − (1 − εk)pk),
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from which we deduce that limF∈F Φ̃k̃(F ),̃i(F ) = idM�σϕR. This implies that the net 
(Φ̃k̃(F ),̃i(F ))F∈F of unital ϕ̂j-preserving maps witnesses the relative Haagerup property 
of (M �σϕ R, N, ϕ̂j). �

We are now ready to formulate the key statement of this section. Note that for every 
k ∈ N the von Neumann algebra pk(M �σϕ R)pk is finite with a faithful normal tracial 
state pkτ�pk.

Theorem 4.15. Let N ⊆ M be a unital inclusion of von Neumann algebras which admits 
a faithful normal conditional expectation EN . Assume that N is finite and let τ ∈ N∗ be 
a faithful normal tracial state that we extend to a state ϕ := τ ◦ EN on M . Then the 
following statements are equivalent:

(1) The triple (M, N, ϕ) has property (rHAP);
(2) (M �σϕ R, N, ϕ̂j) has property (rHAP) for every j ∈ N;
(3) (pk(M �σϕ R)pk, pkNpk, pkτ�pk) has property (rHAP) for every k ∈ N.

Further, the following statement holds:

(4) If the triple (M, N, ϕ) has property (rHAP)−, then (pk(M �σϕ R)pk, pkNpk, pkτ�pk)
has property (rHAP)− for every k ∈ N.

Proof. The equivalence “(1) ⇔ (2)” was proved in Theorem 4.9.
“(2) ⇒ (3)”: Assume that for j ∈ N the triple (M �σϕ R, N, ϕ̂j) has property (rHAP)

and fix k ∈ N. Then by Proposition 4.14, the triple (pk(M �σϕ R)pk, pkNpk, pkϕ̂jpk)
also has the property (rHAP). Let (Φi)i∈I be a net of suitable approximating maps and 
define the self-adjoint boundedly invertible operator Aj,k := λ(fj)h1/2

k ∈ (pkNpk)′ ∩
(pk(M �σϕ R)pk). By (4.7) for every x ∈ pk(M �σϕ R)pk the equality

(pkϕ̂jpk)(x) = τ�(A∗
j,kxAj,k) = (Aj,kpkτ�pkAj,k)(x)

holds and hence Lemma 4.10 implies that the L2-implementation of the map Φ′
i( · ) :=

Aj,kΦi(A−1
j,k · A−1

j,k)Aj,k exists and is contained in K(pk(M �σϕ R)pk, pkNpk, pkτ�pk). 
Similarly to the proof of Proposition 4.14 one checks that the net (Φ′

i)i∈I witnesses 
property (rHAP) of (pk(M �σϕ R)pk, pkNpk, pkτ�pk). We omit the details.

“(2) ⇐ (3)” Now assume that the triple (pk(M �σϕ R)pk, pkNpk, pkτ�pk) has 
property (rHAP) for every k ∈ N. It suffices to show that the triple (pk(M �σϕ

R)pk, pkNpk, pkϕ̂jpk) has property (rHAP) as it implies the desired statement by Propo-
sition 4.14. So let (Φi)i∈I be a net that witnesses property (rHAP) of (pk(M �σϕ

R)pk, pkNpk, pkτ�pk) and set Φ′
i := A−1

j,kΦi(Aj,k · Aj,k)A−1
j,k. Lemma 4.10 and (4.7) im-

ply that for every i ∈ I the L2-implementation (Φ′
i)(2) of Φ′

i with respect to the positive 
functional pkϕ̂jpk is contained in K(pk(M �σϕ R)pk, pkNpk, pkϕ̂jpk). Again, similarly to 
the proof of Proposition 4.14 one checks that the net (Φ′

i)i∈I witnesses property (rHAP).
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It remains to show (4). The statement easily follows from Proposition 4.9, Proposi-
tion 4.14 and the arguments used in the proof of the implication “(2) ⇒ (3)”. �

5. Main results

After the main work has been done in Section 4 we can now put the pieces together. 
This allows us to show that in the case of a finite von Neumann subalgebra the notion 
of relative Haagerup property is independent of the choice of the corresponding faithful 
normal conditional expectation, that the approximating maps may be chosen to be unital 
and state-preserving and that property (rHAP) and property (rHAP)− are equivalent. 
The general notation will be the same as in Section 4.

5.1. Independence of the conditional expectation

Let N ⊆ M be a unital inclusion of von Neumann algebras for which N is finite with 
a faithful normal tracial state τ ∈ N∗. Let further EN , FN : M → N be two faithful 
normal conditional expectations and extend τ to states ϕ := τ ◦EN and ψ := τ ◦ FN on 
M . In this subsection we will prove that the triple (M, N, EN) has property (rHAP) if 
and only if the triple (M, N, FN ) does, i.e. the relative Haagerup property is an intrinsic 
invariant of the inclusion N ⊆ M . Let us first introduce some notation.

As in Section 4 consider the crossed product von Neumann algebra M �σϕ R which 
contains the projections pk ∈ N ′ ∩ (M �σϕ R), k ∈ N and carries the canonical normal 
semi-finite tracial weight τ� which we will from now on denote by τ�,1. For t ∈ R write 
λϕ
t for the left regular representation operators in M �σϕ R. Similarly, we write τ�,2 for 

the canonical normal semi-finite tracial weight on M�σψR and denote the corresponding 
left regular representation operators by λψ

t , t ∈ R.
For t ∈ R let ut := (Dϕ/Dψ)t ∈ M be the Connes cocycle Radon-Nikodym derivative, 

so in particular utσ
ϕ
t (us) = ut+s and σψ

t (x) = u∗
tσ

ϕ
t (x)ut hold for all s, t ∈ R. Then (see 

[46, Proof of Theorem X.1.7]) there exists an isomorphism ρ : M �σψ R → M �σϕ R of 
von Neumann algebras which restricts to the identity on M and for which ρ(λψ

t ) = utλ
ϕ
t

for all t ∈ R. This implies that the dual actions θϕ and θψ of σϕ and σψ respectively 
are related by the equality θϕt ◦ ρ = ρ ◦ θψt , t ∈ R. Further, τ�,1 ◦ ρ = τ�,2 (see the 
footnote4). Denote by hψ the unique unbounded self-adjoint positive operator affiliated 
with M �σψ R such that hit

ψ = λψ
t for all t ∈ R and set

4 This is well-known to specialists, but it seems that the statement does not appear explicitly in [46]. The 
argument goes as follows. Firstly, as ρ intertwines the dual actions on M �σψ R and M �σϕ R we find that 
ϕ̂ ◦ ρ is the dual weight of ϕ in the crossed product M �σψ R. Let t ∈ R. By [46, Theorem X.1.17] we have 
Connes cocycle derivative 

(
Dψ̂

Dϕ̂◦ρ

)
t

= ut = ρ(ut). Then by the chain rule [46, Theorem VIII.3.7],

(
Dτ�,2

Dτ�,1 ◦ ρ

)
t

=
(
Dτ�,2

Dψ̂

)
t

(
Dψ̂

Dϕ̂ ◦ ρ

)
t

(
Dϕ̂ ◦ ρ

Dτ�,1 ◦ ρ

)
t

= λ
ψ
−tρ

−1(utλ
ϕ
t ) = 1.

Hence τ�,1 ◦ ρ = τ�,2.
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pψ,k := χ[k−1,k](hψ) and qk := ρ(pψ,k).

for k ∈ N. Further, define

hψ,k := ρ(χ[k−1,k](hψ)hψ) = ρ(pψ,khψ).

Recall that for all k ∈ N and t ∈ R we write hit = λϕ
t , pk := χ[k−1,k](h), and hk := pkh.

The following statement compares to Lemma 4.12.

Lemma 5.1. For every k ∈ N there is a (unique) faithful normal pkτ�,1pk-preserving 
conditional expectation E1,k : pk(M �σϕ R)pk → pkNpk given by

x 	→ ν−1
k pkEN (Tθϕ(h−1

k x))pk, (5.1)

where νk := Tθϕ(h−1
k ) = k − k−1. In particular, Tθϕ(h−1

k ) is a scalar multiple of the 
identity.

Proof. The proof is essentially the same as that of Lemma 4.12. First note that by 
Remark 4.11 the operator hk coincides with λ(Ĵk) where Jk(s) = χ[− log(k),log(k)]e

s and 
that νk = Tθϕ(h−1

k ) = k − k−1 is a multiple of the identity. For x ∈ pk(M �σϕ R)pk one 
checks using (4.9) for the second and last equality, that

(pkτ�,1pk)(pkEN (Tθϕ(h−1
k x))pk) = τ�,1(pkEN (Tθϕ(h−1

k x))pk)

= ϕ ◦ Tθϕ(pkh−1
k EN (Tθϕ(h−1

k x))pk)

= ϕ ◦ Tθϕ(h−1
k EN (Tθϕ(h−1

k x)))

= ϕ
(
Tθϕ(h−1

k )EN (Tθϕ(h−1
k x))

)
= νkϕ

(
EN (Tθϕ(h−1

k x))
)

= νkϕ ◦ Tθϕ(h−1
k x))

= νkτ�,1(pkxpk),

hence E1,k is indeed pkτ�,1pk-preserving. Here we used in the fourth line that N is 
invariant under the dual action θϕ and in the fifth line that Tθϕ(h−1

k ) is a multiple of 
the identity.

From Lemma 4.13 we see that

ν−1
k pkEN (Tθϕ(h−1

k · ))pk = ν−1
k pkEN (Tθϕ(h−1/2

k · h−1/2
k ))pk,

and from the right-hand side of this expression it is clear that (5.1) is completely positive. 
The remaining statements (i.e. that E1,k is a unital faithful normal pkNpk-pkNpk-
bimodule map) are then easy to check. �
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The following lemma provides the analogous statement for the functional qkτ�,1qk
and the inclusion qkNqk ⊆ qk(M �σϕ R)qk. We omit the proof.

Lemma 5.2. For every k ∈ N there is a (unique) faithful normal qkτ�,1qk-preserving 
conditional expectation E2,k : qk(M �σϕ R)qk → qkNqk given by

x 	→ ν−1
k qkEN (Tθϕ(h−1

ψ,kx))qk,

where νk := k − k−1 as before.

Proposition 5.3. Let N ⊆ M be a unital inclusion of von Neumann algebras for which 
N is finite with a faithful normal tracial state τ ∈ N∗. Let further EN , FN : M → N

be two faithful normal conditional expectations and extend τ to states ϕ := τ ◦ EN and 
ψ := τ ◦ FN on M . Then the following statements are equivalent:

(1) For every k ∈ N the triple (pk(M �σϕ R)pk, pkNpk, pkτ�,1pk) has property (rHAP).
(2) For every k ∈ N the triple (qk(M �σϕ R)qk, qkNqk, qkτ�,1qk) has property (rHAP).

Proof. By symmetry it suffices to consider the direction “(2) ⇒ (1)”. For this, fix k, l ∈ N

and let (Φl,i)i∈Il be a net of maps witnessing the relative Haagerup property of the triple 
(ql(M �σϕ R)ql, qlNql, qlτ�,1ql), which we can assume to be contractive by Lemma 3.14. 
Define for i ∈ Il the normal completely positive contractive map

Φ′
k,l,i : pk(M �σϕ R)pk → pk(M �σϕ R)pk : x 	→ pkΦl,i(qlxql)pk.

As N ⊆ Mσϕ and N ⊆ Mσψ , N commutes with both ql and pk. Thus we have that for 
x ∈ pk(M �σϕ R)pk and a, b ∈ N

Φ′
k,l,i(pkapkxpkbpk) = pkΦl,i(qlpkapkxpkbpkql)pk = pkΦl,i(qlaxbql)pk

= pkΦl,i(qlaqlxqlbql)pk = pkqlaqlΦl,i(qlxql)qlbqlpk
= pkaΦl,i(qlxql)bpk = pkapkΦl,i(qlxql)pkbpk
= pkapkΦ′

k,l,i(x)pkbpk,

i.e. Φ′
k,l,i is pkNpk-pkNpk-bimodular. Further, (pkτ�,1pk) ◦Φ′

k,l,i ≤ pkτ�,1pk since for all 
positive x ∈ pk(M �σϕ R)pk we have

(pkτ�,1pk) ◦ Φ′
k,l,i(x) = τ�1(pkΦl,i(qlpkxpkql)pk) ≤ τ�,1(Φl,i(qlpkxpkql))

= τ�,1(qlΦl,i(qlpkxpkql)ql) ≤ τ�,1(qlpkxpkql)

≤ (pkτ�,1pk)(x).

For every map Φ on ql(M �σϕ R)ql of the form Φ = aE2,lb with a, b ∈ ql(M �σϕ R)ql
and x ∈ pk(M �σϕ R)pk we have by Lemma 5.2 that
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pkΦ(qlxql)pk = pkaE2,l(bqlxql)pk
= ν−1

l pkaqlEN (Tθϕ(h−1
ψ,lbqlxql))qlpk

= ν−1
l pkapkEN (Tθϕ(h−1

ψ,lbqlxql)).

Now we may use the isomorphism ρ and apply Lemma 4.13 to M �σψ R to get

pkΦ(qlxql)pk = ν−1
l pkapkEN (Tθψ(pψ,lh

−1
ψ ρ−1(b)pψ,lρ

−1(x)pψ,l))

= ν−1
l pkapkEN (Tθψ(pψ,lh

−1
ψ ρ−1(b)pψ,lρ

−1(x))

= ν−1
l pkapkEN (Tθϕ(qlh−1

ψ,lbqlx)).

Then by Lemma 4.13 applied to M �σϕ R for the second equality and Lemma 5.1 for 
the last equality, we find

pkΦ(qlxql)pk = ν−1
l pkapkEN (Tθϕ(qlh−1

ψ,lbqlxpk))

= ν−1
l pkapkEN (Tθϕ(h−1

k (hkqlh
−1
ψ,lbqlx)))pk

= νkν
−1
l pkaE1,k((hkqlh

−1
ψ,lbql)x).

Thus (pkΦ(ql · ql)pk)(2) ∈ K00(pk(M �σϕ R)pk, pkNpk, pkτ�,1pk). By taking linear com-
binations and approximation we see that if Φ(2) ∈ K(ql(M �σϕ R)ql, qlNql, qlτ�,1ql), 
then also pkΦ(ql · ql)pk)(2) ∈ K(pk(M �σϕ R)pk, pkNpk, pkτ�,1pk). In particular, 
(Φ′

k,l,i)(2) ∈ K(pk(M �σϕ R)pk, pkNpk, pkτ�,1pk) for k, l ∈ N and i ∈ Il.
For every x ∈ pk(M �σϕ R)pk we have that

lim
l→∞

lim
i∈Il

Φ′
k,l,i(x) = x

in the strong topology. A variant of Lemma 2.2 then shows that there is a di-
rected set F and an increasing function (l̃, ̃i) : F → {(l, i) | k ∈ N, i ∈ Il}, 
F 	→ (l̃(F ), ̃i(F )) such that (Φ′

k,l̃(F ),̃i(F )
)F∈F witnesses the relative Haagerup property 

of (pk(M �σϕ R)pk, pkNpk, pkτ�,1pk). �
Theorem 5.4. Let N ⊆ M be a unital inclusion of von Neumann algebras with N finite. 
Let EN , FN : M → N be two faithful normal conditional expectations. Then the triple 
(M, N, EN ) has (rHAP) if and only if the triple (M, N, FN ) has (rHAP).

Proof. Assume that the triple (M, N, EN ) has the relative Haagerup property. Let τ
be a faithful normal tracial state on N that we extend to a state ϕ := τ ◦ EN on M . 
Theorem 4.15 implies that for every k ∈ N the triple (pk(M �σϕ R)pk, pkNpk, pkτ�,1pk)
has the (rHAP). With Proposition 5.3 we get that for every k ∈ N the triple (qk(M �σϕ

R)qk, qkNqk, qkτ�,1qk) has the (rHAP). The isomorphism ρ restricts to an isomorphism 
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qk(M �σϕ R)qk ∼= pψ,k(M �σψ R)pψ,k which maps qkNqk onto pψ,kNpψ,k and for which 
(qkτ�,1qk) ◦ρ = pψ,kτ�,2pψ,k. Combining this with Theorem 4.15 implies that (M, N, FN )
has the (rHAP). �
5.2. Unitality and state-preservation of the approximating maps

The following theorem states that for triples (M, N, ϕ) with N finite the approximat-
ing maps may be assumed to be unital and state-preserving. The proof combines the 
passage to suitable crossed products and corners of crossed products from Section 4 with 
the case considered in Subsection 3.3.

Theorem 5.5. Let N ⊆ M be a unital inclusion of von Neumann algebras which admits 
a faithful normal conditional expectation EN . Assume that N is finite. Let τ ∈ N∗ be 
a faithful normal (possibly non-tracial) state that we extend to a state ϕ := τ ◦ EN on 
M and assume that the triple (M, N, ϕ) has property (rHAP). Then property (rHAP)
may be witnessed by a net of unital and ϕ-preserving approximating maps, i.e. we may 
assume (1′′) and (4′).

Proof. First assume that τ is tracial. Since the triple (M, N, ϕ) has property (rHAP) we 
get with Theorem 4.9 and Proposition 4.14 that for all j ∈ N, k ∈ N the triple (pk(M�σϕ

R)pk, pkNpk, pkϕ̂jpk) has property (rHAP) as well and that it may be witnessed by a net 
of contractive approximating maps. As we have seen before, for every k ∈ N the element 
h

1/2
k λ(fj) ∈ pk(M �σϕ R)pk is positive and boundedly invertible in pk(M �σϕ R)pk. 

Further, by (4.7) and [46, Theorem VIII.2.11] the equality

σ
pkϕ̂jpk

t (x) = (h1/2
k λ(fj))itx(h1/2

k λ(fj))−it

holds for all x ∈ pk(M�σϕR)pk, t ∈ R. Theorem 3.13 then implies that property (rHAP)
of (pk(M�σϕR)pk, pkNpk, pkϕ̂jpk) may for every j, k ∈ N be witnessed by a net of unital 
(pkϕ̂jpk)-preserving maps. By applying the converse directions of Proposition 4.14 and 
Theorem 4.9 we deduce the claimed statement.

Now we show that we may replace τ by any non-tracial faithful state in N∗. Let still 
τ ∈ N∗ be a faithful tracial state. Let (Φi)i∈I be approximating maps witnessing the 
(rHAP) for (M, N, τ ◦ EN ) which by the previous paragraph may be taken unital and 
τ ◦EN -preserving. The proof of Theorem 3.7, exploiting Lemmas 3.5 and 3.6 shows that 
(Φi)i∈I also witness the (rHAP) for (M, N, ϕ ◦EN ) for any faithful state ϕ ∈ N∗. Further 
Lemma 3.5 shows that Φi is ϕ ◦ EN -preserving and we are done. �
5.3. Equivalence of (rHAP) and (rHAP)−

In [5] among other things Bannon and Fang prove that for triples (M, N, τ) of finite 
von Neumann algebras with a tracial state τ ∈ M∗ the subtraciality condition in Popa’s 
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notion of the relative Haagerup property is redundant. It is easy to check that their proof 
translates into our setting, which leads to the following variation of [5, Theorem 2.2].

Theorem 5.6 (Bannon-Fang). Let M be a finite von Neumann algebra equipped with a 
faithful normal tracial state τ ∈ M∗ and let N ⊆ M be a unital inclusion of von Neumann 
algebras. If the triple (M, N, τ) has property (rHAP)−, then it has property (rHAP). 
Further, property (rHAP) may be witnessed by unital and trace-preserving approximating 
maps.

In combination with Theorem 5.5 the following theorem provides a generalisation of 
Theorem 5.6.

Theorem 5.7. Let N ⊆ M be a unital inclusion of von Neumann algebras which admits 
a faithful normal conditional expectation EN . Assume that N is finite. Let τ ∈ N∗ be 
a faithful normal state that we extend to a state ϕ := τ ◦ EN on M . Then the triple 
(M, N, ϕ) has property (rHAP) if and only if it has property (rHAP)−.

Proof. By Theorem 3.7 we may without loss of generality assume that τ is tracial on 
N . It is clear that property (rHAP) implies property (rHAP)−. Conversely, if the triple 
(M, N, ϕ) has property (rHAP)−, then we deduce from Theorem 4.15 that for every 
k ∈ N the triple (pk(M �σϕ R)pk, pkNpk, pkτ�,1pk) has property (rHAP)− as well. 
Recall that pk(M �σϕ R)pk is finite since pkτ�pk is a faithful normal tracial state. We 
can hence apply Theorem 5.6 to deduce that (pk(M �σϕ R)pk, pkNpk, pkτ�,1pk) has 
(rHAP) for every k ∈ N. In combination with Theorem 4.15 this implies that the triple 
(M, N, ϕ) has property (rHAP). �

We finish this subsection with an easy lemma which will be needed later on. It could 
be formulated in a greater generality, but this is the form we will use in Section 8.

Lemma 5.8. Let N ⊆ M1 ⊆ M be a unital inclusion of von Neumann algebras with N
finite. Assume that we have faithful normal conditional expectations E1 : M1 → N and 
F1 : M → M1 and a faithful tracial state τ ∈ N∗. Set ϕ = τ ◦ E1 ◦ F1. Then if the triple 
(M, N, ϕ) has property (rHAP) then the triple (M1, N, ϕ|M1) also has property (rHAP).

Proof. Suppose that (Φi)i∈I is a net of approximations (unital, ϕ-preserving maps on 
M) satisfying the conditions in the property (rHAP) for the triple (M, N, ϕ). For each 
i ∈ I define Ψi := F1 ◦Φi|M1 . Our conditions guarantee that F1 is ϕ-preserving, so Ψi is 
a normal, ucp, N -N -bimodular, ϕ|M1 preserving map on M1. Due to the last theorem, 
we need only to check that (Ψi)i∈I satisfy the conditions in the property (rHAP)− (for 
the triple (M1, N, ϕ|M1)). Condition (iii) holds as for x ∈ M1 we have Ψi(x) − x =
F1(Φi(x) − x) and F (2)

1 is the orthogonal projection from L2(M, ϕ) onto L2(M1, ϕ|M1).
To verify the last condition we assume first that Φi is of the form a(E1 ◦F1)b for some 

a, b ∈ M . But then for x ∈ M1 we have
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Ψi(x) = F1(a(E1 ◦ F1)(bx))) = F1(a)(E1 ◦ F1)(bx))) = F1(a)E1(F1(b)x),

so we get that Ψ(2)
i ∈ K00(M1, N, ϕ|M1). Taking linear combinations and approximation 

ends the proof. �
6. First examples

In this section we first put our definitions and main results in concrete context, 
discussing examples of the Haagerup (and non-Haagerup) inclusions arising in the frame-
work of Cartan subalgebras, as studied in [32], [48] and [1], and then present the case of 
the big algebra being just B(H). The examples related to the latter situation show that 
the relative Haagerup property is not implied by coamenability as defined in [39].

6.1. Examples from equivalence relations and groupoids

In this subsection we will discuss examples of inclusions of von Neumann algebras 
which satisfy the relative Haagerup property and have already appeared in the literature. 
As mentioned in the introduction, the notion of the Haagerup property regarding the 
von Neumann inclusions beyond the finite context first appeared in the study of von 
Neumann algebras associated with groupoids/equivalence relations.

The first result here is due to [32], still in the finite context. Note that Jolissaint uses 
the definition of the Haagerup inclusion N ⊆ M due to Popa in [41], namely the one 
using the larger ideal of ‘generalised compacts’ than the one employed in this paper, but 
also note that due to [41, Proposition 2.2] both notions coincide if N ′ ∩M ⊆ N , so for 
example if N is a maximal abelian subalgebra in M , which is the case of interest for the 
result below.

Theorem 6.1 ([32, Theorem 2.1]). Let R be a measure preserving standard equivalence 
relation on a set X (with the measure ν on R induced by the invariant probability measure 
μ on X). Then the following are equivalent:

(i) R has the Haagerup property, i.e. it admits a sequence of positive-definite functions 
(ϕn : R → C)n∈N which are bounded by 1 on the diagonal, converge to 1 ν-almost 
everywhere and satisfy the ‘vanishing property’: for every n ∈ N and ε > 0 there is

ν({(x, y) ∈ R : |ϕn(x, y)| > ε}) < ∞;

(ii) the von Neumann inclusion (of finite von Neumann algebras)

L∞(X,μ) ⊆ L(R)

has the relative Haagerup property.
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The definition beyond the finite case has first been considered in [48]; a more detailed 
study has been conducted by Anantharaman-Delaroche in [1]. Note that both these 
papers use the notion of the relative Haagerup property for arbitrary (expected) von 
Neumann inclusions identical to the one studied here. We will now describe the setup.

Let G be a measured groupoid with countable fibers, equipped with a quasi-invariant 
probability measure μ on the unit space G(0) (note that a measure preserving standard 
equivalence relation as considered above is one source of such examples). Again μ induces 
a measure ν on G; we further obtain a (not necessarily finite) von Neumann algebra 
L(G) ⊆ B(L2(G, ν)). The following result holds.

Theorem 6.2 ([1, Theorem 1]). Let G be a measured groupoid with countable fibbers, as 
above. Then the following conditions are equivalent:

(i) G has the Haagerup property, i.e. it admits a sequence of positive-definite functions 
(Fn : G → C)n∈N which are equal to 1 on G(0), converge to 1 ν-almost everywhere 
and satisfy the ‘vanishing property’: for every n ∈ N and ε > 0 there is

ν({g ∈ G : |ϕn(g)| > ε}) < ∞;

(ii) the von Neumann inclusion

L∞(G(0), μ) ⊆ L(G)

has the relative Haagerup property.

Ueda shows in [48, Lemma 5] (and then Anantharaman-Delaroche reproves it in [1, 
Theorem 3]) that a property of a groupoid as above called treeability implies the Haagerup 
property. [1, Theorem 5] also shows that for ergodic measured groupoid with countable 
fibbers the Haagerup property is incompatible with Property (T); we are however not 
aware of explicit examples of such Property (T) groupoids leading to von Neumann 
algebras which are not finite, and a general intuition regarding Property (T) objects says 
that these should naturally lead to finite von Neumann algebras (for example discrete 
property (T) quantum groups are necessarily unimodular, see [24]).

6.2. Examples and counterexamples with M = B(H)

We end this section with the example where M = B(H) and study which triples 
(B(H), N, EN ) have (rHAP). Since the conditional expectation EN is assumed to be 
normal it follows by a result of Tomiyama from [47] that N must be a direct sum of type 
I factors, so N � ⊕i∈IB(Ki) for some index set I. Note that each B(Ki) may occur in 
B(H) with a certain multiplicity mi ∈ N ∪ {∞}. In general, we have that N is spatially 
isomorphic to ⊕i∈IB(Ki) ⊗ C1mi

where 1mi
is the identity acting on a Hilbert space 
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of dimension mi. For simplicity in the examples below we assume that all multiplicities 
mi equal 1 and ignore the spatial isomorphism. In that case the normal conditional 
expectation of B(H) onto ⊕i∈IB(Ki) is unique and determined by EN (x) =

∑
i∈I pixpi

where pi is the projection onto Ki. Therefore, in this case we can speak not only of the 
Haagerup property of the inclusion N ⊆ B(H), but also about maps being compact and 
of finite index relative to this inclusion.

Theorem 6.3. Assume that H is a separable Hilbert space, that H =
⊕

i∈I Ki, where 
I is an index set and that the dimension of Ki does not depend on i ∈ I. Put N =⊕

i∈I B(Ki) ⊆ B(H). Then the triple (B(H), N, EN ) has the property (rHAP).

Proof. We may assume that Ki = K for a single (separable) Hilbert space K. The 
inclusion N ⊆ B(H) is then isomorphic to the inclusion �∞(I) ⊗B(K) ⊆ B(�2(I)) ⊗B(K). 
In the case where I is finite �∞(I) ⊆ B(�2(I)) is a finite dimensional inclusion which 
clearly has (rHAP). In the case where I is infinite we may assume that I = Z and 
the inclusion �∞(Z) ⊆ B(�2(Z)) has the (rHAP) with approximating maps given by the 
(Fejér-)Herz-Schur multipliers Tn with

Tn((xi,j)i,j∈Z) = (W (i− j)xi,j)i,j∈Z, W (k) := max(1 − |k|
n
, 0).

Since W = 1
n (χ[0,n])∗ ∗ χ[0,n] is positive definite and converges to the identity pointwise 

it follows that Tn is completely positive and T (2)
n converges to the identity strongly. 

Further T (2)
n is finite rank relative to �∞(Z), so certainly compact. In both cases (I

being finite or infinite), we tensor the approximating maps with IdB(K) and find that 
�∞(I) ⊗ B(K) ⊆ B(�2(I)) ⊗ B(K) has (rHAP). �

With a bit more work Theorem 6.3 could be proved in larger generality by relaxing 
the assumption that the multiplicities are trivial and that the dimension is constant (as 
opposed to say for example uniformly bounded). However, we cannot admit just any 
subalgebra N as the following counterexample shows.

Theorem 6.4. Let H = K1 ⊕K2, where K1, K2 are Hilbert spaces such that dim(K1) < ∞
and dim(K2) = ∞. Set N = B(K1) ⊕ B(K2). Then the triple (B(H), N, EN ) does not 
have the property (rHAP).

Proof. Let p be the projection of H onto K1. Let Φ : B(H) → B(H) be a normal linear 
map. The proof is based on two claims.

Claim 1: If Φ is an N -N -bimodule map then B(H)p is an invariant subspace. Moreover, 
the restriction of Φ to B(H)p lies in the linear span of the two maps xp 	→ pxp and 
xp 	→ (1 − p)xp.
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Proof of Claim 1. Note that p is contained in N from which the first statement follows. 
For the second part let Ei

k,l be matrix units with respect to some basis of Ki. Then for 
x ∈ B(H) we have Φ(Ei

k,kxE
i
l,l) = Ei

k,kΦ(x)Ei
k,k so that Ei

k,kB(H)Ei
k,k is an eigenspace of 

Φ (i.e. Φ is a Herz-Schur multiplier). Moreover Φ(Ei
k′,k′xEi

l′,l′) = Ei
k′,kΦ(Ei

k,k′xEi
l′,l)Ei

l,l′

so that the eigenvalues of these spaces only depend on i. This in particular implies the 
claim.

Claim 2: If Φ is compact relative to the inclusion N ⊆ B(H) then B(H)p is an invariant 
subspace. Moreover, the restriction of Φ to B(H)p is compact (in the non-relative sense).

Proof of Claim 2. By approximation it suffices to prove Claim 2 with ‘compact’ replaced 
by ‘finite rank’. So assume that Φ = aENb with a, b ∈ B(H). Note that p ∈ N ∩ N ′

and therefore aEN (bxp) = apEN (bx)p = aEN (pbxp). The first of these equalities shows 
that B(H)p is invariant. Further x 	→ (pxp) is finite rank as p projects onto a finite 
dimensional space. This proves the claim.

Remainder of the proof. Suppose that Φ is both N -N -bimodular and compact relative 
to N . By Claim 1 we know that there are scalars λ1, λ2 ∈ C such that Φ(xp) = λ1pxp +
λ2(1 − p)xp. If λ2 �= 0 then the associated L2-map is not compact (in the non-relative 
sense) since (1 − p) projects onto an infinite dimensional Hilbert space. This contradicts 
Claim 2 because the restriction of Φ to B(H)p is compact. We conclude that λ2 = 0 for 
any normal map Φ : M → M that is N -N -bimodular and compact relative to N . But 
then we can never find a net of such maps that approximates the identity map on B(H)
in the point-strong topology. Hence the inclusion N ⊆ B(H) fails to have (rHAP). �
Remark 6.5. Recall that a unital inclusion of von Neumann algebras N ⊆ M is said to be 
co-amenable if there exists a (not necessarily normal) conditional expectation from N ′

onto M ′, where the commutants are taken with respect to any Hilbert space realization 
of M . Theorem 6.4 shows – surprisingly – that a co-amenable inclusion in general need 
not have (rHAP).

Note that this also means that a naive extension of the definition of relative Haagerup 
property in terms of correspondences, modelled on the notion of strictly mixing bimodules
[37, Theorem 9] valid for the non-relative Haagerup property, cannot be equivalent to 
the definition studied in our paper. Indeed, the last fact, together with the examples 
above, would contradict [6, Theorem 2.4].

7. Property (RHAP) for finite-dimensional subalgebras

In this section we consider the case of finite-dimensional subalgebras and show equiva-
lence of the relative Haagerup property and the non-relative Haagerup property. For this, 
we fix a unital inclusion N ⊆ M of von Neumann algebras and assume that it admits a 
faithful normal conditional expectation EN . Assume that N is finite-dimensional and let 
τ ∈ N∗ be a faithful normal tracial state on N that we extend to a state ϕ := τ ◦EN on 
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M . We will prove that the triple (M, N, ϕ) has property (rHAP) if and only if (M, C, ϕ)
does. Recall that by Theorem 3.7 the Haagerup property of (M, N, ϕ) does not depend 
on the choice of the state τ .

Denote by z1, ..., zn ∈ Z(N) the minimal central projections of N . There exist natural 
numbers n1, ..., nk ∈ N such that zkN ∼= Mnk

(C) for k = 1, ..., n. Let (fk
i )1≤i≤nk

be an 
orthonormal basis of Cnk , write Ek

i,j , 1 ≤ i, j ≤ nk for the matrix units with respect to 
this basis and set Ek

i := Ek
i,i for the diagonal projections. We have that Ek

i,jf
k
l = δj,lf

k
i

for all k ∈ N, 1 ≤ i, j, l ≤ nk and 
∑n

k=1
∑nk

i=1 E
k
i = 1. Set d :=

∑n
k=1 nk, choose an 

orthonormal basis (fk,i)1≤k≤n, 1≤i≤nk
of Cd with corresponding matrix units e(k,i),(l,j) ∈

Md(C) where 1 ≤ k, l ≤ n, 1 ≤ i ≤ nk, 1 ≤ j ≤ nl and define

p :=
n∑

k=1

Ek
1 . (7.1)

For a general linear map Φ: pMp → pMp we may define a linear map Φ̃: M → M by

Φ̃(Ek
i xE

l
j) := Ek

i,1Φ(Ek
1,ixE

l
j,1)El

1,j (7.2)

for all 1 ≤ k, l ≤ n, 1 ≤ i ≤ nk, 1 ≤ j ≤ nl and x ∈ M .
Let us study the properties of Φ̃.

Lemma 7.1. Let Φ : pMp → pMp be a linear map. Define

U :=
n∑

k=1

nk∑
i=1

e(1,1),(k,i) ⊗ Ek
i,1 ∈ Md(C) ⊗M, V :=

n∑
k=1

nk∑
i=1

fk,i ⊗Ek
1,i ∈ Cd ⊗M.

Then,

Φ̃(x) = V ∗(idB(L2(N,τ)) ⊗ Φ) (U∗(1 ⊗ x)U)V .

Proof. We have for x ∈ zkMzl with 1 ≤ k, l ≤ n that

U∗(1 ⊗ x)U =
nk∑
i=1

nl∑
j=1

e(k,i),(l,j) ⊗Ek
1,ixE

l
j,1

so that

V ∗(idB(L2(N,τ)) ⊗ Φ) (U∗(1 ⊗ x)U)V =
nk∑
i=1

nl∑
j=1

Ek
i,1Φ(Ek

1,ixE
l
j,1)El

1,j .

By definition this expression coincides with Φ̃(x). The claim follows. �
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Lemma 7.2. If Φ: pMp → pMp is a unital normal completely positive map, then Φ̃ is 
contractive, normal and completely positive.

Proof. The normality and the complete positivity follow from Lemma 7.1. We further 
have

‖Φ̃‖ = Φ̃(1) = Φ̃
(

n∑
k=1

nk∑
i=1

Ek
i

)
=

n∑
k=1

nk∑
i=1

Ek
i,1Φ(Ek

1 )Ek
1,i

≤
n∑

k=1

nk∑
i=1

Ek
i,1E

k
1,i =

n∑
k=1

nk∑
i=1

Ek
i = 1,

i.e. Φ̃ is contractive. �
Lemma 7.3. Let Φ: pMp → pMp be a linear map. Then Φ̃ is an N -N -bimodule map.

Proof. Let x ∈ M . For 1 ≤ l, k, m ≤ n and 1 ≤ r, s ≤ nl, 1 ≤ i ≤ nk, 1 ≤ j ≤ nm we 
have

El
r,sΦ̃(Ek

i xE
m
j ) = El

r,sE
k
i,1Φ(Ek

1,ixE
m
j,1)Em

1,j

= δs,iδl,kE
k
r,1Φ(Ek

1,ixE
m
j,1)Em

1,j

= Ek
r,1Φ(Ek

1,rE
l
r,sE

k
i xE

m
j Em

j,1)Em
1,j .

We hence find that for y ∈ Ek
i xE

m
j , El

r,sΦ̃(y) = Φ̃(El
r,sy). The linearity of Φ̃ then implies 

that it is a left N -module map. A similar argument applies to the right-handed case. �
Proposition 7.4. Define the map

Diag: pMp → pMp, x 	→
n∑

k=1

ϕ(Ek
1xE

k
1 )

ϕ(Ek
1 )

Ek
1 .

Then D̃iag = EN .

Proof. It is clear that the map Diag is linear unital normal and completely positive. 
Hence, by Lemma 7.2 and Lemma 7.3, D̃iag is contractive normal completely positive 
and N -N -bimodular. It is easy to check that D̃iag is even unital. In particular, D̃iag
restricts to the identity on N . It is further clear that D̃iag is faithful and that it maps M
onto N , so D̃iag is a faithful normal conditional expectation. For x ∈ M and 1 ≤ k, l ≤ n, 
1 ≤ i ≤ nk, 1 ≤ j ≤ nl we have

ϕ ◦ D̃iag(Ek
i xE

l
j) = ϕ

(
Ek

i,1Diag(Ek
1,ixE

l
j,1)El

1,j
)
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=
n∑

m=1

ϕ(Em
1 Ek

1,ixE
l
j,1E

m
1 )

ϕ(Em
1 ) ϕ

(
Ek

i,1E
m
1 El

1,j
)

=
ϕ(El

1E
k
1,ixE

l
j,1E

l
1)

ϕ(El
1)

ϕ(Ek
i,1E

l
1E

l
1,j)

= δk,l
ϕ(El

1,ixE
l
j,1)

ϕ(El
1)

ϕ(El
i,1E

l
1,j)

= δk,l
ϕ(El

1,ixE
l
j,1)

τ(El
1)

τ(El
i,j).

But then, since τ is tracial,

ϕ ◦ D̃iag(Ek
i xE

l
j) = δi,jδk,lϕ(El

1,ixE
l
i,1) = δi,jδk,lτ(EN (El

1,ixE
l
i,1))

= δi,jδk,lτ(El
1,iEN (x)El

i,1) = τ(Ek
i EN (x)El

j)

= ϕ(Ek
i xE

l
j),

i.e. D̃iag is ϕ-preserving. Since EN is the unique faithful normal ϕ-preserving conditional 
expectation onto N , we get that D̃iag = EN . �
Lemma 7.5. Let Φ: pMp → pMp be a normal completely positive map with ϕ ◦ Φ ≤ ϕ

and assume that the L2-implementation Φ(2) of Φ with respect to ϕ|pMp is a compact 
operator. Then Φ̃ satisfies ϕ ◦ Φ̃ ≤ ϕ and (Φ̃)(2) ∈ K(M, N, ϕ).

Proof. For 1 ≤ k, l ≤ n, 1 ≤ i ≤ nk, 1 ≤ j ≤ nl and x ∈ M positive we have by the 
traciality of τ ,

ϕ ◦ Φ̃(Ek
i xE

l
j) = ϕ

(
Ek

i,1Φ(Ek
1,ixE

l
j,1)El

1,j
)

= τ
(
Ek

i,1EN

(
Φ(Ek

1,ixE
l
j,1)

)
El

1,j
)

= δi,jδk,lτ
(
Ek

1EN (Φ(Ek
1,ixE

k
i,1))

)
,

so in particular ϕ ◦ Φ̃(Ek
i xE

l
j) ≥ 0. We get (as N is contained in the centralizer Mϕ)

ϕ ◦ Φ̃(Ek
i xE

l
j) = δi,jδk,lτ

(
Ek

1EN (Φ(Ek
1,ixE

k
i,1))

)
≤ δi,jδk,lτ

(
EN (Φ(Ek

1,ixE
k
i,1))

)
≤ δi,jδk,lϕ(Ek

1,ixE
k
i,1)

= ϕ(Ek
i xE

l
j).

This implies that Φ̃ indeed satisfies ϕ ◦ Φ̃ ≤ ϕ. In particular, the L2-implementation of 
Φ̃ with respect to ϕ exists.
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It remains to show that (Φ̃)(2) ∈ K(M, N, ϕ). For this, let Ψ: pMp → pMp be a 
map with Ψ(2) = aeCb where a, b ∈ pMp and eC denotes the rank one projection 
(ϕ|pMp(·)p)(2) ∈ B(L2(pMp, ϕ|pMp)). For 1 ≤ k, l ≤ n, 1 ≤ i ≤ nk, 1 ≤ j ≤ nl and 
x ∈ M we then have

Ψ̃(Ek
i xE

l
j) = Ek

i,1aϕ(bEk
1,ixE

l
j,1)El

1,j = Ek
i,1aϕ(bEk

1,ixE
l
j,1)El

1E
l
1,j .

Note that by Proposition 7.4,

EN (bEk
1,ixE

l
j,1) =

n∑
r=1

EN (Er
1bE

k
1,ixE

l
j,1) =

n∑
r=1

D̃iag(Er
1bE

k
1,ixE

l
j,1)

=
n∑

r=1
Er

1Diag(Er
1bE

k
1,ixE

l
j,1)El

1

=
n∑

r=1

n∑
m=1

ϕ(Em
1 Er

1bE
k
1,ixE

l
j,1E

m
1 )

ϕ(Em
1 ) Er

1E
m
1 El

1

=
ϕ(El

1bE
k
1,ixE

l
j,1)

ϕ(El
1)

El
1 =

ϕ(bEk
1,ixE

l
j,1)

ϕ(El
1)

El
1,

where in the last equality we again used that τ is tracial. Hence

Ψ̃(Ek
i xE

l
j) = ϕ(El

1)Ek
i,1aEN (bEk

1,ixE
l
j,1)El

1,j = ϕ(El
1)Ek

i,1aEN (bEk
1,iE

k
i xE

l
j). (7.3)

Fix now suitable t0, j0, k0, l0 and x ∈ M and compute the following expression:(
n∑

k=1

n∑
l=1

n∑
r=1

nk∑
t=1

ϕ(Er
1)Ek

t,1aE
l
1eNEr

1bE
k
1,t

)
(Ek0

t0 xE
l0
j0

Ωϕ)

=
n∑

l=1

n∑
r=1

ϕ(Er
1)Ek0

t0,1aE
l
1EN (Er

1bE
k0
1,t0xE

l0
j0

)Ωϕ

=
n∑

l=1

ϕ(El
1)E

k0
t0,1aE

l
1EN (bEk0

1,t0xE
l0
j0,1)E

l0
1,j0Ωϕ

Now the equality (7.3) implies that the value of the conditional expectation appearing 
in the last formula is a scalar multiple of El0

1 , so the whole expression equals

ϕ(El0
1 )Ek0

t0,1aEN (bEk0
1,t0xE

l0
j0

)Ωϕ = Ψ̃(Ek0
t0 xE

l0
j0

)Ωϕ.

Hence we arrive at

(Ψ̃)(2) =
n∑ n∑ n∑ nk∑

ϕ(Er
1)Ek

t,1aE
l
1eNEr

1bE
k
1,t ∈ K00(M,N,ϕ).
k=1 l=1 r=1 t=1
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By taking linear combinations this implies that for every map Ψ with Ψ(2) ∈
K00(pMp, C, ϕ) the L2-implementation of Ψ̃ is contained in K00(M, N, ϕ). Via approxi-
mation we then see that (Φ̃)(2) ∈ K(M, N, ϕ). �

We are now ready to prove the main theorem of this section.

Theorem 7.6. Let N ⊆ M be a unital inclusion of von Neumann algebras and assume 
that it admits a faithful normal conditional expectation EN : M → N . Assume that N
is finite-dimensional and let τ ∈ N∗ be a faithful state on N that we extend to a state 
ϕ := τ ◦ EN on M . Then M has the Haagerup property (in the sense that the triple 
(M, C, ϕ) has the relative Haagerup property) if and only if the triple (M, N, ϕ) has the 
relative Haagerup property.

Proof. By Theorem 3.7 we may assume without loss of generality that τ is tracial.
“⇐” Assume that the triple (M, N, ϕ) has the relative Haagerup property and let 

(Φi)i∈I be a net of normal completely positive maps witnessing it. Since N is finite 
dimensional, eN is a finite rank projection. In particular, K00(M, N, ϕ) consists of finite 
rank operators and hence K(M, N, ϕ) ⊆ K(M, C, ϕ). In particular, Φ(2)

i ∈ K(M, C, ϕ)
for every i ∈ I. Further, Φi(x) → x strongly for every x ∈ M . This implies that the net 
(Φi)i∈I also witnesses the relative Haagerup property of the triple (M, C, ϕ).

“⇒” Assume that M has the Haagerup property. Recall that the projection p was 
defined in (7.1). By [15, Lemma 4.1] the triple (pMp, C, ϕ|pMp) also has the relative 
Haagerup property and by Theorem 5.5 we find a net (Φi)i∈I of unital normal completely 
positive ϕ-preserving maps witnessing it. By Lemma 7.2, Lemma 7.3 and Lemma 7.5
we find that Φ̃i is a contractive normal completely positive N -N -bimodule map with 
ϕ ◦Φ̃ ≤ ϕ and (Φ̃)(2) ∈ K(M, N, ϕ) for every i ∈ I. It follows directly from the prescription 
(7.2) that Φ̃i(x) → x strongly for every x ∈ M . It follows that the net (Φ̃i)i∈I witnesses 
the relative Haagerup property of the triple (M, N, ϕ). �
8. The relative Haagerup property for amalgamated free products

In this section we study the notion of the relative Haagerup property in the context of 
amalgamated free products of von Neumann algebras. We will further apply our results 
to the class of virtually free Hecke-von Neumann algebras.

8.1. Preservation under amalgamated free products

The following theorem demonstrates that in the setting of Section 5 the relative 
Haagerup property is preserved under taking amalgamated free products (for details on 
operator algebraic amalgamated free products see [50] or also [11]). For finite inclusions 
of von Neumann algebras this has been proved in [8, Proposition 3.9].
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Theorem 8.1. Let N ⊆ M1 and N ⊆ M2 be unital embeddings of von Neumann algebras 
which admit faithful normal conditional expectations E1 : M1 → N , E2 : M2 → N

and for which N is finite. Denote by M := (M1, E1) ∗N (M2, E2) the amalgamated free 
product von Neumann algebra of M1 and M2 with respect to the expectations E1, E2 and 
let EN be the corresponding conditional expectation of M onto N . Then (M1, N, E1) and 
(M2, N, E2) have the relative Haagerup property if and only if the triple (M, N, EN) has 
the relative Haagerup property.

Proof. “⇒” Assume that both (M1, N, E1) and (M2, N, E2) have the relative Haagerup 
property, let τ ∈ N∗ be a faithful normal tracial state and set ϕ1 := τ ◦ E1, ϕ2 :=
τ ◦E2. Then the triples (M1, N, ϕ1) and (M2, N, ϕ2) have the relative Haagerup property. 
Without loss of generality we can assume that the corresponding nets (Φi,1)i∈I and 
(Φi,2)i∈I witnessing the relative Haagerup property are indexed by the same set I. By 
Theorem 5.5 we can also assume that the maps are unital with ϕ1◦Φi,1 = ϕ1, ϕ2 ◦Φi,2 =
ϕ2 for all i ∈ I, which then implies that Φi,1|N = Φi,2|N = idN and that E1 ◦Φi,1 = E1, 
E2 ◦ Φi,2 = E2. Choose a net (εi)i∈I (we can use the same indexing set, modifying it 
if necessary) with εi → 0 and define unital normal completely positive N -N -bimodular 
maps Φ′

i,1 := 1
1+εi

(Φi,1 + εiE1), Φ′
i,2 := 1

1+εi
(Φi,2 + εiE2).

In the following we will need to work with certain sets of multi-indices: for each n ∈ N

set Jn = {j = (j1, . . . , jn) : jk ∈ {1, 2} and jk �= jk+1 for k = 1, . . . , n − 1}; put also 
J =

⋃
n∈N Jn.

Set ϕ := τ ◦ EN , let Ψi := Φi,1 ∗ Φi,2: M → M be the unital normal completely 
positive map with Ψi|N = idN and Ψi(x1...xn) = Φi,j1(x1)...Φi,jn(xn) for j ∈ Jn and 
xk ∈ Mjk ∩ ker(Ejk) for k = 1, . . . , n (see [7, Theorem 3.8]) and define Ψ′

i := Φ′
i,1 ∗ Φ′

i,2
analogously. We claim that the net (Ψ′

i)i∈I witnesses the relative Haagerup property of 
the triple (M, N, ϕ). Indeed, it is clear that the maps satisfy the conditions (1), (2) and
(4) of Definition 3.2. It remains to show that Ψ′

i(x) → x strongly for every x ∈ M and 
that the L2-implementations (Ψ′

i)(2) are contained in K(M, N, ϕ).
Define for n ∈ N and j ∈ Jn the Hilbert subspace

Hj := Span {x1...xnΩϕ | x1 ∈ ker(Ej1), ..., xn ∈ ker(Ejn)} ⊆ L2(M,ϕ)

and let Pj ∈ B(L2(M, ϕ)) be the orthogonal projection onto Hj. Note that these Hilbert 
subspaces are pairwise orthogonal for different multi-indices j1, j2 ∈ J , orthogonal to 
NΩϕ ⊆ L2(M, ϕ), one has inclusions Ψ(2)

i Hj ⊆ Hj, (Ψ′
i)(2)Hj ⊆ Hj and the span of the 

union of all Hj (j ∈ J ) with NΩϕ is dense in L2(M, ϕ).
For the strong convergence it suffices to show that ‖Ψ(2)

i ξ − ξ‖2 → 0 for all ξ ∈ Hj, 
j ∈ J . So let n ∈ N, j ∈ Jn, x1 ∈ ker(Ej1),..., xn ∈ ker(Ejn). Then,

‖(Ψ′
i)(2)(x1...xnΩϕ) − x1...xnΩϕ‖2 = ‖Φ′

i,j1(x1)...Φ′
i,jn(xn)Ωϕ − x1...xnΩϕ‖2

≤ ‖(Φ′
i,j1(x1) − x1)Φ′

i,j2(x2)...Φ′
i,jn(xn)Ωϕ‖2

+ ‖x1‖‖Φ′
i,j (x2)...Φ′

i,j (xn)Ωϕ − x2...xnΩϕ‖2
2 n
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≤ ... ≤ ‖(Φ′
i,j1(x1) − x1)Φ′

i,j2(x2)...Φ′
i,jn(xn)Ωϕ‖2

+ ‖x1‖‖(Φ′
i,j2(x2) − x2)Φ′

i,j3(x3)...Φ′
i,jn(xn)Ωϕ‖2

+ ... + ‖x1‖...‖xn−1‖‖Φ′
i,jn(xn)Ωϕ − xnΩϕ‖2 → 0.

This implies that indeed Ψi(x) → x strongly for every x ∈ M .
To treat the relative compactness, express the operators (Φ′

i,1)(2) ∈ K(M1, N, ϕ1), 
(Φ′

i,2)(2) ∈ K(M2, N, ϕ2) as norm-limits

(Φ′
i,1)(2) = lim

l→∞

N
(i,1)
l∑
k=1

a
(i,1)
k,l eϕ1

N b
(i,1)
k,j and (Φ′

i,2)(2) = lim
l→∞

N
(i,2)
j∑
k=1

a
(i,2)
k,l eϕ2

N b
(i,2)
k,l

for suitable N (i,1)
l , N (i,2)

j ∈ N, a(i,1)
k,l , b(i,1)k,l ∈ M1 and a(i,2)

k,l , b(i,2)k,l ∈ M2.

Claim. For n ∈ N, j ∈ Jn, we have

∥∥∥(Ψ′
i)(2)Pj

∥∥∥ ≤
(

1
1 + εi

)n

(8.1)

and

(Ψ′
i)(2)Pj = lim

l1,...,ln→∞

∑
k1,...,kn

a
(i,j1)
k1,l1

...a
(i,jn)
kn,ln

eNb
(i,jn)
kn,ln

...b
(i,j1)
k1,l1

, (8.2)

where the convergence is in norm.
Proof of the claim. For x1 ∈ ker(Ej1),..., xn ∈ ker(Ejn) one calculates

(Ψ′
i)(2)Pj(x1...xnΩϕ) = Φ′

i,j1(x1)...Φ′
i,jn(xn)Ωϕ

=
(

1
1 + εi

)n

Φi,j1(x1)...Φi,jn(xn)Ωϕ

=
(

1
1 + εi

)n

Ψ(2)
i (x1...xnΩϕ)

and hence (Ψ′
i)(2)Pj = (1 + εi)−nΨ(2)

i Pj. By the unitality of Φi,1 and Φi,2 the inequality 
(8.1) then follows from

∥∥∥(Ψ′
i)(2)Pj

∥∥∥ =
(

1
1 + εi

)n ∥∥∥Ψ(2)
i Pj

∥∥∥ ≤
(

1
1 + εi

)n ∥∥∥Ψ(2)
i

∥∥∥
≤

(
1

1 + εi

)n

‖Ψi‖ =
(

1
1 + εi

)n

.

We proceed by induction over n. For n = 1 the equality (8.2) is clear. Assume that 
the equality (8.2) holds for j ∈ Jn−1 and let jn ∈ {1, 2} with jn �= in−1, j′ = (j, jn). 
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One easily checks that the left- and right-hand side of (8.2) both vanish on the orthog-
onal complement of Hj′ . Further, for x1 ∈ ker(Ej1),..., xn ∈ ker(Ejn), we get by the 
assumption

(Ψ′
i)(2)(x1...xnΩϕ) = Ψ′

i(x1...xn−1)Φ′
i,jn(xn)Ωϕ = Ψ′

i(x1...xn−1)(Φ′
i,jn)(2)(xnΩϕ)

= lim
l1,...,ln→∞

∑
k1,...,kn−1

a
(i,j1)
k1,l1

...a
(i,jn−1)
kn−1,ln−1

EN

(
b
(i,jn−1)
kn−1,ln−1

...b
(i,j1)
k1,l1

x1...xn−1

)

×
(∑

kn

a
(i,jn)
kn,ln

eNb
(i,jn)
kn,ln

)
xnΩϕ.

Since the Φ′
i,1 and Φ′

i,2 are N -N -bimodular, we have (Φ′
i,jn

)(2) ∈ N ′ ∩ 〈N,M〉 and hence

(Ψ′
i)(2)(x1...xnΩϕ) = lim

l1,...,ln→∞

∑
k1,...,kn

a
(i,j1)
k1,l1

...a
(i,jn)
kn,ln

EN

(
b
(i,jn)
kn,ln

...b
(i,j1)
k1,l1

x1...xn

)
Ωϕ,

i.e. ∑
k1,...,kn

a
(i,j1)
k1,l1

...a
(i,jn)
kn,ln

eNb
(i,jn)
kn,ln

...b
(i,j1)
k1,l1

→ (Ψ′
i)(2)

strongly in l1, ..., ln. The second part of the claim, i.e. (8.2), then follows from noticing 
that ⎛⎝ ∑

k1,...,kn

a
(i,j1)
k1,l1

...a
(i,jn)
kn,ln

eNb
(i,jn)
kn,ln

...b
(i,j1)
k1,l1

⎞⎠
l1,...,ln

is a Cauchy sequence (compare with [8, Section 3]).
The (in)equalities (8.1) and (8.2) in particular imply that (Ψ′

i)(2) can be expressed as 
a norm limit

(Ψ′
i)(2) = eN + lim

n→∞

∑
j∈Jn

Ψ(2)
i Pj

and hence (Ψ′
i)(2) ∈ K(M, N, ϕ) for all i ∈ I. This finishes the direction “⇒”.

“⇐” It suffices to prove the result for M1. Note first that [7, Lemma 3.5] shows that 
we have a normal conditional expectation F1 : M → M1 such that E1 ◦ F1 = EN . Hence 
Lemma 5.8 ends the proof. �

In combination with Theorem 7.6, Theorem 8.1 leads to the following corollary. This 
generalizes a result by Freslon [25, Theorem 2.3.19] who showed this corollary in the 
realm of von Neumann algebras of discrete quantum groups, and the analogous property 
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for classical groups was first shown in [31] (see also [17, Section 6]). To the authors’ 
best knowledge even for inclusions of finite von Neumann algebras the statement of the 
following corollary is new.

Corollary 8.2. Let N ⊆ M1 and N ⊆ M2 be unital embeddings of von Neumann al-
gebras which admit faithful normal conditional expectations E1 : M1 → N , E2 :
M2 → N and assume that N is finite-dimensional. Assume moreover that M1 and M2

have the Haagerup property. Then the amalgamated free product von Neumann algebra 
(M1, E1) ∗N (M2, E2) has the Haagerup property as well.

8.2. Haagerup property for Hecke-von Neumann algebras of virtually free Coxeter 
groups

Let us now demonstrate the application of Corollary 8.2 in the context of virtually 
free Hecke-von Neumann algebras.

A Coxeter system (W, S) consists of a set S and a group W freely generated by S
with respect to relations of the form (st)mst = e where mst ∈ {1, 2, ..., ∞} with mss = 1, 
mst ≥ 2 for all s �= t and mst = mts. By mst = ∞ we mean that no relation of the form 
(st)m = e with m ∈ N is imposed, i.e. s and t are free with respect to each other; and 
the system is said to be right-angled if mst ∈ {2, ∞} for all s, t ∈ S, s �= t. The system 
is of finite rank if the generating set S is finite. A subgroup of (W, S) is called special if 
it is generated by a subset of S.

With every Coxeter system one can associate a family of von Neumann algebras, 
its Hecke-von Neumann algebras, which can be viewed as q-deformations of the group 
von Neumann algebra L(W ) of the Coxeter group W . For this, fix a multi-parameter 
q := (qs)s∈S ∈ RS

>0 with qs = qt for all s, t ∈ S which are conjugate in W . Further, write 
ps(q) := (qs − 1)/√qs for s ∈ S. Then the corresponding Hecke-von Neumann algebra 

Nq(W ) is the von Neumann subalgebra of B(�2(W )) generated by the operators T (q)
s , 

s ∈ S where T (q)
s : B(�2(W )) → B(�2(W )) is defined by

T (q)
s δw =

{
δsw , if |sw| > |w|
δsw + ps(q)δw , if |sw| < |w|

.

Here |·| denotes the word length function with respect to the generating set S and 
(δw)w∈W ⊆ �2(W ) is the canonical orthonormal basis of �2(W ). For a group element 
w ∈ W which can be expressed by a reduced expression of the form w = s1...sn with 
s1, ..., sn ∈ S we set T (q)

w := T
(q)
s1 ...T

(q)
sn ∈ Nq(W ). This operator does not depend on 

the choice of the expression s1...sn and the span of such operators is dense in Nq(W ). 
Further, the von Neumann algebra Nq(W ) carries a canonical faithful normal tracial 
state τq defined by τq(x) := 〈xδe, δe〉 for x ∈ Nq(W ). For more details on Hecke-von 
Neumann algebras see [20, Chapter 20].
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The aim of this subsection is to study the Haagerup property of Hecke-von Neu-
mann algebras of virtually free Coxeter groups. We will approach this by decomposing 
these Hecke-von Neumann algebras as suitable amalgamated free products over finite-
dimensional subalgebras. In the case of right-angled Hecke-von Neumann algebras the 
Haagerup property has been obtained in [12, Theorem 3.9].

Fix a finite rank Coxeter system (W, S). A subset T ⊆ S is called spherical if the 
special subgroup WT ⊆ W generated by T is finite. (W, S) is called spherical if S is a 
spherical subset.

If W is an arbitrary group which decomposes as an amalgamated free product W =
W1 ∗W0 W2 where (W1, S1), (W2, S2) are Coxeter systems with W0 = W1∩W2 and S0 :=
S1∩S2 generates W0, then (W, S1∪S2) is a Coxeter system as well. We may now define the 
class of virtually free Coxeter systems as the smallest class of Coxeter groups containing 
all spherical Coxeter groups and which is stable under taking amalgamated free products 
over special spherical subgroups. Note that the original definition of virtually free Coxeter 
systems is different, but by [20, Proposition 8.8.5] equivalent to the one used here.

Now, for a multi-parameter q := (qs)s∈S ∈ RS
>0 as above we have a natural unital 

embedding Nq(W0) ⊆ Nq(W ) (see [20, 19.2.2]). Let ENq(W0) : Nq(W ) → Nq(W0) be the 
unique faithful normal trace-preserving conditional expectation onto Nq(W0). Then, for 
w ∈ W the equality

ENq(W0)(T
(q)
w ) =

{
T

(q)
w , if w ∈ W0
0, if w /∈ W0

holds.
Let us show that the amalgamated free product decomposition of a Coxeter group 

translates into the Hecke-von Neumann algebra setting. Note that the arguments using 
the (iterated) amalgamated free product description of Hecke-deformed Coxeter group 
C∗-algebras appear for example in [42], exploiting the earlier work on operator algebraic 
graph products in [13].

Proposition 8.3. Let (W, S) be a finite rank Coxeter system that decomposes as W =
W1∗W0W2 where (W1, S1), (W2, S2) are Coxeter systems with S = S1∪S2, W0 = W1∩W2

such that S0 := S1 ∩ S2 generates W0. For a multi-parameter q = (qs)s∈S with qs = qt
for all s, t ∈ S which are conjugate in W the corresponding Hecke-von Neumann algebra 
Nq(W ) decomposes as an amalgamated free product of the form

Nq(W ) = Nq1(W1) ∗Nq0 (W0) Nq2(W2),

where q0 := (qs)s∈S0 , q1 := (qs)s∈S1 and q2 := (qs)s∈S2 . Here the decomposition 
is taken with respect to the restricted conditional expectations (ENq(W0))|Nq1 (W1) and 
(ENq(W0))|Nq (W2).
2
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Proof. We will use the multi-index notation from the proof of Theorem 8.1. By the 
uniqueness of the amalgamated free product construction in combination with our pre-
vious discussion, it suffices to show that ENq(W0)(a1...an) = 0 for all n ∈ N, j ∈ Jn and 
ak ∈ Nqjk

(Wjk)) ∩ker(ENq(W0)). Let Nqi(Wi)1 denote the unit ball of Nqi(Wi). Let Span
denote the strong closure of the linear span. By Kaplansky’s density theorem,

Nq1(W1)1 ∩ ker(ENq(W0)) = Nq1(W1)1 ∩ Span{T (q)
w | w ∈ W1 \W0},

and

Nq2(W2)1 ∩ ker(ENq(W0)) = Nq2(W2)1 ∩ Span{T (q)
w | w ∈ W2 \W0}.

By [34, Remark 4.3.1] the element a1...an can hence be approximated strongly by a 
bounded net of linear combinations of reduced expressions of the form T (q)

w1 ...T
(q)
wn with 

wk ∈ Wjk \W0. But this expression coincides with T (q)
w1...wn where w1...wn ∈ W \W0 is 

non-trivial, so ENq(W0)(a1...an) = 0 since ENq
is normal and hence weakly continuous 

on bounded sets. �
The following corollary is an example of an application of Corollary 8.2 in a setting 

which is not covered by the results in [25].

Corollary 8.4. Let (W, S) be a finite rank Coxeter system, let q = (qs)s∈S ∈ RS
>0 be 

a multi-parameter with qs = qt if s, t ∈ S are conjugate in W and assume that W
is virtually free. Then the corresponding Hecke-von Neumann algebra Nq(W ) has the 
Haagerup property.

Proof. This follows from a combination of [12, Theorem 3.9], Proposition 8.3 and Corol-
lary 8.2. �
9. Inclusions of finite index

In this section we will discuss finite index inclusions for not necessarily tracial von 
Neumann algebras defined in [3]. We will pick one of the (possibly nonequivalent) defini-
tions, which is most suitable in our context, and then we will illustrate this notion using 
certain compact quantum groups, namely free orthogonal quantum groups.

Definition 9.1. Let N ⊆ M be an inclusion of von Neumann algebras with a faithful 
normal conditional expectation EN : M → N . We say that a family of elements (mi)i∈I

is an orthonormal basis of the right N -module L2(M)N if

(1) for each i, j ∈ I we have EN (m∗
imj) = δijpj , where pj is a projection in N ;

(2)
∑

i∈I miN = L2(M).
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We say that the inclusion N ⊆ M is strongly of finite index if it admits a finite orthonor-
mal basis.

Lemma 9.2. If an inclusion N ⊆ M is strongly of finite index then it has the Haagerup 
property.

Proof. Let m1, . . . , mn be a finite orthonormal basis for our inclusion. It suffices to show 
that x =

∑n
i=1 miEN (m∗

i x) for each x ∈ M . Indeed, this would show that the identity 
map on L2(M) is relatively compact with respect to N , so clearly the triple (M, N, EN )
satisfies the relative Haagerup property. The equality x =

∑n
i=1 miEN (m∗

i x) has been 
already observed by Popa (see [40, Section 1]) in a more general context. �
9.1. Free orthogonal quantum groups

We will now present a certain inclusion arising in the theory of compact quantum 
groups that has the relative Haagerup property. For information about compact quantum 
groups we refer the reader to the excellent book [35].

Definition 9.3 ([49]). Let n � 2 be an integer and let F ∈ Mn(C) be a matrix such that 
FF = c1 for some c ∈ R \ {0}. Let Pol(O+

F ) be the universal ∗-algebra generated by the 
entries of a unitary matrix U ∈ Mn(Pol(O+

F )), denoted uij , subject to the condition U =
FUF−1, where (U)ij := (uij)∗ for all i, j = 1, . . . , n. Then the unique ∗-homomorphic 
extension of the map Δ(uij) :=

∑n
k=1 uik ⊗ ukj makes Pol(O+

F ) into a Hopf ∗-algebra, 
whose universal C∗-algebra completion yields a compact quantum group.

Remark 9.4. As every compact quantum group admits a Haar state, we can use the GNS 
construction to construct a von Neumann algebra L∞(O+

F ).

In [4] Banica classified irreducible representations of the compact quantum group 
O+

F . He showed that they are indexed by natural numbers, Uk, where U0 is the trivial 
representation and U1 = U is the fundamental representation U . Moreover, the fusion 
rules satisfied by these representations are the following:

Uk ⊗ U l � Uk+l ⊕ Uk+l−2 ⊕ · · · ⊕ U |k−l|, k, l ∈ N,

just like for the classical compact group SU(2). From the fusion rules one can infer that 
the coefficients of representations indexed by even numbers form a subalgebra. Further, 
one can use the defining relation U = FUF−1 to show that they form a ∗-subalgebra.

Definition 9.5. Let M := L∞(O+
F ). We define the even subalgebra N to be the von 

Neumann subalgebra of M generated by the elements (uijukl)1�i,j,k,l�n. It is equal to 
the von Neumann algebra generated by the coefficients of the even representations; in 
fact it is related to the projective version of O+

F , usually denoted PO+
F .
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Remark 9.6. It has been shown by Brannan in [9] that N ⊆ M is a subfactor of index 2
in case that F = 1 (it is then an inclusion of finite von Neumann algebras).

We now roughly outline Brannan’s argument and then mention why it cannot im-
mediately be translated into our setting. There is an automorphism Φ of M such that 
Φ(uij) = −uij ; Φ can be first defined on Pol(O+

F ) by the universal property but it also 
preserves the Haar state, so can be extended to an automorphism of L∞(O+

F ). The fixed 
point subalgebra of Φ is equal to the even subalgebra N and therefore EN := 1

2 (Id + Φ)
is a conditional expectation onto N that preserves the Haar state. As a consequence 
EN − 1

2 Id is a completely positive map, so one can use the Pimsner-Popa inequality, 
which works for II1-factors, to conclude that the index of N ⊆ M is at most 2. On the 
other hand, any proper inclusion has index at least 2, so the result follows. Unfortunately 
in the non-tracial case it is not clear if the condition that EN − 1

2 Id is completely positive 
implies that the inclusion N ⊆ M is strongly of finite index; so far it is only known that 
it implies being of finite index in a weaker sense (see [3, Théorème 3.5]). Fortunately in 
our case it is possible to explicitly define a finite orthonormal basis.

Proposition 9.7. Let n � 2 be an integer and let F ∈ Mn(C) be a matrix such that 
FF = c1 for some c ∈ R \ {0}. Let M := L∞(O+

F ) and let N be the even von Neumann 
subalgebra of M . Then the inclusion N ⊆ M is strongly of finite index. Moreover, one 
can find an orthonormal basis consisting of at most n2 + 1 elements.

Proof. One can verify by an explicit computation that N is left globally invariant by the 
modular automorphism group of the Haar state h of L∞(O+

F ), so we do have a faithful 
normal h-preserving conditional expectation EN : M → N . We start with n2+1 elements 
of M , namely 1 and all the uij ’s. Since we have all the coefficients of the fundamental 
representation, it follows from the fusion rules of O+

F that N ⊕
∑n

i,j=1 uijN is a dense 
submodule of L2(M)N .

Note that all the elements uij are odd, i.e. Φ(uij) = −uij for i, j = 1, . . . , n. Suppose 
that we have a family x1, . . . , xk of odd elements. Then we can perform a Gram-Schmidt 
process to make this set orthonormal. To do it, first notice that x∗

ixi is an even element, 
hence so is |xi| – we conclude that the partial isometry in the polar decomposition 
xi = vi|xi| is odd as well. Our process works as follows: we first replace x1 by the 
corresponding partial isometry v1. Then we define x̃2 := x2 − v1v

∗
1x2. Because v1 is a 

partial isometry, we get v∗1 x̃2 = v∗1x2−v∗1v1v
∗
1x2 = 0. We then define v2 to be the partial 

isometry appearing in the polar decomposition of x̃2; it still holds that v2 is odd and 
v∗1v2 = 0. We can continue this process just like the usual Gram-Schmidt process and 
obtain an orthonormal set of odd partial isometries vi such that 

∑k
i=1 xiN ⊆

∑k
i=1 viN ; 

note that the projections v∗i vi belong to N . If we apply this procedure to the family 
(uij)1�i,j�n, we obtain a finite orthonormal basis for the inclusion N ⊆ M . �
Corollary 9.8. The inclusion N ⊆ M := L∞(O+

F ) has the relative Haagerup property.
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