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CHAPTER 18

Subjective and objective quality
assessment for volumetric video
Evangelos Alexioua, Yana Nehméb, Emin Zermanc,g, Irene Violaa,
Guillaume Lavouéb, Ali Akd, Aljosa Smolicf, Patrick Le Calletd, and Pablo Cesara,e
aDIS, Centrum Wiskunde en Informatica, Amsterdam, the Netherlands
bOrigami, LIRIS, Lyon University, Lyon, France
cSTC Research Center, Mid Sweden University, Sundsvall, Sweden
dIPI, LS2N, Nantes University, Nantes, France
eMultimedia Computing, TU Delft, Delft, the Netherlands
fV-SENSE, School of Computer Science and Statistics, Trinity College Dublin, Dublin, Ireland

As discussed in previous chapters, immersive video technologies create visual content
for human consumption, as they “attempt to emulate a real world through a digital or
simulated recreation” [1]. The reconstructed volumetric video can be viewed from any
angle, providing 6 degrees-of-freedom (DoF) interaction capabilities and is suitable for
extended reality (XR) applications, e.g., augmented reality (AR) or virtual reality (VR)
applications (see Part 5: Applications). However, the increased level of interactivity of-
fered to the user comes at the cost of a vast amount of data that needs to be processed
in a radically different way with respect to traditional video, which in turn prompted
further scientific research and active involvement of the MPEG and JPEG standard-
ization bodies [2,3]. Considering that human viewers are the end-users, a thorough
understanding of the human visual system (HVS) is necessary to ensure high quality of
experience (QoE), as discussed in Chapter 1.

Visual quality assessment is critical to ensure the highest QoE in media technologies.
Volumetric video might undergo distortions during processing, compression, transmis-
sion, and rendering, which negatively affect the fidelity of the original content. This
creates a need for mechanisms that quantify these distortions; that is, new methods to
capture subjective quality scores and predict the perceived quality of the content dis-
played to the viewer. Such mechanisms can be helpful in selection of optimal schemes
and tuning of parameters in perceptual terms to improve the QoE. For instance, es-
timated quality scores are commonly employed to optimize the efficiency of content
delivery systems by increasing the effectiveness of compression and transmission meth-
ods, considering the trade-off between quality and data size.

g Emin Zerman was with V-SENSE, School of Computer Science and Statistics, Trinity College Dublin,
Dublin, Ireland at the time of writing this chapter.
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Figure 18.1 Primary elements defining the topology of two commonly used representa-
tion methods for volumetric video: point cloud and mesh. Points in 3D space for a point
cloud are shown on left, and vertices plus edges for a mesh are shown on right. See Fig. 18.2
for the rendering with color information.

The problem of visual quality assessment has been well-studied for traditional video.
Decades of studies on how to assess the quality brought many standards and recom-
mendations, which detail test methodologies, experimental designs, and evaluation
procedures for reproducible subjective quality experiments [4–6]. Similarly, many ob-
jective quality metrics were developed for the assessment of traditional image and video
quality [7]. Despite the breadth of video quality estimation solutions for traditional
video, extending the methodologies and algorithms devised for traditional media for-
mats to immersive contents is not trivial. For instance, new subjective quality assessment
methods are required to accommodate the higher DoF and to imitate real-life con-
sumption of such richer imaging modalities. Furthermore, since the volumetric video
is represented by data types, inherently different than pixels on a regular grid, corre-
sponding objective quality metrics are designed differently.

Volumetric contents are most frequently delivered in the form of 3D polygonal
meshes, or 3D point clouds [8]. For a 3D polygonal mesh, the model shape is defined
by a set of vertices accompanied by connectivity information to form polygons (typi-
cally triangles), whereas the color information for the polygonal (or triangular) faces is
determined through texture maps. A 3D point cloud representation is defined by a set
of points placed on 3D space, with point coordinates determining the shape, and asso-
ciated color attributes the color of the model, as shown in Fig. 18.1. Hereafter, we refer
to them simply as meshes and point clouds. Both of them have unique characteristics
and pose different challenges for visual quality assessment.

Volumetric video is essentially a collection of 3D models, which are played back at a
certain frame rate, which gives the viewer the illusion of a continuous movement. This
is the same principle still used in traditional video. As the advances and findings in image
quality assessment studies were useful for traditional video quality, the findings for static
3D models will bring insight into the quality assessment of dynamic sequences that form
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volumetric video. Therefore, in this chapter, we cover subjective and objective quality
assessment methods for both static and dynamic 3D models, represented as both point
clouds and meshes. In particular, we provide the following:
• An overview of subjective quality assessment methodologies with respect to the

mode of inspection (i.e., non-interactive and interactive)
• A descriptive list of publicly available subjectively annotated datasets
• A summary of user studies that compare different parameters in the design of sub-

jective quality experiments
• An overview of objective quality metrics grouped per operating principle (i.e.,

model-based and image-based)
• A unified table with publicly available objective quality metrics
• Advantages and disadvantages of different objective quality assessment approaches

18.1. Subjective quality assessment

As the quality is defined as a subjective trait in the context of multimedia signal pro-
cessing [9], the golden standard to obtain quality values for the volumetric video is to
conduct subjective user studies. Nevertheless, subjective experiments are resource and
time expensive to conduct, as they require careful experiment design, expertise on the
subject matter, a dedicated space to conduct the user study, and participants’ and ex-
perimenters’ time. Although the objective quality metrics can provide estimated quality
scores much faster, subjective evaluations are crucial in quality assessment, as they pro-
vide ground truth data for further research and development.

Commonly, subjective experiments are designed according to standards recom-
mended by standardization communities [4,5] or expert groups formed by re-
searchers [6]. The standardization efforts for immersive imaging technologies are still
underway. Recently, a new methodology has been standardized for the evaluation
of omnidirectional content [10,11]; however, this only takes into account rotational
movements in 3DoF, which are not suitable for volumetric videos. Work items cur-
rently under study in International Telecommunication Union (ITU) involve subjective
methodologies for interactive VR [12] and QoE assessment of XR tele-meetings [13].
Nevertheless, currently, there are no specific standards or recommendations for the new
volumetric video.

The existing recommendations and standards for traditional images and video do
not take 6DoF interaction into account, as viewers are essentially passive spectators. In
other words, in traditional imaging, the viewers can see the entire visual stimulus (i.e.,
images or video) whenever they are looking at the display. Once they are presented the
stimulus, they can inspect it for a fixed duration (e.g., around 10 seconds is a common
choice [4]). After this duration, they are asked to either vote on the quality or select the
preferred stimulus, depending on the adopted test methodology.
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Figure 18.2 Illustration of different aspects affecting the perception of volumetric content:
colorless vs colored, point size for point clouds, and lighting for meshes. Top row refers
to point cloud representation: (top-left) colorless point cloud, (top-center) colored point
cloud with point size 1, (top-right) colored point cloud with point size 3. Bottom row refers
to mesh representation: (bottom-left) colorless surface, (bottom-center) textured surface,
(bottom-right) textured surface rendered with lighting.

For volumetric video, seeing the whole content at once is not possible, as the con-
tent is occluding itself at any given time due to its 3D nature. To ensure that the
collected subjective quality scores are representative for the whole volumetric video,
the experimenter needs to ensure that the volumetric video is inspected properly by the
subjective experiment participants. There are two main ways to facilitate this: let view-
ers interact with the volumetric video themselves or present a representative stimulus
(e.g., a sequence of images from predefined viewpoints) in which the viewer’s inter-
action is non-existent. The former methods better simulate real-life use cases of 3D
media consumption, whereas the latter approaches provide the same experience across
subjects granting reproducibility, and enable utilization of well-established practices that
have been developed for evaluation of traditional video.

There are many aspects that need to be taken into account while designing and
conducting subjective user studies, in addition to the user interaction aspect discussed
above. The volumetric video can be represented with different 3D formats (e.g., meshes
and point clouds), which may contain different attributes; these models can be colorless,
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Table 18.1 Various aspects in subjective user studies for volumetric video.
Aspects Variables
3D Representation Mesh, Point Cloud
Temporal Variation Static, Dynamic
Attributes Colorless, Colored
Mode of Inspection Passive, Interactive
Methodology Single stimulus, Double stimulus, Multiple stimulus, Pairwise

comparison
Distortion Types Noise, Compression, Simplification, Smoothing,

Sub-sampling, Transmission error
Rendering Parameters Lighting, Background, Point size (for point clouds)
Display Devices 2D monitors, 3D monitors, Head-mounted displays,

Smartphones

colored, or textured. Moreover, there are different rendering parameters that should be
configured, which affect the appearance of the models. In Fig. 18.2, examples are pre-
sented regarding the effect of the lighting on textures meshes and the point size on point
clouds, which, if not carefully chosen, may lead to the appearance of holes (small point
size) or patchy areas (large point size). Subjective experiments may also use different dis-
play devices or evaluation methodologies to collect quality scores. These experiments
make use of either static or dynamic 3D models, and they might feature various types
of practical distortions; such as additive or multiplicative noise, mesh simplification or
point cloud sub-sampling, compression, transmission, and smoothing. A summary of all
these aspects can be seen in Table 18.1.

In this section, we categorize the scientific efforts on subjective quality assessment
with respect to the mode of inspection, which dictates if and how the viewer will
interact with the visual stimulus. In each subsection, we further divide the studies with
respect to the 3D representation.

18.1.1 Non-interactive user studies
One of the ways to collect subjective quality scores for volumetric video is to limit
the user interaction completely (i.e., the viewer cannot interact with the stimulus).
In this case, a certain visualization technique is used to create visual stimuli, and the
volumetric video is represented to the participants of the subjective test in the same
manner. There might be various approaches in creating the visual stimuli, which mostly
create traditional images or a traditional video that is composed of rendered images of
the volumetric video content.

A common way to create these video sequences is to select a certain camera trajec-
tory (e.g., a camera rotating around the object, while staying on the horizontal plane
and looking towards the object, as shown in Fig. 18.3). Rendering images from these
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Figure 18.3 One common method to create videos for subjective experiments with no user
interaction is to create traditional videos of the volumetric video sequences with a fixed
camera trajectory, as shown above. Sample renderings of such a video are shown below.
Attribution: The 3D camera model in the figure is created by Jesse Johnson and is licensed
under Creative commons attribution (CC BY 4.0).

camera locations and sequencing them as video frames will create a traditional video,
which shows the volumetric video from many different viewpoints. Following their cre-
ation, these video sequences are shown to the subjective test participants, who in turn
determine the quality of the volumetric video sequence. In this setup, the viewer does
not and cannot interact with the volumetric video itself, which means that the observer
cannot change the viewpoint and can only watch the pre-rendered video. Therefore the
user is passive in this scenario.

Although this lack of interaction is a disadvantage for the viewer, it is also an advan-
tage for the experimenter, since this lack of interaction also removes any inter-viewer
variation that might occur due to interactivity, i.e., they ensure that the same stimuli
will be seen by all participants. Moreover, these approaches do not require complex
rendering software or devices, since the resulting still images or videos can be eas-
ily visualized on 2D screens using commodity software, and they minimize external
biases and conditions that can influence the final results, such as novelty effect or cyber-
sickness.

https://sketchfab.com/Jesse_Johnson
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In the following subsections, we discuss how the subjective user studies are con-
ducted in the literature without user interaction, after grouping them per 3D content
representation (e.g., point clouds and meshes).

18.1.1.1 User studies for point clouds

The majority of non-interactive experiments in the literature of point cloud quality
assessment, focuses on static contents [14–21]. When evaluating static contents in a non-
interactive manner, the experimenter does not have to worry about possible interaction
effects between the camera movement and the sequence actions. For example, by simply
using circular camera paths, the content will be visualized by all angles without missing
information regarding the visual quality of occluded regions. Passive inspection has
also been used for dynamic contents [22–24], using predefined camera paths to ensure
the same user experience. Moreover, different types of distortions have been studied
in the literature: from noise in geometric and textural information of point clouds
[15,25–27], to compression artifacts [14–20,22], rendering approaches [19–21,27] and
adaptive streaming algorithms [24]. By default, point clouds lead to the perception of
holes; hence, the size of points is typically configured so as to enable visualization of
watertight objects. In most studies, the experimenters assign the same point size for
an entire model, whereas in some experiments different point sizes are assigned based
on local densities [14,28,29]. Finally, double stimulus variants denote the most popular
evaluation methodologies.

Javaheri et al. [14] evaluate static models representing inanimate objects and human
figures at three quality levels, using a spiral camera path moving around a model from a
full view to a closer look to capture images from different perspectives. Cubic geometric
primitives of adaptive size based on local neighborhoods were employed for rendering
purposes. Animated sequences were created and rated by subjects, using the sequen-
tial double stimulus impairment scale (DSIS) methodology. The color attributes of the
models remained uncompressed to assess the impact of these geometry-only degrada-
tions. Su et al. [15] employed a virtual camera orbiting around the point cloud models
at a fixed distance to capture the views, which were displayed using the DSIS method-
ology with simultaneous visualization of the reference and distorted stimuli. A wide
set of colored models were distorted using different types of degradations, including
Gaussian noise in both topology and texture, octree down-sampling, and compression
artifacts from the MPEG test models. More recently, Lazzarotto et al. [16] conducted a
crowd-sourced user study to evaluate compression distortions from both conventional
and learning-based codecs. The point clouds were rendered using splats of adaptive size,
with the camera orbiting at a fixed distance.

Conducting experiments in a single laboratory setting can make questions arise
about the generalizability of the results. Even when standardized procedures are adopted
to select and screen users, there might be human-related biases that can influence the
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results. For this reason, cross-laboratory testing helps in checking the validity and in
corroborating the outcomes of the test. Cruz et al. [17] report the results of a subjective
evaluation campaign that was issued in the framework of the JPEG Pleno [3] activities.
Subjective experiments were conducted in three laboratories for quality assessment of
colored point clouds under an octree- and a projection-based encoding scheme, using
the DSIS methodology. A different camera path was defined per content, and a fixed
point size was specified per model and degradation level. This is reported to be the
first study making use of contents consumed outer-wise (e.g., objects, human figures)
and inner-wise (e.g., scenes). Perry et al. [18] report experiments that were performed
in four independent laboratories that participated in the relevant JPEG exploration
study activities, evaluating the performance of V-PCC and G-PCC using colored point
clouds. The DSIS with side-by-side visualization was employed using fixed-size point
primitives to display the models. The experimental setup of each laboratory varied; yet,
the collected subjective scores exhibited high inter-laboratory correlation.

In some early studies, conversion to mesh was considered as an alternative for ren-
dering point clouds before being assessed. The degradations under test were applied on
the raw point clouds; subsequently, a surface reconstruction algorithm was applied to
render the 3D models. Javaheri et al. [27] performed subjective evaluation of de-noising
algorithms against impulse noise and Gaussian noise. Video sequences of the reference
and the degraded models after reconstruction using the screened Poisson method [30]
were sequentially shown to human subjects, before rating the visual quality of the latter.
Alexiou et al. [19] present a study where subjective experiments were conducted in
five test laboratories to assess the visual quality of colorless point clouds using the same
reconstruction algorithm as a rendering methodology. The point clouds were degraded
using octree-pruning, and the observers evaluated the mesh models under a simulta-
neous DSIS methodology. Although different 2D monitors were employed, subjective
scores were found to be strongly correlated among the participated laboratories. In [20],
the same dataset was evaluated under various 3D display types/technologies (i.e., passive,
active, and auto-stereoscopic).

Different point-based and mesh rendering methodologies were employed for sub-
jective quality evaluation by Javaheri et al. [21]. The point clouds were distorted by
geometric compression artifacts and rendered using three approaches: colorless point
primitives of fixed size with shading; point primitives of fixed size, rendered using
the original texture information without shading; and colorless meshes obtained af-
ter screened Poisson surface reconstruction, with shading. Each rendering approach was
evaluated in separate sessions, using the sequential DSIS methodology.

The aforementioned studies focused on evaluating static contents under various
degradations and rendering setups. Few studies have been involved with evaluating dy-
namic sequences using non-interactive approaches. Schwarz et al. [2] evaluate both static
and dynamic colored point cloud models under several encoding categories, settings,
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and bitrates, from a quality assessment campaign that was conducted in the framework
of the call for proposals issued by the MPEG committee [31]. The contents were ren-
dered using cubes as primitive elements of fixed size; animated image sequences of
the models captured from predefined viewpoints were generated and assessed using the
absolute category rating (ACR) methodology. Subjective evaluations of a volumetric
video data set that was acquired and released in the context of the study was performed
by Zerman et al. [23], under compression artifacts from the MPEG V-PCC. The point
clouds were rendered using primitive ellipsoidal elements of fixed size, and animated
sequences were generated from predefined camera paths. The stimuli were subjectively
assessed using two methodologies; that is, a side-by-side evaluation with DSIS and a
pairwise comparison.

The previous studies focused on evaluating a single point cloud content at the time,
which, depending on the context, might not be realistic. For example, several objects
can be placed and viewed at the same time in a virtual space, or in a real-time commu-
nication scenario, multiple people could be present in the same scene. In [24], subjective
quality assessment of dynamic, colored point clouds is conducted in an adaptive stream-
ing scenario hosted by the system described in [32], in which more than one models is
placed in the same scene under different arrangements, and were visited with different
navigation paths. The streamed cues were subjectively evaluated using an ACR method-
ology in a desktop setting. For the purposes of the study, volumetric video sequences
were selected and encoded at different quality levels using V-PCC. Among the ex-
perimental parameters, different bandwidth conditions, bitrate allocation schemes, and
prediction strategies were examined.

18.1.1.2 User studies for meshes

Pioneering subjective quality tests involving meshes were conducted on still rendered
images [33,34]; those two early studies both assessed the visual impact of simplifica-
tion artifacts and concerned static and geometry-only meshes; the same applies in [35],
which evaluated the impact of geometry compression. Subsequent passive interac-
tion experiments considered meshes with color/texture attributes [36–41] or dynamic
meshes [8,42,43]. These studies are detailed below. They considered different types of
stimuli (still images or videos) and different protocols (ACR, DSIS, pairwise compari-
son), adapting existing image/video methodologies for passive inspection of 3D models
by observers: 2D still images or generated videos of animated models.

Watson et al. [33] used still rendered images to evaluate the visual impact of mesh
simplification using the DSIS methodology. Váša and Rus [35] and Doumanoglou et
al. [38] also used still rendered images in their studies to evaluate the impairment of
geometry compression and the visual impact of geometry and texture resolution on
the quality of textured human body reconstructed meshes, respectively. Both of these
studies considered a pairwise comparison methodology. Rogowitz et al. [34] conducted
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two subjective quality assessment experiments: the first involved 2D static images of
simplified 3D objects, whereas the second was performed on rendered videos of these
objects in rotation. The results showed that lighting conditions have a strong influence
on perceived quality and that observers perceive the quality of still images and ani-
mations differently. The authors concluded that the quality of 3D objects cannot be
correctly assessed using static 2D projections (still images may mask the effect of light
and shading), and thus it is important that the object moves.

Based on these findings, some researchers allowed users to interact freely and in
real time with the model by rotating and zooming it, as detailed in Section 18.1.2.2.
However, others decided to control the viewpoints visualized by the user showing an
animation of the 3D object to avoid cognitive overload that can alter human judgments.

Guo et al. [37] opted for this approach to assess the influence of lighting, shape,
and texture on the perception of artifacts for textured meshes. They animated each
object in the dataset with a low-speed rotation and generated videos that were displayed
to observers during the test. The subjective study was conducted using the pairwise
comparison method. The same experimental procedure was adopted by Vanhoey et
al. [44] to investigate the impact of light-material interactions on the perception of
geometric distortion of 3D models.

Pan et al. [36] conducted a subjective experiment on textured meshes to assess the
perceptual interactions between the geometry and color information. They considered
only geometry and texture sub-sampling distortions. They animated their meshes with
a slow rotation and the experiment was based on the DSIS methodology. Nehmé et
al. [39] provide the first public dataset for meshes with vertex colors produced in VR.
The dataset was obtained through a subjective study based on the DSIS methodology.
The stimuli were rendered at a fixed viewing distance from the observer in a virtual
scene, under different viewpoints and animated in real-time with either slow rotation
or slow zoom-in. The study allowed to analyze the impact of several factors, such as
viewpoints and animations on both quality scores and their confidence intervals.

The above works considered quality assessment of static meshes. Váša and Skala [42]
and Torkhani et al. [43] were the first authors to propose quality assessment experiments
involving dynamic meshes (without color/texture). Distortions included diverse types
of noise and compression. The rated stimuli were videos of mesh sequences, rendered
from fixed viewpoints. Used methodologies were respectively single stimulus rating [43]
and multiple stimulus rating [42].

More recently, Zerman et al. [8] considered the ACR with Hidden Reference
(ACR-HR) methodology to compare dynamic textured meshes and colored point
clouds in the context of a VV compression scenario utilizing the appropriate state-
of-the-art compression techniques for each 3D representation. They built a database
and collected user quality opinion scores using rendered version of VVs, shown to the
participants on an LCD display.
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The previous experiments were conducted in laboratories, under controlled envi-
ronments and with high-end equipment. Along with laboratory subjective experiments,
crowd-sourcing experiments have become very popular in recent years, especially dur-
ing COVID-19 pandemic, where participants could not be physically present in the
lab. However, conducting subjective quality assessment tests in a crowd-sourcing set-
ting imposes several challenges, notably those related to the lack of control over the
participants’ environment and the reliability of the participants, since the latter are not
supervised. A recent study was conducted to investigate whether a crowd-sourcing test
can achieve the accuracy of a laboratory test for 3D graphics [45]. For this purpose, the
authors designed a crowd-sourcing experiment that replicates as much as possible the
lab experiment presented in [40], which was conducted in VR. Specifically, they used
the same dataset of 3D models and the same experimental methodology (i.e., DSIS).
Since in crowd-sourcing the test environment cannot be fully controlled, videos of ro-
tating stimuli were displayed to the participants to limit their interactions with the 3D
objects. The results of this study showed that under controlled conditions and with
a proper participant screening approach, a crowd-sourcing experiment based on the
DSIS method can be as accurate as a laboratory experiment. It is worth mentioning
that crowd-sourcing is quite faster to evaluate large datasets, yet the most time intensive
task is building and designing the experimental framework (or setup) (user-friendly tool,
control viewer environment, add screening test, etc.). Based on these findings, a large-
scale crowd-sourcing experiment was conducted to rate the perceived quality of the
largest dataset of textured meshes to this date [41]. This dataset allowed to analyze the
impact of the distortions and model characteristics (geometric and color complexity)
on the perceived quality of textured meshes.

18.1.2 Interactive user studies
An alternative way to collect subjective user quality scores is to conduct user studies
in more interactive experimental settings, which account for more realistic scenarios
of consumption for 3D content. Considering that there are no recommendations for
interactive protocols, most of the efforts make use of well-established methodologies
(e.g., ACR or DSIS) in experimental setups ranging from desktop arrangements to XR
applications, which accommodate interactivity with varying DoF.

In all cases, the contents are placed in a virtual scene, designed by the experimenter
depending on the task at hand (i.e., background, lighting, etc.). Moreover, the users are
given the means to handle the camera position and orientation at any given moment to
inspect the contents under evaluation at their will. For instance, in desktop setups the
contents are displayed on flat-screen monitors with user interactions typically being reg-
istered through the mouse cursor or computer keyboards. In XR settings, the contents
are visualized through a head-mounted display (HMD), with the users controlling their
viewpoint either by physical movements in the real world, or by controllers.
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By design, interactive evaluation protocols lead to individual visual experiences
across users, which ultimately affect their opinion regarding the visual quality of the
content under inspection. However, it is advocated that such methodologies are better
adjusted to the interactive nature of richer imaging modalities, with user quality scores
inherently containing the preferred type of interaction. To compensate this uncertainty
in user ratings, it is common for the experimenters to either recruit more participants
or to allow interactions without imposing time limitations. Finally, enabling interactive
protocols allows the experimenter to analyze the behavior of users with 3D visual data,
and explore inter-dependencies between interactivity patterns and perception of quality.

In the following subsections, we discuss subjective user studies using interactive eval-
uation protocols reported in the literature, clustered per 3D content representation.

18.1.2.1 User studies for point clouds

The interactive user studies for point clouds generally use three different platforms:
desktop devices [25,28,29,46–49], AR [26], and VR [50–52] headsets. Many studies
focus on static point clouds [25,26,28,29,46–48,50], whereas only a couple of the stud-
ies focus on dynamic point clouds [49,51]. Similarly to passive inspection experiments,
studies on both colorless [25,26,46] and colored [28,29,47–52] models have been con-
ducted, while different types of distortions and point size selection strategies have been
employed. Lastly, double stimulus methodologies are more frequently used.

Interactive variants of the DSIS and ACR methodologies were first proposed by
Alexiou et al. [25,46] to assess the quality of geometry-only point clouds in a desktop
setting, using the mouse cursor to change the viewpoint. In both studies, Gaussian noise
and octree-pruning were employed to simulate position errors from sensor inaccuracies
and compression artifacts, respectively. In these user studies, the models were displayed
side-by-side using points of minimum size.

The visual quality of colored point clouds was evaluated by Torlig et al. [47] in
subjective experiments that were performed in two separate laboratories. Orthographic
projections after real-time voxelization of both the reference and the distorted models
were shown to the subjects, using the simultaneous DSIS methodology. Point clouds
representing both inanimate objects and human figures were selected and compressed
using the CWI-PCL codec [49]. The results showed that subjects rate more severely
distortions on human models. Moreover, using this codec, marginal gains are brought
by color improvements at low geometric resolutions, indicating that the visual quality
is rather limited at high sparsity. In a study that followed [28], the same dataset was
assessed under the same methodology using a different rendering scheme. The point
clouds were rendered using cubes of locally adaptive sizes, with the rating trends being
found very similar to those of Torlig et al. [47].

A comprehensive quality assessment study of the MPEG point cloud compression
test models is presented with subjective evaluation experiments conducted in two inde-
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pendent laboratories [29]. Static, colored point clouds with diverse characteristics were
employed and compressed following the MPEG common test conditions. The encoded
models were displayed using splats of adaptive size based on local sparsity, and evaluated
in an interactive platform using the simultaneous DSIS methodology. As part of the
study, subjective experiments under a pairwise comparison protocol were performed to
conclude on preferable rate-allocation strategies for geometry, and geometry-plus-color
encoding. Based on the findings, human subjects prefer the distortions from regular
down-sampling (Octree) over triangulated surface approximations (TriSoup), at both
low and high bitrates.

In previous studies, the users were able to rotate, zoom and translate the models,
and interact without timing constraints. Yang et al. [48] conducted subjective quality
assessment on a large set of widely-employed colored models, allowing only rotation
under a fixed distance. Several degradation types affecting both the geometry and the
color information were introduced, consisting of octree-pruning, noise injection in the
coordinates and the RGB values, random down-sampling, and combinations of the
above to further augment the visual impairments. The experiments were conducted
using a single stimulus protocol.

Despite the convenience of desktop environments to perform interactive testing,
their setup is often less realistic when compared to immersive, XR environments. The
first attempt was made by Alexiou et al. [26], making use of an AR setting to evaluate
the visual quality of colorless point clouds, subject to octree-pruning and Gaussian noise.
A simultaneous DSIS methodology was employed, and a separate session was issued per
distortion type. The models were displayed using point primitives of minimum size and
were placed as virtual assets in the real world, with users perceiving them via an HMD,
and interacting with 6DoF via physical movements.

Perceptual quality of static point clouds in VR was evaluated in a recent study [50].
The users were able to interact with the stimuli with 6DoF via both physical movements
and using the controllers, in a virtual scene that was designed to avoid distractions. The
color encoding modules of the MPEG G-PCC test model were evaluated using octree-
based geometry compression under two double stimulus protocols. The models were
displayed using quads of adaptive size that were interpolated before rendering to smooth
the surfaces. The user behavior during evaluation was also analyzed to provide further
insights. Wu et al. [52] present a study evaluating a large set of colored, static point
cloud contents in a 6DoF VR viewing condition. Separate sessions were issued for point
clouds depicting human figures and objects. The DSIS methodology with side-by-side
inspection was used in all cases, including hidden references to compute DMOS. The
point clouds were rendered using minimum point size, while the subjects were able to
navigate in the virtual space only by physical movements.

Desktop-based setups were also used for quality assessment of dynamic point clouds.
In the work of Mekuria et al. [49], subjective experiments were conducted in the pro-
posed 3D tele-immersive system, where the users were able to interact with naturalistic
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(dynamic point cloud) and synthetic (computer generated) models in a virtual scene.
The participants were able to navigate in the virtual environment through the use of the
mouse cursor in thw desktop setting. The proposed encoding solution (CWI-PCL) that
was employed to compress the naturalistic content of the scene was evaluated, among
several other aspects of quality (e.g., level of immersiveness and realism).

Visual quality assessment using dynamic point cloud contents in VR under both
3DoF and 6DoF interaction scenarios is presented in the work of Subramanyam et
al. [51]. Human figures from real-life acquisition and artificially generated were encoded
using the V-PCC and the CWI-PCL, which denotes the anchor codec of the MPEG
studies [49]. The models were displayed in the virtual scene using quads of fixed size
and evaluated under an ACR-HR protocol. The users were able to navigate by physical
movements in the 6DoF scenario, while remaining sited in the 3DoF counterpart.
Results showed the superiority of V-PCC at low bitrates, whereas statistical equivalence
was found with the MPEG anchor at higher bitrates, depending on the content. Finally,
the inability of the codecs to achieve transparent visual quality was remarked. In a
subsequent study [53], the subjective quality scores between these 3DoF and 6DoF VR
settings were compared to pre-recorded videos visualized on common 2D screens to
conclude on the effects of different viewing conditions.

18.1.2.2 User studies for meshes

Many authors have adopted for free interaction in their subjective tests for evaluating the
quality of meshes. The majority of these works were performed on 2D screen: Lavoué
et al. [54], Corsini et al. [55], and Torkhani et al. [43] conducted subjective experiments
based on single stimulus methods (derived from ACR), whereas Lavoué et al. [56] and
Silva et al. [57] implemented double stimulus methods (derived from DSIS). In these
experiments, the observers were able to freely interact (i.e., free-viewpoint interaction)
with the 3D models to evaluate and rate their quality. All those studies considered
meshes without color or texture, and they evaluated the impairments introduced by
various geometry distortions (e.g., noise, compression, smoothing, watermarking).

An early attempt of a 3D tele-immersive system allowing real-time communica-
tion between natural representations of humans and synthetic avatars, was presented
by Mekuria et al. in [58]. The natural representations in this setting were rendered
as meshes. For purposes of subjective quality evaluation, a pre-recorded natural hu-
man moving was employed as the test stimulus. The original representation and three
degraded versions after encoding with three real-time mesh coding solutions were sub-
jectively evaluated from near and far distance.

Few experiments involving meshes have been conducted in immersive environ-
ments. Christaki et al. [59] subjectively assessed the perceived quality of meshes (without
color/texture) subject to different compression codecs in a VR setting using the pair-
wise comparison method. The content was viewed freely as a combination of natural
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navigation (i.e., physical movement in the real-world) and user interaction. Gutiérrez et
al. [60] used the dataset of textured meshes provided in [37] to evaluate the perception
of geometry and texture distortions in mixed reality (MR) scenarios. They also analyzed
the impact of environment lighting conditions on the perceived quality of 3D objects
in MR. The experiment was based on the ACR-HR method and the observers were
asked to freely explore the displayed 3D models.

18.1.3 Publicly available datasets
Some of the works presented above have publicly released their datasets. Table 18.2
outlines the publicly available subjective quality datasets for 3D content. For meshes, the
available datasets concern mostly geometry-only content [19,35,42,43,54,56,57] and are
all rather small (see the first 7 rows in Table 18.2). The only public dataset involving
meshes with vertex colors is provided by Nehmé et al. [39] and contains 480 distorted
stimuli. For textured meshes, three datasets exist: [37], [8] and [41]. The first two datasets
contain, respectively, 136 and 28 stimuli, whereas the latter contains more than 343k
stimuli, of which 3000 (a generalized and challenging subset) are associated with mean
opinion scores (MOS) derived from subjective experiments, and the rest with predicted
quality scores (pseudo-MOS), making it the largest quality assessment dataset of textured
meshes to date.

Regarding point clouds, only two datasets concern colorless models: [25,26]
and [21], with the rest considering colored models. Among the latter, the largest avail-
able datasets are the WPC by Su et al. [15], the SJTU-PCQA by Yang et al. [48] and
the SIAT-PCQD by Wu et al. [52]. The WPC is composed of point clouds captured
in a laboratory setting by the authors, which are degraded by different types of distor-
tions; the SJTU-PCQA makes use of contents that have been extensively utilized in
standardization activities under various compression distortions; the SIAT-PCQD in-
volves point clouds from the MPEG and JPEG repositories and a publicly accessible 3D
content sharing platform, which are encoded using only V-PCC.

The majority of the reported datasets for both meshes and point clouds were gener-
ated through experiments that were conducted on desktop settings. In particular, only
the studies presented in [26] and [39,50,52,53] were conducted in immersive environ-
ments, with the former performed in AR, and the latter in VR platforms, respectively.

As discussed in Section 18.1, there are various aspects that differ for subjective ex-
periments during the data collection step. All these aspects and different parameters are
listed in the columns of Table 18.2. Most of these aspects are either self-describing or
introduced at the beginning of this chapter.

Regarding the “Methodology” column, although subjective evaluation method-
ologies have specific instructions and distinctions among themselves, for the sake of
simplicity, we only consider the number of stimuli test participants see to provide a vote.
For single stimulus methodologies, the participants decide on the subjective quality by
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Table 18.2 Publicly available subjectively annotated datasets for meshes & point clouds.
Dataset 3D Repre-

sentation
Temporal
Variation

Attributes Mode of
Inspection

Methodology Distortion
Types

# Stimuli
rated

# Ratings
per
Stimulus

Raw
Scores

LIRIS / EPFL
[54]

Mesh Static Colorless Interactive Single stimulus Noise addition
Smoothing

84 12 �

LIRIS Masking
[56]

Mesh Static Colorless Interactive Double
stimulus

Noise addition 24 11 �

IEETA
Simplification
[57]

Mesh Static Colorless Interactive Double
stimulus

Simplification 30 65 X

UWB #1 [35] Mesh Static Colorless Passive Pairwise
comparison

Compression 63 69 �

RG-PCD [19] Mesh Static Colorless Passive Double
stimulus

Octree-pruning 30 126 �

UWB #2 [42] Mesh Dynamic Colorless Passive Multiple
stimulus

Compression
Noise addition

36 37∼49 X
MOS&CI

3D Mesh
Animation
Quality [43]

Mesh Dynamic Colorless • Passive
• Interactive

Single stimulus Noise addition
Compression
Transmission
error

286 • 16
• 25

�

LIRIS Textured
Mesh [37]

Mesh Static Texture maps Passive
(Generated
videos)

Pairwise
comparison

- On geometry:
Compression
Simplification
Smoothing
- On texture:
Compression
Sub-sampling

• 100×2
renderings
• 36×2
renderings

• 11∼15
(Exp.1)
• 10∼11
(Exp.2)

X
preference
matrices

Nehmé et al. [41] Mesh Static Texture maps Passive
(Generated
videos)

Double
stimulus

Compression
Simplification

• 3000
(MOS)
• 340750
(Pseudo-MOS)

45 �

continued on next page
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Table 18.2 (continued)
Dataset 3D Repre-

sentation
Temporal
Variation

Attributes Mode of
Inspection

Methodology Distortion
Types

# Stimuli
rated

# Ratings
per
Stimulus

Raw
Scores

3D Meshes with
Vertex Colors
[39]

Mesh Static Vertex colors Passive
in VR(Slow
animations)

Double
stimulus

Compression
Simplification

480 24 X
MOS&CI

G-PCD [25,26] Point cloud Static Colorless • Interactive

• Interactive in
6DoF AR

• Single &
Double
stimulus
• Double
stimulus

Noise addition
Octree-pruning

50 • 2×20

• 21

�

M-PCCD [29] Point cloud Static Colored Interactive • Double
stimulus
• 2×Pairwise
comparison

Compression • 240

• 40 & 30

• 40

• 2×25

�

IRPC [21] Point cloud Static • 2×Colorless

• Colored

Passive
(Generated
videos)

Double
stimulus

Compression • 54

• 54

• 2×20

• 20

X
MOS

WPC [15] Point cloud Static Colored Passive
(Generated
videos)

Double
stimulus

Compression
Noise addition
Octree-pruning

740 30 X
MOS

VsenseVVDB
[23]

Point cloud Dynamic Colored Passive
(Generated
videos)

Double
stimulus &
Pairwise
comparison

Compression 32 19 �

continued on next page
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Table 18.2 (continued)
Dataset 3D Repre-

sentation
Temporal
Variation

Attributes Mode of
Inspection

Methodology Distortion
Types

# Stimuli
rated

# Ratings
per
Stimulus

Raw
Scores

VsenseVVDB2
[8]

• Point
cloud
• Mesh

Dynamic • Colored

• Texture
maps

Passive
(Generated
videos)

Single stimulus Compression • 136

• 28

23 �

ICIP2020 [18] Point cloud Static Colored Passive
(Generated
videos)

Double
stimulus

Compression 96 15∼27 X
MOS&CI

PointXR [50] Point cloud Static Colored Interactive in
6DoF VR

2×Double
stimulus

Compression 40 2×20 �

SJTU-PCQA
[48]

Point cloud Static Colored Interactive Single stimulus Compression
Noise addition
Scaling

378 16 X
MOS

SIAT-PCQD
[52]

Point cloud Static Colored Interactive in
6DoF VR

Double
stimulus

Compression 340 38 X
DMOS

LB-PCCD [16] Point cloud Static Colored Passive Double
stimulus

Compression 105 48 �

2DTV-VR-QoE
[53]

Point cloud Dynamic Colored • Interactive in
6DoF VR
• Interactive in
3DoF VR
• Passive
(Generated
videos)

Single stimulus Compression 72 • 26
• 26
• 25

�
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seeing only one stimulus. Similarly, for double stimulus methodologies, participants pro-
vide a rating after seeing two stimuli, one of which is generally the reference stimulus
(or source model). In multiple stimulus, this number is more than two, and in pairwise
comparison, participants choose the better quality stimulus from two stimuli presented
to them.

The “# Stimuli Rated” column includes the reference stimuli if they were rated
during the test (e.g., as hidden reference). Some datasets might have quality labels in
addition to the MOS values that are collected from participants. These quality labels
are generally estimated using a quality metric that shows very high correlation to the
MOS values. These labels are called pseudo-MOS, and their purpose is to increase the
number of labels for metrics training and evaluation.

The “# Ratings per Stimulus” column indicates the number of unique observations
made during the experiment, or the number of unique votes that was collected for
every stimulus.

Another important parameter for multimedia content quality datasets (images,
videos, audios, 3D graphics, etc.) is whether the individual quality scores of each par-
ticipant were shared and made publicly available. Although all the quality datasets share
MOS or preference scores, these values might not be enough to characterize the statis-
tical attributes and distributions of the individual votes [61]. Providing individual votes
can allow for further statistical analysis and research into the weaknesses of certain stim-
uli, use cases, or objective quality metrics [62,63]. Therefore, in Table 18.2, we identify
whether the indicated datasets share individual votes from participants in the “Raw
Scores” column.

18.1.4 Comparative studies
There are several studies focused on addressing the impact of different aspects (Ta-
ble 18.1), in subjective quality evaluation of volumetric content. The usage of different
types of 3D representation, the mode of inspection, the display devices, the rendering param-
eters, and the evaluation methodologies, are among the most relevant and popular in the
literature. Although some knowledge may be transferred from 2D imaging, which has
been well-studied, the effect of different variables for quality assessment of volumet-
ric video can only be quantified through scientific research and experimentation using
such contents. Hence, these studies are particularly important, as they can help us better
understand and identify interactions between influencing factors.

The first user study aiming at comparing point cloud against mesh representations
for compression of volumetric video is presented by Zerman et al. in [8]. The Google
Draco and JPEG encoding engines were employed for geometry and texture of mesh,
respectively, whereas V-PCC and G-PCC were recruited to encode geometry and color
of point cloud versions of the contents. As part of the study, the efficiency of the latter
MPEG point cloud codecs was also analyzed. All models were evaluated in a passive
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protocol using the ACR-HR for both content representations, while point clouds were
displayed using fixed-size point primitives. Results show that the point cloud encoding-
plus-rendering pipeline leads to better performance at low bitrates, whereas higher
quality levels are achieved by the mesh-based counterpart. However, the latter is at-
tained for bitrates that well-exceed the point cloud ones. Finally, among the MPEG
alternatives, the superiority of the V-PCC was confirmed.

Similarly, a subjective evaluation of volumetric videos using both point cloud and
mesh technologies is detailed in the work of Cao et al. [64]. Several additional factors
were considered in the experimental design, among which were the target bitrate, the
content resolution, and the viewing distance. To decrease the parameter space, for every
target bitrate, a manual identification of the optimal combination for model resolution
and compression parameters per viewing distance was performed in a perceptual sense.
The selected stimuli were evaluated following passive inspection in two experiments that
were carried out. In the first, the subjects rated the visual quality of models that were
displayed using both types of content representations under an ACR methodology. In
the second, a pairwise comparison between the same models represented as point clouds
and meshes was issued. Based on the results, subjects favored the point cloud alternative
at lower bitrates. Moreover, the viewing distance was found to be an important factor,
and mesh modeling was preferred at closer distances. At higher bitrates and distant
inspection, human opinions expressed equal preference.

In the study of Javaheri et al. [21], particular combinations of representations, attributes,
and rendering methodologies were examined for quality evaluation of static point clouds,
subject to compression distortions. In particular, the experiments were conducted using
(a) colorless point clouds, (b) colored point clouds, and (c) colorless meshes, to evaluate
the same point cloud distortions. Results show that different scoring behaviors might
be observed for the same compression impairments under a different selection. More-
over, the scoring deviations might vary per codec. Finally, it was suggested that texture
information might mask underlying geometric distortions.

Regarding the effect of adopting different modes of inspection for subjective quality
assessment, very few comparisons have been performed. Torkhani et al. [43] performed
both passive and interactive experiments for the same dataset of dynamic meshes, us-
ing a single stimulus protocol. They concluded that under most kinds of distortions
user interaction can affect the perceived quality; however, this impact depends on the
nature of the distortion (e.g., global vs local) and is hard to predict. Viola et al. [53]
conducted subjective experiments in 3DoF and 6DoF VR as well as with pre-recorded
videos in conventional monitors. Two sets of point clouds were employed, subject to
compression distortions. For one of the two sets, the viewing condition was deemed to
have a significant effect on the distribution of the scores, indicating differences between
interactive and non-interactive inspection. For the other set, however, the inspection
method had no effect on the scores. The study suggests that conclusions derived from
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either a non-interactive or interactive experiment can be roughly generalized, since the
effect of the inspection method on the collected scores was, if existent, marginal. In
particular, the interaction between codec and inspection method was not significant,
meaning that you would draw the same conclusions about the relative performance of
one codec with respect to the other in either interactive or non-interactive scenarios.
However, this study highlights that other factors, besides visual quality, might be im-
portant for the selection of inspection method; for example, the level of presence or
immersion, or the discomfort caused by cyber sickness.

Regarding the influence of different display devices, the collected user ratings from
an AR setting and an interactive desktop setup were compared in [65]. In both exper-
iments, colorless point clouds of minimum size were employed. The results revealed
similar rating trends in the presence of Gaussian noise, and differences under octree-
pruning. In particular, the authors claim that the former type of degradation leads to
clearly perceived artifacts independently of the type of devices, hence leading to high
correlation. Differences were also observed with respect to the shape of the models. Fi-
nally, higher confidence intervals, associated with subjective scores from the AR setting,
suggest a larger number of users to be involved in such experimental setups. Results
from a collaborative effort in the framework of the JPEG Pleno on point clouds were
reported in [20], where reconstructed mesh models from compressed, colorless point
clouds were assessed using various 3D display types/technologies (i.e., passive, active,
and auto-stereoscopic) in different laboratories. Inter-laboratory correlations and com-
parisons with quality scores for the same dataset evaluated in 2D monitors, show very
high correlation, suggesting that human judgments are not significantly affected by the
display equipment.

The majority of current comparative studies is focused on understanding the im-
pact of employing a different evaluation methodology on the obtained quality scores and
their accuracy. Specifically, Alexiou et al. [25] compared the results of an ACR and
a DSIS test, in which subjects were able to interact with the point clouds viewed on
screen. They found that, the DSIS method is more consistent in identifying the level
of impairments. The sequential DSIS and a newly proposed variant, namely alternating
DSIS, were employed to evaluate point cloud contents subject to color compression
distortions in [50]. In the former protocol, the reference model is presented to the user
followed by the distorted, whereas in the latter, the user is allowed to toggle between the
reference and the distorted at will. The experiments were conducted in VR with users
interacting with 6DoF. The results indicated that the alternating DSIS protocol leads to
lower uncertainty for the perceived distortions; it is faster, and generally preferred by the
participants. Recently, a comprehensive study [40] compared the performance of three
of the most prominent subjective methodologies, with and without explicit references,
namely ACR-HR, DSIS and SAMVIQ, to determine the best one for evaluating the
perceived quality of 3D graphics, especially in VR. The study was conducted in a VR
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environment using a dataset of meshes with vertex colors animated with slow rotation.
Results assert that the presence of an explicit reference is necessary to improve the ac-
curacy and the stability of the method. DSIS tends to be the most suitable method,
in terms of accuracy and time-efficiency, to assess the quality of 3D graphics. Authors
recommended the use of at least 24 observers for DSIS tests.

18.2. Objective quality assessment

Although subjective quality assessment provides ground truth quality scores for visual
stimuli, it is not feasible to carry out user studies for each scenario, especially when
there is a need to determine the quality for a large number of contents or for real-
time applications. In these cases, objective quality assessment methods (or objective
quality metrics) are particularly useful, enabling algorithmic quality estimation using
mathematical calculations and signal processing approaches.

Simple geometric or color distances/errors between 3D models are weakly cor-
related with human perception, since they ignore perceptual characteristics of the
HVS [23,54,66], analogously to the mean square error (MSE) and peak signal-to-noise
ratio (PSNR) measurements in 2D imaging. Therefore current efforts are concentrated
on perceptually driven visual quality metrics, which can be primarily distinguished in
top-down and bottom-up approaches. The former treat the HVS as a black box and
capture modifications in content features that are induced by distortions to estimate
perceived quality. The latter rely on computational models that describe properties of
the HVS, mainly to determine the visibility of errors caused by distortions. With the
rise of machine learning, a third category has recently emerged, consisting of metrics
that rely on purely data-driven approaches, which do not demand any explicit model.

Independently of the design, objective quality metrics can be categorized based on
their requirement for the original content (i.e., reference) at execution time as full-
reference (FR), reduced-reference (RR), and no-reference (NR). For FR metrics, the
distorted model is compared to its reference. For RR metrics, some reference data are
required as inputs, whereas for NR, no reference information is necessary. FR metrics
are generally employed to drive lossy processing operations, such as compression, trans-
mission, simplification, and watermarking. However, they have higher computational
overhead and are not always applicable, as the original content is not always available.
RR metrics make use of lightweight, descriptive features that are extracted from both
the reference and the distorted contents for comparison purposes. They are typically
employed when it is inefficient, or impractical to provide the entire original content,
such as in a video streaming scenario. NR metrics are the most practical in terms of
usage, yet they are often rather limited in terms of scope, i.e., tuned for a particular type
of distortion with limited generalization capabilities.

Finally, considering their operating principle, 3D quality metrics can be classified
as model-based and image-based (also known as rendering-based or projection-based)
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metrics. The model-based metrics operate on the 3D model itself (either mesh or point
cloud) and its attributes, such as texture maps or color values. The image-based metrics
function on the image domain and usually on projected views of 3D models on 2D
planar arrangements; i.e., they often apply image quality metrics (IQMs) on 2D snap-
shots of the rendered 3D model. The rest of this section is structured according to this
classification: In Section 18.2.1, model-based methods for point clouds and meshes are
described, whereas in Section 18.2.2, image-based metrics are reported for both types
of content representations.

18.2.1 Model-based quality metrics
The majority of model-based quality metrics are based on top-down FR approaches.
In FR quality metrics, a correspondence function is essential to enable comparisons
between the original (or reference) and the distorted contents. In conventional 2D
imaging, this is easily achieved by matching the pixel grids of the reference and the dis-
torted contents. However, this is not the case for 3D data, whose topology is altered by
geometric distortions that typically introduce dislocation and/or removal of 3D points.
Given the different 3D point (or vertex) populations and coordinates, the point match-
ing (i.e., correspondence) step between the reference and the distorted models becomes
an ill-posed problem. After establishing a correspondence, errors between attributes or
features associated to the matched points are computed.

Often, 3D data quality metrics identify point matches using the nearest neighbor
algorithm for simplicity reasons. In particular, following the most common conventions,
the original model is selected as the reference R and the distorted model is set under
evaluation T . Considering point clouds (or meshes), for every point (or vertex) t ∈ T ,
the nearest reference point (or vertex) rt ∈ R is identified, and a local error e(φt, φrt) is
computed between corresponding features φt and φrt . A global quality score qT →R is
obtained by pooling the local errors, as given in Eq. (18.1):

qT →R = 1
|T |

(∑
t∈T

e(φt, φrt)
m

)1/n

, (18.1)

where |T | is the number of points (or vertices) of T and m, n ≥ 1. Using n = 1, and
m = 1 or m = 2, the average or the MSE are obtained, respectively.

Note that qT →R is an asymmetric measurement, as qT →R �= qR→T . That is, by se-
lecting the distorted model as the reference, different sets of matched points (or vertices)
are obtained, resulting in different global quality scores. To obtain quality predictions
that are independent of the reference selection, it is common to use both models as
reference and apply a symmetric operation f (·) on the exported global quality scores,
such as the average or the maximum, as shown in Eq. (18.2).

q = f
(
qT →R, qR→T

)
. (18.2)
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Figure 18.4 Local neighborhood computation around a point p in a point cloud (left) and a
vertex v in a mesh (right). For the point cloud, the k-nearest neighbors with k = 24 and the
range search with radius r (r-search) approaches are depicted. The 1-ring neighborhood as
well as the r-search are illustrated for the mesh.

Another approach that has been widely used to provide a global quality score, is
the Hausdorff distance. It is defined as the greatest out of all the distances between the
points (or vertices) of T and the nearest/corresponding points (or vertices) of R. It can
be derived by using max pooling (instead of the aggregation in Eq. (18.1)) of local errors
that measure the Euclidean distance between a point (or vertex) t and its nearest rt. The
Hausdorff distance of the point cloud (or mesh) under evaluation T from the reference
R is computed as follows:

qT →R = max
t∈T

{min
r∈R

{d(t, r) } } = max
t∈T

{d(t, rt) } , (18.3)

where d(·) is the Euclidean distance.
Finally, it is rather frequent for both point cloud and mesh model-based metrics

to take into consideration local neighborhoods around a queried point (or vertex) to
compute an attribute or a feature φ. For point clouds, the most common algorithms
are the k-nearest neighbor and the range search with radius r, denoted as k-nn and r-
search, respectively, and shown on the left side of Fig. 18.4. The former identifies the
nearest k points to a queried point p, whereas the latter returns all points enclosed in
a sphere with center p and radius r. For meshes, the 1-ring neighborhood and the r-
search, illustrated on the right side of Fig. 18.4, are employed. The first refers to the set
of all vertices connected with the queried vertex v by an edge. The second, is defined
as the connected set of vertices belonging to the sphere with center v and radius r. In
this case, the intersections between this sphere and the edges of the mesh are also added
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to the neighborhood. Note that the k-nn (for point clouds) and 1-ring (for meshes)
approaches lead to neighborhoods of arbitrary extent, depending on the point density
or vertex sampling of the model. The k-nn approach has a fixed population (equal to
k), and the 1-ring is straightforward to compute. Concurrently, the r-search approach
identifies same volumes that may enclose varying number of samples.

In what follows, we first discuss the model-based metrics for point clouds, and then
those for meshes.

18.2.1.1 For point clouds
The development of point cloud objective quality metrics has been an active research
field the last five years. This interest was fueled by the MPEG and JPEG standardization
activities on point cloud compression [2,3], which required reliable solutions for quality
assessment of point cloud compression distortions.

Early developments of model-based predictors employed simple distances between
attributes of matched points to measure local errors, as shown in Fig. 18.5. The point-
to-point metric denotes the earliest attempt, with the geometric variant computing the
Euclidean distance between point coordinates to measure the geometric displacement
of distorted samples from their reference positions [67]. Setting n = 1 and m = 2 in
Eq. (18.1), the point-to-point metric with MSE is computed, also known as D1 [68]:

D1 = 1
|T |

∑
t∈T

d(t, rt)
2, (18.4)

where d(·) is the Euclidean distance. Analogously, the point-to-point variant for color
distortions measures the error between RGB color values or YUV intensities of matched
points, effectively simulating the MSE that has been widely used for 2D images [69],
while the PSNR version of this measurement is obtained straightforwardly..

The point-to-point metrics have low complexity; however, they do not account for
perceptual characteristics of the HVS. An early alternative to capture geometric dis-
tortions based on distances that are more perceptually relevant, is the point-to-plane
metric [67]. This method relies on the projected error of distorted points across refer-
ence normal vectors. Thus local errors measure the deviation of distorted points from
linearly approximated reference surfaces. A global degradation score is typically obtained
using the MSE, as given below following the conventions of Fig. 18.5, which is also
referred to as D2 [68]:

D2 = 1
|T |

∑
t∈T

|�u · �nrt |2. (18.5)

Beyond MSE, the Hausdorff distance (Eq. (18.3)) has been additionally used with
both point-to-point and point-to-plane metrics. Finally, the geometric PSNR has been
proposed for both metrics to account for differently scaled contents [70], using either
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Figure 18.5 Error quantification between a distorted point t and a reference point rt from
simple point-wise distances. Setting �u= t−rt and θ the angle between corresponding nor-
mal vectors, the local error for point-to-point is d(t, rt) = ‖�u‖2, for point-to-plane is |�u · �nrt |,
and for plane-to-plane is 1 − 2 min{θ,π − θ}/π .

the voxel grid’s diagonal or the maximum nearest-neighbor distance of the original
content as the peak value.

The above metrics were employed in the MPEG standardization activities since the
beginning. As a consequence, they were widely used and tested by the research com-
munity, attracting interest and inspiring submissions to improve their performance. For
instance, the generalized Hausdorff distance was proposed to mitigate the sensitivity of
the Hausdorff distance in outlying points by excluding a percentage of the largest indi-
vidual errors [71]. A revised geometric PSNR calculation was proposed in [72], setting
as peak value the average over distances between neighbors in 3D space, or after pro-
jection onto local planes, to represent the intrinsic resolution or rendering resolution of
the content, respectively.

Another early-developed method evaluating geometry-only distortions is the plane-
to-plane metric, proposed by Alexiou et al. [73]. This metric estimates the difference
in orientation between local surface approximations of the original and the distorted
point clouds. This is achieved by computing the angular similarity between unoriented
normal vectors from locally fitted surfaces. In particular, the angle between the two
normal vectors is computed as follows:

θ = arccos

( �nrt · �nt

‖�nrt‖‖�nt‖
)

, (18.6)

where the angular similarity is given as

Angular similarity = 1 − 2 min{θ,π − θ}
π

. (18.7)
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The plane-to-plane metric relies on the computation of normal vectors and its per-
formance is affected by how they approximate the underlying surfaces. An insightful
analysis for the calibration of this metric is provided in [74].

In the same list of geometry-only model-based quality metrics lies the point-
to-distribution, introduced by Javaheri et al. [75], which computes the Mahalanobis
distance between a point and a reference neighborhood. In this case, the geometric
deviation is measured with respect to the distribution of reference samples, thus ac-
counting for the local reference topology. This metric was lately extended to capture
color degradations by applying the same formula to luminance attributes [76]. The two
quality scores obtained for geometry and texture were simply averaged to provide a final
predicted quality score.

More recent proposals rely not only on surface properties extracted from point sam-
ples, but also on the utilization of statistics to capture relations between points that lay
in the same local neighborhood. For that purpose, a correspondence is established be-
tween points in the point cloud under evaluation T , and the relative reference point
cloud R. Then, statistics are computed based on the neighborhood surrounding the
points, as seen in Fig. 18.6. An initial metric towards this direction is PC-MSDM by
Meynet et al. [77], which is based on the relative difference between local curvature
statistics (mean, standard deviation and covariance of curvature). The PC-MSDM was
later extended to colored point clouds by incorporating local statistical measurements
of luminance, chrominance, and hue components to evaluate textural impairments.
A proposed weighting function regularizes the contributions of each feature in the fi-
nal quality prediction. The new metric is called PCQM [78]. Both PC-MSDM and
PCQM, instead of using nearest neighbors, employ the reference points and their pro-
jections onto the quadric surfaces fitted to the distorted model as correspondences.

Alexiou et al. proposed PointSSIM [79], which relies on a similar logic, capturing
perceptual degradations based on the relative difference of statistical dispersion estima-
tors applied on local populations of location, normal, curvature, and luminance data. An
optional pre-processing step of voxelization is proposed to enable different scaling effects
and reduce intrinsic geometric resolution differences across contents. The VQA-CPC
metric, by Hua et al. [80] depends on statistics of geometric and color quantities. These
quantities are obtained by computing the Euclidean distance between every sample from
the arithmetic mean of the point cloud, considering geometric coordinates and color
values, respectively. The color point cloud metric based on geometric segmentation and
color transformation (CPC-GSCT) denotes an extension, involving a partition stage of
the point cloud, before the extraction of features per region [81]. The geometric fea-
tures consist of statistical moments applied on Euclidean distances, angular distortions,
and local densities, which are weighted according to the roughness of a region. The
textural features rely on the same statistics after conversion to the HSV color model.

More recently, the PointPCA metric was presented by Alexiou et al. [82], making
use of statistics applied on a series of geometric and textural descriptors. The former are
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Figure 18.6 Computation of statistics considering a neighborhood around every point.
Points that belong to the point cloud under evaluation T are matched with points from
the referenceR, and corresponding statistics are compared to obtain local errors. Normally,
a global quality score is computed by pooling, per Eq. (18.1).

extracted from measurements obtained after performing principal component analysis
(PCA) in support regions defined around point samples, while the latter consist of lumi-
nance intensities. The proposed geometric descriptors capture the dispersion of points
distribution, the dimensionality, variation, and roughness of the underlying surface, as
well as the parallelity with respect to the coordinate system axes. An individual predic-
tion is obtained from every geometric and textural descriptor, with a final quality score
obtained via a weighted average.

The GraphSIM by Yang et al. [83] denotes a graph signal processing-based ap-
proach, which evaluates statistical moments of color gradients computed over graphs.
The graphs are constructed around keypoints of the reference content, and are iden-
tified after high-pass filtering on its topology. A more recent, multi-scale version of
this metric, namely MS-GraphSIM, is presented by Zhang Y. et al. [84] The proposed
multi-scale point cloud representation is achieved by low-pass filtering on color, point
down-sampling, and region shrinking. The FQM-GC by Zhang K. et al. [85] is an-
other solution that extracts geometry features from graphs constructed per partition after
geometry segmentation, with the graph signal considering normal vectors. Moreover,
a color segmentation step is employed and a colorfulness index is computed to weight
the obtained segments accordingly. Color histograms and the relative difference of sev-
eral moments of chrominance components are employed to estimate color distortions
per segment.

Xu et al. [86] present the EPES, a point cloud quality metric based on potential
energy. In this method, a number of points are selected, called origins, after applying
a high-pass filtering operation in the topology of a point cloud. Local neighborhoods
are formed around these origins, and the potential elastic energy needed to move the
enclosed points from the origin to their current state (considering both geometry and
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color) is computed. A global score is obtained by aggregating the individual elastic
potential energies across origins. Additionally, a local score is obtained as the cosine
similarity between the direction of forces needed to transfer a reference and a corre-
sponding distorted point from their origin to their current positions. Global and local
features are pooled together to provide a final quality score.

In the work of Diniz et al. [87], local binary patterns on the luminance channel are
applied in local neighborhoods. This work is later extended [88] to additionally take into
consideration the point-to-plane distance between point clouds, and the point-to-point
distance between corresponding feature maps in the quality prediction. A variant de-
scriptor, namely, local luminance patterns, is proposed in [89]. This work also introduces
a voxelization stage in the metric’s pipeline to alleviate its sensitivity to different vox-
elization parameters. In [90], a texture descriptor to compare neighboring color values
using the CIEDE2000 distance is proposed. The color differences are coded as bit-based
labels, which denote frequency values of predefined difference intervals. An extension
is presented in [91], namely, BitDance, which incorporates a geometric descriptor that
relies on the comparison of neighboring normal vectors, resulting in bit-based labels
similarly to the texture counterpart.

A set of texture-only metrics has been proposed by Viola et al. [92], which relies on
histograms or correlograms of luminance and chrominance components to characterize
the color distributions of distorted and reference point cloud data. A global quality
score is obtained by weighted combination of the proposed color-based predictor and
the point-to-plane metric.

The previous works refer to FR quality metrics. Regarding RR approaches, the first
attempt was reported by Viola et al. in [93]. The algorithm is based on global features
extracted from the location, luminance, and normal data, with a weighted average used
to combine the distortions into a single quality score. More recently, an RR metric for
point clouds encoded with V-PCC was presented by Liu et al. [94]. The prediction is
a linear model of geometry and color quantization parameters, with parameters deter-
mined by a local and a global color fluctuation feature that accounts for the different
impact of compression artifacts on contents.

An NR method was recently proposed by Hua et al. in [95], namely, BQE-CVP.
This method relies on geometric features based on point distances, normals, curvatures
and point density, which are estimated after segmentation and weighted according to
local roughness, similarly to the same authors’ previous work in [81]. Texture degrada-
tions are computed as statistical moments of distortion maps obtained after applying the
just noticeable distortion [96] on point cloud projections. Moreover, features based on
gray-texture variations, color entropy, and color contrast, are extracted. Finally, a joint
feature based on a geometric-color co-occurrence matrix is proposed.

The performance of well-established, pre-trained convolutional neural network
(CNN) architectures for classification, was investigated to assess the quality of the point
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clouds, after necessary adjustments by Chetouani et al. in [97]. Geometric distance,
mean curvature, and luminance values are employed and form patches. A patch quality
index is computed using a CNN model, and a global quality index is obtained after
pooling. Quach et al. [98] extend the use of perceptual loss from 2D images to point
clouds, which are represented as voxel grids with binary occupancy or truncated dis-
tance fields. The perceptual loss is applied on the latent space, after passing through a
simple auto-encoding architecture that is composed of convolution layers.

18.2.1.2 For meshes

Many mesh visual quality metrics have been proposed in the literature in the past 15
years [99,100]. Existing metrics are mostly FR. Most of them also follow the clas-
sical top-down approach used in image quality assessment: local feature differences
between the reference and distorted meshes are computed at vertex level, and then
pooled over the entire 3D model to obtain a global quality score. Whereas pioneering
techniques were limited to evaluating geometry distortions only, most recent ones in-
corporate color/texture information. Moreover, machine learning and, more recently,
deep learning approaches are gaining in popularity. This allows, among other benefits,
the emergence of NR methods. The paragraphs that follow detail existing mesh quality
metrics.

As mentioned earlier, pioneering metrics evaluated only geometric distortions, i.e.,
they rely on geometric characteristics of the mesh without considering its appear-
ance attributes. Primary works used simple geometric measures, such as Hausdorff
distance [101], MSE, root mean squared (RMS) error [102] and PSNR. These mea-
sures quickly demonstrated a poor correlation with the human vision, since they ignore
perceptual information [103]. Hence, encouraging the development of more percep-
tually driven visual quality metrics. One of the first proposed metrics combined the
RMS geometric distance between corresponding vertices with the RMS distance of
their Laplacian coordinates, which reflect the degree of surface smoothness [104]. A
strain energy field-based measure (SEF) was also developed by Bian et al. in [105]. This
metric is based on the energy introduced by a specific mesh distortion; that is, the more
the mesh is deformed, the greater the probability of perceiving the difference between
the reference and distorted meshes. Some authors were inspired by IQMs. For instance,
Lavoué et al. [54,66] proposed two metrics, called mesh structural distortion measure
(MSDM) and MSDM2, inspired by the well-known SSIM [106]. In particular, the au-
thors extended the SSIM to meshes by using the mesh curvature as an alternative for the
pixel intensities. MSDM2 is adapted for meshes with different connectivities. Torkhani
et al. [107] also proposed a metric based on local differences in curvature statistics. They
included a visual masking model to their metric. Other works considered the dihedral
angle differences between the compared meshes to devise their metric, such as the dihe-
dral angle mesh error (DAME) metric [35]. The above metrics consider local variations



Subjective and objective quality assessment for VV 531

at the vertices or edges. Corsini et al. [55] proceeded differently. They computed one
global roughness value per 3D model considering dihedral angles and variance of the
geometric Laplacian, and then derived a simple global roughness difference. In a simi-
lar approach, Wang et al. [108] proposed a metric called fast mesh perceptual distance
(FMPD) based on global roughness computed using the Gaussian curvature. A survey
[99] detailed these works and showed that MSDM2 [66], DAME [35], and FMPD [108]
are excellent predictors of visual quality.

Besides these works on global visual quality assessment (top-down approaches
adapted for supra-threshold distortions), few works based on bottom-up approaches
were proposed. Nader et al. [109] introduced a bottom-up visibility threshold predictor
for 3D meshes. Guo et al. [110] also studied the local visibility of geometric artifacts
and showed that curvature could be a good predictor of distortion visibility.

Several works used machine learning techniques in assessing the quality of meshes,
with multi-linear regression adopted to optimize the weights of several mesh descriptors
[111], or support vector regression (SVR) used to fuse selected features to obtain a
quality metric [112]. Recently, a machine learning-based approach for evaluating the
quality of 3D meshes was proposed, in which crowd-sourced data is used, while learning
the parameters of a distance metric [113].

Moving to dynamic meshes, Váša et al. [42] proposed a metric, called STED, based
on the comparison of mesh edge lengths and vertex displacements between two ani-
mations. Torkhani et al. [43] devised a quality metric for dynamic meshes, which is a
combination of spatial and temporal features. In more recent work, Yildiz et al. [114]
developed a bottom-up approach incorporating both the spatial and temporal sensitivity
of the HVS to predict the visibility of local distortions on the mesh surface.

For some use cases, the reference might not be available. Therefore NR quality
assessment metrics are needed. Unlike FR metrics, few NR quality metrics for meshes
have been proposed in the literature. These metrics are based on data-driven approaches
(machine learning). Abouelaziz et al. [115] proposed an NR metric that relies on the
mean curvature features and the general regression neural network (GRNN) for quality
prediction. The blind mesh quality assessment index (BMQI), proposed in [116], is
based on the visual saliency and SVR, whereas that proposed in [117] is based on
dihedral angles and SVR. Abouelaziz et al. [118] also used CNNs to assess the quality
of meshes. The CNN was fed with perceptual hand-crafted features (dihedral angles)
extracted from the mesh and presented as 2D patches.

All the works presented above consider only the geometry of the mesh, and there-
fore only evaluate geometric distortions. Regarding 3D content with color or material
information, little work has been published. For meshes with diffuse texture, Pan et
al. [36] derived from the results of a subjective experiment a quantitative metric that
approximates perceptual quality based on texture and geometry (wireframe) resolution.
Tian et al. [119] and Guo et al. [37] proposed metrics based on a weighted combination
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of a global distance on the geometry and a global distance on the texture image. Tian
et al. [119] combined the MSE computed on the mesh vertices with that computed on
the texture pixels, whereas Guo et al. [37] linearly combined MSDM2 [66] (for mesh
quality) and SSIM [106] (for texture quality) metrics. These metrics combine errors
computed on different domains (mesh and texture image). Very recently, Nehmé et al.
[39] introduced the color mesh distortion measure (CMDM), which, to this date, is the
only model-based quality metric for meshes with colors attributes that works entirely on
the mesh domain. This metric incorporates perceptually relevant geometry and color
features and is based on a data-driven approach. It can be viewed as the mesh version of
the point cloud metric PCQM [78].

As can be seen, most existing model-based quality metrics ignore the visual saliency
information, yet finding salient regions (regions that attract the attention of observers)
has become a useful tool for many applications, such as mesh simplification [120] and
segmentation [121], and quality control of VR videos (360 videos) [122,123]. A re-
cent work has investigated how incorporating saliency information into a model-based
metric can improve the predicted quality [124]. Authors devised an extension of the
CMDM metric [39] by combining its geometry and color features with the visual at-
tention complexity (VAC) feature based on visual saliency dispersion proposed in [125].
Integrating the VAC was found to improve the overall performance of CMDM, espe-
cially when assessing the quality of geometrically quantized stimuli.

18.2.2 Image-based approaches
To evaluate the quality of 3D content, several authors considered IQMs computed on
rendered snapshots, as depicted in Fig. 18.7. These approaches can be efficient since the
field of image quality assessment is highly developed, and many successful IQMs have
been introduced, such as the Sarnoff VDM [126], SSIM [106] (and its derivatives), VIF
[127], FSIM [128], HDR-VDP2 [129], iCID [130], BLIINDS [131], GMSD [132],
DeepSIM [133], LPIPS [134], WaDIQaM [135], NIMA [136], and PieAPP [137].

The image-based approach was first used to drive perceptually based tasks, such
as mesh simplification [138,139]. So far, mainly FR approaches have been proposed
for quality evaluation of 3D data of both meshes and point clouds. That is, views of
the original and the distorted contents are captured under identical camera parameters,
and a quality prediction is obtained as an average, or a weighted average of individual
objective scores.

Image-based metrics allow holistic capture of both topology and color distortions
as reflected by the corresponding rendering application. However, several factors affect
the image-based metrics’ computations. In particular, the rendering scheme that is em-
ployed to display the 3D data together with the environmental and lighting conditions,
the number of cameras (or viewpoints), the configuration of each camera’s parameters
for the acquisition of model views, and the pooling of quality scores obtained for differ-
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Figure 18.7 A common camera arrangement to capture views of a 3D model is illustrated
on the left. The camera positions (i.e., black points) are typically selected to be uniformly
distributed across a surrounding sphere. Snapshots of the 3D model are presented on the
right, as captured from the front, right, back, and left cameras.

ent views into a single global quality score. Hence, image-based metrics are considered
to be rendering-dependent and view-dependent solutions [29,54], which are opposed
to the rendering-agnostic, model-based methods. The impact of such factors is further
discussed in subsection 18.2.3.

In what follow, we first present the image-based metrics for point clouds, then those
for meshes.

18.2.2.1 For point clouds

Image-based approaches were first used for point cloud imaging in the work of de
Queiroz et al. [140]. Their prediction accuracy on point cloud contents was initially ex-
amined by Torlig et al. [47]. Concretely, the PSNR, SSIM [106], MS-SSIM [141], and
VIF [127] (applied on the pixel domain) were executed on images after orthographic
projection of the reference and distorted point clouds on the faces of a surrounding
cube. The results showed that the MS-SSIM was the best candidate, achieving better
performance than the model-based alternatives available at the time. The same conclu-
sions regarding the effectiveness of MS-SSIM were drawn in another study using the
same point cloud contents, but under a different rendering technique; that is, the point
clouds were rendered using cubic primitives of locally adaptive size both for subjective
evaluation and for the computation of image-based metrics; [28].

The first image-based metric tailored for point cloud contents was proposed by
Yang et al. [48], relying on a weighted combination of global and local features ex-
tracted from texture and depth images. Specifically, the Jensen-Shannon divergence on
the luminance channel serves as the global feature, whereas a depth edge map that re-
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flects discontinuities, a texture similarity applied on color components, and an estimated
content complexity factor account for the local features. Another approach, proposed
by He et al. [142] was to project color and curvature values on planar surfaces. In
this case, color impairments are evaluated using probabilities of local intensity differ-
ences, together with statistics of their residual intensities, and similarity values between
chromatic components. The geometric distortions are evaluated based on statistics of
curvature residuals.

A hybrid method that uses both image- and model-based algorithms is presented
by Chen et al. [143]. In particular, the point clouds are divided into non-overlapping
partitions, called layers. A planarization process takes place at each layer, before applying
the IW-SSIM [144] to assess geometric distortions. Color impairments are evaluated
using RGB-based variants of similarity measurements defined in [78]. A linear model is
employed to assign optimal weights on the defined features.

A deep neural network architecture, namely PQA-Net, was proposed by Liu et al.
[145] for NR quality assessment of point clouds. In this method, features are extracted
from multiple views after a series of CNN blocks and, after fusion, they are shared
between a distortion identifier and a quality predictor to obtain a final quality score.

Wu et al. [52] apply popular IQMs on patches from geometry and texture images.
The patches are obtained after segmenting the reference point cloud into point clusters
based on normal vectors. To ensure pixel matching between the reference and the
distorted patch, for every reference point, its nearest distorted point is identified, and
both are projected on the same pixel locations. Results show substantial improvements
with respect to the application of the same IQMs on the six sides of models’ bounding
boxes. The IW-SSIM was found to achieve best performance.

A learning-based approach based on patches from projected maps of geometry and
texture, as implemented in V-PCC, is presented by Tao et al. [146]. The proposed
network makes use of a joint color-geometric feature extractor, two-stage multi-scale
feature fusion, and spatial pooling. The extractor is composed of sequential CNNs to
extract multi-scale features from geometry and color patches separately, with corre-
sponding features maps subsequently fused. The spatial pooling module consists of two
fully-connected layer branches that perform (a) quality prediction and (b) weight allo-
cation, per patch. The final score is obtained as a weighted average across all patches.

18.2.2.2 For meshes

IQMs, notably VDP [147] and SSIM [106], were used to study the relationship between
the viewing distance and the perceptibility of model details to optimize the level-of-
detail (LoD) design of complex 3D building facades [148]. SSIM [106] was also used to
optimize textured mesh transmission [149]. Considering a view-independent approach,
the RMS error was computed on snapshots taken from different viewpoints (different
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camera positions regularly sampled on a bounding sphere) to evaluate the impact of
simplification on 3D models [150].

Recently, several authors have started to exploit CNNs to assess the quality of meshes
using an image-based approach. Most of the existing works considered geometry-only
meshes (without color attributes). In [151], the CNN was fed with 2D rendered images
of the mesh generated by rotating the object. Another quality metric for meshes was
devised by extracting feature vectors from 3 different CNN models and combining them
using an extension of the compact bi-linear pooling (CMP) [152]. The authors used a
patch-selection strategy based on mesh saliency to give more importance to perceptually
relevant (attractive) regions. In fact, not all regions of the 3D model image receive the
same level of attention from observers.

A more recent metric called graphics-LPIPS was proposed for assessing the quality of
rendered 3D graphics [41]. The metric is an extension of the LPIPS metric (originally
designed for images and perceptual similarity tasks) [134], which has been adapted to
3D graphics and quality assessment tasks based on DSIS. Graphics-LPIPS is computed
on patches of snapshots of the rendered 3D models and employs a CNN (the AlexNet
architecture more precisely) with learning linear weights on top. The overall quality of
the 3D model is derived by averaging local patch qualities.

18.2.3 Comparison between model-based and image-based approaches
Several works compared the performance of image-based metrics and model-based
approaches for quality assessment of 3D models [16–18,28,29,39,47,52,103]. Results in-
dicate that both approaches are having their merits, with model-based generally showing
higher generalization capabilities across contents and distortions. Table 18.3 summarizes
advantages and disadvantages, as well as use cases of each approach.

The main advantage of using image-based metrics to evaluate the visual quality of 3D
objects is their natural handling of complex interactions between different data proper-
ties involved in the appearance (geometry, color or texture information, and normals),
which avoids the problem of how to combine and weight them [150]. For instance,
using IQMs on projected views of 3D models simultaneously captures geometric and
chromatic degradation as reflected in the renderer, in addition to the natural incorpora-
tion of the complex rendering pipeline (computation of light material interactions and
rasterization), thus capturing 3D content as experienced/perceived by users.

On the other hand, these methods require prior knowledge of the final rendering
of the stimuli, i.e., the lighting conditions and the viewpoint, since they operate on
2D rendered snapshots. Additionally, they depend on the choice of 2D views employed
to estimate a quality score. In particular, the selection of camera positions, camera pa-
rameters, number of viewpoints, and pooling applied across different views, will lead to
different quality characterizations for the same 3D model.
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Table 18.3 Overview of the advantages, disadvantages, and use cases of the image-based
and model-based approaches.

Model-based approaches Image-based approaches
Advantages • Independent of the final

rendering & the displayed
viewpoint
• Practical for driving processing
operations

Natural ability to handle:
• multimodal nature of data
• complex rendering pipeline

Disadvantages Sophisticated algorithms to
handle:
• multimodal nature of data
• complex rendering pipeline

• Prior knowledge of the final
rendering & the displayed
viewpoint
• The choice of 2D views, their
number, and the pooling method

Use cases • Evaluating different distortions
applied to different 3D models
• Driving perceptually based tasks

• Evaluating the quality of
different versions of the same
object under a single type of
distortion

In these frameworks, the number of views and the camera parameters are set to
cover the maximum surface of a model under evaluation. However, using a large num-
ber of views/cameras leads to redundancies and extra computational costs, without
guaranteeing performance improvements, as indicated in [28]. When applying IQMs
on projected views of a 3D model, excluding pixels that don’t belong to the effective
part of the displayed model (i.e., background filtering), was found to improve the ac-
curacy of the predicted quality [28]. Moreover, non-uniform weightings that increase
the impact of quality scores from views that are more relevant may improve the predic-
tion performance. Alexiou et al. [28] showed that estimating the global quality score by
incorporating importance weights based on user inspection time is beneficial in terms
of prediction accuracy (i.e., better performance than uniform weighting) and compu-
tational costs (i.e., less views are required to be captured, especially in dense camera
arrangements). Wu et al. [52] incorporated a weighting function based on the ratio of
projected area of that model view with respect to the total amount, observing perfor-
mance improvements. Weighted views have been also considered in [103] for objective
quality evaluation of meshes, with importance weights obtained based on a surface vis-
ibility algorithm [153], typically used for viewpoint preference selection [154].

Overall, image-based metrics are not practical for driving processing operations (e.g.,
mesh simplification). Model-based metrics are better suited instead, since they operate
on the same representation space with the corresponding processing algorithms; thus it is
possible to control processing operations both globally (on the entire model) and locally
(on the vertex/point level). At the same time, they typically require complex processes
to effectively capture perceptually relevant features. Moreover, it is not straightforward
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how to fuse information extracted from different attributes (e.g., geometry, texture) to
obtain a total quality score.

Last but not least, the performance of image-based metrics greatly depends on dis-
tortions and contents. They are less accurate in differentiating and ranking different
distortions, or distortions applied to different 3D models, which is not the case for
model-based metrics [39,103].

18.2.4 Objective quality assessment in volumetric video
As video is a collection of still frames, volumetric video is also a collection of 3D
models aggregated together, which are played back at a certain frame rate to create
the motion perception. Temporal sub-sampling rate (i.e., frame rate) can be defined
as the frequency of the consecutive models in the temporal axis of the volumetric
video sequence. Utilizing all available frames in the volumetric video sequence is the
common approach for objective quality evaluation. After predicting quality of each
frame in the sequence, a temporal pooling method (e.g., arithmetic mean) is necessary
to merge individual frame scores into a final quality score [23,24]. This is also commonly
done in traditional video quality assessment, while extending the quality metrics that
are developed for images to video [155]. However, one of the challenges for objective
quality assessment of volumetric video is that the sizes of volumetric video sequences are
big, and estimating objective quality can be time-consuming and computationally heavy.
Reducing temporal sub-sampling rate and choosing appropriate pooling strategy may
reduce the computational complexity without sacrificing from the prediction accuracy.

In a recent study, Ak et al. [156] investigated the performance of 30 quality metrics
for 7 different temporal sampling methodologies over 8 different temporal sub-sampling
rates. The study was conducted on the VsenseVVDB2 dataset [8], only on the point
cloud sequences. The VsenseVVDB2 dataset contains 8 point cloud volumetric video
sequences of 10 seconds length with 30 frames per second (fps). The utilized pooling
methods are summarized in Table 18.4. Each pooling method was used with the fol-
lowing 8 different frame rates: {1, 2, 3, 5, 6, 10, 15, 30}. The frame rates were selected
to ensure a uniform sampling.

Results are presented in Fig. 18.8, where SROCC is used to measure the per-
formance of objective quality metrics. 11 image-based, 19 model-based metrics were
evaluated on 56 combinations of 7 sub-sampling methods and 8 sub-sampling fre-
quencies. Lighter colors indicate higher correlation with subjective opinions. Each row
corresponds to a different quality metric indicated by the row number. Each column
shows a different combination of temporal sub-sampling frequency and temporal sub-
sampling method. Columns are divided into 7 groups by the sub-sampling method
indicated at the bottom of the figure. For each sub-sampling method, frame rate in-
creases from left to right.
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Table 18.4 Definitions and selected parameters for pooling methods.
Sampling method Formula Parameter

Arithmetic mean Q = 1
N

N∑
i=1

qi -

Harmonic mean Q =
(

1
N

N∑
i=1

q−1
i

)−1

-

Minkowski mean Q =
(

1
N

N∑
i=1

qp
i

)1/p

p = 2

VQ pooling Q =
∑

i∈GL
qi + w · ∑i∈GH

qi

|GL| + w · |GH | , w =
(

1 − ML

MH

)2
-

Percentile pooling Q = 1
|Plow|

∑
i∈Plow

qi Percentile = 10%

Primacy pooling Q =
N∑

i=1
wiqi, wi = exp(−αi)∑L

j=1 exp(−αj)
, 0 ≤ i ≤ L L = 360, α = 0.01

Recency pooling Q =
N∑

i=1
wiqi, wi = exp(−α(L−i))∑L

j=1 exp(−α(L−j))
, 0 ≤ i ≤ L L = 360, α = 0.01

Figure 18.8 Metric performances in terms of SROCC for a number of sampling method-
ologies and sub-sampling rates. 1) MP-PSNR-FR, 2) MP-PSNR-RR, 3) MW-PSNR-FR, 4) MW-
PSNR-RR, 5) PSNR, 6) SSIM, 7) NIQSV, 8) NIQSV+, 9) APT, 10) EM-IQM, 11) SI-IQM,
12) Color-Y, 13) Color-Y-PSNR, 14) Color-U, 15) Color-U-PSNR, 16) Color-V, 17) Color-V-PSNR,
18) point-to-point-Haus, 19) point-to-point-Haus-PSNR, 20) point-to-point-RMS, 21) point-
to-point-RMS-PSNR, 22) point-to-plane-Haus, 23) point-to-plane-Haus-PSNR, 24) point-
to-plane-RMS, 25) point-to-plane-RMS-PSNR, 26) plane-to-plane-MSE, 27) plane-to-plane-
RMS, 28) plane-to-plane-Mean, 29) plane-to-plane-Median, 30) plane-to-plane-Min.
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Results indicate, for any given temporal sampling method, using a lower frame-rate
does not result in a lower performance. Even by sub-sampling by 1 fps, metrics perfor-
mances do not show a significant difference compared to the full frame rate available
(i.e., 30 fps). This observation indicates that compression artifacts affect the perceived
quality of the volumetric video uniformly in time. For similar distortions, with no sig-
nificant loss in the accuracy of objective quality metrics, calculations can be sped up to
30 times for stimuli.

Each considered pooling method has a different priority for the temporal dimen-
sion. Results in Fig. 18.8 show non-significant changes in metric performances with
various pooling methods. Similar to the sub-sampling rate analysis, this occurs due to
uniform presence of the compression distortions on the point clouds in the volumetric
video sequences. Considering the non-significant performance difference of the quality
metrics for various temporal sampling methods, arithmetic mean is the most efficient
alternative due to computational simplicity.

It is worth noting that only point clouds of human bodies are used in this study, and
early trials show that these findings might be valid for meshes and other types of 3D
graphics as well. Although this needs further experimentation and validation by peer-
review processes, using a reduced number of 3D models without sacrificing the metric
accuracy can be very beneficial for wide deployment of volumetric video streaming.

18.2.5 Publicly available software implementations
As described in previous subsections, there are many different approaches in estimat-
ing the visual quality of volumetric video. In most cases, during the development of
new objective quality metrics, a comparison is needed to validate the newly developed
metrics’s performance. To help future scientists and developers in their goals to propose
more accurate quality metrics, publicly available implementations of existing methods
are listed in Table 18.5. As can be seen, objective quality metrics for volumetric video
can be grouped in different categories, with respect to 3D representation (i.e., mesh or
point cloud); whether they demand color attributes or not; metric class in terms of ref-
erence data requirement; and domain of operation (i.e., model or image). Furthermore,
a brief description of the features that each metric relies upon are indicated, along with
a link to the open-source code.

18.3. Conclusion

Volumetric video is a novel form of visual representation that enables us to view at
reconstructed 3D models from any viewpoint, which brings different challenges and
limitations for visual quality assessment. The most important challenges are in un-
derstanding and estimating user interaction, selecting the correct 3D representation,
and setting various conditions in applications such as rendering parameters and display
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Table 18.5 Publicly available objective quality metric implementations for meshes & point clouds.
Metric 3D Repre-

sentation
Attributes Class Domain Features Open-source code

Metro (1998)
[102]

Mesh Colorless FR Model-
based

Mean error https://sourceforge.net/projects/vcg/

Mesh (2002)
[101]

Mesh Colorless FR Model-
based

Hausdorff distance https://github.com/arnaudgelas/mesh

MSDM2
(2011)
[54,66]

Mesh Colorless FR Model-
based

Local differences in
curvature statistics

https://
github.com/MEPP-team/MEPP2

TPDM
(2014) [107]

Mesh Colorless FR Model-
based

Local differences in
curvature tensor

http://www.gipsa-lab.fr/~fakhri.
torkhani/software/TPDM.rar

DAME
(2012) [35]

Mesh Colorless FR Model-
based

local differences in dihedral
angles

http://
meshcompression.org/software-tools

FMPD
(2012) [108]

Mesh Colorless FR Model-
based

Global roughness using
Gaussian curvature

http://www.gipsa-lab.grenoble-inp.fr/
~kai.wang/publications_en.html

JND (2016)
[109]

Mesh Colorless FR Model-
based

(bottom-up) visibility
threshold predictor based on
local contrast and spatial
frequency

https://
github.com/MEPP-team/MEPP2

Yildiz et al.
(2020) [113]

Mesh Colorless FR Model-
based

Learning geometric
parameters of a distance
metric using crowd-sourced
data

https://www.dropbox.com/s/
m3bnb93vun91763/Learning.VQA.
zip?dl=0

continued on next page

https://sourceforge.net/projects/vcg/
https://github.com/arnaudgelas/mesh
https://github.com/MEPP-team/MEPP2
https://github.com/MEPP-team/MEPP2
http://www.gipsa-lab.fr/~fakhri.torkhani/software/TPDM.rar
http://www.gipsa-lab.fr/~fakhri.torkhani/software/TPDM.rar
http://meshcompression.org/software-tools
http://meshcompression.org/software-tools
http://www.gipsa-lab.grenoble-inp.fr/~kai.wang/publications_en.html
http://www.gipsa-lab.grenoble-inp.fr/~kai.wang/publications_en.html
https://github.com/MEPP-team/MEPP2
https://github.com/MEPP-team/MEPP2
https://www.dropbox.com/s/m3bnb93vun91763/Learning.VQA.zip?dl=0
https://www.dropbox.com/s/m3bnb93vun91763/Learning.VQA.zip?dl=0
https://www.dropbox.com/s/m3bnb93vun91763/Learning.VQA.zip?dl=0


Subjective
and

objective
quality

assessm
entforVV

541

Table 18.5 (continued)
Metric 3D Repre-

sentation
Attributes Class Domain Features Open-source code

STED (2011)
[42]

Dynamic
mesh

Colorless FR Model-
based

Local differences in edge
length (spatial and temporal
parts)

http://
meshcompression.org/software-tools

CMDM
(2021) [39]

Mesh Colored FR Model-
based

Local differences in
curvature and color statistics

https://
github.com/MEPP-team/MEPP2

Graphics-
LPIPS (2022)
[41]

Mesh Colored FR Image-
based

CNN with linear weights
on top

https://github.com/YanaNEHME/
Graphics-LPIPS

Plane-to-
plane (2018)
[73]

Point
cloud

Colorless FR Model-
based

Angular similarity between
normal vectors

https://github.com/mmspg/point-
cloud-angular-similarity-metric

PC-MSDM
(2019) [77]

Point
cloud

Colorless FR Model-
based

Curvature statistics https://
github.com/MEPP-team/PC-MSDM

PCQM
(2020) [78]

Point
cloud

Colored FR Model-
based

Curvature and color statistics https://
github.com/MEPP-team/PCQM

Hist_Y
(2020) [92]

Point
cloud

Colored FR Model-
based

Luminance histogram https://github.com/cwi-dis/point-
cloud-color-metric

PointSSIM
(2020) [79]

Point
cloud

Colored FR Model-
based

Location, angular similarity,
curvature, or luminance
statistics

https://github.com/mmspg/pointssim

Point-to-
distribution
(2020) [75]

Point
cloud

Colored FR Model-
based

Mahalanobis distance of
point coordinates and
luminance

https://github.com/AlirezaJav/Point_
to_distribution_metric

continued on next page
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Table 18.5 (continued)
Metric 3D Repre-

sentation
Attributes Class Domain Features Open-source code

PCM_RR
(2020) [93]

Point
cloud

Colored RR Model-
based

Location, angular similarity
and luminance histograms

https://
github.com/cwi-dis/PCM_RR

GraphSIM
(2020) [83]

Point
cloud

Colored FR Model-
based

Color gradient statistics
around keypoints using
graphs

https://
github.com/NJUVISION/GraphSIM

Perceptual
loss (2021)
[98]

Point
cloud

Colorless FR Model-
based

Differences in latent space
after auto-encoding voxel
grids with binary or
truncated distance fields

https://github.com/mauriceqch/
2021_pc_perceptual_loss

BitDance
(2021) [91]

Point
cloud

Colored FR Model-
based

Bit-based differences of
colors using CIEDE2000
and normal vectors

https://github.com/rafael2k/bitdance-
pc_metric

MS-
GraphSIM
(2021) [84]

Point
cloud

Colored FR Model-
based

Color gradient statistics on
multi-scale representations
around keypoints using
graphs

https://github.com/zyj1318053/MS_
GraphSIM

PointPCA
(2021) [82]

Point
cloud

Colored FR Model-
based

Statistics on PCA-based
geometric descriptors and
luminance

https://github.com/cwi-dis/pointpca

PQA-Net
(2021) [145]

Point
cloud

Colored NR Image-
based

Multi-view CNN-based
features fed to a distortion
identifier and a quality
predictor

https://github.com/qdushl/PQA-Net

https://github.com/cwi-dis/PCM_RR
https://github.com/cwi-dis/PCM_RR
https://github.com/NJUVISION/GraphSIM
https://github.com/NJUVISION/GraphSIM
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https://github.com/rafael2k/bitdance-pc_metric
https://github.com/zyj1318053/MS_GraphSIM
https://github.com/zyj1318053/MS_GraphSIM
https://github.com/cwi-dis/pointpca
https://github.com/qdushl/PQA-Net
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devices. This chapter provides a wide overview of quality assessment and estimation
methodologies through subjective user studies and objective quality estimators for vol-
umetric content.

With the increased degrees of freedom, users need to interact with the media itself.
This makes user interaction a crucial part of subjective quality assessment. Nevertheless,
there are no recommendations or standards for conducting user studies for volumetric
video in 6DoF. Therefore experimenters adapted various methodologies for subjective
user studies that were developed for traditional image and video quality assessment with
different parameters for various aspects. These involve the 3D representation, temporal
variation, attributes, mode of inspection, subjective test methodology, distortion types,
rendering parameters, and display devices, among others. Ground truth subjective qual-
ity scores were collected as part of these studies, with publicly released datasets reported
in this chapter. Comparative studies show that there are certain cases that selecting one
approach is more efficient than others. When compressed with state-of-the-art codecs,
point clouds seem to be better at low-bandwidth conditions, whereas meshes are better
at high-bandwidth conditions or storage cases. Interactive and non-interactive experi-
ments generally do not have statistically significant differences. Nevertheless, interactive
visualization approaches might be more suitable, as they better simulate targeted use
cases, with human judgments implicitly incorporating effects of display devices, ren-
dering parameters, higher DoF, and immersion, to name a few. Among the commonly
used subjective methodologies, the DSIS seems to be more accurate by yielding lower
uncertainty regarding the level of impairment perceived in a stimulus. However, such a
methodology may lead to comparative scores.

Automatic estimation of volumetric video quality via objective quality metrics is
still under development. Model-based approaches rely on the primary 3D data struc-
ture. The unique nature of volumetric video enables its representation with meshes and
point clouds. Since point clouds do not have connectivity information, the majority
of corresponding metrics focus on capturing underlying 3D surfaces. Early attempts
for both point clouds and meshes are based on simple error measurements, whereas
more recent efforts combine various features from geometry and/or texture domain.
Image-based approaches, on the other hand, focus on projecting the 3D model onto
planar arrangements and often making use of 2D quality metrics. Comparative studies
show both approaches have different advantages and disadvantages. Although image-
based approaches require rendering and camera parameters to be set beforehand, they
take all the rendering effects into account, while estimating the quality. Model-based
approaches generate scores that are independent of the viewpoint; however, they need
to be rather complex to take human visual perception into account, which usually re-
sults in high computational demands. The selection of either approach depends on the
application, as they both have strengths and weaknesses. Recent studies also show that
to estimate volumetric video quality for compression scenarios, we do not need to com-
pute the metric results for all of the frames (i.e., consecutive 3D models in a volumetric
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video). Since most compression methods generate distortions that do not change by
time, selecting fewer frames yields as accurate quality estimations as computing it over
all frames, although further experimentation is required at this front.

With the popularization of XR technologies and applications on the Internet, social
media, and metaverse(s), the volumetric video will become more popular. Volumet-
ric video will be used in different mixed XR applications alongside other types of 3D
graphics, and there will be a need for new methodologies to capture the human per-
ception and predict human opinions about visual quality within these mixed-media
environments. This makes the field of visual quality assessment very relevant, and open
to the new challenges the upcoming advances will bring.
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