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Chapter 1

Introduction

This dissertation consists of three parts, each of which discusses a separate topic. The
parts are not directly related to one another, but the overarching theme is that all
parts involve aspects of combinatorics, geometry, and algebra:

ˆ In the �rst part, we study divisorial gonality of graphs. This relatively new graph
parameter has its roots in algebraic geometry, though we will mostly focus on
combinatorial aspects.

ˆ In the second part, we study a problem on the interface of arithmetic combina-
torics and �nite geometry, on avoiding a�ne con�gurations in subsets of Fn

q . For
this we use an application of the slice rank polynomial method.

ˆ In the third part, we study tensor products of convex cones in real vector spaces.
This problem mostly involves linear algebra and convex geometry (and some
functional analysis), but a little bit of combinatorics does come into play when
studying the face structure of the minimal/maximal cone in the tensor product.

In this chapter, we give a brief overview of the scope of each of the three parts.
More detailed introductions will be given in the respective chapters.

1.1 Part I: Divisorial gonality of graphs

Since the 1980s, mathematicians have been studying a family of games known collec-
tively as chip-�ring games. In a chip-�ring game, every node of a graph is endowed with
a number of chips, which may be redistributed according to certain �ring rules . The
original motivation for studying these games comes from sandpile models in physics,
but later variations of the game bear little resemblance of such real-world phenomena.

The simplest chip-�ring game is known as the dollar game. In this game, the
number of chips (or dollars) on a node is also allowed to be negative, in which case
the node is said to bein debt. The objective of the game is to get all nodes out of debt
via a sequence of�ring moves, where the player chooses a single node and decreases
the number of chips on that node by giving chips to all neighbours of that node, one
chip for each edge. Whether or not it is possible to get all nodes out of debt depends
on the graph and on the initial chip con�guration.
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2 1. Introduction

Around 2007, Baker and Norine showed that the dollar game is closely related
to questions in algebraic geometry. In their seminal 2007 paper [BN07], they proved
a graph-theoretic analogue of the Riemann{Roch theorem from algebraic geometry,
and they showed that it admits an equivalent formulation in terms of chip-�ring
games on graphs. This was further strengthened in another paper by Baker [Bak08],
which provides a concrete way to translate between curves and graphs. These two
papers marked the beginning of a period of fruitful cross-pollination between algebraic
geometry, tropical geometry, and graph theory, which is still going strong today. An
overview of recent developments in this �eld can be found in the survey [BJ16] and
the expository articles [DV21b, Jen21].

The theory developed by Baker and Norine has led to many new concepts and
problems in graph theory. One of these is a new graph parameter, called the (divisorial )
gonality, de�ned as the graph-theoretic analogue of the gonality of an algebraic curve.
This graph parameter has attracted attention from researchers in algebraic geometry,
graph theory, and theoretical computer science, and will be the focus of Part I of this
dissertation.

Our main contributions to this �eld are twofold. First, it was proved in 2014 that
gonality is lower bounded by a well-known graph parameter calledtreewidth, but the
original proof was non-constructive [DG20]. In Chapter 3, we give a constructive proof
of that same fact, by providing a polynomial time algorithm that turns a positive rank
divisor of degreek into a tree decomposition of width at most k.

Second, in [BN07], Baker and Norine proved combinatorial analogues of many
fundamental properties of algebraic curves, such as the Riemann{Roch theorem,
Cli�ord's theorem, and Abel{Jacobi theory. One important algebro-geometric result
of which they were not able to prove a combinatorial analogue is the Brill{Noether
theorem. This motivated Baker to formulate the Bril l{Noether conjecture for graphs
[Bak08, Conj. 3.9(1)], which is currently one of the main open problems in the �eld.
In Chapter 4, we make partial progress on this problem, by showing that Baker's
subdivision conjecture, which implies the Brill{Noether conjecture, is not true. This
rules out the most obvious approach towards a proof of the Brill{Noether conjecture
for graphs, and makes it unclear whether or not the latter is plausible at all.

1.2 Part II: The slice rank polynomial method

Arithmetic combinatorics is the area of mathematics that deals with questions about
sizes of sets subject to certain arithmetic conditions. Well-known topics in this �eld
include sumset estimates, where one wishes to bound the size of the sumsetA + B in
terms of the sizes ofA and B (in some discrete abelian groupG), and sets without
k-term arithmetic progressions. We focus on the latter.

Let G be an abelian group. Ak-term arithmetic progression in G is a sequence of
the form P = ( a; a + b; a+ 2 b; : : : ; a+ ( k � 1)b), for some a; b2 G. We say that P is
non-trivial if b 6= 0, and proper if all entries of P are di�erent, and we say that a subset
A � G contains P if A contains all entries of P. Further, we write N1 = f 1; 2; 3; : : :g
and [n] = f 1; 2; : : : ; ng.



1.2. Part II: The slice rank polynomial method 3

An important problem in arithmetic combinatorics is to bound the maximum size
of a setA � G which does not contain a properk-term arithmetic progression. The
�rst results in this direction were obtained over the integers (G = Z), starting with
van der Waerden's theorem from 1927.

Van der Waerden's Theorem ([Wae27]). For all integers r; k � 2 there is an integer
N r;k such that, for all n � N r;k and for every partition of [n] = X 1 [ � � � [ X r into r
classes, at least one of the partition classesX i contains a proper k-term arithmetic
progression.

This was subsequently strengthened by Roth [Rot52, Rot53] (for k = 3) and
Szemer�edi [Sze69, Sze75] (for k � 4) to show that, for large enough n, every set
A � [n] of �xed positive density � contains proper k-term arithmetic progressions.

Szemer �edi's Theorem ([Rot52, Sze69, Sze75]). For every k 2 N1 and every � 2
(0; 1], there is a positive integerNk;� such that, for all n � Nk;� , every subsetA � [n]
of size jAj � �n contains a proper k-term arithmetic progression.

Szemer�edi's theorem is one of the cornerstones of arithmetic combinatorics, and is
continuously being re�ned and extended. By now, several fundamentally di�erent proofs
of Szemer�edi's theorem are known. In addition to Szemer�edi's original combinatorial
proof, the most notable are Furstenberg's proof using ergodic theory [Fur77, FKO82],
Gowers' Fourier-analytic proof [Gow98, Gow01], and a proof using a regularity lemma
for hypergraphs by R•odl, Nagle, Schacht and Skokan [NRS06, RS04, RS06] and
(independently) Gowers [Gow07].

It is believed that these results can still be improved, and an important open
problem is the following.

Erd }os{Tur �an Conjecture. Every subsetA � N1 with
P

n 2 A
1
n = 1 contains

arbitrarily long proper arithmetic progressions.

A special case of this conjecture, whereA is the set of all prime numbers, was
settled by the celebrated Green{Tao theorem [GT08]. For general sets, a recent preprint
of Bloom and Sisask [BS20] proves the conjecture for arithmetic progressions of length
3, but for longer progressions the conjecture is still wide open.

In an attempt to develop new techniques that can be used over the integers,
mathematicians have also studied the similar problem whereG = Fn

p is a vector space
over the �nite �eld Fp for some prime numberp. In this setting, we are interested
in the asymptotic behaviour as p is �xed and n goes to in�nity. Here we have the
following problem:

Problem (Avoiding k-term arithmetic progressions in subsets ofFn
p ). Given a prime

number p and an integer k satisfying 3 � k � p, is there a constant Cp;k < p such
that, for all n 2 N, every setA � Fn

p of size at least(Cp;k )n contains a proper k-term
arithmetic progression?

The simplest case, whenp = k = 3, is known as the cap set problem. This problem
has drawn considerable attention in the past, not only because it forms a �nite model
for problems about avoiding arithmetic progressions over the integers, but also because
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it is closely related to other prominent open problems in discrete mathematics, such as
the sunower conjecture and the computational complexity of matrix multiplication
[ASU13].

In a quick series of events in May 2016, the cap set problem was suddenly solved
by Ellenberg and Gijswijt [ EG17], building on a new technique developed earlier that
month by Croot, Lev and Pach [CLP17]. Their proof uses a new variation of the
polynomial method, a collection of techniques for solving problems in combinatorics by
encoding them with polynomials.

The Ellenberg{Gijswijt proof was subsequently recast by Tao [Tao16] in terms
of a new rank function for tensors, calledslice rank, and this has since become the
dominant terminology. This new set of techniques, known as theslice rank polynomial
method, is now being applied to related problems, such as the aforementioned prob-
lems on sunowers-free sets [NS17, Nas22] and fast matrix multiplication [ BCC+ 17].
Furthermore, it has led to the study of several other rank functions, their relation to
slice rank, and their applications, including the analytic rank [GW11, Lov19], partition
rank [Nas20b], G-stable rank [Der22], geometric rank [KMZ20], and asymptotic slice
rank [Zui18, §4.6].

Although the cap set problem has been solved, the aforementioned Problem
(avoiding k-term arithmetic progressions in subsets ofFn

p ) remains wide open fork � 4.
This problem is believed to be beyond the reach of current (slice rank) methods.

Nonetheless, progress is being made on the broader problem of avoiding a�ne
con�gurations in subsets ofFn

q . This will be the main topic of Part II of this dissertation.
Here, instead of avoiding ak-term arithmetic progression, we seek to avoid non-
trivial solutions to a system of balanced linear equations, where a linear equation
b1x 1 + � � � + bk x k = 0 (with b1; : : : ; bk 2 Fq and x 1 ; : : : ; x k 2 Fn

q ) is called balancedif
b1 + � � � + bk = 0. This contains the problem of avoiding k-term arithmetic progressions
as a special case, because ak-term arithmetic progressions can be encoded by a
balanced linear system withk variables andk � 2 equations (for instance, the equations
x i � 2x i +1 + x i +2 = 0 for i 2 [k � 2]).

Consider a balanced linear system
8
>><

>>:

a11x 1 + � � � + a1k x k = 0 ;
...

am 1x 1 + � � � + amk x k = 0;

(?)

consisting of m equations in the variablesx 1 ; : : : ; x k 2 Fn
q . Note that the variables

are not taken from Fq, but from Fn
q as n ! 1 .

If k � 2m+1, then a straightforward application of the slice rank method shows that
there is a constantCq;m;k < q such that every subsetA � Fn

q of sizejAj � (Cq;m;k )n

contains a solution (x 1 ; : : : ; x k ) 2 Ak of (?) where the x i are not all equal. This
was strengthened by Mimura and Tokushige [MT19a, MT19b, MT20] and Sauermann
[Sau22], who showed that, for certain speci�c classes of balanced linear systems, one
can even �nd a solution (x 1 ; : : : ; x k ) 2 Ak of (?) where the x i are pairwise distinct.

In Chapter 6, we study similar problems. Our main contributions are twofold. First,
we extend the aforementioned results of Mimura and Tokushige [MT19a, MT19b,
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MT20] to a much larger class of balanced linear systems, thereby also bringing their
results together under a single proof. Second, we extend this problem further to show
that, for certain systems, one can even �nd a solution (x 1 ; : : : ; x k ) 2 Ak of (?) that is
maximally a�nely independent, in the sense that the vectors x 1 ; : : : ; x k do not satisfy
any balanced linear equation that is not a linear combination of the equations in (?).

The class of linear systems that we study in Chapter 6 contains all systems studied
by Mimura and Tokushige [MT19a, MT19b, MT20], but is disjoint from the class of
linear systems studied by Sauermann [Sau22]. These results have since been superseded
by a stronger result of Gijswijt [ Gij21], which simultaneously contains the results from
Chapter 6 and [Sau22] as special cases.

1.3 Part III: Tensor products of convex cones

A convex coneis a subset of a real vector space which contains 0 and is closed under
addition and multiplication by positive scalars. Convex cones have applications in all
areas of mathematics, ranging from algebraic geometry to optimization, as well as in
other areas of science, ranging from quantum physics to economics.

In these applications, one frequently has to �nd a way to somehow carry the cone
along when the containing vector space is modi�ed. Therefore it is important to match
common operations on vector spaces with appropriate operations on the convex cones
contained in them. Examples of such operations are duals, projections, direct sums,
and tensor products. In each of these, there is a straightforward (and canonical) way
of carrying along the convex cone, except in the case of tensor products. Here there is
not a single canonical candidate, but rather many \reasonable" candidates. For this
reason, tensor products of convex cones are more involved, but also more interesting
than most other operations on convex cones. They have been studied by many authors,
and will also be the main topic of Part III of this dissertation.

Although much has already been said about tensor products of convex cones, many
basic properties have so far gone unnoticed, and several basic questions remained
unanswered. We aim to address these in Part III.

Our main contributions are threefold. First, our manuscript is one of the �rst to
study the problem in full generality. Most of the existing literature either focuses on
Archimedean lattice cones (in the functional analysis literature) or on closed, proper
and generating cones in �nite-dimensional spaces (in linear algebra and in applications
in other �elds). This means that many cones are not covered by either regime, including
even some standard cones such as an in�nite-dimensional positive semide�nite cone or
a lexicographical cone. For general cones, results are few and far between, and even
some basic questions remain unanswered. We address this by developing the theory of
tensor products of convex cones in full generality, for arbitrary cones in arbitrary real
vector spaces.

Second, apart from extending several known results to the in�nite-dimensional
setting, we prove many results which are altogether new. For instance, we show that
the projective and injective cone satisfy mapping properties which are analogous to
the mapping properties of the projective and injective norm, we give a direct formula
for the lineality space of the projective or injective cone, we give precise necessary
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and su�cient conditions for the projective or injective cone to be semisimple, and we
exhibit new ways of constructing faces of the projective or injective cone from faces of
the base cones. Furthermore, as an application of our results, we show that the tensor
product of symmetric convex sets preserves proper faces, a result which we believe was
only known for extreme points (and only under additional topological assumptions).

Third, we give many examples where the projective cone is not dense in the injective
cone. This question has been studied by various authors throughout the years, and has
seen a lot of progress in recent years thanks to interest from researchers in operator
theory and theoretical physics (we discuss these connections in a bit more detail in
§7.1). For a large class of closed, proper and generating cones in �nite-dimensional
spaces, we prove that the projective cone is closed and strictly contained in the
injective cone, thereby con�rming a conjecture of Barker for nearly all cones. However,
as the manuscript upon which Part III is based was being written, our results were
superseded by simultaneous work of Aubrun, Lami, Palazuelos and Pl�avala [ALPP21],
who independently proved Barker's conjecture in full generality. We recover their result
for nearly all cones, using completely di�erent techniques.

A detailed outline of Part III will be given in Chapter 7.
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Divisorial gonality of graphs
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Chapter 2

Divisors, chip-�ring games, and
gonality

In algebraic geometry, gonality is an invariant that measures the complexity
of an algebraic curve. In [Bak08], Matt Baker de�ned a combinatorial analogue
of this invariant, the divisorial gonality of a graph, which is the main topic of
Part I of this dissertation. In this introductory chapter, we cover the basics of
gonality theory for graphs.

This chapter is based in part on the preliminaries of the papers [ BDGS22]
and [DSW22].

Introduction

In Part I, we focus on a graph parameter calledgonality. This parameter has its origins
in algebraic geometry, where the gonality of an algebraic curve is an invariant which
measures the complexity of the curve. By viewing graphs as discrete analogues of
algebraic curves, several authors have de�ned analogous notions for graphs. However,
there are several di�erent (inequivalent) notions of gonality for graphs, which stem
from di�erent (equivalent) de�nitions of the gonality of a curve. In this dissertation,
we focus ondivisorial gonality, which was the �rst notion of gonality to be de�ned for
graphs (see [Bak08, §3]). For an overview of other notions of gonality of graphs, see
for instance [CKK15, Appendix A].

In this chapter, we de�ne all the relevant concepts behind divisorial gonality, and
we prove the basic properties that we will use in the next chapters.

2.1 Graphs

Throughout this dissertation, by a graph we mean a �nite, loopless, undirected multi-
graph. In other words, parallel edges are allowed, but self-loops are not. Furthermore,
throughout this dissertation, we assume that all graphs are connected. The set of
vertices of a graphG is denotedV(G) and the set of edges is denotedE(G). If there
is exactly one edge betweenu and v, then we denote it by uv.

Let G be a graph. For (not necessarily disjoint) vertex setsU; W � V (G), we denote
by E(U; W) the set of edges having one endpoint inU and the opposite endpoint inW .

9
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We use the shorthand notation E(u; W ) := E(f ug; W) and � (U) := E(U; V(G) n U).
By N (U) we denote the set of vertices inV (G) n U that have a neighbour in U.

The degreeof a vertex v 2 V(G) is deg(v) := j� (v)j. Given a subsetU � V (G)
and a vertex v 2 U, the out-degree ofv with respect to U is de�ned as outdegU (v) :=
jE (v; V(G) n U)j.

The Laplacian of a graph G is the matrix L G 2 QV (G) � V (G) given by

(L G )uv =

(
deg(u); if u = v;

�j E (u; v)j; if u 6= v:

Since we assume all graphs to be connected, the null space ofL G contains only the
multiples of the all-ones vector1.

2.2 Divisors on graphs

A divisor on a graph G is an element of the free abelian group onG. In other words,
a divisor is a formal sum

P
v2 V (G) av v, where av 2 Z for all v. If D is a divisor on G

and if w 2 V(G), then we use the notation D(w) to denote the coe�cient aw of w in
D . The support supp(D) of a divisor D is the set of all v 2 V (G) for which D(v) 6= 0.

For two divisors D and D 0, we write D � D 0 if D (v) � D 0(v) for all v. A divisor
D is called e�ective if D � 0. The sets of all divisors and all e�ective divisors onG
are denoted by Div(G) and Div + (G), respectively.

The degreeof a divisor is the sum of its coe�cients: deg(D) :=
P

v2 V (G) D(v). The

set of all e�ective divisors of degreed on G is denoted Divd
+ (G).

The Laplacian matrix L G of G de�nes a map ZV (G) ! Div (G), x 7! L G x. Divisors
in the image of this map are calledprincipal divisors. Two divisors D; D 0 2 Div (G)
are equivalent, written D � D 0, if D � D 0 is a principal divisor. This de�nes an
equivalence relation, and the equivalence classes coincide with the cosets of the
subgroup Prin (G) � Div (G) of principal divisors. Equivalent divisors have the same
degree, because1T L G = 0.

Let D and D 0 be equivalent divisors. ThenD 0 = D � L G x for somex 2 ZV (G) ,
but x is not unique. Since ker(L G ) = span(1), there is exactly one suchx with
the additional property that x � 0 and xv = 0 for at least one v 2 V(G). We
denote this x by script(D; D 0) and write dist(D; D 0) = maxf xv j v 2 V (G)g. Note
that if t = dist(D; D 0), then script(D 0; D ) = t1 � x, so dist(D 0; D ) = dist(D; D 0).
Furthermore, if D � D 0 � D 00, then we have the triangle inequality dist(D; D 00) �
dist(D; D 0)+ dist(D 0; D 00), becausescript(D; D 00) = script(D; D 0)+ script(D 0; D 00) � c1
for some integerc � 0.

The rank of a divisor D 2 Div( G) is de�ned as

rank(D) := max f k 2 Z j D � E is equivalent to an e�ective divisor for all E 2 Div k
+ (G)g:

We have rank(D) = � 1 if and only if D is not equivalent to an e�ective divisor.
Given a graph G and an integer r � 1, the r -th divisorial gonality dgonr (G) of G

is the minimum degree of a rankr divisor on G. For r = 1, this is simply called the
divisorial gonality of G, written dgon( G) := dgon 1(G).
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2.3 The chip-�ring game

Equivalence of divisors can also be described in terms of a \chip-�ring game". In this
game, we interpret the divisor D as a distribution of chips over the vertices ofG,
where D(v) is the number of chips on the vertexv. A vertex with a negative number
of chips is said to bein debt.

In a vertex �ring move, a vertex v 2 V (G) sends chips to its neighbours, one along
each incident edge. This turnsD into the divisor D 0 = D � L G 1v , where 1v is the
characteristic vector of v. In a subset �ring move, we simultaneously �re all vertices
in the vertex set U � V (G). 1 Edges with both endpoints in U see two chips going in
opposite direction along the edge, so these cancel out. Therefore the net e�ect of �ring
U is that one chip is moved along each edge in the cutE(U; V(G) n U), from U to
V (G) nU. The resulting divisor is D 0 = D � L G 1U , where1U denotes the characteristic
vector of U. SinceL G 1 = 0, �ring U can be undone by �ring V (G) n U, and we call
this inverse �ring U.

When studying divisorial gonality, we often restrict our attention to e�ective
divisors. If D is an e�ective divisor, we say that a subsetU � V (G) is valid (or can be
�red ) with respect to D if D (v) � outdegU (v) for all v 2 U. It is easy to see thatU is
valid if and only if D � L G 1U is e�ective, so that �ring U does not push any vertices
in debt.

The following proposition shows that it is possible to move between every pair of
equivalent e�ective divisors by subset �ring moves without ever going into debt.

Proposition 2.1 ([DG20, Lem. 2.3]). Let D; D 0 be equivalent e�ective divisors. Then
there is a unique increasing sequence? ( U1 � U2 � � � � � Ut ( V (G) of vertex sets
such that subsequently �ringU1; : : : ; Ut (in that order ) turns D into D 0 without ever
going into debt.

Proof. Let x = script(D; D 0) and t = dist(D; D 0) = maxf xv j v 2 V (G)g. Let
U1 � U2 � � � � � Ut be the reverse level set decomposition ofx; that is:

Ui := f v 2 V (G) : xv � t + 1 � ig; for all i 2 [t]:

Then x =
P t

i =1 1U i , so subsequently �ring U1; : : : ; Ut turns D into D 0. Furthermore,
if ? ( U0

1 � U0
2 � � � � � U0

t 0 ( V (G) is another increasing sequence such that

subsequently �ring U0
1; : : : ; U0

t 0 turns D into D 0, then y :=
P t 0

i =1 1U 0
i

2 ZV (G) satis�es
D 0 = D � L G y as well as the additional propertiesy � 0 and yv = 0 for at least one
v 2 V(G) (becauseU0

t 0 ( V (G)), so we havey = x. But there is only one way to
decomposex as the sum of characteristic vectors of an increasing sequence of vertex
sets, so we havet0 = t and Ui = U0

i for all i 2 [t]. This proves uniqueness.
Let D0; : : : ; D t be the sequence of intermediate divisors, so thatD0 = D and

D i = D i � 1 � L G 1U i for all i 2 [t]. We must show that D i � 0 for all i 2 [t]. For
i = t this is clear, becauseD t = D 0. Now let i 2 [t � 1] and v 2 V(G). To show that
D i (v) � 0, we distinguish two cases.

1Note that the order of �ring does not matter, because addition is commutative: D � L G 1v �
L G 1u = D � L G 1u � L G 1v .
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ˆ If v =2 Ui , then also v =2 U1; : : : ; Ui (becauseU1 � � � � � Ui ), so v has only
received chips so far. ThereforeD i (v) � D (v) � 0.

ˆ if v 2 Ui , then also v 2 Ui ; : : : ; Ut (becauseUi � � � � � Ut ), so v will only give
away chips from now on. HenceD i (v) � D 0(v) � 0. �

This leads to the following alternative de�nition of gonality: dgonr (G) is the
minimum number of chips in a chip con�guration (divisor) D � 0 such that, by
subsequently �ring valid vertex sets, we can reach for everyE 2 Div r

+ (G) a divisor
D 0 � E . In particular, dgon(G) is the minimum number of chips in a chip con�guration
D � 0 such that, by subsequently �ring valid vertex sets, we can reach for every
v 2 V(G) an e�ective divisor D 0 � 0 with D 0(v) � 1.

2.4 Reduced divisors

Let G be a graph, and letq 2 V(G). An e�ective divisor D 2 Div + (G) is said to be
q-reduced if every non-empty valid set contains q.2 In Proposition 2.3 below we prove
that every e�ective divisor is equivalent to exactly one q-reduced divisor. For this we
use the following lemma.

Lemma 2.2. Let D 2 Div + (G) be aq-reduced divisor, and letD 0 � D be an e�ective
divisor equivalent to D . Then script(D; D 0)q = dist( D; D 0) and script(D 0; D )q = 0 .

Proof. Write x := script(D; D 0) and t := dist(D; D 0). By the proof of Proposition 2.1,
the highest level setU1 := f v 2 V (G) : xv = tg is non-empty and valid with respect
to D . SinceD is q-reduced, it follows that q 2 U1, soxq = t. The other equality follows
because script(D; D 0) + script( D 0; D ) = t1. �

Proposition 2.3 ([BN07, Prop. 3.1]). For every D 2 Div + (G), there is a unique
q-reduced divisor D 0 2 Div + (G) such that D � D 0.

Proof. To prove existence, we construct a sequenceD0; D1; : : : ; Dn ; : : : 2 Div + (G) of
e�ective divisors equivalent to D recursively in the following way:

ˆ Set D0 := D .

ˆ Suppose thatD0; : : : ; Dn have been de�ned. If Dn is q-reduced, setD 0 := Dn

and terminate. Otherwise, choose a non-empty subsetUn � V (G) n f qg that is
valid with respect to Dn and set Dn +1 := Dn � L G 1Un . Repeat.

SinceDn +1 is obtained from Dn by �ring a valid vertex set, we have D i � 0 for all i , and
D0 � D1 � � � � � Dn . Furthermore, since q =2 U0; : : : ; Un � 1, we havescript(D0; Dn ) =P n � 1

i =0 1U i . In particular, for n 6= m we havescript(D0; Dn ) 6= script(D0; Dm ), and
therefore Dn 6= Dm . Since there are only �nitely many e�ective divisors of degree

2There is also a notion of q-reduced divisors which are not e�ective; see [ BN07, §3.1]. For simplicity,
we restrict our attention to e�ective divisors, which su�ce for our purposes. Here the de�nitions and
proofs are slightly simpler. It is not hard to see that our notion of q-reduced divisors agress with the
one from [BN07, §3.1].
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deg(D), the algorithm must terminate at some point, which shows that D is equivalent
to a q-reduced divisor.

To prove uniqueness, suppose thatD 0; D 00 2 Div + (G) are q-reduced e�ective
divisors equivalent to D . Since both D 0 and D 00 are q-reduced, it follows from
Lemma 2.2 that script(D 0; D 00)q = dist(D 0; D 00), but also script(D 0; D 00)q = 0. There-
fore dist(D 0; D 00) = 0, hence D 0 = D 00. �

The unique q-reduced divisor equivalent toD is denotedDq. The following proposi-
tion shows that Dq maximizes the value ofD 0(q) among all e�ective divisors D 0 � D .

Proposition 2.4. Let D 2 Div + (G) be an e�ective divisor, and let q 2 V (G). Then
for every e�ective divisor D 0 � D , one hasDq(q) � D 0(q).

Proof. Let D 0 � D be e�ective, and write x := script(D 0; Dq). Then x � 0 and xq = 0,
by Lemma 2.2. Hence, when moving fromD 0 to Dq by subsequently �ring the level
sets U1; : : : ; Ut (see Proposition 2.1), the vertexq only receives chips, never giving
anything away. Therefore Dq(q) � D 0(q). �

Corollary 2.5. Let D 2 Div + (G). Then rank(D) � 1 if and only if Dq(q) � 1 for
all q 2 V (G).

The following estimate of the distance betweenD and Dq will be useful later on.

Proposition 2.6. Let D 2 Div + (G) be an e�ective divisor and let q 2 V(G). Then
dist(D; D q) � deg(D) � jV (G)j.

Proof. By Proposition 2.1, there is an increasing sequence? ( U1 � U2 � � � � � Ut (
V (G) of vertex sets such that subsequently �ring U1; : : : ; Ut (in that order) turns D
into Dq without ever going into debt, where t := dist(D; D q). In this sequence, the
same setUi = Ui +1 = � � � can occur at most deg(D) times in a row, because every
time we �re Ui at least one chip leavesUi . It follows that t � deg(D) � jV (G)j. �

2.5 Dhar's burning algorithm

Dhar's burning algorithm [ Dha90], given in Algorithm 2.7 below, takes as input a
graph G, a divisor D and a vertex q, and returns a valid vertex set U � V (G) n f qg.

Input : A triple ( G; D; q), where G is a graph, D 2 Div + (G), and q 2 V (G).
Output : The maximal valid subset U � V (G) n f qg.

1 Function Dhar(G; D; q):
2 U := V(G) n f qg;
3 while D(v) < outdegU (v) for some v 2 U do
4 U := U n f vg;
5 end while
6 return U

Algorithm 2.7: Dhar's burning algorithm for �nite graphs.
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Dhar's burning algorithm can be implemented e�ciently as a breadth �rst search.
By remembering the values ofoutdegU (v) for all v 2 U (instead of computing them
when needed) and only updating those values that are changed when some vertexv is
removed from U, the algorithm can be implemented to run in O(jE (G)j) time. For
details, see [Dob12, Alg. 5.3].

We proceed to prove the basic properties of Dhar's burning algorithm.

Proposition 2.8. The vertex setU � V (G)nf qg returned by Dhar's burning algorithm
is valid and contains every other valid vertex setU0 � V (G) n f qg.

Proof. When Dhar's burning algorithm terminates, it returns a set U � V (G) n f qg
such that D(v) � outdegU (v) for all v 2 U, so this set is (by de�nition) valid.

Let U0 � V (G) n f qg be another valid vertex set. At the start of the algorithm, we
have U := V (G) n f qg, so at this point U0 � U. Furthermore, as long as the inclusion
U0 � U is maintained, we haveD(v) � outdegU 0(v) � outdegU (v) for all v 2 U0.
Therefore the algorithm never removes a vertexv 2 U0 from U. �

In other words, Dhar's burning algorithm always returns the unique inclusionwise
maximal valid set U � V (G) n f qg. The following corollaries are immediate.

Corollary 2.9. The output of Dhar's burning algorithm does not depend on the order
in which vertices are selected in the while loop in lines 3{5.

Corollary 2.10. Let D 2 Div + (G) be an e�ective divisor, and let q 2 V(G). Then
D is q-reduced if and only if Dhar(G; D; q) = ? .

If D is not q-reduced, then Dhar's burning algorithm can be used to reduce the
distance betweenD and Dq.

Proposition 2.11. Let D 2 Div + (G) be an e�ective divisor, and let q 2 V (G). More-
over, let U := Dhar(G; D; q), and suppose thatU 6= ? . Then dist(D � L G 1U ; Dq) =
dist(D; D q) � 1.

Proof. Write x := script(D; D q) and t := dist(D; D q). By the proof of Proposition 2.1,
the highest level setU1 := f v 2 V (G) : xv = tg is valid with respect to D , so it
follows from Proposition 2.8 that U1 � U.

Let D 0 := D � L G 1U (which is e�ective by Proposition 2.8), and write x0 :=
script(D 0; Dq). Then x � 1U and x0 di�er by a multiple of 1. However, it follows from
Lemma 2.2 that xq = x0

q = 0, and we have (1U )q = 0, so in fact x0 = x � 1U . Since
U1 � U, it is clear that dist( D 0; Dq) = max f x0

v : v 2 V (G)g = t � 1. �

By Proposition 2.6 and Proposition 2.11, we need at mostdeg(D) � jV (G)j iterations
of Dhar's burning algorithm to �nd the unique q-reduced divisor Dq � D . Dhar's
burning algorithm and a single subset �ring move can both be done inO(jE (G)j) time,
so computing Dq from D can be done inO(deg(D) � jV (G)j � j E (G)j) time.



Chapter 3

Constructing tree decompositions of
graphs with bounded gonality

In 2014, Gijswijt and the author showed that treewidth is a lower bound for
graph gonality. In this chapter, we give a constructive proof of the same fact, by
giving a polynomial-time algorithm that turns a positive rank divisor of degree
d into a tree decomposition of width at most d.

This chapter is based on the paper [BDGS22]. A preliminary version of this
paper appeared earlier as a conference paper in [BDGS20]. This is joint work
with Hans L. Bodlaender, Dion Gijswijt, and Harry Smit.

3.1 Introduction

In the paper [DG20], originally written in 2014, van Dobben de Bruyn and Gijswijt
showed that gonality is closely related totreewidth, a graph parameter that plays an
important role in structural graph theory and theoretical computer science (See§3.2
for a de�nition of treewidth.) We proved that dgon(G) � tw(G) for every graph G,
and we gave multiple examples where the two are actually equal. However, in general
the two can be arbitrarily far apart, as can be seen by taking a \chain of cycles"; see
[CDPR12]. (For another construction, see [Hen18].)

Given their very di�erent origins, it is rather surprising that gonality and treewidth
are so closely related. Our original proof from [DG20] does little to clarify this
connection, as it is non-constructive and makes use of a dual characterization of
treewidth in terms of brambles. In this chapter, we intend to clarify this connection by
providing a constructive proof of the same fact. Speci�cally, we give a polynomial-time
algorithm that turns a positive rank divisor of degree k into a tree decomposition of
width at most k. Our main result is the following.

Theorem 3.1. There is an O(k � jV (G)j2 � jE (G)j) time algorithm that takes as input
a graph G and a positive rank e�ective divisor of degreek de�ned on G, and returns
as output a tree decomposition ofG of width at most k.

To prove Theorem 3.1, we make use of an equivalent de�nition of treewidth in
terms of a Cops and Robbers game. The main idea behind the algorithm is to use the
chip-�ring game to guide the searchers through the graph and capture the fugitive.

15
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This leads to an algorithm that converts a positive rank e�ective divisor of degree
k to a monotone search strategy withk + 1 searchers (see§3.4). By encoding this
monotone search strategy in a speci�c way (see§3.3), it can easily be turned into a
tree decomposition of width at most k (see§3.5).

3.2 Treewidth

Before diving into the proof of Theorem 3.1, we briey recall the de�nition of treewidth.
Treewidth is a graph parameter with a long history. Its �rst appearance was under

the name ofdimension, in 1972, by Bertel�e and Brioschi [BB72]. It was rediscovered
several times since, each time under a di�erent name. (For an overview, see for instance
[Bod98].)

The terms \tree decomposition" and \treewidth" were introduced by Robertson
and Seymour [RS86a] as part of their fundamental work on graph minors. These
notions have since become the dominant terminology. The treewidth of a graph is
de�ned as follows.

De�nition 3.2. Let G be a graph. Atree decompositionof G is a tuple (T; (X t )t 2 V (T ) ),
where T is a tree and (X t )t 2 V (T ) is a collection of vertex setsX t � V (G), one for each
node ofT, that satis�es the following conditions:

(a)
S

t 2 V (T ) X t = V ;

(b) for every edgee 2 E(G) with endpoints u; v 2 V (G), there is somet 2 V(T)
such that u; v 2 X t ;

(c) for every v 2 V (G), the set of nodesTv = f t 2 V (T) : v 2 X t g is connected (in
other words, it induces a subtree ofT).

The setsX t � V (G) are called the bagsof the tree decomposition. Thewidth of the
tree decomposition is maxt 2 V (T ) jX t j � 1.

The treewidth of G, denoted tw(G), is the minimum width of a tree decomposition
of G.

There are several alternative (equivalent) de�nitions of treewidth. We will use a
notion that is based on a Cops and Robbers game, introduced by Seymour and Thomas
[ST93]. Here, a number of searchers need to catch a fugitive, subject to certain rules.

In the Cops and Robbers game for treewidth, searchers can move from a vertex in
the graph to a \helicopter", or from a helicopter to any vertex in the graph. Between
moves of searchers, the fugitive can move with in�nite speed in the graph, but may
not move over or to vertices with a searcher. The fugitive is captured when a searcher
moves to the vertex with the fugitive, and there is no other vertex without a searcher
that the fugitive can move to. The location of the fugitive is known to the searchers at
all times.

We say that k searchers can capture a fugitive inG if there is a strategy for k
searchers onG that guarantees that the fugitive is captured. In the initial con�guration,
the fugitive can choose a vertex, and all searchers are in a helicopter. A search strategy
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is monotone if it is never possible for the fugitive to move to a vertex that had been
unreachable before. In particular, in a monotone search strategy, there is never a path
without searchers from the location of the fugitive to a vertex previously occupied by
a searcher.

Theorem 3.3 (Seymour and Thomas [ST93]). Let G be a graph andk a positive
integer. The following statements are equivalent.

(i) The treewidth of G is at most k.

(ii) k + 1 searchers can capture a fugitive inG.

(iii) k + 1 searchers can capture a fugitive inG with a monotone search strategy.

3.3 Monotone search strategies

We start by providing a way to encode monotone search strategies. LetG be a graph.
For X � V (G), the vertex set of a component ofG n X is called anX -ap . A position
is a pair (X; R ), where X � V (G) and R is a union1 of X -aps (we allow R = ? ).
Note that R is a union of X -aps if and only if N (R) � X .

The set X represents the vertices occupied by searchers, and the fugitive can
move freely within someX -ap contained in R (if R = ? , then the fugitive has been
captured). In a monotone search strategy, the fugitive will remain con�ned to R, so
placing searchers on vertices other thanR is of no use. Therefore, it su�ces to consider
three types of moves for the searchers: (a) remove searchers that are not necessary to
con�ne the fugitive to R; (b) add searchers toR; (c) if R consists of more than one
X -ap, restrict attention to the X -ap Ri ( R containing the fugitive. This leads us
to the following de�nition.

De�nition 3.4. Let G be a graph and letk be a positive integer. A monotone search
strategy (MSS) with k searchers forG is a directed treeT = ( P; F ) where P is a set
of positions with jX j � k for every (X; R ) 2 P , that satis�es the following additional
conditions:

(i) The root of T is (? ; V ).

(ii) If ( X; R ) is a leaf of T, then R = ? .

(iii) Let (X; R ) be a non-leaf ofT. Then R 6= ? and there is a setX 0 � X [ R such
that exactly one of the following applies:

(a) X 0 ( X , and the position (X 0; R) is the unique out-neighbour of (X; R );

(b) X 0 ) X , and the position (X 0; R n X 0) is the unique out-neighbour of
(X; R );

(c) X 0 = X , and the out-neighbours of (X; R ) are the positions (X; R 1); : : : ;
(X; R t ) where t � 2 and R1; : : : ; Rt are the X -aps contained in R.

1Here we deviate from the de�nition of position as stated in [ ST93], in that we allow R to consist
of zero X -aps or more than one X -ap.
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If condition (ii) does not necessarily hold, we say thatT is a partial MSS. Note that
we do not consider the root node to be a leaf even if it has degree 1.

It is clear that if T is an MSS for k searchers, then, as the name suggests,k
searchers can capture the fugitive, the fugitive can never reach a vertex that it could
not reach before, and a searcher is never placed on a vertex from which a searcher was
previously removed.

We should point out that De�nition 3.4 is slightly di�erent from existing (formal
or informal) de�nitions of a monotone search strategy in the literature. Compared to
Seymour and Thomas [ST93], we also allow positions that consist of zeroX -aps or
more than oneX -ap. We do not prove that Theorem 3.3 also holds for our de�nition
of a monotone search strategy (De�nition 3.4), but we will show in §3.5 that an MSS
with k searchers yields a tree decomposition of width at mostk � 1 in a relatively
straightforward fashion.

First we focus on constructing an MSS in polynomial time. For this we use the
following lemmas.

Lemma 3.5. Let G be a graph and letT be a partial MSS with k searchers forG.
Then T has at mostjV (G)j2 + 1 nodes.

Proof. For every position (X; R ), de�ne f (X; R ) = jRj(jX j + jRj). We claim that for
every non-leaf node (X; R ), the value of f (X; R ) is at least the sum of the values of its
children plus the number of children. In case (a) and (b), the node (X; R ) has exactly
one child (X 0; R0), which satis�es R0 � R and X 0 [ R0 � X [ R, with at least one of
these inclusions strict (and jRj 6= 0). Therefore we have f (X; R ) > f (X 0; R0), hence
f (X; R ) � f (X 0; R0) + 1. Moreover, in case (c), we havef (X; R ) � f (X; R 1) + � � � +
f (X; R t ) + t, because

f (X; R ) � (f (X; R 1) + � � � + f (X; R t )) =
X

1� i<j � t

2jRi j � j Rj j

� 2jR1j � (jR2j + � � � + jRt j)

� 2(t � 1) � t:

This proves our claim. It follows by induction that f (X; R ) is an upper bound on the
number of descendants of (X; R ) in T. Since every non-root node is a descendant of the
root, it follows that the total number of nodes is at most 1+ f (? ; V ) = 1+ jV (G)j2. �

3.4 Construction of a monotone search strategy

In this section, we present an algorithm that turns a positive rank e�ective divisor of
degreek into a monotone search strategy (MSS) withk + 1 searchers. This will be the
main component in our proof of Theorem 3.1. The procedure to convert an MSS into
a tree decomposition is postponed until the next section.

The main idea behind our algorithm is to guide the searchers based on the way the
chips move through the graph in the chip-�ring game. The input divisor D provides
the initial position for the searchers, after which we repeatedly use Dhar's burning
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algorithm (see Algorithm 2.7) to compute the next move. By doing so in a careful
way, we can compute an MSS in polynomial time. We will make this idea precise in
Theorem 3.8 below. For this, we need the following lemmas.

Lemma 3.6. Let G be a graph, letX � V (G) be a non-empty vertex set, and letR
be anX -ap. If D 2 Div (G) is a positive rank e�ective divisor with supp(D) \ R = ? ,
then the function callsDhar(G; D; q) and Dhar(G; D; q0) return the same non-empty
set for all q; q0 2 R.

Proof. Let q; q0 2 R be arbitrary, and let U; U0 be the sets returned byDhar(G; D; q)
and Dhar(G; D; q0), respectively. SinceD has positive rank andD(q) = 0, the divisor
D is not q-reduced, soU 6= ? . Moreover, sinceR is an X -ap, there is a path from
q to q0 in R. Hence, in Dhar's burning algorithm, if q is burned, then also q0 is
burned, becausesupp(D) \ R = ? . Therefore q0 =2 U. SinceU0 is the maximal subset
S � V (G) n f q0g that can be �red, we have U � U0. By symmetry, we also have
U0 � U, which shows that U = U0. �

By a slight abuse of notation, if D satis�es the condition from Lemma 3.6, then
we denote the set returned byDhar(G; D; q) for any q 2 R as Dhar(G; D; R ), and
we call this the R-Dhar set for D .

Lemma 3.7. Let G be a graph, letX � V (G) be a non-empty vertex set, and
let R be an X -ap. If D 2 Div (G) is a positive rank e�ective divisor such that
supp(D) \ (X [ R) = X , then by repeatedly �ring R-Dhar sets, we obtain in a �nite
number of steps an e�ective divisorD 0 � D such that supp(D 0) \ (X [ R) = X and
such that theR-Dhar set U := Dhar(G; D 0; R) satis�es U \ R = ? and U \ X 6= ? .

Proof. By Lemma 3.6, the R-Dhar set U := Dhar(G; D; R ) is non-empty. For every
q 2 R we haveU = Dhar(G; D; q), and therefore q =2 U, so U \ R = ? . If U \ X 6= ? ,
we setD 0 := D and we are done. Otherwise, we replaceD by D � L G 1U and iterate.
SinceU \ X = ? , the vertices in X do not give away chips. Moreover, sinceR is an
X -ap, we have N (R) � X , so the vertices inR do not receive any chips. Therefore
the property that supp(D) \ (X [ R) = X is maintained. By Proposition 2.6 and
Proposition 2.11, we �nish in no more than k � jV (G)j iterations. �

Theorem 3.8. There is an O(k � jV (G)j2 � jE (G)j) time algorithm that takes as input
a graph G and a positive rank e�ective divisor of degreek de�ned on G, and returns
as output an MSS withk + 1 searchers forG.

Proof. Throughout the execution of the algorithm, we will keep a partial MSS, which
we extend until it is an MSS. We start with only two nodes, namely the root (? ; V )
and its child (supp(D); V n supp(D)), after which we repeatedly process all leaves
(X; R ) with R 6= ? until no such nodes are left. At each step, for every leaf (X; R ) of T
we keep an e�ective divisor D 0 � D such that supp(D 0) \ (X [ R) = X (equivalently:
X � supp(D 0) and R \ supp(D 0) = ? ).

We now describe the iterative procedure. WhileT has a leaf (X; R ) with R 6= ? ,
let D 0 be the divisor associated to (X; R ) and perform one of the following steps.
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I. If R consists of multiple X -aps R1; : : : ; Rt , then we add the nodes (X; R 1); : : : ;
(X; R t ) as children of (X; R ), associateD 0 to each of these nodes, and iterate.

II. If X 0 := N (R) is a strict subset of X , then add the node (X 0; R) as a child of
(X; R ), associateD 0 to this node, and iterate.

III. The remaining case is thatN (R) = X and R is a singleX -ap. By Lemma 3.7,
by repeatedly �ring R-Dhar sets, we may obtain an e�ective divisor D 00� D 0

such that supp(D 00) \ (X [ R) = X and from D 00we can �re a set U such that
U \ R = ? and U \ X 6= ? . To compute the next step in our search strategy,
we �re the set U, and use the chips that are �red from X to R to guide the
searchers towards the fugitive. We now make this idea precise.

Write U \ X = f s1; s2; : : : ; st g, where t = jU \ X j. Since we can �re onU, we
have

D 00(si ) � outdegU (si ) � j N (si ) \ Rj for all i 2 f 1; : : : ; tg: (3.9)

We write ( X 0
0; R0) := ( X; R ), and we de�ne the positions (X 1; R1); (X 0

1; R1); : : : ;
(X t ; Rt ); (X 0

t ; Rt ) recursively as follows:

X i := X 0
i � 1 [ (N (si ) \ R);

X 0
i := X i n f si g;

Ri := R n X i :

It is not hard to see that every edge in� (R) has at least one endpoint in every
X 0

i , and that therefore N (Ri ) � X 0
i � X i for all i . This shows that every Ri is

a union of X 0
i -aps and of X i -aps, so (X 1; R1); (X 0

1; R1); : : : ; (X t ; Rt ); (X 0
t ; Rt )

are valid positions.

We add the path (X; R ) ! (X 1; R1) ! (X 0
1; R1) ! � � � ! (X t ; Rt ) ! (X 0

t ; Rt )
to T. It may happen that ( X i ; Ri ) = ( X 0

i � 1; Ri � 1) for some i , in which case we
remove one of the two. After that, it is easy to see that the added path is valid, as
every non-leaf node in the path satis�es the condition from De�nition 3.4(iii)(a)
or (b).

Next, we show that the added path uses at mostk + 1 searchers. Using(3.9)
and the fact that X � supp(D 00), we see that

jX 0
i j = jX n f s1; : : : ; si gj + j(N (s1) \ R) [ � � � [ (N (si ) \ R)j

� j X n f s1; : : : ; si gj + jN (s1) \ Rj + � � � + jN (si ) \ R)j

�
X

v2 X nf s1 ;:::;s i g

D 00(v) +
X

v2f s1 ;:::;s i g

D 00(v)

=
X

v2 X

D 00(v)

for all i . Therefore we havejX 0
i j � k and jX i j � k + 1 for all i 2 f 1; : : : ; tg, so

the number of searchers is at mostk + 1.
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To the leaf (X 0
t ; Rt ) we associate the divisorD 00� L G 1U (which is e�ective,

becauseU can be �red). We prove that supp(D 00� L G 1U ) \ (X 0
t [ Rt ) = X 0

t . To
that end, let v 2 X 0

t [ Rt . We distinguish three cases.

{ If v 2 (N (s1) \ R) [ � � � [ (N (st ) \ R), then v =2 U but v has a neighbour
in U, so v receives at least one chip. Thereforev 2 supp(D 00� L G 1U ).

{ If v 2 X n f s1; : : : ; st g, then v =2 U but v 2 X � supp(D 00), so v starts with
a chip and does not give anything away. Thereforev 2 supp(D 00� L G 1U ).

{ If v 2 Rt , then v had no chips to begin with, and v does not have a
neighbour in U. Therefore v =2 supp(D 00� L G 1U ).

SinceX 0
t = ( X n f s1; : : : ; st g) [ (N (s1) \ R) [ � � � [ (N (st ) \ R) and X 0

t \ Rt = ? ,
this shows that supp(D 00� L G 1U ) \ (X 0

t [ Rt ) = X 0
t .

By Lemma 3.5, the iteration terminates after at most jV (G)j2 +1 steps. This completes
the construction of the monotone search strategy.

To complete the proof, we show that this algorithm runs in O(k � jV (G)j2 � jE (G)j)
time. Since the MSS has at mostjV (G)j2 + 1 nodes, and each node carriesO(jV (G)j)
data that needs to be updated, the algorithm spendsO(jV (G)j3) time maintaining
the MSS. This is well within the desired O(k � jV (G)j2 � jE (G)j) bound.

It remains to bound the number of calls to Dhar's burning algorithm. Let S � V (T)
denote the set of nodes for which step III of the algorithm is entered (i.e. for which
N (R) = X and R is a singleX -ap). Let S0 � S denote the set of nodes inS which do
not have a descendant inS, and write S0 = f (X 1; R1); : : : ; (X t ; Rt )g, where t = jS0j.
For all i 6= j we haveRi \ Rj = ? , because the children of a branch vertex ofT have
distinct R-sets (by De�nition 3.4(iii)(c)). Therefore, t � j V (G)j.

For i 2 [t], let Si denote the set of all nodes inS of which (X i ; Ri ) is a descendant,
including the node (X i ; Ri ) itself. Furthermore, choose someqi 2 Ri , and let Dqi denote
the unique qi -reduced divisor equivalent to D . By monotonicity of the search strategy
(see De�nition 3.4(iii)), we have Ri � R for all ( X; R ) 2 S i , so in particular qi 2 R for
all (X; R ) 2 S i . Hence, by Proposition 2.11, every call to Dhar's burning algorithm
made during the processing of the nodes inSi decreases the distance betweenD and Dqi

by one. Since no other operations are performed on the intermediate divisors, and since
dist(D; D qi ) � k � jV (G)j (by Proposition 2.6), it follows that the nodes in Si account
for at most k � jV (G)j calls to Dhar's burning algorithm. Therefore the total number of
calls to Dhar's burning algorithm is at most kt � jV (G)j � k � jV (G)j2. Dhar's burning
algorithm runs in time O(jE (G)j), so our algorithm spendsO(k � jV (G)j2 � jE (G)j)
time on calls to Dhar's burning algorithm. �

3.5 Construction of a tree decomposition

To complete the algorithm, we need to turn the MSS into a tree decomposition. This
is easy, as the following lemma shows.

Proposition 3.10. Let G be a graph, and letT0 = ( P; F ) be a monotone search
strategy for k searchers in G. If T is the undirected tree obtained by ignoring the
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orientation of edges in T0, then (T; (X )(X;R )2P ) is a tree decomposition ofG of width
at most k � 1.

Proof. Let v 2 V . We �rst show that v 2 X for some (X; R ) 2 P . Let P0 := f (X; R ) 2
P : v 2 Rg. Note that P0 contains the root node (? ; V ). Let ( X; R ) 2 P 0 have
maximum distance from the root. Sincev 2 R, it follows from the de�nition of MSS
that ( X; R ) has a child (X 0; R0) with v 2 X 0[ R0. Hence, by the maximality assumption,
we havev 2 X 0.

Next, we show that the set of nodesf (X; R ) 2 P : v 2 X g is a subtree ofT.
Equivalently, we must show that if node (X 2; R2) lies on a path from (X 1; R1) to
(X 3; R3) in T, then X 1 \ X 3 � X 2. It su�ces to check this in two cases: the case
that ( X 3; R3) is a descendant of (X 1; R1) in T0, and the case that (X 2; R2) is the last
common ancestor of (X 1; R1) and (X 3; R3). In the �rst case, it is easy to see that
X 3 � X 2 [ R2 and R2 � R1. It follows that

X 1 \ X 3 � X 1 \ (X 2 [ R2) � X 1 \ (X 2 [ R1) � X 2

sinceX 1 and R1 are disjoint. In the second case, node (X 2; R2) has more than one
out-neighbour, so its out-neighbours are positions (X 2; R), where R runs over the
X 2-aps contained in R2. It follows that X 1 � X 2 [ R0 and X 3 � X 2 [ R00for distinct
X 2-aps R0 and R00. Hence,X 1 \ X 3 � X 2.

To complete the proof, it su�ces to show that for every edge e 2 E(G) there
is some node (X; R ) of T such that X contains both endpoints of e. Suppose for
contradiction that this is not the case for some edgee with endpoints u and v.

We �rst show that there is a node (X; R ) such that u 2 X and v 2 R (or vice
versa). To this end, consider the nodes (X; R ) of T with u; v 2 R (e.g. the root node),
and take such a node that has maximum distance from the root. This node cannot be
a leaf sinceR is non-empty. Sinceu and v are neighbours, they belong to the same
X -ap, so it follows by the maximum distance assumption that (X; R ) has a child
(X 0; R0) with u 2 X 0 and v 2 R0 (or vice versa).

Now consider all nodes (X; R ) with u 2 X and v 2 R and take such a node
for which the distance to the root is maximal. This node cannot be a leaf, because
R is non-empty. Consider a child (X 0; R0) of (X; R ). If we are in case (iii)(a) then
v 2 R0, and we must haveu 2 X 0, for otherwise R0 is not a union of X 0-aps (since u
and v are neighbours, butv 2 R0 and u =2 X 0 [ R0). This contradicts the maximum
distance assumption. If we are in case (iii)(b), thenu 2 X 0 and v 2 R0, which once
again contradicts the maximum distance assumption. If we are in case (iii)(c), we may
assume thatR0 is the X -ap containing v and again this contradicts the maximum
distance assumption. �

Theorem 3.1 now follows from Theorem 3.8 and Proposition 3.10.

3.6 A worked example

We apply the constructions of the previous section to a relatively small example. Let
G = ( V; E) be the graph depicted in Figure 3.1 and letD = 3a be the divisor on G
that has value 3 on vertex a and value 0 elsewhere.
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Figure 3.1: An example graphG. The divisor D = 3 a has positive rank. (It is not
optimal, as dgon(G) = 2, since the divisor b+ f also has positive rank.)
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Figure 3.2: The monotone search strategy obtained fromG with divisor D = 3a. Each
node shows the corresponding pair (X; R ) with the root being ( ? ; f a; b; c; d; e; f; gg).
The labels I{III refer to the steps in the construction.

If we follow the construction of §3.4, we will end up with the monotone search
strategy found in Figure 3.2. Recall that every node of the search tree is a pair (X; R )
of subsets ofV such that R is a union of X -aps in G. For every node, the setsX
and R are indicated in the �gure. The three ways of growing the tree (steps I, II, III
of the construction) at a node with R 6= ? are indicated by downward arrows. Steps
of type I are the only steps that involve branching of the tree. Steps of type III are
the most involved: a path of nodes is added to the tree (depicted horizontally) and
the divisor D 0 changes. For reference, the four steps of type III are labelled (1){(4).
Below, we will elaborate on the construction.

Root. The initial partial MSS consists of a root (X; R ) = ( ? ; V ) connected to a leaf
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node (supp(D); V n supp(D)) = ( f ag; f b; c; d; e; f; gg). The divisor associated to
the leaf node isD 0 = 3a.

Step III(1). For the leaf node (X; R ) = ( f ag; f b; c; d; e; f; gg), the set R is a single
X -ap and N (R) = X , so we apply step III. Dhar's burning algorithm applied
to divisor D 0 = 3a (and an arbitrary vertex in R) gives the setU = f ag to �re
on. We haveU \ X = f s1g with s1 = a. We obtain

X 1 = X [ (N (s1) \ R) = f a; b; cg; R1 = R n X 1 = f d; e; f; gg; X 0
1 = f b; cg:

The path (X 1; R1) ! (X 0
1; R1) is attached to leaf node (X; R ). The divisor

D 0 � L G 1U = a + b+ c is associated to the new leaf node (X 0
1; R1).

Step I. For the leaf node (X; R ) = ( f b; cg; f defgg), the set R is the union of two
X -aps: R = f dg [ f e; f; gg. Hence, we apply step I to obtain two new leaf nodes
(f b; cg; f dg) and (f b; cg; f e; f; gg.

Step II. In the left-hand leaf node (X; R ) = ( f b; cg; f dg) we haveN (R) = f bg � X ,
so we apply step II and add a new leaf node (f bg; f dg).

Step III(2{4). The remaining steps in the construction of the MSS are of type III.
We summarize the details below.

(2) Divisor D 0 is equal to a + b+ c. Applying Dhar's algorithm to D 0 and the
vertex d, we obtain the set U = f a; b; c; e; f; gg. Firing on U, we obtain the
new divisor a + c + d.

(3) Divisor D 0 is equal to a + b+ c. Applying Dhar's algorithm to D 0 and any
of the vertices in R = f e; f; gg we obtain the set U = f a; cg. Firing on U,
we obtain the new divisor 2b+ g.

(4) Divisor D 0 is equal to 2b+ g. Applying Dhar's algorithm to D 0 and the
vertex e (or equivalently f ) we obtain the set U = f a; b; c; d; gg. Firing on
U, we obtain the new divisor e+ 2 f .

From the search tree, we obtain a tree-decomposition of widthdeg(D) = 3 by
labelling each node (X; R ) by the set X and ignoring arc directions. Removing nodes
with label ? and contracting edges of the tree between nodes with equal labels, we
obtain the tree decomposition depicted in Figure 3.3.

f ag f a; b; cg f b; cg

f bg f b; dg f dg

f b; c; gg f b; gg f b; e; f; gg f e; f; gg f e; f g

Figure 3.3: Tree decomposition ofG derived from the MSS.
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3.7 Closing remarks

We conclude this chapter with a few closing remarks.
First, as we mentioned in Chapter 2, there are several di�erent (inequivalent)

notions of gonality for graphs. In Part I of this dissertation, we focus on divisorial
gonality. However, in the paper [BDGS22] upon which the present chapter is based,
we also considered the so-calledstable gonality, de�ned as the minimum degree of a
�nite harmonic morphism from a re�nement of G to a tree (for details, see [BDGS22]).
There we proved the following analogue of Theorem 3.1:

Theorem 3.11 ([BDGS22, Thm. 3]) . There is an O(k2 � jV (G0)j) time algorithm
that takes as input a graphG and a �nite harmonic morphism f : G0 ! T from a
re�nement G0 of G to a tree T, and returns as output a tree decomposition ofG of
width at most k.

The proof of Theorem 3.11 is relatively easy, as the harmonic morphismf : G0 ! T
immediately gives rise to a tree decomposition (for details, see [BDGS22]). This also
furnishes the �rst direct proof of the inequality tw(G) � sgon(G), without relying on
divisor theory.

Second, we point out that the results from this chapter have an application
in parametrized complexity. It is well-known that many NP-hard graph problems
become tractable for graphs of bounded treewidth, provided that a su�ciently small
tree decomposition is available (see for instance [CFK + 15, Thm. 7.9 and 7.10]). An
immediate corollary of Theorem 3.1 is that the same NP-hard problems also become
tractable when a positive rank divisor of su�ciently small degree is available. However,
this could also be deduced without using Theorem 3.1, because one could simply ignore
the divisor and use one of the existing algorithms for computing a tree decomposition,
such as Bodlaender's celebratedO(2O(k 3 ) � jV (G)j) time algorithm [ Bod96]. In this
setting, the bene�t of Theorem 3.1 is that the dependence onk is linear instead of
exponential (at the cost of higher dependence onjV (G)j and jE(G)j), making the
algorithm more practical for larger values of k.

Finally, we point out another intriguing connection with parametrized complexity.
As mentioned in the previous paragraph, problems that are tractable when parametrized
by treewidth are also tractable when parametrized by gonality. One important di�erence
between treewidth and gonality is that treewidth is blind to parallel edges, whereas
gonality is not. Motivated by this, Bodlaender, Cornelissen and van der Wegen were
able to show that several well-studied classes of multigraph problems are hard when
parametrized by treewidth, but become tractable when parametrized by stable gonality
[BCW22b]. This suggests that gonality could play an important role in parametrized
complexity of multigraph problems. An interesting open question is to also �nd
problems which are hard when parametrized by treewidth but become tractable when
parametrized by divisorial gonality [BCW22a, Open problem 5].



26



Chapter 4

Discrete and metric divisorial gonality
can be di�erent

In 2008, Matt Baker conjectured that the divisorial gonality of every graph
G is equal to the divisorial gonality of every regular subdivision of G, and to the
gonality of the associated metric graph �( G; 1) with unit lengths. In this chapter,
we show that these two conjectures are equivalent, and we give a counterexample
to both.

This chapter is based on the paper [DSW22], and is joint work with Harry
Smit and Marieke van der Wegen.

4.1 Introduction

In [Bak08], Matt Baker provided a way to translate between curves and graphs, and
used this to show that certain results can be carried over from one world to another.
However, this translation is not perfect, as some information is lost in the process, so
not all results from algebraic geometry could immediately be translated to analogous
statements for graphs. As a consequence, the paper [Bak08] not only contains many
new results, but also a number of conjectures. Since then, these conjectures have
been among the main driving forces for further research into divisors and gonality on
graphs.

All but two of the conjectures from [Bak08] have since been solved; see [HKN13,
Luo11, CDPR12, DV21a]. The �rst and most important remaining open problem is
the Brill{Noether conjecture for �nite graphs, based on an analogous result for curves.

Conjecture 4.1 (Brill{Noether conjecture for graphs, [ Bak08, Conj. 3.9]). De�ne the
cyclomatic number of a connected loopless multigraphG as g := jE (G)j � j V (G)j + 1 .
Furthermore, for integers g; r; d � 0, de�ne the Brill{Noether number as

� (g; r; d) := g � (r + 1)( g � d + r ):

Then:

(a) If � (g; r; d) � 0, then every connected loopless multigraphG of cyclomatic number
g has a divisor D with rank(D) = r and deg(D) � d;

27
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(b) If � (g; r; d) < 0, then there exists a connected loopless multigraphG of cyclomatic
number g for which there is no divisor D with rank(D) = r and deg(D) � d.

Parts (a) and (b) of Conjecture 4.1 are sometimes referred to as the `existence' and
`non-existence' parts of the Brill{Noether conjecture, respectively (see e.g. [CDPR12,
AR18, Man22]). The non-existence part (Conjecture 4.1(b)) was settled in 2012
by Cools, Draisma, Payne and Robeva [CDPR12], but the existence part (Conjec-
ture 4.1(a)) remains wide open. We focus on ther = 1 case of this conjecture, which
can be reformulated as follows.

Conjecture 4.2 (Gonality conjecture, [Bak08, Conjecture 3.10(1)]). Let G be a
connected loopless multigraph, and letg := jE (G)j � j V (G)j + 1 denote its cyclomatic
number. Then dgon(G) � b g+3

2 c.

The corresponding result for metric graphs was proved by Baker [Bak08, Thm.
3.12] using algebraic geometry. A purely combinatorial proof of this result was recently
found by Draisma and Vargas [DV21a], with many promising avenues still to be
explored [DV21b]. However, for discrete graphs, Conjecture 4.2 is still wide open.1

Partial results were obtained by Atanasov and Ranganathan [AR18], who proved
Conjecture 4.2 for all graphs of genus at most 5, and by Aidun and Morrison [AM20],
who proved the conjecture for Cartesian product graphs.

The most straightforward approach to Conjecture 4.2 would be to show that the
divisorial gonality of a graph is equal to the divisorial gonality of the associated metric
graph with unit lengths (see §4.2). This is the second remaining conjecture of Baker's
paper [Bak08, Conj. 3.14]. Given a multigraph G and an integer k � 1, let � k (G)
denote the multigraph obtained from G by subdividing every edge intok parts. The
conjecture can then be stated as follows.

Conjecture 4.3 ([Bak08, Conjecture 3.14]). Let G be a connected loopless multigraph,
let �( G) be the corresponding metric graph with unit edge lengths, and letr � 1. Then:

(a) dgonr (G) = dgon r (� k (G)) for all k � 1;

(b) dgonr (�( G)) = dgon r (G).

The �rst main result of this chapter is that Conjecture 4.3(a) and Conjecture 4.3(b)
are equivalent for every graphG.

Theorem 4.4. For every connected loopless multigraphG and every integerr � 1,
one has

dgonr (�( G)) = min
k2 N1

dgonr (� k (G)) :

A partial result in this direction was already implicit in the work of Gathmann
and Kerber [GK08, Prop. 3.1] (see Theorem 4.12(a) below), but to our knowledge
Theorem 4.4 is new. Moreover, we use a di�erent proof technique, which can be used

1A proof of Conjecture 4.1(a), and hence in particular Conjecture 4.2, was given by Caporaso
in [Cap12, Thm. 6.3], but a gap in this proof was later pointed out by Sam Payne and reported by
Baker and Jensen in [ BJ16, Rmk. 4.8 and footnote 5]. To our knowledge, this has not been repaired.
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to give an upper bound on the number of subdivisions needed to get equality (see
Remark 4.16).

The proof runs roughly as follows. It is already known that every rank r divisor on
� k (G) also de�nes a rank r divisor on �( G). For the converse, we show that every rank
r divisor D on �( G) can be \rounded" to a nearby divisor D 0 with rank(D 0) � r which
is supported on the Q-points of �( G), and therefore on the points of some regular
subdivision � k (G). The details will be given in §4.3.

As pointed out by Baker in [Bak08], a positive answer to Conjecture 4.3 would also
yield a positive answer to Conjecture 4.2. However, it turns out that the subdivision
conjecture fails, and we give a counterexample to Conjecture 4.3(a) in the caser = 1
and k = 2. Evidently this is also a counterexample to Conjecture 4.3(b). The second
main result of this chapter is the following.

Theorem 4.5. For every integer k � 1, there exists a connected loopless multigraph
Gk such that dgon(Gk ) = 6 k and dgon(�( Gk )) = dgon(� 2(Gk )) = 5 k. Furthermore,
Gk can be chosen simple and bipartite.

The proof is constructive and consists of two parts. In§4.4, we construct a family
of graphs with dgon(G) = 6 and dgon(�( G)) = dgon(� 2(G)) = 5. The graphs Gk are
then constructed in §4.5 by combining k of these graphs in a certain way.

Although the di�erence between dgon(G) and dgon(�( G)) can be large, as in
Theorem 4.5, the ratio between them is at most 2, as we show in Proposition 4.27.
Hence, for the gap to get arbitrarily large, it is necessary thatdgon(�( G)) goes to
in�nity.

In §4.6, we list a few additional counterexamples (without proof), including a
3-regular graph. Although all counterexamples in this chapter violate Conjecture 4.3,
they nevertheless satisfy the Brill{Noether bound. We do not know whether any of
these examples can be extended to disprove Conjecture 4.2. Additional open problems
are discussed in§4.6 as well.

4.2 Metric graphs and rank-determining sets

Before we dive into the proofs of Theorem 4.4 and Theorem 4.5, we briey recall the
basics of metric graphs and their divisor theory.

A metric graph is a metric space � that can be obtained in the following way. Let
G be a �nite multigraph and let ` : E (G) ! R> 0 be an assignment of lengths to the
edges ofG. To construct �, take an interval [0 ; `(e)] for every edgee 2 E(G), and glue
these together at the endpoints as prescribed byG. To turn it into a metric space,
equip � with the shortest path metric in the obvious way. The metric graph � de�ned
in this way will be denoted �( G; `). If ` = 1 is the unit length function, we write
�( G) := �( G; 1).

If the metric graph � is constructed from the pair ( G; `) as above, then we say
that ( G; `) is a model of �. We say that a model ( G; `) is loopless(resp. simple) if G is
loopless (resp. simple). Thevalency val(v) of v 2 � is the number of edges incident
with v in any loopless model (G; `) with v 2 V (G).
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A divisor on a metric graph � is an element of the free abelian group on �. In
other words, a divisor is a formal sum

P
v2 � av v where av 2 Z for all v, and av = 0

for all but �nitely many v. The notations supp(D), deg(D), D � D 0, Div (�), Div + (�)
and Divd

+ (�) are de�ned analogously to the discrete case.
The de�nition of equivalence is a bit di�erent from the discrete case (see§2.2).

A rational function on � is a continuous piecewise linear function f : � ! R with
integral slopes. For each pointv 2 �, let av be the sum of the outgoing slopes off in
all edges incident with v in some appropriate model of �. The corresponding divisorP

v2 � av v is called aprincipal divisor . Two divisors D and D 0 are equivalent if D � D 0

is a principal divisor.
The rank of a divisor D 2 Div(�) is de�ned as in the discrete case; that is:

rank(D) := max f k 2 Z j D � E is equivalent to an e�ective divisor for all E 2 Div k
+ (�) g:

The r -th (divisorial ) gonality dgonr (�) of � is the minimum degree of a rank r divisor
on �. For r = 1, this is simply called the (divisorial ) gonality of �: dgon(�) := dgon1(�).

If G is a �nite graph and if � := �( G) is the corresponding metric graph with
unit lengths, then two divisors D; D 0 2 Div (G) are equivalent on G if and only if
they are equivalent on �; see [Bak08, Rmk. 1.3]. Furthermore, in this case one has
rankG (D ) = rank � (D ) for every divisor D 2 Div( G); see [HKN13, Thm. 1.3].

Let � be a metric graph, and let S � � be a subset. Following [Luo11], we de�ne
the S-restricted rank of a divisor D 2 Div(�) as

rankS (D ) := max f k j D � E is equivalent to an e�ective divisor for all E 2 Div k
+ (S)g;

where Div k
+ (S) is the set of degreek e�ective divisors whose support is contained

in S. The set S is rank-determining if rankS (D ) = rank(D) for all D 2 Div (�). The
following theorems are due to Luo.

Theorem 4.6 ([Luo11, Thm. 1.6]; see also [HKN13, Thm. 1.7]). Let � be a metric
graph, and let (G; `) be a loopless model of� . Then the set V (G) � � is rank-
determining.

Theorem 4.7 ([Luo11, Thm. 1.10]). Let � ; � 0 be metric graphs, and let� : � ! � 0

be a homeomorphism. ThenS � � is rank-determining if and only if � [S] � � 0 is
rank-determining.

We also formulate a discrete analogue of Theorem 4.6 for the caser = 1. If G is a
graph, then we say that a divisor D 2 Div (G) reachesthe vertex v 2 V (G) if there is
an e�ective divisor D 0 equivalent to D with D 0(v) > 0. Furthermore, we say that a set
S � V (G) is a strong separator if for every connected componentC of V (G) n S we
have that C is a tree and for everys 2 S there is at most one edge (inG) between C
and s.

Theorem 4.8 ([DG20, Lem. 2.6]). Let G be a graph, and letS � V (G) be a strong
separator. If D 2 Div( G) reaches everys 2 S, then rank(D) � 1.

The following corollary is immediate from either Theorem 4.6 or Theorem 4.8.

Corollary 4.9. Let G be a loopless multigraph, and letH be a subdivision ofG. If
D 2 Div( H ) reaches all vertices ofV (G), then rank(D) � 1.
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4.3 Equivalence of the subdivision conjecture and the
metrization conjecture

In this section, we prove Theorem 4.4 using a modi�cation of the proof of [DG20,
Thm. 5.1]. The main idea is the following: given a rankr divisor D on the metric graph
�( G), we will change the lengths of the edges between points inV (G) [ supp(D) in
such a way that supp(D) is moved to the Q-points of the graph, all the while leaving
the rank of D and the distances between the vertices ofG unchanged. We will now
make this precise.

De�nition 4.10. Given a metric graph � and a model (G; `) of �, a G-rescaling
of � is a metric graph � 0 := �( G; `0), where `0 2 RE (G)

> 0 is another length vector. If
D 2 Div (�) with supp(D) � V (G), then D de�nes a divisor D 0 2 Div (� 0) in the
obvious way, which we callthe G-rescaling of D .

We point out that � and its G-rescaling � 0 can be isometric even if̀ 6= `0. This
is because vertices of degree 2 can be moved around, as illustrated in Figure 4.1. In
that case the vertex setV (G) is embedded into � �= � 0 in two di�erent ways, and the
divisor D and its G-rescalingD 0 could be di�erent divisors on the same metric graph.
This will be the main tool in our proof of Theorem 4.4.

v1 v2 v3
� :

v1 v2 v3
� 0 :

Figure 4.1: A metric graph � = �( G; `) and a rescaling �0 = �( G; `0) with `0 6= ` such
that � and � 0 are isometric.

To rescale from real to rational edge lengths we use the following lemma.

Lemma 4.11. Let A 2 Qm � n and b 2 Qm . If the linear system Ax = b has a solution
x 2 Rn

> 0, then it also has a solutionx0 2 Qn
> 0.

Proof. Since the system has a solutionx 2 R> 0, the solution spacef z j Az = bg is a
non-empty a�ne Q-subspace ofRn . Choose an a�ne rational basis y0; : : : ; yd 2 Qn for
the solution space and writex = � (0) y0+ � � �+ � (d) yd with � (0) + � � �+ � (d) = 1. For every
i 2 f 1; : : : ; dg, choose a rational sequencef � ( i )

k g1
k=1 such that lim k !1 � ( i )

k = � ( i ) , and

de�ne � (0)
k := 1 � � (1)

k � � � � � � (d)
k . Then lim k !1 � (0)

k y0 + � � � + � (d)
k yd = x. SinceRn

> 0

is an open neighbourhood ofx, there is aK 0 2 N such that � (0)
k y0 + � � � + � (d)

k yd 2 Rn
> 0

for all k � K 0. This gives a sequence of solutions inQn
> 0 converging to x. Any one of

these su�ces. �

We now come to the main result of this section. This is an extension of [DG20,
Thm. 5.1], though the result of Theorem 4.12(a) was already implicit in the proof of
[GK08, Prop. 3.1].
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Theorem 4.12. Let � be a metric graph, and letD 2 Div + (�) be an e�ective divisor.

(a) There exists a loopless model(G; `) with supp(D) � V (G) and a rational length
vector `0 2 QE (G)

> 0 such that theG-rescaling D 0 of D in � 0 := �( G; `0) satis�es
rank� 0(D 0) � rank� (D ).

(b) If � is a metric Q-graph, then the length vector̀ 0 in (a) can be chosen in such
a way that � 0 is isometric to � .

Proof. (a) Write r := rank� (D ), and let S � � be a �nite rank-determining set.
For every E 2 Div r

+ (S), choose a divisorDE 2 Div (�) and a rational function
f E : � ! R such that DE � E and DE = D + div(f E ). Furthermore, choose a
loopless model (G; `) of � such that

S [ supp(D) [
[

E 2 Div r
+ (S)

supp(DE ) � V (G):

SinceD; D E � 0 and DE � D = div(f E ), we havesupp(div(f E )) � supp(D) [
supp(DE ) � V (G), so V (G) contains all points of non-linearity of f E , for every
E 2 Div r

+ (S).

Choose an orientation of the edges ofG. For every cycleC in G, choose a circular
orientation of the edges ofC, and de�ne � C : E (G) ! f� 1; 0; 1g by setting

� C (e) :=

8
>><

>>:

1; if e 2 E(C) and the orientations of G and C agree one;

� 1; if e 2 E(C) and the orientations of G and C disagree one;

0; if e =2 E(C):

For E 2 Div r
+ (S) and e 2 E(G), let � (f E ; e) 2 Z denote the slope off E on

e, in the forward direction of e. Note that a G-rescaling �( G; `0) of � admits
rational functions f 0

E whose slope one equals� (f E ; e), for all E 2 Div r
+ (S) and

all e 2 E(G), if and only if y = `0 is a solution to following system of equations:

X

e2 E (G)

� (f E ; e)� C (e) y(e) = 0 ; for every cycleC and every E 2 Div r
+ (S): (4.13)

Since the coe�cients (that is, � (f E ; e)� C (e)) and constants (that is, 0) of this
linear system are integral, and sincey = ` 2 RE (G)

> 0 is a solution, it follows from

Lemma 4.11 that there exists a solution`0 2 QE (G)
> 0 .

Consider the G-rescaling � 0 := �( G; `0). Let D 0 be the correspondingG-rescaling
of D , and let D 0

E be the G-rescaling ofDE for all E 2 Div r
+ (S). By the above,

we may choose rational functionsf 0
E on � 0 such that the slope off 0

E on e equals
� (f E ; e), for all E 2 Div r

+ (S) and all e 2 E(G). Then clearly D 0
E = D 0+ div(f 0

E ),
so the D 0

E are equivalent to D 0. Since D 0
E � E for every E 2 Div r

+ (S), it
follows that rankS (D 0) � r . By Theorem 4.7, S is rank-determining in � 0, so
rank� 0(D 0) = rank S (D 0) � r .
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(b) Choose a rational model (~G; ~̀) of �. We repeat the argument of (a) with the
following modi�cations. First, we add the requirement that V ( ~G) � V (G). Then
every edge ~e in ~G corresponds to a path inG, which we denoteP~e. Second, we
extend the linear system from (4.13) by adding the following constraints:

X

e2 E (P~e )

y(e) = ~̀(~e); for all ~e 2 E( ~G): (4.14)

Again, the coe�cients and constants of the linear system are rational, and
y = ` 2 RE (G)

> 0 is a solution, so it follows from Lemma 4.11 that there is a

solution `0 2 QE (G)
> 0 . The rest of the proof of (a) carries through unchanged, and

the extra constraints from (4.14) ensure that � 0 is isometric to �. �

Proof of Theorem 4.4. A rank r divisor on � k (G) also de�nes a rank r divisor on
�( � k (G); 1=k) = �( G; 1). Therefore dgonr (�( G)) � mink2 N1 dgonr (� k (G)).

Conversely, let D 2 Div + (�( G)) be an e�ective divisor of rank r . By Theo-
rem 4.12(b), there exists a divisorD 0 2 Div + (�( G)) with deg(D 0) = deg(D) and
rank(D 0) � rank(D) which is supported on the Q-points of �( G). Then D 0 is sup-
ported on the vertices of the model (� k (G); 1=k) of �( G) for some k 2 N1, so we have
dgonr (� k (G)) � dgonr (�( G)). �

Remark 4.15. Analogously to the proof of the main result of [BWZ21], the linear
system from the proof of Theorem 4.12(b) forms a certi�cate that dgonr (�) � d. If r
and d are �xed, then this certi�cate has size polynomial in the size of �, so it follows
that Metric Divisorial r -Gonality for Q-graphs belongs to the complexity class
NP. (For details, refer to the proof in [BWZ21].) This problem is also known to be
NP-hard: for r = 1, this can be deduced from the proof of [GSW20, Thm. 3.5] (see
also [EEH+ 22, Thm. 1.3], where a di�erent proof is given), and for arbitrary r � 1
this was proved in [MT22].

Remark 4.16. The proof of Theorem 4.12(b) can also be used to �nd an upper bound
on the size of the subdivision needed to get equality in Theorem 4.4. One such upper
bound can be obtained by following the proof of [BWZ21, Cor. 6.2]. We sketch a way
to improve this bound. Let ~G be a graph with n vertices and m edges, let � := �( ~G)
be the corresponding unit metric graph, and let D 2 Div (�) be a divisor of degree
d and rank r . We repeat the proof of Theorem 4.12(b) with respect to the rational
model ( ~G; 1) and the rank-determining set S := V( ~G) (use Theorem 4.6). Without
loss of generality, we may assume thatD is equal to one of theDE . Then the number
of variables of the linear system isjE (G)j � m + dnr .

Note that we can also allow a solution`0 � 0 instead of`0 > 0. This has the e�ect of
contracting some of the edges of the modelG from the proof of Theorem 4.12, but the
equations from (4.14) ensure that the resulting graph � 0 is still isometric to �. Hence
(4.13) and (4.14) determine a linear programAx = b, x � 0, and the entries ofA are
integers which can be shown to be bounded in absolute value byd. The set of feasible
solutions is non-empty and bounded by(4.14), so there is a basic feasible solutionx
(see e.g. [MG07, Thm. 4.2.3]). Hence there is a subsetB � f 1; : : : ; jE (G)jg such that
xB = A � 1

B b and xB c = 0. Therefore the lowest common denominator of the entries
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of x is at most j det(AB )j �
P

� 2 Sym( B )

Q
i 2 B jA i� ( i ) j � j B j! � djB j . In conclusion, if

the unit metric graph � = �( ~G; 1) has a divisor of rank r and degreed, then so does
� k ( ~G) for some k � (m + dnr )! � dm + dn r

.

4.4 A graph G such that dgon(� 2(G)) < dgon(G)

In this section we construct a class of graphs, which we call \tricycle graphs". We
show that the divisorial gonality of any tricycle graph G is strictly greater than the
divisorial gonality of its 2-subdivision � 2(G), and thus of its associated metric graph
�( G).

De�nition 4.17. A tricycle graph is a multigraph G that can be obtained in the
following way:

ˆ Start with three disjoint cycles C1, C2, C3, each on at least 2 vertices (a cycle
on 2 vertices consists of two vertices connected by two parallel edges).

ˆ Choose two distinct vertices on each of these cycles, sayv�
i ; v+

i 2 V(Ci ).

ˆ Add the edgesv+
1 v�

2 , v+
2 v�

3 and v+
3 v�

1 to the graph.

ˆ Add another vertex v0 and six new edges toG, connecting v0 to the six vertices
v�

1 ; v+
1 ; v�

2 ; v+
2 ; v�

3 ; v+
3 .

ˆ Subdivide the six edges incident withv0.

We call the vertices v�
i ; v+

i 2 V (Ci ) the transition vertices, the edgesv+
1 v�

2 , v+
2 v�

3 and
v+

3 v�
1 the transition edges, and v0 the central vertex. The outer ring is the union of

the cyclesC1; C2; C3 and the transition edges.

Figure 4.2 illustrates an example of a tricycle graph, along with the minimal tricycle
Tm and the minimal simple tricycle Tms . Note that a multigraph (resp. simple graph)
G is a tricycle if and only if G can be obtained by taking a subdivision of the minimal
tricycle Tm (resp. the minimal simple tricycle Tms) in such a way that the transition
edges are not subdivided.

In what follows, we will show that every tricycle graph G satis�es dgon(G) = 6
and dgon(�( G)) = dgon(� 2(G)) = 5. First of all, we exhibit a positive rank divisor of
degree 5 on� 2(G).

Proposition 4.18. Let G be a tricycle graph. Thendgon(� 2(G)) � 5.

Proof. Let D0 2 Div (� 2(G)) be the e�ective divisor with two chips on v0 and one chip
on the midpoint of each of the transition edgesv+

1 v�
2 , v+

2 v�
3 , v+

3 v�
1 . Then deg(D0) = 5.

In light of Corollary 4.9, in order to show that D0 has positive rank, it su�ces to
prove that D0 reachesv0 and the transition vertices v�

1 ; v+
1 ; v�

2 ; v+
2 ; v�

3 ; v+
3 .

Clearly D0 reachesv0, for we have D0(v0) > 0. Now �x i 2 f 1; 2; 3g. To reach
the transition vertices v�

i and v+
i , let Si � V (� 2(G)) be the connected component of

� 2(G) n supp(D0) that contains the cycle Ci . Then the subset Sc
i can be �red, and

doing so yields an e�ective divisor D i with D i (v�
i ) = D i (v+

i ) = 1. This shows that D0
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v0

v�
1

v+
1v�

2

v+
2

v�
3 v+

3

C1C2

C3

(a) a generic tricycle graph;

v0

v�
1

v+
1v�

2

v+
2

v�
3 v+

3

(b) the minimal
tricycle Tm ;

v0
v�

1

v+
1v�

2

v+
2

v�
3 v+

3

(c) the minimal
simple tricycle Tms .

Figure 4.2: A generic tricycle, the minimal tricycle, and the minimal simple tricycle,
with the transition vertices and the transition edges highlighted for emphasis.

reachesv�
i and v+

i , for all i 2 f 1; 2; 3g. It follows that D0 is a positive rank divisor on
� 2(G), hence dgon(� 2(G)) � 5. �

Evidently, the divisor from Proposition 4.18 is not supported on vertices ofG. The
remainder of this section is dedicated to showing thatG has no positive rank divisors
of degree 5. Along the way, we also prove that dgon(�(G)) � 5.

In Lemma 4.21 below, we show that every positive rankv0-reduced divisor of
degree at most 5 on a subdivision of the minimal tricycleTm must be of a very speci�c
form. This will subsequently be used to show thatdgon(�( G)) = dgon(� 2(G)) = 5
(see Corollary 4.23) and dgon(G) = 6 (see Theorem 4.24) for every tricycle graphG.

For convenience, we use the following notation.

De�nition 4.19. Let G be a graph and let H be a subdivision of G. For e =
uw 2 E(G), let Pe

[u;w ] � H denote the path uv1v2 � � � vk w in H corresponding to the
subdivided edgee. Furthermore, let Pe

(u;w ) := Pe
[u;w ] n f u; wg, Pe

[u;w ) := Pe
[u;w ] n f wg

and Pe
(u;w ] := Pe

[u;w ] n f ug denote the corresponding open and half-open subpaths. If
e is the only edge betweenu and w, then we omit the superscript and simply write
P[u;w ], P(u;w ) , P[u;w ) and P(u;w ].

The following simple lemma is essential to our proof, and will be used repeatedly.

Lemma 4.20. Let G be a graph and letv0 2 V(G). Let e1; : : : ; ek 2 V(G) be the
edges incident withv0, and let vi 2 V (G) n f v0g be the other endpoint ofei for every i .
Moreover, let H be a subdivision ofG, let D 2 Div (H ) be a positive rankv0-reduced
divisor on H , and let w 2 V(H ) be a vertex withD(w) = 0 .
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Then an execution of Dhar's burning algorithm on the triple (H; D; w ) has the
following properties:

(a) v0 is not burned;

(b) If I � f i 2 [k] : vi is burnedg, then
S

i 2 I Pei
[v0 ;v i ) contains at least jI j chips.

Proof. (a) Since D has positive rank and D(w) = 0, the divisor D cannot be w-
reduced, so Dhar's algorithm returns a non-empty subsetU � V (G) that can be
�red. Since D is v0-reduced, we must havev0 2 U, which means that v0 is not
burned.

(b) Partition I as I = I 0 [ I 1, where i 2 I 0 if all vertices of the path Pei
(v0 ;v i ] are

burned, and i 2 I 1 otherwise. Sincev0 is not burned, it has at most D(v0)
burning neighbours, sojI 0j � D (v0). Moreover, if i 2 I 1, then vi is burned, but
not all vertices of the path Pei

(v0 ;v i ] are burned, so there must be at least one chip
on Pei

(v0 ;v i ) . The conclusion follows. �

We will apply Lemma 4.20 to an arbitrary subdivision of the minimal tricycle
Tm . For this we use the following terminology. Using notation from De�nition 4.19, if
H is a subdivision of Tm , then the three transition edgesv+

1 v�
2 , v+

2 v�
3 , v+

3 v�
1 of Tm

correspond to the pathsP[v+
1 ;v �

2 ], P[v+
2 ;v �

3 ], P[v+
3 ;v �

1 ] in H , which we call the transition
paths. The transition vertices of H are the images inH of the original six transition
vertices v�

1 ; v+
1 ; v�

2 ; v+
2 ; v�

3 ; v+
3 of Tm , or in other words, the endpoints of the transition

paths in H . (This is consistent with our de�nition of the transition vertices of a tricycle
graph, which can also be seen as a subdivision ofTm .)

Lemma 4.21. Let H be a subdivision of the minimal tricycleTm . If D 2 Div (H ) is
a positive rank v0-reduced divisor with deg(D) � 5, then D must have two chips onv0

and exactly one chip on each of the transition pathsP[v+
1 ;v �

2 ], P[v+
2 ;v �

3 ], P[v+
3 ;v �

1 ].

Proof. First, we prove that there must be at least one chip on every transition path.
Suppose, for the sake of contradiction, that one of the transition paths, sayP[v+

1 ;v �
2 ],

has no chips at all. We start an execution of Dhar's burning algorithm on (H; D; v +
1 ).

Let H +
2 � H be the union of the cycleC2 and the transition path P[v+

2 ;v �
3 ].

We claim that the number of chips on H +
2 plus the number of burned transition

vertices in H +
2 is at least 3. To that end, note �rst of all that v�

2 is burned, since there
is no chip on the transition path P[v+

1 ;v �
2 ]. Now we distinguish three cases:

ˆ If v+
2 is not burned, then there must be at least two chips onC2 to stop the

�re spreading from v�
2 to v+

2 . In this case, H +
2 contains at least one burned

transition vertex (namely v�
2 ) and at least two chips, for a total of at least 3.

ˆ If v+
2 is burned but v�

3 is not burned, then there must be at least one chip on
the half-open transition path P(v+

2 ;v �
3 ]. In this case, H +

2 contains two burned

transition vertices (v�
2 and v+

2 ) and at least one chip, for a total of at least 3;
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ˆ If both v+
2 and v�

3 are burned, thenH +
2 contains three burned transition vertices

(v�
2 , v+

2 and v�
3 ).

Likewise, write H �
1 := C1 [ P[v �

1 ;v +
3 ] . Analogously, the number of chips plus the number

of burned transition vertices on H �
1 is at least 3. SinceH +

2 and H �
1 are disjoint, the

total number of chips on the outer ring plus the total number of burned transition
vertices is at least 6. But since the transition vertices are exactly theTm -neighbours
of v0, and since the half-open pathsP[v0 ;v �

i ) are disjoint from the outer ring, it follows
from Lemma 4.20(b) that deg(D) � 6, which is a contradiction. We conclude that
every transition path must have at least one chip.

Second, we prove that there must be two chips onv0. Since the total number of
chips is at most 5, there must be a cycleCi on the outer ring with at most one chip.
Choosew 2 V (Ci ) with D(w) = 0 and start an execution of Dhar's burning algorithm
on (H; D; w ). Since there is at most one chip onCi , the entire cycle Ci is burned. It
follows from Lemma 4.20(b) that there are at least two chips onP[v0 ;v �

i ) [ P[v0 ;v +
i ) .

Therefore the number of chips on the outer ring is at most 3, so there must be
another cycle Cj (j 6= i ) on the outer ring with at most one chip. By an analogous
argument, there are at least two chips onP[v0 ;v +

j ) [ P[v0 ;v �
j ) . But since the outer ring

has at least 3 chips (one on every transition path), there can be at most 2 chips on
P[v0 ;v �

i ) [ P[v0 ;v +
i ) [ P[v0 ;v �

j ) [ P[v0 ;v +
j ) . The only way to meet these requirements is if

there are exactly two chips onv0.
To conclude the proof, note that 2 chips on v0 and at least 1 chip on every

transition path add up to at least 5 chips in total. Since deg(D) � 5, all chips have
been accounted for. In particular, there cannot be more than one chip on each of the
transition paths. �

Lemma 4.21 shows that every positive rankv0-reduced divisor D with deg(D) � 5
must in fact satisfy deg(D) = 5, so the following corollary is immediate.

Corollary 4.22. Let H be a subdivision of the minimal tricycleTm . Then one has
dgon(H ) � 5.

In particular, this enables us to compute the metric gonality of an arbitrary tricycle
graph:

Corollary 4.23. Let G be a tricycle graph. Thendgon(�( G)) = dgon( � 2(G)) = 5 .

Proof. It follows from Proposition 4.18 that dgon(�( G)) � dgon(� 2(G)) � 5. Further-
more, since every subdivision ofG is a also subdivision of the minimal tricycle Tm , it
follows from Corollary 4.22 and Theorem 4.4 that

dgon(�( G)) = min
k2 N1

dgon(� k (G)) � 5: �

All that remains is to prove that every tricycle graph has divisorial gonality 6. To
do so, we once again use the preceding lemmas.
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Theorem 4.24. Every tricycle graph G satis�es dgon(G) = 6 .

Proof. Suppose, for the sake of contradiction, thatdgon(G) � 5. Then we may choose
a positive rank v0-reduced divisor D 2 Div (G) with deg(D) � 5. We interpret G as a
subdivision of the minimal tricycle Tm . It follows from Lemma 4.21 that D has two
chips on v0 and exactly one chip on every transition path. SinceG is a tricycle graph,
the transition edges ofTm are not subdivided. Therefore a chip on a transition edge
must lie on one of the transition vertices.

By the above, the divisor D has between 0 and 2 chips on each of the cyclesC1,
C2, C3 on the outer ring, and all such chips must lie on the transition vertices. Since
the total number of chips on the outer ring is odd, there must be a cycleCi with
exactly one chip. Assume without loss of generality thatC1 is such a cycle, and that
D(v�

1 ) = 0 and D(v+
1 ) = 1.

We start an execution of Dhar's burning algorithm on (G; D; v �
1 ). Since there is

only one chip on C1, the entire cycle C1 is burned. In particular, the vertex v+
1 is

burned. The transition edge v+
1 v�

2 has exactly one chip, which is onv+
1 , so the �re

spreads via this edge to the vertexv�
2 , which is also burned. But now we see that at

least three Tm -neighbours ofv0 are burned (namely,v�
1 , v+

1 and v�
2 ), so it follows from

Lemma 4.20(b) that there must be at least 3 chips onP[v0 ;v �
1 ) [ P[v0 ;v +

1 ) [ P[v0 ;v �
2 ) .

This is a contradiction, and we conclude that dgon(G) � 6.
To see that dgon(G) � 6, note that the set f v�

1 ; v+
1 ; v�

2 ; v+
2 ; v�

3 ; v+
3 g of all transition

vertices is a strong separator. Therefore the e�ective divisor with one chip on each of
the transition vertices has positive rank, by Theorem 4.8, so dgon(G) � 6. �

This concludes the proof of validity of our counterexample. In summary, every
tricycle graph G satis�es dgon(G) = 6 and dgon(�( G)) = dgon( � 2(G)) = 5.

4.5 A family of examples with larger gaps

In this section, we combine tricycle graphs in a certain way in order to obtain graphs
Gk with dgon(Gk ) = 6 k and dgon(� 2(Gk )) = dgon(�( Gk )) = 5 k, which shows that
the gap betweendgon(�( G)) and dgon(G) can be arbitrarily large. Furthermore, we
show that dgonr (�( G)) and dgonr (G) di�er by at most a factor 2.

De�nition 4.25. Given a (connected) simple graphH and an integer t � 1, an
(H; t )-skewered graphis a graph G that can be obtained in the following way:

ˆ Start with a disjoint union of graphs G1; : : : ; Gn , where n = jV (H )j.

ˆ For every i 2 [n], choose a base vertexwi 2 V(Gi );

ˆ For every edgeij 2 E(H ), add t parallel edges betweenwi and wj , and subdivide
these edges in an arbitrary way.

An example of a (K 2; 12)-skewered graph is given in Figure 4.3 below.

Lemma 4.26. Let G be an(H; t )-skewered graph witht �
P jV (H ) j

i =1 dgon(Gi ). Then
dgon(G) =

P jV (H ) j
i =1 dgon(Gi ).
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Proof. First, we prove that dgon(G) �
P jV (H ) j

i =1 dgon(Gi ). For every i , choose a positive
rank divisor D i 2 Div (Gi ) of minimum degree. This de�nes a divisorD 2 Div (G) with
deg(D) =

P jV (H ) j
i =1 dgon(Gi ). We prove that D has positive rank. By Corollary 4.9, it

su�ces to prove that D reaches all vertices of everyGi . Let v 2 V (Gi ), and choose an
e�ective divisor D 0

i 2 Div (Gi ) equivalent to D i with D 0
i (v) > 0. By Proposition 2.1,

we can go fromD i to D 0
i by subsequently �ring an increasing sequenceU1 � � � � �

Uk � V (Gi ) of valid sets. De�ne U0
1 � � � � � U0

k � V (G) by

U0
j :=

(
Uj ; if wi =2 Uj ;

Uj [ V (Gi )c; if wi 2 Uj :

Then, starting with D and subsequently �ring the sets U0
1 � � � � � U0

k , we obtain
an equivalent divisor D 0 = D � D i + D 0

i 2 Div (G). In other words, we can play the
chip-�ring game on Gi while leaving the remainder ofG unchanged. This shows that
D reaches all vertices of everyGi , so it follows from Corollary 4.9 that rank( D) � 1.

Next, we prove that dgon(G) �
P jV (H ) j

i =1 dgon(Gi ). Suppose, for the sake of con-
tradiction, that D 2 Div (G) is a positive rank w1-reduced divisor with deg(D) <
P jV (H ) j

i =1 dgon(Gi ). We claim that D is wi -reduced for all i . To that end, let S � V (G)
be a subset for which there is someij 2 E(H ) with wi 2 S and wj =2 S. Since there
are t parallel paths in G between wi and wj , it follows from the max-ow min-cut
theorem that jE (S; Sc)j � t . Therefore, jE (S; Sc)j � t �

P jV (H ) j
i =1 dgon(Gi ) > deg(D),

so S cannot be �red. Thus, if S � V (G) is a subset which can be �red, thenw1 2 S
(becauseD is w1-reduced), and thereforewi 2 S for all i (becauseH is connected).
This proves our claim that D is wi -reduced for all i .

Next, we claim that D restricts to a positive rank divisor on every Gi . Indeed,
let v 2 V (Gi ) for some i , and choose an equivalent e�ective divisorD 0 2 Div (G)
with D 0(v) > 0. By Proposition 2.1, we can go fromD to D 0 by subsequently �ring
an increasing sequenceU1 � � � � � Uk of valid sets. SinceD is wi -reduced, we have
wi 2 U1, and thereforewi 2 Uj for all j . Sincewi is the only vertex in Gi connected
to anything outside of Gi , the �ring sequence U1 � � � � � Uk only ever sends chips
out of Gi , and never into Gi . Hence it restricts to a valid �ring sequence in Gi ,
which shows that the restricted divisor D jG i 2 Div (Gi ) reachesv. This proves our
claim that D restricts to a positive rank divisor on every Gi . But now it follows that
deg(D) �

P jV (H ) j
i =1 dgon(Gi ), contrary to our assumption. This is a contradiction. �

Proof of Theorem 4.5. Let G1; : : : ; Gk be tricycle graphs, and let H be an arbitrary
connected simple graph onk vertices. Chooset � 6k, and let G be an (H; t )-skewered
graph obtained from the graphsG1; : : : ; Gk . Then it follows from Lemma 4.26 that
dgon(G) = 6 k. Furthermore, for every s 2 N1, the subdivided graph � s(G) is an
(H; t )-skewered graph relative to the base graphs� s(G1); : : : ; � s(Gk ), so it follows from
Lemma 4.26 and Corollary 4.23 that

dgon(� s(G)) =
kX

i =1

dgon(� s(Gi )) �
kX

i =1

dgon(�( Gi )) = 5 k;
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w1

w2

Figure 4.3: A simple, bipartite, (K 2; 12)-skewered tricycle graphG with dgon(G) = 12
and dgon(�( G)) = dgon( � 2(G)) = 10.

with equality if s = 2. Therefore dgon(�( G)) = dgon( � 2(G)) = 5 k.
A simple and bipartite realization can be obtained by choosing the tricycles

G1; : : : ; Gk simple and bipartite (e.g. the tricycles skewered together in Figure 4.3),
and choosing an appropriate subdivision in the process of De�nition 4.25. �

Theorem 4.5 shows that the discrete and metric divisorial gonality can be arbitrarily
far apart. The following simple result shows that large gaps like this can only occur
when the metric gonality is also large.

Proposition 4.27. For every graph G and every integerr � 1, one hasdgonr (G) �
2 dgonr (�( G)) � r .

Proof. Let D1 2 Div (�( G)) be a divisor of rank r and degreed := dgonr (�( G)). Choose
someE 2 Div r

+ (G), and choose a divisorD 0
1 � D1 such that D 0

1 � E . Let D2 2 Div (G)
be the divisor obtained from D 0

1 by replacing every chip on the interior of some edge
uv 2 E(G) by one chip on u and one chip onv. SinceD 0

1 � E and supp(E) � V (G),
the divisor D 0

1 has at least r chips on vertices ofG, so deg(D2) � 2d � r . By �ring
everything but the interior of the edge uv, we can move the newly added chips onu
and v so that one of the two reaches the original position of the chip inD 0

1 and the
other becomes superuous. This shows thatD2 is equivalent on � to a divisor D 0

2 with
D 0

2 � D 0
1, so rankG (D2) = rank � (D2) � r , by [HKN13, Thm. 1.3]. �

4.6 Computational results and open questions

Apart from the tricycle graphs, we have found a few other counterexamples, which
we sketch here. First of all, the proofs from§4.4 still hold if each of the cyclesC1, C2

and C3 is replaced by any graphC which has two distinct vertices v� ; v+ such that:
(i) there are two edge-disjoint paths betweenv� and v+ ; (ii) the divisor v� + v+ has
positive rank on C.
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Second, we have found a number of counterexamples which we have veri�ed
computationally (using a brute force gonality algorithm), but for which we have no
human-readable proof. Most of these have a structure very similar to a tricycle graph:
there are 3 cycles which are connected to one another and to a central vertex in some
way. A small selection of these counterexamples is given in Figure 4.4. In each of these,
the optimal divisor on the 2-regular subdivision � 2(G) has 3 chips on the midpoints of
certain edges, and 2 or 3 chips on the central vertex, anddgon(G) = dgon(� 2(G)) + 1.
Note that the counterexample depicted in Figure 4.4(c) is 3-regular. We have also
found counterexamples where the outer ring has 5 or 7 cycles; see Figure 4.4(d). We
have not found a counterexample with 9 or more cycles on the outer ring. See [DSW21]
for code and additional �gures.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.4: Additional counterexamples to Conjecture 4.3(a) fork = 2 and r = 1.
The small cyan-coloured hexagons represent the chips of an optimal divisor on the
2-regular subdivision. In each example, the divisorial gonality of the original graph is
one higher.

We have tested Conjecture 4.3(a) fork = 2 and r = 1 for all simple connected
graphs on at most 10 vertices. These graphs were generated using the program
geng from the gtools suite packaged with nauty [MP14, MP20], and tested using
custom code that we wrote to compute the divisorial gonality of a graph [DSW21].
We have found that every simple connected graph with 9 or fewer vertices satis�es
dgon(� 2(G)) = dgon(G), and that there are exactly 29 counterexamples with 10
vertices (and no parallel edges), including the minimal simple tricycleTms and the
graphs depicted in Figure 4.4(e){ (h). All 29 minimal simple counterexamples are
depicted in Figure 4.5. For code to reproduce this list, see [DSW21]. There we have
also included optimized code to check whether the divisorial gonality of a given graph
satis�es the Brill{Noether bound, which we have used to verify Conjecture 4.2 for all
simple connected graphs with at most 13 vertices. No counterexamples were found.
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We close with a few open problems.

1. As mentioned before, the Brill{Noether conjecture [Bak08, Conj. 3.9(1)] remains
open.

2. What is the smallest constant c such that dgon(G) � cdgon(�( G)) for all graphs
G? Our examples from Theorem 4.5 show thatc � 6

5 , and Proposition 4.27
shows that c � 2.

3. All counterexamples presented in this chapter satisfydgon(� 2(G)) < dgon(G).
Note that this implies that dgon(� k (G)) < dgon(G) for every even numberk. Is
there also a graphG such that dgon(� k (G)) < dgon(G) for some odd number
k, or a graph G such that dgon(� 2(G)) = dgon(G) but dgon(� k (G)) < dgon(G)
for somek > 2?

4. Is there a graph G such that dgon(�( G)) = dgon(G), but dgonr (�( G)) <
dgonr (G) for some r � 2?
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Figure 4.5: All 29 minimal simple counterexamples to Conjecture 4.3(a), with 10
vertices and no parallel edges. The small cyan-coloured hexagons represent the chips
of an optimal divisor on the 2-regular subdivision. In each example, the divisorial
gonality of the original graph is one higher.
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Chapter 5

The slice rank method

The slice rank method is a new technique in extremal combinatorics, developed
in 2016 by Croot, Lev and Pach [CLP17], Ellenberg and Gijswijt [ EG17], and
Tao [Tao16]. It has been used to solve the cap set problem and make progress
on several other open problems in extremal combinatorics, and will be the main
focus of Part II of this dissertation. In this introductory chapter, we cover the
basics of this technique, and we show how it can be applied to problems in
extremal combinatorics.

Introduction

For several decades, thecap set problemhad been one of the central open problems
in extremal combinatorics. This problem asks whether or not there exists a constant
c < 3 such that every subsetS � Fn

3 of size at leastcn contains an a�ne line. It
is related to many other open problems in combinatorics, such as the Erd}os{Tur�an
conjecture on arithmetic progressions, the sunower conjecture, and the computational
complexity of matrix multiplication [ASU13].

In 2016, the cap set problem was solved by Ellenberg and Gijswijt [EG17], using
a new technique developed earlier that year by Croot, Lev and Pach [CLP17]. Their
proof was subsequently recast by Tao in terms of a new rank function for tensors,
called slice rank [Tao16], which has led this set of techniques to be called theslice
rank method. This will be the main topic of Part II of this dissertation.

In this chapter, we cover the de�nitions and basic properties of slice rank, and we
discuss applications of the method to three problems in extremal combinatorics: the
cap set problem, tricoloured sum-free sets, and sets without non-trivial solutions to a
system of balanced linear equations. This last result will be the point of departure for
the remainder of Part II.

5.1 Slice rank

Let A1; : : : ; Ak be �nite sets and let F be a �eld. A hypermatrix is a function T :
A1 � � � � � Ak ! F. A slice of a k-dimensional hypermatrix T is a (k � 1)-dimensional
hypermatrix T0 of the form T0(x1; : : : ; xk � 1) = T(x1; : : : ; x i � 1; a; xi ; : : : ; xk � 1) for
some �xed i 2 [k] and a 2 A i . (For example, a slice of a matrix is a row or column.)

47
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A hypermatrix is called diagonal if A1 = � � � = Ak and T(x1; : : : ; xk ) = 0 whenever
x1; : : : ; xk are not all equal.

The hypermatrix T : A1 � � � � � Ak ! F is said to haveslice rank one if T 6= 0 and
there existsi 2 [k] and functions f : A i ! F and g : A1�� � �� A i � 1� A i +1 �� � �� Ak ! F
such that T(x1; : : : ; xk ) = f (x i )g(x1; : : : ; x i � 1; x i +1 ; : : : ; xk ) for all ( x1; : : : ; xk ) 2
A1 � � � � � Ak . The slice rank of an arbitrary hypermatrix T, denoted sr(T), is the
minimum integer r such that T can be written as the sum of r hypermatrices of
slice rank one. (For a coordinate-free de�nition of slice rank, using tensors instead of
hypermatrices, see [TS16].)

For k = 2, the slice rank is simply the matrix rank, so slice rank is a generalization
of matrix rank to hypermatrices. However, it di�ers from the usual notion of (tensor)
rank, as the only hypermatrices of tensor rank one are those of the formT(x1; : : : ; xk ) =
f 1(x1)f 2(x2) � � � f k (xk ).

We proceed to prove the basic properties of the slice rank.

Proposition 5.1. Let T : A1 � � � � � Ak ! F be a hypermatrix. Then:

(a) one has sr(T) � min( jA1j; : : : ; jAk j);

(b) for all subsetsB1 � A1; : : : ; Bk � Ak , one hassr(T jB 1 ����� B k ) � sr(T);

(c) if T =
P k

i =1

P r i
j =1 f ij (x i )gij (x1; : : : ; x i � 1; x i +1 ; : : : ; xk ) is an optimal slice rank

decomposition ofT (that is, if sr(T) =
P k

i =1 r i ), then for each i 2 [k] the vectors
f i 1; : : : ; f ir i 2 FA i are linearly independent, and likewise for eachi 2 [k] the
slices gi 1; : : : ; gir i 2 FA 1 ����� A i � 1 � A i +1 ����� A k are linearly independent.

Proof. (a) For every i 2 [k] we have

T(x1; : : : ; xk ) =
X

a2 A i

� a(x i )T(x1; : : : ; x i � 1; a; xi +1 ; : : : ; xk );

where � a : A i ! F denotes the indicator vector of f ag. This is a valid slice rank
decomposition ofT, so we have sr(T) � min( jA1j; : : : ; jAk j).

(b) Every slice rank decompositionT =
P k

i =1

P r i
j =1 f ij (x i )gij (x1; : : : ; x i � 1; x i +1 ; : : : ; xk )

of T restricts to a slice rank decomposition ofT jB 1 ����� B k , so sr(T jB 1 ����� B k ) �
sr(T).

(c) Suppose that � 1f i 1 + � � � + � r i f ir i = 0 with � 1; : : : ; � r i not all equal to zero. By
rearranging, we may assume that� r i 6= 0. But then we have f ir i = � 1

� r i
(� 1f i 1 +

� � � + � r i � 1f i;r i � 1), hence

r iX

j =1

f ij (x i )gij (x1; : : : ; x i � 1; x i +1 ; : : : ; xk )

=
r i � 1X

j =1

f ij (x i )
�
gij (x1; : : : ; x i � 1; x i +1 ; : : : ; xk ) � 1

� r i
gir 1 (x1; : : : ; x i � 1; x i +1 ; : : : ; xk )

�
:
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This reduces the number of terms in the slice rank decomposition by one, con-
trary to the assumption that the original decomposition was optimal. Therefore
f i 1; : : : ; f ir i must be linearly independent. Analogously,gi 1; : : : ; gir i are linearly
independent. �

In applications of the slice rank method to problems in extremal combinatorics,
one must compute the slice rank of an in�nite family of (ever growing) hypermatrices.
This can be very challenging, as even computing the slice rank of a single hypermatrix
is NP-hard [BIL + 21]. However, for certain special families of hypermatrices, the slice
rank is relatively easy to compute. In particular, in Proposition 5.3 below we prove
a direct formula for the slice rank of a diagonal hypermatrix. For this we need the
following lemma.

Lemma 5.2. Let F be a �eld and let V � Fn be a linear subspace. Then there exists
a vector v 2 V with at least dim(V ) non-zero entries.

Proof. Choose a basisB = f b1; : : : ; bdg of V , and let M be the matrix whose rows are
b1; : : : ; bd. After performing Gaussian elimination, we obtain a matrix M 0 in reduced
row echelon form which is row equivalent toM . If b0

1; : : : ; b0
d denote the rows ofM 0,

then b0
1 + � � � + b0

d has at least dim(V ) non-zero entries. �

Proposition 5.3 ([Tao16, Lemma 1]). For all k � 2, the slice rank of everyk-
dimensional diagonal hypermatrix equals the number of non-zero entries.

Proof. It is easy to see that a hypermatrix with d non-zero entries has slice rank at
most d, so it su�ces to show that the slice rank of a diagonal hypermatrix with d
non-zero entries is at leastd. We proceed by induction onk.

ˆ For k = 2, the slice rank coincides with the ordinary matrix rank, and we know
from linear algebra that the rank of a diagonal matrix equals the number of
non-zero entries.

ˆ Let k � 3 be given such that the slice rank of every (k � 1)-dimensional diagonal
hypermatrix is at least the number of non-zero entries. Now letT : Ak ! F be
a k-dimensional diagonal hypermatrix. Write A0 := f a 2 A : T(a; : : : ; a) 6= 0 g,
and let T0 := T j(A 0) k be the restriction of T to (A0)k . Choose an optimal slice

rank decomposition T0 =
P k

i =1

P r i
j =1 f ij (x i )gij (x1; : : : ; x i � 1; x i +1 ; : : : ; xk ) of T0,

so that sr(T0) =
P k

i =1 r i .

Let V := f f k1; : : : ; f kr k g? � FA 0
be the space of functionsh : A0 ! F satisfyingP

x 2 A 0 f kj (x)h(x) = 0 for all j 2 [r k ]. By Proposition 5.1(c), we havedim(V ) =
jA0j � r k , so by Lemma 5.2 we may choose someh 2 V with at least jA0j � r k

non-zero entries. De�neT00: (A0)k � 1 ! F by

T00(x1; : : : ; xk � 1) :=
X

x k 2 A 0

T0(x1; : : : ; xk )h(xk ):
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Then T00is a (k � 1)-dimensional diagonal hypermatrix with at least jA0j � r k non-
zero entries, so it follows from the induction hypothesis thatsr(T00) � j A0j � r k .
On the other hand, sinceh 2 f f k1; : : : ; f kr k g? , we have

X

x k 2 A 0

r kX

j =1

f kj (xk )gkj (x1; : : : ; xk � 1)h(xk ) =
r kX

j =1

gkj (x1; : : : ; xk � 1)
X

x k 2 A 0

f kj (xk )h(xk ) = 0 ;

so plugging in the slice rank decomposition ofT0 gives

T00(x1; : : : ; xk � 1) =
X

x k 2 A 0

kX

i =1

r iX

j =1

f ij (x i )gij (x1; : : : ; x i � 1; x i +1 ; : : : ; xk )h(xk )

=
k � 1X

i =1

X

x k 2 A 0

r iX

j =1

f ij (x i )gij (x1; : : : ; x i � 1; x i +1 ; : : : ; xk )h(xk )

=
k � 1X

i =1

r iX

j =1

f ij (x i ) �

 
X

x k 2 A 0

gij (x1; : : : ; x i � 1; x i +1 ; : : : ; xk )h(xk )

!

:

This gives a valid slice rank decomposition ofT00of sizer 1 + � � � + r k � 1, so we have
sr(T00) � r 1 + � � � + r k � 1. It follows that jA0j � sr(T00)+ r k � r 1 + � � � + r k = sr(T0),
so by Proposition 5.1(b) we have sr(T) � sr(T0) � j A0j. �

In all applications of the slice rank method in this dissertation, the hypermatrix
will be diagonal, so Proposition 5.3 is all we need. However, we point out that slice
rank formulas are known for certain other classes of hypermatrices as well; see for
instance [TS16, Sau22].

5.2 Monomials of small degree and the Croot{Lev{Pach
lemma

In a typical application of the slice rank method, the hypermatrix under consideration
is de�ned by a polynomial which encodes the combinatorial structure of the problem. If
this polynomial has su�ciently low degree, then a clever expansion of this polynomial
and a large deviations bound show that the hypermatrix has exponentially small size.
In this section, we make these statements precise.

Let F be a �eld, and let F[x1; : : : ; xn ] be the polynomial ring in n variables overF.
For � 2 Nn

0 , write x � := x � 1
1 � � � x � n

n 2 F[x1; : : : ; xn ] and j� j = � 1 + � � � + � n . Moreover,
for q 2 N1 and d 2 R� 0, write M q;n;d := f � 2 f 0; 1; : : : ; q � 1gn : j� j � dg and
mq;n;d := jM q;n;d j. Then mq;n;d is equal to the number of monomials inF[x1; : : : ; xn ]
whose degree in every variable (separately) is at mostq � 1 and whose total degree is
at most d.1

The following lemma shows that a hypermatrix de�ned by a polynomial of small
total degree has relatively small slice rank. It is named after Croot, Lev and Pach,

1For technical reasons, it will be convenient to also allow non-integer values of d, even though the
total degree of a monomial is always an integer.
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whose paper [CLP17] led to the solution of the cap set problem [EG17] and the
development of the slice rank method [Tao16]. The k = 2 case of the lemma is implicit
in [CLP17].

Lemma 5.4 (Generalized Croot{Lev{Pach lemma). Let q be a prime power, let
n 2 N1, and let A1; : : : ; Ak � Fn

q . Furthermore, let T : A1 � � � � � Ak ! Fq be a
hypermatrix given by

T(x 1 ; : : : ; x k ) = f (x11; : : : ; x1n ; : : : ; xk1; : : : ; xkn )

for some polynomial f 2 Fq[x11; : : : ; x1n ; : : : ; xk1; : : : ; xkn ] of total degree at mostd.
Then sr(T) � k � mq;n; d

k
.

Proof. Sincexq = x for all x 2 Fq, we may assume without loss of generality thatf
has degree at mostq � 1 in every variable x ij (separately), and total degree at mostd.

For i 2 [k] and � i 2 f 0; 1; : : : ; q � 1gn , write x � i
i = x � i 1

i 1 � � � x � in
in and j� i j =

� i 1 + � � � + � in . Furthermore, write M q;n;k;d = f (� 1 ; : : : ; � k ) 2 (f 0; 1; : : : ; q � 1gn )k :
j� 1 j + � � � + j� k j � dg. Then we may write f as

f (x11; : : : ; x1n ; : : : ; xk1; : : : ; xkn ) =
X

( � 1 ;:::; � k )2 M q;n;k;d

� ( � 1 ;:::; � k ) � x � 1
1 � � � x � k

k ;

where � ( � 1 ;:::; � k ) 2 Fq for all ( � 1 ; : : : ; � k ) 2 M q;n;k;d .
By the pigeonhole principle, for every (� 1 ; : : : ; � k ) 2 M q;n;k;d there is somei 2 [k]

such that j� i j � d
k . Choosing one suchi for every (� 1 ; : : : ; � k ) 2 M q;n;k;d , we obtain

a partition M q;n;k;d = M 1 [ � � � [ M k such that for all ( � 1 ; : : : ; � k ) 2 M i we have
j� i j � d

k .
Now we can write

T(x 1 ; : : : ; x k ) =
X

( � 1 ;:::; � k )2 M q;n;k;d

� ( � 1 ;:::; � k ) � x � 1
1 � � � x � k

k

=
kX

i =1

X

( � 1 ;:::; � k )2M i

� ( � 1 ;:::; � k ) � x � 1
1 � � � x � k

k

=
kX

i =1

X

� 2 M q;n;d=k

x �
i

0

B
@

X

( � 1 ;:::; � k )2M i
� i = �

� ( � 1 ;:::; � k ) � x � 1
1 � � � x

� i � 1

i � 1 x
� i +1

i +1 � � � x � k
k

1

C
A :

This is a valid slice rank decomposition of sizek � mq;n; d
k
, so we havesr(T) � k �

mq;n; d
k

. �

The remainder of this section is devoted to upper boundingmq;n;d . For q 2 N1 and
� 2 R� 0, de�ne

J (q; � ) := inf
t> 0

1 + t + t2 + � � � + tq� 1

t � :

The following estimate shows that mq;n;�n is small when� < q� 1
2 is �xed and n ! 1 .

We give a short, self-contained proof, but we note that this follows from a more general
principle in probability theory; see Remark 5.6.
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Lemma 5.5. For all integers n � 1 and q � 2 and all � 2 R with 0 � � < q� 1
2 , one

has
1 < J (q; � ) < q and mq;n;�n � J (q; � )n :

Proof. De�ne f : R> 0 ! R> 0 by f (t) := 1+ t + t 2 + ��� + t q � 1

t � . For all t > 1 we have

f (t) =
1 + t + t2 + � � � + tq� 1

t � >
1 + t + t2 + � � � + tq� 1

t
q � 1

2

� q = f (1);

where the �rst inequality holds becauset > 1 and � < q� 1
2 and the second inequal-

ity follows from the AM{GM inequality (applied to the sequence 1 ; t; t 2; : : : ; tq� 1).
Therefore the in�mum can be taken over (0; 1] instead of (0; 1 ); that is, we have
J (q; � ) = inf t 2 (0 ;1] f (t).

We have f 0(t) =
P q� 1

i =0 (i � � )t i � � � 1, so in particular f 0(1) =
P q� 1

i =0 (i � � ) =
q(q� 1� 2� )

2 > 0, becauseq > 0 and q � 1 � 2� > 0, by assumption. It follows that f
is strictly increasing in some neighbourhood (1� "; 1 + ") of 1, so we haveJ (q; � ) �
f (1 � 1

2 " ) < f (1) = q. Furthermore, since f is continuous and lim t ! 0 f (t) = + 1 , the
function f has a minimum on (0; 1], so there is somet0 2 (0; 1] such that J (q; � ) = f (t0).
Therefore,

J (q; � ) =
1 + t0 + t2

0 + � � � + tq� 1
0

t �
0

� 1 + t0 + t2
0 + � � � + tq� 1

0 > 1;

where the �rst inequality holds because 0< t 0 � 1 and � � 0 and the second inequality
holds becauseq � 2 and t0 > 0. This shows that 1< J (q; � ) < q .

In order to prove that mq;n;�n � J (q; � )n , write (1+ t + � � � + tq� 1)n =
P (q� 1)n

i =0 bi t i ,
where bi is the number of � 2 f 0; 1; : : : ; q � 1gn with j� j = i . Then for all t 2 (0; 1]
we have

mq;n;�n =
b�n cX

i =0

bi

�
b�n cX

i =0

bi t i � �n (becauset i � �n � 1 whenevert 2 (0; 1] and i � �n )

�
(q� 1)nX

i =0

bi t i � �n (becausebi t i � �n � 0 for all i > b�n c)

= t � �n
(q� 1)nX

i =0

bi t i = f (t)n :

Minimizing over t 2 (0; 1] shows that mq;n;�n � J (q; � )n . �

Remark 5.6. We note that Lemma 5.5 also follows from a more general principle
in probability theory, which is perhaps a bit more insightful than the `ad hoc' proof
given above. The problem of boundingmq;n;�n can be modelled as the following
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probability experiment. Let X 1; : : : ; X n be i.i.d. random variables, drawn from the
uniform distribution on f 0; 1; : : : ; q� 1g. Then mq;n;�n = qn �Pr[X 1 + � � � + X n � �n ], so
to bound mq;n;�n we need to bound the probability of the eventf X 1 + � � � + X n � �n g.

By the central limit theorem, the normalized partial sums 1
�

p
n

P n
i =1 (X i � � ) tend

to a standard normal distribution. This tells us that events of the form f X 1 + � � � + X n �
�n � c

p
ng (with c > 0 �xed) occur with constant probability as n ! 1 , whereas

events of the form f X 1 + � � � + X n � �n � cng (with c > 0 �xed) become exceedingly
rare. Since� < q� 1

2 = E[X 1], we are dealing with a problem of the latter form. To
bound these so-calledtail probabilities, we draw on the theory of large deviations. For
this particular problem, the rate of convergence is governed by the following theorem,
known as Cram�er's theorem .

Theorem 5.7 (Cram�er, Cherno�) . Let f X n gn 2 N be a sequence of i.i.d. real random
variables with well-de�ned (�nite ) expectation � := E[X 1]. De�ne � � : R ! [0; + 1 ] by

� � (x) := sup
t 2 R

�
tx � logE[etX 1 ]

�
;

with the convention that log(+ 1 ) = + 1 . Then for all x < � one has

Pr[X 1 + � � � + X n � xn ] � e� � � (x )n for all n 2 N1;

lim
n !1

1
n

log Pr[X 1 + � � � + X n � xn ] = � � � (x);

with the convention that e�1 = 0 and log(0) = �1 .

A proof of Theorem 5.7 can be found in some of the more comprehensive textbooks
on general probability theory (e.g. [Bau96, Kle08, Kal21]) and in textbooks specializing
in large deviations theory (e.g. [Var84, DS89, DZ98, Hol00, RS15]).2

In the setting of Remark 5.6, a straightforward computation shows that e� � � ( � )n =
1

qn J (q; � )n , so Cram�er's theorem gives the same upper bound as Lemma 5.5. Therefore
the limit in Cram�er's theorem shows that the upper bound mq;n;�n � J (q; � )n is
asymptotically optimal.

5.3 The slice rank method: three examples

We now have all the ingredients to apply the slice rank method to problems in extremal
combinatorics. In this section, we cover three example applications: the cap set problem,
tricoloured sum-free sets, and sets without non-trivial solutions to a system of balanced
linear equations.

The cap set problem

For n 2 N1, let a(n) denote the largest size of a subsetS � Fn
3 which does not contain

an a�ne line. The asymptotic behaviour of a(n) as n ! 1 has been subject of study

2The inequality Pr [X 1 + � � � + X n � xn ] � e� � � ( x ) n is not always stated as part of the theorem,
but it is usually contained in the proof.
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for several decades. In 1982, Brown and Buhler [BB82] showed that a(n) 2 o(3n ); that
is, lim n !1

a(n )
3n = 0. A few years later, Frankl, Graham and R•odl [ FGR87] gave a

shorter proof of that same fact, and asked whether there exists a constantc < 3 such
that a(n) 2 O(cn ). This problem became known as thecap set problem.

Despite substantial interest in this problem, very few improvements were made
on the upper bounds fora(n). In 1995, Meshulam [Mes95] showed that a(n) � 2 � 3n

n ,
and only in 2012 this was improved toa(n) 2 O( 3n

n 1+ " ) for some constant " > 0 by
Bateman and Katz [BK12]. The Fourier-analytic techniques employed by Meshulam
and Bateman and Katz appeared to have reached their limit, and it was suspected
that further progress might be possible using the polynomial method [Tao10], but for
a long time it was unclear how to do so.

All of this suddenly changed in 2016, when Croot, Lev and Pach published a
preprint containing a new application of the polynomial method to the closely related
problem of avoiding 3-term arithmetic progressions in (Z=4Z)n . Soon after, it was
realized by Ellenberg and Gijswijt (independently) that the method of Croot, Lev and
Pach could be modi�ed to solve the cap set problem, and they proved the following
more general result.

Theorem 5.8 (Ellenberg{Gijswijt [ EG17]). Let p � 3 be prime, and let cp :=
J (p; p� 1

3 ) < p . Then for every n 2 N and every subsetS � Fn
p without non-trivial

3-term arithmetic progressions, one hasjSj � cn
p .

Over F3, the non-trivial 3-term arithmetic progressions are precisely the a�ne
lines, so thep = 3 case of Theorem 5.8 provides an a�rmative answer to the cap set
problem.

The proof was later recast by Tao in terms of slice rank [Tao16], and this has since
become the dominant terminology. We follow Tao's proof, for which we already set up
all the necessary prerequisites in the previous sections.

Proof of Theorem 5.8. Let S � Fn
p be a set without non-trivial 3-term arithmetic

progressions. De�neT : S � S � S ! Fp by

T(x ; y ; z) :=
nY

i =1

(1 � (x i � 2yi + zi )p� 1):

By Fermat's little theorem, we have (x i � 2yi + zi )p� 1 = 1 if and only if x i � 2yi + zi 6= 0,
hence

T(x ; y ; z) =

(
0; if x i � 2yi + zi 6= 0 for some i ;
1; if x � 2y + z = 0 :

It follows that T(x ; y ; z) 6= 0 if and only if x , y and z form a 3-term arithmetic
progression. By assumption, the only 3-term arithmetic progressions inS are the
trivial ones, so we haveT(x ; y ; z) 6= 0 if and only if x = y = z. This shows that T is
a diagonal hypermatrix with non-zero entries on the diagonal. Hence it follows from
Proposition 5.3 that sr(T) = jSj. On the other hand, by Lemma 5.4 and Lemma 5.5,
we have sr(T) � 3 � mp;n; ( p � 1) n

3
� 3 � J (p; p� 1

3 )n = 3cn
p . This shows that jSj � 3cn

p .
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To get rid of the additional factor 3, we use the following trick (known as the
`power trick'). Let ` 2 N1, and consider the setS` � (Fn

p )` �= Fn`
p . If ( x 1 ; : : : ; x ` ) �

2(y1 ; : : : ; y ` ) + ( z1 ; : : : ; z` ) = (0 ; : : : ; 0), then we must have x i = y i = z i for all
i 2 [`], so S` does not contain non-trivial 3-term arithmetic progressions. Hence, by
the preceding result, we havejSj` = jS` j � 3cn`

p , and therefore jSj � 31=` � cn
p . Letting

` ! 1 , we conclude that jSj � cn
p . �

It is not known whether or not the constant cp = J (p; p� 1
3 ) in Theorem 5.8 is

optimal. Currently, the best known upper bound on the size of a setS � Fn
p without

3-term arithmetic progressions isO( 1p
n � J (p; p� 1

3 )n ), due to Jiang [Jia21]. In particular,
for the cap set problem (p = 3) we have

c3 = J
�
3; 2

3

�
=

3
8

3

q
207 + 33

p
33 � 2:755105;

so the best known upper bound ona(n) is O( 2:755105n

n ). This is still far away from
the best known lower bound, which is 
(2 :218021n ), due to Tyrrell [ Tyr22]. For lower
bounds for other primes (p � 5), see e.g. [Ede04, EP20, EL23].

Tricoloured sum-free sets

After the cap set problem was solved, it was quickly realized that the same technique
could also be used to prove an asymmetric (or `tricoloured') version of Theorem 5.8.

Let G be an abelian group. A sequencef (x i ; yi ; zi )gL
i =1 in G3 is called atricoloured

sum-free set in G if for all i; j; k 2 [L ] one hasx i + yj + zk = 0 if and only if
i = j = k.3 Observe that the de�nition implies that jf x1; : : : ; xL gj = jf y1; : : : ; yL gj =
jf z1; : : : ; zL gj = L ; that is, in a tricoloured sum-free set there can be no repetitions in
each of the coordinates (separately).

A straightforward application of the slice rank method gives the following upper
bound on the size of tricoloured sum-free sets inFn

p :

Theorem 5.9 (Blasiak{Church{Cohn{Grochow{Naslund{Sawin{Umans [ BCC+ 17]).
Let p be prime, and letcp := J (p; p� 1

3 ) < p . Then for every tricoloured sum-free set
f (x i ; y i ; z i )gL

i =1 in Fn
p one hasL � cn

p .

Proof. Let f (x i ; y i ; z i )gL
i =1 be a tricoloured sum-free set inFn

p . De�ne T : [L ] � [L ] �
[L ] ! Fp by

T(i; j; k ) :=
nY

` =1

(1 � (x i` + yj` + zk` )p� 1)

=

(
1; if x i + y j + zk = 0;
0; otherwise;

3Sometimes tricoloured sum-free sets are de�ned more generally by the property that x i + yj + zk = t
if and only if i = j = k, where t 2 G is �xed. However, if f (x i ; yi ; zi )gL

i =1 is a generalized tricoloured
sum-free set, then f (x i ; yi ; zi � t )gL

i =1 is a tricoloured sum-free set, so there is no loss in generality by
restricting our attention to the t = 0 case.
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=

(
1; if i = j = k;
0; otherwise:

By Proposition 5.3, we have sr(T) = L . On the other hand, by Lemma 5.4 and
Lemma 5.5, we havesr(T) � 3 � mp;n; ( p � 1) n

3
� 3 � J (p; p� 1

3 )n = 3cn
p . This shows that

jSj � 3cn
p .

To get rid of the additional factor 3, we repeat the `power trick' from the proof of
Theorem 5.8. If f (x i ; y i ; z i )gL

i =1 is a tricoloured sum-free set inFn
p and if ` 2 N, then

f ((x i 1 ; : : : ; x i ` ); (y i 1 ; : : : ; y i ` ); (z i 1 ; : : : ; z i ` ))g( i 1 ;:::;i ` )2 [L ]` is a tricoloured sum-free set
in (Fn

p )` �= Fn`
p . Therefore we haveL ` � 3 � cn`

p , henceL � 31=` � cn
p . Letting ` ! 1 ,

we conclude that L � cn
p . �

In [BCC+ 17, Thm. A], Blasiak et al. also gave an extension of Theorem 5.9 to
arbitrary abelian groups of bounded exponent. A further extension to non-abelian
�nite groups was given by Sawin [Saw18].

SinceFn
ps

�= Fsn
p as groups, the following corollary is immediate.

Corollary 5.10. Let q = ps be a prime power, and letcq := J (p; p� 1
3 )s < q. Then for

every tricoloured sum-free setf (x i ; y i ; z i )gL
i =1 in Fn

q one hasL � cn
q .

Tricoloured sum-free sets are the asymmetric (or `tricoloured') equivalent of cap
sets, in the following sense. IfS � Fn

p is a set without non-trivial 3-term arithmetic
progressions, and ifS = f x i gL

i =1 is an enumeration of the elements ofS (where
L = jSj), then f (x i ; � 2x i ; x i )gL

i =1 is a tricoloured sum-free set. In this setting, the
proofs from Theorem 5.8 and Theorem 5.9 use the same hypermatrix and result in the
same upper bound. Hence Theorem 5.9 can be seen as a generalization of Theorem 5.8
where the three variables can be taken from di�erent sets.

Contrary to the cap set problem, the bound from Theorem 5.9 is known to be
tight up to a subexponential factor. In a series of papers, Kleinberg, Speyer and Sawin
[KSS18], Pebody [Peb18] and (independently) Norin [Nor19] proved that for every
" > 0, there is a tricoloured sum-free set of size (cp � " )n in Fn

p for large enoughn.
This shows that no exponential improvement of the cap set bound from Theorem 5.8
is possible without somehow taking the symmetry of that problem into account.

Remark 5.11. In the next chapter, it will be convenient to replace the bound L � cn
q

from Corollary 5.10 by a strict inequality, L < c n
q . We can do this becauseJ (p; p� 1

3 )
is not the n-th root of an integer, but this is not completely trivial. We sketch a proof
of this fact here, assuming familiarity with a bit of algebra (see e.g. [Lan02,§IV.2]).

Write F (t) = (1 + t + � � � + tp� 1)t � p � 1
3 . Recall from the proof of Lemma 5.5 that F

attains a minimum on (0; 1). Write t0 = arg mint 2 (0 ;1) F (t), so that J (p; p� 1
3 ) = F (t0).

First we prove that t0 is algebraic, but not an algebraic integer (i.e. it is not
the zero of amonic polynomial in Z[X ]). A direct computation shows that F 0(t) =
1
3 � f (t) � t � p � 1

3 � 1, wheref (t) = ( � p+1)+( � p+4) t + � � � +(2 p� 2)tp� 1. SinceF 0(t0) = 0
and t0 6= 0, it follows that f (t0) = 0, which shows that t0 is algebraic.

For p 2 f 2; 3g it is easy to verify that t0 is not an algebraic integer. Assume
henceforth that p � 5. Let c = c(f ) and pp(f ) be the content and primitive part of f ,
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respectively (i.e. c is the gcd of the coe�cients of f , and pp(f ) = 1
c f ). Since successive

coe�cients of f di�er by 3, we have either c = 1 (if p 6� 1 mod 3) or c = 3 (if p � 1
mod 3), so either pp(f ) = f or pp(f ) = 1

3 f . In either case, pp(f ) is not monic.
Now suppose, for the sake of contradiction, thatt0 is an algebraic integer. Then

the minimal polynomial g 2 Z[t] of t0 is monic and has integer coe�cients, so it
is di�erent from pp(f ). Therefore we may write pp(f ) = gh for some non-constant
h 2 Z[t]. Let �f ; �g; �h 2 Fp[t ] be the reductions off; g; h modulo p. A direct computation
shows that �f = � 2 � (t � 1)p� 2(t � p� 1

2 ), so we have�g = ( t � 1)k (t � p� 1
2 )` and

�h = � 2
c � (t � 1)p� 2� k (t � p� 1

2 )1� ` for somek 2 f 0; : : : ; p � 2g and ` 2 f 0; 1g. Since

f (1) = p(p� 1)
2 is divisible by p but not by p2, at most one of g(1) and h(1) can be

divisible by p, so at most one of�g and �h vanishes on 1. Sincedeg(g); deg(h) � 1, we
must have (k; ` ) = ( p � 2; 0) or (k; ` ) = (0 ; 1).

ˆ If ( k; ` ) = (0 ; 1), then deg(g) = 1, so t0 is a rational number. Since we assumed
that t0 is an algebraic integer, we must havet0 2 Z. This is a contradiction,
because 0< t 0 < 1.

ˆ If ( k; ` ) = ( p � 2; 0), then deg(h) = 1. Write h(t) = at � b. By primitivity of
pp(f ), we must have gcd(a; b) = 1. Since g is monic, the leading coe�cient of
h is equal to the leading coe�cient of pp(f ), so a = 2p� 2

c . Furthermore, since
1� p

c = 1
c f (0) = g(0)h(0), we have b = h(0) j 1� p

c j a. But since gcd(a; b) = 1,

it follows that b = � 1. Finally, since g(1)h(1) = 1
c f (1) = p(p� 1)

2c , we have

a� b = h(1) j p(p� 1)
2c . But a� b = 2p� 2

c � 1 is not divisible by p (for c = 1 we have
a � b 6� 0 mod p since we assumedp � 5, and for c = 3 we have 0< a � b < p),
so in fact we havea � b = 2p� 2

c � 1 j p� 1
c , which is absurd.

Either way, we reach a contradiction, so we conclude thatt0 is not an algebraic integer.
(With a bit more work, one can also show that 1

c f is in fact the minimal polynomial
of t0, but we don't need that here.)

Finally, to show that J (p; p� 1
3 ) is not the n-th root of an integer, suppose that

J (p; p� 1
3 )n = b for some b 2 Z. Then we have F (t0)3n = b3, hence (1 + t0 + � � � +

tp� 1
0 )3n = b3t (p� 1)n

0 , so t0 is a zero of amonic polynomial of degree 3n(p � 1) with
integer coe�cients. This is a contradiction, since t0 is not an algebraic integer.

Avoiding non-trivial solutions to a system of balanced linear
equations

As a �nal application, we briey look into the problem which will be studied in more
detail in the next chapter. Let Fq be a �nite �eld, and let A = ( aij ) 2 Fm � k

q be a �xed
matrix over Fq. Consider the linear system

8
>><

>>:

a11x 1 + � � � + a1k x k = 0 ;
...

am 1x 1 + � � � + amk x k = 0;

(?)
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with variables x 1 ; : : : ; x k 2 Fn
q . We say that (?) is balancedif each of the row sums

ai 1 + � � � + aik of the coe�cient matrix is equal to zero. If ( ?) is balanced, then a
solution (x 1 ; : : : ; x k ) is called trivial if x 1 = x 2 = � � � = x k , and non-trivial otherwise.
When the number of variables is su�ciently large, a straightforward application of the
slice rank method shows that a setS � Fn

q without non-trivial solutions must have
exponentially small density:

Theorem 5.12 ([TS16], [Sau22, Theorem 1.1]). Let q be a prime power, and let(?) be
a balanced linear system overFq with k variables andm equations, wherek � 2m + 1 .
Write Cq;m;k := J (q; (q� 1)m

k ) < q . Then for all n 2 N, every subsetS � Fn
q without

non-trivial solutions to (?) has sizejSj � (Cq;m;k )n .

Proof. Let S � Fn
q be a set without non-trivial solutions to ( ?). De�ne T : Sk ! Fq

by

T(x 1 ; : : : ; x k ) :=
mY

i =1

nY

j =1

(1 � (ai 1x1j + � � � + aik xkj )q� 1)

=

(
1; if ( x 1 ; : : : ; x k ) is a solution to (?);
0; otherwise;

=

(
1; if x 1 = x 2 = � � � = x k ;
0; otherwise:

By Proposition 5.3, we havesr(T) = jSj. On the other hand, by Lemma 5.4 and
Lemma 5.5, we havesr(T) � k � mq;n; (q� 1) nm

k
� k � J (q;(q � 1) m

k )n = k � (Cq;m;k )n ,
where the second inequality relies on the assumption thatmk < 1

2 . This shows that
jSj � k � (Cq;m;k )n .

To get rid of the additional factor k, we use the power trick. For every` 2 N,
the set S` � (Fn

q )` �= Fn`
q also has no non-trivial solutions to (?). Therefore we have

jS` j � k � (Cq;m;k )n` , hencejSj � k1=` � (Cq;m;k )n . Letting ` ! 1 , we conclude that
jSj � (Cq;m;k )n . �

Since a 3-term arithmetic progression can be encoded by a single balanced linear
equation in three variables, Theorem 5.12 contains Theorem 5.8 as a special case.

It is important to note that Theorem 5.12 only applies to systems with su�ciently
many variables. The case wherek � 2m appears to be out of reach for current (slice
rank) methods. In the next chapter, we will extend Theorem 5.12 in another direction,
by looking at the problem of �nding/avoiding solutions of higher non-degeneracy.



Chapter 6

Avoiding solutions to a system of
balanced linear equations

The solution of the cap set problem shows that a subset S � Fn
p without

3-term arithmetic progressions must have exponentially small density. For k-term
arithmetic progressions (k � 4), this problem is wide open, and is believed to
be beyond the reach of current slice rank methods. In this chapter, we study
an application of the slice rank method to the broader problem of avoiding
non-degenerate solutions to a system of balanced linear equations overFq .

This chapter is based on the paper [DG21], and is joint work with Dion
Gijswijt.

6.1 Introduction

The cap set problem occurs as a special case of several other open problems. Therefore
we should ask if the slice rank method can also be used to solve these more general
problems. One such problem is to determine whether or not for all values of 3� k � p
there is a constant cp;k < p such that every set S � Fn

p with jSj � cn
p;k contains a

k-term arithmetic progression. For k = 3 this is settled by the slice rank method (see
[EG17]), but for k � 4 the problem is wide open. This is believed to be beyond the
reach of current slice rank methods.

Instead, research has shifted to other related problems. Recently, Mimura and
Tokushige [MT19a, MT19b, MT20] and Sauermann [Sau22] started developing tech-
niques to bound the maximum size of a subset ofFn

q which avoids non-degenerate
solutions to a given system of linear equations over a �nite �eld Fq. Since ak-term
arithmetic progression can be encoded as a system ofk � 2 linear equations, this
contains the problem of avoidingk-APs as a special case.

Given a �xed matrix A = ( aij ) 2 Fm � k
q , we want to bound the maximum size of a

subsetS � Fn
q for which there are no k-tuples (x 1 ; : : : ; x k ) 2 Sk satisfying

8
>><

>>:

a11x 1 + � � � + a1k x k = 0 ;
...

am 1x 1 + � � � + amk x k = 0;

(?)

59
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except possibly trivial/degenerate solutions (more on that later). Note that the variables
x 1 ; : : : ; x k are not taken from Fq, but from Fn

q as n ! 1 .
If ai 1 + � � � + aik 6= 0 for some i (i.e. the coe�cients in one of the rows do not sum

to zero), then there are large subsets ofFn
q with no solutions at all to ( ?). Indeed, let

S � Fn
q be the set of all vectors whose �rst coordinate is equal to 1. If some row of (?)

does not sum to zero, thenS does not contain solutions to (?), and jSj = qn � 1 = 1
q �jFn

q j,
so S contains a constant proportion of the vectors in Fn

q . (This example is due to
Sauermann [Sau22].)

We will henceforth assume thatai 1 + � � � + aik = 0 for all i . Such equations are
called balanced linear equations(or a�ne dependences), and the system (?) is also
called balanced. Recent results show that the problem becomes much more interesting
in this case.

If the system (?) is balanced, then every setS � Fn
q has at least jSj solutions to

(?), namely the solutions of the form (a; : : : ; a) for a 2 S. So the question is: how large
doesS have to be to guarantee the existence of solutions to (?) which are somehow
non-degenerate? For this we consider three di�erent notions of non-degeneracy:

De�nition 6.1. A solution ( x 1 ; : : : ; x k ) 2 (Fn
q )k of (?) is called:

(a) non-trivial if x 1 ; : : : ; x k are not all equal.

(b) a (?)-shape1 if x 1 ; : : : ; x k are pairwise distinct.

(c) generic2 if every balanced linear equation (overFq) satis�ed by ( x 1 ; : : : ; x k ) is
a linear combination of the equations in (?).

The requirements get stronger in each step, moving from (a) to (c). Indeed, it is
clear that every (?)-shape is a non-trivial solution. Furthermore, if the system (?) does
not rule out the existence of (?)-shapes inFn

q (in other words, if no linear combination
of the rows of (?) forces x i = x j for i 6= j ), then every generic solution is a (?)-shape.

The easiest of these problems is �nding a non-trivial solution. If the number of
variables is su�ciently large (speci�cally, if k � 2m + 1), then this can be done by a
routine application of the slice rank method, as we showed in the previous chapter:

Theorem 6.2 (see Theorem 5.12). If k � 2m + 1 , then there exists a constant
� q;m;k < q such that every subsetS � Fn

q of size at least(� q;m;k )n has a non-trivial
solution of (?).

If k � 2m, then the problem is believed to be beyond the reach of current (slice
rank) methods. Therefore we will assume throughout this chapter thatk � 2m +1. The
aim of this chapter is to re�ne Theorem 6.2 to the stronger notions of non-degeneracy
from De�nition 6.1. For this we use the following terminology:

De�nition 6.3. The linear system (?) is called:

(a) moderate1 if there exist constants �;  > 0 with  < q such that every subset
S � Fn

q of size at least� �  n contains a (?)-shape;

1Following terminology from Mimura and Tokushige [MT19a, MT19b, MT20].
2Terminology introduced by the authors.
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(b) temperate3 if there exist constants �;  > 0 with  < q such that every subset
S � Fn

q of size at least� �  n contains a generic solution of (?).

If ( ?) consists of the single equationx 1 + � � � + x p = 0 over Fp (with p prime), then
the existence of (?)-shapes is tightly linked to the Erd}os{Ginzburg{Ziv constant of the
group Fn

p . If p � 3, then this system is moderate overFp; this is implicit in [ Nas20a]
and [Sau21]. Furthermore, the method in [Sau21] can be easily adapted to show that
every balanced linear equation with at least 3 variables forms a moderate linear system.

The problem of determining whether or not a system of two or more equations
is moderate was �rst studied by Mimura and Tokushige [MT19a, MT19b, MT20].4

They showed that several speci�c linear systems are moderate. Although all of their
proofs rely on more or less the same idea, the details of the proofs are so di�erent that
a new proof was needed for each new system. We discuss some of their results in more
detail in §6.7.

The �rst general result in this direction was found by Sauermann [Sau22]. In an
elaborate proof, using a new application of the slice rank method and a subspace
sampling argument, she showed that (?)-shapes can always be found if the number of
variables is su�ciently large and if the system is very much non-degenerate:

Theorem 6.4 ([Sau22, Theorem 1.2]). If k � 3m and everym � m submatrix of A
is invertible, then (?) is moderate.

Despite its generality, this result does not replace the results of Mimura and
Tokushige, because the systems they studied have many singularm � m submatrices
(so Theorem 6.4 does not apply).

The third and �nal problem is that of �nding a generic solution. A partial result in
this direction was found by Sauermann, who showed that solutions of higher dimension
exist as the number of variables becomes larger:

Theorem 6.5 ([Sau22, Theorem 1.3]). If r � 2 and k � 2m � 1 + r , then there
are constants Crank

p;m;k;r � 1 and � rank
p;m;k;r < p such that every subsetS � Fn

p of
size at leastCrank

p;m;k;r � (� rank
p;m;k;r )n has a solution (x 1 ; : : : ; x k ) 2 Sk of (?) satisfying

dim(span(x 1 ; : : : ; x k )) � r .

Finding solutions of high dimension is closely related to �nding a generic solution,
as we explain in§6.5.

Main results of this chapter

The main results of this chapter are twofold. First, we prove a general result on �nding
(?)-shapes, which contains most of the results from [MT19a, MT19b, MT20] as special
cases. Second, we prove a general result for �nding generic solutions, which we believe
to be the �rst of its kind. We should point out that these results have since been
superseded by an even more general result of Gijswijt [Gij21].

3Terminology introduced by the authors.
4Similar results over the integers had been obtained by Ruzsa in the 1990s [ Ruz93, Ruz95], but

Mimura and Tokushige were the �rst to study this problem for vector spaces over a �nite �eld.



62 6. Avoiding solutions to a system of balanced linear equations

Throughout the chapter, we focus on a speci�c class of systems that is completely
di�erent from the class of systems studied by Sauermann. Where Sauermann's result
(Theorem 6.4 above) requires everym � m submatrix to be invertible, we require the
opposite: there must be su�ciently many linear dependencies between the columns.
Speci�cally, we focus on the class of `type (RC)' linear systems, which we de�ne as
follows:

De�nition 6.6. Consider the linear system (?), whose coe�cients are speci�ed by
the matrix A = ( aij ) 2 Fm � k

q .

(a) We say that two indices in [k] are equivalent if the corresponding columns ofA
are nonzero scalar multiples of one another. This de�nes an equivalence relation
on [k]. We will refer to the equivalence classes of this equivalence relation as the
column equivalence classes.

(b) We say that (?) is a type (RC) linear system5 if it is balanced and has at most
one column equivalence class of size 1.

(c) We say that a column equivalence classsums to zeroif the columns indexed by
that class add up to the zero vector.

Examples of type (RC) linear systems will be given in§6.7 below. Among these
examples are the systems studied by Mimura and Tokushige.

The assumptions made throughout this chapter can be summarized as follows:

Situation 6.7. Let (?) be a type (RC) linear system, given by the coe�cient matrix
A = ( aij ) 2 Fm � k

q , with ` column equivalence classes. Furthermore, assume that (?) is
non-degenerate and irreducible (see De�nition 6.13 below).

In all of our main results below, we assume that (?) and A are as in Situation 6.7.
In particular, we always assume that (?) is irreducible. However, we note that our
results can also be applied to reducible systems. We show in Proposition 6.14 (resp.
Proposition 6.27) that a system is moderate (resp. temperate) if and only if every
irreducible subsystem is moderate (resp. temperate).

Our �rst main result is a su�cient condition for a type (RC) linear sytem to be
moderate.

Theorem 6.8. Let (?), A, m, k and ` be as in Situation 6.7. Suppose that(?) satis�es
at least one of the following additional properties:

(i) none of the column equivalence classes of size2 sums to zero;

(ii) every column equivalence class sums to zero, andk � 3.

Then (?) is moderate.

5Terminology introduced by the authors (`RC' stands for `repeated columns').
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This result encompasses most of the systems studied by Mimura and Tokushige,
and the rest can be recovered using a slight modi�cation of our proof. See§6.7 for a
detailed discussion.

Our second main result is a su�cient condition for a type (RC) linear sytem to be
temperate.

Theorem 6.9. Let (?), A, m, k and ` be as in Situation 6.7. Suppose that(?) satis�es
at least one of the following additional properties:

(i) none of the column equivalence classes sums to zero, and` = m + 1 ;

(ii) every column equivalence class sums to zero.

Then (?) is temperate.

The requirements of Theorem 6.9 are more restrictive than those of Theorem 6.8.6

In particular, one of the systems studied by Mimura and Tokushige does not meet
these requirements (see§6.7 for a detailed discussion).

We do not know if every irreducible linear system of type (RC) is moderate and/or
temperate, but we have the following partial result. We say that a balanced linear
equation satis�ed by (x 1 ; : : : ; x k ) 2 Sk preserves the column equivalence classes of(?)
if appending that equation to the system (?) preserves the column equivalence classes.
We prove the following:

Theorem 6.10. Let (?), A, m, k and ` be as in Situation 6.7. Then there exist
constants �;  > 0 with  < q such that every subsetS � Fn

q of size at least� �  n has
a solution (x 1 ; : : : ; x k ) 2 Sk of (?) with the following properties:

(i) every balanced linear equation satis�ed by(x 1 ; : : : ; x k ) preserves the column
equivalence classes of(?);

(ii) dim(a�( x 1 ; : : : ; x k )) � min(k � `; k � 2).

Theorem 6.10 improves upon Theorem 6.5 whenever 2� ` < 2m; see Remark 6.35.

Finally, we turn to an application of our techniques and results. In characteristic 0,
results like Bourgain's theorem [Bou90] (see also [TV06, Chapter 12]) show that it is
substantially easier to �nd long arithmetic progressions in sum sets than in general
sets. Using the techniques from this chapter, we establish a similar result in vector
spaces overFq.

Given setsS1; : : : ; Sl � Fn
q , we de�ne the a�nely independent restricted sum set

(or AIR-sumset) as follows:

S1 u
a�

� � � u
a�

Sl := f x 1 + � � � + x l j x 1 2 S1; : : : ; x l 2 Sl a�nely independent g:

Further, if ( ?) is linear system which is not necessarily balanced, then we say that
a solution (x 1 ; : : : ; x k ) 2 (Fn

q )k is linearly generic if every linear equation (over Fq)

6Except that Theorem 6.9(ii) does not have the condition k � 3. That condition is included in
Theorem 6.8 to rule out the system x 1 � x 2 = 0. It is not hard to see that this particular system is
temperate but not moderate.
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satis�ed by ( x 1 ; : : : ; x k ) is a linear combination of the equations in (?). By comparison,
the solutions which we callgeneric throughout this chapter (see De�nition 6.1(c)) only
satisfy this property for balancedlinear equations (so by `generic' we will always mean
`a�nely generic').

Corollary 6.11. Let Fq be a �nite �eld, let (?) be a (not necessarily balanced) linear
system overFq, and let c1; : : : ; cl 2 Fq n f 0g with c1 + � � � + cl = 0 . Then there are
constants �;  � 1 with  < q such that, for every subsetS � Fn

q of size at least� �  n ,
the set (c1 � S u

a�
� � � u

a�
cl � S) [ f 0g contains a linearly generic solution of (?).

Note that Corollary 6.11 does not impose any restriction on the linear system
(?); that is, the coe�cient matrix A 2 Fm � k

q can be arbitrary. This is a signi�cant
di�erence with our main results and Sauermann's result (Theorem 6.4 above), which
only work for very speci�c classes of linear systems.

In Corollary 6.11, we only need to append 0 to the AIR-sumset when one of the
single-variable equationsx j = 0 ( j 2 [k]) can be written as a linear combination of
the equations in the linear system (?). If this is not the case, then a linearly generic
solution (x 1 ; : : : ; x k ) will satisfy x j 6= 0 for all j 2 [k], so it is not necessary to append
0 to the AIR-sumset.

By letting ( ?) be the system that encodes ak-term arithmetic progression, Corol-
lary 6.11 contains the following special case:

Corollary 6.12. Let p be prime, and let3 � k � p. Then, for every subsetS � Fn
p of

size at leastp1+(1 � 1
k )n , the set (S � S) n f 0g contains a non-trivial k-term arithmetic

progression.

We note that this special case can be proved without using the slice rank method,
using only a simple counting argument (see§6.7 for details).

Overview of the main ideas and organization of this chapter

Main ideas. There are two new techniques in this chapter.
First, the majority of our results depend on a `replacement trick'. This trick works

roughly as follows. If the j 1-th and j 2-th columns of A are non-zero multiples of one
another, and if we have a long enough listf (x ( i )

1 ; : : : ; x ( i )
k )gL

i =1 of pairwise disjoint
solutions to (?), then we use tricoloured sum-free sets to recombine these solutions
to obtain new solutions of (?). This is done by taking one of the solutions from this

list, say (x ( i )
1 ; : : : ; x ( i )

k ), and replacing x ( i )
j 1

and x ( i )
j 2

by (respectively) x ( i 0)
j 1

and x ( i 00)
j 2

,
for somei 0; i 006= i . We show in Corollary 6.21 that there exists i 2 [L ] which admits
one such replacement (the `single replacement trick'), and in Corollary 6.30 that there
exists i 2 [L ] which admits many replacements (the `multiple replacement trick').

The second main ingredient in our proofs is Lemma 6.22, which shows that, for
every subsetS � Fn

q of size at leastq1+(1 � 1
k )n , the di�erence set S � S contains

linearly generic solutions to every linear system ink variables. The proof relies only
on a simple counting argument, using the pigeonhole principle.

We point out that this chapter does not make use of the full strength of Theorem 6.2,
as we only use the slice rank method for 3-tensors. Indeed, the replacement trick relies
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on tricoloured sum-free sets, and Lemma 6.22 does not rely on the slice rank method
at all.

The constants. Theorem 6.8(i), Theorem 6.9(i), and Theorem 6.10 rely only on
the replacement trick. Hence, the base of the exponent in the upper bounds from these
theorems7 is equal to � q, the constant from the bound on tricoloured sum-free sets
(see Theorem 6.17).

Theorem 6.8(ii), Theorem 6.9(ii), and Corollary 6.11 rely on a combination of the
replacement trick and Lemma 6.22. Hence, the base of the exponent in the upper
bounds from these theorems is the maximum of �q and q

k � 1
k .

Corollary 6.12 relies solely on Lemma 6.22. The base of the exponent in the upper
bound is p1� 1

k .

Organization of the chapter. This chapter consists of three parts.
First, in §6.2{6.4, we focus on moderate systems. In§6.2, we discuss the gen-

eralities of moderate systems, and we show that we may restrict our attention to
irreducible systems. In§6.3, we establish the `single replacement trick', and use it to
prove Theorem 6.8(i). In §6.4, we establish the other main technique of this chapter
(Lemma 6.22), and combine it with the replacement trick to prove Theorem 6.8(ii).

Second, in §6.5{6.6, we focus on temperate systems. In§6.5, we discuss the
generalities of temperate systems. Here we show how the problem of �nding solutions
of high rank is related to the problem of �nding a generic solution, and we show that
we may once again restrict our attention to irreducible systems. In§6.6, we establish
the `multiple replacement trick', and use it to prove Theorem 6.9 and Theorem 6.10.

Finally, in §6.7, we discuss several examples and applications. Here we prove
Corollary 6.11 and Corollary 6.12, and we recover most of the results from [MT19a,
MT19b, MT20] as special cases of our results. Furthermore, we show that the system
conjectured to be moderate in [MT20] is indeed moderate.

6.2 Preliminaries on moderate systems

In this chapter, we study linear systems of the form
8
>>><

>>>:

a11x 1 + � � � + a1k x k = 0 ;

...

am 1x 1 + � � � + amk x k = 0;

(?)

with coe�cient matrix A = ( aij ) 2 Fm � k
q and variables x 1 ; : : : ; x k 2 Fn

q .
Following standard usage, we say that two linear systems (?) and (?0) are equivalent

if each equation in (?) is a linear combination of the equations in (?0) and vice versa.
Furthermore, we say that a variable x i is used by the linear system (?) if it occurs
with non-zero coe�cient in at least one equation.

7By `the base of the exponent in the upper bound', we mean the constant  < q in the upper
bound � �  n .
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De�nition 6.13. The linear system (?) is said to be:

(a) non-degenerateif the rows of A are linearly independent and every variable is
used;

(b) reducible if it is equivalent to a linear system (?0) with the property that the
variables x 1 ; : : : ; x k can be partitioned into two or more classes in such a way
that every equation in (?0) only uses variables from one partition class. If this is
not the case, then (?) is said to be irreducible.

Passing to an equivalent system or deleting columns with only zeroes does not
change the problem of �nding a (?)-shape, so we may assume without loss of generality
that ( ?) is non-degenerate. The following proposition shows that we can also restrict
our attention to irreducible systems.

Proposition 6.14. Suppose that(?) is equivalent to a linear system(?0) whose
coe�cient matrix can be written as

�
A1 0
0 A2

�

for someA1 2 Fm 1 � k1
q and A2 2 Fm 2 � k2

q with m1; m2; k1; k2 6= 0 . Then (?) is moderate
if and only if the systems given byA1 and A2 are moderate.

Proof. If ( ?0) is moderate, then it is easy to see that the same holds for the systems
given by A1 and A2.

Suppose that for i = 1 ; 2, the system given byA i is moderate, with constants
� i ;  i > 0, where  i < q. Let S � Fn

q be a set of size at leastmax(� 1 n
1 ; k1 +

� 2 n
2 ). Since jSj � � 1 n

1 , we may choose anA1-shape (x 1 ; : : : ; x k 1 ) in S. Then, since
jS n f x 1 ; : : : ; x k 1 gj � � 2 n

2 , we may choose anA2-shape inS n f x 1 ; : : : ; x k 1 g. Since
max(� 1 n

1 ; k1 + � 2 n
2 ) 2 O (max( 1;  2)n ), this shows that (?0), and therefore (?), is

moderate. �

Therefore we may restrict our attention to irreducible systems, as stipulated in
Situation 6.7.

The following proposition will be useful later on.

Proposition 6.15. Let (?) be a linear system given by the matrixA = ( aij ) 2 Fm � k
q .

If (?) is non-degenerate and irreducible, and ifm � 2, then every non-zero linear
equation implied by(?) uses at least two column equivalence classes, and` � m + 1 .

Proof. Let ` be the number of column equivalence classes, and note thatm =
rank(A) � ` (recall that the columns with indices in the same column equivalence
class are scalar multiples of each other). Suppose for the sake of contradiction that
some linear combination of the rows of (?) uses exactly one column equivalence class.
By passing to an equivalent system and permuting the columns, we may assume
without loss of generality that the �rst row of ( ?) only uses the column equivalence
classC = f 1; : : : ; jCjg � [k]. Since the columns indexed byC are non-zero multiples
of one another, we havea1j 6= 0 for all j 2 C.
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By Gaussian elimination, we may pass to an equivalent system (?0), given by
the matrix A0 = ( a0

ij ) 2 Fm � k
q , such that ai 1 = 0 for all i > 1. Since elementary

row operations preserve the column equivalence classes, we haveaij = 0 for all
(i; j ) 2 f 2; : : : ; mg � C. It follows that every row in ( ?0) uses variables from eitherC
or [k] n C, but not both. Since ` � m � 2, we havejCj; j[k] n Cj 6= 0, so it follows that
(?) is reducible. This is a contradiction, so we conclude that every (non-zero) equation
implied by (?) uses at least two column equivalence classes.

To prove that ` � m + 1, let A0 be the matrix obtained by deleting from A
the columns in one column equivalence class. By the above, every non-zero linear
combination of the rows ofA0 uses at least one of the remaining̀� 1 column equivalence
classes. It follows that rank(A0) = m, so ` � 1 � m. �

6.3 Proof of Theorem 6.8(i)

In this section, we develop the �rst main technique (the `single replacement trick', see
Corollary 6.21) and use it to prove Theorem 6.8(i).

We recall the de�nition of tricoloured sum-free sets (already used in§5.3):

De�nition 6.16. Let G be an abelian group. A sequencef (x i ; yi ; zi )gL
i =1 in G3 is

called a tricoloured sum-free set in G if for all i; i 0; i 002 [L ] one hasx i + yi 0 + zi 00 = 0
if and only if i = i 0 = i 00.

Note that the de�nition implies jf x1; : : : ; xL gj = jf y1; : : : ; yL gj = jf z1; : : : ; zL gj =
L ; that is, in a tricoloured sum-free set there can be no repetitions in each of the
coordinates (separately).

In Corollary 5.10 and Remark 5.11, we proved the following exponential upper
bound on the size of tricoloured sum-free sets inFn

q :

Theorem 6.17 (cf. Corollary 5.10, Remark 5.11). Let q = ps be a prime power, and
de�ne � q := J (p; p� 1

3 )s. Then for every tricoloured sum-free setf (x i ; y i ; z i )gL
i =1 in

Fn
q one hasL < (� q)n .

To prove the `single replacement trick', we start with the following lemma.

Lemma 6.18. Let q be a prime power, and let� q be as in Theorem 6.17. Let
�; � 2 Fq n f 0g, let x 1 ; : : : ; x L 2 Fn

q be distinct, and let y1 ; : : : ; yL 2 Fn
q be distinct. If

L � (� q)n , then there exist i; i 0; i 002 [L ] with i 6= i 0; i 00and � x i + � y i = � x i 0 + � y i 00.

Proof. For i 2 [L ], de�ne z i = � x i + � y i . Each triple in the sequencef (� x i ; � y i ; � z i )gL
i =1

sums to zero, but we haveL � (� q)n , so it follows from Theorem 6.17 that this se-
quence is not a tricoloured sum-free set. Therefore we may choosei; i 0; i 002 [L ], not all
equal, such that � x i + � y i = z i = � x i 0 + � y i 00.

Suppose that i 00= i . Then we have� x i = � x i 0, hencex i = x i 0 (because� 6= 0),
and therefore i = i 0 (becausex 1 ; : : : ; x L are distinct), contrary to our assumption
that i , i 0 and i 00are not all equal. This is a contradiction, so we must havei 006= i . An
analogous argument shows thati 0 6= i . �
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Remark 6.19. In Lemma 6.18, we do not require that i 0 6= i 00. The case that i 0 = i 00

corresponds to the case thatz1 ; : : : ; zL are not all distinct. This does not matter for
the rest of the proof.

De�nition 6.20. We say that two solutions ~x = ( x 1 ; : : : ; x k ) and ~y = ( y1 ; : : : ; yk )
to (?) are disjoint if f x 1 ; : : : ; x k g \ f y1 ; : : : ; yk g = ? . Note that we do not require
the x j (resp. the y j ) to be pairwise distinct.

Corollary 6.21 (`Single replacement trick'). Let f (x ( i )
1 ; : : : ; x ( i )

k )gL
i =1 be a list of

pairwise disjoint solutions of (?), and suppose thatj 1 and j 2 are distinct indices in
the same column equivalence class. IfL � (� q)n , then there exist i; i 0; i 002 [L ] with
i 6= i 0; i 00such that thek-tuple (y1 ; : : : ; yk ) 2 (Fn

q )k given by

y j =

8
>>><

>>>:

x ( i )
j ; if j 6= j 1; j 2;

x ( i 0)
j ; if j = j 1;

x ( i 00)
j ; if j = j 2;

is also a solution of (?).

Proof. Since thej 1-th and j 2-th column of (?) are multiples of one another, we may
choose a vectorv 2 Fm

q and constants �; � 6= 0 such that the j 1-th column is equal to
� v and the j 2-th column is equal to � v.

By assumption, the vectors x (1)
j 1

; : : : ; x ( L )
j 1

are distinct, and likewise the vectors

x (1)
j 2

; : : : ; x ( L )
j 2

are distinct, so it follows from Lemma 6.18 that there exist i; i 0; i 002 [L ]

with i 6= i 0; i 00and � x ( i )
j 1

+ � x ( i )
j 2

= � x ( i 0)
j 1

+ � x ( i 00)
j 2

. Hence, the total contribution of

x ( i )
j 1

and x ( i )
j 2

to the equations of (?) is the same as the contribution ofx ( i 0)
j 1

and x ( i 00)
j 2

.

Since (x ( i )
1 ; : : : ; x ( i )

k ) is a solution of (?), so is (y1 ; : : : ; yk ). �

We now prove the �rst main result of this chapter, using the replacement trick
from the preceding corollary.

Proof of Theorem 6.8(i) . Let (?), A, m, k and ` be as in Situation 6.7, and suppose
that ( ?) satis�es property (i) from Theorem 6.8 (none of the column equivalence classes
of size 2 sums to zero). Furthermore, let �q be the constant from Theorem 6.17.

We prove by induction on � that, for every � 2 [k], there is a constant � � � 1 such
that every subsetS � Fn

q of size at least� � �(� q)n contains a solution (x 1 ; : : : ; x k ) 2 Sk

of (?) with at least � di�erent vectors; that is, jf x 1 ; : : : ; x k gj � � . For � = 1, this is
trivially true with � 1 = 1, since (x ; : : : ; x ) is a solution of (?) for every x 2 Fn

q .
For the induction step, suppose that � 0 2 [k � 1] is given such that the statement

is true for � = � 0. De�ne � � 0 +1 := � � 0 + P(k; � 0) � k, where P(k; � 0) denotes the
number of partitions of a k-element set into � 0 parts.

Let S � Fn
q be a set of size at least� � 0 +1 � (� q)n = � � 0 � (� q)n + P(k; � 0) � (� q)n � k.

Create a list of disjoint solutions f (x ( i )
1 ; : : : ; x ( i )

k )gL 0
i =1 of (?) in S, each with at least

� 0 di�erent vectors, by repeatedly �nding such a solution in S and removing it from
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S. By the induction hypothesis, we can �nd a new solution as long as the remaining
set has size at least� � 0 � (� q)n , and in each step we remove at mostk vectors from S,
so we �nd a list of length L 0 � P(k; � 0) � (� q)n .

If one of the solutions in the list has strictly more than � 0 di�erent vectors, then
we are done. So we may assume that every solution in the list has exactly� 0 di�erent
vectors.

We sort the entries in the list according to their partition pattern. We say that
a solution (x ( i )

1 ; : : : ; x ( i )
k ) is compatible with a partition [ k] = J1 [ � � � [ J � 0 if for

all j 1; j 2 2 [k] we have: x ( i )
j 1

= x ( i )
j 2

if and only if j 1 and j 2 belong to the same
partition class. Evidently every solution is compatible with exactly one partition. By
the pigeonhole principle, we may choose a partition [k] = J1 [ � � � [ J � 0 that occurs at
least (� q)n times in our list of solutions. Thus, we obtain a list f (y ( i )

1 ; : : : ; y ( i )
k )gL 1

i =1
of solutions of the same partition type, whereL 1 � (� q)n .

Now we have two competing partitions of [k], given by the column equivalence
classes and the (now �xed) partition type [k] = J1 [ � � � [ J � 0 . For j 1; j 2 2 [k], we write
j 1 k j 2 if j 1 and j 2 are in the same column equivalence class, andj 1 � j 2 if j 1 and j 2

belong to the same class in the partition [k] = J1 [ � � � [ J � 0 (i.e. if y ( i )
j 1

= y ( i )
j 2

for all
i 2 [L 1]).

Since� 0 < k , we may choose distinctj 0; j 1 2 [k] with j 0 � j 1. Furthermore, since
(?) has at most one column equivalence class of size 1, we may assume without loss
of generality that j 1 belongs to a column equivalence class of size 2 or more. We
distinguish two cases, depending on which of the column equivalence classesj 0 and j 1

belong to.

ˆ Case 1: j 0 , j 1 or j 0 and j 1 belong to the same column equivalence class of
size at least 3. In this case, we may choosej 2 6= j 0; j 1 such that j 1 k j 2. By
Corollary 6.21, there is a solution (z1 ; : : : ; zk ) of (?) of the form

z j =

8
>>><

>>>:

y ( i )
j ; if j 6= j 1; j 2;

y ( i 0)
j ; if j = j 1;

y ( i 00)
j ; if j = j 2;

for somei; i 0; i 002 [L 1] with i 6= i 0; i 00. In other words, (z1 ; : : : ; zk ) is obtained
by taking the solution ( y ( i )

1 ; : : : ; y ( i )
k ) and replacing two entries.

We prove that jf z1 ; : : : ; zk gj � � 0 + 1. First, note that f z j 1 ; z j 2 g \ f z j j j 6=
j 1; j 2g = ? , since the solutions in the list were disjoint. Now we distinguish two
cases.

{ If j 1 � j 2, then the removal of the j 1-th and j 2-th vectors from (y ( i )
1 ; : : : ; y ( i )

k )

does not change the number of di�erent vectors, sincey ( i )
j 0

= y ( i )
j 1

= y ( i )
j 2

.
We replace them by two vectorsz j 1 ; z j 2 which are distinct from the other
vectors in the solution (but possibly z j 1 = z j 2 ), so the number of di�erent
vectors increases by at least 1.
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{ If j 1 6� j 2, then the removal of j 1-th and j 2-th vectors from (y ( i )
1 ; : : : ; y ( i )

k )

decreases the number of di�erent vectors by at most 1, becausey ( i )
j 0

= y ( i )
j 1

.
In this case we are guaranteed to havez j 1 6= z j 2 : di�erent solutions in the
list are disjoint, but even within the same solution the j 1-th and j 2-th entry
are always di�erent (becausej 1 6� j 2). Thus, adding z j 1 and z j 2 to the
solution increases the number of di�erent vectors by 2. The net e�ect is an
increase of at least 1.

This proves our claim that jf z1 ; : : : ; zk gj � � 0 + 1.

ˆ Case 2: j 0 and j 1 belong to the same column equivalence class of size 2. Then,
by assumption (i) from the theorem statement, the j 0-th and j 1-th columns of
(?) do not sum to zero.

By Corollary 6.21, there is a solution (z1 ; : : : ; zk ) of (?) of the form

z j =

8
>>><

>>>:

y ( i )
j ; if j 6= j 0; j 1;

y ( i 0)
j ; if j = j 0;

y ( i 00)
j ; if j = j 1;

for somei; i 0; i 002 [L 1] with i 6= i 0; i 00.

Suppose for the sake of contradiction thatz j 0 = z j 1 ; that is, y ( i 0)
j 0

= y ( i 00)
j 1

. Since

the j 0-th and j 1-th columns of (?) do not sum to zero, and sincey ( i )
j 0

= y ( i )
j 1

,

the fact that both ( y ( i )
1 ; : : : ; y ( i )

k ) and (z1 ; : : : ; zk ) are solutions of (?) implies

that y ( i 0)
j 0

= y ( i 00)
j 1

= y ( i )
j 0

= y ( i )
j 1

. This is a contradiction, becausei 6= i 0; i 00, and
di�erent solutions of the list are disjoint. Therefore we must have z j 0 6= z j 1 .

The removal of y ( i )
j 0

and y ( i )
j 1

from the solution decreases the number of di�erent

vectors by at most 1, sincey ( i )
j 0

= y ( i )
j 1

. On the other hand, putting back z j 0 and
z j 1 increases the number of di�erent vectors by 2, since we havez j 0 6= z j 1 and
f z j 1 ; z j 2 g \ f z j j j 6= j 1; j 2g = ? . The net e�ect is an increase of at least 1, so
we havejf z1 ; : : : ; zk gj � � 0 + 1. �

6.4 Proof of Theorem 6.8(ii)

In this section, we develop our second main technique (Lemma 6.22) and combine it
with the techniques from the previous section to prove Theorem 6.8(ii).

Lemma 6.22. Let A = ( aij ) 2 Fm � k
q be a non-zero matrix and letS � Fn

q have size
at least q1+(1 � 1

k )n . Then there are (x 1 ; : : : ; x k ); (y1 ; : : : ; yk ) 2 Sk such that, for all
b = ( b1; : : : ; bk ) 2 Fk

q , one hasb1x 1 + � � � + bk x k = b1y1 + � � � + bk yk if and only if b
is a linear combination of the rows ofA.

Proof. By removing redundant rows, we may assume without loss of generality that
rank A = m. If k = m, then we can takex = y 2 Sk arbitrary. Hence, we may assume
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that k � m + 1. By performing elementary row operations and permuting columns,
we may assume without loss of generality thatA is of the form [A0 I m ] for some
A0 2 Fm � (k � m )

q .
The matrix A de�nes a function f : (Fn

q )k ! (Fn
q )m , where [f (x 1 ; : : : ; x k )] i =

ai 1x 1+ � � �+ aik x k . By the pigeonhole principle, we may choose some~z = ( z1 ; : : : ; zm ) 2
(Fn

q )m such that the set T := f � 1(~z) \ Sk has sizejT j � j Sjk =qmn � qk q(k � m � 1)n .
Let � : (Fn

q )k ! (Fn
q )k � m be the projection onto the �rst k � m coordinates, let

g : T ! (Fn
q )k � m be the restriction of � to T, and let T0 := g[T]. SinceA is of the form

[A0 I m ], it is easy to see that for every (x 1 ; : : : ; x k � m ) 2 (Fn
q )k � m there is exactly one

possible choice of (x k � m +1 ; : : : ; x k ) 2 (Fn
q )m such that f (x 1 ; : : : ; x k ) = ~z. Therefore

g is injective, and it follows that jT0j = jT j.
Let D = f (z1 ; : : : ; zk � m ) 2 (Fn

q )k � m j z1 ; : : : ; zk � m are linearly dependentg.
Then jD j < q k � m q(k � m � 1)n since there are fewer thanqk � m possible linear relations.

Choose some~y 0 = ( y 0
1 ; : : : ; y 0

k � m ) 2 T0. Since jT0 � ~y 0j = jT0j > jD j, we
have (T � ~y 0) n D 6= ? , so we may choose (x 0

1 ; : : : ; x 0
k � m ) 2 T0 such that x 0

1 �
y 0

1 ; : : : ; x 0
k � m � y 0

k � m are linearly independent. Let (x 1 ; : : : ; x k ); (y1 ; : : : ; yk ) 2 T �
Sk be the (unique) preimages of (x 0

1 ; : : : ; x 0
k � m ) and (y 0

1 ; : : : ; y 0
k � m ) under g. Note

that ( x 1 ; : : : ; x k � m ) = ( x 0
1 ; : : : ; x 0

k � m ) and (y1 ; : : : ; yk � m ) = ( y 0
1 ; : : : ; y 0

k � m ), since
g is just a coordinate projection.

We claim that ( x 1 ; : : : ; x k ) and (y1 ; : : : ; yk ) satisfy the required property.
Since f (x 1 ; : : : ; x k ) = f (y1 ; : : : ; yk ) = ~z, it is clear that b1x 1 + � � � + bk x k =

b1y1 + � � � + bk yk whenever (b1; : : : ; bk ) is a linear combination of the rows ofA.
Now let b = ( b1; : : : ; bk ) 2 Fk

q be an arbitrary row vector such that b1x 1 + � � � +
bk x k = b1y1 + � � � + bk yk . Since A is of the form [A0 I m ], we can add a linear
combination of the rows of A to b to obtain a vector c = ( c1; : : : ; ck ) 2 Fk

q with
ck � m +1 = � � � = ck = 0. By linearity, we have c1x 1 + � � � + ck x k = c1y1 + � � � + ck yk ,
or equivalently,

c1(x 1 � y1 ) + � � � + ck � m (x k � m � yk � m ) = 0 :

Sincex 1 � y1 ; : : : ; x k � m � yk � m are linearly independent, it follows that c1 = � � � =
ck � m = 0, so we havecj = 0 for all j 2 [k]. This shows that b is a linear combination
of the rows of A. �

We now come to the proof of Theorem 6.8(ii). The proof is largely analogous to
the proof of Theorem 6.8(i) (see§6.3), the main di�erence being that we now use
Lemma 6.22 to control column equivalence classes that sum to zero.

We prove the following slightly stronger theorem.

Theorem 6.23. Let (?), A, m, k and ` be as in Situation 6.7. Suppose that there is
a partition [k] = P1 [ � � � [ P2s such that:

(i) for all r 2 [s], the columns ofA indexed byPr [ Ps+ r sum to zero;
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(ii) if (b1; : : : ; bk ) 2 Fk
q n f 0g is a non-zero linear combination of the rows ofA, then

one has
P

j 2 Pr
bj 6= 0 for at least two di�erent values of r 2 [s].8

(iii) if C is a column equivalence class of size2 that sums to zero, then there is some
r 2 [s] such that C = Pr [ Ps+ r .

Then (?) is moderate.

Before we prove Theorem 6.23, we �rst show how it implies Theorem 6.8(ii).

Proof of Theorem 6.8(ii) , assuming Theorem 6.23.Let C1; : : : ; C` � [k] be the col-
umn equivalence classes ofA. We distinguish two cases:

ˆ If ` = 1, then we have m = rank(A) � ` = 1, so we are in the situation with a
single equation. Since we assumedk � 3, there is no column equivalence class of
size 2, so it follows from Theorem 6.8(i) that (?) is moderate.

ˆ Suppose that` � 2. SinceA is non-degenerate, every column ofA is non-zero.
Hence, since the column equivalence classes ofA sum to zero, every column
equivalence class has size at least 2. For everyr 2 [`], choosej r 2 Cr arbitrary,
and set Pr := f j r g and P` + r := Cr n f j r g.

We prove that the partition [ k] = P1 [ � � � [ P2` satis�es the properties from
Theorem 6.23. Property (i) is met because each of the column equivalence classes
sums to zero, and property (iii) is met by construction. To see that property (ii)
is met, recall that (?) is irreducible, so it follows from Proposition 6.15 that
every non-zero linear combination of the rows ofA uses at least two di�erent
column equivalence classes. �

Proof of Theorem 6.23. Let � q be the constant from Theorem 6.17. We prove by
induction on � that, for every � 2 [k], there is a constant� � � 1 such that every subset
S � Fn

q of size at least� � � (max(� q; q
k � 1

k ))n contains a solution (x 1 ; : : : ; x k ) 2 Sk of
(?) satisfying the following properties:

(a) the solution contains at least � di�erent vectors; that is, jf x 1 ; : : : ; x k gj � � ;

(b) for every column equivalence class of size 2 that sums to zero, the variables
x j 1 ; x j 2 corresponding to that class are distinct.

Before proving the base case, we �rst show that the induction step from the proof
of Theorem 6.8(i) carries through unchanged. This time, part (b) of the induction
hypothesis replaces the assumption (i) from Theorem 6.8. To see that property (b) is
automatically maintained by the proof of Theorem 6.8(i), recall that the induction
step consists of choosing a column equivalence classCt and replacing two variables
from that class by other values, leaving the other classes unchanged. Since we started
and ended with a solution of (?), the contribution of the variables f x j j j 2 Ct g

8Note that we only look at r 2 f 1; : : : ; sg, and we ignore all r 2 f s + 1 ; : : : ; 2sg. This is because it
follows from (i) that

P
j 2 P r

bj 6= 0 if and only if
P

j 2 Ps + r
bj 6= 0. An equivalent statement is that

P
j 2 P r

bj 6= 0 for at least four di�erent values of r 2 [2s].



6.5. Preliminaries on temperate systems 73

to (?) must have remained the same. Property (b) is equivalent to saying that the
contribution of f x j j j 2 Cg to (?) is non-zero for every column equivalence classC of
size 2 that sums to zero, so this property is automatically maintained by the proof of
Theorem 6.8(i).

It remains to prove the base case. LetB = ( bir ) 2 Fm � s
q be the matrix given by

bir :=
X

j 2 Pr

aij = �
X

j 2 Ps + r

aij :

Suppose thatS � Fn
q has size at leastq� (max(� q; q

k � 1
k ))n . It follows from Lemma 6.22

that there are (z1 ; : : : ; zs ); (zs+1 ; : : : ; z2s ) 2 Ss such that, for all ( c1; : : : ; cs) 2 Fs
q,

one hasc1z1 + � � � + cszs = c1zs+1 + � � � + csz2s if and only if ( c1; : : : ; cs) is a linear
combination of the rows of B . By assumption (ii), none of the standard unit vectors
e1 ; : : : ; es 2 Fs

q can be written as linear combination of the rows ofB , so it follows
that zr 6= zs+ r for all r 2 [s].

Since [k] = P1 [ � � � [ P2s is a partition, we may de�ne y1 ; : : : ; yk 2 f z1 ; : : : ; z2sg �
S in such a way that y j = zr if and only if j 2 Pr . Then for all i 2 [m] we have

ai 1y1 + � � � + aik yk =
X

j 2 P1

aij z1 + � � � +
X

j 2 P2s

aij z2s

= bi 1z1 + � � � + bis zs � bi 1zs+1 � � � � � bis z2s = 0 ;

so (y1 ; : : : ; yk ) 2 Sk is a solution of (?). Clearly jf y1 ; : : : ; yk gj � 1. Furthermore, by
assumption (iii), for every column equivalence classC = f j 1; j 2g of size 2 that sums
to zero, there is somer 2 [s] such that Pr = f j 1g and Ps+ r = f j 2g, so it follows that
y j 1 = zr 6= zs+ r = y j 2 . �

6.5 Preliminaries on temperate systems

We now shift our attention from moderate to temperate systems. We show that the
problem of �nding a generic solution is closely related to the problem of �nding
solutions of high dimension, and we show that we may once again restrict our attention
to irreducible systems.

For an a�ne subspace X � Fn
q we let dim(X ) denote the dimension ofX . So

dim(X ) is the maximum number of a�nely independent vectors in X minus one. For
a set S � Fn

q , we let a�( S) denote the a�ne hull of S.

De�nition 6.24. For any given k-tuple (x 1 ; : : : ; x k ) 2 (Fn
q )k , let

Annbal (x 1 ; : : : ; x k ) = f (b1; : : : ; bk ) 2 Fk
q j b1x 1 + � � � + bk x k = 0 ; b1 + � � � + bk = 0g:

So the elements ofAnnbal (x 1 ; : : : ; x k ) correspond to the balanced linear equations
satis�ed by ( x 1 ; : : : ; x k ).

Lemma 6.25. For every (x 1 ; : : : ; x k ) 2 (Fn )k we have

dim(a�( x 1 ; : : : ; x k )) + dim(Ann bal (x 1 ; : : : ; x k )) = k � 1:
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Proof. Let A 2 F(n +1) � k be the matrix

A =

0

B
B
B
@

1 � � � 1

j j
x 1 � � � x k

j j

1

C
C
C
A

:

For I � [k] the vectors x i ; i 2 I are a�nely independent if and only if the columns of
A indexed by I are linearly independent. So rank(A) = dim(a�( x 1 ; : : : ; x k )) + 1.

Evidently, ker(A) is precisely Annbal (x 1 ; : : : ; x k ), so the result follows from the
rank-nullity theorem. �

Corollary 6.26. Let (?) be a balanced linear system of rankm, with coe�cient matrix
A 2 Fm � k

q , and let (x 1 ; : : : ; x k ) be a solution of (?). Then dim(a� (x 1 ; : : : ; x k )) �
k � m � 1, with equality if and only if (x 1 ; : : : ; x k ) is a generic solution of (?).

Proof. Since (x 1 ; : : : ; x k ) is a solution of (?), the row space of A is contained in
Annbal (x 1 ; : : : ; x k ). Therefore we havem = rank(A) � dim(Annbal (x 1 ; : : : ; x k )), so
it follows from Lemma 6.25 that

dim(a�( x 1 ; : : : ; x k )) = k � 1 � dim(Ann bal (x 1 ; : : : ; x k )) � k � 1 � m:

Clearly we have equality if and only if the row space ofA is equal toAnnbal (x 1 ; : : : ; x k ),
which is equivalent to saying that all balanced linear equations satis�ed by (x 1 ; : : : ; x k )
are linear combinations of the equations in (?). �

Proposition 6.27. Suppose that(?) is equivalent to a linear system(?0) whose
coe�cient matrix A0 can be written as

A0 =
�

A1 0
0 A2

�

for someA1 2 Fm 1 � k1
q and A2 2 Fm 2 � k2

q with m1; m2; k1; k2 6= 0 . Then (?) is temperate
if and only if the systems given byA1 and A2 are temperate.

Proof. If ( ?0) is temperate, then it is easy to see that the same holds for the systems
given by A1 and A2.

Suppose that for i = 1 ; 2 the system given byA i is temperate, with constants
� i ;  i > 0, where  i < q. Let  satisfy max( 1;  2) <  < q , and choose� such that

�q n � max(qn � � 1q 1 n ; nqk1 � � 2q 2 n ) for all n 2 N1:

Let S � Fn
q have sizejSj � �q n . For i 2 [n] and � 2 Fq, write S(i; � ) := f x 2

S j x i = � g. We claim that there exist i 2 [n] and distinct � 0; � 00 2 Fq such that
jS(i; � 0)j; jS(i; � 00)j � jSj

qn . For each coordinatei 2 [n], let � i 2 arg max� 2 Fq
jS(i; � )j

be a most popular value. ThenS n f (� 1; : : : ; � n )g = [ i 2 [n ](S n S(i; � i )). So we can

choosei 2 [n] such that jS n S(i; � i )j � jSj� 1
n . Then there is an � 006= � i such that

S(i; � 00) � jSj� 1
n (q� 1) � jSj

qn . Taking � 0 = � i proves the claim.
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Without loss of generality, we will assume that we can takei = 1 in the claim. We
denote S1 = S(1; � 0) and S2 = S(1; � 00). Since jS1j � � 1q 1 n , there exists a generic
solution ~y = ( y1 ; : : : ; yk 1 ) 2 (S1)k1 to the linear system given by A1. We can take
I � [n] with jI j � k1 � 1 such that for all b = ( b1; : : : ; bk1 ) 2 Fk1

q with b1 + � � � + bk1 = 0
we have:

8i 2 I : (b1y1 + � � � + bk1 yk 1 ) i = 0 = ) b1y1 + � � � + bk1 yk 1 = 0 :

Indeed, if M 2 Fn � k1
q is the matrix with columns y1 ; : : : ; yk 1 , then we can takeI � [n]

of size jI j � k1 � 1 such that the rows of M are contained in the span of the rows
indexed by I and the row vector (1; : : : ; 1). Since y11 = � � � = yk1 1 we may assume
that 1 62I .

As ~y is a generic solution to the system given byA1, we obtain

8i 2 I : (b1y1 + � � � + bk1 yk 1 ) i = 0 = ) b 2 rowspace(A1): (6.28)

We can take � i 2 Fq for each i 2 I such that T = f x 2 S2 j x i = � i for all i 2 I g has
size jT j � j S2j � q1� k1 � � 2q 2 n .

It follows that there exists a generic solution ~z 2 T k2 to the system given by
A2. Now ~x = ( ~y ; ~z) is a generic solution to (?0). Indeed, let b = ( b1; : : : ; bk ) 2
Annbal (x 1 ; : : : ; x k ). It su�ces to show that b 2 rowspace(A0). Looking at the �rst
coordinate and using that b1 + � � � + bk = 0, we see that

0 = ( b1 + � � � + bk1 )� 0+ ( bk1 +1 + � � � + bk )� 00= ( b1 + � � � + bk1 )( � 0 � � 00):

Since � 0 6= � 00, we �nd that b1 + � � � + bk1 = 0 = bk1 +1 + � � � + bk . Since ~z 2 T k2 it
follows that

(b1y1 + � � � + bk1 yk 1 ) i = ( b1x 1 + � � � + bk x k ) i = 0 ( 8i 2 I ):

It now follows from (6.28) that ( b1; : : : ; bk1 ) 2 rowspace(A1). So after modifying b by
an element ofrowspace(A0), we may assume thatb1; : : : ; bk1 = 0. Hence the fact that
b 2 Annbal (x 1 ; : : : ; x k ) implies that bk1 +1 z1 + � � � + bk zk 2 = 0. Since ~z is generic, we
conclude that (bk1 +1 ; : : : ; bk ) 2 rowspace(A2). Hence,b 2 rowspace(A0). �

6.6 Proof of Theorem 6.9 and Theorem 6.10

In this section, we develop the multiple replacement trick (Corollary 6.30) and use it
(in combination with Lemma 6.22) to prove Theorem 6.9 and Theorem 6.10.

We start with a many-solutions version of Lemma 6.18.

Lemma 6.29. Let q be a prime power, letN0 = (� q)n , where� q is as in Theorem 6.17,
and let t 2 N1. Let x 1 ; : : : ; x L 2 Fn

q be distinct, let y1 ; : : : ; yL 2 Fn
q be distinct, and

let �; � 2 Fq n f 0g. If L � 4tN 0, then there exists ani 2 [L ] such that

�
� � (i 0; i 00) 2 ([L ] n f ig)2 j � x i 0 + � y i 00 = � x i + � y i

	 �
� � t:
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Proof. Write

T := f (i; i 0; i 00) 2 [L ]3 j � x i 0 + � y i 00 = � x i + � y i and i 6= i 0; i 00g:

By Lemma 6.18, the setT \ J 3 is nonempty for all J � [L ] with jJ j � N0. We claim
that jT \ J 3j � j J j � N0 for all J � [L ]. Indeed, suppose thatjT \ J 3j < jJ j � N0;
then we could delete fewer thanjJ j � N0 elements fromJ to obtain a set J 0 of size
jJ 0j > N 0 such that T \ (J 0)3 is empty: a contradiction. So jT \ J 3j � j J j + N0 � 0 for
all J � [L ].

Let J be the random subset of [L ] obtained by independently taking each element of
[L ] with probability 1

2t . We haveE[jJ j] = L
2t and E[jT \ J 3j] � jT j

(2 t )2 sincejf i; i 0; i 00gj � 2

for all ( i; i 0; i 00) 2 T. From E[jT \ J 3j � j J j + N0] � 0 we obtain jT j
4t 2 � L

2t � N0, and

therefore jT j
L � 2t � 4t 2 N 0

L � t . Hence, by the pigeonhole principle, there is ani 2 [L ]
such that jf (i 0; i 00) 2 [L ]2 j (i; i 0; i 00) 2 Tgj � t, as required. �

Recall that two solutions (x 1 ; : : : ; x k ) and (y1 ; : : : ; yk ) are said to be disjoint if
f x 1 ; : : : ; x k g \ f y1 ; : : : ; yk g = ? . We obtain a corollary analogous to Corollary 6.21.

Corollary 6.30 (`Multiple replacement trick') . Let f (x ( i )
1 ; : : : ; x ( i )

k )gL
i =1 be a list of

pairwise disjoint solutions of (?), and suppose thatj 1 and j 2 are distinct indices from the
same column equivalence class. Suppose thatL � 4t � (� q)n . Then there exist an i 2 [L ]
and t distinct pairs (i 0

s; i 00
s ) 2 ([L ] n f ig)2, s 2 [t], such that (y ( s)

1 ; : : : ; y ( s)
k ) 2 (Fn

q )k

given by

y ( s)
j =

8
>>><

>>>:

x ( i )
j ; if j 6= j 1; j 2;

x ( i 0
s )

j ; if j = j 1;

x ( i 00
s )

j ; if j = j 2;

is also a solution of (?) for all s 2 [t].

Proof. Since thej 1-th and j 2-th column of (?) are nonzero multiples of one another,
we may choose a vectorv 2 Fm

q and constants �; � 6= 0 such that the j 1-th column is
equal to � v and the j 2-th column is equal to � v.

By assumption, the vectorsx (1)
j 1

; : : : ; x ( L )
j 1

are pairwise distinct, and likewise the

vectors x (1)
j 2

; : : : ; x ( L )
j 2

are pairwise distinct, so it follows from Lemma 6.29 that there

exist i 2 [L ] and t distinct pairs ( i 0
s; i 00

s ) 2 ([L ] n f ig)2, s 2 [t], with � x ( i )
j 1

+ � x ( i )
j 2

=

� x ( i 0
s )

j 1
+ � x ( i 00

s )
j 2

. Hence, the total contribution of x ( i )
j 1

and x ( i )
j 2

to the equations of (?)

is the same as the contribution ofx ( i 0
s )

j 1
and x ( i 00

s )
j 2

. Since (x ( i )
1 ; : : : ; x ( i )

k ) is a solution

of (?), so is (y ( s)
1 ; : : : ; y ( s)

k ). �

De�nition 6.31. Let A 2 Fm � k
q be a matrix and let j 1; j 2 2 [k] be distinct elements

in the same column equivalence class ofA. We say that (b1; : : : ; bk ) 2 Fk
q breaksthe

pair f j 1; j 2g if after adding the row (b1; : : : ; bk ) to A, the columns indexed byj 1 and
j 2 are no longer scalar multiples of one another.
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Lemma 6.32. Let (?), A, m, k and ` be as in Situation 6.7, let j 1; j 2 2 [k] be distinct
indices in the same column equivalence class, and letf (x ( i )

1 ; : : : ; x ( i )
k )gL

i =1 be a list of
pairwise disjoint solutions to (?). If L � 4qk (� q)n , then there exist ani 2 [L ] and a
solution (y1 ; : : : ; yk ) to (?) such that:

(i) y j = x ( i )
j for all j 6= j 1; j 2 and y j 2 f x (1)

j ; : : : ; x ( L )
j g for j 2 f j 1; j 2g;

(ii) Ann bal (y1 ; : : : ; yk ) � Annbal (x
( i )
1 ; : : : ; x ( i )

k );

(iii) no b 2 Annbal (y1 ; : : : ; yk ) breaks the pair(j 1; j 2).

Proof. By Corollary 6.30, we may choosei 2 [L ] and a sequencef (i 0
s; i 00

s )gqk

s=1 of qk

pairwise distinct pairs (i 0
s; i 00

s ) 2 ([L ] n f ig)2 such that, for all s 2 [qk ], the k-tuple
(z ( s)

1 ; : : : ; z ( s)
k ) 2 Sk de�ned by

z ( s)
j =

8
>>><

>>>:

x ( i )
j if j 2 [k] n f j 1; j 2g

x ( i 0
s )

j if j = j 1

x ( i 00
s )

j if j = j 2

is a solution to (?).
If b = ( b1; : : : ; bk ) breaks the pair (j 1; j 2), then the contributions bj 1 z ( s)

j 1
+ bj 2 z ( s)

j 2

for s 2 [qk ] are pairwise distinct. Therefore we can haveb 2 Annbal (z
( s)
1 ; : : : ; x ( s)

k ) for
at most one value ofs. Since the number ofb 2 Fk

q with b1 + � � � + bk = 0 is less than

qk , we may chooses0 2 [qk ] such that no b 2 Annbal (z
( s0 )
1 ; : : : ; z ( s0 )

k ) breaks the pair
(j 1; j 2).

Set y := z ( s0 ) . Then (i) and (iii) are met. To prove (ii), let b 2 Annbal (y1 ; : : : ; yk )
be given. Sinceb does not break the pair (j 1; j 2), we have bj 1 z ( s0 )

j 1
+ bj 2 z ( s0 )

j 2
=

bj 1 x ( i )
j 1

+ bj 2 x ( i )
j 2

, and therefore b 2 Annbal (x
( i )
1 ; : : : ; x ( i )

k ), as desired. �

Lemma 6.33. Let (?), A, m, k and ` be as in Situation 6.7. Let S � Fn
q have size

jSj � q1+ ` � 1
` n . Assume that at least one of the following two conditions holds:

(i) ` = m + 1 ;

(ii) every column equivalence class sums to zero.

Then there exists a solution~x = ( x 1 ; : : : ; x k ) 2 Sk to (?) with the following property:

If b 2 Annbal (x 1 ; : : : ; x k ) preserves the column

equivalence classes of(?), then b 2 rowspace(A).
(6.34)

Proof. Let [k] = C1 [ � � � [ C` be the partition of [ k] into column equivalence classes.
We �rst consider the case that condition (i) holds. Let ~x = ( x 1 ; : : : ; x k ) be any

solution to (?). Suppose that ~x satis�es a balanced equationb1x 1 + � � � + bk x k = 0
that preserves the column equivalence classes of (?), but ( b1; : : : ; bk ) is not a linear
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combination of the rows of A. Let A0 be the (m + 1) � k matrix obtained by adding
the row (b1; : : : ; bk ) to A. Then rank(A0) = m + 1 = `. For t 2 [`] let � t 2 Fm +1

q be
the sum of the columns ofA0 in class t. Since the column rank ofA0 is `, it follows
that if we take one index from each column equivalence class, the corresponding`
columns are linearly independent. Let I = f t 2 [`] j � t 6= 0g. Then the � t , t 2 I
are linearly independent and

P
t 2 I � t =

P
t 2 [` ] � t = 0. It follows that I = ? . So all

column equivalence classes ofA0 (and hence ofA) sum to zero, and we are in case (ii).
We now consider the case that condition (ii) holds. SinceA has no zero columns,

every column equivalence class has size at least 2. Fort 2 [`] let j t 2 Ct . Let
A0 = ( a0

it ) 2 Fm � `
q be the submatrix of A induced by columnsj 1; : : : ; j t . Consider the

system
X̀

t =1

a0
it y t = 0 for all i 2 [m]:

Since jSj � q1+ ` � 1
` n , it follows by Lemma 6.22 that there are (y1 ; : : : ; y ` ) and

(z1 ; : : : ; z` ) in S` such that for all ( b1; : : : ; b̀ ) 2 F`
q one has b1(y1 � z1 ) + � � � +

b̀ (y ` � z` ) = 0 if and only if ( b1; : : : ; b̀ ) is a linear combination of the rows of A0.
De�ne ( x 1 ; : : : ; x k ) 2 Sk by setting (for t 2 [`] and j 2 Ct )

x j =

(
y t if j = j t ;
zt otherwise.

Note that for any bj 1 ; : : : ; bj ` 2 Fq there are uniquebj 2 Fq, j 2 [k] n f j 1; : : : ; j ` g such
that b1 + � � � + bk = 0 and (b1; : : : ; bk ) preserves the column equivalence classes ofA.
Moreover, we havebj 1 (y1 � z1 )+ � � �+ bj ` (y ` � z` ) = 0 if and only if b1x 1 + � � �+ bk x k = 0.
It follows that ( x 1 ; : : : ; x k ) satis�es the requirements. �

We are now ready to prove Theorem 6.9 and Theorem 6.10.

Proof of Theorem 6.9. Let � q be the constant from Theorem 6.17. For everyt 2 N0,
we de�ne

N t := q1+ ` � 1
` n + t � (4kqk (� q)n ):

Let [k] = C1 [ � � � [ C` be the partition of [ k] into column equivalence classes of
A. We will prove by induction on jP j that, for every set P �

� C1
2

�
[ � � � [

� C `
2

�
of

equivalent pairs and for every setS � Fn
q of size jSj � N jP j , the system (?) has a

solution ~x = ( x 1 ; : : : ; x k ) 2 Sk that satis�es (6.34) and such that no (b1; : : : ; bk ) 2
Annbal (x 1 ; : : : ; x k ) breaks a pair in P.

ˆ For jP j = 0, the claim follows directly from Lemma 6.33.

ˆ Assume that jP j � 1 and that the claim holds for sets of fewer thanjP j pairs.
Fix some f j 1; j 2g 2 P, and write L = 4qk (� q)n . SincejSj � N jP j � kL + N jP j� 1,
there exist disjoint solutions ~x (1) ; : : : ; ~x ( L ) 2 Sk to (?) that satisfy the desired
property for the list P n ff j 1; j 2gg. Using Lemma 6.32, we obtain a solution
~x = ( x 1 ; : : : ; x k ) 2 Sk to (?) with Annbal (x 1 ; : : : ; x k ) � Annbal (x

( i )
1 ; : : : ; x ( i )

k )
for somei 2 [L ] and such that no b 2 Annbal (x 1 ; : : : ; x k ) breaks the pair (j 1; j 2).
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Since Annbal (x 1 ; : : : ; x k ) � Annbal (x
( i )
1 ; : : : ; x ( i )

k ), no b 2 Annbal (x 1 ; : : : ; x k )
breaks a pair in P n f (j 1; j 2)g and ~x satis�es (6.34).

Letting P =
� C1

2

�
[ � � � [

� C `
2

�
completes the proof. �

Proof of Theorem 6.10. If all column equivalence classes sum to zero, the result follows
directly from Theorem 6.9(ii). Assume therefore that not all column equivalence classes
sum to zero. Let � q be the constant from Theorem 6.17. For everyt 2 N0 we de�ne

N t := t � (4kqk (� q)n ):

Let S � Fn
q have sizejSj � Nk2 . By the same argument as in the proof of Theorem 6.9,

we have a solution~x = ( x 1 ; : : : ; x k ) 2 Sk to (?) such that no b 2 Annbal (x 1 ; : : : ; x k )
breaks a pair from the same column equivalence class. In other words,b preserves the
column equivalence classes, so this proves part (i).

For part (ii), observe that Annbal (x 1 ; : : : ; x k ) does not contain all balanced lin-
ear equations that preserve the column equivalence classes, for otherwise every col-
umn equivalence class must sum to zero, contrary to our assumption. So we have
dim(Annbal (x 1 ; : : : ; x k )) � ` � 1, and therefore dim(a� (x 1 ; : : : ; x k )) � k � `, by
Lemma 6.25. �

Remark 6.35. We compare the rank of the solution (x 1 ; : : : ; x k ) in Theorem 6.10 to
the rank given by Theorem 6.5. Suppose we are in Situation 6.7, and setr = k � 2m +1.
Then k � 2m � 1 + r , so it follows from Theorem 6.5 that we can �nd a solution with
dim(span(x 1 ; : : : ; x k )) � r , and therefore dim(a�( x 1 ; : : : ; x k )) � r � 1 = k � 2m.

So how do these two compare? If̀ = 1, then we must have m = 1 (because we
assume that the rows ofA are linearly independent), so in this case the rank from
Theorem 6.10 and Theorem 6.5 agree. If̀ � 2, then we see that Theorem 6.10 improves
upon Theorem 6.5 wheneverm > `

2 . Then again, Theorem 6.10 only applies to a
smaller class of linear systems.

6.7 Examples and applications

We conclude this chapter by looking at a few examples of type (RC) linear systems, to
highlight the applications and limitations of the results from this chapter. First we will
look at an application to sumsets in Fn

q . We show that our results can be used to �nd
non-trivial solutions of an arbitrary linear system in the di�erence set S � S, but not
in the sumset S + S. After that, we will look at the systems studied by Mimura and
Tokushige [MT19a, MT19b, MT20]. We show that our techniques furnish alternative
proofs that those systems are moderate, and in many cases we strengthen this to show
that the system is also temperate.

Applications to sum and di�erence sets

Since this chapter studies linear systems with repeated columns, one obvious question
is to which extent our results can be applied to the problem of �nding solutions to
a system of linear equations in sum and di�erence sets. Throughout this section, let
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Fq be a �nite �eld of characteristic p, and let c1; : : : ; cl 2 Fq n f 0g. We consider the
a�nely independent sumset (or AIR-sumset)

T := c1 � S u
a�

� � � u
a�

cl � S = f c1x 1 + � � � + cl x l j x 1 ; : : : ; x l 2 S a�nely independent g:

If c1 + � � � + cl = 0, then Corollary 6.11 states that T contains generic solutions to every
linear system (?), provided that S is su�ciently large. We now prove this statement.

Proof of Corollary 6.11. Let A = ( aij ) 2 Fm � k
q be the coe�cient matrix of the system

(?). (Recall from the statement of Corollary 6.11 that A may be arbitrary.) Let
A0 = ( a0

ij ) 2 Fm � lk
q be the m � lk matrix

A0 =
�
c1A j c2A j � � � j cl A

�
;

and let (?0) be the corresponding linear system. Every column equivalence class of (?0)
is the union of sets of the formf j; j + k; : : : ; j + ( l � 1)kg (for some j 2 [k]), so (?0)
is of type (RC). Furthermore, the column equivalence classes sum to zero, because
c1 + � � � + cl = 0. Hence it follows from Theorem 6.9(ii) and Proposition 6.27 that (?0)
is temperate. Therefore there are constants�;  � 1 with  < q such that every set
S � Fn

q with jSj � � �  n contains a generic solution of (?0). Choose such a generic
solution (x 1 ; : : : ; x lk ) 2 Slk , and de�ne y1 ; : : : ; yk 2 c1 � S + � � � + cl � S by

y j := c1x j + c2x j + k + � � � + cl x j +( l � 1) k :

Clearly (y1 ; : : : ; yk ) is a solution of the linear system (?). We show that (y1 ; : : : ; yk )
is linearly generic and that y1 ; : : : ; yk 2 (c1 � S u

a�
� � � u

a�
cl � S) [ f 0g.

First, let b = ( b1; : : : ; bk ) 2 Fk
q be such thatb1y1 + � � �+ bk yk = 0. Then ( x 1 ; : : : ; x lk )

belongs to the kernel of the 1� lk matrix

B 0 =
�
c1b j c2b j � � � j cl b

�
:

Sincec1 + � � � + cl = 0, the entries of B 0 sum to 0, soB 0 represents a balanced linear
equation satis�ed by (x 1 ; : : : ; x lk ). Since (x 1 ; : : : ; x lk ) is a generic solution of (?0), it
follows that B 0 is a linear combination of the rows ofA0. Equivalently, b is a linear
combination of the rows of A. This shows that (y1 ; : : : ; yk ) is linearly generic.

To complete the proof, it su�ces to show that y j = 0 whenever the vectors
x j ; x j + k ; : : : ; x j +( l � 1) k are a�nely dependent, for every j 2 [k]. To that end,
suppose that x j ; x j + k ; : : : ; x j +( l � 1) k are a�nely dependent. Then there is some
b = ( b1; : : : ; bl ) 2 Fl

q n f 0g with b1 + � � � + bl = 0 and

b1x j + b2x j + k + � � � + bl x j +( l � 1) k = 0 : (b0)

Since (x 1 ; : : : ; x lk ) is generic, the balanced linear equation (b0) is a linear combination
of the equations in (?0). By choosing somer 2 [l ] such that br 6= 0 and restricting our
attention to the variables x ( r � 1) k +1 ; : : : ; x rk (i.e. the r -th block in the block matrix
representation of A0), we see that the equationy j = 0 is a linear combination of the
equations in (?). �
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Corollary 6.12 can be deduced from Corollary 6.11 by letting (?) be the linear system
that encodes ak-term arithmetic progression and setting l = 2 and (c1; c2) = (1 ; � 1).
We show that Corollary 6.12 does not depend on the full strength of Corollary 6.11,
as it follows immediately from Lemma 6.22.

Proof of Corollary 6.12. Let (?) be a linear system which encodes ak-term arithmetic
progression, for instance the system given by the matrix

A =

0

B
B
B
B
B
@

1 � 2 1 0 0 � � � 0 0 0 0 0
0 1 � 2 1 0 � � � 0 0 0 0 0
...

...
...

...
...

. . .
...

...
...

...
...

0 0 0 0 0 � � � 0 1 � 2 1 0
0 0 0 0 0 � � � 0 0 1 � 2 1

1

C
C
C
C
C
A

2 F(k � 2) � k
p :

Let S � Fn
p with jSj � p1+(1 � 1

k )n . By Lemma 6.22, there are (x 1 ; : : : ; x k ); (y1 ; : : : ; yk ) 2
Sk such that (x 1 � y1 ; : : : ; x k � yk ) is a linearly generic solution of (?).

Since the standard basis vectorse1 ; : : : ; ek 2 Fk
q cannot be written as linear

combinations of the rows ofA,9 we havex j � y j 6= 0 for all j 2 [k]. Likewise, since the
vectors ej � ej 0 (j 6= j 0) cannot be written as linear combinations of the rows ofA,9

we havex j � y j 6= x j 0 � y j 0 wheneverj 6= j 0. It follows that ( x 1 � y1 ; : : : ; x k � yk )
is a non-trivial k-AP in ( S � S) n f 0g. �

Remark 6.36. The preceding proof carries through unchanged ifA is replaced
by an arbitrary matrix, and if the di�erence set ( S � S) n f 0g is replaced by the
sum set c1 � S + � � � + cl � S with c1 + � � � + cl = 0 (replace x j � y j 2 S � S by
c1x j + ( c2 + � � � + cl )y j 2 c1 � S + � � � + cl � S). So a weaker version of Corollary 6.11,
where the AIR-sumset is replaced by an ordinary sumset, can also be proved by a
simple counting argument, without using the slice rank method.

Remark 6.37. Now consider once again the sumsetc1 � S + � � � + cl � S, but this time
assume thatc1 + � � � + cl 6= 0. In this case, the techniques from this chapter do not
say anything non-trivial about the problem of �nding a non-trivial k-AP in the sum
set c1 � S + � � � + cl � S. (But the results from this chapter were later superseded by
another paper by Gijswijt [ Gij21], and it follows from the results contained therein
that Corollary 6.12 remains valid when c1 + � � � + cl 6= 0.)

We explain why the results from this chapter do not work whenc1 + � � � + cl 6= 0. It
is tempting to try to repeat the proof of Corollary 6.11, but we run into a problem: The
column equivalence classes no longer sum to zero, so we have to replace Theorem 6.9(ii)
by Theorem 6.9(i). However, this imposes two extra conditions on the originalm � k
matrix in the proof of Corollary 6.11, namely that A1 = 0 (i.e. ( ?) is balanced) and
that k = rank(A) + 1. So we can only say something for a very speci�c class of
linear systems. In fact, this class is so speci�c that the coe�cient matrix must satisfy
ker(A) = span( 1), so every solution of the original system must be constant!

Likewise, it is tempting to try to repeat the proof of Corollary 6.11, but this time
replacing Theorem 6.9(ii) by Theorem 6.8(i). After all, to �nd (say) a non-trivial

9To prove this, it is su�cient to note that there exist non-trivial k-APs in Fn
q n f 0g.
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k-AP, it is enough to �nd a solution with y1 ; : : : ; yk pairwise distinct instead of a
generic solution. Here we run into another problem. In the proof of Corollary 6.11, we
can �nd a solution ( x 1 ; : : : ; x lk ) 2 Slk of the extended system (?0) with x 1 ; : : : ; x lk

pairwise distinct. But when we recombine these to form a solution (y1 ; : : : ; yk ) 2
(c1 � S + � � � + cl � S)k of the original system (?), we may end up with y1 = � � � = yk ,
since we have no way to avoid these additional equations. In fact, if we use the proof
of Theorem 6.8(i) as an algorithm to �nd the x 1 ; : : : ; x lk , then this is guaranteed to
happen: We start with a solution where all variablesx 1 ; : : : ; x lk are equal, and then
modify the variables in such a way that the contribution to each column equivalence
class remains the same, so the equationy1 = � � � = yk is maintained throughout
the proof. Once again, the techniques from this chapter are unable to say anything
non-trivial.

The systems studied by Mimura and Tokushige

In a series of papers [MT19a, MT19b, MT20], Mimura and Tokushige studied several
speci�c (classes of) linear systems, and showed that each of them is moderate. These
were the �rst results of this type. We show that our results and techniques furnish
alternative proofs for all systems studied by Mimura and Tokushige (though our
constants might not be as good).

The systems studied by Mimura and Tokushige have integer entries, and can
therefore be interpreted as a linear system overFq for an arbitrary prime power q = ps.
Depending on the system, Mimura and Tokushige sometimes had to assume thatp 6= 2
or p 6= 3, and we shall do the same.

Example 6.38. In [MT19a], Mimura and Tokushige studied a star of k three-term
arithmetic progressions, given by the linear system (S� k ) with coe�cient matrix

0

B
B
B
@

1 1 0 0 � � � 0 0 � 2
0 0 1 1 � � � 0 0 � 2
...

...
...

...
. . .

...
...

...
0 0 0 0 � � � 1 1 � 2

1

C
C
C
A

2 Fk � (2k+1)
q ;

and proved that this system is moderate wheneverp � 3.
This result can be recovered as a special case of Theorem 6.8, and strengthened to

(S� k ) being temperate by Theorem 6.9. Indeed, (S� k ) is a type (RC) linear system, as
it is balanced and there is only one column equivalence class of size 1. Ifp 6= 2, then
the system is non-degenerate and irreducible, and all column equivalence classes have
sum � 2 6= 0, so it follows from Theorem 6.8(i) that ( S� k ) is moderate. Additionally,
since there arek equations and k + 1 column equivalence classes, it follows from
Theorem 6.9(i) that ( S� k ) is temperate. 4

Example 6.39. Also in [MT19a], Mimura and Tokushige point out that their proof
also extends to a `fan' ofk three-term arithmetic progressions, given by the linear
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system (S0
� k ) with coe�cient matrix

0

B
B
B
@

1 � 2 0 0 � � � 0 0 1
0 0 1 � 2 � � � 0 0 1
...

...
...

...
. . .

...
...

...
0 0 0 0 � � � 1 � 2 1

1

C
C
C
A

2 Fk � (2k+1)
q :

Analogously to Example 6.38, it follows from Theorem 6.8(i) and Theorem 6.9(i) that
(S0

� k ) is moderate and temperate, provided that p 6= 2. 4

Example 6.40. In [MT19b], Mimura and Tokushige studied the problem of avoiding
a `W shape', and showed that the linear system (W) with coe�cient matrix

�
1 � 1 � 1 1 0
1 0 � 2 0 1

�
2 F2� 5

q

is moderate wheneverp � 3.
This is not a type (RC) linear system, since there are 3 column equivalence classes

of size 1, so this result cannot be recovered as a special case of Theorem 6.8 or
Theorem 6.9.

Nevertheless, our techniques from§6.3 can be adapted to recover this result as well.
Indeed, let � q be the constant from Theorem 6.17, and letS � Fn

q with jSj � 4 � (� q)n .
By repeatedly �nding a non-trivial 3-AP and removing it from S, we can �nd a
list f (x ( i )

1 ; x ( i )
3 ; x ( i )

5 )gL
i =1 of L � (� q)n pairwise disjoint non-trivial 3-APs in S3. For

all i 2 [L ], set x ( i )
2 = x ( i )

3 and x ( i )
4 = x ( i )

5 , so that (x ( i )
1 ; x ( i )

2 ; x ( i )
3 ; x ( i )

4 ; x ( i )
5 ) 2

S5 is a solution of (W). Since 2 and 4 belong to the same column equivalence
class, it follows from Corollary 6.21 that there are i 6= i 0; i 00 such that the 5-tuple
(y1 ; y2 ; y3 ; y4 ; y5 ) = ( x ( i )

1 ; x ( i 0)
2 ; x ( i )

3 ; x ( i 00)
4 ; x ( i )

5 ) 2 S5 is also a solution of (W). Then
y1 ; y3 ; y5 are pairwise distinct because they stem from the same non-trivial 3-AP, and
f y1 ; y3 ; y5g \ f y2 ; y4g = ? because they stem from disjoint solutions. Finally, note
that y2 6= y4 , for otherwise the �rst equation of ( W) would imply that y1 = y3 . This
shows that (W) is moderate.

With minor modi�cations, the preceding argument also shows that (W) is temperate.
Indeed, by repeating the argument, but using multiple replacement (Corollary 6.30)

instead of single replacement (Corollary 6.21), we can make sure thatx ( i 0)
2 is not in

the line through x ( i )
1 , x ( i )

3 and x ( i )
5 . Then dim(a� (x ( i )

1 ; x ( i 0)
2 ; x ( i )

3 ; x ( i 00)
4 ; x ( i )

5 )) � 2,
so it follows from Corollary 6.26 that this solution is generic. 4

Example 6.41. In [MT20], Mimura and Tokushige studied the system (T) with
coe�cient matrix �

1 � 2 1 0 0
0 0 � 2 1 1

�
2 F2� 5

q ;

and proved that it is moderate wheneverp � 3.
Once again, this result can be recovered as a special case of Theorem 6.8(i), and

strengthened to (T) being temperate by Theorem 6.9(i). 4
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Example 6.42. In [MT20], Mimura and Tokushige studied the class of linear systems
(lSk+2 ). This class is de�ned as follows: letk � 1, and let a1; : : : ; ak+2 2 Fq be non-zero
such that a1 + � � � + ak+2 = 0. Then ( lSk+2 ) is given by the coe�cient matrix

0

B
B
B
@

a1 � � � ak ak+1 ak+2 0 0 � � � 0 0
a1 � � � ak 0 0 ak+1 ak+2 � � � 0 0
...

. . .
...

...
...

...
...

. . .
...

...
a1 � � � ak 0 0 0 0 � � � ak+1 ak+2

1

C
C
C
A

2 Fl � (k+2 l )
q :

In [MT20, Thm. 5], Mimura and Tokushige showed that such a system is always
moderate. (This contains the linear system (S1) from [MT20] as a special case.)

This result can be recovered as a special case of Theorem 6.8, and strengthened to
(lSk+2 ) being temperate by Theorem 6.9. Indeed, (lSk+2 ) is balanced, and it has one
column equivalence class of sizek � 1 and l column equivalence classes of size 2, so it is
a type (RC) linear system. Furthermore, the system is non-degenerate and irreducible.
Note that, if one column equivalence class sums to zero, then all column equivalence
classes must sum to zero, so it follows from either Theorem 6.8(i) or Theorem 6.8(ii)
that ( lSk+2 ) is moderate. Furthermore, since the number of equations isl and the
number of column equivalence classes isl + 1, it follows from either Theorem 6.9(i) or
Theorem 6.9(ii) that ( lSk+2 ) is temperate. 4

Example 6.43. In [MT20], Mimura and Tokushige studied the class of linear systems
(2Tk;l ). This class is de�ned as follows: letk � 1 and l � 2, and let a1; : : : ; ak+ l 2 Fq

be non-zero such thata1 + � � � + ak+ l = 0. Then (2Tk;l ) is given by the coe�cient
matrix

�
a1 � � � ak ak+1 � � � ak+ l 0 � � � 0
a1 � � � ak 0 � � � 0 ak+1 � � � ak+ l

�
2 F2� (k+2 l )

q :

In [MT20, Thm. 6], Mimura and Tokushige showed that such a system is always
moderate. (This contains the linear system (S2) from [MT20] as a special case.)

This result can be recovered as a special case of Theorem 6.8, and strengthened
to (2Tk;l ) being temperate by Theorem 6.9. The argument is analogous to that of
Example 6.42. 4

Example 6.44. In [MT20], Mimura and Tokushige studied the linear system (S�
3 )

with coe�cient matrix
0

@
1 1 1 1 � 4 0 0 0 0 0
1 1 0 0 0 1 1 � 4 0 0
1 1 0 0 0 1 0 0 1 � 4

1

A 2 F3� 10
q ;

and proved that it is moderate wheneverp 6= 2. 10

10 The authors don't make the assumption p 6= 2 explicit in their proof. This assumption is
necessary because the sum of the second and third row of the coe�cient matrix is congruent to�

0 0 0 0 0 0 1 0 � 1 0
�

(mod 2). So for p = 2 the system cannot be moderate
because it forces two variables to be equal.
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This result can be recovered as a special case of Theorem 6.8, provided that
p 6= 2 ; 3.11 The results from this chapter are insu�cient to determine whether ( S�

3 ) is
temperate, because there are not enough equations to apply Theorem 6.9(i). 4

Example 6.45. Finally, in [ MT20, Conjecture 1], Mimura and Tokushige conjectured
that the system (S3) with coe�cient matrix

0

@
1 1 1 1 � 4 0 0 0 0 0 0
1 1 0 0 0 1 1 � 4 0 0 0
1 1 0 0 0 0 0 0 1 1 � 4

1

A 2 F3� 11
q

is moderate. This is con�rmed by our results. If p 6= 2, then it follows from Theo-
rem 6.8(i) and Theorem 6.9(i) that (S3) is moderate and temperate. Ifp = 2, then some
of the columns become zero, so they correspond to free variables. After removing those
columns, it follows from Theorem 6.8(ii) and Theorem 6.9(ii) that (S3) is moderate
and temperate. 4

In summary: in all examples except Example 6.44, we were able to prove that the
system is moderate and temperate, thereby strengthening prior results (and proving a
conjecture) of Mimura and Tokushige. In Example 6.44, we gave an alternative proof
of the fact that the system is moderate, but we were unable to determine whether the
system is also temperate.

In Example 6.40, we could not apply Theorem 6.8. Instead, we needed a proof
that was adapted to this particular system, using results from §6.3, to furnish an
alternative proof that the system is moderate. In all other examples, the fact that the
system is moderate follows immediately from Theorem 6.8.

As a �nal remark, we point out once again that the results from this chapter
were later superseded by another paper by Gijswijt [Gij21]. It follows from the results
contained therein that all systems from this section are temperate. This includes
Example 6.44, which we were unable to settle in this chapter.

11 If p = 2, then there are three column equivalence classes of size 1, so the system is not of type
(RC). Furthermore, if p 2 f 2; 3g, then there are column equivalence classes of size 2 that sum to
zero, but not all column equivalence classes sum to 0, so neither Theorem 6.8(i) nor Theorem 6.8(ii)
applies in this case. If p =2 f 2; 3g, then the system is of type (RC) and none of column equivalence
classes sums to zero, so Theorem 6.8(i) applies.
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Chapter 7

Outline of Part III

In this chapter, we give an outline of Part III of this dissertation.

Part III is based on the paper [ Dob20b], and this chapter is based on the
introduction (Chapter 1) of that paper.

7.1 Introduction

Convex cones have applications in almost all branches of mathematics, from algebra
and geometry to analysis and optimization. Consequently, convex cones have been
studied extensively in their own right, and there is a vast body of work on all kinds of
geometrical, analytical, and combinatorial properties of convex cones.

In the study of convex cones, just as in any other area of mathematics, it is
important to have good ways of creating new objects from old. One such problem
which has attracted a lot of attention is the following. Suppose that we are given convex
conesE+ and F+ in the vector spacesE and F , respectively. Can we then use the data
of E+ and F+ to somehow construct a natural cone in the tensor productE 
 F ? As
it turns out, there are multiple ways to do so [Mer64, PS69], just as there are multiple
ways to de�ne a norm on the tensor product of two normed spaces [Rya02].

Among all \reasonable" cones in the tensor productE 
 F , there is a smallest and
a largest one, which we denote byE+ 
 � F+ and E+ 
 " F+ , respectively. These have
come up many times in the literature, motivated by problems in a variety of di�erent
�elds. We outline a few of these applications:

ˆ In functional analysis, one is often interested in tensor products of various types
of spaces (e.g. Banach spaces,C � -algebras, operator spaces, etc.). Often the two
factors come with natural order structure, in which case it is desirable to �nd a
compatible order structure in the tensor product. This is equivalent to �nding a
tensor product of the positive cones, and so tensor products of convex cones are
closely linked to tensor products of ordered (topological) vector spaces.

ˆ In operator theory, the minimal and maximal tensor product of a positive
semide�nite cone with an arbitrary cone C correspond to the smallest and
largest operator system with C at its ground level. Question surrounding this
minimal and maximal operator system have been studied by several authors; for
instance, [PTT11, FNT17, HN21]. Furthermore, these questions turn out to be

89
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closely related to questions about matrix convex sets [PSS18, §7], [Sha21, Thm.
9.11] and free spectrahedra [FNT17], topics which have been studied by authors
in geometry, optimization, and quantum information theory.

ˆ In theoretical physics, the theory of \general probabilistic theories" (GPTs)
forms a new framework which generalizes both classical and quantum probability
[Lam17, M•ul21 , Pl�a21 , ALPP21]. A GPT derives probability from an arbitrary
�nite-dimensional Archimedean cone with an order unit. Classical (resp. quantum)
probability can then be recovered as a special case by taking a simplex (resp.
positive semide�nite) cone.

Given GPTs E and F , the tensor product E 
 F corresponds to the composite
system (E; F ). In this setting, the elements of the smallest coneE+ 
 � F+

correspond to the separable states, whereas the elements ofE+ 
 " F+ nE+ 
 � F+

correspond to the entangled states [Pl�a21 , Def. 5.8]. Thus, understanding tensor
products of convex cones is crucial to understanding entanglement in GPTs.

ˆ In polyhedral geometry, the minimal and maximal tensor product of two poly-
hedral cones are closely related to the tensor product and Hom-polytope of the
underlying polytopes. Since Hom and tensor are fundamental constructions in
the category of polytopes, their properties have been studied in detail in the
literature; see for instance [BCG13].

ˆ In approximation theory, tensor products of convex cones come up naturally in
the context of multivariate shape preserving interpolation with cone constraints.
For a precise description of this problem and its relation to tensor products of
convex cones, see [Mul97].

In each of these settings, the underlying construction is just a tensor product of
convex cones. This underpins the importance of a systematic study of tensor products of
convex cones, and indeed many papers have already been written about this. However,
most of the existing literature only focuses on one of two particular cases: lattice cones
and �nite-dimensional cones. As a result, the literature is divided into two separate
lines of investigation, neither of which addresses the problem in full generality.

The �rst line of investigation comes from functional analysis. In this setting, the
focus has mostly been on Riesz spaces and Banach lattices. Although most classical
Banach spaces are lattice-ordered, many other interesting classes of ordered vector
spaces are not. For example, the self-adjoint part of aC � -algebra A is an ordered
vector space with a closed, proper and generating coneA + , but by Sherman's theorem
it is lattice-ordered if and only if A is commutative. This shows that, in a way,
restricting one's attention to lattice-ordered spaces is akin to restricting one's attention
to commutative C � -algebras.

The second line of investigation comes from linear algebra, and encompasses the
remaining applications from the preceding list. In this setting, research has dealt
exclusively with closed, proper and generating cones in �nite-dimensional spaces.
This is once again a severe limitation, at least from the perspective of analysis, as
�nite-dimensional spaces are often of limited use there. Furthermore, even in the
�nite-dimensional case one occasionally encounters cones which are not closed or not
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proper. For example, lexicographical cones in a space of dimension at least 2 are never
closed, and quotients/projections of closed, proper cones are not guaranteed to be
closed either (see e.g. [Dob20a, Example 6.3]).

There has been very little cross-pollination between these two lines of investigation,
and very little has been done beyond these two speci�c cases. In particular, almost
nothing is known about tensor products of in�nite-dimensional ordered vector spaces
which are not lattice-ordered, or about tensor products of cones which are not closed
and/or not proper. This disquali�es many cones from consideration, including even
standard cones such as the positive semide�nite cone over an in�nite-dimensional
Hilbert space.

Furthermore, even in the cases that have been studied, many basic properties have
not been noted or proved in the existing literature. For instance, whereas mapping
properties play an important role in the similar theory of normed tensor products,
we are not aware of prior papers which establish the mapping properties of the
minimal/maximal tensor product of convex cones. Likewise, only partial results are
known about properness of the minimal/maximal tensor product of convex cones, or
whether the minimal/maximal tensor product preserves faces of the base cones.

Part III of this dissertation aims to develop a general theory of tensor products of
convex cones, without any restrictions on the cones or the ambient spaces. By using
ideas from both lines of investigation and borrowing additional techniques from the
similar theory of normed tensor products, we are able to extend known results to the
general setting and prove many completely new results.

In the next section, we give a very brief overview of the existing literature. After
that, the remainder of this chapter gives a comprehensive overview of the main results
of Part III.

7.2 Brief literature overview

The study of tensor products of ordered topological vector spaces was initiated in
the 1960s by Merklen [Mer64],1 Hulanicki and Phelps [HP68], Popa [Pop68, Pop69],
and Peressini and Sherbert [PS69]. From the 1970s onwards, the focus has mostly
been on Riesz spaces ([Sch72, Fre72, Fre74, Wit74 , Sch74, Bir76, FT79, Nie82, GL88,
Nie88, GL89, Bla16, ABJ18, BT22, BGY22]) and, in a separate line of investigation,
on closed cones in �nite-dimensional spaces ([BL75, Bar76, HFP76, Bar78a, Bar78b,
Bar81, BLP87, ST90, Tam92, Tam95, Mul97, Hil08, HN21, ALPP21]). For general
ordered vector spaces, some of the basic questions remain unanswered (and, on one
occasion, escaped from collective memory, as we point out below).

The most comprehensive paper on tensor products of general ordered vector spaces
is the article of Peressini and Sherbert [PS69]. It contains an in-depth study of the

1 It appears that Merklen was the �rst to study tensor products of ordered vector spaces, but his
article is very hard to �nd, and contains several errors. For instance, [ Mer64, Teorema 5] states that
the weak closure of the projective cone E+ 
 � F+ is a proper cone if at least one of E+ and F+ is
proper, provided that E+ and F+ are weakly closed. Likewise, [ Mer64, Teorema 9] states the same
for the injective cone. Both of these statements are incorrect, as can be seen by taking E+ = R� 0
and F+ = R. The correct statement is that both E+ and F+ should be proper; see Theorem D and
Theorem B below.
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properties of the projective (minimal) and injective (maximal) cone in the tensor
product. 2 It answers various topological and order-theoretic questions about these
cones, for instance relating to normality and order units. Furthermore, it establishes a
few su�cient conditions for the projective/injective cone to be proper, but it does not
provide precise necessary and su�cient conditions.

Conditions for the projective cone to be proper were quickly provided by Dermenjian
and Saint-Raymond [DS70], but their result seems to have been unknown to later
generations of mathematicians. Only recently was this question answered (again)
by Wortel [ Wor19]; until then only special cases were assumed to be known in the
literature. For the injective cone, no precise necessary and su�cient conditions for
properness are known in the literature.

The situation is much better in the setting of lattice-ordered or �nite-dimensional
spaces. For lattice-ordered spaces, a lot has been said about the problem of turning the
tensor product (or its completion) into a lattice-ordered space as well [Sch72, Fre72,
Fre74, Wit74 ], and connections between such lattice tensor products and lattices of
operators are well-known [Sch74, §IV.7]. However, such results are rather speci�c to
lattice-ordered spaces, and have little hope of being generalized to general (non-lattice-
ordered) spaces.

Likewise, in the �nite-dimensional setting, much more is known. Here research has
focused on cones that are closed, proper and generating. This is su�cient to guarantee
that the projective and injective tensor product are closed, proper and generating as
well [Tam77b], so �nding criteria for properness is not an issue here. More advanced
results have been obtained as well; see for instance [BL75, Bar76, Bar81, Tam92]. In
particular, in the context of cones of positive operators, Tam gave a construction
which can be used to obtain faces in the injective cone from faces of the base cones
[Tam92, §4]. We will extend this result; see§7.6.

There is very little overlap between the lattice-ordered and the �nite-dimensional
theory, because they deal with very di�erent questions. After all, the only �nite-
dimensional closed lattice cones are the simplex cones (i.e. the ones isomorphic to
Rn

� 0), which are not very interesting from either perspective. However, one problem
that has been studied in both settings is the question whether or not the projective
cone is dense in the injective cone. Birnbaum [Bir76] showed that this is true whenever
E and F are locally convex lattices and gave an example which shows that it is not
true in general. Very recently, this problem was settled in the �nite-dimensional case
by Aubrun, Lami, Palazuelos and Pl�avala [ALPP21]. They proved that, for closed,
proper and generating conesE+ and F+ in �nite-dimensional spaces E and F , one
has E+ 
 � F+ = E+ 
 " F+ if and only if at least one of E+ and F+ is a simplex
cone. Around the same time, we independently found a di�erent proof of this result
for nearly all cones [Dob20b], which we have included in this manuscript (see§7.8).

2A note on terminology: several authors refer to the maximal cone as the biprojective cone . We
aim to show that it is in many ways analogous to the injective norm, and as such deserves the name
injective cone . This term has also occasionally been used before, for instance by Wittstock [ Wit74 ]
and Mulansky [Mul97].



7.3. Scope and notation 93

7.3 Scope and notation

We now outline the scope of Part III of this dissertation, and we cover the basic
notation needed to state our main results in the upcoming sections.

In Part III of this dissertation, we study the projective and injective tensor product
of two convex conesE+ � E and F+ � F , whereE and F are either real vector spaces
or real topological vector spaces.

Topological considerations will not matter too much for our investigation, but to
build a satisfactory duality theory we need to at least keep track of the duals of all
spaces involved. Hence, instead of remembering the topology of a vector spaceE (or
the fact that E has no topology), we only remember the dual pairhE; E 0i to which E
belongs. The advantage of this approach is twofold: it allows us to treat the topological
and non-topological cases simultaneously (ifE has no topology, letE 0 := E � be the
algebraic dual), and it allows us to completely ignore any topological issues in the
tensor product, thereby sidestepping the notoriously di�cult theory of topological
tensor products. One downside of this approach is the following: since we have no
topology on E, we must occasionally refer to the weak closureE+

w
of E+ , instead

of the ordinary closure. However, we remind the reader that in every locally convex
space, the weak closure of a convex set coincides with its original closure.

We now recall some basic notation. Aconvex cone(otherwise known as awedge)
in a real vector spaceE is a non-empty subsetK � E satisfying K + K � K and
� K � K for all � 2 R� 0. The lineality space of a convex coneK is the linear subspace
lin (K) := K \ �K . We say that a convex coneK is proper if lin (K) = f 0g and
semisimple if its weak closureK

w
is proper.

Let E and F be vector spaces, and letE+ � E , F+ � F be convex cones. The
projective cone in E 
 F is given by

E+ 
 � F+ :=

(
kX

i =1

x i 
 yi : k 2 N; x1; : : : ; xk 2 E+ ; y1; : : : ; yk 2 F+

)

:

Furthermore, if E and F belong to the dual pairs hE; E 0i and hF; F 0i , then the
injective cone in E 
 F is given by

E+ 
 " F+ :=
�

u 2 E 
 F : hu; ' 
  i � 0 for all ' 2 E 0
+ ,  2 F 0

+

	
:

For additional notation, see Chapter 8, or refer to the glossary of notation on page 201.

A note about cones in the completed tensor product

So far, the study of tensor products of convex cones has mostly been limited to cones
in the algebraic tensor product, with the exception of some results on tensor products
of Banach lattices. However, the algebraic tensor product is often of limited use in
analysis; instead, one is usually interested in its completion with respect to some
suitable topology. For this reason, we also aim to initiate a study of the projective and
injective cones in completed locally convex tensor products.

When dealing with topological tensor products, one has to de�ne the topologybefore
taking the completion, for obviously the completion depends on the chosen topology.
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On the other hand, the cone is unrelated to the topology, and can therefore be de�ned
directly on the completion. This gives rise to a natural extension of the injective cone
to the completed tensor product, which we will also study in this dissertation. On the
other hand, the projective cone in the completed tensor productE ~
 � F is merely the
same cone embedded in a larger ambient space3, so there is little reason to study this
cone separately.

An overview of the cones under consideration, their notation, and their domains of
de�nition, is given in Table 7.1. (In all cases, E+ � E and F+ � F are convex cones
in the primal spaces.)

Table 7.1: The domain of de�nition of the projective/injective cones studied in Part III
of this dissertation.

Cone Ambient space Notation Domain of de�nition

Projective E 
 F E+ 
 � F+ E and F vector spaces

Injective E 
 F E+ 
 " F+ hE; E 0i and hF; F 0i dual pairs

Injective E ~
 � F E+ ~
 "
� F+ E and F complete lcs;

� a compatible lc topology onE 
 F

In the remainder of this chapter, we state the main results of Part III only for cones
in the algebraic tensor product. Similar results hold for the injective cone in completed
locally convex tensor products, but these are harder to state, as they often require
additional (topological) assumptions. Precise statements can be found in Chapter 10
on the injective cone.

7.4 Mapping properties

In the theory of normed tensor products, it is well-known that the projective norm
preserves metric surjections (quotients) and the injective norm preserves metric injec-
tions (isometries), and these simple mapping properties play an important role in the
theory. By looking at the corresponding types of positive linear maps, we show that
the projective and injective cones have analogous mapping properties.

Let E and F be vector spaces, and letE+ � E , F+ � F be convex cones. We
say that a linear map T 2 L(E; F ) is positive if T [E+ ] � F+ , a pullback (or bipositive
operator) if E+ = T � 1[F+ ], and a pushforward if T [E+ ] = F+ . Furthermore, if E and F
belong to dual pairs hE; E 0i and hF; F 0i , then we say that an operator T 2 L(Ew ; Fw )
is an approximate pullback(or approximately bipositive) if E+

w
= T � 1[F+

w
], and an

approximate pushforwardif T [E+ ]
w

= F+
w

. (Recall that in a locally convex space,
the weak closure of a convex set coincides with its original closure.) Every pushforward
is also an approximate pushforward, but a pullback is not necessarily an approximate
pullback (see§8.3).

3We de�ne the projective cone algebraically, without taking its closure. This is the prevalent
de�nition in the literature, but might not be appropriate for all applications. We do prove a few
results about its closure; see Corollary I and Theorem D.
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A typical example of a pullback is an order embedding: if (E; E + ) is order isomorphic
to a subspace of (F; F+ ), then the embedding E ,! F is a pullback. A typical example
of a pushforward is a quotient or projection.

In the normed theory, the projective norm preserves metric surjections (quotients)
and the injective norm preserves metric injections (isometries). We prove a similar
result for cones:

Theorem A. The projective cone preserves positive linear maps,(approximate) push-
forwards, and order retracts, but not (approximate) pullbacks.

The injective cone preserves weakly continuous positive linear maps, approximate
pullbacks, and topological order retracts, but not pullbacks or(approximate) pushfor-
wards.

In particular, the injective cone preserves order embeddings when the cones are
weakly closed. We believe this result to be new, even in the �nite-dimensional setting.

The proof of Theorem A will be given in §9.2 (projective cone) and§10.2 (injective
cone). An overview of these mapping properties is given in Table 7.2.

Table 7.2: Types of maps preserved by the projective/injective cone.

Type of map Preserved by

Projective cone Injective cone

Positive map X X

Pushforward X

Approximate pushforward X

Pullback

Approximate pullback X

Retract (positive projection) X X

Note that the injective cone only preservesapproximate pullbacks. It is not so
strange that it does not preserve all pullbacks: the injective cone does not see the
di�erence between E+ and E+

w
, and a pullback for E+ is not necessarily a pullback

for E+
w

(for details, see§10.2). In general, the properties of the injective cone depend
on those ofE+

w
and F+

w
rather than E+ and F+ . By contrast, the projective cone

does see the di�erence betweenE+ and E+
w

, so it preserves both pushforwards and
approximate pushforwards.

7.5 Criteria for properness, the lineality space, and
semisimplicity

Another basic question about tensor products of convex cones is to determine when
the projective or injective cone is proper. Peressini and Sherbert [PS69] found a few
su�cient conditions, but their paper does not specify precise necessary and su�cient
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criteria. For the projective cone, precise conditions were found by Dermenjian and
Saint-Raymond [DS70], and rediscovered in recent years by Wortel [Wor19].4 For the
injective cone, no such result is known, except in the �nite-dimensional case. In this
dissertation, we give a simpler proof for the projective cone, and we also settle the
problem for the injective cone.

Theorem B. The projective coneE+ 
 � F+ is proper if and only if E+ = f 0g, or
F+ = f 0g, or both E+ and F+ are proper cones(cf. [DS70, Th�eor�eme 2] ).

The injective cone E+ 
 " F+ is proper if and only if E = f 0g, or F = f 0g, or both
E+

w
and F+

w
are proper cones.

The proof of Theorem B will be given in §9.3 (projective cone) and§10.3 (injective
cone). Note that there is a subtle di�erence between the corner cases in Theorem B:
the corner case for the projective cone is when one of thecones is trivial, whereas
the corner case for the injective cone is when one of thespacesis trivial. In partial
explanation of this discrepancy, we establish direct formulas for the lineality spaces,
from which the criteria of Theorem B can easily be recovered.

Theorem C. The lineality space of the projective/injective cone is

lin( E+ 
 � F+ ) = (lin( E+ ) 
 span(F+ )) + (span( E+ ) 
 lin( F+ ));

lin( E+ 
 " F+ ) = (lin( E+
w

) 
 F ) + ( E 
 lin( F+
w

)) :

The proof of Theorem C will be given in Corollary 9.17 (projective cone) and
Corollary 10.37 (injective cone).

We also address the related question of �nding precise necessary and su�cient
conditions for the closure of the projective cone to be proper. (For the injective cone,
this is already addressed by Theorem B, because the injective cone is always closed.)
Recall that we say that E+ is semisimple if its weak closure is proper. IfE is locally
convex, then this is the same as saying that its ordinary closure is proper, because the
weak and original closure of a convex set in a locally convex space coincide. We prove
the following semisimplicity version of Theorem B.

Theorem D. The projective coneE+ 
 � F+ is semisimple if and only if E+ = f 0g,
or F+ = f 0g, or both E+ and F+ are semisimple.

A parallel result was proved by van Gaans and Kalauch [GK10]: if E+ and F+ are
Archimedean, then their projective tensor product is contained in an Archimedean
proper cone. Neither of these two results implies the other.

The proof of Theorem D will be given in §11.3.
We also address the question of semisimplicity in completed locally convex tensor

products. In §11.4, we prove that the injective cone remains semisimple in the completed
injective tensor product, and more generally, in every completionE ~
 � F for which
the natural map E ~
 � F ! E ~
 " F is injective. However, we do not know whether
the projective cone remains semisimple in the completed projective tensor product

4The result of Dermenjian and Saint-Raymond seems to have been unknown to later generations
of mathematicians, and until recently only special cases were assumed to be known in the literature.



7.6. Faces and extremal rays 97

E ~
 � F ; see Question 11.16. This question is related to the approximation property,
as we will explain in §11.4.

7.6 Faces and extremal rays

Next, we turn our attention to another permanence property: preservation of faces.
In the normed theory, it follows from a result of Tseitlin [ Tse76] that the projective
norm sometimes preserves extreme points of the closed unit ball, provided that certain
topological requirements are met. Further results in this direction are known for
stronger notions of extreme points, such as denting points [RS86b, Wer87]. This leads
us to ask to which extent the projective and injective cones preserve extremal rays, or
more generally, faces.

In the in�nite-dimensional setting, we are not aware of prior results in this direction.
For closed cones in �nite-dimensional spaces, some constructions are known in the
literature. The injective cone E+ 
 " F+ can be interpreted as a cone of positive
operators E � ! F , whose faces have already been studied by many authors. However,
some information is lost in passing fromE to E � , so instead we give a di�erent
construction which we believe to be more natural, and we extend this to the general
setting. For the projective cone, Tam [Tam92, § 4] pointed out one way to construct
faces (without proof). We extend this construction to the general setting, give a full
proof, and show that a pair of faces of the base cones give rise to not one but four
natural faces of the projective tensor product.

Faces of the projective cone

By combining the mapping properties with the properness criteria, we can show that
the projective cone preserves faces.

Theorem E. If M � E+ and N � F+ are faces, then(M 
 � F+ ) + ( E+ 
 � N ) and
(M 
 � N ) + lin( E+ 
 � F+ ) are faces of the projective coneE+ 
 � F+ .

In particular, if E+ and F+ are proper cones, thenM 
 � N is a face ofE+ 
 � F+ .

For closed, proper and generating cones in �nite-dimensional spaces, this last
property was already noted (without proof) by Tam in [ Tam77a, p. 53] and [Tam92,
p. 71]. We have recovered his simple proof for this special case (see Remark 9.20), but
a di�erent technique is needed to prove the general case. In the full generality stated
here, Theorem E is a non-trivial result which contains Theorem B as a special case
(by setting M = N = f 0g). Remarkably, it is true without any niceness assumptions
on the conesE+ and F+ or the facesM and N .

The proof of Theorem E will be given in §9.4. There we also mention two other
faces induced byM and N , showing that a pair of facesM � E+ and N � F+ gives
rise to not one but four natural faces of the projective cone. This is a new result, even
in the �nite-dimensional case.

As an application of Theorem E, we prove that the tensor product of symmetric
convex sets preserves proper faces.
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Theorem F. Let E and F be real vector spaces, letC � E , D � F be absolutely
convex, and letM � C, N � D be proper faces. Thenconv(M 
 s N ) is a face of
conv(C 
 s D).

For extreme points, results in this direction were known in the setting of normed
tensor products (whereC and D are the closed unit balls of the norms ofE and F ).
However, in that setting, stronger assumptions are needed (E and F must be Banach
spaces such that at least one ofE and F has the approximation property and at
least one ofE and F has the Radon{Nikodym property), and a stronger conclusion is
obtained (x 
 y is an extreme point of the closure of conv(C 
 s D) in the completed
projective Banach space tensor product); see our remarks following Corollary 9.31. To
our knowledge, no such results are known for higher faces, and we are not aware of a
general statement like Theorem F in the literature.

Note that Theorem F is a purely algebraic statement, as we do not take closures. We
do not know whether it remains true after taking closures, but we suspect it does not
(see Remark 9.32). However, ifC and D are compact, thenconv(C 
 s D) is compact
as well, so in particular it follows from Theorem F that the projective norm preserves
proper faces of the closed unit ball of �nite-dimensional spaces (Corollary 9.31). As
far as we know, this had only been known for extreme points.

The proof of Theorem F will be given in §9.6.

Ideals for the injective cone

The injective cone E+ 
 " F+ can be interpreted as a subcone of the cone of positive
operators E 0 ! F . Since there has been a lot of research into the properties of such
cones, a lot has already been said about their faces. For every setM 0 � E 0

+ and every
faceN � F+ , it is trivially easy to show that the set of positive operators T 2 L(E 0; F )
satisfying T[M 0] � N forms a face (see Lemma 10.27), so this gives us a plethora of
faces in the injective cone. On the other hand, �nding all extremal rays of the cone
of positive operators is a notoriously di�cult problem, so the face structure of the
injective cone is still far from fully understood.

Although it is not so hard to construct faces of the injective cone from faces of
the base cones, it is unclear what the \right" way of doing so is. Only interpreting
E+ 
 " F+ as a cone of positive operatorsE 0 ! F is a bit unsatisfactory; we might
just as well have interpreted it as a cone of positive operatorsF 0 ! E . Apart from
the fact that this is not a symmetric formulation, this poses a bigger problem: in both
interpretations, we have one primal and one dual space, but faces are not well-behaved
under duality (not every face of E 0

+ is the dual of a face ofE+ and vice versa). As far
as we know, this problem has not been addressed in the literature, where the focus
has been on cones of positive operatorsE ! F instead of injective tensor products.

In this dissertation, we set out to prove a satisfactory injective counterpart of
Theorem E. To do so, we believe we should change perspective from faces to ideals. An
(order) ideal in a preordered vector space (E; E + ) is a subspaceI � E for which the
quotient cone (E=I )+ is proper (for other equivalent de�nitions, see Proposition A.2).
There is a close relationship between faces and ideals: the mapI 7! I + (= I \ E+ )
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de�nes a surjective many-to-one correspondence between the order ideals of the
preordered vector space (E; E + ) and the faces ofE+ (see Appendix A.1).

The bene�t of working with ideals instead of faces is twofold. First, in the in�nite-
dimensional (topological) setting, it is often important to work with closed ideals so
as to have a useable quotient, but it is not always easy (or even possible) to tell from
a face whether or not it occurs as the positive part of a closed ideal. Second, whereas
faces of the injective cone can only be given by implicit formulas (all positive operators
mapping certain sets into certain faces), for ideals we get the following very simple
explicit formulas.

Theorem G. If I � E and J � F are ideals with respect toE+
w

and F+
w

, then
(I 
 J ) + lin( E+ 
 " F+ ) is an ideal with respect to the injective coneE+ 
 " F+ .

Additionally, if I is weakly closed and(E=I )+ is semisimple, or if J is weakly
closed and(F=J)+ is semisimple, then(I 
 F ) + ( E 
 J ) is also an ideal with respect
to the injective cone.

We believe Theorem G to be new, even in the �nite-dimensional case. Note that the
�rst formula simpli�es to I 
 J wheneverE+

w
and F+

w
are proper (by Theorem B

or Theorem C).
The proof of Theorem G will be given in §10.5. There we will also show that

the extra assumption that (E=I )+ or (F=J)+ is semisimple cannot be omitted from
the second part of Theorem G (see Example 10.35). Furthermore, we will extend
Theorem G to completed locally convex tensor products, though this requires additional
topological assumptions (see Theorem 10.46 and Theorem 10.47).

Contrary to the projective case, the preceding results do not have an application
to tensor products of symmetric convex sets. The injective analogue of Theorem F
is simply not true, because the injective norm does not preserve extreme points of
the unit balls (see Remark 10.52). This makes it all the more remarkable that the
injective cone preserves faces and extremal rays.

Extremal rays

As a special case of Theorem E and Theorem G, we show that the projective and
injective cones preserve extremal rays.

Theorem H. A vector u 2 E 
 F is an extremal direction of the projective cone
E+ 
 � F+ if and only if u can be written asu = x 
 y, where x and y are extremal
directions of E+ and F+ .

If x and y are extremal directions of E+
w

and F+
w

, then x 
 y is an extremal
direction of the injective cone E+ 
 " F+ . All extremal directions of (tensor) rank one
are of this form, but there may also be extremal directions of larger rank.

For closed, proper and generating cones in �nite-dimensional spaces, this was
already known; see for instance [HFP76, Thm. 3.4(2)] 5 or [Tam95, Thm. 3.1]. We

5Their result is formulated only for polyhedral cones, but the proof also works for other closed,
proper and generating cones.
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extend it to arbitrary cones, and also to cones in completed locally convex tensor
products (Corollary 10.50).

The proof of Theorem H will be given in §9.5 (projective cone) and§10.6/§11.1
(injective cone). An immediate consequence is that every \reasonable crosscone" (see
Chapter 11) preserves extremal rays wheneverE+ and F+ are weakly closed.

Corollary I. If E+ and F+ are weakly closed, and ifx and y are extremal directions
of E+ and F+ , then x 
 y is an extremal direction of every convex coneK � E 
 F
with E+ 
 � F+ � K � E+ 
 " F+ .

In particular, the closure of the projective cone also preserves extremal rays. We
do not know if it also preserves higher faces (as in Theorem E). For further discussion
of this problem, see Chapter 14. For more on reasonable crosscones, see Chapter 11.

7.7 Special properties in the �nite-dimensional case

In the linear algebra literature, all papers on tensor products of convex cones have
focused on closed, proper and generating cones in �nite-dimensional spaces. On the
other hand, in the functional analysis literature, most of the focus has been on tensor
products of Archimedean lattice cones. Therefore the only cones which are covered
by both regimes are the ones isomorphic to the standard coneRn

� 0 (all Archimedean
lattice cones in Rn are isomorphic to Rn

� 0), which are not very interesting from either
perspective. Consequently, these two lines of investigation have focused on completely
di�erent problems.

Even if one is primarily interested in tensor products of in�nite -dimensional convex
cones, it is good to be aware of the �nite-dimensional theory, as various fundamental
phenomena can already be observed here. For this reason, in Chapter 12, we give an
overview of the most important additional properties in the �nite-dimensional setting
(with closed cones).

The main results of Chapter 12 are threefold. First, for closed conesE+ and
F+ in �nite-dimensional spaces, we show that the projective coneE+ 
 � F+ can
be interpreted as the cone of positive operatorsE � ! F that factor positively
through some �nite-dimensional Archimedean Riesz space (i.e. though someRn with
the standard cone Rn

� 0). Second, we show that the closure of the projective cone
E+ 
 � F+ is equal to the projective coneE+ 
 � F+ , thereby extending a result of
Tam [Tam77b], who proved this in the case that E+ and F+ are closed, proper and
generating. Third, we study the basic properties of order retracts of �nite-dimensional
cones, and give many examples of retracts occurring in standard cones.

7.8 Many examples where the projective and injective cone
di�er

Another question which has attracted a lot of attention is to determine under which
circumstances the projective coneE+ 
 � F+ is dense in the injective coneE+ 
 " F+ .
For locally convex lattices E and F , Birnbaum [Bir76, Prop. 3] proved that E+ 
 � F+
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is dense in E+ 
 " F+ in the projective topology (and therefore in every coarser
topology), and followed this by an example showing that this is not true for all
ordered locally convex spaces (not necessarily lattice ordered). In general, however,
the in�nite-dimensional version of this problem does not appear to be well understood.

A lot more is known in the �nite-dimensional setting (with closed, proper and
generating cones), where various results in this direction have been obtained since the
1970s. HereE+ 
 � F+ is automatically closed wheneverE+ and F+ are closed (by
the results from §7.7), so the question is whether or not the projective and injective
cones are equal.

Let E and F be �nite-dimensional spaces, and letE+ � E , F+ � F be closed,
proper and generating convex cones. We say thatE+ is a simplex cone(or Yudin cone)
if it is generated by a basis (or equivalently, if there is a linear isomorphismE �= Rn

that identi�es E+ with the standard cone Rn
� 0).

In the 1970s, Barker showed thatE+ 
 � F+ = E+ 
 " F+ wheneverE+ or F+ is
a simplex cone [Bar76], and conversely conjectured thatE+ or F+ must be a simplex
cone wheneverE+ 
 � F+ = E+ 
 " F+ [Bar81, p. 277]. His conjecture remained open
for a very long time, but partial results were obtained by Barker and Loewy [BL75,
Prop. 3.1], who proved the conjecture whenF+ = E �

+ , and by Poole [Poo75, Thm.
5.15], who proved it whenE+ and F+ are polyhedral. More recently, Huber and Netzer
[HN21] proved the conjecture whenE+ is a positive semide�nite cone andF+ is a
polyhedral cone (or vice versa).

In Chapter 13, we prove Barker's conjecture for nearly all6 pairs (E+ ; F+ ) of
closed, proper and generating cones in �nite-dimensional spaces. Recall that a closed,
proper and generating convex cone is calledstrictly convex if every non-zero boundary
point is an extremal direction, and smooth if every non-zero boundary point has
exactly one supporting hyperplane. It is well-known that E+ is strictly convex if and
only if E �

+ is smooth, and vice versa. We prove Barker's conjecture in the case that
dim(E) � dim(F ) and E+ is smooth or strictly convex.

Theorem J. Let E , F be �nite -dimensional real vector spaces, and letE+ � E ,
F+ � F be closed, proper, and generating convex cones. Ifdim(E) � dim(F ), and if
E+ is strictly convex or smooth, then one hasE+ 
 � F+ = E+ 
 " F+ if and only if
F+ is a simplex cone.

The set of convex bodies inRn which are not smooth or strictly convex is meagre
in the Hausdor� metric [ Kle59], and even satis�es the stronger notion of \� -porosity"
[Zam87]. As such, Theorem J shows that the projective and injective cone di�er for
nearly all6 pairs of closed, proper, and generating cones (E+ ; F+ ).

The proof of Theorem J will be given in §13.3.
Although Theorem J covers nearly all cones, it does not cover most standard cones.

For instance, polyhedral cones and positive semide�nite cones (and their duals) have
many non-trivial faces, so they are not smooth or strictly convex. We complement
Theorem J with a similar result for combinations of standard cones.

6The term `nearly all' has a precise meaning (namely, up to a � -porous set); see for instance
[Zam87].
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Theorem K. Let E , F be �nite -dimensional real vector spaces, and letE+ � E ,
F+ � F be closed, proper, and generating convex cones. Assume that each ofE+ and
F+ is one of the following(all combinations allowed):

(i) a polyhedral cone;

(ii) a second-order cone;

(iii) a (real or complex) positive semide�nite cone.

Then one hasE+ 
 � F+ = E+ 
 " F+ if and only if at least one of E+ and F+ is a
simplex cone.

Using retracts, Theorem K could already be deduced from the aforementioned
known results of Poole [Poo75, Thm. 5.15] and Huber and Netzer [HN21]. We give a
new proof of Theorem K, thereby also providing new proofs of the results of Poole
and of Huber and Netzer.

The proof of Theorem K will be given in §13.4.

Remark L. As the manuscript [Dob20b] that forms the basis for Part III of this
dissertation was being written, the preceding results were superseded by independent
work of Aubrun, Lami, Palazuelos and Pl�avala [ALPP21]. Motivated by questions in
theoretical physics, they proved that E+ 
 � F+ = E+ 
 " F+ if and only if at least
one of E+ and F+ is a simplex cone (provided that E+ and F+ are closed, proper,
and generating). Both Theorem J and Theorem K are special cases of this result.

The proofs in Part III of this dissertation were discovered independently around the
same time, and our proofs di�er signi�cantly from the proof in [ ALPP21]. Although
we recover their result for nearly all cones, we have not been able to recover it in full
generality.

Applications to operator systems

The recent resurgence of interest in the question of whether or notE+ 
 � F+ =
E+ 
 " F+ is due in part to recent developments in the study of operator systems
[FNT17, HN21]. Reformulated in terms of operator systems (using notation from
[FNT17]), our results prove the following.

Corollary M. Let C � Rd be a closed, proper, and generating convex cone. Ifd � 4,
or if C is strictly convex, or smooth, or polyhedral, or (real or complex) positive
semide�nite, then the following are equivalent:

(i) C is a simplex cone;

(ii) the minimal and maximal operator systems Cmin and Cmax are equal;

(iii) there exists n � 2 for which Cmin
n = Cmax

n ;

(iv) one has Cmin
2 = Cmax

2 .
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Again, Corollary M was superseded by the work of Aubrun, Lami, Palazuelos
and Pl�avala [ ALPP21], who removed the additional assumptions on the coneC (see
Remark L).

The proof of Corollary M will be given in §13.4.

7.9 Appendix: faces and ideals

The main body of Part III is complemented by an appendix on faces and ideals of
convex cones in in�nite-dimensional spaces. This material is not directly related to
tensor products, but will be used extensively in the proofs.

Although faces and ideals have each received a lot of attention in the literature,
the link between these concepts does not appear to be well-known. The relationship is
very simple: the map I 7! I + de�nes a surjective many-to-one correspondence between
ideals and faces (Appendix A.1). Going back and forth between faces and ideals is
crucial in our study of the faces of the projective/injective cone.

In Appendix A, we study the basic properties of faces and ideals and the connection
between the two (Appendix A.1), we outline to which extent the homomorphism and
isomorphism theorems hold (Appendix A.2), and we study dual and exposed faces in
in�nite-dimensional cones (Appendix A.3). A more detailed outline will be given at
the beginning of Appendix A.

7.10 Organization of Part III

In Chapter 8, we recall all required notation and terminology for Part III. This is
complemented by a glossary notation and an index, both of which can be found at the
end of this dissertation.

In Chapter 9, we study the properties of the projective cone. Here we prove all of the
main results for the projective cone (see§7.4{7.6), with the exception of Theorem D,
whose proof is deferred until Chapter 11.

Likewise, in Chapter 10, we study the properties of the injective cone. Here we
prove all of the main results for the injective cone (see§7.4{7.6).

In Chapter 11, we study the basic properties of the so-called `reasonable crosscones'
(that is, arbitrary cones which lie somewhere between the projective and injective
cone). We show that all reasonable crosscones have the same rank 1 tensors whenever
E+ and F+ are weakly closed and proper, and we briey look at ideals and extremal
rays of reasonable crosscones. Furthermore, we study semisimplicity of reasonable
crosscones, and we give a proof of Theorem D (on the semisimplicity of the projective
cone). We also look at questions surrounding semisimplicity of cones incompleted
locally convex tensor products, and we discuss how these questions are related to
topological issues and the approximation property.

In Chapter 12, we give an overview of the most important additional properties in
the �nite-dimensional setting (see §7.7). Building on this, in Chapter 13, we give many
(�nite-dimensional) examples where the projective and injective cone are di�erent (see
§7.8).

In Chapter 14, we discuss a few open problems related to Part III.



104 7. Outline of Part III

Finally, in Appendix A, we discuss the relation between faces and order ideals.
These results are not very well known, and will be used extensively in the main body
of Part III, so we have included them for completeness.



Chapter 8

Preliminaries for Part III

This chapter covers the prerequisites for Part III, including: topological vector
spaces, dual pairs, convex cones, and ordered vector spaces.

This chapter is based on Chapter 2 of [Dob20b].

Introduction

In Part III, we study tensor products of convex conesE+ ; F+ in real vector spaces
E; F . Occasionally, E and F will be topological vector spaces, but usually they are
only assumed to be the primal spaces of the dual pairshE; E 0i , hF; F 0i . In this chapter,
we cover the necessary terminology and notation for Part III. This is complemented
by a glossary of notation and an index, both of which can be found at the end of this
dissertation.

8.1 Topological vector spaces

Throughout Part III, all vector spaces are over R.
If E is a vector space, then a linear mapE ! R is called a linear functional . The

algebraic dual spaceE � of E is the space of all linear functionalsE ! R.
A topological vector spaceis a vector spaceE equipped with a topology T such

that the map E � E ! E , (x; y) 7! x + y and the map R � E ! E , (�; x ) 7! �x
are (jointly) continuous with respect to T. If E is a topological vector space, then its
topological dual spaceE 0 is the space of all continuous linear functionalsE ! R. It is
a subspace of the algebraic dual, but usually the two are di�erent.

A topological vector space islocally convex if it has a neighbourhood base at 0
consisting of convex sets. Locally convex spaces are more well-behaved than general
topological vector spaces, and almost all important spaces in functional analysis are
locally convex. For more on locally convex spaces, the reader is referred to a graduate
level textbook on functional analysis, for instance [Sch99, Rud91, Con07].

Dual pairs and weak topologies

Let E and F be vector spaces, and letb : E � F ! R be a bilinear form. We say that
a subsetN � F separates points onE (via b) if for every x 2 E there is somey0 2 N

105
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such that b(x; y0) 6= 0. Likewise, a subsetM � E separates points onF (via b) if for
every y 2 F there is somex0 2 M such that b(x0; y) 6= 0. If F separates points on
E and E separates points onF , then b is called a dual pairing (or non-degenerate
bilinear form ), and we denote it by the shorthand notation hx; yi := b(x; y). A dual
pair is a tuple (E; F; h �; � i ), where E and F are vector spaces andh �; � i : E � F ! R
is a dual pairing. We usually use the shorthand notationhE; F i to denote the dual
pair (E; F; h �; � i ).

Let hE; F i be a dual pair. The � (E; F )-topology on E is the initial topology induced
by the family of linear functionals f x 7! hx; yi : y 2 F g, and the � (F; E )-topology on F
is the initial topology induced by the family of linear functionals f y 7! hx; yi : x 2 Eg.
If F = E 0 is the topological dual of E , then the � (E; E 0)-topology on E is called the
weak topology, and the � (E 0; E )-topology on E 0 is called the weak-� topology. In this
case, we denote the resulting topological vector spaces byEw and E 0

w� , respectively.
Likewise, the weak closure of a subsetM � E will be denoted M

w
, and the weak-�

closure of a subsetN � E 0 will be denoted N
w�

.
Throughout Part III, we tacitly assume that all dual pairs consist of a topological

vector space and its topological dual space (or algebraic dual space, if the primal space
has no topology). Consequently, by a slight abuse of notation, we denote our dual
pairs ashE; E 0i , hF; F 0i , etc., and we say that E belongs to the dual pairhE; E 0i . To
keep the topological prerequisites to a minimum, we will forget about the original
topology of E , and only remember the dual pair hE; E 0i to which E belongs. WhenE
has no topology, we tacitly assume thatE 0 := E � is the algebraic dual.

Linear maps

If E and F are vector spaces, then the space of linear mapsE ! F is denoted by
L(E; F ). If E and F are topological vector spaces, then the space ofcontinuous linear
maps E ! F is denoted byL(E; F ). If the (topological) duals separate points, then
every continuous mapE ! F is also weakly continuous (see e.g. [K•ot83 , §20.4.(5)]),
so we have

L(E; F ) � L(Ew ; Fw ) � L(E; F ):

If E and F are vector spaces without topologies, then every linear mapT : E ! F is
� (E; E � )-� (F; F � )-continuous (since � T is � (E; E � )-continuous for every  2 F � ),
so we have

L(Ew ; Fw ) = L( E; F ) (if E 0 = E � , F 0 = F � ):

The adjoint of a (continuous) linear map T : E ! F is denoted T � : F � ! E �

(algebraic adjoint) or T0 : F 0 ! E 0 (topological adjoint).

Bilinear maps

Let E; F; G be topological vector spaces. A bilinear mapb : E � F ! G is (jointly )
continuous if it is continuous with respect to the product topology on E � F , and
separately continuousif for all �xed x0 2 E and y0 2 F the maps y 7! b(x0; y) and
x 7! b(x; y0) are continuous.
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From left to right, let

B i`(E � F ) � Bil (E � F ) � Bil( E � F )

denote the spaces of continuous, separately continuous, and all bilinear formsE � F !
R.1

For our purposes, the most important of these isBil (E � F ), the space of separately
continuous bilinear forms. It will be used extensively in the study of the injective cone
in Chapter 10.

Given a bilinear form b 2 Bil (E � F ) and �xed vectors x0 2 E, y0 2 F , we let
b(x0; � ) 2 F � and b( � ; y0) 2 E � denote the linear functionals

b(x0; � ) :=
�
y 7! b(x0; y)

�
;

b( � ; y0) :=
�
x 7! b(x; y0)

�
:

Using this notation, we see that b is separately continuous if and only if one has
b(x0; � ) 2 F 0 for all x0 2 E and b( � ; y0) 2 E 0 for all y0 2 F . In particular, it follows
that Bil (E � F ) does not depend on the topologies ofE and F , but only on the dual
pairs hE; E 0i , hF; F 0i . Likewise, it follows that Bil (E � F ) = Bil (E � F ) whenever
E 0 = E � and F 0 = F � .

It follows from [ K•ot79 , §40.1.(2')] and the preceding remarks that the maps
b 7! (x 7! b(x; � )) and b 7! (y 7! b( � ; y)) de�ne linear isomorphisms

Bil (E � F ) = Bil (Ew � Fw ) �= L(Ew ; F 0
w� ) �= L(Fw ; E 0

w� ):

(The isomorphism L(Ew ; F 0
w� ) �= L(Fw ; E 0

w� ) is simply T 7! T0.)

Tensor products

We assume the reader to be familiar with the basics of the (algebraic) theory of tensor
products. We will need very little on the side of topological tensor products (but many
results in Part III are inspired by the theory of normed tensor products).

For clarity, we shall occasionally use the following notation: if E and F are vector
spaces andM � E and N � F are subsets, then we de�ne the \set-wise" tensor
product

M 
 s N := f x 
 y : x 2 M; y 2 N g � E 
 F:

8.2 Subspaces, quotients, and tensor products of dual pairs

Many of the properties of a convex coneE+ in topological vector spaceE depend only
on the geometry ofE+ and on the dual pair hE; E 0i , not on the precise topology ofE .
In particular, we don't need to know the exact topology of E 
 F , because for our
purposes it su�ces to know what its dual space is. This enables us to ignore topological
issues in the tensor product, thereby circumventing the notoriously complicated theory

1Note: with this notation it is possible to confuse B i`(E � F ) with Bil (E � F ), but notation like
this appears to be at least moderately common (e.g. [Sch99, p. 91], [K•ot79, p. 154]).
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of locally convex tensor products. Instead, we formulate our results for a wide range
of reasonableduals of E 
 F (see below).

Throughout Part III, we encode the \input spaces" E and F and the \output space"
E 
 F by the dual pairs to which they belong; that is, by only remembering what the
appropriate (algebraic or topological) dual space is, without remembering the exact
topology. In this section, we briey discuss how to handle subspaces, quotients, and
tensor products of dual pairs.

Questions about the projective/injective cone that depend not only on the dual
pair, but also on a speci�c topology on E 
 F , will not be treated in this dissertation.
In particular, for questions about normality of the projective/injective cone, we refer
the reader to [PS69].

Remark 8.1. Because we choose to forget about the topology ofE and only formulate
results in terms of the dual pair hE; E 0i , we occasionally have to make use of the
weak topology. In particular, we often refer to the weak closureof a convex cone and
to weakly closedsubspaces. We should point out that the adjective \weak" can be
omitted here if E is a locally convex space, because in this setting the weak and
original closure of a convex set (in particular, a convex cone or a subspace) coincide,
by [Rud91, Theorem 3.12].

If E is a topological vector space which is not locally convex, then the adjective
\weak" cannot be omitted.

Subspaces

If hE; E 0i is a dual pair and if I � E is a subspace, then we will understandI to
belong to the dual pair hI; E 0=I ? i .

We show that this is usually, but not always, the natural dual pair for I . To that
end, assume thatE a topological vector space,E 0 is its (topological) dual, and I
carries the subspace topology. LetT : I ,! E denote the inclusion andT0 : E 0 ! I 0

its adjoint.
If E is locally convex, then every continuous linear functional onI can be extended

to E , so T0 is surjective. Clearly ker(T0) = I ? , so T0 restricts to a linear isomorphism
E 0=I ? ! I 0. Furthermore, the relative � (E; E 0)-topology on I coincides with the
� (I; E 0=I ? )-topology (even if I is not closed), so we may unambiguously refer to this
as the weak topology onI . On the other hand, the � (E 0=I ? ; I )-topology on E 0=I ? = I 0

coincides with the quotient topology E 0
w� =I ? if and only if I is closed (see e.g. [Sch99,

§IV.4.1, Corollary 1]).
If E is not locally convex, then I may have continuous linear functionals that

cannot be extended. In this case one still hasker(T0) = I ? , but T0 is not surjective,
so I 0 6= E 0=I ? . Nevertheless,E 0=I ? is the dual of I with respect to the relative
� (E; E 0)-topology on I .

Quotients

If E is a topological vector space and ifI � E is a closed subspace, thenE=I is
a Hausdor� topological vector space. Every continuous linear functionalE=I ! R



8.2. Subspaces, quotients, and tensor products of dual pairs 109

extends to a continuous linear functionalE ! R that vanishes on I . Conversely, if
' : E ! R is a continuous linear functional that vanishes onI , then ' factors through
E=I , by the universal property of quotients. Therefore: (E=I )0 �= I ? as vector spaces.

Thus, if hE; E 0i is a dual pair and if I � E is a weakly closed subspace, then we can
understand E=I to belong to the dual pair hE=I; I ? i . The quotient topology on Ew =I
coincides with the � (E=I; I ? )-topology, and the subspace topology onI ? � E 0

w�
coincides with the � (I ? ; E=I )-topology (see e.g. [Sch99, §IV.4.1, Corollary 1]), so
we may unambiguously refer to these as the weak topology onE=I and the weak-�
topology on I ? , respectively.

The only downside to this approach is that we cannot \see" all quotients ofE . If
E is locally convex, then every closed subspace is also weakly closed, but this is not
true for general topological vector spaces (see e.g. [Kal78]). However, if I is closed
but not weakly closed, then the quotient E=I is Hausdor�, but its topological dual
(E=I )0 = I ? does not separate points. Throughout this dissertation, we assume that
all duals separate points, so we only consider quotientsE=I where I is weakly closed.

Tensor products

Let hE; E 0i and hF; F 0i be dual pairs. Recall from§8.1 that the spaceBil (E � F ) of
separately continuous bilinear formsE � F ! R can be de�ned without specifying
topologies onE and F , since this space depends only on the dual pairshE; E 0i and
hF; F 0i . Since the algebraic dual ofE 
 F is isomorphic with Bil (E � F ), we can
identify Bil (E � F ) with a subspace of (E 
 F ) � . We say that a subspaceG � (E 
 F ) �

is a reasonable dual ofE 
 F (with respect to the dual pairs hE; E 0i , hF; F 0i ) if

E 0 
 F 0 � G � Bil (E � F ):

This de�nition will allow us to treat (duality of) convex cones in topological tensor
products without having to deal with the speci�cs of topological tensor products.

We show that this de�nition covers all important cases. First, if E; F are locally
convex andE 
 F carries acompatibletopology � (in the sense of Grothendieck [Gro55,
p. 89]; see also [K•ot79 , §44.1]), then we claim that the topological dual (E 
 � F )0 is
a reasonable dual ofE 
 F . Indeed, one of the requirements for� to be compatible
is E 0 
 F 0 � (E 
 � F )0. Moreover, every compatible topology is coarser than the
inductive topology, whose dual isBil (E � F ) (see e.g. [K•ot79 , §44.1.(5)]), so one has
(E 
 � F )0 � Bil (E � F ). This shows that (E 
 � F )0 is a reasonable dual.

Second, ifE and F originate from spaces without topologies, then we understand
these to belong to the dual pairshE; E � i , hF; F � i . In this case we haveBil (E � F ) =
Bil (E � F ) (see§8.1), so we �nd that ( E 
 F ) � = Bil (E � F ) is a reasonable dual of
E 
 F . This is useful when applying topological results in the non-topological setting
(for instance, see Corollary 9.4).
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8.3 Ordered vector spaces

Convex cones and their duals

Let E be a (real) vector space. Aconvex cone2 is a non-empty subsetK � E satisfying
K + K � K and � K � K for all � 2 R� 0. If K is a convex cone, thenlin (K) := K \ �K
is a linear subspace ofE , called the lineality space of K. We say that K is proper 3 if
lin( K) = f 0g, and generating if K � K = E.

If K � E is a convex cone, then itsalgebraic dual coneK � is the set of all positive
linear functionals:

K � :=
�

' 2 E � : ' (x) � 0 for all x 2 K
	

:

If hE; E 0i is a dual pair, then we de�ne K0 := K � \ E 0 (the dual conefor the dual pair
hE; E 0i ). The dual cone ofK0 � E 0 with respect to the dual pair hE 0; E i is the bipolar
cone

K00:=
�

x 2 E : hx; ' i � 0 for all ' 2 K 0	 = ( K0)0:4

Using the (one-sided) bipolar theorem, one easily shows thatK00= K
w

. It follows that
? (K0) = K00\ �K 00= lin (K

w
). In particular, K

w
is a proper cone if and only ifK0

separates the points ofE . If this is the case, then we say thatK is semisimple. (For
an equivalent de�nition of semisimplicity in terms of representations, see [Dob20a].)

Ordered vector spaces

Let E be a vector space. Avector preorder is a preorder � on E such that for all
x; y; z 2 E and � 2 R> 0 one hasx � y if and only if x + z � y + z if and only if
�x � �y .

There is a natural bijective correspondence between vector preorders onE and
convex cones inE , which identi�es the preorder � with the convex coneE+ := f x 2
E : x � 0g of positive elements ofE . In the reverse direction, a convex coneK � E is
identi�ed with the vector preorder � K given by x � K y if and only if y � x 2 K (for
all x; y 2 E).

A preordered vector spaceis a tuple (E; E + ) where E is a vector space andE+ � E
is a convex cone. We understandE to be preordered by the vector preorder associated
with E+ . Likewise, a preordered topological vector spaceis a tuple (E; E + ), where E is
a topological vector space andE+ � E is a convex cone. Note that we do not assume
any kind of compatibility between the topology and the coneE+ .

The positive coneE+ of a preordered (topological) vector spaceE is proper if and
only if the associated vector preorder is antisymmetric (so it is a partial order). If this
is the case, then (E; E + ) is called an ordered (topological) vector space.

2A note about terminology: some authors call this a wedge, and reserve the term cone for what
we call a proper cone (e.g. [Day62, Per67, AT07]).

3Some authors call this pointed or salient .
4There is some chance of confusion here, becauseK 00 could also refer to the positive cone of the

second dual E 00 of E . To avoid this confusion, and in light of the bipolar theorem, we will henceforth
refer to the bipolar cone as K

w
instead of K 00.
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Whenever we have a (topological) vector spaceE and a convex coneE+ � E , we
will implicitly assume that E is a preordered (topological) vector space with positive
coneE+ . Furthermore, the preorder of E will be denoted by � .

Positive linear maps

Let (E; E + ) and (F; F+ ) be preordered vector spaces. We say that a linear mapT 2
L(E; F ) is positive if T [E+ ] � F+ , a pullback (or bipositive operator) if E+ = T � 1[F+ ],
and a pushforward if T [E+ ] = F+ .

Furthermore, if E and F belong to dual pairs hE; E 0i and hF; F 0i , then we say that
an operatorT 2 L(Ew ; Fw ) is approximately positiveif T [E+

w
] � F+

w
, an approximate

pullback (or approximately bipositive) if E+
w

= T � 1[F+
w

], and an approximate
pushforward if T [E+ ]

w
= F+

w
. A continuous positive map (resp. pushforward) is

also approximately positive (resp. an approximate pushforward), but a pullback
is not necessarily an approximate pullback. (Concrete example: letF = R2 with
F+ = f (x; y) : x > 0g [ f (0; 0)g, let E := spanf (0; 1)g � F with F+ := F+ \ E , and
let T be the inclusion E ,! F .)

These approximate type operators are not particularly natural from the perspective
of ordered vector spaces, but they come into play as soon as one starts to make
use of duality. Given T 2 L(Ew ; Fw ), it is not hard to show that the adjoint T0 2
L(F 0

w� ; E 0
w� ) is positive if and only if T is approximately positive. In addition, using

that ( T[C]) � = ( T0) � 1[C � ] (e.g. [Sch99, Proposition IV.2.3(a)]), it is easy to show that
T is an approximate pullback if and only if T0 is a weak-� approximate pushforward,
and vice versa. This is no longer true if the adjective \approximate" is omitted.

We shall treat pullbacks and pushforwards as the natural ordered analogues of
metric injections (isometries) and metric surjections (quotients); see Table 8.2. As soon
as duality comes into play, it will be helpful to pass to the corresponding approximate
versions. In particular, we show that the injective cone preserves approximate pullbacks,
but not all pullbacks.

Note that every linear map E ! F can be made a pullback/pushforward by
choosing appropriate cones. In particular, a pullback is not necessarily injective, and
a pushforward is not necessarily surjective. However, ifE+ is a proper cone, then
every pullback T : E ! F is injective (since ker(T) � T � 1[F+ ] = E+ ), and if F+ is
generating then every pushforwardE ! F is surjective.

Table 8.2: Ordered analogues of common concepts in the normed theory.

Normed theory Ordered theory

Continuous operator Positive operator

Metric injection (isometry) Pullback (bipositive operator)

Metric surjection (quotient) Pushforward (quotient)

Projection (complemented subspace) Positive projection (order retract)
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Retracts

Let (E; E + ) be a preordered vector space. A subspaceF � E is an order retract if
there exists a positive projection E ! F . If E is furthermore a topological vector
space, then we say thatF is a topological order retract if there exists a continuous
positive projection E ! F .

For simplicity, we shall speak of retracts and top-retracts, as there is minimal
chance of confusion with other types of retracts (e.g. from topology).

Note that a retract provides at the same time an injective pullback (i.e. bipositive
map) F ,! E and a surjective pushforward (\quotient") E � F . We will show that,
although the projective tensor product does not preserve bipositive maps and the
injective tensor product does not preserve quotients, retracts are su�ciently rigid to
be preserved by both.

To illustrate their place in the theory, note that every top-retract is a complemented
subspace (after all, it admits a continuous projection5). If E+ = f 0g, then the top-
retracts are precisely the complemented subspaces.

As far as we know, order retracts are not a very common notion, and have not
received much attention. However, some special cases already play a role in the theory,
such asprojection bands in Riesz spaces (see e.g. [Zaa97, §11]) and projectionally
exposed facesin �nite-dimensional cones (see e.g. [BLP87, ST90]).

Positive bilinear maps

If ( E; E + ), (F; F+ ), (G; G+ ) are preordered vector spaces, then a bilinear mapb :
E � F ! G is called positive if b(E+ ; F+ ) � G+ .

In terms of the isomorphism Bil (Ew � Fw ) �= L(Ew ; F 0
w� ) (see§8.1), we note that a

bilinear form b 2 Bil (Ew � Fw ) is positive if and only if b(x; � ) de�nes a positive linear
functional on F for every x 2 E+ , or equivalently, if and only if the corresponding map
Ew ! F 0

w� is positive. Thus, contrary to the topological setting, there is no di�erence
between positive and \separately positive" bilinear forms.

Faces and extremal rays

Let E be a vector space and letE+ � E be a convex cone. Aface (or extremal set)
of E+ is a (possibly empty) convex subsetM � E+ such that, if M contains a point
in the relative interior of a line segment in E+ , then M also contains the endpoints
of that segment. If ' is a continuous positive linear functional, then ker(' ) \ E+ is a
face. Faces of this type are calledexposed.

Every convex cone has a unique minimal non-empty face (the lineality spacelin (E+ ),
contained in every face) and a unique maximal face (the cone itself, containing every
face). Note that E+ is a proper cone if and only if f 0g is a face.

Let x0 2 E+ n f 0g. If M := f �x 0 : � 2 R� 0g is a face, then we say thatx0 is an
extremal direction, and M is an extremal ray. If x0 is an extremal direction, then so

5Some authors require a complemented subspace to be closed, but this is automatic: if P : E ! E
is a continuous projection with range F , then F = ker(id E � P ), so F is closed.
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is �x 0 for every � > 0. We let rext(E+ ) � E+ n f 0g denote the set of all extremal
directions of E+ .

If M � E+ is a non-empty subset, thenE 0
+ \ M ? de�nes a face ofE 0

+ . Faces of
this type are called dual faces. In the �nite -dimensional case, dual faces are precisely
the exposed faces, but this is not true in locally convex spaces. For more on dual and
exposed faces, see Appendix A.3.

Order ideals

Let (E; E + ) be a preordered vector space. A subspaceI � E is called anorder ideal
if the pushforward of E+ along the quotient map E ! E=I is a proper cone. If no
ambiguity can arise (i.e. if the space does not carry a multiplication), then we callI
simply an ideal.

A subspaceI � E is an ideal if and only if I \ E+ is a face ofE+ (see Propo-
sition A.2). Conversely, if M � E+ is a face, thenspan(M ) is an ideal satisfying
span(M ) \ E+ = M (see Proposition A.3). Thus, I 7! I + de�nes a many-to-one corre-
spondence between ideals and faces. We shall draw heavily upon this correspondence.

If K � E+ is a subcone, then every idealI � E with respect to E+ is also an ideal
with respect to K. More generally, if T : E ! F is a positive linear map and if J � F
is an ideal, then T � 1[J ] � E is also an ideal (see Proposition A.3). In particular, if F+

is a proper cone, thenf 0g � F+ is a face, soker(T) \ E+ is a face ofE+ . It can be
shown that all faces can be written in this form (see Proposition A.4(b)).

We will show in Corollary A.12 that the maximal order ideals are precisely the
kernels of non-zero positive linear functionals, or in other words, the supporting hyper-
planes ofE+ . In particular, not every maximal ideal in a preordered topological vector
space is closed. (Example: the kernel of a discontinuous positive linear functional.)

For more about ideals and faces, see Appendix A and [Bon54].
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Chapter 9

The projective cone

In this chapter, we carry out an in-depth study of the properties of the
projective cone. This cone does not depend on any topological data, so we will
mostly ignore topological issues in this chapter. Some questions about the closure
of the projective cone will briey be discussed in Chapter 11.

This chapter is based on Chapter 3 of [Dob20b].

Introduction

Let E; F be (real) vector spaces and letE+ � E , F+ � F be convex cones. The
simplest way to de�ne a cone inE 
 F is to consider theprojective cone

E+ 
 � F+ :=

(
kX

i =1

x i 
 yi : k 2 N; x1; : : : ; xk 2 E+ ; y1; : : : ; yk 2 F+

)

:

If E; F are locally convex and if � is a compatible locally convex topology onE 
 F ,
then we denote byE+ 
 �

� F+ and E+ ~
 �
� F+ the same cone, but embedded in the

topological vector spacesE 
 � F and E ~
 � F , respectively. (The topology is denoted
in the subscript; the cone in the superscript.)

It is easy to see thatE+ 
 � F+ is indeed a (convex) cone. This cone has received a
lot of attention in the literature; see for instance [Mer64, PS69, GL88, GK10, Wor19].

In the subsequent sections, we will study the basic properties of the projective cone.
We point out a characteristic property of the projective cone (§9.1), study its mapping
properties (§9.2), prove precise necessary and su�cient conditions forE+ 
 � F+ to
be proper (§9.3), and show that the projective tensor product of two faces is again a
face (§9.4, §9.5). Finally, as an application of the results from this section, we prove
that the tensor product of absolutely convex sets also preserves faces (§9.6).

9.1 The characteristic property of the projective cone

Let E; F; G be vector spaces equipped with convex conesE+ � E , F+ � F , G+ � G.
There is a natural isomorphismBil (E � F; G) �= L(E 
 F; G), which identi�es a bilinear
map � : E � F ! G with its linearization � L : E 
 F ! G, � L (

P k
i =1 x i 
 yi ) =

P k
i =1 �( x i ; yi ).

115
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Proposition 9.1. If E 
 F is equipped with the projective coneE+ 
 � F+ , then a
linear map � L : E 
 F ! G is positive if and only if its corresponding bilinear map
� : E � F ! G is positive.

Proof. A bilinear map � : E � F ! G is positive if and only if � L (x 
 y) = �( x; y) � 0
for all x 2 E+ , y 2 F+ . On the other hand, sinceE+ 
 � F+ is generated byE+ 
 F+ ,
we also �nd that a linear map � L : E 
 F ! G is positive if and only if � L (x 
 y) � 0
for all x 2 E+ , y 2 F+ . �

This is the ordered analogue of the characteristic property of the projective topology.
It follows that

(E+ 
 � F+ ) � = Bil( E � F )+ (E; F vector spaces);

(E+ 
 �
� F+ )0 = ( E+ ~
 �

� F+ )0 = B i`(E � F )+ (E; F locally convex):

9.2 Mapping properties of the projective cone

The projective norm preserves continuous linear maps, quotients, and complemented
subspaces (see e.g. [DF93, Propositions 3.2, 3.8, and 3.9(1)], or [K•ot79 , §41.5] for
the more general locally convex setting). The projective cone has analogous mapping
properties.

Proposition 9.2. Let T 2 L(E; G) and S 2 L(F; H ).

(a) If T [E+ ] � G+ and S[F+ ] � H+ , then (T 
 S)[E+ 
 � F+ ] � G+ 
 � H+ .

(b) If T [E+ ] = G+ and S[F+ ] = H+ , then (T 
 S)[E+ 
 � F+ ] = G+ 
 � H+ .

(c) If (E; E + ) and (F; F+ ) are retracts of (G; G+ ) and (H; H + ), respectively, then
(E 
 F; E+ 
 � F+ ) is a retract of (G 
 H; E + 
 � F+ ).

In summary: the projective cone preserves positive linear maps, pushforwards, and
retracts.

It follows immediately that the same statements hold for maps between the
completions (in the locally convex case), for the projective cone is contained in the
algebraic tensor product.

Proof.

(a) Let z 2 E+ 
 � F+ be given, and write z =
P k

i =1 x i 
 yi with x1; : : : ; xk 2 E+ ,
y1; : : : ; yk 2 F+ . Then we have (T 
 S)(z) =

P k
i =1 T(x i ) 
 S(yi ) 2 G+ 
 � H+ ,

sinceT(x1); : : : ; T(xk ) 2 G+ , S(y1); : : : ; S(yk ) 2 H+ .

(b) By (a), T 
 S is positive. Now let u 2 G+ 
 � H+ be given, and write u =
P k

i =1 vi 
 wi with v1; : : : ; vk 2 G+ and w1; : : : ; wk 2 H+ . By assumption there
are x1; : : : ; xk 2 E+ , y1; : : : ; yk 2 F+ such that vi = T(x i ) and wi = S(yi ), for
all i . Consequently, we havez :=

P k
i =1 x i 
 yi 2 E+ 
 � F+ , and u = ( T 
 S)(z).
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(c) There are positive linear mapsT1; T2; S1; S2 so that the following two diagrams
commute:

G H

E E; F F:

T2 S2T1

id E

S1

id F

Consequently, the following diagram commutes:

G 
 H

E 
 F E 
 F:

T2 
 S2T1 
 S1

id E 
 id F

By (a), the maps in the preceding diagram are all positive for the projective cone,
so it follows that ( E 
 F; E+ 
 � F+ ) is a retract of (G 
 H; G+ 
 � H+ ). �

Next, we prove that the projective tensor product also preserves approximate
pushforwards: if T and S are maps whose adjoints are bipositive, then the same is
true of T 
 S.

Lemma 9.3. Let hE; E 0i , hF; F 0i , hG; G0i , hH; H 0i be dual pairs, and letE+ ; F+ ,
G+ ; H+ be convex cones in the primal spaces. IfT 2 L(Ew ; Gw ) and S 2 L(Fw ; Hw )
are approximate pushforwards, then the map(T 
 S)0 : Bil (Gw � Hw ) ! Bil (Ew � Fw ),
((T 
 S)0b)(x; y) = b(Tx; Sy) is bipositive.

Here (T 
 S)0 denotes the adjoint ofT 
 S : E 
 F ! G 
 H , assuming that E 
 F
and G 
 H are equipped with the largest reasonable duals (see§8.2).

Proof. Note that ( T 
 S)0b is a positive bilinear functional on E � F if and only if b
is positive on T[E+ ] � S[F+ ], so if b is separately weakly continuous, then this is the
case if and only if b is positive on T[E+ ]

w
� S[F+ ]

w
. (First use weak continuity in

the second variable to pass fromT[E+ ] � S[F+ ] to T[E+ ] � S[F+ ]
w

, then use weak
continuity in the �rst variable to proceed to T[E+ ]

w
� S[F+ ]

w
.) Analogously, b itself

is a positive bilinear functional on G � H if and only if b is positive on G+
w

� H+
w

.
By assumption, we haveT[E+ ]

w
= G+

w
and S[F+ ]

w
= H+

w
, so it follows that b is

positive if and only if ( T 
 S)0b is positive. �

The preceding lemma has immediate applications to algebraic tensor products (of
vector spaces without topologies) and to completed locally convex topologies. It will
also be used to prove one of the fundamental properties of the injective cone (see
Lemma 10.15(b)).

Corollary 9.4. Let E; F; G; H be preordered vector spaces, and letT 2 L(E; G), S 2
L(F; H ) be linear maps such thatT � and S� are bipositive. Then (T 
 S) � is bipositive
with respect to the dual cones(E+ 
 � F+ ) � � (E 
 F ) � ; (G+ 
 � H+ ) � � (G 
 H ) � .
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Proof. If we understand the primal spaces to belong to the dual pairshE; E � i , . . . ,
hH; H � i , then every linear map is weakly continuous. Furthermore, (E 
 F ) � =
Bil (E � F ) = Bil (Ew � Fw ), and the positive cone ofBil (Ew � Fw )+ coincides with
the dual cone (E+ 
 � F+ ) � � (E 
 F ) � , by Proposition 9.1. Hence the result is a
special case of Lemma 9.3. �

Corollary 9.5. Let E; F; G; H be locally convex preordered topological vector spaces
and let T 2 L(E; G) and S 2 L(F; H ) be approximate pushforwards. IfT 
 � ! � S :
E 
 � F ! G 
 � H is continuous (� and � compatible locally convex topologies), then
T 
 � ! � S and T ~
 � ! � S are approximate pushforwards.

Proof. Every continuous linear map is also weakly continuous (see [K•ot83 , §20.4.(5)]),
so we haveT 2 L(Ew ; Gw ) and S 2 L(Fw ; Hw ). Furthermore, since � and � are
compatible topologies, we have (E 
 � F )0 � Bil (E � F ) = Bil (Ew � Fw ) and
(G 
 � H )0 � Bil (F � H ) = Bil (Fw � Hw ). It follows that ( T 
 � ! � S)0 is a restriction
of the map (T 
 S)0 from Lemma 9.3, and therefore it is also bipositive. For the
completion, note that (T ~
 � ! � S)0 = ( T 
 � ! � S)0. �

Interestingly, Corollary 9.4 uses topological techniques to prove a purely algebraic
result. We don't know a purely algebraic proof of Corollary 9.4.

Finally, we show that the projective tensor product does not preserve bipositive
maps, even if all spaces are �nite-dimensional and all cones are closed and generating
(Example 9.6), or even closed, generating and proper (Example 9.7).

Example 9.6. As a very simple example, letF = G = R2 with F+ = R2 and
G+ = R2

� 0. Furthermore, let E = spanf (1; � 1)g � G, and write E+ := E \ G+ =
f 0g. Then the inclusion T : E ,! G is bipositive, but E+ 
 � F+ = f 0g whereas
G+ 
 � F+ = G
 F . SinceE 
 F 6= f 0g, we have (G+ 
 � F+ ) \ (E 
 F ) 6= E+ 
 � F+ ,
which shows that T 
 idF is not bipositive. 4

Example 9.7 (Compare [Dob22, Situation 4]) . For a more advanced example, let
E be a �nite-dimensional space equipped with a proper, generating, polyhedral cone
E+ which is not a simplex cone. Choose' 1; : : : ; ' m 2 E � such that E+ =

T m
i =1 f x 2

E : ' i (x) � 0g, and let Rm be equipped with the standard coneRm
� 0. Then the map

T : E ! Rm , x 7! (' 1(x); : : : ; ' m (x)) is bipositive.
SinceE+ is not a simplex cone, it follows from [BL75, Proposition 3.1] (see also

Theorem 13.2 below) that E+ 
 � E �
+ 6= E+ 
 " E �

+ . On the other hand, it is well-
known that Rm

� 0 
 � E �
+ = Rm

� 0 
 " E �
+ , and it follows from Theorem 10.16(b) below

that T 
 idE � is bipositive for the injective cone. Therefore:

(T 
 idE � ) � 1[Rm
� 0 
 � E �

+ ] = ( T 
 idE � ) � 1[Rm
� 0 
 " E �

+ ] = E+ 
 " E �
+ 6= E+ 
 � E �

+ :

This shows that T 
 idE � is not bipositive for the projective cone.
Note that all cones in this example are polyhedral, and therefore closed. In partic-

ular, the situation is not resolved by taking closures. 4

The �nite -dimensional techniques used in Example 9.7 will be discussed in more
detail in Chapter 12 and Chapter 13.



9.3. When is the projective cone proper? 119

Despite the preceding counterexamples, bipositivity can be preserved under certain
additional conditions. First, if E � G and F � H are retracts, then E 
 F � G 
 H is
also a retract (by Proposition 9.2(c)), so in particular the inclusion E 
 F ,! G 
 H
is bipositive. Furthermore, we prove in Proposition 9.21 that the projective cone also
preserves ideals of proper cones bipositively.

9.3 When is the projective cone proper?

There is a simple necessary and su�cient condition forE+ 
 � F+ to be proper, which
we prove in Theorem 9.10 below. This result was �rst proved (in three di�erent
ways) by Dermenjian and Saint-Raymond [DS70], and recently rediscovered by Wortel
[Wor19]. (The original proof seems to have been forgotten, and before Wortel only
special cases were known in the literature.) The proof given here is di�erent from each
of the existing proofs. Further methods of proof will be discussed in Remark 9.12.

We proceed via reduction to the �nite -dimensional case, using the following lemmas.

Lemma 9.8. A convex coneE+ � E is generating if and only if its algebraic dual
cone E �

+ is proper.

Proof. Note that E �
+ is not proper if and only if there is some' 2 E � n f 0g such

that both ' and � ' are positive linear functionals, or equivalently, ' (x) = 0 for all
x 2 E+ . This is in turn equivalent to E+ being contained in a (linear) hyperplane,
which happens if and only if E+ is not generating. �

Corollary 9.9. If E is �nite -dimensional, then a closed convex coneE+ � E is
proper if and only if its dual cone E �

+ is generating.

Proof. Set F := E � and F+ := E �
+ . Under the canonical isomorphismE �= E �� , we

have F �
+ = E+ , by the bipolar theorem (here we use thatE+ is closed). The result

follows from Lemma 9.8, applied to the coneF+ � F . �

We are now ready to state and prove the main result of this section.

Theorem 9.10 (cf. [DS70]). Let E and F be vector spaces with convex conesE+ � E ,
F+ � F . Then the projective coneE+ 
 � F+ is proper if and only if E+ = f 0g, or
F+ = f 0g, or both E+ and F+ are proper.

Proof. Suppose �rst that E+ ; F+ 6= f 0g and E+ is not proper. Then we may choose
x 2 E n f 0g such that x; � x 2 E+ , and y 2 F+ n f 0g. Both x 
 y and � x 
 y belong
to E+ 
 � F+ , but we have x 
 y 6= 0, so we see thatE+ 
 � F+ is not a proper cone.

For the converse, ifE+ = f 0g, then E+ 
 � F+ = f 0g regardless of any properties
of F+ (and similarly if F+ = f 0g). So assume now that bothE+ and F+ are proper
(not necessarily6= f 0g). Let z 2 E 
 F be given such thatz; � z 2 E+ 
 � F+ . Then we
may choose integersn � k � 0 and vectorsx1; : : : ; xn 2 E+ , y1; : : : ; yn 2 F+ such that
z =

P k
i =1 x i 
 yi and � z =

P n
i = k+1 x i 
 yi . Consequently, we have

P n
i =1 x i 
 yi = 0.

Now set X := span(x1; : : : ; xn ) � E and Y := span(y1; : : : ; yn ) � F , and let
X + � X and Y+ � Y be the convex cones generated byx1; : : : ; xn and y1; : : : ; yn ,
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respectively. Note that X + is a closed proper cone in the �nite-dimensional vector
spaceX , since it is �nitely generated (hence closed; see [AT07, Lemma 3.19]) and
contained in the proper coneX \ E+ (hence also proper). Similarly,Y+ is a closed
proper cone inY .

It follows from Corollary 9.9 that X �
+ and Y �

+ are generating cones inX � and
Y � , respectively. Therefore clearlyX �

+ 
 � Y �
+ is generating in X � 
 Y � . Sincehx 
 y;

' 
  i = hx; ' ihy;  i � 0 for all x 2 X + , y 2 Y+ , ' 2 X �
+ ,  2 Y �

+ , we have
X �

+ 
 � Y �
+ � (X + 
 � Y+ ) � . It follows that ( X + 
 � Y+ ) � is also generating, and

therefore (X + 
 � Y+ ) �� = X + 
 � Y+ is a proper cone, by Lemma 9.8. Sincez; � z 2
X + 
 � Y+ � (X + 
 � Y+ ) �� , it follows that z = 0. �

Remark 9.11. The �nal steps in the proof of Theorem 9.10 can be simpli�ed with
well-known results from the �nite -dimensional theory, but we didn't need that. The
dual of the projective coneX + 
 � Y+ is the injective coneX �

+ 
 " Y �
+ , and X + 
 � Y+

is automatically closed, by [Tam77b] (see also Theorem 12.10 below).

Remark 9.12. In the proof of Theorem 9.10, we reduced the problem to �nitely
generated proper cones. There are many ways to prove this special case. Apart from
the method used here and the proofs given in [DS70] and [Wor19], we could also have
applied either one of the su�cient criteria from [ PS69, Proposition 2.4]. Yet another
method is mentioned in Remark 12.6.

Theorem 9.10 will be extended in Corollary 9.17 below, where we determine
the lineality space of E+ 
 � F+ for arbitrary convex conesE+ , F+ . Furthermore, a
result very similar to Theorem 9.10, giving criteria for E+ 
 � F+ to be semisimple
(i.e. contained in a weakly closed proper cone), will be given in Corollary 11.11.

9.4 Faces of the projective cone

As a simple application of the theory developed so far, we develop two ways to combine
faces ofE+ and F+ to form a face ofE+ 
 � F+ . For closed, proper and generating
cones in �nite-dimensional spaces, one of these constructions was already pointed
out (without proof) by Tam in [ Tam77a, p. 53] and [Tam92, p. 71]. He likely had a
di�erent proof in mind which does not work in general; see Remark 9.20.

First we carry out the following very general construction; more convenient formulas
and special cases will be studied afterwards.

Theorem 9.13. Let E; F be vector spaces, letE+ � E , F+ � F be convex cones, and
let M � E+ , N � F+ be non-empty faces. De�ne

M > � N := ( M 
 � F+ ) + ( E+ 
 � N );

M ? � N := ( M 
 � N ) + (lin( E+ ) 
 � F+ ) + ( E+ 
 � lin( F+ )) :

Then:

(a) M > � N and M ? � N are faces ofE+ 
 � F+ .
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(b) The face lattice of E+ 
 � F+ contains the following sublattice:

M > � N

M > � lin( F+ ) = M ? � F+ lin( E+ ) > � N = E+ ? � N

M ? � N

Furthermore, M > � N is not just the face generated byM ? � F+ and E+ ? � N ,
but even the sum of these faces, so we have

M > � N = ( M > � lin( F+ )) + (lin( E+ ) > � N ) = ( M ? � F+ ) + ( E+ ? � N );

M ? � N = ( M > � lin( F+ )) \ (lin( E+ ) > � N ) = ( M ? � F+ ) \ (E+ ? � N ):

Assume furthermore that E , F , and E 
 F belong to the dual pairshE; E 0i , hF; F 0i ,
and hE 
 F; Gi , where G is a reasonable dual(i.e. E 0 
 F 0 � G � Bil (E � F )) . Then:

(c) If M and N are dual (resp. exposed) faces, thenM > � N is a dual (resp. exposed)
face of E+ 
 � F+ .

(d) If M and N as well aslin (E+ ) and lin (F+ ) are dual (resp. exposed) faces, then
M ? � N is a dual (resp. exposed) face of E+ 
 � F+ .

A mnemonic for the chosen notation:M > � N is generated by the elementsx 
 y 2
E+ 
 s F+ with x 2 M or y 2 N , whereasM ? � N is generated by the elements
x 
 y 2 E+ 
 s F+ with x 2 M and y 2 N , together with what turns out to be the
lineality space of E+ 
 � F+ (see Corollary 9.18 below).

Proof of Theorem 9.13.

(a) Let I � E be an order ideal such thatM = I \ E+ (e.g. I = span(M ); see
Proposition A.3(a)). Then the quotient cone (E=I )+ � E=I is proper, the natural
map � I : E ! E=I is positive, and M = ker(� I ) \ E+ . Similarly, let J � F be
an ideal such that N = J \ F+ ; then � J : F ! F=J is a positive map to a space
with a proper cone, andN = ker( � J ) \ F+ .

Now consider the linear map� I 
 � J : E 
 F ! E=I 
 F=J. It follows from
Proposition 9.2 that � I 
 � J is positive, and it follows from Theorem 9.10 that
(E=I )+ 
 � (F=J)+ is a proper cone inE=I 
 F=J, soker(� I 
 � J )\ (E+ 
 � F+ )
is a face ofE+ 
 � F+ (see Proposition A.4(b)). We claim that

ker(� I 
 � J ) \ (E+ 
 � F+ ) = M > � N: (9.14)

Indeed, if z =
P k

i =1 x i 
 yi with x1; : : : ; xk 2 E+ , y1; : : : ; yk 2 F+ is such that
(� I 
 � J )(z) = 0, then we must have (� I 
 � J )(x i 
 yi ) = 0 for all i (since
(E=I )+ 
 � (F=J)+ is proper). As such, for eachi we must havex i 2 ker(� I ) = I
or yi 2 ker(� J ) = J , or possibly both. Equivalently: x i 2 I \ E+ = M or
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yi 2 J \ F+ = N . This proves our claim (9.14), and we conclude thatM > � N
is a face ofE+ 
 � F+ .

To see that M ? � N is a face, we proceed analogously, where the linear map
� I 
 � J is replaced by the linear map

QI;J : E 
 F ! (E=I 
 F= lin( F+ )) � (E= lin( E+ ) 
 F=J);

x 
 y 7! (� I (x) 
 � lin( F+ ) (y)) � (� lin( E + ) (x) 
 � J (y)) :

If z =
P k

i =1 x i 
 yi with x1; : : : ; xk 2 E+ , y1; : : : ; yk 2 F+ and QI;J (z) = 0, then
again we must haveQI;J (x i 
 yi ) = 0 for all i (sinceQI;J is positive and the cone
in the codomain is proper). Then either x i 2 `(E+ ) � M , or yi 2 `(F+ ) � N , or
x i =2 `(E+ ) and yi =2 `(F+ ). In the latter case, we must havex i 2 M and yi 2 N .
This way we �nd

ker(QI;J ) \ (E+ 
 � F+ ) = M ? � N:

It follows that M ? � N is also a face ofE+ 
 � F+ .

(b) Using the notation from the proof of (a), note that

ker(QI;J ) = ker( � I 
 � lin( F+ ) ) \ ker(� lin( E + ) 
 � J ):

It follows that

M ? � N = ( M > � lin( F+ )) \ (lin( E+ ) > � N ):

The other formulas follow straight from the de�nitions: we have

(M > � lin( F+ )) + (lin( E+ ) > � N ) = ( M 
 � F+ ) + ( E+ 
 � lin( F+ ))

+ (lin( E+ ) 
 � F+ ) + ( E+ 
 � N )

= ( M 
 � F+ ) + ( E+ 
 � N )

= M > � N;

since lin(E+ ) � M and lin(F+ ) � N . Likewise,

M ? � F+ = ( M 
 � F+ ) + (lin( E+ ) 
 � F+ ) + ( E+ 
 � lin( F+ ))

= ( M 
 � F+ ) + ( E+ 
 � lin( F+ ))

= M > � lin( F+ );

and the formula E+ ? � N = lin( E+ ) > � N follows analogously.

(c) If M = � M 1 and N = � N1, then it is routinely veri�ed that M > � N =
� (M 1 
 s N1). If M and N are furthermore exposed, then we may takeM 1 and
N1 to be singletons; consequently,M 1 
 s N1 is also a singleton.

(d) This follows from (c) and the intersection formula from (b). �
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Remark 9.15. In Theorem 9.13(d), it is required that lin (E+ ) and lin (F+ ) are
exposed/dual faces. Sometimes this is automatically the case. IfE+ is weakly closed,
then lin (E+ ) = lin (E+

w
) = ? (E 0

+ ) = � (E 0
+ ), so in this caselin (E+ ) is always a dual

face. Likewise, if E is a separable normed space andE+ is closed, thenlin (E+ ) is
automatically exposed; see Corollary A.19.

To see that this assumption cannot be omitted, letE := R2 with the lexicographical
cone, and letF := R with the standard cone. Then the unique one-dimensional face
M � E+ and the trivial face N := f 0g � R are both exposed (hence dual), but
M ? � N = f 0g is neither exposed nor dual inE+ 
 � F+

�= E+ .

Remark 9.16. By dualizing the example from Example 10.51 below, one can show
that not every facet of E+ 
 � F+ is necessarily of the formM > � N or M ? � N . In
follows that, in general, not every face ofE+ 
 � F+ can be written as an intersection
of faces of the typeM > � N or M ? � N .

We proceed to point out the consequences of Theorem 9.13. First of all, it allows us
to extend Theorem 9.10, giving a direct formula for the lineality space ofE+ 
 � F+ .

Corollary 9.17 (The lineality space of the projective cone). Let E and F be vector
spaces, and letE+ � E and F+ � F be convex cones. Then one has

lin( E+ 
 � F+ ) = (lin( E+ ) 
 � F+ ) + ( E+ 
 � lin( F+ ))

= (lin( E+ ) 
 span(F+ )) + (span( E+ ) 
 lin( F+ )) :

Proof. If x 2 lin (E+ ) and y 2 F+ , then � x 
 y 2 E+ 
 � F+ , sox 
 y 2 lin (E+ 
 � F+ ).
Similarly, if x 2 E+ and y 2 lin( F+ ), then x 
 y 2 lin( E+ 
 � F+ ), so we have

(lin( E+ ) 
 � F+ ) + ( E+ 
 � lin( F+ )) � lin( E+ 
 � F+ ):

Conversely, it follows from Theorem 9.13(a) that the `upper face'lin( E+ ) > � lin( F+ ) =
(lin( E+ ) 
 � F+ ) + ( E+ 
 � lin( F+ )) is a face ofE+ 
 � F+ , so it must contain the
minimal face lin(E+ 
 � F+ ). The �rst equality follows.

For the second equality, we claim that lin( E+ ) 
 � F+ = lin( E+ ) 
 span(F+ ).
Indeed, for x 2 lin (E+ ) and y 2 span(F+ ) we may write y = u� v (for someu; v 2 F+ ),
so we havex
 y = ( x
 u)+(( � x)
 v) 2 E+ 
 � F+ . Taking positive linear combinations
proves our claim. Analogously, we haveE+ 
 � lin( F+ ) = span(E+ ) 
 lin (F+ ), and
the second equality follows. �

This direct formula for the lineality space also simpli�es the formula for the lower
faceM ? � N .

Corollary 9.18. Let E; F be vector spaces, letE+ � E , F+ � F be convex cones,
and let M � E+ , N � F+ be non-empty faces. Then one has

M ? � N = ( M 
 � N ) + lin( E+ 
 � F+ );

and this de�nes a face ofE+ 
 � F+ .
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In particular, if E+ and F+ are proper cones, thenM 
 � N is a face ofE+ 
 � F+ ,
and the sublattice from Theorem 9.13(b) reduces to

(M 
 � F+ ) + ( E+ 
 � N )

M 
 � F+ E+ 
 � N

M 
 � N

For closed, proper and generating cones in �nite-dimensional spaces, the fact that
M 
 � N is a face ofE+ 
 � F+ was already pointed out (without proof) by Tam in
[Tam77a, p. 53] and [Tam92, p. 71]. He likely had a di�erent proof in mind, which we
outline in Remark 9.20 below.

Remark 9.19. In general, M 
 � N is not a face ofE+ 
 � F+ . If E+ or F+ is not
proper, then the term + lin (E+ 
 � F+ ) cannot be omitted in Corollary 9.18. Indeed,
suppose thatE+ is not proper. Choosex 2 lin (E+ ) n f 0g and y 2 span(F+ ) nspan(N ).
Then x 
 y 2 lin (E+ 
 � F+ ), by Corollary 9.17. However, x 
 y =2 M 
 � N , so
M 
 � N is not a face, because every face must contain the lineality space.

Remark 9.20. If E �
+ and F �

+ separate points onE and F ,1 then there is a simpler way
to show that M 
 � N is a face ofE+ 
 � F+ . Indeed, let z; z0 2 E+ 
 � F+ be such
that z00:= z + z0 2 M 
 � N , and write z =

P k
i =1 x i 
 yi , where x1; : : : ; xk 2 E+ and

y1; : : : ; yk 2 F+ are all non-zero. Fori 2 f 1; : : : ; kg, choose' i 2 E �
+ and  i 2 F �

+ such
that ' i (x i );  i (yi ) > 0. Then we have 0< ' i (x i )yi �

P k
j =1 ' i (x j )yj = ( ' i 
 idF )(z) �

(' i 
 idF )(z00) 2 N , henceyi 2 N . Likewise, 0<  i (yi )x i � (idE 
  i )(z00) 2 M , hence
x i 2 M . It follows that z 2 M 
 � N , which shows that M 
 � N is a face.

In particular, this simple proof settles the case whenE and F are �nite-dimensional
and E+ and F+ are closed, proper and generating. This special case was already pointed
out (without proof) by Tam in [ Tam77a, p. 53] and [Tam92, p. 71]. The proof he had
in mind is probably similar to short proof given here.

As a �nal application, we note that Theorem 9.13 is also a statement about
preservation of bipositive maps.

Proposition 9.21. Let E and F be vector spaces, and letE+ � E , F+ � F be convex
cones. If E+ and F+ are proper and if I � E , J � F are ideals, then the inclusion
I 
 J ,! E 
 F is bipositive (with respect to the projective cone).

Proof. Let QI;J : E 
 F ! (E=I 
 F ) � (E 
 F=J) be the map from the proof of
Theorem 9.13(a). It follows from said proof (and Corollary 9.18) that I + 
 � J+ =
ker(QI;J ) \ (E+ 
 � F+ ). To complete the proof, note that ker(QI;J ) = I 
 J . �

Example 9.6 shows that this is not true if one of the cones is not proper.

1 In other words, E+ and F+ are semisimple with respect to the dual pairs hE; E � i and hF; F � i ;
see [Dob20a]. Schaefer [Sch58] called such conesregular .
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9.5 Extremal rays of the projective cone

The results from §9.4 show us how to construct faces in the projective tensor cone,
even though not all faces are reached this way (see Remark 9.16). Nevertheless, it
turns out that all extremal rays of E+ 
 � F+ are obtained in this way.

Recall that rext(E+ ) � E+ nf 0g denotes the set of extremal directions, andM 
 s N
denotes the entry-wise tensor productf x 
 y : x 2 M; y 2 N g.

Theorem 9.22 (The extremal rays of the projective cone). Let E , F be vector spaces
equipped with convex conesE+ � E , F+ � F . Then

rext( E+ 
 � F+ ) = rext( E+ ) 
 s rext( F+ ):

Proof. \ � ". Suppose that z 2 (E+ 
 � F+ ) n f 0g de�nes an extremal ray. Write
z =

P k
i =1 x i 
 yi with x1; : : : ; xk 2 E+ , y1; : : : ; yk 2 F+ , and x i 
 yi 6= 0 for all i 2 [k].

By extremality of z there are � 1; : : : ; � k 2 R> 0 such that � i x i 
 yi = z (i 2 [k]). In
particular, z = � 1x1 
 y1. Now suppose that 0� v � x1, then 0 � � 1v 
 y1 � z, so
by extremality of z we must have �� 1v 
 y1 = z for some � 2 R� 0. Since y1 6= 0
and � 1 6= 0, it follows that �v = x1, so we see thatx1 de�nes an extremal ray
of E+ . Analogously, y1 de�nes an extremal ray of F+ . This proves the inclusion
rext( E+ 
 � F+ ) � rext( E+ ) 
 s rext( F+ ).

\ � ". Let x0 2 E+ n f 0g and y0 2 F+ n f 0g de�ne extremal rays in E+ and F+ ,
respectively. Then M := f �x 0 : � � 0g de�nes a face ofE+ . Every face contains the
lineality space, but M does not contain a non-zero subspace, so it follows thatE+

is a proper cone. Analogously,N := f �y 0 : � � 0g de�nes a face ofF+ , so F+ is
proper. Now it follows from Corollary 9.18 that M 
 � N is a face ofE+ 
 � F+ . In
other words: x0 
 y0 de�nes an extremal ray of E+ 
 � F+ . �

Remark 9.23. Remarkably, Theorem 9.22 has no corner cases: it is true for every pair
of convex cones. In particular, if rext(E+ ) or rext(F+ ) is empty, then rext(E+ 
 � F+ )
is empty as well. Conversely, if each ofE+ and F+ has an extremal ray, then so does
E+ 
 � F+ .2

Again, in the case whereE and F are �nite-dimensional and E+ and F+ are
closed, proper and generating, this was already pointed out (without proof) by Tam
in [Tam77a, p. 53] and [Tam92, p. 71]. See also Remark 9.20.

9.6 An application to tensor products of absolutely convex
sets

We conclude our study of the projective cone with an application in convex geometry.
Using a slight modi�cation of the construction from §9.4, we show that faces of

2 It should be noted that many standard cones in in�nite -dimensional spaces do not have su�ciently
many extremal rays to generate the cone. For instance, the positive cone of C[0; 1] has no extremal
rays at all.
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absolutely convex setsM and N determine faces of their tensor productM 
 � N :=
convf x 
 y : x 2 M; y 2 N g.3

This application is based on the following general principle, giving su�cient condi-
tions for the sum of facesM 1 ? � N1 and M 2 ? � N2 (see§9.4) to be another face in the
projective coneE+ 
 � F+ . (This is a vast generalization of the method of [BCG13,
Example 3.7].)

Proposition 9.24. Let E , F be vector spaces, letE+ � E , F+ � F be convex
cones, and letM 1; M 2 � E+ and N1; N2 � F+ be faces. IfM 1 \ M 2 = lin (E+ ) and
N1 \ N2 = lin( F+ ), then

(M 1 ? � N1) + ( M 2 ? � N2) = ( M 1 > � N2) \ (M 2 > � N1):

In particular, in this case (M 1 ? � N1) + ( M 2 ? � N2) is a face ofE+ 
 � F+ .

Proof. \ � ". By Theorem 9.13(b), we haveM 1 ? � N1 � M 1 ? � F+ = M 1 > � lin( F+ ) �
M 1 > � N2. Three analogous inclusions prove the forward inclusion.

\ � ". Let z 2 (M 1 > � N2) \ (M 2 > � N1), and write z =
P k

i =1 x i 
 yi with
x1; : : : ; xk 2 E+ and y1; : : : ; yk 2 F+ . Since z 2 M 1 > � N2, it follows from the
proof of Theorem 9.13(a) that for all i we havex i 2 M 1 or yi 2 N2, or possibly both.
Likewise, for all i we havex i 2 M 2 or yi 2 N1, or possibly both.

If x i 2 lin (E+ ) or yi 2 lin (F+ ), then x i 
 yi 2 lin (E+ 
 � F+ ) � (M 1 ? � N1) \
(M 2 ? � N2), since every face contains the lineality space. So assumex i =2 lin (E+ )
and yi =2 lin (F+ ). Then, by assumption, x i (resp. yi ) is contained in at most one of
M 1 and M 2 (resp. N1 and N2). Combined with earlier constraints, this show that we
must either have x i 2 M 1 n M 2 and yi 2 N1 n N2, or otherwise x i 2 M 2 n M 1 and
yi 2 N2 n N1. Either way, x i 
 yi 2 (M 1 ? � N1) + ( M 2 ? � N2). �

If E is a vector space andC � E is a convex subset, then thehomogenizationC(C)
of C is the convex cone generated byC � f 1g � E � R. Note that C(C) is always a
proper cone, and that the faces ofC are in bijective correspondence with the faces of
C(C).

Since we are working over the real numbers, a convex setC � E is absolutely
convex if and only if C = � C. For sets of this kind, there is a simple way to identify
the projective tensor product of the homogenizationsC(C) and C(D) with the
homogenization of conv(C 
 s D):

Proposition 9.25. Let E and F be (real) vector spaces and letC � E , D � F
be absolutely convex sets. Under the natural isomorphism(E � R) 
 (F � R) =
(E 
 F ) � E � F � R, one has

(C(C) 
 � C(D)) \
�
(E 
 F ) � f 0g � f 0g � f 1g

�
= f (z;0; 0; 1) : z 2 conv(C 
 s D)g:

3Some authors de�ne the projective tensor product of convex sets to be the closed convex hull
of M 
 s N (e.g. [AS17, §4.1.4]), but our methods are not equipped to deal with closures. See also
Remark 9.30.
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Proof. Under the aforementioned natural isomorphism, we have (x; � ) 
 (y; � ) =
(x 
 y; �x; �y; �� ).

\ � ". Let ( z;0; 0; 1) 2 C(C) 
 � C(D) be given, and write (z;0; 0; 1) =
P k

i =1 � i �
(x i ; 1) 
 (yi ; 1) with � 1; : : : ; � k � 0, x1; : : : ; xk 2 C and y1; : : : ; yk 2 D. Then
(z;0; 0; 1) =

P k
i =1 � i � (x i 
 yi ; x i ; yi ; 1), so we have

P k
i =1 � i = 1 and z =

P k
i =1 � i x i 


yi 2 conv(C 
 s D).
\ � ". Let z 2 conv(C 
 s D) be given, and write z =

P k
i =1 � i x i 
 yi with x1; : : : ; xk 2

C, y1; : : : ; yk 2 D, � 1; : : : ; � k � 0, and
P k

i =1 � i = 1. Since (x i ; 1) 
 (yi ; 1) + ( � x i ; 1) 

(� yi ; 1) = 2( x i 
 yi ; 0; 0; 1), we may write

(z;0; 0; 1) =
kX

i =1

1
2 � i �

�
(x i ; 1) 
 (yi ; 1) + ( � x i ; 1) 
 (� yi ; 1)

�
: (9.26)

SinceC and D are absolutely convex, we have (� x i ; 1) 2 C(C) and (� yi ; 1) 2 C(D)
for all i 2 f 1; : : : ; kg, hence (z;0; 0; 1) 2 C(C) 
 � C(D). �

Theorem 9.27. Let E and F be (real) vector spaces, letC � E , D � F be absolutely
convex, and letM � C, N � D be proper faces. Thenconv(M 
 s N ) is a face of
conv(C 
 s D).

Proof. By symmetry, � M � C and � N � D also de�ne faces ofC and D. First we
prove that M \ � M = ? . Suppose that x 2 M \ � M . Then also � x 2 M \ � M ,
so by convexity 0 2 M \ � M . But then for every y 2 C we must havey; � y 2 M ,
since 0 belongs to the relative interior of the line segment joiningy and � y. This
contradicts our assumption that M is a proper face, so we conclude thatM \ � M = ? .
Analogously, N \ � N = ? .

Let M 1 � C(C) be the face ofC(C) associated withM , and let M 2 � C(C) be the
face associated with� M . SinceM \� M = ? , it follows that M 1 \ M 2 = f 0g. Similarly,
let N1 and N2 be the faces ofC(D) associated with N and � N , respectively; then
N1 \ N2 = f 0g. Hence it follows from Proposition 9.24 that (M 1 ? � N1) + ( M 2 ? � N2)
is a face ofC(C) 
 � C(D). To complete the proof, we show that

�
(M 1 ? � N1) + ( M 2 ? � N2)

�
\

�
(E 
 F ) � f 0g � f 0g � f 1g

�

= f (z;0; 0; 1) : z 2 conv(M 
 s N )g:

We proceed analogously to the proof of Proposition 9.25.
\ � ". Let ( z;0; 0; 1) 2 (M 1 ? � N1) + ( M 2 ? � N2) be given. Then we may choose

integers n � k � 0, scalars� 1; : : : ; � n � 0 and vectorsx1; : : : ; xn 2 M , y1; : : : ; yn 2 N
such that (z;0; 0; 1) =

P k
i =1 � i � (x i ; 1) 
 (yi ; 1) +

P n
i = k+1 � i � (� x i ; 1) 
 (� yi ; 1).

Therefore
P n

i =1 � i = 1 and z =
P n

i =1 � i x i 
 yi , which shows that z 2 conv(M 
 s N ).
\ � ". Let z 2 conv(M 
 sN ) be given, and write z =

P k
i =1 � i x i 
 yi with x1; : : : ; xk 2

M , y1; : : : ; yk 2 N , � 1; : : : ; � k � 0, and
P k

i =1 � i = 1. Then it follows from (9.26) that
(z;0; 0; 1) 2 (M 1 ? � N1) + ( M 2 ? � N2). �

Corollary 9.28. Let E and F be (real) vector spaces, letC � E , D � F be absolutely
convex, and letx0 2 C, y0 2 D be extreme points. Thenx0 
 y0 is an extreme point
of conv(C 
 s D).
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Remark 9.29. Theorem 9.27 fails if one of the faces is not proper. Indeed, ifM = C,
then 0 2 M 
 s N , so nowconv(M 
 s N ) is a face only if conv(M 
 s N ) = conv(C 
 s D).

Furthermore, Theorem 9.27 and Corollary 9.28 do not hold for non-symmetric
convex sets. For example, 1
 2 is not an extreme point of conv([� 1; 1] 
 s [2; 3]) �
R 
 R = R.

Remark 9.30. In many applications it is natural to start with closed absolutely
convex sets, and take theclosed convex hull of their tensor product (e.g. [PTT11,
Remark 3.19], [AS17, §4.1.4], or when computing the closed unit ball of the projective
norm). Our methods are not equipped to deal with closures.

If E , F are �nite -dimensional and if C, D are compact, then conv(C 
 s D) is
automatically compact, so here taking closures is not necessary. In particular:

Corollary 9.31. Let E and F be (real) �nite -dimensional normed spaces. Then the
closed unit ball of the projective norm preserves proper faces: ifM � BE , N � BF

are proper faces, thenconv(M 
 s N ) is a face ofBE 
 � F .

This had already been known for extreme points. More generally, ifE and F are
Banach spaces, then it follows from a result of Tseitlin [Tse76] (see also [RS82]) that
the closed unit ball of the completed projective tensor product E 0 ~
 � F 0 preserves
extreme points, provided that E 0 or F 0 has the approximation property and E 0 or F 0

has the Radon{Nikodym property. 4 In particular, this settles the �nite -dimensional
case, proving Corollary 9.31 for extreme points.

Remark 9.32. We do not know whether the closed unit ball of the projective norm
always preserves extreme points, even in the algebraic tensor product. This does not
follow from Corollary 9.28, because the closed unit ball ofE 
 � F is the closure of
conv(BE 
 s BF ). Known results in this direction usually start with something stronger
than an extreme point, such as adenting point (see [RS86b, Theorem 5], [Wer87,
Corollary 4]).

We suspect that there are Banach spacesE and F such that the projective norm
does not preserve all extreme points of their closed unit balls, but we have not been
able to construct such an example. To our knowledge, no such examples are known in
the literature either.

Finally, we should point out that the injective norm does not preserve extreme
points; see Remark 10.52.

4The cited results relate to extreme points in duals of operator spaces. Our assumptions on E 0

and F 0 ensure that E 0 ~
 � F 0 �= (E ~
 " F )0 isometrically; see [DF93, Theorem 16.6].



Chapter 10

The injective cone

In this chapter, we carry out an in-depth study of the properties of the
injective cone. This cone depends not only on the vector spacesE; F and the
conesE+ ; F+ , but also on the dual spacesE 0; F 0. Therefore we will work with
dual pairs.

This chapter is based on Chapter 4 of [Dob20b].

Introduction

Let hE; E 0i , hF; F 0i be dual pairs of (real) vector spaces, and letE+ � E , F+ � F be
convex cones in the primal spaces. Theinjective cone1 in E 
 F is de�ned as

E+ 
 " F+ :=
�

u 2 E 
 F : hu; ' 
  i � 0 for all ' 2 E 0
+ ,  2 F 0

+

	
:

The notation causes some ambiguity, becauseE+ 
 " F+ does not only depend on
E+ and F+ , but also on the dual pairs hE; E 0i and hF; F 0i . To be fully precise, the
injective cone should be denoted as something like(hE; E 0i ; E+ ) 
 " (hF; F 0i ; F+ ). We
forego this cumbersome notation for the sake of clarity; it will always be clear what is
meant.

If E and F are locally convex and ifE 
 F is equipped with a compatible topology
� (in the sense of Grothendieck [Gro55, p. 89], see also [K•ot79 , §44.1]), then for every
' 2 E 0,  2 F 0 the tensor product ' 
  : E 
 � F ! R is continuous, and as such
has a unique extension toE ~
 � F . In this setting we may likewise de�ne the injective
cone as

E+ ~
 "
� F+ :=

�
u 2 E ~
 � F : (' ~
 �  )(u) � 0 for all ' 2 E 0

+ ,  2 F 0
+

	
:

Clearly E+ 
 " F+ = ( E+ ~
 "
� F+ ) \ (E 
 F ). Note that, unlike the projective cone,

the injective cone typically becomes larger when passing from the algebraic tensor
product E 
 F to the completion E ~
 � F .

1A note about terminology: in the literature, E+ 
 " F+ is usually called the biprojective cone (see
e.g. [Mer64, PS69, Bir76 ]). The results in this section show that this cone is in many ways analogous
to the injective topology, and as such deserves the name injective cone . The only prior use of this
name (that we are aware of) is in [Wit74] and [Mul97].

129
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Remark 10.1. Let G be any reasonable dual ofE 
 F (cf. page 109). It is clear
from the de�nition that E+ 
 " F+ is the predual cone ofE 0

+ 
 � F 0
+ under the dual

pairing hE 
 F; Gi . Likewise, E+ ~
 "
� F+ � E ~
 � F is the predual cone ofE 0

+ 
 � F 0
+ �

(E ~
 � F )0.
An immediate consequence is that the injective cone is always weakly closed.

Furthermore, by the bipolar theorem, the dual cone ofE+ 
 " F+ with respect to the
dual pair hE 
 F; Gi is the � (G; E 
 F )-closure of E 0

+ 
 � F 0
+ . (Note that this need

not be contained in E 0 
 F 0.) Similarly, in the locally convex setting, the dual cone of
E+ ~
 "

� F+ is the weak-� closure ofE 0
+ 
 � F 0

+ � (E ~
 � F )0.

In this chapter, we give a detailed study of the properties of the injective cone.
In §10.1, we establish the characteristic property of the injective cone. In§10.2, we
show that the injective cone preserves positive maps, bipositive maps, and retracts,
but not pushforwards. In §10.3 we determine necessary and su�cient conditions for
the injective cone to be proper. Finally, in §10.4{§10.6 we show how faces inE+ and
F+ determine faces ofE+ 
 " F+ .

10.1 The characteristic property of the injective cone

We show that the injective cone can be identi�ed with a cone of positive bilinear forms.
Let E ~ F denote the space of separately weak-� continuous bilinear forms onE 0� F 0:

E ~ F := Bil
�
E 0

w� � F 0
w� ):

(K•othe [K•ot79, §44.4] uses the symbol� instead of ~ .)
We shall understandE ~ F to be equipped with the cone it inherits from Bil (E 0� F 0).

In other words, b 2 E ~ F is positive if and only if b(';  ) � 0 for all ' 2 E 0
+ ,  2 F 0

+ .
The characteristic property of the injective cone is that it is given by a bipositive

map to E ~ F (algebraic case) or ~E ~ ~F (completed locally convex case).

Remark 10.2. Statements about positive bilinear forms can be turned into equiv-
alent statements about positive linear operators in the following way. Recall that
Bil (E 0

w� � F 0
w� ) is naturally isomorphic to L(E 0

w� ; Fw ). Under this correspondence,
the positive cone ofBil (E 0

w� � F 0
w� ) is the cone ofapproximately positive operators

E 0
w� ! Fw , i.e. those operatorsT that satisfy T[E 0

+ ] � F+
w

. In particular, if F+ is
weakly closed, then this is just the cone of positive operatorsE 0

w� ! Fw . Similarly,
Bil (E 0

w� � F 0
w� ) �= L(F 0

w� ; Ew ), and the positive cone ofBil (E 0
w� � F 0

w� ) corresponds
with the approximately positive cone of L(F 0

w� ; Ew ).
The advantage of sticking to bilinear forms is twofold: it keeps the theory symmetric

in E and F , and it avoids the nuisance of having to take the weak closure ofF+ (or
E+ ).

We proceed to prove the characteristic property in three settings: the algebraic
tensor product, the completed injective tensor product, and arbitrary completed tensor
products.
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Situation I: the algebraic tensor product

Let hE; E 0i and hF; F 0i be dual pairs. Equip E 0 and F 0 with their respective weak-�
topologies, and denote these spaces asE 0

w� and F 0
w� . The dual pairing hE 
 F; E 0
 F 0i

yields a natural map E 
 F ,! (E 0 
 F 0) � �= Bil (E 0 � F 0). Note that the elements
of E 
 F give rise to jointly continuous bilinear maps E 0

w� � F 0
w� ! R. Indeed, an

elementary tensorx0 
 y0 2 E 
 F de�nes the bilinear map (';  ) 7! hx0; ' ihy0;  i ,
which is easily seen to be jointly continuous (use that' 7! hx0; ' i and  7! hy0;  i
are continuous). Consequently, �nite sums of elementary tensors also de�ne jointly
continuous bilinear maps, and the claim follows. This gives us natural inclusions

E 
 F � B i`(E 0
w� � F 0

w� ) � E ~ F � Bil( E 0 � F 0): (10.3)

From left to right, these are the spaces of (continuous) �nite rank, jointly continuous,
separately continuous, and all bilinear forms onE 0

w� � F 0
w� .

Proposition 10.4. The elements ofE+ 
 " F+ are precisely those elements inE 
 F
which de�ne a positive bilinear map E 0 � F 0 ! R; that is:

E+ 
 " F+ = B i`(E 0
w� � F 0

w� )+ \ (E 
 F ):

Proof. By Remark 10.1, E+ 
 " F+ is the dual cone ofE 0
+ 
 � F 0

+ with respect to the
dual pair hE 
 F; E 0 
 F 0i , so we haveE+ 
 " F+ = ( E 0 
 F 0) �

+ \ (E 
 F ). It follows
from Proposition 9.1 that u 2 E 
 F belongs toE+ 
 " F+ if and only if u de�nes a
positive bilinear map E 0 � F 0 ! R. �

Corollary 10.5. All inclusions in (10.3) are bipositive.

Situation II: injective topology, completed

Let E and F be locally convex. LetE ~ " F denote the spaceE ~ F (= Bil (E 0
w� � F 0

w� ))
equipped with the bi-equicontinuous(or injective) topology " , that is, the locally convex
topology given by the family of seminorms

pM;N (b) = sup
' 2 M; 2 N

jb(';  )j; (M � E 0 and N � F 0 equicontinuous):

If E and F are complete, thenE ~ " F is also complete (see [K•ot79 , §40.4.(5)]), so in
this case we may identifyE ~
 " F with the closure of E 
 " F in E ~ " F , and we have
the following inclusions of vector spaces:

E 
 F � E ~
 " F � E ~ " F � Bil( E 0 � F 0); (E and F complete): (10.6)

This may fail if E or F is not complete. (In particular, E 
 R = E ~ R = E, but
E ~
 " R = ~E.) However, in general we haveE ~
 " F = ~E ~
 " ~F (see [K•ot79 , §44.5.(1)]),
hence

E 
 F � E ~
 " F = ~E ~
 " ~F � ~E ~ " ~F � Bil( E 0 � F 0): (10.7)
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Proposition 10.8. Let E , F be locally convex. Then the natural inclusionE ~
 " F ,!
~E ~ " ~F is bipositive; that is:

E+ ~
 "
" F+ = Bil

�
E 0

� (E 0; ~E ) � F 0
� (F 0; ~F )

�

+
\ (E ~
 " F ):

Proof. Continuous linear functionals ' 2 E 0 and  2 F 0 de�ne a functional on E ~
 " F
in two di�erent ways: either as the (unique) extension of ' 
  to the completion
E ~
 " F , or as the restriction of the evaluation functional f '; : Bil (E 0 � F 0) ! R,
b 7! b(';  ) to the subspaceE ~
 " F . We claim that these two functionals coincide on
E ~
 " F . The inclusion E 
 F ,! Bil (E 0 � F 0) is such that (' 
  )(u) = u(';  ), so
the functionals coincide onE 
 F . Furthermore, the functional f '; is easily seen to
be continuous on ~E ~ " ~F (use that the sets f ' g � E 0, f  g � F 0 are equicontinuous).
Hence' 
  = f '; on E 
 F , and by continuity also on E ~
 " F , which proves our
claim.

It follows from the claim and the de�nition of E+ ~
 "
" F+ that an element u 2 E ~
 " F

belongs toE+ ~
 "
" F+ if and only if it de�nes a positive bilinear form E 0� F 0 ! R. �

Corollary 10.9. All inclusions in (10.6) and (10.7) are bipositive.

We only needed the bi-equicontinuous topology onE ~ F for the proof of Proposi-
tion 10.8. From here on out we can forget about it.

Situation III: arbitrary compatible topology, completed

Now let � be an arbitrary compatible topology on E 
 F (E and F locally convex).
Since the injective topology is the weakest compatible topology, we have a natural
map E ~
 � F ! E ~
 " F , so here the picture is as follows:

E 
 F ,! E ~
 � F ! E ~
 " F ,! ~E ~ ~F ,! Bil( E 0 � F 0): (10.10)

The map E ~
 � F ! E ~
 " F need not be injective (this is related to the approximation
property; see e.g. [DF93, Theorem 5.6]). However, it remains bipositive.

Proposition 10.11. Let E , F be locally convex, and let� be a compatible topology
on E 
 F . Then the natural map � � ! " : E ~
 � F ! E ~
 " F is bipositive; that is:

E+ ~
 "
� F+ = � � 1

� ! " [E+ ~
 "
" F+ ]:

Proof. Note that ' ~
 �  = ( ' ~
 "  ) � � � ! " , as they coincide onE 
 F . Hence:
u 2 E+ ~
 "

� F+ if and only if � � ! " (u) 2 E+ ~
 "
" F+ . �

Corollary 10.12. All maps in (10.10) are bipositive.

10.2 Mapping properties of the injective cone

We show that the injective cone preserves all positive maps, bipositive maps (provided
the cones are closed), and retracts, and show that it fails to preserve quotients,
pushforwards, and approximate pushforwards.
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Let hE; E 0i , hF; F 0i , hG; G0i , hH; H 0i be dual pairs, equipped with convex cones
E+ ; F+ ; G+ ; H+ in the primal spaces. GivenT 2 L(Ew ; Gw ) and S 2 L(Fw ; Hw ), we
de�ne T � S : Bil( E 0 � F 0) ! Bil( G0 � H 0) by

b 7!
�

(';  ) 7! b(T0'; S 0 )
�

;

where T0 2 L(G0
w� ; E 0

w� ), S0 2 L(H 0
w� ; F 0

w� ) denote the respective adjoints.
Note that ( T � S)b is separately weak-� continuous wheneverb is, soT � S restricts

to a map T ~ S : E ~ F ! G ~ H .

Proposition 10.13. The following diagram commutes:

E 
 F E ~ F Bil( E 0 � F 0)

G 
 H G ~ H Bil( G0 � H 0):

T 
 S T ~ S T � S

Proof. The rightmost square commutes by de�nition (T ~ S is the restriction of
T � S). For the leftmost square, note that x 
 y 2 E 
 F de�nes the bilinear map
(';  ) 7! hx; ' ihy;  i , and Tx 
 Sy de�nes the bilinear map (';  ) 7! hTx; ' ihSy;  i =
hx; T 0' ihy; S0' i . �

Proposition 10.14. If E , F , G, H are locally convex, if T 2 L(E; G), S 2 L(F; H ),
and if � and � are compatible topologies onE 
 F and G 
 H for which the map
T 
 � ! � S : E 
 � F ! G 
 � H is continuous, then the following diagram commutes:

E 
 F E ~
 � F E ~
 " F ~E ~ ~F Bil( E 0 � F 0)

G 
 H G ~
 � H G ~
 " H ~G ~ ~H Bil( G0 � H 0):

T 
 S T ~
 � ! � S T ~
 " S ~T ~ ~S T � S

Here the horizontal maps are the ones from(10.10), which are bipositive by
Corollary 10.12.

Proof. The rightmost square commutes sinceT � S = ~T � ~S (use that T : E ! G and
its completion ~T : ~E ! ~G have the same adjointT0 = ~T0 : G0 ! E 0), and ~T ~ ~S is
a restriction of ~T � ~S. (However, ~T ~ ~S 6= T ~ S, as the domain and codomain are
di�erent!)

The other squares (and the triangles) commute because the respective compositions
agree on the dense subspaceE 
 F (or G 
 H ). �

Using the preceding results, we can now show that the injective cone preserves
positive maps and approximately bipositive maps.
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Lemma 10.15. Let hE; E 0i , hF; F 0i , hG; G0i , hH; H 0i be dual pairs, and letT 2
L(Ew ; Gw ) and S 2 L(Fw ; Hw ).

(a) If T and S are positive, then T � S is positive.

(b) If E+
w

= T � 1[G+
w

] and F+
w

= S� 1[H+
w

] (i.e. T and S are approximately
bipositive), then T ~ S is bipositive.

Proof.

(a) Let b 2 Bil (E 0 � F 0) be positive. If ' 2 G0
+ and  2 H 0

+ , then ' � T 2
E 0

+ and  � S 2 F 0
+ (the composition of positive linear maps is positive), so

(T � S)(b)( ';  ) � 0. It follows that ( T � S)(b) is a positive bilinear map on
G0 � H 0, so T � S is positive.

(b) By the duality between approximate pushforwards and approximate pullbacks
(see page 111), the adjointsT0 2 L(G0

w� ; E 0
w� ) and S0 2 L(H 0

w� ; F 0
w� ) are weak-�

approximate pushforwards. SinceT ~ S is precisely the map (T0 
 S0)0 from
Lemma 9.3, it follows from said lemma that T ~ S is bipositive. �

Theorem 10.16. Let T 2 L(Ew ; Gw ) and S 2 L(Fw ; Hw ).

(a) If T and S are positive, then (T 
 S)[E+ 
 " F+ ] � G+ 
 " H+ .

(b) If E+
w

= T � 1[G+
w

] and F+
w

= S� 1[H+
w

] (i.e. T and S are approximately
bipositive), then E+ 
 " F+ = ( T 
 S) � 1[G+ 
 " H+ ].

In summary: the algebraic injective cone preserves continuous positive maps and
(continuous2) approximately bipositive maps.

Proof. All horizontal arrows in the diagram from Proposition 10.13 are bipositive (by
Corollary 10.5), so (a) and (b) follow easily from Lemma 10.15. For the summary,
recall from Remark 10.1 that E+ 
 " F+ and G+ 
 " H+ are weakly closed, so in (b)
we �nd that T 
 S is approximately bipositive (in addition to being bipositive). �

Theorem 10.17. Let E , F , G, H be locally convex, letT 2 L(E; G) and S 2 L(F; H ),
and let � and � be compatible topologies on respectivelyE 
 F and G 
 H for which
the map T 
 � ! � S : E 
 � F ! G 
 � H is continuous.

(a) If T and S are positive, then (T ~
 � ! � S)[E+ ~
 "
� F+ ] � G+ ~
 "

� H+ .

(b) If E and F are complete and E+ = T � 1[G+ ] and F+ = S� 1[H+ ], then
E+ ~
 "

� F+ = ( T ~
 � ! � S) � 1[G+ ~
 "
� H+ ].

In summary: the completed injective cone preserves continuous positive maps, and
(continuous2) approximately bipositive maps ifE and F are complete.

2By our de�nition, approximately bipositive maps are already required to be continuous.
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Proof.

(a) All horizontal arrows in the diagram from Proposition 10.14 are bipositive (by
Corollary 10.12), so the result follows from Lemma 10.15(a).

(b) Recall: in a locally convex space, the weak closure and original closure of a convex
cone coincide. Moreover, note that we may assume without loss of generality
that G and H are also complete. (ExtendT to the map ~T : E ! ~G, and let gG+

denote the closure ofG+ in ~G. Then ~T � 1[gG+ ] = T � 1[G+ ], since ran(~T) � G.)

We refer again to the diagram from Proposition 10.14. All horizontal arrows in are
bipositive, and the vertical arrow T ~ S = ~T ~ ~S is bipositive by Lemma 10.15(b).
The result is easily deduced. �

Remark 10.18. We get one of the characteristic properties of the injective topology
for free: if E , F , G, H are locally convex, E and F complete, and if T 2 L(E; G)
and S 2 L(F; H ) are injective, then so isT ~
 " S 2 L(E ~
 " F; G ~
 " H ). Indeed, equip
all spaces with the trivial cone f 0g, then every dual cone is the entire dual space,
so Bil (E 0 � F 0)+ = f 0g. Therefore E ~
 " F and G ~
 " H are also equipped with the
zero cone (sinceE ~
 " F ! Bil (E 0 � F 0) is bipositive and injective). Since T ~
 " S is
bipositive, we have (T ~
 " S) � 1[f 0g] = f 0g, so T ~
 " S is injective.

This shows immediately that the completeness assumptions in Theorem 10.17(b)
cannot be omitted. (After all, T ~
 " idR : E ~
 " R ! G ~
 " R is simply the completion
~T : ~E ! ~G, which may fail to be injective even if T is injective.)

A similar argument shows that the weak closures in Lemma 10.15(b) and subsequent
theorems cannot be omitted: the mapT 
 " idR : E 
 R ! G 
 R is simply T, but
with the positive cones E+ , G+ replaced by their weak closures. But one does not
necessarily haveT � 1[G+

w
] = E+

w
whenever T � 1[G+ ] = E+ . (Concrete example:

let G = R2 with G+ = f (x; y) : x > 0g [ f (0; 0)g, let E := spanf (0; 1)g � G with
E+ := G+ \ E , and let T be the inclusion E ,! G.)

Remark 10.19. A topological order retract G � E is given by two continuous
positive linear maps E � G ,! E , so it follows at once that the injective cone (in all
its incarnations) preserves all topological order retracts, without any assumptions on
completeness or weak closures. The argument is analogous to that of Proposition 9.2(c).

The following example shows that the injective cone does not preserve pushforwards,
not even approximately.

Example 10.20 (Dual to Example 9.7; cf. [Dob22, Situation 4]) . Let E be a �nite -
dimensional space equipped with a proper, generating, polyhedral cone which is
not a simplex cone. Letx1; : : : ; xm be representatives of the extremal rays ofE+ ,
and let Rm be equipped with the standard coneRm

� 0. Then the map T : Rm ! E ,
(� 1; : : : ; � m ) 7! � 1x1 + : : : + � m xm is a pushforward (i.e. T[Rm

� 0] = E+ ).
SinceE+ is not a simplex cone, it follows from [BL75, Proposition 3.1] (see also

Theorem 13.2 below) that E+ 
 � E �
+ 6= E+ 
 " E �

+ . On the other hand, we have
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Rm
� 0 
 � E �

+ = Rm
� 0 
 " E �

+ , and it follows from Proposition 9.2(b) that T 
 idE � is a
pushforward for the projective cone. Therefore:

(T 
 idE � )[Rm
� 0 
 " E �

+ ] = ( T 
 idE � )[Rm
� 0 
 � E �

+ ] = E+ 
 � E �
+ 6= E+ 
 " E �

+ :

This shows that T 
 idE � is not a pushforward for the injective cone.
Note that all cones in this example are polyhedral, and therefore closed. In partic-

ular, the situation is not resolved by adding closures, which shows that the injective
cone does not preserve approximate pushforwards. 4

The �nite -dimensional techniques used in Example 10.20 will be discussed in more
detail in Chapter 12 and Chapter 13.

10.3 When is the injective cone proper?

We determine the lineality space ofE ~ F , and we use this to give necessary and
su�cient conditions for the injective cone (in all its incarnations) to be proper. Direct
formulas for the lineality space (under certain topological assumptions) will be given
in §10.5.

As before, let hE; E 0i , hF; F 0i be dual pairs, equipped with convex conesE+ � E ,
F+ � F in the primal spaces.

Proposition 10.21. The lineality space of(E ~ F )+ is the set of those bilinear forms
in E ~ F that vanish on span(E 0

+ )
w�

� span(F 0
+ )

w�
= lin( E+

w
)? � lin( F+

w
)? .

Proof. If b 2 E ~ F vanishes onspan(E 0
+ )

w�
� span(F 0

+ )
w�

, then in particular it
vanishes onE 0

+ � F 0
+ , so evidently both b and � b de�ne positive bilinear forms.

Conversely, if b 2 lin ((E ~ F )+ ), then both b and � b are positive on E 0
+ � F 0

+ , so
it follows that b must vanish on E 0

+ � F 0
+ . Therefore b also vanishes onspan(E 0

+ ) �

span(F 0
+ ), and consequently onspan(E 0

+ )
w�

� span(F 0
+ )

w�
. (Use weak-� continuity

in one variable at a time, as we did in the proof of Lemma 9.3.)
Since lin(E+

w
) = ? (E 0

+ ) (see§8.3), we havespan(E 0
+ )

w�
= lin( E+

w
)? . �

Direct formulas for the lineality space of the injective cone will be given in Corol-
lary 10.37(c) (in E 
 F ) and Corollary 10.41(b) (in E ~ F ). For now, we focus on
conditions for the injective cone to be proper.

Theorem 10.22. The following are equivalent:

(i) E+ 
 " F+ is a proper cone;

(ii) For every subspaceE 
 F � G � E ~ F , the coneG+ := G \ (E ~ F )+ is proper.

(iii) (E ~ F )+ is a proper cone;

(iv) E = f 0g, or F = f 0g, or both E+
w

and F+
w

are proper cones.

In particular, the injective tensor product of weakly closed proper cones is a proper
cone.
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Note that the equivalence (i) () (iv) is very similar to Theorem 9.10. However,
we should point out that the corner case is slightly di�erent now. In Theorem 9.10,
the corner case is when one of theconesis trivial; here the corner case is when one of
the spacesis trivial.

Proof of Theorem 10.22. (iii) =) (ii) . Trivial.
(ii) =) (i) . Immediate, sinceE+ 
 " F+ = ( E 
 F ) \ (E ~ F )+ .
(iv) =) (iii) . If E = f 0g, then clearly E ~ F = f 0g, so (E ~ F )+ is a proper cone

regardless of any properties ofF+ (and similarly if F = f 0g). If E+
w

and F+
w

are
proper cones, thenlin (E+

w
) = lin (F+

w
) = f 0g, so it follows from Proposition 10.21

that lin(( E ~ F )+ ) = f 0g.
(i) =) (iv) . We prove the contrapositive: suppose thatE; F 6= f 0g and that E+

w

is not a proper cone. Then we may choosex 2 E n f 0g with � x 2 E+
w

. Note that
(E+

w
)0 = E 0

+ , so for every' 2 E 0
+ we have' (x); ' (� x) � 0, and therefore' (x) = 0.

Now choose anyy 2 F n f 0g (here we use thatF 6= f 0g), then for all ' 2 E 0
+ ,  2 F 0

+
we havehx 
 y; ' 
  i = ' (x) (y) = 0 �  (y) = 0, so we �nd � x 
 y 2 E+ 
 " F+ .
Sincex and y are non-zero, we havex 
 y 6= 0, and we conclude that E+ 
 " F+ fails
to be proper. �

To tell whether E+ ~
 "
� F+ is a proper cone, we need to assume thatE and F are

complete. In the case whereE and F are not complete, an answer can be found by
�rst passing to the completions ~E, ~F . See also Remark 10.24 below.

Corollary 10.23. Let E; F be complete locally convex spaces,E+ � E , F+ � F
convex cones, and� a compatible locally convex topology onE 
 F . Then the following
are equivalent:

(i) E+ ~
 "
� F+ � E ~
 � F is a proper cone;

(ii) E = f 0g, or F = f 0g, or both E+ and F+ are proper cones and the natural map
E ~
 � F ! E ~
 " F is injective.

Proof. First of all, recall that E+ = E+
w

, sinceE+ is convex andE is locally convex.
Likewise, F+ = F+

w
.

For the injective topology, recall from (10.6) that we have E 
 F � E ~
 " F � E ~ F ,
sinceE and F are complete. Hence for� = " the result follows from Theorem 10.22.

For general � , recall that E ~
 � F ! E ~
 " F is bipositive. Therefore:
(i) =) (ii) . If E+ ~
 "

� F+ is proper, then the bipositive map E ~
 � F ! E ~
 " F
is automatically injective (see Remark A.7). Furthermore, the subconeE+ 
 " F+ �
E+ ~
 "

� F+ is also proper, so it follows from Theorem 10.22 that(ii) holds.
(ii) =) (i) . It follows from the assumptions that E+ ~
 "

" F+ is a proper cone and
that E ~
 � F ! E ~
 " F is injective. (The latter statement is trivially true if E = f 0g
or F = f 0g; otherwise it holds by assumption.) SinceE ~
 � F ! E ~
 " F is bipositive
and injective, it follows that E+ ~
 "

� F+ is also proper. �

Remark 10.24. In Corollary 10.23, the assumption that E and F are complete
cannot be omitted. Under the natural isomorphism E ~
 � R �= ~E, the injective cone
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E+ ~
 "
� R+ corresponds with fE+ (the closure of E+ in ~E). However, it can happen

that E+ is proper but fE+ is not (e.g. [Dob20a, Example 6.4]).

Remark 10.25. The natural map E ~
 � F ! E ~
 " F is not always injective; this is
related to the approximation property. Further remarks along this line can be found
in §11.4 below; see also [DF93, Theorem 5.6].

10.4 Faces of the injective cone

In this section, we present a general way to construct faces of the spaceE ~ F =
Bil (E 0

w� � F 0
w� ) of separately weak-� continuous bilinear forms. This will be used in

§10.5 to obtain ideals in for the injective cone.
Since the injective cone is characterized by bipositive mapsE 
 F ! E ~ F and

E ~
 � F ! ~E ~ ~F (see§10.1, the inverse image of a face in (E ~ F )+ (resp. ( ~E ~ ~F )+ )
immediately gives us a face inE+ 
 " F+ (resp. E+ ~
 "

� F+ ). Therefore we focus on
faces inE ~ F . For ideals in E 
 F and E ~
 � F , see§10.5.

De�nition 10.26. Let hE; E 0i , hF; F 0i be dual pairs, and let E+ � E , F+ � F be
convex cones. Givenb 2 E ~ F and subsetsM 0 � E 0, N 0 � F 0, let us write

b(M 0; � ) := f b('; � ) : ' 2 M 0g � (F 0
w� )0 = F ;

b( � ; N 0) := f b( � ;  ) :  2 N 0g � (E 0
w� )0 = E:

Given subsetsM � E , M 0 � E 0, N � F , N 0 � F 0, we de�ne

M 0n N :=
�

b 2 E ~ F : b(M 0; � ) � N
	

;

M o N 0 :=
�

b 2 E ~ F : b( � ; N 0) � M
	

:

Under the natural isomorphism E ~ F = Bil (E 0
w� � F 0

w� ) �= L(E 0
w� ; Fw ), the set

M 0n N is simply the set of operatorsT : E 0
w� ! Fw satisfying T[M 0] � N . Likewise,

M o N 0 corresponds with the set of operatorsS : F 0
w� ! Ew satisfying S[N 0] � M .

Note that the positive cone can be described as (E ~ F )+ = E 0
+ n F+

w
= E+

w
o F 0

+ .
The following lemma will be central to the remainder of this chapter. The special

case whereM 0 and N 0 are also faces has already been studied in the �nite-dimensional
setting (e.g. [Bar78b, §4] and [Tam92, §4]), but we will need the greater generality
presented here.

Lemma 10.27. If M 0 � E 0
+ , N 0 � F 0

+ are subsets of the dual cones and ifM � E+
w

,
N � F+

w
are faces, then(M 0n N ) \ (E ~ F )+ and (M o N 0) \ (E ~ F )+ are faces

of (E ~ F )+ .

Proof. Given ' 2 E 0, let L ' : E ~ F ! (F 0
w� )0 = F denote the mapb 7! b('; � ). If

' 2 E 0
+ , then L ' is a positive linear map in the sense thatL ' [(E ~ F )+ ] � F+

w
.
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Therefore L � 1
' [N ] \ (E ~ F )+ de�nes a face of (E ~ F )+ . Since (M 0n N ) \ (E ~ F )+

can be written as an intersection of faces,

(M 0n N ) \ (E ~ F )+ =
\

' 2 M 0

L � 1
' [N ] \ (E ~ F )+ ;

it also a face of (E ~ F )+ . The conclusion for (M o N 0) \ (E ~ F )+ follows by
symmetry. �

As a �rst application of Lemma 10.27, we study a construction of faces in the
injective cone that is dual to the construction in the projective cone (see§9.4). A
slightly di�erent construction, based again on Lemma 10.27, will be used in§10.5
below to construct ideals for the injective cone.

Theorem 10.28. Let M � E+
w

, N � F+
w

be faces, and de�ne

M > " N := ( M o N � ) \ (M � n N ) \ (E ~ F )+ ;

M ? " N := ( M o F 0
+ ) \ (E 0

+ n N ):

Then:

(a) M > " N and M ? " N are faces of(E ~ F )+ .

(b) The face lattice of (E ~ F )+ contains the following partially ordered subset:

M > " N

M > " lin( F+
w

) = M ? " F+
w

= M o F 0
+ lin( E+

w
) > " N = E+

w
? " N = E 0

+ n N

M ? " N

This subset respects meets from the face lattice:

M ? " N = ( M > " lin( F+
w

)) \ (lin( E+
w

) > " N ) = ( M ? " F+
w

) \ (E+
w

? " N ):

(c) If M and N are dual faces, then so areM > " N and M ? " N , and one has

M > " N = � (M � ? � N � ) = ( M o N � ) \ (E ~ F )+ = ( M � n N ) \ (E ~ F )+ ;

M ? " N = � (M � > � N � ):

If this is the case, then the subset from (b) respects meets and joins from the
lattice of h(E ~ F )+ ; E 0

+ 
 � F 0
+ i -dual faces(as de�ned in Appendix A.3).

(d) If M and N are exposed faces, then so isM > " N .

(e) If M and N as well aslin (E+
w

) and lin (F+
w

) are exposed faces, then so is
M ? " N .
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Note: in the �nite -dimensional case, the conclusion in (c) is simply that the
four-element subset from (b) respects the operations of the lattice of exposed faces.
(Here we use that (E+ 
 " F+ ) � = E �

+ 
 � F �
+ becauseE �

+ 
 � F �
+ is closed; see Corol-

lary 12.13(b).)

Proof of Theorem 10.28.

(a) Note that everything in M o F 0
+ is automatically positive, for if b( � ; F 0

+ ) � M
then certainly b( � ; F 0

+ ) � E+
w

. This shows that M o F 0
+ = ( M o F 0

+ ) \ (E ~ F )+ .
Now the result follows from Lemma 10.27, since the intersection of two faces is
again a face.

(b) If b 2 M o F 0
+ , then b( � ; F 0

+ ) � M , so in particular b vanishes onM � � F 0
+ .

Therefore b(M � ; � ) � ? (F 0
+ ) = lin (F+

w
), which shows that M o F 0

+ � M � n
lin( F+

w
). Since we also haveM o F 0

+ � (E ~ F )+ (see (a)), it follows from the
de�nition that

M > " lin( F+
w

) = ( M o F 0
+ ) \ (M � n lin( F+

w
)) \ (E ~ F )+ = M o F 0

+ :

Similarly, since E 0
+ n F+

w
= ( E ~ F )+ , it follows again from the de�nition that

M ? " F+
w

= ( M o F 0
+ ) \ (E 0

+ n F+
w

) \ (E ~ F )+ = M o F 0
+ :

The equality lin( E+
w

) > " N = E+
w

? " N = E 0
+ n N follows analogously. As a

consequence, the intersection formula follows immediately from the de�nition of
M ? " N . Finally, the upwards inclusions follow by noting that if M 1 � M 2 � E+

w

and N1 � N2 � F+
w

are faces, thenM 1 > " N1 � M 2 > " N2.

(c) If b 2 M o N � , then b( � ; N � ) � M , so in particular b vanishes onM � � N � .
Conversely, if b 2 (E ~ F )+ vanishes onM � � N � , then b( � ; N � ) � � (M � ) = M ,
so b 2 M o N � . This proves that

(M o N � ) \ (E ~ F )+ =
�

b 2 (E ~ F )+ : b(';  ) = 0 for all ' 2 M � ,  2 N � 	

= � (M � 
 s N � ):

By symmetry, the same is true ofM � n N , so we �nd

M > " N = ( M o N � ) \ (E ~ F )+ = ( M � n N ) \ (E ~ F )+ = � (M � 
 s N � ):

SinceM � ? � N � is the face (ofE 0
+ 
 � F 0

+ ) generated byM � 
 s N � , it follows
that M > " N = � (M � ? � N � ). This shows that M > " N is a dual face.

Since lin (E+
w

) = � (E 0
+ ) and lin (F+

w
) = � (F 0

+ ) are dual faces, it follows from
the intersection formula from (b) that M ? " N is also a dual face. Furthermore,
since lin(E+

w
) � = E 0

+ and lin(F+
w

) � = F 0
+ , it follows that

M ? " N = ( M > " lin( F+
w

)) \ (lin( E+
w

) > " N )

= � (M � ? � F 0
+ ) \ � (E 0

+ ? � N � )

= � �
(M � ? � F 0

+ ) + ( E 0
+ ? � N � )

�

= � (M � > � N � );
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where the last step uses thatM � > � N � = ( M � ? � F 0
+ ) + ( E 0

+ ? � N � ), by
Theorem 9.13(b).

That the diagram from (b) respects joins from the lattice of h(E~ F )+ ; E 0
+ 
 � F 0

+ i -
dual faces follows from duality. Indeed, by Theorem 9.13(c) and Theorem 9.13(d),
M � > � N � and M � ? � N � are hE 0

+ 
 � F 0
+ ; (E ~ F )+ i -dual faces (use thatlin (E 0

+ )
and lin (F 0

+ ) are automatically dual faces, becauseE 0
+ and F 0

+ are weak-� closed;
see Remark 9.15), so it follows that

(M > " N ) � = M � ? � N � ;

(M ? " N ) � = M � > � N � :

Therefore, the join of M > " lin( F+
w

) and lin( E+
w

) > " N in the lattice of
h(E ~ F )+ ; E 0

+ 
 � F 0
+ i -dual faces is given by

� � �
M > " lin( F+

w
)
� �

\
�
lin( E+

w
) > " N

� �
�

=
� �

(M � ? � F 0
+ ) \ (E 0

+ ? � N � )
�

=
� �

M � ? � N � �

= M > " N:

(d) Suppose thatM = � f ' 0g and N = � f  0g. Then in particular M and N are dual
faces, so by (c) we have

M > " N = � (M � ? � N � ) = ( M o N � ) \ (E ~ F )+ = ( M � n N ) \ (E ~ F )+ :

We prove that M > " N = � f ' 0 
  0g. Evidently one has f ' 0 
  0g � M � ? � N � ,
so � f ' 0 
  0g � � (M � ? � N � ) = M > " N . For the converse, suppose that
b 2 (E ~ F )+ is such that b(' 0;  0) = 0. Then b( � ;  0) 2 � f ' 0g = M , so
b vanishes onM � � f  0g. It follows that b(M � ; � ) � � f  0g = N , so b 2
(M � n N ) \ (E ~ F )+ = M > " N .

(e) This follows from (d) and the intersection formula from (b). �

Remark 10.29. In Theorem 10.28(e), it is required that lin (E+
w

) and lin (F+
w

) are
exposed. Recall that this is automatically the case ifE and F are separable normed
spaces; see Remark 9.15 and Corollary A.20.

Much as in the projective case, this assumption onlin (E+
w

) and lin (F+
w

) cannot
be omitted. The example runs along the same lines as the example in Remark 9.15,
except we need a much larger space. LetE+ be a weakly closed proper cone for
which f 0g is not exposed (see Example A.21, Example A.22), and letF := R with
the standard cone, so thatE ~ F �= E. Take some exposed faceM � E+ , and let
N := f 0g � R be the minimal face. Then M ? " N = f 0g, which is not exposed by
assumption.

Remark 10.30. Theorem 10.28(c) presents a duality between the four-element sub-
lattices from Theorem 9.13(b) and Theorem 10.28(b). In the projective diagram, the
top face M > � N is not merely the join, but even the sum of the left and right faces
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M ? � F+ and E+ ? � N . Given that the injective diagram is dual to the projective
diagram, could the same be true here?

Unfortunately, this is not the case, and it already fails for proper, generating,
polyhedral cones in �nite-dimensional spaces. In this setting, all faces are exposed, so
by Theorem 10.28(c) an equivalent question is the following: iff : E � ! F is positive
with f [M � ] � N , then can f be written as f = g + h with g and h positive and
g[M � ] = f 0g and h[E �

+ ] � N ?
Counterexample: let F+ be a proper, generating, polyhedral cone with a facet

N � F+ such that at least two extremal rays ofF+ are not contained inN . Furthermore,
let E+ := F �

+ with M := N � , and let f : E � = F ! F be the identity. Then one has
f [M � ] � N . However, if f = g + h is the desired decomposition, thenrank(g) � 1,
becauseker(g) contains a facet, sog[F+ ] is either a ray or f 0g. But now every x 2 F+

can be written as x = g(x) + h(x) 2 g[F+ ] + N , contradicting our assumption that at
least two extremal rays of F+ are not contained in N .

10.5 Order ideals for the injective cone

Recall that I 7! I + de�nes a surjective many-to-one correspondence between order
ideals and faces (see Appendix A.1). In order to get more convenient formulas for the
faces of the injective cone, it is helpful to formulate these results in terms of ideals.
The main aim in this section is to provide su�cient conditions so that I 
 J and
(I 
 F ) + ( E 
 J ) are ideals for the injective cone, given thatI � E and J � F are
ideals in the base spaces. (Similar questions inE ~ F and E ~
 � F are also addressed.)

Recall from §10.1 that the injective cone is characterized by bipositive maps
E 
 F ,! E ~ F and E ~
 � F ! ~E ~ ~F . Given subsetsX � E ~ F and Y � ~E ~ ~F ,
we denote byX \ (E 
 F ) and Y \ (E ~
 � F ) the inverse images ofX and Y under
these maps. (This is a slight abuse of notation, for the mapE ~
 � F ! ~E ~ ~F might
fail to be injective in the absence of the approximation property, but this will cause no
confusion.) It is not hard to see that the inverse image of an ideal (resp. face) under a
bipositive map is again an ideal (reps. face) (see Proposition A.3(b)), so (E 
 F ) \ X
and (E ~
 � F ) \ Y are ideals (resp. faces) wheneverX and Y are ideals (resp. faces).
This is the approach that we will take: we establish ideals inE ~ F and restrict these
to ideals in the algebraic/completed tensor product.

In order to obtain ideals in E ~ F , we note that the faces obtained in Lemma 10.27
can sometimes be written as the positive part of a linear subspace.

Lemma 10.31. In the notation from §10.4:

(a) If M 0 � E 0 and N 0 � F 0 are subsets and ifM � E and N � F are linear
subspaces, thenM 0n N and M o N 0 are linear subspaces.

(b) If I � E and J � F are subspaces and ifI is weakly closed, thenI ? n J � I o J ? .

(c) If I � E and J � F are weakly closed subspaces, thenI ? n J = I o J ? =
? (I ? 
 J ? ), where the orthogonal complement is taken with respect to the dual
pair hE ~ F; E 0 
 F 0i .



10.5. Order ideals for the injective cone 143

Note that ? (I ? 
 J ? ) � E ~ F is the set of separately weak-� continuous bilinear
forms E 0 � F 0 ! R that vanish on I ? � J ? .

Proof of Lemma 10.31.

(a) If T1; T2 : E 0
w� ! Fw map the subsetM 0 � E 0 in the subspaceN � F , and if

�; � 2 R are arbitrary, then �T 1 + �T 2 also mapsM 0 in N .

(b) If b(I ? ; � ) � J , then b(I ? ; J ? ) = f 0g, henceb( � ; J ? ) � ? (I ? ) = I , since I is
weakly closed.

(c) SinceJ is weakly closed, one hasb(I ? ; � ) � J if and only if b(I ? ; J ? ) = f 0g,
i.e. b vanishes onI ? � J ? . Therefore I ? n J = ? (I ? 
 J ? ). The other equality
follows analogously. �

We can now formulate the following \linearization" of Lemma 10.27.

Lemma 10.32. Let M 0 � E 0
+ be a set of positive linear functionals, and letN � F+

w

be a face.

(a) If J � F is a weakly closed subspace such thatJ \ F+
w

= N , then

(M 0n N ) \ (E ~ F )+ =
�

span(M 0)
w�

n J
�

\ (E ~ F )+ :

In particular, span(M 0)
w�

n J is an ideal in E ~ F .

(b) If J � F is a subspace such thatJ \ F+
w

= N , then

(M 0n N ) \ (E ~ F )+ \ (E 
 F ) =
�

span(M 0)
w�

n J
�

\ (E ~ F )+ \ (E 
 F ):

In particular,
�

span(M 0)
w�

n J
�

\ (E 
 F ) is an ideal in E 
 F .

Interchanging E and F yields corresponding statements for ideals of the formI o
span(N 0)

w�
and (I o span(N 0)

w�
) \ (E 
 F ).

Proof.

(a) \ � ". If b 2 M 0n N , then we haveb(M 0; � ) � N � J , so it follows by linearity and
continuity that b(span(M 0)

w�
; � ) � J . This shows that M 0n N � span(M 0)

w�
n

J .

\ � ". If b 2
�

span(M 0)
w�

n J
�
\ (E ~ F )+ , then b(M 0; � ) � b(span(M 0)

w�
; � ) � J ,

but also b(M 0; � ) � b(E 0
+ ; � ) � F+

w
by positivity, so we �nd b(M 0; � ) �

J \ F+
w

= N .

To conclude that span(M 0)
w�

n J is an ideal, note that it is a linear subspace
(by Lemma 10.31(a)) whose positive part is a face (by Lemma 10.27).
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(b) \ � ". If b 2 (M 0n N ) \ (E 
 F ), then b(M 0; � ) � N � J . But b has �nite rank, so
there is a �nite -dimensional (hence closed) subspaceY � J such that b(M 0; � ) �
Y . By linearity and continuity, it follows that b(span(M 0)

w�
; � ) � Y � J , which

shows that (M 0n N ) \ (E 
 F ) � span(M 0)
w�

n J .

The reverse inclusion \� " and the conclusion follow as in (a). �

Recall that we call a convex coneE+ � E in a topological vector spacesemisimple
if E+

w
is a proper cone, or equivalently, ifspan(E 0

+ ) is weak-� dense inE 0 (see§8.3
and [Dob20a]). Furthermore, if I � E is a weakly closed subspace, then the quotient
E=I belongs to the dual pair hE=I; I ? i , the weak topology ofE=I coincides with the
quotient topology Ew =I , and the weak-� topology on (E=I )0 = I ? � E 0 coincides with
the relative � (E 0; E )-topology (see§8.2). In particular, we may unambiguously refer
to this as the weak-� topology on (E=I )0 �= I ? .

Theorem 10.33. Let hE; E 0i , hF; F 0i be dual pairs, and letE+ � E , F+ � F be
convex cones. Given subspacesI � E and J � F , we de�ne

I > J := ( I ? n J ) \ (I o J ? );

I ? J := (lin( E+
w

)? n J ) \ (I o lin( F+
w

)? ):

Suppose thatI and J are ideals with respect toE+
w

and F+
w

, respectively.3 Then:

(a) (I ? J ) \ (E 
 F ) is an ideal in E 
 F (with respect to the injective cone);

(b) If I and J are weakly closed, thenI ? J is an ideal in E ~ F ;

(c) If I is weakly closed and(E=I )+ is semisimple, or if J is weakly closed and
(F=J)+ is semisimple, then(I > J ) \ (E 
 F ) is an ideal in E 
 F (with respect
to the injective cone);

(d) If I and J are weakly closed, and if at least one of(E=I )+ and (F=J)+ is
semisimple, thenI > J is an ideal in E ~ F .

Proof.

(a) Sincelin (E+
w

) = ? (E 0
+ ) (see§8.3), we havespan(E 0

+ )
w�

= lin (E+
w

)? . Hence
it follows from Lemma 10.32(b) that ( lin( E+

w
)? n J ) \ (E 
 F ) is an ideal

in E 
 F . Analogously, (I o lin( F+
w

)? ) \ (E 
 F ) is an ideal in E 
 F . The
conclusions follows since the intersection of two ideals is an ideal.

(b) Analogous to (a), using Lemma 10.32(a) instead of Lemma 10.32(b).

(c) Assume that I is weakly closed and (E=I )+ is semisimple (the other case is
analogous). SinceI is weakly closed, it follows from Lemma 10.31(b) thatI > J =
I ? n J . Furthermore, by basic duality (as mentioned on page 111), the adjoint of
the pushforward E ! E=I is the pullback (bipositive map) (E=I )0 �= I ? ! E 0,

3 In other words, I \ E+
w

and J \ F+
w

are faces of E+
w

and F+
w

, respectively.
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so we have (E=I )0
+ = I ? \ E 0

+ . Since (E=I )+ is semisimple, its dual cone
(E=I )0

+ separates points onE=I . Equivalently, the subspacespan((E=I )0
+ ) =

span(I ? \ E 0
+ ) is weak-� dense inI ? . Hence it follows from Lemma 10.32(b)

that ( I ? n J ) \ (E 
 F ) is an ideal in E 
 F .

(d) Analogous to (c), using Lemma 10.32(a) instead of Lemma 10.32(b). �

Remark 10.34. In terms of the mapping properties, it is not surprising that the
semisimplicity of (E=I )+ and (F=J)+ plays a role in Theorem 10.33. Let� I : E ! E=I
and � J : F ! F=J denote the canonical maps. If both (E=I )+ and (F=J)+ are
semisimple, then (E=I ) ~ (F=J) is a proper cone (by Theorem 10.22), so now evidently
ker(� I ~ � J ) = ? (I ? 
 J ? ) is an ideal in E ~ F .

What is surprising in Theorem 10.33 is that it is su�cient for only one of ( E=I )+

and (F=J)+ to be semisimple. This could not have been predicted solely on the basis
of the mapping properties. The following example shows that we need at least one of
the quotients to be semisimple, even in the �nite-dimensional case.

Example 10.35. Let E := R3 and let E+ � E be the second-order coneE+ :=
f (x1; x2; x3) :

p
x2

1 + x2
2 � x3g. The injective cone E �

+ 
 " E+ can be identi�ed with
the coneL+ (E; E ) of positive linear operators E ! E . If we identify E � with R3 via
the standard inner product, then E+ is self-dual. The vectors (1; 0; 1); (� 1; 0; 1) 2 R3

de�ne extremal rays of E+ , so the subspacesI := spanf (� 1; 0; 1)g � E � and J :=
spanf (1; 0; 1)g � E are ideals (see Proposition A.3(a)). It follows from Lemma 10.31(c)
that I > J = I ? n J . We show that this is not an ideal.

Let b1 2 E � 
 E = Bil (E; E � ) �= L(E; E ) correspond to the identity E ! E ,
and let b2 2 E � 
 E be the bilinear form E � E � ! R corresponding with the
linear map (x1; x2; x3) 7! (x1; � x2; x3). Clearly b1 and b2 are positive. However, since
dim(I ? ) = 2 and dim(J ) = 1, maps in I ? n J cannot be invertible, so in particular
we haveb1; b2 =2 I ? n J .

It is not hard to see that b1 + b2 2 I ? n J , and evidently we have 0� b1 � b1 + b2.
This shows that I ? n J is not an ideal. 4

We conclude this section by providing more convenient direct formulas for the ideals
I > J and I ? J and their restrictions to E 
 F or E ~
 � F . Roughly speaking, under
certain topological assumptions we haveI > J = ( I ~ F ) + ( E ~ J ) and I ? J = I ~ J .

Ideals in the algebraic tensor product

We show that the ideals (I ? J ) \ (E 
 F ) and (I > J ) \ (E 
 F ) from Theorem 10.33
are always equal to (I 
 J ) + lin( E+ 
 " F+ ) and (I 
 F ) + ( E 
 J ), respectively

Lemma 10.36. If I � E and J � F are subspaces, then

(I ? n J ) \ (I o J ? ) \ (E 
 F ) = ( I 
 F ) + ( E 
 J ) + ( I
w


 J
w

):

Proof. Choose an algebraic decompositionE �= E1 � E2 � E3 with E1
�= I and

E1 � E2
�= I

w
, and likewise forF �= F1 � F2 � F3. Then E 
 F �=

L 3
i =1

L 3
j =1 (E i 
 Fj ).

Under this identi�cation, ( I ? n J ) \ (E 
 F ) corresponds with those elements that are
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