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ABSTRACT
Level-crossing analog-to-digital converters (LC-ADCs) are neu-
romorphic, event-driven data converters that are gaining much
attention for resource-constrained applications where intelligent
sensing must be provided at the extreme edge, with tight energy
and area budgets. LC-ADCs translate real-world analog signals
(such as ECG, EEG, etc.) into sparse spiking signals, providing sig-
nificant data bandwidth reduction and inducing savings of up to
two orders of magnitude in area and energy consumption at the
system level compared to the use of conventional ADCs. In ad-
dition, the spiking nature of LC-ADCs make their use a natural
choice for ultra-low-power, event-driven spiking neural networks
(SNNs). Still, the compressed nature of LC-ADC spiking signals can
jeopardize the performance of downstream tasks such as signal
classification accuracy, which is highly sensitive to the LC-ADC
tuning parameters. In this paper, we explore the use of popular
information criteria found in model selection theory for the tuning
of the LC-ADC parameters. We experimentally demonstrate that
information metrics such as the Bayesian, Akaike and corrected
Akaike criteria can be used to tune the LC-ADC parameters in
order to maximize downstream SNN classification accuracy. We
conduct our experiments using both full-resolution weights and 4-
bit quantized SNNs, on two different bio-signal classification tasks.
We believe that our findings can accelerate the tuning of LC-ADC
parameters without resorting to computationally-expensive grid
searches that require many SNN training passes.

KEYWORDS
LC-ADC, Information criteria, event-based sampling, Spiking Neu-
ral Networks
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1 INTRODUCTION
In recent years, the use of neuromorphic level-crossing analog-to-
digital converters (LC-ADCs) is gaining an increasing attention for
sensing applications in extreme-edge devices, where latency, area
and energy consumption must be kept as low as possible [18, 23],
while maintaining the target performance metric (e.g., classifica-
tion accuracy). Indeed, LC-ADCs are event-driven converters that
transform their analog input signals into resource-efficient spike
trains, emitting spikes only when the change in the input signal
exceeds a certain threshold [23]. Hence, the use of LC-ADCs can re-
sult in up to two orders of magnitude reductions of data bandwidth
and system energy consumption, especially when input signals
are burst-like or sparse in time [18, 22]. Since many biological sig-
nals, such as electrocardiogram (ECG) and electroencephalogram
(EEG) data, exhibit burst-like sparsity properties, a lot of attention
has been paid to the application of LC-ADCs for ultra-low-power
biomedical monitoring applications [8].

In addition, the spike trains produced by LC-ADCs align with
spiking neural networks (SNNs) [9, 18], which differ from conven-
tional frame-based deep neural networks (DNNs) through their use
of event-driven spiking neurons [9]. LC-ADCs are especially suited
for SNNs since their sparse spike trains can induce a sparse SNN
activity, whereby reducing the overall energy consumption.

Still, the compressed nature of LC-ADC spiking signals can signif-
icantly affect task performance. It is therefore paramount to wisely
tune the LC-ADC parameters such as the spiking threshold off-
set and decay rate, when seeking a high SNN signal classification
accuracy and efficiency at the system level.

Since performing a fine-grained grid search can be lengthy as
it involves a large number of SNN training procedures, several
studies have highlighted the use of reconstruction error metrics
for quickly assessing the quality of the LC-ADC spike encoding
given its tuning parameters [14, 16, 20, 25], without the need for
SNN training and testing. But to the best of our knowledge, the
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use of other information metrics taking into account the LC-ADC
spiking density (or complexity) has not yet been reported in liter-
ature. Indeed, typical reconstruction error metrics [14, 16, 20, 25]
do not penalize for the model complexity, even though a larger
spike density may increase the chances of over-fitting and hence,
jeopardize SNN accuracy. Therefore, our goal in this paper is to
explore the use of popular information-theoretic criteria such as
the Bayesian, Akaike and corrected Akaike criteria [1, 4, 5] with
the aim of tuning the LC-ADC parameters in order to optimize
downstream SNN classification accuracy.

OFFSET

TDecay

OFFSETOFFSET

TDecay

Input Signal

Threshold

LCADC
Output

Time

LSBADC

Figure 1:Working principle of the adaptive threshold LC-ADC.

The contributions of this paper are the following:
(1) We provide an information-theoretic method for tuning the

spiking parameters of neuromorphic LC-ADCs in order to
maximise the accuracy of spiking signal classification tasks
after the LC-ADC encoding.

(2) We experimentally demonstrate our method on two bio-
signal classification tasks: electrocardiogram (ECG) PQRST
detection and epilepsy detection, using both Support Vec-
tor Machines (SVMs) and Spiking Neural Networks (SNNs)
with both 4-bit weights (for hardware implementation) and
floating point weights (on computer).

(3) We show that a clear correlation exists between tuning the
LC-ADC to optimize the various information criteria and
maximising the SVM and SNN accuracy.

This paper is organized as follows. An overview of the LC-ADC
model used throughout our work is provided in Section 2. The
various information criteria investigated in this work are covered in
Section 3. Experimental results are shown in Section 4. A discussion
on the obtained results is given in Section 5. Finally, conclusions
are provided in Section 6.

2 LEVEL-CROSSING ADC MODEL
In any sensor application, an interface that converts analog signals
to a digital representation is required. For neuromorphic sensing
systems, this conversion can be done by means of signal-dedicated
hardware such as dynamic vision sensors (DVS) and spiking cochlea
[12, 28]. However, these sensor types are signal specific, and can
only be used for image and audio signals. A more generic type
of neuromorphic sensing interface is the level-crossing analog to

digital converter (LC-ADC), also called analog-to-spike converter
[9, 23, 26]. Unlike conventional sensor systems, where the ADC
samples the sensor signal at a fixed (Nyquist) rate that is determined
by the maximum sensor signal bandwidth, LC-ADCs sample the
signal only whenever a threshold value is exceeded [9, 23, 26].
This makes the output of the circuit event-driven, with the circuit
dynamic power consumption and data rate scaling according to
the input signal activity. For low-duty-cycle signals such as ECG
or EEG, this gives up to two orders or magnitude energy saving at
the ADC and system levels [22]. The ADC output of a LC-ADC is
represented in a spiking format with both positive and negative
polarities [9], making it an ideal candidate for interfacing to SNNs.

The resolution of the LC-ADC has an effect on the total data
rate and hence, on the power consumption of the neuromorphic
system [9, 22]. To lower the data rate, while simultaneously having
a high ADC resolution, adaptive-threshold LC-ADCs have been
proposed [2, 26]. Adaptive-threshold LC-ADCs dynamically change
the threshold over time (e.g., by a step function [26] or an exponen-
tial decay [2]). Fig. 1 shows the working principle of such adaptive
threshold LC-ADC, using a decaying step function.

Fig. 2 shows a high-level behavioral model for the adaptive-
threshold LC-ADC used in this work, implementing a decaying step
function [26]. The LC-ADC architecture of Fig. 2 is an enhanced
version of our previously presented LC-ADC converter [23], and
also includes the adaptive threshold mechanism now. Our model is
implemented inMATLAB, and can be used to convert any data set of
signals into a spiking dataset that contains the same artefacts as an
LC-ADC implemented in hardware (without the need of generating
the data from an actual LC-ADC chip).

In the model, the main circuit non-idealities are included such as
thermal noise from the sample stage and the comparator (𝑉𝑛,𝑘𝑇𝐶
and 𝑉𝑛,𝑐𝑜𝑚𝑝 ), DAC mismatch (𝑉𝑒,𝐷𝐴𝐶 ) and the offset of the com-
parator (𝑉𝑜𝑠,𝑐𝑜𝑚𝑝 ). In Fig. 1, the behavior of the model (for the
positive polarity threshold) is depicted. After a sample is generated
by the ADC, the threshold is reset to the maximum offset value
(this is a programmable value, for example 5 LSB). After a certain
programmable decay time𝑇𝐷𝑒𝑐𝑎𝑦 have passed, the offset is lowered
with 1 LSB. If the signal crosses the threshold value, a sample is
again generated and the offset is reset again. If the signal does not
cross the threshold value, the ADC decreases the threshold till the
offset value is equal to 1 LSB and remains equal to this value until a
new threshold crossing is registered. The ADC compares the input
signal in 4 phases (see Φ1,2,3,4 in Fig. 2) to two thresholds (a posi-
tive and negative threshold), and depending on which threshold
is crossed, the LC-ADC generates a spike with either positive or
negative polarity.

While the compressed nature of the LC-ADC spiking output
helps to reduce the data rate (lowering area and power consumption
at the system level), it has been observed that the accuracy of
downstream classifiers such as SNNs is highly sensitive to the
choice of the LC-ADC parameters [2]. In Section 3, we propose to
study the use of popular information criteria for the tuning of the
two main parameters of the adaptive-threshold LC-ADC of Fig. 2:
the programmable offset and the decay values (both taking positive
integer values between 1 and 10 LSBs).
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Figure 2: High-level behavioral model of the adaptive-threshold LC-ADC used in this work. The LC-ADC timing is also shown. The
LC-ADC working phases are noted as Φ1,2,3,4.

3 TUNING VIA INFORMATION-THEORETIC
CRITERIA

This Section introduces the various information criteria used during
our experiments and their application for LC-ADC tuning.

3.1 Bayesian and Akaike Information Criteria
When modelling systems and signals, different models with differ-
ent complexity (e.g., number of parameters of a regression model,
the sparsity of regressed output,...) can be selected [4]. Usually, the
higher the complexity of the model, the lower the modelling error
for the signals used to fit the model parameters. On the other hand,
a higher model complexity generalizes poorly on new signals (i.e.,
the well-known over-fitting problem) [1]. Information-theoretic
criteria such as the Bayesian Information Criteria (BIC) [4] and the
Akaike Information Criteria (AIC) [1] are popular techniques that
have been used to select the best model candidates based on the
trade-off between modelling error and model complexity.

Assuming independent and identically-distributed (i.i.d) Gauss-
ian noise, the BIC is given by [4]:

BIC = 𝑁𝑠 log(
∑𝑁𝑠

𝑖=1 (𝑠𝑖 − 𝑠𝑖 )2

𝑁𝑠
) + 𝜅 log(𝑁𝑠 ) (1)

where 𝑠𝑖 , 𝑖 = 1, ..., 𝑁𝑠 is the true discrete-time signal being encoded,
𝑠𝑖 is the reconstructed signal from the encoder output, 𝜅 is the model
complexity (i.e., the number of non-zero model parameters) and∑𝑁𝑠

𝑖=1 (𝑠𝑖 − 𝑠𝑖 )2 represents the model reconstruction error. Similarly,
the AIC is given by [1]:

AIC = 𝑁𝑠 log(
∑𝑁𝑠

𝑖=1 (𝑠𝑖 − 𝑠𝑖 )2

𝑁𝑠
) + 2𝜅 (2)

Intuitively, the model that gives the lowest BIC or AIC is
the one that provides the best trade-off between modelling error
(
∑𝑁𝑠

𝑖=1 (𝑠𝑖 −𝑠𝑖 )
2 in Eq. 1, 2) and over-fitting (through the 𝜅-dependent

complexity term in Eq. 1, 2). Therefore, the BIC and AIC can be

used to tune the parameters of a given model by selecting the set
of parameters that minimizes the BIC or AIC. Even though playing
a similar role, BIC and AIC have been derived based on different
prior assumptions [1, 4]. It is therefore customary to investigate
both of their effect in literature [4].

In addition, later studies found that the AIC can be biased when
𝑁𝑠 is small (i.e., the minimum AIC can suffer from an offset with
regard to the model complexity). The corrected AIC (noted AICc)
has then been proposed [5]:

AICc = 𝑁𝑠 log(
∑𝑁𝑠

𝑖=1 (𝑠𝑖 − 𝑠𝑖 )2

𝑁𝑠
) + 2𝜅 + 2𝜅2 + 2𝜅

𝑁𝑠 − 𝜅 − 1
(3)

where the last term is a correction term reducing the AIC bias.

3.2 LC-ADC decoder and complexity measure
Let us now investigate how the BIC, AIC and AICc can be used to
automatically tune the decay and offset parameters of our adaptive-
threshold LC-ADC (see Section 2) given arbitrary sensory data as
input.

3.2.1 Decoder. In order to measure the BIC, AIC and AICc of our
LC-ADC given its decay and offset parameters, we must find a way
to reconstruct a posteriori the input signal from the event-driven
spiking output of the LC-ADC. We therefore look at the LC-ADC
as an encoder that converts the input vector 𝑠𝑖 , 𝑖 = 1, ..., 𝑁𝑠 into
a vector of spikes 𝑒𝑖 , 𝑖 = 1, ..., 𝑁𝑠 (where 𝑖 represents the discrete
time index). Hence, we must propose a decoder that converts the
LC-ADC output 𝑒𝑖 , 𝑖 = 1, ..., 𝑁𝑠 into the reconstructed input signal
𝑠𝑖 , 𝑖 = 1, ..., 𝑁𝑠 .

We build our decoder as follows. First, we apply a low-pass
filter to 𝑒𝑖 , 𝑖 = 1, ..., 𝑁𝑠 in order to reject the spurious frequencies
associated with the discontinuity of the spiking signal. Doing so,
we retrieve an intermediate signal 𝑟𝑖 :

𝑟𝑖+1 = 𝛽𝑟𝑖 + (1 − 𝛽)𝑒𝑖 ,∀𝑖 = 1, ..., 𝑁𝑠 (4)
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where 𝑟0 = 0, 𝛽 = exp(−𝜔𝑐𝑇𝑠𝑖𝑚) sets the cutoff frequency 𝜔𝑐 of
the low-pass filter, and 𝑇𝑠𝑖𝑚 is the simulation period. The cutoff
frequency 𝜔𝑐 is signal-dependent and must be tuned in order to
cover the bandwidth of the original input signal 𝑠𝑖 fed to the LC-
ADC.

Then, wemust adjust the amplitude and offset of the intermediate
signal 𝑟𝑖 in order to compensate for the attenuation induced by the
low-pass filtering steps. The amplitude gain 𝑎 and offset 𝑏 can be
found via the least-squares method:

𝑎, 𝑏 = argmin
𝑎,𝑏

𝑁𝑠∑︁
𝑖=1

(𝑎𝑟𝑖 + 𝑏 − 𝑠𝑖 )2 (5)

By setting the derivative of
∑𝑁𝑠

𝑖=1 (𝑎𝑟𝑖 + 𝑏 − 𝑠𝑖 )2 with regard to 𝑎
and 𝑏 to zero, we find:

𝑎 =

∑𝑁𝑠

𝑖=1 (𝑟𝑖 − 𝜇𝑟 ) (𝑠𝑖 − 𝜇𝑠 )∑𝑁𝑠

𝑖=1 (𝑟𝑖 − 𝜇𝑟 )2
, 𝑏 = 𝜇𝑠 − 𝑎𝜇𝑟 (6)

where 𝜇𝑟,𝑠 respectively denote the mean value of 𝑟𝑖 and 𝑠𝑖 . Finally,
the reconstructed signal 𝑠𝑖 is found as:

𝑠𝑖 = 𝑎𝑟𝑖 + 𝑏 ∀𝑖 = 1, ..., 𝑁𝑠 (7)

Fig. 3 and 4 show our reconstruction process using as respective
input 𝑠𝑖 an ECG signal from the MIT-BIH arrhythmia dataset [13]
and an electroencephalogram (EEG) signal from the epilepsy seizure
detection dataset proposed in [3]. We respectively use a cut-off
frequency of 𝜔𝑐 = 2𝜋 × 2.5 rad/s and 𝜔𝑐 = 2𝜋 × 1.25 rad/s for
the ECG and EEG signals (hand-tuned heuristically based on the
obtained reconstructions 𝑠𝑖 ).

Figure 3: Input ECG signal reconstruction. The input signal 𝑠𝑖
is fed to the LC-ADC which outputs the spiking signal 𝑒𝑖 . The
decoding process of Section 3.2.1 reconstructs the input by i)
low-pass filtering to get the intermediate signal 𝑟𝑖 via (4) and
ii) gain compensation to obtain the reconstruction 𝑠𝑖 via (7).

Figure 4: Input EEG signal reconstruction. The reconstruction
steps are similar to Fig. 3.

3.2.2 Complexity measure. Since we consider the architecture of
the LC-ADC fixed, the complexity of the encoding-decoding system
corresponds to the number of variable non-zero parameters in the
decoding process (4)-(7). The gain compensation scheme (7) being
always fixed (i.e., always has two non-zero parameters 𝑎 and 𝑏), we
turn our attention to the low-pass filtering step (4).

Under the light of (4), it is clear that the only variable source of
non-zero parameters corresponds to the number of non-zero values
in 𝑒𝑖 , 𝑖 = 1, ..., 𝑁𝑠 (i.e., the number of LC-ADC spikes). Therefore,
we compute 𝜅 in BIC (1), AIC (2) and AICc (3) as the number of
non-zero values in 𝑒𝑖 , 𝑖 = 1, ..., 𝑁𝑠 .

We now have all the tools necessary to evaluate the various
information criteria by i) computing the model reconstruction error∑𝑁𝑠

𝑖=1 (𝑠𝑖 − 𝑠𝑖 )2 in (1)-(3) via the reconstructed signal (7) and ii)
computing the complexity term 𝜅 as the number of spikes in the
LC-ADC output 𝑒𝑖 .

We can then perform these steps for each choice of decay and
offset parameter and report the BIC, AIC and AICc in function of
LC-ADC decay and offset (see Fig. 5)

4 EXPERIMENTAL RESULTS
4.1 Dataset preparation
Since biological signal processing has been proposed as a well-
suited task for LC-ADCs due to their intrinsic sparsity in time [9,
18, 22], we consider two different bio-signal classification datasets
in this work: 1) 5-class ECG labelling of P, Q, R, S and T-type peaks
using the MIT-BIH arrhythmia dataset [13] and 2) 2-class epilepsy
seizure detection using the dataset proposed in [3].

4.1.1 ECG PQRST labelling. The MIT-BIH arrhythmia dataset [13]
features a collection of long ECG recordings from different patients
(each recording lasts around 30 minutes). We choose recording 101
as our training sequence and recording 201 as the independent
test sequence acquired on a different patient. This balanced train-
test partitioning makes the learning problem challenging since the
training set is not significantly larger than the test set (as it is often
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the case), while keeping the computational time of the baseline grid
searches with quantization-aware SNN training to an acceptable
duration.

We encode the 30-min train/test ECG sequences using our MAT-
LAB LC-ADC model, for various (offset, decay) settings in a 10 × 10
grid (i.e., both offset and decay ∈ {1, ..., 10} LSB with increment
step 1), and with simulation time-step𝑇𝑠𝑖𝑚 = 2.08× 10−5 s. We use
the PQRST labelling MATLAB toolbox recently proposed in [19]
to automatically label the ECG sequences in order to obtain the
location of the P, Q, R, S and T-peaks. Doing so, we obtain 100 train
and test spiking sequences, for each combination (offset, decay),
together with their labels (i.e., the time step at which a P, Q, R, S or
T-peak was found).

Then, we partition both the train and test sequences into chunks
of spiking data by making each chunk correspond to the time win-
dow spanned right before each PQRST label. For example, if a
P-type label is found at time step 𝑖𝑝 , the complete ECG spike train
𝑒𝑖 ,∀𝑖 = 1, ..., 𝑁𝑠 is cut into the chunk 𝑒 𝑗 ,∀𝑗 = 𝑖𝑝 − 𝐿, ..., 𝑖𝑝 , corre-
sponding to the spiking activity that happened right before the time
step when the P-type peak was found. The time length 𝐿 is set to
80 steps, as a good balance between performance and computation
time.

Doing so, we obtain a 5-class dataset composed of 7350 training
patches and 6484 test patches of LC-ADC-encoded ECG data, for
each choice of (offset, decay) parameters.

4.1.2 Epilepsy detection. The epilepsy detection dataset in [3] fea-
tures 11500 recordings of EEG data chunks over 1.025 s. Each chunk
is already labelled as either corresponding to an epileptic seizure or
either to an non-epileptic category. We employ the same LC-ADC
encoding setup as in the ECG case of Section 4.1.1 and obtain an
encoded spiking dataset for each choice of (offset, decay), following
the same 10 × 10 grid (both offset and decay ∈ {1, ..., 10} LSB with
increment step 1). Finally, we randomly split the dataset into a
training and a test set using a 70%-30% split.

Next, we will use the ECG and EEG datasets to explore the
applicability of the information criteria given in Section 3 for the
identification of the LC-ADC parameters maximizing classification
accuracy.

4.2 Linear separability assessment
Before exploring the correlation between the information criteria
and SNN accuracy, we first verify if there is a correlation between
the information criteria and the linear separability of the spiking
data, in order to prepare the ground for further comparison be-
tween the linear and non-linear (SNN) case in Section 5. Linear
separability denotes how well the dataset, encoded via LC-ADC, can
be partitioned using linear hyper-planes and therefore, indicates the
quality of the LC-ADC encoding [24].

To do so, we employ a linear SVM classifier [15] and train it on
the spiking LC-ADC output, for each choice of decay and offset. We
perform our experiments on both the ECG and the EEG datasets.
Note that the goal here is not to attain maximal classification ac-
curacy but rather, to transparently check the linear separability of
the LC-ADC output (vs. non-linearity of SNNs which attains higher
accuracy but jeopardizes the transparent assessment of linear sepa-
rability).

Since the SVM we use is not a recurrent model, we feed at once
the chunks of spiking ECG and EEG data obtained in Section 4.1
as input vectors to our SVM. We train and test the SVM for each
choice of LC-ADC decay and offset and report the obtained test
accuracies as heat-maps in Figs. 5 and 6.

Fig. 5 and 6 clearly shows that a correlation exists between
the locations of maximal linear SVM accuracy (in red) and the
locations of minimumBIC, AIC and AICc in dark blue (with Pearson
correlations for all criteria above 0.98 in the ECG case and above
0.32 in the EEG case). The maximal linear SVM accuracy is 60.8%
in the ECG case, and 64.9% in the EEG case.

Figure 5: ECG dataset. Correlation between Linear SVM Accu-
racy, BIC, AIC and AICc, in function of LC-ADC decay and
offset. A clear correlation exists between the coordinates of
maximal accuracy and the coordinates of minimal BIC, AIC
and AICc. The maximum accuracy is 60.8 %.

4.3 SNN classification assessment
Section 4.2 showed the correlation between the information criteria
and the linear separability of the data. Here, we explore whether
such correlation still holds when using an SNN as downstream
classifier. We verify this under two cases: 1) when using quantized
weights (for SNN implementation in low power neuromorphic
chips) and 2) when using standard floating point weights.

As reference neuromorphic architecture design, we consider
the constraints found in the ODIN chip [6] where synapses are
quantized to 4-bit precision. In addition, the maximum number of
neurons supported by ODIN is 256, which sets the total number of
neurons in our proposed SNN design (see Fig. 7). In addition, we
exclusively use Integrate and Fire (IF) neurons instead of Leaky IF
to further reduce hardware overheads.

4.3.1 Using 4-bit weights. We train the SNN architecture of Fig. 7
via back-propagation through time (BPTT) [27] using the SLAYER
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Figure 6: EEG dataset. As in the ECG case (Fig. 5), a correlation
can be clearly remarked between the information criteria and
the SVM accuracy. The maximum accuracy is 64.9 %.

Figure 7: Recurrent SNN architecture. The input signal (ECG,
EEG) is encoded by the LC-ADC to spike trains of positive and
negative polarity. Then, these 2-dimensional spike train are
fed to a recurrent layer of IF neurons via the fully-connected
weight matrix𝑊𝑖𝑛 . Recurrence is provided through the weight
matrix𝑊𝑟 . Finally, the output of the recurrent layer is fed to an
output layer composed of 𝑁𝑐𝑙𝑎𝑠𝑠 IF neurons via the weight ma-
trix𝑊𝑜𝑢𝑡 , where 𝑁𝑐𝑙𝑎𝑠𝑠 is the number of classes in the dataset,
also setting the number of neurons in the recurrent layer. Do-
ing so, all 256 neurons in the ODIN chip are used.

surrogate gradient technique [21] on the 5-class ECG dataset (see
Section 4.1) and we report in Fig. 8 the test accuracy obtained in
function of the LC-ADC parameters offset and decay. We use the
Adam optimizer [11] with decay parameters 𝛽1 = 0.9, 𝛽2 = 0.999
and learning rate 𝜂 = 3 × 10−4 for a total of 100 training epochs.
Following prior SNN training studies such as [17], we initialize all
weights using the Uniform Xavier initialization method [7].

Crucially, we perform quantization-aware training [10] where
the SNN weights are quantized to 4-bit precision, while clipping
the maximum absolute weight values to 0.05 (adjusted empirically).
Quantization-aware training uses the 4-bit weights for the infer-
ence pass and fine-tunes the full-precision weights using the back-
propagated errors obtained during the 4-bit weight inference pass.

As loss function, we opt for the standard cross-entropy as widely
used in most SNN classification problems [17]. We perform all our
experiments using pytorchwith an NVIDIA V100 GPU using a batch
size of 128. Fig. 8 compares the accuracy on the test set with the
AICc already shown in Fig. 5

We observe in Fig. 8 that a slight bias exists between the region of
minimum BIC, AIC, AICc and the region of maximal SNN accuracy
in Fig. 8. Indeed, the region of maximal SNN accuracy is found for
slightly larger values of (offset, decay) compared to the region of
minimum BIC, AIC (in Fig. 5) and AICc. Still, the use of information
criteria already provides a useful estimation of the region of (decay,
offset) pairs that induce maximal SNN accuracy. The existence of
this bias will be further discussed in Section 5.

Figure 8: ECG test accuracy using our SNN with 4-bit weights,
in function of LC-ADC decay and offset. Similar to the linear
SVM case (Section 4.2), the coordinates of maximum accuracy
correlate well with the coordinates of minimum BIC, AIC and
AICc in Fig. 5. The top accuracy is 77.3%. The banana-shaped
delimitations were manually drawn for indication purposes.

4.3.2 Using floating point weights. Finally, we close our experimen-
tal investigations by exploring whether the correlation between the
information criteria and SNN accuracy still holds when using regu-
lar floating point weights. We train the SNN of Fig. 7 in a similar
setting as in Section 4.3.1 on the 2-class Epilepsy detection dataset
(see Section 4.1) and we report in Fig. 9 the test accuracy obtained
in function of the LC-ADC parameters offset and decay. All training
parameters are the same as in Section 4.3.1 with the difference that
we use at most 10 training epochs with no weight quantization step.
Fig. 9 compares the accuracy on the test set with the AICc already
shown in Fig. 6
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As in the case of Fig. 8, Fig. 9 shows that a bias still remains
between the region of minimum BIC, AIC (in Fig. 6), AICc and the
region of maximal accuracy. Still, using the information criteria
enables a first crude identification of the possible offset and decay
values expected to induce a higher SNN classification accuracy.

Figure 9: EEG test accuracy (using 32-bit float weights). Sim-
ilar to the linear SVM case (Section 4.2), the coordinates of
maximum accuracy correlate well with the coordinates of
minimum BIC, AIC and AICc in Fig. 6. Top accuracy is 86.9%.

5 DISCUSSION
In this paper, we have studied how popular information criteria used
in statistical model selection theory can be applied for tuning LC-
ADC parameters, in order to optimize the accuracy of downstream
SNN classifiers. This study has been conducted with the aim of
finding amethod that would enable neuromorphic system designers
to efficiently tune the spiking parameters of LC-ADCs given a
specific class of signals to process (e.g., ECG, EEG and so on),without
the need for explicit SNN training in lengthy grid searches. In
Section 4, we have shown that a clear correlation exists between
the (decay, offset) coordinates of maximal SNN accuracy and the
different information criteria assessed in this paper, accelerating the
tuning of LC-ADC parameters towards their near-optimal values.

Still, we have remarked in Section 4.3 the existence of a small
bias between the regions of maximal SNN accuracy and the regions
of minimal BIC, AIC, AICc (see Figs. 5, 8 and 6, 9). On the other
hand, it can be seen in Figs. 5 and 6 that this bias is significantly less
important in the linear classification case (using a linear SVM, see
Section 4.2). This difference between the linear and the SNN case
might be caused by the fact that the SNN classifier is a non-linear
model. Indeed, due to its non-linearity, it will be easier for the SNN
to over-fit compared to the case of the linear SVM. Therefore, in
order to avoid over-fitting, the SNN will require a higher LC-ADC
spike train sparsity, leading to larger values of BIC, AIC and AICc
(since a higher spiking sparsity will make the reconstruction error∑𝑁𝑠

𝑖=1 (𝑠𝑖−𝑠𝑖 )
2 grow in Eqs. 1-3). This explains why the SNN requires

slightly larger values of (offset, decay) compared to the linear SVM,
as both larger offsets and larger decays lead to higher LC-ADC
sparsity, reducing the SNN over-fitting.

A number of prior work such as [14, 16, 20] propose to solely use
the LC-ADC mean square error (MSE) in order to assess the quality
of the spike trains produced by their signal-to-spike encoders (the
smaller, the better). In contrast, this paper proposed the use of

information criteria where complexity (i.e., density of spike trains
𝜅 in Eq. 1-3) also impacts the information metric. Indeed, we argue
that using the MSE can be sub-optimal when the goal is to tune the
spiking parameters for attaining maximal classification accuracy.
To illustrate this, Fig. 10 compares the LC-ADC MSE on the ECG
dataset against the use of AICc.

Figure 10: LC-ADC reconstruction MSE (left) compared to AICc
(right). In contrast to the use of information criteria such
as BIC, AIC and AICc, the MSE fails to indicate the banana-
shaped region of maximal SVM and SNN accuracy on the ECG
dataset (see Fig. 5 and 8).

As expected, the smaller the offset and decay parameters, the
lower the reconstruction MSE (since the LC-ADC becomes more
sensible to instantaneous changes in the input signal). Crucially,
the use of the LC-ADC MSE does not correlate with the regions of
maximal SVM and SNN accuracy in Fig. 5 and 8. This is in contrast
to the use of BIC, AIC and AICc where the banana-shaped region
of maximal accuracy can be clearly identified (see Fig. 8).

Therefore, this observation indicates that the use of information-
theoretic criteria covered in Section 3 might constitute a better
approach compared to MSE, for tuning the LC-ADC parameters to-
wards their near-optimal value without performing an explicit SNN
training grid search. Still, in the case of the EEG dataset (see Fig. 6
and 9), we see that the various information criteria are monoton-
ically decreasing when the offset and decay are adjusted towards
smaller values, similar to how the MSE would behave. Therefore,
this might also indicate that the superiority of information criteria
such as BIC, AIC and AICc over the MSE can be task-dependent.

In summary, we strongly believe that the use of information
criteria such as BIC, AIC and AICc can help accelerating the initial
tuning of LC-ADC parameters, by quickly identifying the region
of (offset, decay) values where accuracy is expected to be maximal.
After identifying this initial region, a faster, small-scale search could
then be performed to further fine-tune the LC-ADC parameters. In
contrast to large-scale computationally-expensive fine-grained grid
searches involving many SNN training passes, our methodology
will greatly help accelerating design time.

6 CONCLUSION
This paper provides what is, to the best of our knowledge, a first link
between the quality of the spiking signals produced by a neuromor-
phic LC-ADC and various information criteria used in statistical
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model selection theory. After introducing the LC-ADC circuit model
used in this work, we have provided a novel method for tuning the
spiking parameters of neuromorphic components such as LC-ADCs
using the Bayesian, Akaike and corrected Akaike criteria. Finally,
we have illustrated our findings on two bio-signal classification
tasks: ECG PQRST detection and epilepsy seizure detection, using
both SVMs and SNNs as downstream classifiers. We strongly be-
lieve that the method provided in this paper will accelerate design
time by enabling neuromorphic system designers to efficiently tune
LC-ADC parameters near their optimal values for a given task,
without the burden of lengthy grid-searches involving many SNN
training phases.
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