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Abstract

The high rate of drug withdrawal from the market due to cardiovascular toxicity or lack

of efficacy, the economic burden, and extremely long time before a compound reaches

the market, have increased the relevance of human in vitro models like human (patient-

derived) pluripotent stem cell (hPSC)-derived engineered heart tissues (EHTs) for the

evaluation of the efficacy and toxicity of compounds at the early phase in the drug

development pipeline. Consequently, the EHT contractile properties are highly relevant

parameters for the analysis of cardiotoxicity, disease phenotype, and longitudinal mea-

surements of cardiac function over time. In this study, we developed and validated the

software HAARTA (Highly Accurate, Automatic and Robust Tracking Algorithm), which

automatically analyzes contractile properties of EHTs by segmenting and tracking

brightfield videos, using deep learning and template matching with sub-pixel precision.

We demonstrate the robustness, accuracy, and computational efficiency of the soft-

ware by comparing it to the state-of-the-art method (MUSCLEMOTION), and by test-

ing it with a data set of EHTs from three different hPSC lines. HAARTA will facilitate

standardized analysis of contractile properties of EHTs, which will be beneficial for

in vitro drug screening and longitudinal measurements of cardiac function.

K E YWORD S

automated tracking, cardiac performance, contractile force, deep learning, engineered heart
tissues, segmentation, sub-pixel interpolation, template matching

1 | INTRODUCTION

The global drug discovery market is estimated to be 74.96 billion dol-

lars in 2021, and it takes on average 12 years before a new drug com-

pound reaches the patients.1–3 From those compounds that reached
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the market, only very few offer important clinical advantages for the

patients.4 Cardiotoxicity is what claims the highest incident of adverse

drug reaction during preclinical or clinical development and post-

approval stage.5,6 As a consequence, approximately one-third of all

drugs are withdrawn from the market.5,7,8 One of the reasons for this

low success rate is the use of animal models as a preclinical method to

evaluate efficacy and predict cardiotoxicity, which lacks high through-

put and is expensive. Furthermore, animal models do not fully recapit-

ulate human physiology and disease patho-physiology.9 Currently,

cardiomyocytes (CMs) can be obtained by differentiation of human

pluripotent stem cells (hPSCs).10,11 It has been previously shown that

three-dimensional (3D) hPSC-derived cardiac models have several

advantages over two-dimensional (2D) cardiac in vitro models,

because of their higher resemblance of the in vivo situation, based on

improved molecular, morphological, and functional analysis. Standard-

ized and automated analysis of cardiac function in 3D cardiac in vitro

models will facilitate and expedite drug discovery and toxicity screen-

ing.2,12–14 Using either control or patient-derived hPSCs, 3D engi-

neered heart tissues (EHTs) have been frequently used for studying

cardiac function. In addition, EHTs are suitable for evaluation of phar-

macodynamics and pharmacokinetics during the process of drug

development.12,15–17 We have previously developed a platform that

allows to produce EHTs in a 12 well-plate format.18 In this platform,

the EHTs from hPSC-CMs are formed around two cantilevers and

there is a set of three pairs of cantilevers per well. Like this platform,

multiple platforms use image analysis as a way to measure the con-

tractility of the EHTs.12,15,19–21

The contractile properties of EHTs are relevant parameters for

the analysis of disease phenotype, cardiotoxicity, and longitudinal

measurements of cardiac function over time. Currently, there is a lack

of a robust software that can analyze the contractile performance in a

reliable and high throughput manner. One of the reference software

for contractile analysis is MUSCLEMOTION.22 It uses dynamic

changes in pixel intensity between video frames and creates a relative

measure of movement as output, which means that there are no abso-

lute values of force, making it difficult to compare functional proper-

ties between tissues. Besides, the accuracy of this method suffers

from distortions, problems in case of background noise, sample shifts,

vibrations, and susceptibility to the presence of non-desired objects

(e.g., debris) in the videos. These problems limit the algorithm robust-

ness and the usability on a large data set. Meanwhile, the field of com-

puter vision has evolved rapidly, with the development of methods

based on deep (neural network) learning and template matching,

which are used to speed up and increase the accuracy of analyzing

biological samples.23–27 Deep learning algorithms are used, for

instance, in image segmentation methods to classify each pixel of an

image belonging to one of the regions of interest. State-of-the-art

approaches use convolutional networks that are trained using labeled

examples.28 Template matching is a method for finding a region simi-

lar to a given template object in a source image. This is done by com-

paring a template image T to every possible region in a source image I

using a sliding window approach.29 We hypothesize that by develop-

ing an algorithm that combines the methods of computer vision like

deep learning and template matching for analysis of contractile

parameter in EHTs, we will overcome the current limitations of the

state-of-the-art image analysis in MUSCLEMOTION, related to rela-

tive output values, the sample shifts, background noise, and suscepti-

bility to the presence of artifacts. This will increase the accuracy of

measurement and facilitate the automatic analysis of large data sets.

In this study, we developed HAARTA (Highly Accurate, Automatic

and Robust Tracking Algorithm), a software tool that automatically

analyzes contractile proprieties of EHTs by segmenting and tracking

brightfield videos, using deep learning and template matching with

sub-pixel precision. We evaluated the software with a data set of

hPSC-derived EHTs brightfield videos and use it in following the treat-

ment of the positive inotropic agent isoproterenol. We demonstrate

improved robustness and accuracy of the newly developed software

HAARTA by comparing it with MUSCLEMOTION, leading to stan-

dardized analysis of contractile properties of EHTs, which will be ben-

eficial for in vitro drug screening and longitudinal measurements of

cardiac function.

2 | RESULTS

2.1 | Overview

We developed HAARTA, a software that facilitates the automatic

assessment of contractile properties of EHTs, which integrates deep

learning and template matching techniques. HAARTA initially seg-

ments a brightfield frame of an EHT video using a pre-trained Dee-

plabv3 with a ResNet-10130 as convolutional backbone (Figure 1a).

The algorithm segments the frame in four regions and identifies the

3D cardiac tissue, the outer pillar where the tissue is anchored to, the

inner part of the pillar, and the background (Figure 1b). The algorithm

uses first the segmented region of the tissue to calculate the surface

area. Subsequently, the outer pillar region is used as a template for

tracking the position of the pillars during tissue contraction

(Figure 1c). We considerably increased the accuracy of the tracking by

template matching with sub-pixel precision, which allows to detect

movements below pixel resolution. The trajectory result of the track-

ing is used to calculate maximum and minimum contraction, contrac-

tion kinetics, and the times that takes to achieve 10% and 90% of

contraction and relaxation (Figure 1d). Graphs and raw data are

located in a “Results” folder together with a summary file (Figure 1e).

The key to our method is the combination of an accurate segmenta-

tion step, which allows having the right template to use in the tracking

by template matching with sub-pixel precision, which results in auto-

matic, robust, and standardized tracking of EHT datasets.

2.2 | Tracking by template matching with sub-pixel
precision

For contractile assessment of EHTs, tracking the centroid of the

anchored points by using a thresholding algorithm is the most
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common technic in multiple platforms31–34 (Table S1). In the case of

the pillars provided by River BioMedics, the variability in the bottom

shape and the low level of contrast in the brightfield videos, combined

with background noise, make it challenging to use that approach

(Figure S1). In order to overcome this limitation and obtain more

robust and accurate tracking results, template matching was imple-

mented. Initially, the regions of interest in an EHT video were identi-

fied. Those regions are defined as the background, 3D cardiac tissue,

and the pillars. Specifically, the pillars were divided in outer pillar and

inner pillar (Figure 2a). As a result of the variability observed in the

shape of the inner pillar (Figure S1A), the outer region was initially

chosen as template and manually segmented on the first frame suc-

cessfully (Figure 2b). To have significant reduction of computational

costs during the tracking by template matching, we took into account

what has been shown previously about the behavior of 3D cardiac tis-

sue during contraction, to define a region within the frame to look for

displacement of the pillar17,34,35 (Figure 2c). Therefore, the template

matching was computed only on those regions. As a result we

obtained an accumulator matrix, wherein the brighter the pixel is, the

better the match (Figure 2d). The contraction trajectory created by

calculating the distances between the brighter points detected on the

left and right pillars showed a square contraction wave (Figure 2e)

(Equations 4 and 5). It is worthy to note that this is not the expected

smooth contraction wave according to literature.35–37

Therefore, we designed a tracking method based on sub-pixel

precision matrix. We interpolate in between pixels of the accumulator

matrix, specifically in the region of maximum intensity. We observed

the result of the template matching and the corresponding 3D projec-

tion (Figure 2f). This resulted in a perfect match, shown by the peak in

the 3D projection. However, this is not always the case, since occa-

sionally the match lies between two pixels (Figure 2g). This is shown

by neighboring pixels that have a match score close to the maximum

score. To find the perfect match in this case we used interpolation

and identified the match point of the template with sub-pixel preci-

sion (Figure 2h). We used this method to identify the center of the pil-

lars along the frames and obtained a smooth contraction wave

(Figure 2i).

2.3 | Segmentation by deep learning

For segmentation, deep learning approaches have been previ-

ously reported as valuable tool to identify image regions belong-

ing to different objects of interest.38–40 In this study, we

compared two convolutional neural networks (CNNs), namely

Deeplabv3 with a ResNet-101 backbone30 and U-net.40 To train

the networks, we manually annotated ground truth segmentation

maps of 81 EHT brightfield videos (Figure S2). We used the

F IGURE 1 Workflow of the algorithm. (a) Input brightfield EHT video in ND2 format. (b) Four segmented templates after using Deeplabv3
with a ResNet-101 backbone (tissue, outer part of the pillar, inner part of the pillar, and background). (c) Calculation of surface area with the
tissue template and selection of the pillars template. (d) Calculation of contractile properties and contraction kinetics using the contraction
trajectory after template matching with sub-pixel precision. (e) Results folder with the raw data and contraction graphs. EHT, engineered heart
tissue.
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annotated data to train and test the considered CNNs, and found

that both approaches perform well in segmentation tasks of EHT

regions. Nevertheless, U-net showed slightly higher performance

to identify the tissue, outer, and inner pillar (Table 1 and

Figure 3a).

Towards an automatic assessment of the contractility of EHTs

and eliminating the manual selection of the template described above,

we evaluated the use of the two segmentation CNNs to provide input

templates for the template matching algorithm. Accordingly, we iden-

tified that, regardless of the differences in trajectory baseline, the

computed trajectories using automatically extracted templates are

very similar. Overall, selecting the outer pillar templates contributes to

having a smoother trajectory than the inner pillar template trajectories

(Figure 3b).

F IGURE 2 Brightfield of EHT around commercial pillars and template matching. (a) Segmented regions of interest; (a-1) inner area of the
pillar, (a-2) area of the outer ring, and (a-3) tissue surface area. (b) Template of the right and left pillar. (c) Frame division by region of interest.
(d) Accumulator matrix of the template matching of the EHT. (e) Trajectory over time of an EHT tracked with template matching. (f) Result peak
region image of template matching method exactly on pixel matched, and its corresponding 3D projection. (g) Result peak region image of the
template matching method where the match lays between pixels and its corresponding 3D projection. (h) Result peak region image by the
template matching algorithm with annotated sub-pixel precision match and its corresponding interpolated 3D projection. (i) Trajectory of an EHT
tracked by template matching with sub-pixel precision. EHT, engineered heart tissue.
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2.4 | Validation of the template matching with
sub-pixel precision using a simulation video

To assess the performance of the tracking and segmentation, we made

simulation videos where we control the background noise and the fre-

quency of contraction (Figure S4). We evaluated the accuracy of the

tracking by increasing the noise at different frequencies. We observed

that the algorithm is stable until 25% of added noise. At that level, the

error in pixels is below 0.2 approximately. With low levels of noise, the

algorithm performs with a precision lower than 0.1 pixel (Figure 4).

As a complementary step, we qualitatively evaluated the results

of the tracking on a scale from 1 to 5, where 5 is the best score and 1 is

the lowest. The evaluation showed that 98% (79 videos) scored 5 on

correct tracking, followed by 1% that scored 4 or 3. In all the videos the

trajectory was correct, the 2% below the 5 score were due to a misa-

lignment of the points printed on top of the frame with the pillars.

2.4.1 | Comparison of the tracking accuracies of
our method and MUSCLEMOTION

To further assess the potential of HAARTA, we compared the tracking

performance with MUSCLEMOTION. We found that in multiple

occasions our method outperformed the tracking accuracy of

MUSCLEMOTION, and that only in situations where the displacement

was significant (visible to the eye) and the background noise low,

TABLE 1 Intersection over Union
(IoU) results of the Deeplabv3 with a
ResNet-101 backbone and U-net
prediction of the background, inner pillar,
outer pillar, and tissue classes.

Model Outer (%) Tissue (%) Outer pillar (%) Inner pillar (%)

Deeplabv3 ResNet-101 96.7 96.0 90.1 91.2

U-net 97.3 97.1 91.3 92.5

F IGURE 3 Segmentation by two convolutional neural networks (CNNs). (a) Segmentation ground truth, Deeplabv3 with a ResNet-101 backbone
prediction and U-net prediction of the background, inner pillar, outer pillar, and tissue classes. (b) Comparison of the displacement over time computed
using different templates. Specifically, inner and outer part of a pillar as template manually selected or by segmentation by U-net and Deeplabv3.

F IGURE 4 Template matching with sub-pixel precision using a simulation video. (a) Mean absolute error results of the simulated videos of
different signals tracked by the proposed template/pattern matching with sub-pixel precision method compared to the ground truth. (b) Mean
square error results of the simulated videos of different signals tracked by the proposed template/pattern matching with sub-pixel precision
method compared to the ground truth.
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similar trajectories were observed (Figure 5a,b and Figure S5). Then,

we compared the performance of both software with the ground

truth and in the presence of different background noise levels.

HAARTA consistently achieved higher accuracy in generating the con-

traction trajectories. In the case without background noise, the con-

traction trajectory computed by our algorithm was identical to the

ground truth, while with MUSCLEMOTION some alterations in the

trajectory were observed (Figure 5c,d and Figure S6).

2.5 | Computational speed

The computation speed of the algorithms is measured. In our case, the

computation speed of the proposed methods are measured on a high-

end desktop and a high-end laptop (Table 2).

2.6 | Contractile performance of human EHTs
using a commercially available EHT platform

We tested the performance of the algorithm by analyzing the contrac-

tility of hPSC-derived EHTs made using the 12-well-plate platform

provided by River BioMedics. This platform has six pillars aligned in

parallel. To have an accurate calculation of force of contraction, we

determined the pillar stiffness by using a nanomechanical testing sys-

tem and calculated the slope of the obtained force–displacement

curve (Figure S7). The contractile force is consequently computed

from the optically quantified displacement of the pillar tip induced

by the tissue and the pillar stiffness. Subsequently, we successfully

made EHTs using CMs differentiated from three different cell lines.

Specifically, we used the human embryonic stem cell (hESC)

NKX2.5EGFP/+-COUP-TFIImCherry/+ line, human induced pluripotent

stem cell (hiPSC) line LUMC0020iCTRL-06, and the commercially

available iCell® from FUJIFILM Cellular Dynamics. We observed that

the tissues formed and maintained spontaneously contractions over

30 days. First spontaneous contraction was visualized after 3 days of

tissue formation in all cell lines and the contractile performance of the

tissues was evaluated every 5 days. The hESC-derived EHTs showed

the highest contractile force at day 30 (0.6 mN) and a significant dif-

ference compared to day 5 was observed since day 20.

In the case of hiPSC-EHT, a significant higher contraction force

was observed from day 15 to day 30 compared to the first measure-

ment point (day 5). On the other hand, the iCell®-EHTs had a consid-

erable increase in force from day 5 to day 10 and afterwards the

F IGURE 5 Comparison of tracking accuracy. (a and b) Comparison of a trajectory extracted from two separate EHT videos by
MUSCLEMOTION (blue line) and by our template matching tracking with sub-pixel precision (orange line). Comparison of a trajectory extracted
from a simulation video of a 2 Hz sine with a 2-pixel amplitude and 10% added noise (c), and 20% added noise (d). MUSCLEMOTION (blue line),
template matching with sub-pixel precision (orange line), and versus ground truth (green line). EHT, engineered heart tissue.
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performance of the tissues was stable around 0.3 mN (Figure 6a). We

observed a consistent increase in the velocity of contraction in all situ-

ations. Specifically, a significant increase in contraction velocity was

observed at day 25 and 30 compared to day 5 in hiPSC-EHTs and

hESC-EHTs. Differences in relaxation velocity were seen at day

20, 25, and 30 in hESC-EHTS and only at day 30 in hiPSC-EHTs

(Figure 6b,c). Both contraction and relaxation velocity were calculated

automatically by the algorithm. Accordingly, 10% and 90% of contrac-

tion times decreased over time in hiPSC-EHTs and hESC-EHTs. While

the relaxation time was more stable over time, differences were

observed from day 15 in hESC-EHTs and hiPSC-EHTs. Particularly in

the case of iCell®-EHTs, the time of contraction and relaxation was

higher from day 5 to day 20 and afterward decreased in the last two

time points (Figure 6e–g). The response to β-adrenergic agonists, such

as isoproterenol, is an important readout in EHTs,19,22,41 therefore we

also tested the performance of the algorithm to analyze contractile

parameters in tissues after treatment of a drug. Administration of iso-

proterenol from 0 to 10 μM led to an increase of approximately 20%

in the relative force at 0.01 μM in all the conditions followed by a pla-

teau phase. Also, at the highest concentration (10 μM) out of the nor-

mal physiological values, the software was able to analyze the EHTs

contractility accurately without any problem. We observed a decrease

in the relative force of the tissues at this concentration (Figure 6h).

3 | DISCUSSION

The use of 3D cardiac tissues as an in vitro model for drug discovery,

disease modeling, and longitudinal cardiac studies has increased over

the last years.17,19,20,42 However, a robust and accurate algorithm that

allows easy and widespread contractile analysis, where background

noise, undesired artifacts, or detection of subtle differences at the

sub-pixel level are not a problem, is still not available. Moreover, indi-

vidual laboratories develop their own custom software (Table S1),

using thresholding technics and for this, continuous optimization of

multiple parameters is usually required. To solve this problem, we pre-

sented HAARTA which allows to automatically analyze contractile

properties (contraction force, contraction kinetics, and contraction

time) of EHTs. The algorithm is based on segmenting and tracking

brightfield videos, using deep learning and template matching with

sub-pixel precision. We demonstrated the robustness, high-perfor-

mance, accuracy, and computational efficiency of the algorithm after

analyzing multiple brightfield videos of different EHTs over time, and

after treatment with drugs. Furthermore, we performed a quantitative

and qualitative validation step using simulation videos. Notably, we

showed that our algorithm successfully tracks at the sub-pixel level

with a 0.2 pixel precision with 25% of added image noise, and with a

0.1 pixel precision up to 20% of added noise. Moreover, to speed up

the post-analysis, the results from an analyzed data set are saved in a

folder that contains the graphs (contraction force, contraction kinetics,

and contraction time), raw data of each analyzed file, and a summary

of all of them.

The robustness and high accuracy of our method is attributable

to the use of a CNN in combination with the tracking by template

matching with sub-pixel precision. To our knowledge, this is the first

time this has been performed for analysis of contractile properties of

3D cardiac tissues. Therefore, after generating the EHTs ground truth,

defining the training data set, and assessing the performance of two

deep learning models (U-net and Deeplabv3 with resnet-101 back-

bone), we found that the U-net implementation scores the best in the

Intersection over Union (IoU) test. Although U-net scored the highest

(Table 1), the visual results of the implementation showed extra seg-

mented blobs in unexpected places (Figure 3a). These blobs may

cause inaccuracies when selecting the template for the automatic

tracking with template matching. For that reason, Deeplabv3 that

scored slightly less than U-net in terms of quantitative measures, is

not impacted from the appearance of blobs, and is thus more appro-

priate to define the input template for the automatic tracking. The

segmentation results of Deeplabv3 were above 0.9 IoU for all the

classes (i.e., background, tissue, inner, and outer pillar) and the com-

parison of tracking results using different templates, showed similar

trajectories (Figure 3b). However, as shown in Figure S1A, there is a

high fabrication variability in the internal shape of the pillar while the

outer shape is more regular. Thus, by using the Deeplabv3 to identify

TABLE 2 Speed results of loading,
segmentation, and template matching.

Computer

Laptop Desktop

CPU GPU CPU GPU
i7 6700HQ GTX960m i7 10700 RTX3080
Time (s)

Video loading 4.70 – 1.50 –

U-Net model load 0.21 0.33 0.13 0.15

U-Net segmentation 2.15 2.13 1.00 1.02

Deeplabv3 model load 2.31 5.34 1.19 2.19

Deeplabv3 segmentation 4.91 5.17 2.43 2.47

Inner pillar template matching 14.10 – 6.20 –

Outer pillar template matching 16.80 – 7.20 –

RIVERA-ARBELÁEZ ET AL. 7 of 15

 23806761, 2023, 3, D
ow

nloaded from
 https://aiche.onlinelibrary.w

iley.com
/doi/10.1002/btm

2.10513 by T
u D

elft, W
iley O

nline L
ibrary on [24/05/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



F IGURE 6 Contractile parameters of hPSC-derived EHTs. (a) Contractile force of EHTs using three different cell lines at day 5, 10, 15, 20,
25, and 30. (b and c) Contraction velocity (b) and relaxation velocity (c) of EHTs at day 5, 10, 15, 20, 25, and 30. (d–g) Time to achieve 10% (TC10)
(d) and 90% of contraction (TC90) (e); followed by the 10% (TR10) (f) and 90% (TR90) (g) of relaxation time at day 5, 10, 15, 20, 25, and 30.
(h) Relative force response to inotropic agent isoproterenol (0–10 μM) in hESC, hiPSC, and iCell®-EHTs. p-values represented significant
differences versus day 5 in each case and they are shown according to the color. Data are shown as means ± SD. Two-way ANOVA plus Tukey's
test for comparisons: ¥ = p < 0.05; † = p < 0.01; ‡ = p < 0.001; and # = p < 0.0001 (N = 3, biological replicates from independent
differentiations). EHT, engineered heart tissue; hESC, human embryonic stem cell; hiPSC, human induced pluripotent stem cell; hPSC, human
pluripotent stem cell.

8 of 15 RIVERA-ARBELÁEZ ET AL.
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the outer pillar as an input for template matching with sub-pixel preci-

sion, we obtained a more robust and accurate way to track the dis-

placement of the pillars over time. It is important to note that U-net is

a deep learning model explicitly developed for biomedical image seg-

mentation.40 Nevertheless, for this application of segmenting videos

of 3D cardiac tissues with the pillars and using it as an input for tem-

plate matching, we found that Deeplabv3 achieves better and more

stable results.

There are several custom-made algorithms that are used by other

research groups (Table S1) to analyze contractility of cardiac tissues.

In general, the thresholding technic and edge detection are the most

used to identify and track displacement of pillars in brightfield

videos.20,31,33,34 However, this requires constant optimization and is

susceptible to changes of illumination, background noise, and artifacts

(e.g., debris), which is a problem for high-throughput analysis. In the

particular case of EHT technologies,41 a customized software package

was developed by a private company that focus on the top and bot-

tom of the tissue, which makes it specific for their platform and not

easy to access. We compared the performance of our algorithm with

that of MUSCLEMOTION,22 a software currently used in multiple lab-

oratories to analyze contractility. This software focuses on the differ-

ences in pixel intensity between a references frame and the frame of

interest to assess displacement. The results are thus sensitive to the

correct selection of the reference frame and noise levels. As an out-

put, it only gives relative values and not absolute values of contractil-

ity, which makes it difficult to compare the performance

among tissues. We have shown that our algorithm overcomes the

problem of thresholding, background noise, artifacts, and outperforms

MUSCLEMOTION in the analysis of different brightfield videos of 3D

cardiac tissues by accurately tracking and providing as an output a

smooth contractile trajectory (Figure 5 and Figure S5). Additionally,

our algorithm consistently outperforms MUSCLEMOTION when com-

pared to the ground truth and in the presence of different noise levels

(Figure S6). As indicated HAARTA is developed for analysis of pillar-

based contractile tissues. For other 3D or 2D configurations

MUSCLEMOTION is a valuable tool for analysis of contraction

parameters.

Nevertheless, a great addition to our algorithm would be to mea-

sure the level of noise present in a video before the analysis. This

will improve the reliability of our algorithm by estimating the preci-

sion of the output trajectory with the found results of the simula-

tion. In situations where a very low displacement is identified

(in case of diseased or severely affected cardiac tissues), a low pass

filter on the trajectories could be applied to avoid an increase in

the relative error.

We evaluated the performance of the algorithm by analyzing the

hPSC-derived EHTs made using the 12-well plate platform provided

by River BioMedics with three different cell lines. We observed that

the contractile force in all three cases is higher compared with previ-

ous results using polydimethylsiloxane (PDMS) pillars.35 This is related

to the significant increase in the stiffness of the commercial pillars

compared to PDMS, which creates a higher load to the tissues. As

previously reported, the CMs increase the contractile performance

when they are under higher mechanical restriction.43 Overall, EHTs

from the different cell lines, started showing a significant higher con-

tractile force and contraction kinetics between day 15 and day

20, and the highest performance was achieved at day 30. Additionally,

in all experiments we observed an increase in contractile force in the

presence of positive inotropic β-adrenoceptor agonist isoproterenol,

indicating proper performance of CMs.19,44

In summary, we have demonstrated the advantages of HAARTA

to analyze contractile properties of 3D cardiac tissues by using a new

approach that combines segmentation and template matching with

sub-pixel precision, under different conditions. Furthermore, our algo-

rithm successfully tracks at the sub-pixel level with a 0.2 pixel preci-

sion up to 25% of added noise and with a 0.1 pixel precision up to

20% of added noise. We believe that the logic of the template match-

ing with sub-pixel precision will be very advantageous for the auto-

matic and standardized analysis of other (commercial) platforms that

are assessing contractile performance of engineered heart or muscle

tissues.

4 | CONCLUSION

To conclude, we present HAARTA, a robust, accurate, and computa-

tionally efficient algorithm for analyzing hallmark physiological fea-

tures of brightfield videos of 3D cardiac tissues. After quantitative

and qualitative evaluation, the software has shown to offer an advan-

tage to the current methods to measure contractility. Moreover, with

the standardization and miniaturization of contractile tissues (either

cardiac or skeletal muscle), which can be generated from patient-

derived stem cells, the use of software for automatic and accurate

functional analysis will be important for processing big data sets and

will facilitate disease modeling and safety pharmacology and expedite

drug discovery.

5 | MATERIALS AND METHODS

5.1 | Computational environment

Our assessment of the EHTs was performed on a personal computer

with an Intel Core i7-7700HQ CPU @ 2.80 GHz x 8 processor, 16 GB

of RAM, and Microsoft Windows 10 Pro. We trained the neural net-

works with an NVIDIA 3080 RTX (10 GB). The manual labeling was

done using Adobe Photoshop (RRID:SCR_014199).

5.2 | Tracking

5.2.1 | Template matching

Template matching was used to track the position over time of the pil-

lars by comparing the template image (T) of each set of two pillars

extracted in the first frame through the stack of frames (source images

RIVERA-ARBELÁEZ ET AL. 9 of 15
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(I)). This was done by comparing the pixel intensities with the normal-

ized correlation coefficient (NCC).29

The corresponding formulas for NCC matching are found in

Equation (1), Equation (2), and Equation (3). NCC computes an accu-

mulator matrix R. Each value in the accumulator matrix represents a

match score of the location in the source image where one indicates

an exact match, and zero indicates no match at all. The location of the

best match was found by determining the highest score in the matrix.

R x,yð Þ¼
P

x0 ,y0 T
0 x0 ,y0ð Þ � I0 xþx0,yþy0ð Þð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

x0 ,y0T
0 x0,y0ð Þ2 �Px0 ,y0 I

0 xþx0,yþy0ð Þ2
q , ð1Þ

T0 x0,y0ð Þ ¼ I x0,y0ð Þ�
P

x00 ,y00 T
00 x00,y00ð Þð Þ

w�hð Þ , ð2Þ

I0 xþx0 ,yþy0ð Þ ¼ I xþx0 ,yþy0ð Þ�
P

x0 0 ,y0 0 I x
00,y00ð Þð Þ

w�hð Þ : ð3Þ

From the original frame, a region of interest was used to initialize

the template matching algorithm for each pillar, taking into account

the biological behavior of the cardiac tissues described in literature

(Figure 2c). The brighter pixel from the accumulator matrix of the left

and right matched pillar templates were used to calculate pixel dis-

tance between the points according to Equation (4). In this way, we

tracked the distance of the pillar centroids frame-by-frame. Later, that

distance was converted from pixel to millimeters (mm) and subtracted

from the initial distance between the pillars to calculate the displace-

ment per frame (Equation 5).

Tpixel ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xleft�Xright

� �2þ Y left�Yright

� �2q
, ð4Þ

T¼ Tpixel �a�3:2mm, ð5Þ

where a is the conversion factor from pixels to millimeters and

3.2mm, the initial distance between the pillars.

5.2.2 | Tracking using sub-pixel precision

We used the output of the NCC accumulator matrix to identify with

higher precision the displacement of the pillars as the movement is below

pixel level resolution. We zoomed the region of the maximum intensity

to find a match with sub-pixel precision by using spatial interpolation

methods. Using a polynomial function, we estimated the values between

pixels and used the pixel with higher match score. Bicubic spline is a

common technique for obtaining smoothness in two-dimensional inter-

polation.45 By using the function output of the Bicubic spline we got a

match score for a (decimal) location in the peak region and beyond. To

find the highest match score we used the local maximum of the function

by using the Nelder–Mead algorithm.46 The Nelder–Mead algorithm is

one of the best-known algorithms for multidimensional unconstrained

optimization without derivatives. The location of the maximum match

score at pixel level is already known and was the starting point to find

the local maximum of the function. The initial point is within half a pixel

distance of the maximum match score, and therefore, the computation

of the Nelder–Mead algorithm is limited together with a threshold

(we set it to 0.0001 pixel). Using the output of this method the trajectory

of the contraction at sub-pixel precision was determined.

5.3 | Verification step

To verify the performance of the tracking, simulation videos were made.

First, a video was recorded with the same setting of an experiment but

without any tissue, so to inspect the baseline noise level, illumination, and

magnification. On top of the background video, a simulation of a moving

tissue was created. We used a segmented tissue, cut it in half and placed

it on top of the background. To simulate the movement with sub-pixel

precision, an affine transformation was used to translate the two parts to

a sub-pixel precise location over the video. Additionally, to recreate a nor-

mal scenario and test the robustness of the tracking technic, random

noise of increasing energy was added to the simulation video. To measure

the error from the ground truth, the mean absolute error (MAE)

(Equation 6) and mean square error (MSE) were calculated (Equation 7):

MAE¼1
n

Xn

i¼1
yi�xið Þ, ð6Þ

MSE¼1
n

Xn

i¼1
yi�xið Þ2: ð7Þ

5.4 | Segmentation using deep learning

5.4.1 | Data set

In this study, a data set of manually segmented EHT frames was cre-

ated to provide a CNN with ground truth data of the EHT brightfield's. A

set of 65 videos of approximately 500 brightfield frames per video was

used to create the data set. Four frames per video were manually seg-

mented, those frames were at the positions 0, 150, 300, and 450. The

dataset has 260 brightfield images with their corresponding pixel-wise

labels. The labels consist of RGB images where white is the background,

red is the inner pillar, green is the outer pillar, and blue is the tissue itself

(Figure S2). The data was resized to the same dimensions before it was

fed to the CNN. First, height and width are scaled to maintain the aspect

ratio. Then padding is used to fill up space to the correct dimensions. The

resized images have the dimension of 738 � 266 pixels.

5.4.2 | Training

A CNN was set up to segment the regions of the EHTs, using as input

of the CNN a brightfield frame of an EHT video. Later, the mask matri-

ces were generated by the shapes found using CNN. Then, the CNN

is fed with frames of the EHT videos where the correct segmented
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output is known (labeled). We compared the output of the CNN with

the known label by a cost function. Using the outcome of the compar-

ison the CNN parameters were adjusted. We tested the precision of

the CNN with a so-called test-set. The test-set contains labeled

frames that are new to the CNN, otherwise this will highly influence

the outcome score. A score was given for precision by comparing the

outputs of the CNN with the labels. We compared two CNN

approaches for the segmentation of the EHT video frames, U-net40

and Deeplabv3 with a ResNet-101 backbone.30

The training of the U-net model was done using the settings in

Table 3. The input layer of the model was adjusted from a three-layer

RGB input to a one-layer grayscale input since the input is in grayscale.

For the training of the Deeplab with a ResNet-101 backbone, we used

the settings in Table 3. The input layer of the model is in three-layer RGB

format. Since the model uses the three layers further up in the model,

the input layer cannot be changed directly. Therefore, the grayscale input

was converted to an RGB image before it was fed to the model.

5.4.3 | Calculation the 3D cardiac tissue
surface area

We calculated the surface area of the 3D cardiac tissues by calculating

the surface of one pixel and multiplying it by the sum of all activated

pixels in the segmented mask (Figure S2C), which contains all the

pixels of the tissue. In Equation (8) the formula for calculating the sur-

face area is shown.

Surface area mm2
� �¼ a2 �

X
ISurfacemask, ð8Þ

where a is the conversion factor from pixels to millimeters.

5.4.4 | Segmentation by a deep learning model as
input for template matching

The proposed template matching method (Section 5.2.1) requires as

an input a template of the two pillars to track the displacement

trajectory during tissue contraction. Previously, manual segmentations

were described. However, we incorporated the results of the deep

learning segmentation models as an input to the template match-

ing and tracking algorithm. We performed a comprehensive com-

parison between manual segmentation, segmentation by U-net,

and segmentation by Deeplabv3 with a ResNet-101 backbone.

Using the mask of the outer pillar (Figure 3b), we made a square

around it from the minimum and maximum bounds of its shape to

create a template. To avoid any unwanted error by blobs in the

segmentation, the two largest shapes in the segmentation were

selected to initialize the templates.

5.4.5 | Visual inspection of tracking results

We checked the tracking and trajectory results of the algorithm by

qualitatively scoring 81 videos with a grade from one to five. In the

grading scale, one indicates that the tracking was not correct and as a

consequence the trajectory is completely different from the expected

one, while five indicates that the algorithm was able to track the cen-

ter of the pillars precisely, resulting in computing a contraction wave

as expected. We used the results overview of the user interface to

evaluate each video.

5.5 | Comparison of tracking accuracy between
our method and MUSCLEMOTION

We used the simulation videos (described in Section 5.3) to compare

the performance results achieved by MUSCLEMOTION and by our

tracking algorithm. In the experiments, we considered increasing

image noise levels from 1% to 25%, in order to simulate acquisition

induced noise by the sensors and evaluate the algorithms in more

challenging conditions. The results of both algorithms were compared

to the ground truth contraction signal.

5.6 | HPSC culture and generation of hPSC-CMs

The experiments were done using a hiPSC (LUMC0020iCTRL-06/+,

female)47 line and a double reporter hESC (NKX2.5EGFP/+-COUP-

TFIImCherry/+, female).48,49 hiPSC and hESC were maintained as undif-

ferentiated colonies in Essential 8 medium (Thermo Fisher,

A1517001) on vitronectin (Thermo Fisher, A31804)-coated 6-well

plates. The differentiation to hiPSC-CMs and hESC-CMs was induced

as described previously.50 Briefly, 1 day before starting the differenti-

ation, hiPSC and hESC were seeded separately at a density of

20–25 � 103 cells per cm2 on Matrigel (83 μg protein/mL) (Corning,

354230) coated 6-well plates in Essential 8 medium. After 24 h (day

0 (D0)), mesodermal differentiation was induced by addition of

Activin-A (20–30 ng/mL, Miltenyi 130–115-010), BMP4 (20–30 ng/

mL, R&D systems 314-BP/CF), and Wnt activator CHIR99021

(1.5–2.25 μmol/L, Axon Medchem 1386) in BPEL medium.51 At

TABLE 3 Training settings for U-net and Deeplabv3 with a
ResNet-101 backbone on the EHT dataset.

U-net

Deeplabv3 with a

ResNet-101 backbone

Loss function Mean square

error (MSE)

MSE

Optimizer Adaptive momentum

(Adam)

Adam

Learn rate 0.05 0.01

Epochs 200 200

Batch size 1 3

Input layers 1 3

Output layers 4 4
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day 3 (D3), BPEL containing WNT inhibitor XAV939 (5 μmol/L,

R&D Systems 3748) was used to refresh the cells. On day

7 (D7) and 10 (D10) of differentiation, cells were refreshed with

BPEL. Beating CMs at day 13 (D13) were metabolically selected

with a lactate purification step of 4 days. This lactate purification

medium consisted of our previously described maturation medium

(MM)50 without glucose and with additional 5 mM of sodium DL-

lactate solution (60%, Sigma Aldrich, cat. no. L4263). At day

17 (D17), purified CMs were kept in the above-described lactate

purification medium with 4.5 mM of glucose for 3 more days,

when cells were then dissociated with Triple 10� (ThermoFisher,

A1217702) and cryopreserved (Figure S8A). Cells with at least

90% of green fluorescent protein (GFP) positive signal were used

(Figure S9).

5.7 | Cardiac fibroblast expansion

Primary human adult cardiac fibroblast (HCF) isolated from the ventri-

cles of the adult heart were purchased from Promocell (C-12375)

and expanded according to the protocol.52 Briefly, a T175 cell cul-

ture flask (Greiner) was incubated (at 37 �C and 5% CO2) with

12 mL of FGM-3 (Promocell, C-23130) for 30 min. After thawing

in a water bath at 37 �C, the cells were transferred from the cryo-

vial to the pre-incubated cell culture flask containing the FGM-3

with an additional 18 mL of FGM-3. Every 2 days, refreshments

were done. After reaching a 70%–90% confluency in the flask, the

cells were passaged; this process was repeated until reaching

11 passages. Then, the HCF were frozen at a final concentration of

150 � 103 cells/ 0.5 mL in freezing medium. The freezing medium

consists of 50% KOSR (Thermo Fisher, 10828028), 40% FGM-3,

10% DMSO (Sigma-Aldrich, D2650), and 0.5% Revitacell (Thermo

Fisher, A2644501).

5.8 | Generation of EHT

The EHTs were made as previously described by Ribeiro et al35 using

the commercially available EHT platform provided by River Biome-

dics.18 Shortly, three tissues per well (12-well plate format) were

made using hiPSC-CMs and hESC-CMs, with a 3% HCF. First, the

cells were thawed and resuspended in MM with 4.5 mM glucose

and 5 mM sodium DL-lactate. Then, 3% of HCF were mixed to a

fixed amount of CMs (8 � 105 cells for one well of the 12-well

plate) and each condition was resuspended to a final concentration

of 16.8 � 106 cells/mL. After that, cells were mixed with an extra-

cellular matrix (ECM) mixture consisting of 2� MM medium, fibrin-

ogen (final concentration 2 mg/mL, Sigma-Aldrich F8630), Matrigel

(final concentration 1 mg/mL), and aprotinin (final concentration

2.5 μg/mL, Sigma-Aldrich, A1153). Finally, 0.6 U/mL of thrombin

(Sigma, T7513) was added to the mix and 15 μL were used to make

each one of the three tissues per well.35 The first refreshment was

done after 24 h and after that every 2 or 3 days.

5.9 | Generation of EHT using a commercial
cell line

iCell CMs (11713 kit, R1105, female) were purchased from FUJIFILM

Cellular Dynamics, Inc.53,54 and used to make three tissues per well

according to the previously described protocol.35 Briefly, iCells were

thrown in the water bath and resuspended in iCell Cardiomyocytes

Plating Medium. Then, 3% of HCF were mixed with a fixed amount of

iCell (8 � 105 cells for one well of the 12-well plate) and resuspended

to a final concentration of 16.8 � 106cells/mL. Later, the cells were

mixed with the ECM mixture (described in Section 5.8) and 15 μL of

this mix was used to make each one of the three tissues per well.

Then, 2 mL of iCell Cardiomyocytes Maintenance Medium was added

to the well after the first 24 h and every refreshment was done every

2 or 3 days.

5.10 | Mechanical characterization

The mechanical characterization of the River BioMedics commercial

pillars was done according to Dostani�c et al.55 Shortly, the force of

200 μN was applied on different positions along pillars' height using

the micro-force sensing probe of the FemtoTools Nanomechanical

Testing System (FT-NMT03). Elastic pillars were attached to a holder

next to the sensing probe which was then positioned with nanometer

precision at the predetermined height (Figure S7C). A force–

displacement curve was obtained while applying force to the pillars

using a flat silicon tip and measuring the displacement of the tip with

piezo-sensor. The slope of the force versus displacement curve repre-

sents the stiffness of the pillars.

5.11 | Image-based contractility measurement

The contractility of the EHTs in the commercial 12-well plate was

measured as previously described by Ribeiro et al.35 Briefly, the

brightfield videos of EHTs were recorded using a Nikon ECLIPSE Ti2

inverted microscope (RRID:SCR_021068) under temperature and

humidity control (37 �C and 5% CO2), using a high-speed camera at

100 frames per second (fps) with 2� magnification. The output file

was in ND2 format. Force of contraction was first measured at day

5 (D5) after tissue seeding and for a period of 30 days, every 5 days

(day 10 (D10), 15 (D15), 20 (D20), 25 (D25), and 30 (D30)). During the

force of contraction measurements, the EHTs were electrically stimu-

lated using a custom-made pacing device at 1 Hz (10 ms biphasic

pulses, 4–5 V/cm) for 10 s (Figure S8B).

5.12 | Compound testing

At day 30 (D30) the EHTs were assessed for a positive inotropic

response to isoproterenol (Sigma, I5627). The test was conducted

under temperature, humidity control (37 �C and 5% CO2), and field
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stimulation. The positive inotropic effect was determined with

increasing concentrations of isoproterenol (0–10 μM). After 5 min of

each dose administration, the tissues were recorded.

5.13 | Statistics

Statistical analysis was performed using GraphPad Prism 8. Each

experiment was performed three times, with CMs from independent

differentiations. Per experiment, each set of three tissues (one well of

a 12-well plate) was considered as technical replicates. Differences

between groups were assessed by two-way ANOVA plus Tukey's

post-hoc test. Results are displayed as mean ± SD unless stated other-

wise. Significance was attributed to comparisons with values of

p < 0.05¥; p < 0.01†; p < 0.001‡; p < 0.0001#.

5.14 | Python package

A python package was created for tracking with sub-pixel precision to

provide scientists with an easy-to-use library. This library does not

contain the segmentation part since the segmentation relies on a spe-

cifically trained model, which will not work on slightly different

images. Instead, the scientists can provide their own templates. The

python package can be found on www.github.com/dkeekstra/

sptemplatematching.
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