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Abstract
This review paper discusses the developments in immersed or unfitted finite element methods over the past decade. The 
main focus is the analysis and the treatment of the adverse effects of small cut elements. We distinguish between adverse 
effects regarding the stability and adverse effects regarding the conditioning of the system, and we present an overview of the 
developed remedies. In particular, we provide a detailed explanation of Schwarz preconditioning, element aggregation, and 
the ghost penalty formulation. Furthermore, we outline the methodologies developed for quadrature and weak enforcement 
of Dirichlet conditions, and we discuss open questions and future research directions.

List of Symbols
A	� Ambient or embedding domain
Ω	� Problem (or physical) domain
Ωh	� Union of active elements
�ΩD , �ΩN	� Dirichlet and Neumann boundary
n, �n = n ⋅ ∇	� Outer normal, normal derivative
T, TΩ	� Element, restriction of cut element T to Ω
h	� Element size
hTΩ	� Generalized thickness of cut element T
�i	� Volume fraction of Ti
�	� Smallest volume fraction
�∗	� Threshold volume fraction
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h
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h
 , T in

h
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	� Cut, internal, aggregated mesh

F, Fh	� Element face, set of element faces
� , {�i}

N
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	� Basis function, basis
p	� Discretization order

P
p
(T)	� Polynomial space of order p over T

Qp(T)	� Tensor product space of order p over T
Vh	� Approximation space
V
ag

h
	� Aggregated approximation space

N	� System size
u	� Analytical solution
uh	� Finite element solution
vh , wh	� Finite dimensional functions
�h(⋅)	� Interpolation operator
ah(⋅, ⋅)	� Bilinear operator (2.7a)
lh(⋅)	� Linear operator (2.7b)
sh(⋅, ⋅)	� Ghost-penalty operator
[[⋅]]	� Jump operator (4.6)
[ ⋅ ]	� Difference operator (4.15)
�	� Nitsche parameter
�	� Ghost-penalty parameter
‖ ⋅ ‖Ω	� L2 norm over domain Ω
(⋅, ⋅)Ω	� L2 inner product over domain Ω
‖ ⋅ ‖ah	� ah(⋅, ⋅) operator norm
||| ⋅ |||�	� �-norm (named energy norm in [1])
||| ⋅ |||h , ||| ⋅ |||h,★	� Unstabilized, stabilized energy norm
�
2(N)	� Vector space of size N

x , y , z	� Coefficient vectors of uh , vh , wh

A	� System matrix
b	� Right-hand-side vector
B	� Preconditioner
‖ ⋅ ‖2	� Euclidean vector or matrix norm
‖ ⋅ ‖A	� A-matrix vector energy norm
�(⋅)	� Condition number
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1  Introduction

Over the past decades, the finite element method (FEM) has 
become an essential tool in scientific research and engineer-
ing. In its standard form, the finite element method requires 
the construction of a mesh that fits to the boundary of the 
considered geometry. For problems of practical interest, such 
a boundary-fitting mesh is constructed using mesh genera-
tors. Automatically generating boundary-fitting meshes can 
lack robustness, however, in the sense that manual interven-
tion is required to, for example, repair distorted elements or 
non-matching surfaces. This is particularly the case when 
the geometry is very complex, such as for (possibly non-
water-tight) CAD objects with many patches and trimming 
curves, geometries presented in the form of scan data, or set-
tings in which frequent remeshing is required (for example in 
fluid–structure interactions). For such problems, immersed 
methods have been demonstrated to be capable of establish-
ing a more efficient analysis pipeline, as illustrated by the 
examples in Fig. 1.

The pivotal idea of immersed finite element methods is 
to embed a complex geometry into a geometrically simple 
ambient domain, on which a regular mesh can be built eas-
ily. Basis functions defined on this ambient-domain mesh 
are then restricted to the problem geometry, after which the 
solution is approximated by a linear combination of these 
restricted basis functions. Although this discretization is 
conceptually straightforward, non-standard treatment of 
various aspects (which are discussed below) is required on 
account of the fact that the mesh does not fit the bounda-
ries of the geometry. Using a wide variety of techniques to 
treat these non-standard aspects, the concept of immersed 
finite element methods has successfully been applied in a 
broad range of fields, such as solid mechanics [2–10]; shell 
analysis [9–15]; interface problems [16–25]; fluid mechan-
ics [26–34]; fluid–structure interaction [35–43], in par-
ticular fluid–structure interaction for biomedical applica-
tions [44–47]; scan-based analysis of both man-made and 

biological materials [48–55]; shape and topology optimiza-
tion [56–62]; and many more.

The immersed analysis concept was originally proposed 
in the context of the finite difference method by Peskin 
[65] in 1972. This immersed boundary method (IBM) and 
its enhancements have been employed in a wide range 
of applications ever since (see, e.g., Ref. [66] for a con-
temporary review). The application of the immersed ele-
ment concept in the finite element setting can be traced 
back to the work on the partition of unity method [67, 
68], generally referred to as the generalized or extended 
finite element method (GFEM [69, 70] or XFEM [71, 72]), 
where elements are cut in order to construct enrichment 
functions. The concept of cutting finite elements as an 
unfitted meshing technique was pioneered by Hansbo [73]. 
This work can be considered as the first instance of an 
immersed finite element method. The pace in the devel-
opment and impact of immersed finite element methods 
increased significantly with the introduction of the finite 
cell method (FCM) [2, 9, 74, 75], which combines the 
cut element concept with higher-order basis functions, 
and CutFEM [20, 26, 76–78], which generally employs 
the ghost penalty to enhance numerical stability [76, 
79]. Besides these prominent immersed FEM techniques, 
other notable examples are the aggregated finite element 
method (AgFEM) [80, 80, 81], the Cartesian grid finite 
element method (cgFEM) [57, 82], weighted extended 
B-splines (WEB-splines) [83, 84] and immersed B-splines 
(i-splines) [85]. Discontinuous Galerkin methods can read-
ily be used on cut meshes after aggregation of cells, since 
they can be posed on polytopal meshes [86]. In recent 
years, the immersed analysis concept has been considered 
in conjunction with isogeometric analysis [87, 88] (often 
referred to as iga-FCM [9] or immersogeometric analysis 
[45]). In this setting, immersed methods have been demon-
strated to be capable of leveraging the advantageous prop-
erties of the spline basis functions used in isogeometric 
analysis, while enhancing the versatility of the simulation 

Fig. 1   Examples of applications 
of immersed FEM. a shows 
the stress in an aluminum die 
cast gearbox housing [63]. The 
geometry is implicitly defined 
from CT data of a product to 
investigate stress concentra-
tions around pores. b depicts 
the stress in a specimen of 
trabecular bone, rendered from 
CT data [64]
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workflow for cases where boundary-fitting spline geome-
tries are not readily available, e.g., in scan-based analyses.

Immersed finite element methods are typically con-
fronted by three computational challenges in comparison to 
standard mesh-fitting finite elements, viz: (i) the numerical 
evaluation of integrals over cut elements; (ii) the imposi-
tion of (essential) boundary conditions over the immersed 
or unfitted boundaries; and (iii) the stability of the formula-
tion in relation to small cut elements. A myriad of advanced 
techniques has been developed over the past decades to 
resolve these challenges, which has made immersed finite 
element techniques a competitive simulation strategy for a 
wide range of problems. This review focuses on the third 
challenge, i.e., the effects of small cut elements on the per-
formance of immersed finite element methods. We restrict 
ourselves to a high-level consideration of the first two of 
these challenges, and we refer the reader to, e.g., Ref. [75] 
for a detailed review on these topics.

Small cut elements typically give rise to stability and con-
ditioning problems. In this article we review three prominent 
methods to resolve these problems, which have been devel-
oped in recent years, viz: (Schwarz) preconditioning, ghost-
penalty stabilization (commonly used in CutFEM), and 
aggregation of cut elements (commonly used in AgFEM). 
In the discussion of these techniques, it is important to note 
that small cut elements do not only affect the conditioning 
of the problem, but also the accuracy of the solution. More 
specifically, direct application of Nitsche’s method for the 
weak imposition of essential boundary conditions requires 
a Nitsche parameter that scales inversely proportional with 
the size (in particular the thickness) of the cut element. As 
observed in, e.g., [1], the unboundedness of this parameter 
can deteriorate the accuracy of the solution. When using 
preconditioning techniques to resolve the small-cut-element 
problem, it is important to realize that these techniques do 
not resolve this potential issue regarding the accuracy. In 
contrast to preconditioning techniques, ghost penalty sta-
bilization and aggregation ensure well-posedness with a 
Nitsche parameter inversely proportional to the ambient-
domain mesh size, in addition to controlling the condition 
number. This makes the immersed finite element approxi-
mation using these stabilization techniques robust with 
respect to the cut element configurations, and preserves the 
error estimates of boundary-fitted finite element methods. 
It should be noted that, besides ghost penalty stabilization 
and aggregation, several other techniques have been devel-
oped to resolve the stability problems on small cut elements. 
However, in general, these do not simultaneously resolve the 
conditioning problem. An overview of these techniques is 
also presented in this review.

This review article has three objectives, viz: (i) to clarify 
that the small-cut-element problem is multi-faceted; (ii) to 
present the different techniques in an accessible theoretical 

framework, so that the implications of practical choices 
become apparent to a non-expert audience; and (iii) to pro-
vide a comparison of the techniques for conditioning and 
stabilization of immersed finite element methods. With the 
large number of immersed finite element techniques avail-
able, naturally comes the luxury problem of choosing which 
technique is most suitable in a particular situation. The rig-
orous theoretical underpinning of the methods as reviewed 
in this article is instrumental to aiding in the selection of a 
particular method, as it provides a fundamental understand-
ing of the relation between small cut elements, conditioning, 
and stability and accuracy.

It should be noted that immersed methods are not the 
only techniques to create a robust workflow to deal with 
complex or implicitly defined geometries. One alternative is 
the shifted boundary method [89–92]. The shifted boundary 
method aims to replace an immersed problem with a simi-
lar boundary-fitted problem on the interior element mesh, 
by projecting boundary conditions from the real (unfitted) 
boundary to the interior element boundaries. This concept 
was already introduced in [93], and is also applied in [62]. 
This method bypasses the aforementioned three computa-
tional challenges of immersed finite element methods, but 
instead introduces other challenges, such as a non-trivial 
treatment of boundary conditions (including the projection 
of the boundary data), and a non-obvious geometrical treat-
ment. Another approach is to use hybridizable techniques 
on unfitted meshes [94, 95]. Hybridizable methods can 
naturally be posed on polytopal meshes, giving additional 
geometrical flexibility compared to standard finite element 
methods. As a result, these methods can readily be used 
on the meshes obtained after the intersection of the bound-
ary representation and background mesh and possibly after 
aggregation of elements. The impact of small cut elements 
and small cut faces (these schemes add unknowns on the 
mesh skeleton) on stability and condition numbers has only 
been studied very recently in the context of hybrid high-
order methods, see [95]. A detailed discussion of these alter-
native techniques is beyond the scope of this work.

This article is structured as follows. In Sect. 2 we intro-
duce the basic formulation based on a model problem and 
discuss the developments regarding the three computational 
challenges associated with immersed finite element methods. 
In Sect. 3 a compact analysis of the ill-conditioning problem 
is presented, and Schwarz preconditioning is discussed as 
a natural technique to resolve this problem. Section 4 then 
considers stabilization techniques, specifically the ghost-
penalty method and aggregation technique, and presents a 
theoretical framework required to analyze the stability and 
conditioning properties of these techniques. A discussion 
on the current state of the field and concluding remarks are 
finally presented in Sect. 5. Note that the results presented in 
this manuscript are reproduced from previous publications 
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by the authors, which are referenced in the text or in the 
captions.

2 � Immersed Finite Element Methods

In this section we introduce the immersed finite element 
framework. Section 2.1 presents the concept of immersed 
finite element methods and specifies the formulations based 
on a model problem. In Sect. 2.2 the most prominent chal-
lenges of immersed finite element methods, compared 
to standard boundary-fitted finite element methods, are 
discussed.

2.1 � Formulations

As a model problem, we consider the Poisson equation on 
the domain Ω ⊂ ℝ

d , with d ∈ {2, 3} being the number of 
spatial dimensions (Fig. 2). The domain Ω has a bound-
ary �Ω with outward-pointing unit normal vector n. The 
boundary consists of complementary parts �ΩD and �ΩN 
on which Dirichlet (or essential) and Neumann (or natural) 
conditions are prescribed with boundary data gD and gN , 
respectively. The field variable u ∶ Ω → ℝ is subject to the 
strong formulation

∂ΩN

∂ΩD

Ω

(a) Physical domain Ω with Dirichlet boundary
∂ΩD and Neumann boundary ∂ΩN

Ti

h

(b) Boundary-fitted discretization Th that ap-
proximates the geometry Ω

Ω

A

(c) Embedding of the physical domain Ω in the
ambient domain A

T1

T2

T3
h

(d) Immersed discretization with {T1, T2, T3} ⊂
T A
h , {T2, T3} ⊂ Th, and T3 ∈ T cut

h

Fig. 2   Schematic representation the domain Ω , a boundary-fitted discretization, the embedding in A , and an unfitted discretization
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where �n = n ⋅ ∇ denotes the normal gradient operator.
In boundary-fitted finite elements, the domain Ω is 

subdivided into elements T (generally at the expense of 
a geometrical error), which together comprise the mesh 
Th (Fig. 2b). The size of element T is denoted by hT and a 
global mesh size parameter is defined as h = maxT∈ThhT  . 
This manuscript only considers quasi-uniform discretiza-
tions, that is hT ≈ h ∀T ∈ Th . On the mesh, shape function 
are introduced, which form the basis of the approximate 
solution uh . Integration is performed via standard quad-
rature rules for polynomials on simplices or hypercubes. 
Homogeneous Dirichlet conditions are usually imposed 
strongly by removing the basis functions with support 
on �ΩD . The span of the remaining basis functions is 
referred to as Vh,0 ⊂ H1

0
(Ω) . The Bubnov-Galerkin finite 

element method imposes inhomogeneous boundary condi-
tions through a so-called lifting function, �(gD) ∈ H1(Ω) , 
which is generally constructed using the removed basis 
functions. The Bubnov-Galerkin finite element formula-
tion corresponding to the strong form (2.1) can then be 
condensed into

where the symmetric bilinear form a(w
h
, v

h
) = ∫

Ω
∇w

h
⋅

∇v
h
dV  is continuous and coercive on H1

0
(Ω) , and the linear 

form l(vh) = ∫
�ΩN

gNvh dS − ∫
Ω
∇𝓁(gD) ⋅ ∇vh dV is also con-

tinuous on H1
0
(Ω) . These conditions are sufficient to guaran-

tee well-posedness of the problem (2.2) to find wh ∈ H1
0
(Ω) 

and uh ∈ H1(Ω) for sufficiently smooth boundary data [96, 
97]. Because of the coercivity of the bilinear form, it induces 
the operator norm ‖vh‖2a = a(vh, vh) , which is identical to the 
H1

0
(Ω)-seminorm for the boundary-fitted finite element for-

mulation of the Poisson problem.
In immersed finite element methods, the domain Ω is 

embedded into an ambient domain A (Fig. 2c). Instead of 
generating a boundary-fitted partitioning of the domain Ω , 
the ambient domain is partitioned by the background mesh 
TA
h

 (Fig. 2d). Since the ambient domain is geometrically sim-
ple, mesh generation is trivial. But, as the element bound-
aries do not coincide with the boundaries of the domain 
Ω , evaluating integrals requires dedicated procedures (see 
Sect. 2.2.1). Hence, the complexity of the geometry is essen-
tially captured by the integration procedure, instead of by the 
mesh generation. This geometrical simplification also has 
implications on the Galerkin formulation.

(2.1)(Strong)

⎧
⎪⎨⎪⎩

−Δu = 0 in Ω

u = gD on �ΩD

�nu = gN on �ΩN

(2.2)

(Boundary-fitted FE)

{
find uh = wh + �(gD) for wh ∈ Vh,0 such that:

a(wh, vh) = l(vh) ∀vh ∈ Vh,0

To specify the immersed finite element formulation, we 
define the active mesh Th as the set of elements T which inter-
sect the domain Ω , i.e.,

where TΩ = T ∩ Ω . Furthermore, the active domain 
is defined as the union of all the active elements 
Ωh = ∪T∈Th

T ⊇ Ω . The set of active elements that are cut 
by (and therefore intersect) the boundary is defined as

and the set of internal elements that are fully supported on 
the domain Ω is defined as

Analogous to the boundary-fitted case, shape functions are 
introduced on the active mesh Th and an approximate solu-
tion uh is formed as a linear combination of the restriction 
of the shape functions to Ω . The space spanned by these 
functions is referred to as Vh . In contrast to the boundary-
fitted finite element formulation, in the unfitted setting it is 
generally not feasible to create a finite dimensional subspace 
of Vh,0 ⊂ H1

0
(Ω) , which is needed to strongly impose Dir-

ichlet conditions. Instead, Dirichlet conditions are generally 
imposed weakly. The most common approach for weakly 
enforcing Dirichlet boundary conditions is via Nitsche’s 
method [98], which gives rise to the immersed finite ele-
ment formulation

where the bilinear and linear form are defined as 

The parameter � , commonly referred to as the Nitsche or 
penalty parameter, must be chosen large enough to ensure 
coercivity of the bilinear form ah(⋅, ⋅) in the discrete space 
Vh . A sufficient condition is 𝛽 > maxvh∈Vh

‖𝜕nvh‖2𝜕ΩD

∕‖∇vh‖2Ω , 
which can be computed by solving a generalized eigenvalue 
problem [99]. This can result in arbitrarily high values of � 
over the entire boundary �ΩD . It is therefore common to 
select a local, element-wise, Nitsche parameter satisfying 
𝛽�T > maxvh∈Vh�T ‖𝜕nvh‖2T∩𝜕ΩD

∕‖∇vh‖2TΩ by solving a local 

(2.3)T
h
= {T ∈ T

h

A ∣ TΩ ≠ �}

(2.4)T cut

h
= {T ∈ T

h
∣ T ⧵ TΩ ≠ �}

(2.5)T in

h
= {T ∈ T

h
∣ T ⊂ Ω}

(2.6)(Immersed FE)

{
find uh ∈ Vh such that:

ah(uh, vh) = lh(vh) ∀vh ∈ Vh

(2.7a)
ah(uh, vh) = ∫Ω

∇uh ⋅ ∇vhdV

+
∫�ΩD

(
�uhvh − uh�nvh − vh�nuh

)
dS

(2.7b)lh(vh) = ∫�ΩN

gNvhdS + ∫�ΩD

(
�gDvh − gD�nvh

)
dS
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generalized eigenvalue problem for each element. Based on 
dimensional considerations, one can infer that �|T should be 
inversely proportional to a generalized thickness, hTΩ , of TΩ 
normal to T ∩ �ΩD [100, 101]. We refer to hTΩ as a general-
ized thickness, because TΩ can be irregularly shaped and, 
consequently, a well-defined length scale cannot generally 
be provided. While, with an element-wise parameter, a sin-
gle small cut element does not result in a high value of � over 
the entire boundary, an element-wise parameter is still 
locally unbounded, which can lead to numerical issues [1]. 
With appropriate stabilization (see Sect. 4), the properties 
of the immersed formulation revert to those of the boundary-
fitted setting considered in the original paper by Nitsche 
[98], and a global parameter inversely proportional to the 
mesh width of the background mesh suffices. In the remain-
der of this manuscript, both element-wise and global Nitsche 
parameters will be indicated by � and the notation ah(⋅, ⋅) and 
lh(⋅) will be used in both stabilized and unstabilized formula-
tions, with the choice of the Nitsche parameter following 
from the context. Similar to the boundary-fitted setting, the 
coercive and bounded bilinear form ah induces an equivalent 
operator norm ‖vh‖2ah = ah(vh, vh) in the discrete space Vh . 
This operator norm coincides with the matrix energy norm 
of a corresponding coefficient vector, which renders it useful 
in the analysis of condition numbers of linear-algebraic sys-
tems emerging from immersed formulations.

Multiple variants of the immersed finite element formula-
tion in (2.6)–(2.7) exist, the most prominent of which will be 
discussed in Sect. 2.2.2. A particularly noteworthy variation 
to (2.7) is the penalty method, which corresponds to the case 
where the terms that involve normal gradients in the above-
mentioned operators are left out. This makes the method for-
mally inconsistent with the strong form (2.1), but simplifies 
the implementation and ensures coercivity independent of 
the parameter � . In this review, we do not discuss the pen-
alty method in detail and focus on the application of Nitsche’s 
method. In general, the use of the penalty method instead of 
Nitsche’s method has a negligible impact on the conditioning, 
but does affect the accuracy of the solution.

To solve the immersed finite element formulation (2.6) 
numerically, it is recast as a linear algebra problem

where the components of the matrix A ∈ ℝ
N×N and right 

hand side vector b ∈ ℝ
N correspond to

with �i the i-th basis function and N the number of dimen-
sions of the finite dimensional function space Vh . The 
approximate solution uh is given by

(2.8)Ax = b

(2.9)Aij = ah(�j,�i), bi = lh(�i)

with xi the components of the coefficient vector x ∈ �
2(N) 

in equation (2.8). In the remainder we employ two norms 
for this coefficient vector, viz the �2 vector norm ‖x‖2

2
= xTx 

and, as A is Symmetric Positive Definite (SPD), the matrix 
energy norm

Note that, on account of (2.9), this matrix energy norm is 
equal to the operator norm, i.e., ‖x‖A = ‖uh‖ah.

In the remainder of this manuscript we focus our presen-
tation on the single field Poisson problem (2.1), discretized 
by quasi-uniform meshes with C0-continuous piecewise 
polynomial basis functions of order p. Unless otherwise 
specified, results apply to both linear and higher-order dis-
cretizations. The presented analyses and methods naturally 
extend to vector-valued problems that can be expressed 
as a Cartesian product of scalar fields (i.e., one field per 
space dimension). Mixed formulations and discretizations 
with local refinements are not discussed in detail, but, if not 
stated otherwise, the provided insights also carry over muta-
tis mutandis to these cases. Particular aspects of interface 
problems and transient problems are discussed, respectively, 
in Remarks 2.2 and 2.3 in Sect. 2.2.3. With respect to con-
ditioning, maximum continuity splines as commonly used 
in isogeometric analysis [87, 102] can behave differently 
from C0-continuous bases. Therefore, Sect. 3 also considers 
B-spline bases as a special case.

2.2 � Challenges in Immersed Finite Elements

Although the immersed finite element formulation intro-
duced above fits within the general framework of the con-
ventional finite element method, the application of immersed 
finite elements involves the consideration of various specific 
challenges. In this section we discuss the most prominent of 
these, viz: (i) numerical evaluation of integrals over cut ele-
ments, (ii) imposition of Dirichlet boundary conditions, and 
(iii) stability and conditioning of the formulation.

2.2.1 � Cut‑Element Integration

In boundary-fitted FEM, integrals over the domain Ω are 
split into element-wise integrals. The elements generally 
correspond to polygons such as simplices or hypercubes, 
and the integrands are usually element-wise polynomials. 
For this reason, standard quadrature rules can readily be 
used. Integration in immersed methods is more involved, 
as the integration procedure should adequately approximate 
integrals on, in principle, arbitrarily shaped cut elements. 

(2.10)uh =
∑
i

xi�i

(2.11)‖x‖2
A
= xTAx
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This problem closely relates to the special treatment of dis-
continuous integrands in enriched finite element methods 
such as XFEM and GFEM.

In immersed finite element methods the geometry repre-
sentation is independent of the mesh. In general, there are 
two ways to represent the geometry, viz implicit representa-
tions (e.g., voxel data [21, 103] or a level set function [51]) 
and explicit boundary representations (e.g., spline surfaces 
[3], B-rep objects [9], or isogeometric analysis on trimmed 
CAD objects [8, 12]). For all geometry representations, ded-
icated techniques are required to evaluate volume integrals 
over the intersection of active elements with the domain. 
A myriad of such integration procedures has been devel-
oped over the years in the context of immersed FEM (see 
[75, 104] for reviews/comparisons) and enriched FEM (see 
[105]), an overview of which is presented below. Techniques 
to integrate over trimmed boundaries are strongly depend-
ent on the geometry description. In explicit representations, 
the geometry description itself can sometimes be leveraged, 
whereas generally a boundary-reconstruction procedure is 
required in the case of implicit boundary representations. 
The reader is referred to, e.g., Refs. [75] for a discussion 
regarding the various techniques to handle different geom-
etry representations, and the related problem of integrating 
over unfitted boundaries.

The cut element volume integration techniques can be 
categorized as:

•	 Octree subdivision: The general idea of octree (or 
quadtree in two dimensions) integration is to capture 
the geometry of a cut element by recursively bisect-
ing sub-cells that intersect with the boundary of the 
domain, as illustrated in Fig. 3. At every level of this 
recursion, sub-cells that are completely inside the 
domain are preserved, while sub-cells that are com-
pletely outside of the domain are discarded. This cut 
element subdivision strategy was initially proposed in 
the context of the finite cell method (FCM) in [2] and 
is generally appraised for its simplicity and robustness 
with respect to cut element configurations. Octree inte-
gration has been widely adopted in immersed FEM, 
see, e.g., [45, 51, 75, 106, 107]. Various generalizations 
and improvements to the original octree procedure have 
been proposed, of which the consideration of tetrahe-
dral cells [52, 108], the reconstruction of the unfitted 
boundary by tessellation at the lowest level of bisec-
tioning [51], and the consideration of variable integra-
tion schemes for the sub-cells [104], are particularly 
noteworthy. Despite the various improvements to the 
original octree strategy, a downside of the technique 
remains the number of integration sub-cells (and con-
sequently the number of integration points) that result 
from the procedure, especially in three dimensions 

and with high-order bases, where the refinement depth 
needs to be increased under mesh refinement to reduce 
the integration error with the same rate as the approxi-
mation error [109].

•	 Cut element reparameterization: Accurate cut element 
integration schemes can be obtained by modifying the 
geometry parameterization of cut elements in such a way 
that the immersed boundary is fitted. This strategy was 
originally developed in the context of XFEM by decom-
posing cut elements into various sub-cells with only 
one curved side and then to alter the geometry mapping 
related to the curved sub-cell to obtain a higher-order 
accurate integration scheme [105]. This concept has been 
considered in the context of implicitly defined geometries 
(level sets) [110–113], the NURBS-enhanced finite ele-
ment method (NEFEM) [114, 115], the Cartesian grid 
finite element method (cgFEM) [57, 82], and the mesh-
transformation methodology presented in [116]. In the 
context of the finite cell method, the idea of cut element 
reparameterization has been adopted as part of the smart 
octree integration strategy [117–119], where a boundary-
fitting procedure is employed at the lowest level of octree 
bisectioning in order to obtain higher-order integration 
schemes for cut elements with curved boundaries. Repa-
rameterization procedures have the potential to yield 
accurate integration schemes at a significantly lower 
computational cost than octree procedures, but gener-
ally compromise in terms of robustness with respect to 
cut element configurations.

Fig. 3   Illustration of the octree procedure to integrate cut elements, in 
which integration sub-cells that intersect with the immersed boundary 
are recursively bisected
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•	 Polynomial integration: Provided that one can accurately 
evaluate integrals over cut elements (for example using 
octree integration), it is possible to construct computa-
tionally efficient integration rules for specific classes of 
integrands. In the context of immersed finite element 
methods, it is of particular interest to derive efficient 
cut-element integration rules for polynomial functions. 
The two most prominent methods to integrate polynomial 
functions over cut elements are moment fitting techniques 
[119–126], in which integration point weights and (pos-
sibly) positions are determined in order to yield exact 
quadrature rules, and equivalent polynomial methods 
[127, 128], in which a non-polynomial (e.g., discontinu-
ous) integrand is represented by an equivalent polyno-
mial which can then be treated using standard integra-
tion procedures. Such methods have been demonstrated 
to yield efficient quadrature rules for a range of scenarios. 
A downside of such techniques is the need for the evalu-
ation of the exact integrals (using an adequate cut-ele-
ment integration procedure) in order to determine the 
optimized integration rules. This can make the construc-
tion of such quadrature rules computationally expensive, 
which makes them more suitable in the context of time-
dependent and non-linear problems (with fixed bounda-
ries and interfaces), for which the construction of the 
integration rule is only considered as a pre-processing 
operation (for each cut element) and the optimized inte-
gration rule can then be used throughout the simula-
tion. Another downside is that some of these methods 
can result in negative quadrature weights, which can 
cause instabilities as discussed in [126]. In the group of 
Dominik Schillinger at TU Darmstadt, work is currently 
being done to use neural networks for the computation 
of integration point weights to accelerate this process.

•	 Dimension-reduction of integrals: Depending on the 
problem under consideration, it can be possible to 
reformulate volumetric integrals over cut elements by 
equivalent lower-dimensional integrals. This approach is 
advantageous from a computational effort point of view, 
as the equivalent integrals are generally less costly to 
evaluate. A reformulation of volume integrals in terms 
of boundary integrals has been proposed in the context 
of XFEM in [129] and in the immersed FEM setting in 
[130]. Dimension-reduction approaches for high-order 
quadrature with implicitly defined surfaces are presented 
for hexahedral and tetrahedral background elements in, 
respectively, [131] and [132]. Both these techniques rely 
on a reduction of integrals to one-dimensional integra-
tions and provide strictly positive weights. The method-
ology proposed in [133] (and references therein) provides 

closed-form formulas for the integration of monomials 
on convex and nonconvex polyhedra and the extension to 
curved domains, relying on a reduction of integrals up to 
vertex evaluations. A downside of dimension-reduction 
techniques is that they are less general than standard 
quadrature rules.

•	 Parameter optimization: Various strategies have been 
proposed to optimize the parameters of the cut element 
integration techniques discussed above, most notably for 
octree subdivision techniques. In [104, 109] algorithms 
are proposed to select the integration order on the differ-
ent levels of sub-cells. Ref. [126] presents a methodology 
to reduce the number of integration points in a manner 
similar to moment fitting techniques. These optimization 
techniques have demonstrated that reducing the number 
of integration points does not necessarily compromise 
the accuracy of the simulations. This is theoretically 
supported by Strang’s first lemma [96, 134, 135], which 
indicates that integration does not need to be exact in 
order to attain (optimal) convergence [134]1. It should 
be mentioned that this lemma is also considered in the 
context of CutFEM in e.g., [109, , 137].

In the selection of an appropriate cut element integration 
scheme one balances robustness (with respect to cut ele-
ment configurations), accuracy, and expense. If one requires 
a method that automatically treats a wide range of cut ele-
ment configurations and is willing to pay the price in terms 
of accuracy and computational effort, octree integration is 
the compelling option. For moderate accuracy, quadratures 
that rely on exact monomial integrations and only involve 
vertex evaluations136 are appealing in terms of accuracy 
and robustness. If the accuracy and computational-expense 
requirements are more stringent and the range of configura-
tions is suitably restricted, alternative techniques such as 
cut element reparameterization are attractive. In the case of 
implicit boundary representations, an additional considera-
tion in the selection of the cut element integration scheme is 
whether or not it is required to obtain a parameterization of 
(or integration scheme on) the unfitted boundary. Parameter 
optimization procedures can aid in fine-tuning the balance 
between robustness, accuracy and expense. The appropriate-
ness of the various techniques also depends on the way in 
which the geometry is represented (implicit vs explicit), as 
this can have a substantial impact on the implementation of 
a particular technique.

1  As formulated by Strang and Fix in 1973 [134]: “What degree of 
accuracy in the integration formula is required for convergence? It 
is not required that every polynomial which appears be integrated 
exactly."
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2.2.2 � Dirichlet Boundary Condition Imposition

Since the (immersed) boundary of the physical domain 
does not coincide with the background mesh, the imposi-
tion of boundary conditions in immersed methods requires 
special consideration. Given that a parameterized bound-
ary representation for integration over the boundary exists, 
Neumann (or natural) boundary conditions can be imposed 
weakly, in the same way as done in boundary-fitted FEM. 
The imposition of Dirichlet (or essential) boundary condi-
tions in immersed FEM is not as straightforward, however. 
Because of the disparity between the background grid and 
the physical domain, basis functions defined on the back-
ground mesh are not generally interpolatory on the unfit-
ted boundary. This precludes strong imposition of Dirichlet 
conditions as in boundary-fitted FEM. Therefore, boundary 
conditions in immersed FEM are usually imposed weakly. 
Different techniques for the imposition of Dirichlet bound-
ary conditions on unfitted boundaries exist, the most promi-
nent of which are:

•	 Penalty method: The penalty method supplements the 
weak form of boundary-fitted FEM with a penalty term 
that penalizes differences between the approximate solu-
tion and the prescribed Dirichlet data. This approach, 
which has been applied in the pioneering work on the 
finite cell method [2], is generally considered as the most 
straightforward technique to impose Dirichlet condi-
tions on unfitted boundaries. The formulation omits the 
boundary terms that arise from the partial integration 
in the derivation of the weak form—in boundary-fitted 
FEM these terms drop out as the test functions vanish 
on Dirichlet boundaries—such that a modeling error is 
introduced which yields an inconsistent formulation. For 
appropriately selected penalty parameters the inconsist-
ency can be acceptable [138], making the penalty method 
effective for a broad class of immersed problems with 
complex geometries, see, e.g., [21, 103]. Nevertheless, 
the choice of an appropriate penalty parameter is chal-
lenging. A too small value does not adequately enforce 
the prescribed boundary conditions, while a too large 
value exacerbates the conditioning problems [8] and can 
lead to large, nonphysical, gradients on cut elements [1, 
139, 140].

•	 Nitsche’s method: Nitsche’s method [98] can be consid-
ered as the consistent equivalent of the penalty method, 
as it retains the boundary gradients (sometimes referred 
to as the flux terms) in the weak formulation. Through 
appropriate scaling of the Nitsche (or penalty) param-
eter, a stable formulation is obtained, see, e.g., [141]. 
Nitsche’s method is a widely used technique for the weak 
imposition of boundary conditions in immersed finite 
element methods. An elegant aspect of Nitsche’s method 

is that the parameters can be computed per element [99], 
avoiding potential difficulties in the selection of a single 
global Nitsche parameter, see, e.g., [10]. The value of 
the Nitsche parameter should be inversely proportional 
to the thickness of the element,2 and can become arbi-
trarily large for small cut elements [1]. This problem 
can be remedied by means of additional stabilization 
terms such as the ghost penalty, or by the aggregation 
of basis functions; see Sect. 4. Also, a nonsymmetric 
Nitsche method can be applied to avoid the need for sta-
bilization [142–144], although this does affect the linear 
solver. Additionally, nonsymmetric Nitsche methods are 
not adjoint consistent, which means that these formula-
tions result in suboptimal approximation properties in 
the L2(Ω)-norm [142]. Some other variations of Nitsche’s 
method are presented in [145].

•	 Lagrange multiplier techniques: Dirichlet conditions on 
immersed boundaries can be enforced by supplementing 
the weak formulation with additional constraint terms, 
e.g., [141, 146]. In contrast to the penalty method and 
Nitsche’s method, in Lagrange multiplier techniques 
these constraint terms are associated with an auxiliary 
field variable which is defined over the unfitted bound-
ary. This auxiliary field is referred to as the Lagrange 
multiplier field. Lagrange multiplier techniques result in 
a saddle point problem, which implies that the discrete 
Lagrange multiplier field needs to be selected in such a 
way that a stable system is obtained [147]. Examples of 
Lagrange multiplier type techniques for immersed FEM 
are presented in [39, 148–151]. While an advantage of 
Lagrange multiplier techniques over Nitsche’s method 
and the penalty method is that these do not require the 
selection of a parameter, the downsides are that addi-
tional degrees of freedom are introduced through the 
Lagrange multiplier field, and that a (inf-sup) stable dis-
cretization of the Lagrange multiplier field is generally 
non-trivial. Additionally, for many problems, the intro-
duction of Lagrange multipliers changes the nature of 
the linear system from positive (semi-)definite to indefi-
nite and breaks the diagonal dominance. This affects the 
applicability of iterative solvers (in particular this pre-
cludes the conjugate gradient method) and the factoriza-
tion in sparse direct solvers.

•	 Basis function redefinition: An alternative class of tech-
niques to impose Dirichlet conditions on immersed 
boundaries is based on the idea to redefine the basis func-
tions in such a way that the modified (non-vanishing) 
basis functions are interpolatory on the unfitted bound-

2  This holds for second-order elliptic problems like the Poisson 
problem (2.1). With higher-order equations some parameters require 
higher scaling rates. [99]
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ary. This enables traditional strong imposition of bound-
ary conditions, as is standard in boundary-fitted finite 
element methods. Prominent examples of methods based 
on this concept are WEB-splines [83, 84] and, more 
recently, i-splines [85]. The main advantage of these 
techniques is that they do not require modifications to 
the weak formulation in comparison to boundary-fitted 
FEM, but the algorithms to redefine the basis functions 
constitute an additional non-trivial component in the 
implementation and analysis.

In the selection of an appropriate technique for imposing 
Dirichlet conditions in immersed finite elements, consist-
ency and accuracy requirements are a prominent consid-
eration. If there are no stringent accuracy requirements, the 
penalty method is an attractive option on account of its sim-
plicity. If this method does not meet the accuracy require-
ments, one can resort to consistent weak formulations, where 
particularly Nitsche’s method strikes a suitable balance 
between accuracy and ease of implementation. Basis func-
tion redefinition strategies are an attractive alternative when 
there are reasons to enforce Dirichlet conditions in a strong 
manner, like in boundary-fitted finite element formulations.

2.2.3 � Stability and Conditioning

Immersed discretizations that make use of finite element 
spaces defined on a background mesh generally suffer from 
the so-called small-cut-element problem. Conventional 
boundary-fitted finite element methods impose conditions 
on the shape and the size of the elements in the considered 
(family of) meshes. Such conditions can be (more-or-less) 
directly managed by the mesh-generation algorithm. In 
immersed finite element methods, on the other hand, one 
has no control over the shape and size of cut elements. Con-
sequently, cut elements can have arbitrarily small intersec-
tions with the physical domain, which is commonly referred 
to as the small-cut-element problem. This loss of control in 
the immersed or unfitted setting can have extensive implica-
tions on the well-posedness and conditioning of the resulting 
discrete problem, unless the immersed method is judiciously 
formulated.

The challenge of stability and conditioning in immersed 
finite elements with respect to small cut elements is the main 
focus of this review. Frequently, this small-cut-element prob-
lem is considered as a single-faceted problem. In our opin-
ion, however, there are two distinct (albeit strongly related) 
facets to the small-cut-element problem, viz stability and 
conditioning:

•	 Stability is related to the fact that the numerical formula-
tion itself can be ill-posed in the immersed setting. The 
most clear example of this is the imposition of Nitsche’s 

method with standard unfitted finite element spaces. The 
Nitsche parameter required for coercivity tends to infin-
ity under mesh refinement, which can lead to unbounded 
gradients on immersed or unfitted boundaries. It should 
be mentioned that the stability of immersed finite ele-
ments is closely related to the way in which essential 
boundary conditions are enforced, and, in the case of 
Nitsche’s method, to the value of the Nitsche parameter.

•	 Conditioning is related to the linear algebraic problem of 
obtaining the solution of the discrete system that arises 
from an immersed finite element formulation. Even if 
the problem is properly defined from a stability perspec-
tive, e.g., with only Neumann conditions on unfitted 
boundaries, the resulting system can be arbitrarily ill-
conditioned, which impedes the solution of the system. 
This is caused by functions that are only supported on 
small cut elements, for which the operator norm (that is 
equal to the matrix energy norm of the corresponding 
coefficient vector) is affected by the cut-element size, 
while the norm of the coefficient vector itself is not. This 
implies that the eigenvalues of the system matrix can be 
arbitrarily close to zero, depending on the cut-element 
configuration.

Several techniques have been developed to counteract the 
problems associated with small cut elements, encompassing 
treatments for both stability and conditioning issues. The 
effects of cut elements on the conditioning of the linear sys-
tem are discussed in detail in Sect. 3.1. Section 3.2 provides 
an overview of tailored preconditioners that address this 
issue. Specific attention in this section is devoted to Schwarz 
preconditioners, that form a natural resolution to the condi-
tioning problem. The stability of immersed discretizations 
is treated in detail in Sect. 4, which considers both the sta-
bility problem itself in Sect. 4.1 and the methodologies that 
have been developed to resolve it in Sect. 4.2. Two particular 
approaches, viz element aggregation and the ghost-penalty 
method, resolve the stability problems in a manner that 
yields enhanced coercivity in H1(Ωh) (i.e., on the union of 
all active elements) instead of just in H1(Ω) . Consequently, 
these approaches do not only guarantee stability, but simul-
taneously preclude conditioning problems. Element aggre-
gation and the ghost-penalty method are discussed in detail 
in Sects. 4.3 and 4.4, respectively, and Sect. 4.5 presents a 
unified mathematical approach to analyze these techniques.

Remark 2.1  Interpretation from the perspective of norm 
equivalences In terms of the problem definitions presented 
above, stability and conditioning can be distinguished as 
different norm equivalences in the discrete space. Stability 
pertains to the strength of the norm equivalence between the 
H1(Ω)-norm, which is a common measure for establishing 
the quality of a solution, and the operator norm, ‖ ⋅ ‖ah (or 
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the equivalent �-norm or energy norm, which will be defined 
in Sect. 4). Conditioning, on the other hand, pertains to the 
strength of the norm equivalence of the matrix energy norm, 
‖ ⋅ ‖A (which is equal to the operator norm of the correspond-
ing discrete function), and the �2 vector norm, ‖ ⋅ ‖2 . In an 
unfitted discretization that contains small cut elements, the 
equivalences between these norms can become very weak, 
which indicates the potential of difficulties with respect to 
stability and/or conditioning. To ensure coercivity of the 
weak formulation when Nitsche’s method is employed in 
an immersed setting without a dedicated stabilization tech-
nique, a (locally) very large Nitsche parameter is required. 
Such a very large Nitsche parameter, however, also causes 
the operator norm to be only very weakly bounded by the 
H1(Ω)-norm [1]. Similarly, functions that are only supported 
on small cut elements have a small operator norm, while the 
size of the cut elements does not affect the the �2-norm of 
the coefficient vector. For this reason, the bound on the �2

-norm of the coefficient vector in terms of the matrix energy 
norm can be arbitrarily weak [152].

Remark 2.2  Interface problems Immersed formulations of 
interface problems such as [16] form a special class when 
considering the stability of cut elements. In such problems, 
an interface that is not aligned with the mesh separates parts 
of the domain, instigating a jump in the (material) prop-
erties (e.g., stiffness or conductivity) and thereby in the 
coefficients of the equation. Transmission conditions at the 
interface generally specify continuity of the solution and the 
fluxes, resulting in a jump in the gradients over the interface. 
The solution on different sides of the interface is therefore 
approximated by separate function spaces (defined on the 
same mesh covering the entire domain), with parts of basis 
functions that are intersected by the interface separately 
involved on both sides of the interface. This constructs a 
special case of immersed methods, because cut elements 
always have significantly large supports on either side of 
the interface. This can be leveraged with a weighted average 
flux in the bilinear formulation as presented in [18, 19, 73], 
resulting in a stable formulation with a bounded Nitsche 
parameter without the requirement for additional stabiliza-
tion. Note that this formulation does not repair the condi-
tioning problems and that the weighting of the fluxes is not 
effective for high-contrast problems. Besides formulations 
with weighted average fluxes, stable immersed interface 
problems can also be obtained by the techniques presented 
in Sect. 4, which additionally repair the conditioning. Par-
ticular examples of stable formulations with aggregation and 
ghost penalty are presented in [23, 24, 153] and [20, 25], 
respectively.

Remark 2.3  Stable explicit time integration While not 
considered in detail in this review, a related challenge is the 

stability of explicit time integrators on unfitted grids con-
taining small cut elements. Analogous to the system matrix, 
the eigenvalues of the (consistent) mass matrix cannot be 
bounded from below in immersed formulations, such that 
the stable time step can become arbitrarily small. Similar to 
the stability of the solution on small cut elements discussed 
above, this can generally be resolved by the function space 
manipulations discussed in Sect. 4.3 or by the addition of the 
weak stabilization terms as discussed in Sect. 4.4 to the mass 
matrix, see, e.g., [154]. Regarding the stability of explicit 
time integrators, also the investigations into the spectral 
behavior of Nitsche’s method in both boundary-fitted and 
immersed settings presented in [155–157] are of particular 
interest. It should be mentioned that systems with lumped 
mass matrices and smooth (isogeometric) discretizations 
form an exception to the dependence of the stable time-step 
size on cut elements. For such systems, the eigenvalues of 
the lumped mass matrix on small cut elements scale more 
favorably with the size of small cut elements than the eigen-
values of the stiffness matrix. Therefore, stable explicit time 
integration can be performed without additional stabilization 
and with time steps dependent on the background element 
size, see [158, 159] for details.

3 � Ill‑Conditioning and Preconditioning

An integral aspect of finite element methods is to find 
the solution of the corresponding linear system of equa-
tions. For small systems this is generally done by a direct 
solver, which factorizes the linear system and directly 
computes the solution up to machine precision. The com-
putational cost of direct solvers scales poorly with the size 
of the system, however, resulting in computation time and 
memory requirements that become prohibitive for large 
systems [160]. For this reason, large systems are gener-
ally solved by iterative solvers, the computational cost of 
which generally scales better with the size of the system 
[161]. The convergence of iterative solvers is strongly 
correlated with the conditioning of the system. Without 
tailored stabilization or preconditioning, systems derived 
from immersed finite element formulations are generally 
severely ill-conditioned, impeding the application of itera-
tive solvers [152]. In Sect. 3.1, an analysis of the causes 
of ill-conditioning in immersed finite element systems 
is presented. Preconditioners which effectively resolve 
these conditioning problems are discussed in Sect. 3.2. 
Section 3.3 provides a detailed discussion about Schwarz 
preconditioners, which have commonly been applied to 
immersed finite element systems in recent years.
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3.1 � Conditioning Analysis

3.1.1 � Condition Number

The conditioning of a linear system is often used as an indi-
cation of the complexity of solving that linear system by 
means of an iterative solver. An important property of a sys-
tem matrix to indicate the conditioning is the (Euclidean) 
condition number, �(A) , which is defined as the product of 
the norm of the system matrix and the norm of its inverse

While the condition number is formally defined as the sensi-
tivity of the solution to perturbations in the right hand side, 
it also relates to the convergence of iterative solvers. It is 
noted that the convergence of these solvers is dependent on 
more factors than simply the condition number, such as, e.g., 
the grouping of eigenvalues and the orthogonality of eigen-
vectors [161, 162].

Based on the equality between the matrix energy norm 
‖y‖A of a vector y in the vector space �2(N) and the operator 
norm ‖vh‖ah of the corresponding function vh =

∑
i yi�i in 

the isomorphic function space Vh , the norm of the (sym-
metric) system matrix A can be written as

with wh =
∑

i zi�i ∈ Vh and z ∈ �
2(N) . Similarly, for the 

norm of the inverse of A it can be written that

The identities in (3.2) and (3.3) convey that the condition 
number of a linear system emanating from an (immersed) 
finite element formulation is determined by the tightness 
of the equivalence between, on one side, the vector norm 
‖y‖2 of the coefficient vector, and, on the other side, the 
operator norm ‖vh‖ah of the corresponding function, on the 
isomorphic spaces �2(N) and Vh . The weakness of this norm 
equivalence for systems that contain small cut elements is 
the root cause of ill-conditioning in immersed finite element 
methods.

The norms defined above can be employed to provide 
an estimate, or lower bound, for the condition number of a 
system with a small cut element. To derive this estimate, we 
consider a two-dimensional cut-element scenario as indi-
cated in Fig. 4. First, we define the volume fraction �i of the 
cut element T

i
∈ T cut

h
 as the ratio between the volume of 

(3.1)�(A) = ‖A‖2‖A−1‖2 ≥ 1

(3.2)

‖A‖2 =max
y

‖Ay‖2
‖y‖2 = max

z,y

ah(wh, vh)

‖z‖2‖y‖2
=max

y

ah(vh, vh)

‖y‖2
2

= max
y

‖vh‖2ah
‖y‖2

2

(3.3)‖A−1‖2 = max
y

‖y‖2
2

‖vh‖2ah

the intersection of the element with the domain Ω and the 
volume of the full element in the background grid

Second, we note that in a polynomial basis of order p it is 
generally possible to construct a function vh ∈ Vh

with � = (�1, �2) a local coordinate that has its origin 
� = (0, 0) at the (not-cut) vertex of Ti , as indicated in Fig. 4, 
and where the corresponding coefficient vector y in the vec-
tor space �2(N) has a norm that is approximately ‖y‖2 ≈ 1 
depending on the employed basis (e.g., B-splines, Lagrange, 
or integrated Legendre). Under the assumption that element 
Ti is cut by a natural boundary such that the weak form does 
not contain boundary terms, the operator norm of vh is given 
by

(3.4)�i =
|Ti ∩ Ω|
|Ti| =

|Ti,Ω|
|Ti|
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Fig. 4   Exemplary cut element geometry to illustrate the derivation of 
the condition number estimate. The vertex with � = (0, 0) is indicated 
in blue
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This shows that while the �2 vector norm ‖y‖2 is not affected 
by the volume fraction �i , the operator norm ‖vh‖ah and, by 
equivalence, the matrix energy norm scales with the volume 
fraction �i . Therefore it follows that

with ≳ denoting an inequality involving a constant (i.e., 
a ≳ b indicates a > Cb for some constant C). As the norm 
‖A‖2 does not depend on the volume fraction �i , this results 
in a condition number 𝜅(A) ≳ 𝜂

−2p

i
 . In [152] this derivation 

is performed in an abstract setting for more general cut sce-
narios (under certain shape assumptions), for different num-
bers of dimensions, and with different boundary conditions. 
This results in the estimate of the condition number of linear 
systems derived from immersed finite element formulations 
of second order problems

with � denoting the smallest volume fraction in the sys-
tem, i.e., � = mini �i . The scaling relation (3.8) is numeri-
cally verified in [152] for different grid sizes, discretization 
orders, and for both C0-continuous and maximum continuity 
spline bases.

It can be noticed that the shape of the cut element is not 
included in the condition number estimate. That is because 
within certain shape-regularity assumptions (see [152] for 
details), the shape of the cut element is not a dominant fac-
tor in the order of magnitude of the smallest eigenvalue of 
the system matrix. When the system matrix is (diagonally) 
scaled, as will be discussed below, the shape of the cut ele-
ment does play a role. It should be mentioned that, under the 
same shape-regularity assumptions, the derivation in [152] 
also establishes that when a local, element-wise, Nitsche 
parameter is employed, the condition number estimate is not 
affected by the type of boundary condition imposed on the 
(cut) boundary of the smallest cut element. When a global 
Nitsche parameter is employed, the value of this parameter 
is determined by the smallest cut element. While this does 
not affect the smallest eigenvalue of the system, this makes 
the largest eigenvalue dependent on the smallest cut element 
as well, resulting in even larger condition numbers.

3.1.2 � Effect of Diagonal Scaling, Smoothness 
and the Cut‑Element Shape

The previous paragraph considered the condition number 
of the system matrix A as is, without any treatment. It is 
noted, however, that linear algebra solvers typically per-
form basic rescaling procedures, most notably diagonal 

(3.7)‖A−1‖2 = max
y

‖y‖2
2

‖y‖2
A

= max
y

‖y‖2
2

‖vh‖2ah
≳

1

𝜂
2p

i

(3.8)𝜅(A) ≳ 𝜂−(2p+1−2∕d)

scaling operations such as Jacobi, Gauss-Seidel or SSOR 
preconditioning [163]. Consequently, it is important to not 
only consider the condition number independently, but 
also to have a closer look at the coefficient vector y cor-
responding to a function with a very small operator norm 
‖vh‖ah . As indicated in [152], there exist two mechanisms 
by which the operator norm of a basis function can be 
much smaller than the norm of the corresponding coef-
ficient vector. First, it is possible that a basis function in 
itself is very small. In this case, simply the unit vector 
corresponding to that specific basis function will already 
cause a large condition number through (3.3) (i.e., with 
this unit vector taken as y , the quotient in this equation 
will be very large). Second, on small cut elements it is 
possible that the dependence of certain basis functions on 
a specific parametric coordinate or on higher-order terms 
diminishes. This essentially reduces the dimension of the 
space spanned by the basis functions on the small cut ele-
ment, such that these basis functions become almost line-
arly dependent (see Fig. 5). In this case, the small function 
vh as in (3.5) cannot be represented by a unit vector, and 
the coefficient vector y corresponding to the small func-
tion requires multiple nonzero entries. This is an important 
nuance in relation to the scaling of the system, as small 
eigenvalues that correspond to an (almost) unit vector are 
resolved by diagonal scaling, while small eigenvalues 
caused by almost linear dependencies are not.

Because of the above-discussed distinction between the 
classes of small eigenvalues in immersed finite element 
systems, there is a significant difference in conditioning 
between, on one hand, higher-order ( p ≥ 2 ) C0-polynomi-
als, and, on the other hand, maximal continuity splines 
and linears (note that linears are a subclass of maximal 
continuity splines). This is because in the former case, 
almost linear dependencies will be formed on all small 
cut elements. For such systems, Jacobi preconditioning 
lowers the condition number, but the resulting systems are 
still ill-conditioned and the condition number still shows 
a dependence on the smallest cut element. For maximum 
continuity splines, the shape of small cut elements starts to 
play a role. On elements in which a vertex is contained in 
TΩ , as indicated by element T1,Ω in Fig. 5, a discretization 
with maximum continuity splines will only contain a sin-
gle basis function of which the support is restricted to the 
small cut element. Therefore, a Jacobi preconditioner suf-
fices to repair the conditioning with regard to that element. 
On cut elements where TΩ does not contain a vertex, as 
indicated by element T2,Ω in Fig. 5, the diminished depend-
ence on the (in this case horizontal) parametric coordinate 
causes almost linear dependencies. Consequently, such 
elements still cause ill-conditioning even after diagonal 
rescaling of immersed systems with maximum continuity 
splines. Because of this dependence on the continuity of 
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the basis, a scaled linear system derived from an unfit-
ted discretization with maximum continuity splines will 
contain far fewer problematically small eigenvalues than 
a scaled linear system derived from an unfitted discre-
tization with C0-continuous basis functions of the same 
degree p ≥ 2 . Depending on the size of the system and the 
smoothness of the boundary, the number of problematic 
eigenvalues in an immersed isogeometric discretization 
in conjunction with diagonal scaling can even be small 
enough to render direct application of a Krylov-subspace 
based iterative solver feasible. Because only cut elements 
of a specific shape cause small eigenvalues for systems 
based on maximum continuity splines in conjunction with 
diagonal scaling, the overall smallest volume fraction and 

the scaled condition number are in general only weakly 
correlated in such systems [152].

3.2 � Preconditioning and Literature Overview

Based on the conditioning analysis presented above, ill-
conditioning of immersed FEM systems can effectively be 
negated by dedicated preconditioning techniques. The gen-
eral idea of preconditioning is to construct a precondition-
ing matrix, B , which is an approximation of the inverse of 
the system matrix A , and then to solve the preconditioned 
system

Although the original system matrix A in equation (2.8) can 
be ill-conditioned, i.e., 𝜅(A) ≫ 1 , a properly formed precon-
ditioner results in a well-conditioned preconditioned system 
matrix, i.e., �(BA) ≈ �(A−1A) = �(I) = 1 . In constructing 
the preconditioner B , one balances the computational effort 
required to compute and apply the preconditioner with the 
extent to which the inverse of the original system matrix is 
approximated.

Various dedicated preconditioning techniques to resolve 
ill-conditioning problems caused by small cut elements have 
been developed in the context of GFEM and XFEM, such 
as: a preconditioner based on local Cholesky decompositions 
[164], a FETI-type preconditioner tailored to XFEM [165], 
an algebraic multigrid preconditioner that is based on the 
Schur complement of the enriched basis functions [166], 
and domain decomposition preconditioners based on addi-
tive Schwarz [167, 168].

In recent years, dedicated preconditioners have been 
developed for immersed FEM. It is demonstrated in [169] 
that systems with linear bases can effectively be treated by 
a diagonal preconditioner in combination with the removal 
of very small basis functions. Under certain restrictions 
on the cut-element geometry, it is derived in [170] that a 
scalable preconditioner for linear bases is obtained by com-
bining a Jacobi preconditioner for basis functions on cut 
elements with a standard multigrid preconditioner for inte-
rior basis functions that do not intersect the boundary. In 
[152], a preconditioner is developed that combines diagonal 
scaling with local Cholesky factorizations. This technique 
is motivated by the analysis of the conditioning problems 
of immersed methods in the previous section, and can be 
interpreted as a local change of basis on small cut elements, 
where the Cholesky factorizations correspond to local ortho-
normalization procedures for almost linearly dependent basis 
functions, which are identified by a tailored algorithm. The 
resulting preconditioner effectively resolves ill-conditioning 
for immersed methods discretized with higher-order (con-
tinuous) bases.

(3.9)BAx = Bb

T1

T2

∂Ω

Ω

Fig. 5   Illustration of an unfitted boundary with different types of cut 
elements. Element T1,Ω contains a vertex. With maximal continuity 
splines, only one basis function is supported on this element only (for 
a linear basis, the node corresponding to this function is indicated by 
the blue dot). Rescaling the basis functions will resolve the condition-
ing problems for this type of cut element. Element T2,Ω does not con-
tain a vertex, and multiple basis functions are only supported on this 
element (with a linear basis, these are the basis functions correspond-
ing to the nodes indicated with the green dots). If the volume fraction 
of this element is very small, the dependence of the basis functions 
on the horizontal coordinate (relative to the dependence on the ver-
tical coordinate) diminishes, such that the basis functions describe 
essentially the same degree of freedom and become linearly depend-
ent. Therefore, rescaling the basis functions will not resolve the con-
ditioning problems on this type of cut element. In a similar manner, 
the relative contribution of higher-order terms diminishes relative to 
the contribution of linear terms on small cut elements. As a result, 
with higher-order discretizations that are not of maximal continuity, 
almost linear dependencies generally occur on small cut elements of 
any shape, while these only occur on specifically cut elements with 
discretizations of maximal continuity
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Recently, Schwarz preconditioners—which were 
already discussed above in the context of GFEM and 
XFEM [167, 168]—have also gained momentum in 
immersed finite elements. The concept of Schwarz pre-
conditioning to overcome the problem of linear dependen-
cies on small cut elements was considered in [64, 171] for 
both linear and higher-order discretizations. This concept 
was generalized to multilevel hp-finite element bases in 
[63], where it was also demonstrated to be effective in 
parallel computing frameworks. In [172], Schwarz pre-
conditioning of unfitted systems was applied as a smoother 
in a multigrid solver, making it suitable for large scale 
computations. The methodology was applied in high-per-
formance parallel-computing settings in [173, 174], with 
[174] demonstrating excellent scalability for problems 
with multi-billion degrees of freedom distributed over 
close to 105 cores. A Balancing Domain Decomposition 
by Constraints (BDDC) scalable preconditioner, tailored 
to immersed FEM by choosing appropriate weighting coef-
ficients for cut basis functions, has been proposed in [175]. 
BDDC methods are multilevel additive domain decompo-
sition algorithms that can scale up to millions of cores/
subdomains [176]. The preconditioner in [175] results 
in an effective preconditioner for linear basis functions 
and exhibits the same parallelism potential as standard 
BDDC, thus being well-suited for large-scale systems on 
distributed-memory machines.

It is worth mentioning that dedicated preconditioners 
have also been developed and investigated for ghost-pen-
alty stabilized discretizations. While, as will be demon-
strated in Sect. 4, such stabilized systems do not suffer 
from the typical conditioning problems related to small 
cut elements discussed in Sect. 3.1, the different setting 
of the problem and the involvement of additional terms 
does warrant the investigation into the applicability of 
efficient solvers, in particular multigrid techniques. Dedi-
cated multigrid routines for Nitsche-based ghost-penalty 
stabilized methods are presented in [177–179]. It is nota-
ble that [179] additionally presents multigrid routines for 
Lagrange multiplier based methods, see also [180, 181]. 
Furthermore, in [182] and [183] a similar approach as in 
[170] (discussed above) is followed. In these references 
it is demonstrated that a stable splitting of the degrees 
of freedom exists, and that a scalable solver is obtained 
by combining a standard multigrid technique for a well-
defined set of internal degrees of freedom with a diagonal 
preconditioner for the set of degrees of freedom along the 
boundary. While this technique is only applicable to ghost-
penalty stabilized systems, in contrast to [170] it can also 
be applied to higher-order discretizations. A final notewor-
thy contribution is [184], which presents a preconditioner 
for ghost-penalty stabilized immersed interface problems 
of high contrast. In this reference a different splitting of 

the degrees of freedom is applied to define a Schur com-
plement, based on which preconditioners are presented 
that are robust to high contrast ratios.

The remainder of this section focuses on Schwarz pre-
conditioning and the considerations regarding its application 
to systems derived from immersed finite element methods.

3.3 � Schwarz Preconditioning

3.3.1 � Concept of Schwarz Preconditioning

The concept of Schwarz preconditioning is to invert (restric-
tions of) local blocks of the system matrix A ∈ ℝ

N×N and 
then sum these contributions to form the preconditioner. 
To provide a definition, we consider a set of (potentially 
overlapping) index blocks, where each index block contains 
Mi ≥ 1 indices. The additive Schwarz preconditioner is then 
defined as

and the multiplicative Schwarz preconditioner as

The prolongation operator Pi ∈ ℝ
N×Mi consists of the 

unit vectors corresponding to the Mi indices in the i-th 
index block. Pre- and post-multiplying the system matrix 
A ∈ ℝ

N×N with the (transpose of) this prolongation operator 
restricts it to the submatrix Ai ∈ ℝ

Mi×Mi consisting of only 
the indices in the i-th index block. Similarly, the opposite 
pre- and post-multiplication with these operators injects the 
local inverse A−1

i
∈ ℝ

Mi×Mi into the matrix Bi ∈ ℝ
N×N . It 

is to be noted that the index blocks may overlap. In addi-
tive Schwarz these contributions are then added in BAS and 
treated simultaneously. In multiplicative Schwarz, repeti-
tions of the same index are treated sequentially. Applica-
tion of the multiplicative Schwarz preconditioner can be 
expressed by recursive relations; see, e.g., [172]. It is noted 
that index blocks consisting of a single index simply reduce 
to Jacobi preconditioning in additive Schwarz, and to Gauss-
Seidel preconditioning in multiplicative Schwarz. The for-
mal definition and details about the construction of Schwarz 
preconditioners are presented [64] and [172].

3.3.2 � Application to Immersed Systems

Schwarz preconditioners can be conceived of as locally 
orthonormalizing the basis functions corresponding to the 
indices in a block. In order to effectively employ the concept 

(3.10)
BAS =

∑
i

Bi =
∑
i

Pi

(
PT
i
APi

)−1
⏟⏞⏞⏞⏟⏞⏞⏞⏟

A−1
i

PT
i

(3.11)BMS =
∑
i

Bi

i−1∏
j=1

(
I − ABj

)
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of Schwarz preconditioning as a tailored preconditioner for 
unfitted systems, it is therefore essential that for every set of 
almost linearly dependent functions, there is an index block 
containing all these functions. Since almost linear depend-
encies occur between basis functions that are supported on 
a small cut element, the index blocks are generally chosen 
by selection procedures based on the overlapping support of 
basis functions, either for all active elements in Th or only 
for the cut elements in T cut

h
 . A discussion regarding consid-

erations in the index blocks is provided later in this section.
A further interpretation of Schwarz preconditioning in 

relation to immersed finite element methods can be obtained 
from the additive Schwarz lemma. This lemma states that 
for a Symmetric Positive Definite (SPD) matrix A , the B−1

AS

-inner product of an arbitrary vector y is equal to [185, 186] 
(see [187, 188] for this specific form)

In these identities, ỹi ∈ ℝ
Mi denotes a block vector corre-

sponding to the i-th index block. The statement y =
∑

j Pjỹj 
indicates that the sum of the prolongations of these block 
vectors form a partition of the vector y ∈ ℝ

N . A set of block 
vectors with this property exists, provided that every index 
is contained in (at least) one index block. In the case that the 
blocks do not overlap, this set of block vectors is unique. In 
the case that the index blocks do overlap, multiple sets of 
block vectors have the partition property. Accordingly, the 
lemma states that the B−1

AS
-inner product of y is equal to the 

minimum of the sum of the Ai-inner products of the block 
vectors ỹi over all sets of block vectors with the partition 
property.

To relate this to the specific conditioning problems in 
immersed finite element methods, recall that BAS can be 
considered as a sparse approximation of A−1 . Efficient pre-
conditioning requires BAS to have similar properties as A−1 
or, similarly, B−1

AS
 to have similar properties as A . The analy-

sis of the conditioning problems associated with immersed 
finite element methods in Sect. 3.1 conveys that the principal 
cause of these problems is that, potentially, ‖y‖2 ≫ ‖y‖A 
in case y corresponds to a function comprised of (i) a very 
small basis function or (ii) almost linearly dependent basis 
functions. For the first case, it follows from (3.12) that y 
must also have a small B−1

AS
-inner product, such that this 

property is captured by the additive Schwarz precondi-
tioner, independent of the index blocks. For the second case, 
assume that indeed for every set of almost linearly depend-
ent functions, there is an index block containing all these 
functions, in accordance with the previously stated postu-
late. Then, in case y corresponds to a function comprised of 

(3.12)

yTB−1
AS
y = min

y=
∑
j

Pjỹj

�
i

ỹT
i
Aiỹi

= min
y=

∑
j

Pjỹj

�
i

�
Piỹi

�T
A
�
Piỹi

�

almost linearly dependent basis functions, y can be written 
as the prolongation of a single block vector. Consequently, 
also in the second case, it follows from (3.12) that y will 
have a small B−1

AS
-inner product, such that this property is 

captured in the additive Schwarz preconditioner. As a result, 
with a proper choice of the index blocks, for both causes of 
very small eigenvalues of the matrix A , the corresponding 
modes will also be present in B−1

AS
 . The Schwarz precon-

ditioner thus specifically targets the problematic aspects 
of small eigenvalues due to small cut elements (for both 
linear and higher-order discretizations), and thereby effec-
tively resolves the ill-conditioning in systems derived from 
immersed formulations.

3.3.3 � Effectivity and Multigrid Preconditioning

While the effectivity of Schwarz preconditioning for 
immersed problems can be explained by the additive 
Schwarz lemma in combination with a particular selection of 
the blocks, a formal mathematical bound on the eigenvalues 
of an unfitted system treated by Schwarz preconditioning has 
not yet been formulated. Numerical results, however, con-
sistently show that the resulting systems behave the same as 
boundary-fitted systems, in the sense that (for second order 
problems as the Poisson equation) the condition number 
scales as h−2 , and the number of iterations that is required 
to solve the linear system up to a prescribed tolerance is 
proportional to h−1 [64, 172].

To resolve the remaining grid dependence after Schwarz 
preconditioning, the Schwarz preconditioner can be applied 
as a smoother in a geometric multigrid framework. In 
[172–174] this is demonstrated to result in a methodology 
that is robust to cut elements and which solves linear sys-
tems with quasi-optimal complexity, i.e., at a computational 
cost that is linear with the number of degrees of freedom 
(DOFs). A delicate consideration in a multigrid framework 
is the choice between additive and multiplicative Schwarz. 
As demonstrated in [172], the stability of a multigrid solver 
with an additive Schwarz smoother requires a considerable 
amount of relaxation, and for this reason [172] employs a 
multiplicative implementation. As discussed later in this sec-
tion, multiplicative Schwarz is less suited for parallelization, 
such that parallel implementations employ either additive 
Schwarz [174] or a hybrid variant [173]. Another important 
aspect of multigrid solvers with Schwarz smoothers is the 
dependence of their effectivity on the discretization order, 
which is investigated and discussed in [172].

3.3.4 � Block Selection

As previously mentioned, for Schwarz preconditioning to 
be effective, it is essential that every combination of basis 
functions that can become almost linearly dependent is 
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contained in an index block, which is generally achieved 
by selecting these blocks based on the overlap in the sup-
ports of basis functions. In [64], an index block is devised 
for every cut element, containing all basis functions sup-
ported on it. For basis functions that are not supported on 
any cut element, a simple diagonal scaling is performed. A 
tailored block selection procedure for multilevel hp-adaptive 
discretizations is developed in [63]. In this procedure, the set 
of basis functions supported on a refined (leaf) element is 
further restricted to only the necessary DOFs. Additionally, 
the procedure is optimized by only devising blocks for cut 
elements with a volume fraction that is smaller than a cer-
tain threshold �∗ ∈ [0, 1] . For locally refined discretizations 
based on truncated hierarchical B-splines, a block selection 
strategy is presented in [172]. In [64] it is noted that, for 
vector-valued problems, degrees of freedom describing the 
solution in a certain geometrical dimension can generally not 
form a linear dependency with degrees of freedom describ-
ing the solution in another geometrical dimension. Hence, it 
can be beneficial to generate separate index blocks for each 
geometrical dimension.

The most important consideration in the selection of 
index blocks is the size of the blocks. Small blocks are com-
putationally inexpensive, but can miss almost linear depend-
encies on pathologically cut elements. Large blocks are more 
robust, but are computationally more expensive. With the 
Schwarz preconditioner directly employed in an iterative 
solver, the number of iterations is generally large enough 
for small blocks to be more efficient. When the Schwarz pro-
cedure is employed as a smoother in a multigrid method, the 
small number of iterations generally renders larger blocks 
more appropriate. For this reason, [172] and [174] consider 
block selection procedures based on multiple elements. In 
[172] an index block is created for every basis function, con-
taining all the basis functions with a support that is encap-
sulated by the support of the function for which the block 
is created. Ref. [174] employs index blocks containing all 
basis functions supported on a cluster of 2d elements, with 
d the number of dimensions.

Regarding the lack of consensus on the block selection 
procedures in different contributions, it can be concluded 
that an optimal choice of index blocks is still an unresolved 
question.

3.3.5 � Implementation Aspects

A specific operation in the construction of a Schwarz pre-
conditioner is the computation of stable inverses of the sub-
matrices Ai . With very small eigenvalues, numerical round-
off errors can cause detrimental errors in the inversion of 
submatrices with eigenvalues that are too close to machine 
precision. In the worst case, this can lead to negative 

eigenvalues in the preconditioned system, resulting in fail-
ure of the iterative solver. For that reason, the inverses are 
generally not computed by a simple inversion operation, but 
via an eigenvalue decomposition. After the decomposition, 
eigenvalues that are smaller than a prescribed threshold are 
discarded. Details about this procedure are described in [63, 
64].

The Schwarz preconditioner is suitable for parallel imple-
mentations [63]. A particular facet of the parallelization of 
a Schwarz preconditioner is that each submatrix Ai has to 
be available in a single subprocess for inversion. As this 
is not generally the case in parallel (boundary-fitted) finite 
element codes, this calls for special care in the implementa-
tion, e.g., by applying ghost elements [63]. As previously 
mentioned, a specific consideration pertaining to parallel 
multigrid implementations is the choice between additive 
and multiplicative Schwarz. While multiplicative Schwarz 
does not require relaxation, it does require extensive com-
munication and synchronization between parallel processes, 
specifically in distributed memory systems. For that reason 
the parallel multigrid implementation in [174] employs an 
additive Schwarz smoother, while in [173] a hybrid variant is 
applied with an additive approach for DOFs that are shared 
between processes and a multiplicative treatment of DOFs 
that belong to a single process.

3.3.6 � Extension to Other Problems

The additive Schwarz lemma in (3.12) only pertains to Sym-
metric Positive Definite (SPD) systems. Such systems cover 
a large number of applications, encompassing many prob-
lems in structural mechanics, but do not comprise all prob-
lems commonly solved by immersed finite element methods. 
In particular, incompressible-flow problems in which the 
pressure takes the form of a Lagrange multiplier in the weak 
formulation are indefinite, and problems involving convec-
tion or formulations based on the nonsymmetric Nitsche 
method are not symmetric. Applications of the Schwarz 
framework to immersed finite element approximations of 
such problems are considered in [64], in which for all con-
sidered problems it is observed that the solver is independ-
ent of the cut elements and that the number of iterations is 
approximately inversely proportional to the mesh size.

4 � Stability

4.1 � Stability Analysis

As indicated in Sect. 2.2.3, small cut elements do not only 
adversely affect the conditioning of the resulting linear 
system, but can also disturb the quality of the solution as 
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the normal gradient is not adequately controlled.  
When Nitsche’s method is applied on a boundary-fitted 
d i s c re t i za t i on ,  t he  t r ace  i nve r se  i nequa l i t y 
‖𝜕nuh‖T∩𝜕ΩD

≲ h
−1∕2

T
‖∇uh‖T  holds on every element T 

adjacent to the Dirichlet boundary �ΩD ; see, e.g., [100]. 
By virtue of this trace inequality, the bilinear operator 
ah(⋅, ⋅) defined in (2.7) is coercive with a global Nitsche 
parameter � that scales with h−1 , and optimal error bounds 
with respect to the H1(Ω)-norm hold. With an immersed 
discretization, however, an element T that intersects �ΩD 
only partially intersects the physical domain Ω . There-
fore, the aforementioned trace inverse inequality assumes 
the form ‖𝜕nuh‖T∩𝜕ΩD

≲ h
−1∕2

TΩ
‖∇uh‖TΩ , where hTΩ indicates 

a generalized thickness of the fragment TΩ = T ∩ Ω (the 
intersection of element T and the physical domain) nor-
mal to T ∩ �ΩD (the intersection of element T and the 
Dirichlet boundary); see Sect. 2.1. Consequently, coerciv-
ity of the bilinear form ah(⋅, ⋅) requires an element-wise 
Nitsche parameter � that is not inversely proportional to 
the characteristic mesh width of the background element, 
hT , but instead is inversely proportional to the generalized 
thickness of the intersection, i.e., 𝛽 ∼ h−1

TΩ
≳ h−1

T
 . Due to 

the fact that without special precautions, in immersed 
finite element methods one has no control over hTΩ , the 
Nitsche parameter can in principle become arbitrarily 
large.

In [1] it is shown that the error of immersed Nitsche-
based formulations admits a natural analysis in the norm 
(within this manuscript referred to as the �-norm)

provided that � is large enough for the bilinear form to be 
coercive. Note that this norm is referred to differently in 
[1], and that it differs from the energy norm that will be 
introduced in Sect. 4.5. On account of the last term, this 
norm cannot be applied to the full space H1(Ω) . For this 
reason, it is assumed in the analysis that u ∈ H2(Ω) , and the 
setting is restricted to the composite space Vh ⊕ H2(Ω) . In 
[1] it is demonstrated that the Nitsche-based approximation 
possesses a best-approximation property with respect to the 
�-norm, but that the error of the best approximation in this 
norm can still be arbitrarily large. In view of this and the 
fact that the equivalence between the �-norm in (4.1) and 
the H1(Ω)-norm can be arbitrarily weak, error bounds in the 
H1(Ω)-norm cannot be provided. Ref. [1] provides exam-
ples of computations where direct application of Nitsche’s 
method fails for unfitted problems and provides references 
in which nonphysical stress patterns on small cut elements 
are reported.

(4.1)
���u���2

𝛽
= ‖∇u‖2

Ω
+ ‖𝛽 1

2 u‖2
𝜕ΩD

+ ‖𝛽− 1

2 𝜕nu‖2𝜕ΩD

u ∈ Vh ⊕ H2(Ω)

4.2 � Remedies and Literature Overview

Multiple stability-enhancing techniques have been devel-
oped to overcome the aforementioned problem, all of 
which are applicable to higher-order discretizations. A list 
of these is presented below. Two techniques in particular 
are discussed in detail in the subsequent subsections, viz 
element aggregation in Sect. 4.3 and ghost-penalty stabi-
lization in Sect. 4.4. Essentially, these approaches provide 
control over the gradients on cut elements in terms of the 
gradients on interior elements, in a manner that is consist-
ent with the original problem. Consequently, extended 
coercivity holds with respect to H1(Ωh) (n.b on the entire 
active domain), and the bilinear form is coercive with a 
well-behaved Nitsche parameter 𝛽 ∼ h−1

T
(≲ h−1

TΩ
) . With ele-

ment aggregation this is achieved through a modification 
of the approximation space, while with the ghost penalty 
a consistent stiffness is added to the bilinear form. As a 
result, these techniques provide optimal approximation 
properties, and condition number estimates analogous to 
those for boundary-fitted finite element formulations. 
Therefore, both aspects of the small-cut-element problem 
are resolved simultaneously. A unified analysis of the two 
methods is presented in Sect. 4.5.

•	 By employing a different formulation to enforce 
boundary conditions, the stability problems caused by 
Nitsche’s method are circumvented. Such alternative 
methodologies to enforce boundary conditions are dis-
cussed in Sect. 2.2.2 (e.g., the nonsymmetric Nitsche 
method [142–144] or the shifted boundary method [89–
92]). For some applications, however, these approaches 
lead to other complications, such as loss of consistency, 
symmetry, or adjoint consistency.

•	 A fictitious domain stiffness is commonly employed with 
high-order discretizations in the finite cell method [2, 
74] (see [75, 106] for reviews). This approach is math-
ematically analyzed in [189]. With a fictitious domain 
stiffness, the volume integrals of the bilinear operator 
are extended into the fictitious domain multiplied by a 
small parameter (in practical applications this only holds 
for the fictitious parts of cut elements, i.e., Ωh ⧵Ω ). This 
provides a stiffness on the fictitious part of cut elements, 
providing some control over the approximate solution on 
these. This approach has been applied to many real-world 
applications, notable examples of which are implant-ver-
tebra models [21] and additively manufactured structures 
[103]. The fictitious domain stiffness is not consistent 
with the original problem, however. For this reason, a 
drawback of this approach is that it can be challenging (or 
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for certain applications impossible) to set the parameter 
low enough to keep the consistency error at an acceptable 
level, but high enough to obtain sufficient control over 
the fictitious parts of elements. Besides the stability, the 
fictitious domain stiffness also improves the condition-
ing, but generally not to a level that permits the applica-
tion of iterative solvers.

•	 A minimal stabilization procedure for Nitsche’s method 
is presented in [190], which is inspired by the technique 
developed for a Lagrange multiplier method in [191]. In 
this procedure, the elements are first classified as good 
(resp. bad) elements, i.e., elements with a sufficiently 
(resp. insufficiently) large overlap with the physical 
domain. Next, for each bad element, the normal deriva-
tive of the discrete function on the Dirichlet boundary 
that appears in the boundary integral of the bilinear form, 
is replaced by the normal derivative of an extension of 
the function on a nearby good element. This gives rise to 
a similar trace theorem as in boundary-fitted discretiza-
tions and, accordingly, the weak formulation is coercive 
with a Nitsche parameter that is inversely proportional 
to the (untrimmed) element size of the background grid 
such that optimal error estimates can be derived. This 
technique has mainly been applied to trimmed patches 
in isogeometric analysis, and can also be employed for 
coupling conditions on unfitted interfaces in overlapping 
multi-patch discretizations [192]. Additionally, in [193] 
it is shown that this methodology can be used to obtain 
inf-sup stable mixed formulations. It is to be noted that 
this approach does not provide control of the gradients 
in the (fictitious part of) cut elements themselves, and 
therefore only provides coercivity with respect to H1(Ω) , 
not extended coercivity with respect to H1(Ωh) . As such, 
this approach yields stability and provides a well-posed 
imposition of boundary conditions, but it does not solve 
conditioning problems.

•	 Recovery-based stabilization techniques [194, 195] 
are commonly applied in the Cartesian grid finite ele-
ment method (cgFEM, [57, 82]). In [194] a technique 
similar to the minimal stabilization procedure discussed 
above is presented, and [195] weakly constrains small 
cut elements with an L2-projection terms (over the entire 
background elements), similar to the ghost penalty with 
patch control discussed later in this section. These itera-
tive techniques do not employ extensions of the (current) 
uh and vh on nearby elements, however, but instead con-
sider smooth extensions from a previous iteration (hence, 
recovery-based), and Richardson iteration is applied to 
obtain the final result. As a benefit of this technique, 
[195] mentions that it does not require operators that 
are not generally available in (immersed) finite element 
codes. Furthermore, [194] and [195] establish the (mesh) 
convergence of the solution and the convergence of the 

Richardson iteration and [195] also establishes a bound 
on the condition number similar to that of boundary-
fitted finite element methods.

•	 A least squares stabilization term can be applied when 
the employed function space is (at least) C1-continuous. 
In [196] and [197] it is demonstrated that a stable and 
coercive formulation can also be achieved by applying 
a least squares finite element term in the vicinity of the 
Dirichlet boundary. Because in H2(Ω) the normal gra-
dient on the boundary can be controlled by volumet-
ric terms, coercivity is even achieved in the full space 
instead of only in the discrete space. A drawback of this 
approach is that it only applies to C1-continuous bases. 
The least squares stabilization does not repair the condi-
tioning, such that in [196] this approach is combined with 
the removal of basis functions with very small supports 
in the physical domain and in [197] it is combined with 
a fictitious domain stiffness.

4.3 � Aggregated Finite Element Methods

In this section, we introduce a methodology to solve both 
the stability and conditioning issues described in Sect. 2.2.3. 
The method is based on an aggregation framework proposed 
in [80] and is coined the aggregated finite element method 
(AgFEM). As the name points out, the method relies on an 
aggregation (also called agglomeration) of elements. This 
element aggregation is used to define a discrete extension 
operator from degrees of freedom on well-posed (interior) 
elements to ill-posed (cut) elements. The AgFEM space is 
the image of this operator. Thus, as indicated in Sect. 4.2, 
AgFEM solves the issues described above by modifying 
the finite element space, without altering or perturbing the 
bilinear form. We present this idea for (nodal or Lagrangian) 
C0-continuous finite element spaces. It can also be applied 
to discontinuous Galerkin methods, even though this case 
is trivial; discontinuous Galerkin schemes can readily be 
applied to the polytopal meshes obtained after aggregation. 
Similar methods have been described in [37, 83–85, 88, 153, 
198–202].

4.3.1 � Geometrical Construction

Let us recall from Sect. 2.1 the problem domain Ω ⊂ ℝ
d that 

is embedded in the ambient domain A ⊃ Ω . The mesh TA

h
 is 

a quasi-uniform and shape-regular discretization of A , Th is 
the set of all active elements T ∈ TA

h
 that intersect Ω , and the 

union of all active elements is defined as Ωh = ∪T∈Th
T ⊃ Ω . 

The set of cut elements that intersect the boundary �Ω of the 
problem domain is denoted as T cut

h
⊂ T

h
 and additionally 

we define the set of interior elements as T in

h
= T

h
⧵T cut

h
 , see 

Fig. 6a. As previously mentioned, immersed finite element 
formulations can lead to ill-conditioned discrete systems and 
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unbounded gradients on cut elements. The interior elements 
in T in

h
 do not play a role in these problems, but it is the cut 

elements in T cut

h
 that can lead to the so-called small-cut-

element problem.
The definition of finite element spaces that are robust to 

cut-element configurations makes use of an element aggre-
gation strategy. The idea is to aggregate cut elements to inte-
rior elements. An aggregate contains one interior element 
(the root element) and one or more cut elements. We do 
not make any assumption on the shape of aggregates. As a 
result of this finite element space definition, aggregation is 
only active on the boundary. Interior elements that are not 
in touch with cut elements are not affected. We represent 
the aggregated mesh with T ag

h
 . In Fig. 6b, cut elements have 

been aggregated to interior elements, creating aggregates. 
The root element is highlighted with a different color in each 
aggregate. The aggregation algorithm is straightforward and 
can be found, e.g., in [80]. The algorithm proposed in this 
reference is iterative. At each iteration, cut elements are 
aggregated to an interior element or to a previously aggre-
gated element (after the first iteration). The aggregation 
should minimize the aggregate size, since this will affect 
the final accuracy of the solution.

Remark 4.1  In this discussion, we considered for simplic-
ity that cut elements are ill-posed and must be aggregated 
to interior elements. However, this naive definition of ill-
posed elements is not a requirement of the method and more 
subtle definitions can be considered. For instance, one can 
define a threshold volume fraction �∗ ∈ [0, 1] (see (3.4)) and 
mark any element T

i
∈ T cut

h
 with �i ≤ �∗ as ill-posed. The 

naive case is recovered for �∗ = 1 and the standard Galerkin 
method with �∗ = 0 . One can verify that the condition num-
ber and stability bounds hold for this relaxed definition with 
constants that depend on �∗ . �∗ = 1 is an excellent choice 

as soon as one wants to have enough resolution to capture 
geometrical details, which is the situation in most cases. 
For under-resolved situations, e.g., for thin-walled structures 
in which the thickness scale t� is not captured by the back-
ground mesh, a more clever choice of �∗ , e.g., �∗ ∼ t�

h
 , is 

required. With a proper choice of �∗ , only elements small 
enough to affect the stability are aggregated, such that the 
effective mesh size at the boundary is not affected. Further-
more, the aggregate sizes can be locally reduced using adap-
tation to accurately capture complex geometrical features 
[203], which is discussed below in the Subsection Adaptive 
meshes. In practice, the choice of �∗ is a trade-off between 
accuracy (aggregate size) and well-posedness (condition 
number bound) of the resulting linear system. We note that 
the definition and implementation of AgFEM is independ-
ent of �∗ , since this parameter only affects the geometrical 
algorithm that aggregates elements.

4.3.2 � Discontinuous Spaces

Let us consider first the case of discontinuous Galerkin finite 
element spaces. We denote by V−

h
 a discontinuous Galerkin 

space of a given order. The main reason why standard finite 
element methods on unfitted meshes fail is that one has no 
control over ‖uh‖Ωh

 . Control over this quantity implies the 
stability of the method regardless of the cut location. Let us 
consider a discontinuous Galerkin space on top of Ωh (see 
Fig. 7a). The support of a shape function on a cut element 
T ∈ T cut

h
 is TΩ . This intersection depends on the cut loca-

tion, and its measure can be arbitrarily small. In the limit 
of vanishing measure, the value of the degree of freedom 
associated with this shape function does not affect the linear 
system. Thus, the problem is singular.

Given a mesh Th , we can define the discontinuous ele-
ment-wise spaces

Fig. 6   On the left, we show the 
active portion of a background 
mesh T

h
 , with interior elements 

in T in

h
 (yellow) and cut elements 

in T cut

h
 (light blue). On the 

right, we create aggregates (in 
gray) composed of one root ele-
ment (dark blue) and some cut 
elements. The curved black line 
represents the boundary �Ω

(a) Interior and cut elements (b) Aggregates and root elements
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depending on the local finite element space, namely poly-
nomials up to order p or the tensor product of univariate 
polynomials of order p. The discontinuous Galerkin space 
V−
h

 on the active mesh can either be P−
p
(Ωh) or Q−

p
(Ωh) . Other 

spaces, like serendipity finite elements, could readily be con-
sidered. The space in Fig. 7a corresponds to Q−

1
(Ωh).

Based on the previous discussion, it is straightforward to 
check that degrees of freedom on interior elements are not 
problematic. The corresponding shape function has support 
on a whole element. Only the degrees of freedom on cut 
elements are problematic. Discontinuous Galerkin methods 
are geometrically flexible, i.e., the functional space and the 
topology of the elements are not connected. Thus, we can 
simply define the aggregated discontinuous Galerkin space 
as P−

p
(T

ag

h
) or Q−

p
(T

ag

h
) . All these shape functions are poly-

nomials, and their support is at least one full interior ele-
ment. Thus, it can be checked that

Extended stability of gradients is obtained using the same 
argument. Gradients of functions in Vag,−

h
 are polynomials of 

degree p − 1 in each aggregate, and the norm on the whole 
aggregate can be bounded by the one on the root element, 
getting

P−
p
(Th) =

∏
T∈Th

Pp(T), Q−
p
(Th) =

∏
T∈Th

Qp(T)

(4.2)‖vh‖Ωh
≲ ‖vh‖Ω vh ∈ V

ag,−

h

These relations are also employed in the mathematical analy-
sis of stabilized methods in Sect. 4.5. The constants in the 
extended stability bounds (4.2) and (4.3) depend on the order 
of approximation, but are independent of the background 
mesh size h and the cut location. Thus, the small-cut-ele-
ment problem is solved when using discontinuous Galerkin 
methods on aggregated meshes. Similarly, cell merging strat-
egies in the finite volume setting have been proposed, e.g., in 
[204]. Its application to the discontinuous Galerkin method 
can be found in [86, 122].

The aggregation method preserves the order of accuracy 
if the aggregate size is proportional to the background mesh 
size. The ratio between the aggregate size and root element 
size is related to the geometry of the domain boundary (see 
[80] for more details) and can be improved with refinement 
(for a given definition of the domain boundary �Ω ). For 
a fixed mesh representation of the domain boundary (the 
standard situation), the assumption that the aggregate size is 
proportional to the background mesh size holds for h small 
enough.

4.3.3 � Constraining Discontinuous Spaces

It is straightforward to see that Vag,−

h
⊂ V−

h
 . Even though it 

is not really needed for the discontinuous Galerkin method, 
one can build Vag,−

h
 by constraining V−

h
 . The idea is to define 

(4.3)‖∇vh‖Ωh
≲ ‖∇vh‖Ω vh ∈ V

ag,−

h

(a) Discontinuous Galerkin constraints (b) Continuous Galerkin constraints

Fig. 7   On the left, we depict the degrees of freedom of a piecewise 
linear discontinuous Galerkin space Q−

1
(Ω

h
) . The nodes are deliber-

ately placed in the element interiors to make it evident that they do 
belong to the element. Red circles represent well-posed degrees of 
freedom and blue squares ill-posed ones. In this case, for each ill-
posed degree of freedom, its constraining degrees of freedom are the 
well-posed ones in the same aggregate using the expression in (4.4). 
On the right, we glue together degrees of freedom between elements 

to enforce C0 continuity. In order to define the constraints, we must 
provide the concept of the aggregate owner of ill-posed degrees of 
freedom. This is obvious for aggregate-interior nodes (there is only 
one option). For the ill-posed degrees of freedom on aggregate inter-
faces, lines point to the owner aggregate. With this ownership infor-
mation, one can now constrain the ill-posed degrees of freedom by 
the well-posed ones in the aggregate that owns them using the same 
expression (4.4) as above
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an extension operator Eag,−
h

∶ V
in,−

h
→ V

ag,−

h
 , with V in,−

h
 the 

restriction of V−
h

 to T in

h
 . In the discontinuous Galerkin case, 

this extension operator can be defined aggregate-wise. The 
idea is to extend the root-element shape functions to the 
whole aggregate. This is equivalent to constraining degrees 
of freedom on cut elements to the degrees of freedom on the 
respective root elements.

Let us recall Ciarlet’s definition of finite elements; see, 
e.g., [96]. For nodal finite element methods (continuous 
or discontinuous), one can define a set of points (so-called 
nodes) and an associated set of degrees of freedom, cor-
responding to pointwise evaluation at the nodes. Nodes are 
chosen such that the degrees of freedom uniquely define 
functions in V−

h
 and thus define a basis for its dual space. 

The dual basis of the degrees of freedom are the so-called 
shape functions. Thus, there is a correspondence between 
nodes, degrees of freedom and shape functions. We use 
the following notation: given a node �i , we represent its 
corresponding shape function and degree of freedom by �i 
and �i(⋅) , respectively. The duality between the degrees of 
freedom and the shape functions implies �i(�j) = �ij with 
�ij the Kronecker delta, and the relation between the nodes 
and the degrees of freedom in turn implies �i(�j) = �ij . By 
virtue of the dual relation between degrees of freedom and 
shape functions, the following correspondence holds for all 
v−
h
∈ V−

h
 : yi = �i(v

−
h
) if and only if v−

h
=
∑

i yi�i.
We can classify the degrees of freedom as well-posed 

(the ones of the root element) and  ill-posed (the ones on 
the cut elements). We denote the set of well-posed (resp., 
ill-posed) degrees of freedom by Owpd

h
 (resp., Oipd

h
 ). Next, 

we define a map Oipd→wpd

h
(⋅) that for an ill-posed degree of 

freedom returns the well-posed ones. For discontinuous 
Galerkin methods, this map is defined aggregate-wise. At 
each aggregate T ∈ T

ag

h
 , the ill-posed degrees of freedom 

(blue squares in each aggregate of Fig. 7a) are constrained 
by the values of its corresponding well-posed degrees of 
freedom (the ones in the corresponding root element, red 
circles in Fig. 7a). More specifically, an ill-posed degree of 
freedom �i(⋅) is constrained as

where the basis functions �j of well-posed degrees of free-
dom are evaluated outside of the elements on which these 
are defined in �i(�j) and �j(�i) . Equation (4.4) introduces 
constraints on ill-posed values, stating that the values on 
ill-posed nodes are not free but are determined from the 
well-posed ones. More specifically, the ill-posed value is 
equal to the nodal values on the root element multiplied by 

(4.4)

�i(⋅) =
∑

�j∈O
ipd→wpd

h
(�i)

�i(�j)�j(⋅)

=
∑

�j∈O
ipd→wpd

h
(�i)

�j(�i)�j(⋅)

the value of the corresponding shape function evaluated at 
the ill-posed node. Doing this, we are constraining the ill-
posed degrees of freedom to be the extension of the values in 
the interior. This extension applied to functions in V−

h
 defines 

E
ag,−

h
 , whose image is Vag,−

h
.

4.3.4 � Aggregation for Continuous Spaces

Now, we would like to generalize the extension-based defini-
tion of the aggregated discontinuous finite element space to 
C0 Lagrangian spaces. First, we discuss how the active and 
interior C0 spaces can be obtained from the discontinuous 
space by enforcing C0 continuity of piecewise polynomi-
als using a local-to-global map. We also discuss why this 
approach cannot be easily applied to the aggregated meshes. 
Instead, we introduce the concept of ownership of ill-posed 
degrees of freedom on aggregates, and define an extension 
operator from well-posed to ill-posed degrees of freedom 
that preserves C0 continuity.

We can readily define the C0 Lagrangian finite ele-
ment space as a subspace of the discontinuous space as 
Vh = V−

h
∩ C0(Ωh) , and its restriction to interior elements is 

represented with V in
h

 . In standard finite element methods, one 
can enforce C0 continuity by using the previously introduced 
one-to-one relation between nodes, degrees of freedom, and 
shape functions. A shape function is different from zero only 
on its corresponding node, and zero on all the other nodes, 
such that the degree of freedom is just the evaluation on its 
corresponding node. C0 continuity is enforced by the follow-
ing equivalence class: two degrees of freedom must have 
the same value (irrespective of the element) if their corre-
sponding nodes are in the same spatial point. Doing this, we 
glue together degrees of freedom from different elements. 
Figure 7b illustrates the result after gluing together the ele-
ment-wise degrees of freedom in Fig. 7a. This enforcement 
of continuity is amenable for implementation: one defines 
an element-wise matrix assembly and a local-to-global index 
map for degrees of freedom.

Unlike discontinuous Galerkin methods, this construction 
only holds for particular element-wise polynomial spaces 
and element topologies. First, it is not straightforward to 
implement such continuity in aggregated meshes. Second, 
it can destroy the approximation properties of Vag

h
 . Let us 

take a look at an ill-posed degree of freedom on the inter-
face between two aggregates (purple nodes in Fig. 7b). In 
a straightforward extension of the constraints in (4.4), such 
a degree of freedom would be constrained by the multiple 
aggregates that contain it. This, together with the enforce-
ment of C0-continuity, would couple the degrees of free-
dom between separate aggregates, and thereby could ruin 
approximation properties. In extreme cases, it can lead to 
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over-constrained systems. This locking phenomenon has 
been analyzed in detail in [81].

The aggregated finite element method in [80] was 
designed to solve this locking phenomenon and provide 
an accurate C0 Lagrangian finite element space on unfitted 
meshes that is easy to implement. The idea is to introduce 
the concept of ownership for ill-posed degrees of freedom. 
For each ill-posed global degree of freedom in Vag

h
 , one 

assigns one of the aggregates in T ag

h
 containing this degree 

of freedom as the owner. The choice of the owner is arbitrary 
and does not affect the main properties of the method. We 
can define a map Oipd→wpd

h
 using the fact that each aggre-

gate contains only one interior element. Given an ill-posed 
degree of freedom, its corresponding well-posed constrain-
ing degrees of freedom are those of the root element of the 
aggregate owner. We illustrate this construction in Fig. 7b. 
The purple elements are the ones that belong to more than 
one aggregate (the other ones are straightforward). For these 
degrees of freedom, the small rectangle points to the aggre-
gate owner of the degree of freedom. With this construction, 
we can now constrain global ill-posed degrees of freedom 
using the same constraints as for discontinuous Galerkin 
methods (4.4).

These constraints are local and define an extension 
E
ag

h
∶ V in

h
→ V

ag

h
 . In fact, the aggregated finite element space 

is the image of this extension operator. The method satis-
fies the desired approximation properties and the extended 
L2(Ωh) and H1(Ωh) stability in (4.2) and (4.3); see [80] for 
more details. We also refer to [205] for an alternative defini-
tion of the discrete extension operator that relies on inter-
polation for high-order polynomial bases and to [200, 201, 
206] for the extension of higher-order continuous (isogeo-
metric or spline-based) discretizations. The definition of a 
space-time discrete extension operator for moving domains 
and interfaces can be found in [207].

4.3.5 � Effectivity and Multigrid

One of the main motivations of aggregated finite element 
methods is to produce a well-posed discrete system. For 
second-order elliptic problems, one can prove the same 
condition number bounds as for boundary-fitted formula-
tions. More specifically, the condition number bound is of 
the order of h−2 ; see [80, Corollary 5.9]. Thus, the condition 
number is independent of the mesh location. As a result, 
one can apply standard direct or iterative solvers and pre-
conditioning techniques. However, the sparsity pattern of 
the matrix is different from standard finite elements. As in 
adaptive finite elements, the sparsity pattern is affected by 
the constraints.

The linear solver step in aggregated finite element 
methods has been studied in [208]. The authors propose a 

row-wise linear algebra distribution layout for the result-
ing matrix in [208, §3.6] and minimize the amount of inter-
processor communications. The authors use the parallel 
implementation of aggregated finite elements in ������ 
[209]. They apply a standard algebraic multigrid precon-
ditioner (called ���� ) from the ����� library [210] using a 
standard configuration. The results in [208, §4] show excel-
lent scalability and optimality properties for this standard 
solver applied to the aggregated finite element method. The 
aggregated results are very similar to the results obtained 
with boundary-fitted meshes. The largest problems that are 
considered exceed 109 elements on 16,464 processors. From 
these numerical experiments, it is observed that the addi-
tional coupling between boundary degrees of freedom does 
not affect a standard algebraic multigrid preconditioner.

4.3.6 � Adaptive Meshes

The size of the aggregates on the boundary can harm the 
accuracy of the method. One way to limit the size of aggre-
gates is via mesh refinement. However, local mesh refine-
ment in continuous finite elements is not straightforward. In 
the resulting mesh so-called hanging nodes appear, which 
must be constrained by regular nodes to keep C0 continuity. 
The nature of this constraint is analogous to the ones defined 
in (4.4) for aggregated finite elements.

The combination of mesh adaptivity and aggregation 
constraints is not straightforward. First, the definition of ill-
posed versus well-posed degrees of freedom is more com-
plex. A degree of freedom that only belongs to cut elements 
can be well-posed because it constrains well-posed hanging 
degrees of freedom. The right intertwining of these two sets 
of constraints has been analyzed in [203]. This work pro-
posed a two-step algorithm to construct the discrete exten-
sion operator that carefully mixes aggregation constraints 
of problematic degrees of freedom and standard hanging 
degree of freedom constraints. Following this approach, 
the aggregated finite element space is defined as a discrete 
extension with well-defined linear constraints.

4.3.7 � Implementation Aspects

The aggregation algorithm can readily be implemented in 
a finite element code that supports mesh adaptivity. First, 
local element matrices are computed as usual. Next, the con-
straints for the aggregated finite element method are direct 
constraints, i.e., constraints which are enforced in the local-
to-global assembly by expressing the ill-posed degrees of 
freedom in terms of well-posed ones to eliminate them from 
the system.

The distributed-memory implementation of the aggre-
gated finite element method has been considered in [208]. 
The proposed implementation starts with a standard 
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distributed implementation of the finite element method that 
relies on a sub-mesh partition (with gluing info, e.g., via 
one layer of neighbor elements). First, one must parallelize 
the aggregation algorithm. The parallel implementation of 
this step is straightforward; one needs to perform nearest 
neighbor communications at the end of each iteration of the 
aggregation algorithm to propagate information. The result 
is identical to the serial version (see [208, sect. 3.2]).

In general, the aggregation strategy is such that aggre-
gates can have support on multiple processors. Thus, con-
straints in (4.4) cannot be computed locally. To compute 
these constraints in a parallel environment, one requires 
information from the root element. The cut element to root 
element map (and its processor Id) is a by-product of the 
parallel aggregation step. This way, it is easy to define the 
information that each processor must receive from other pro-
cessors to compute constraints. However, the inverse map 
that provides the cut elements constrained by a given root 
element is not straightforward. This map is required to pre-
pare the data that needs to be sent to other processors. The 
parallel inverse path reconstruction algorithm in [208, §3.5] 
generates this information.

4.3.8 � Extension to Other Problems

The aggregated spaces can be used to discretize elliptic and 
parabolic problems (combined with some time-stepping 
scheme). These schemes have, for example, been applied to 
nonlinear solid mechanics in [211]. The extension to inter-
face problems is possible by defining independent aggre-
gated spaces on both sides of the interface [23]. In this work 
continuity of traces is weakly enforced (as Dirichlet data), 
which leads to robust schemes that can handle high-contrast 
problems.

The extension of aggregated finite elements to indefinite 
systems has been analyzed in [212]. We note that its applica-
tion to stabilized finite element formulations that transform 
the indefinite system into a definite one is straightforward 
[213]. The stability of indefinite problems relies on so-called 
inf-sup conditions. These conditions are stringent and are 
only valid for very specific i.e., finite element spaces. For 
instance, the velocity and pressure finite element spaces in 
the (Navier–)Stokes problem have to match to satisfy this 
condition. Aggregation on these spaces does not generally 
preserve inf-sup stability. The aggregated mixed finite ele-
ment method for the Stokes problem in [212] starts with 
the inf-sup stable pair Qp(T

in

h
) × P−

p−1
(T in

h
) , i.e., the velocity 

resides component-wise in Qp(T
in

h
) ∩ C0(T in

h
) and the pres-

sure is a discontinuous function in Pp−1(T
in

h
) . The extension 

defined above for continuous and discontinuous spaces leads 
to a pair that does not satisfy the inf-sup condition. Instead, 
a modified extension of the velocity components is proposed 

in [212], which relies on serendipity finite elements. In some 
specific situations, additional pressure jump stabilization 
terms must also be added.

Aggregation has also been applied to enable stable 
explicit time stepping, such as in, e.g., [154] for the wave 
equation.

4.4 � Ghost‑Penalty Stabilization

In this section, we present common techniques for the weak 
stabilization of immersed finite element methods, often 
referred to as the ghost penalty and generally associated with 
the Cut Finite Element Method (CutFEM) [76, 77, 79]. In 
the ghost-penalty approach, additional terms are added to 
the bilinear form which provide control over the solution on 
the elements that intersect the boundary, while the original 
approximation space Vh is unmodified. These terms are 
denoted by sh(vh,wh) and provide a contribution to the opera-
tor norm in the form of ‖vh‖2sh = sh(vh, vh) . The underlying 
idea is to control the variation of the approximation function 
across neighboring elements, such that the solution on small 
cut elements is controlled by the solution on interior ele-
ments. A standard way to achieve this is by controlling the 
jump in the (higher-order) normal derivatives across faces, 
by adding appropriately scaled stiffnesses to these jumps. 
Another approach is to add a volumetric penalization to the 
difference between a function itself and the extension of the 
function on a neighboring element. In the subsequent sec-
tions, both approaches are discussed.

4.4.1 � Face‑Based Stabilization

The most common stabilization term for cut elements is 
the face-based ghost penalty [76, 77], defined as

where �j are positive constants, F gh

h
 is the set of all interior 

faces that are shared by an element in T cut

h
 (see Fig. 8), (⋅, ⋅)F 

indicates the inner product over F, and

is the jump in the normal gradient across the face F. In this 
definition of the jump on face F, n1 and vh,1 , and n2 and vh,2 , 
correspond to the exterior unit normal and the function vh on 
the elements T1 and T2 that share face F, respectively. Note 
that, therefore, n1 = −n2 . With this penalty on the jumps in 
the normal derivatives between two neighboring elements, 
the norm of a function vh ∈ Vh on one of the elements can be 
controlled by the norm on the other. Accordingly, gradients 

(4.5)sh(wh, vh) =
∑

F∈F
gh

h

p∑
j=1

�jh
2j−1([[�j

n
wh]], [[�

j
n
vh]])F

(4.6)[[�nvh]] = �n1vh,1 + �n2vh,2
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on cut elements are controlled by gradients on full elements 
in the interior.

The parameters �j in the stabilization terms must be chosen 
in an appropriate way. With too small parameters, the effect is 
negligible, while with too large parameters, degrees of free-
dom can be constrained too strongly, potentially degenerating 
the accuracy of the approximation [214]. On Dirichlet bounda-
ries, the required value to provide coercivity of the bilinear 
form correlates inversely with the Nitsche parameter. On 
Neumann boundaries, coercivity of the bilinear form does not 
depend on the stabilization term. Nevertheless, stabilization 
can still be applied to the Neumann boundary in order to repair 
the conditioning problems discussed in Sect. 3.1, for which a 
scaling with h2j+1 instead of h2j−1 in (4.5) suffices [215].

To elaborate the ghost-penalty approach, let us for simplic-
ity consider the case of linear elements, i.e., p = 1 . It then 
holds that

To derive these estimates, we consider the element-wise 
restrictions vh,i = vh|Ti ( i ∈ {1, 2} ), both extended onto 
T1 ∪ T2 ; see Fig. 9. The second estimate in (4.7) follows from

with �ni indicating either of the normal derivatives. 
Here we first added and subtracted vh,2 and used the tri-
angle inequality. We then used the Taylor expansion 
vh,1 − vh,2 = (� − �F) ⋅ ∇(vh,1 − vh,2) at � with point �F ∈ F 
the projection of � along the normal direction, which holds 
since vh,1 − vh,2 = 0 on F by virtue of the continuity of vh . 
Additionally, we used the estimate ‖vh,2‖T1 ≲ ‖vh,2‖T2 which 
holds since vh,2 is polynomial. The first estimate follows in 
the same way, but is simpler since the gradients are piece-
wise constant, leading to an h scaling factor instead of the 
h3 factor.

Using the pairwise bounds given in  (4.7)—either 
directly or through a chain of neighboring elements—the 
degrees of freedom on cut elements in T cut

h
 can be con-

trolled by the degrees of freedom on interior elements T in

h
 

via the ghost penalty

To prove the first bound we proceed as

The second bound in (4.9) can be established similarly. 
Note that the constants in these estimates will depend on the 
lengths of the paths connecting cut elements to interior ele-
ments, which is related to the properties and the resolution 

(4.7)
‖∇vh‖2T1 ≲ ‖∇vh‖2T2 + h‖[[𝜕nvh]]‖2F,
‖vh‖2T1 ≲ ‖vh‖2T2 + h3‖[[𝜕nvh]]‖2F vh ∈ Vh

(4.8)

‖vh,1‖2T1 ≲ ‖vh,1 − vh,2‖2T1 + ‖vh,2‖2T1
≲ ‖(� − �F) ⋅ ∇(vh,1 − vh,2)‖2T1 + ‖vh,2‖2T2
≲ h3‖𝜕ni (vh,1 − vh,2)‖2F + ‖vh,2‖2T2
= h3‖[[𝜕nv]]‖2F + ‖vh,2‖2T2

(4.9)
‖∇vh‖2Ωh

≲ ‖∇vh‖2Ω + sh(vh, vh),

‖vh‖2Ωh
≲ ‖vh‖2Ω + h2sh(vh, vh) vh ∈ Vh

(4.10)

‖∇v
h
‖2
Ω

h

=
�
T∈T

h

‖∇v
h
‖2
T

=
�
T∈T in

h

‖∇v
h
‖2
T
+

�
T∈T cut

h

‖∇v
h
‖2
T

≲
�
T∈T in

h

‖∇v
h
‖2
T
+
� �

T∈T in

h

‖∇v
h
‖2
T
+ s

h
(v

h
, v

h
)
�

≲ ‖∇v
h
‖2
Ω
+ s

h
(v

h
, v

h
)

Fig. 8   Set of ghost-penalty faces F
h
gh marked in red. These faces are 

interior faces of the active mesh T
h
 (yellow and blue elements) and 

belong to at least one cut element in T
h
cut (blue elements)

T1 T2

vh,1 (= v)

vh,1 − vh,2

vh,2 (extension)
vh,2 (= v)

vh,1 (extension)

F

Fig. 9   Illustration of the extension and difference of v
h,1 and v

h,2 in 
(4.8)
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of the boundary, as well as the properties of the mesh. For 
smooth boundaries and locally quasi-uniform meshes with 
sufficiently small mesh sizes, one can show that the length 
of these paths is uniformly bounded.

Conversely, the stabilization term can be bounded in 
terms of the L2-norm of the gradient of the approximation 
on the active domain Ωh

which follows from

where we first employed the triangle inequality, then a trace 
inverse estimate to pass from the face F to the neighboring 
elements T1 and T2 [100], and finally another inverse estimate 
to arrive at a bound in terms of ∇vh [96]. Using the same 
inverse estimate it follows that

The estimates (4.9), (4.11), and (4.13) are central to the 
coercivity and continuity of the (stabilized) bilinear form 
with a (global) Nitsche parameter that scales inversely with 
the mesh size of the background grid. The estimates are 
also essential for the condition number bounds derived in 
Sect. 4.5. The principal notion of the ghost-penalty method 
is encapsulated in the bounds in (4.9), which convey that 
the ghost penalty provides control over the solution on 
the entire active domain including the fictitious part. The 
bounds (4.11) and (4.13) in turn impart that the ghost-pen-
alty term is suitably well behaved.

4.4.2 � Element‑ and Patch‑Based Stabilization Forms

An alternative to the face-based penalty is a penalty that 
is based on volumetric integrals. This is convenient for 
higher-order polynomials, since it avoids the computation 
of higher-order derivatives at element interfaces, which is 
a non-standard operation in many finite element codes. An 
overview and analysis of different types of such ghost-pen-
alty formulations is presented in [216].

A stabilization term based on element integrals can be 
defined according to any of the two forms

(4.11)sh(vh, vh) ≲ ‖∇vh‖Ωh
vh ∈ Vh

(4.12)

h2j−1‖[[𝜕j
n
vh]]‖2F ≲

2�
i=1

h2j−1‖𝜕j
n
vh,i‖2F

≲

2�
i=1

h2j−2‖∇jvh,i‖2Ti

≲

2�
i=1

‖∇vh,i‖2Ti = ‖∇vh‖2T1∪T2

(4.13)h2‖vh‖2sh ≲ h2‖∇vh‖2Ωh
≲ ‖vh‖2Ωh

where for each face F ∈ F
gh

h
 , Th(F) is the pair of elements 

that share F and

on T ∈ Th(F) = {T1, T2} with polynomials vh,1 and vh,2 
extended in the canonical way; see Fig. 9. Note that, opposed 
to the existing volumetric integrals in the weak formulation 
introduced in Sect. 2.1, the integrals in the penalization are 
taken over the entire background elements including the fic-
titious parts and are not restricted to the physical domain Ω . 
The form in (4.14) is presented in [217, 218] and is obtained 
by example formulation 2 in [216, §2.4] in case the element 
pairs are chosen based on the faces in F gh

h
.

We may also consider stabilization based on patches or 
macro elements, which is the form that was presented with 
the introduction of the ghost penalty in [79] and, for a certain 
choice of patches, is also considered in [218]. With this form 
of stabilization, each cut element is associated with a patch 
of neighboring elements that contains at least one element 
in the interior. We may then penalize the difference between 
the finite element function and a global polynomial on the 
patch. More precisely, let MT be a patch of elements contain-
ing T, then we can define

where Pp ∶ Vh|MT
→ Pp(MT ) is the L2-projector or the Ritz 

projector, respectively. Note that by strictly following this 
formulation, patches containing multiple cut elements will 
be contained in the summation multiple times. In practice, 
every patch that contains cut elements is included only once, 
or the boundary is simply covered by a set of non-overlap-
ping patches such as in [219].

Ghost-penalty stabilization can also be combined with the 
concept of aggregation to design weakly aggregated 
schemes, as proposed in [81, 216]. In these schemes,  
one makes use of the standard finite element space Vh  
on the active mesh, and instead of strongly imposing con-
straints via an extension operator of interior degrees of  
freedom, the difference between Vh and Vag

h
 is weakly  

penalized. Recall the discrete extension operator 
E
ag

h
∶ V in

h
→ V

ag

h
∈ Vh defined in Sect.  4.3 to define a 

(4.14)

s
elem
h,0

(w
h
, v

h
) =

∑
F∈F

gh

h

�0h
−2([w

h
], [v

h
])T

h
(F),

s
elem
h,1

(w
h
, v

h
) =

∑
F∈F

gh

h

�1([∇wh
], [∇v

h
])T

h
(F)

(4.15)[vh] = vh,1 − vh,2, [∇vh] = ∇vh,1 − ∇vh,2

(4.16)

s
patch

h,0
(wh, vh) =

∑
T∈T cut

h

�0h
−2(wh − Ppwh, vh − Ppvh)MT

,

s
patch

h,1
(wh, vh) =

∑
T∈T cut

h

�1(∇(wh − Ppwh),∇(vh − Ppvh))MT
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mapping Pag

h
∶ V

h
∋ v

h
↦ E

ag

h
(v

h
|T in

h

) ∈ V
ag

h
 . The difference 

vh − P
ag

h
vh can then be penalized similarly as in (4.16)

These terms can be computed element-wise (in a similar 
manner as described in Sect. 4.3) and are similar to local-
projection stabilization techniques; see, e.g., [220, 221]. We 
note that the (strong) aggregated finite element method of 
Sect. 4.3 is formally recovered in the limit �j → ∞ . Thus, 
the stabilization method is also accurate for large values of 
�j . This last statement does not hold for other forms of the 
ghost penalty, in which a large parameter can constrain too 
many degrees of freedom, which inhibits the accuracy [214] 
and is referred to as locking in [216]. Detailed analyses and 
experimentation with this type of stabilization can be found 
in [81] and [216].

Stabilization techniques based on volumetric integrals 
have also been developed for multimesh discretizations 
[222–224] and for problems on manifolds [78]. Addition-
ally, it is noteworthy that with the H1-product and with 
the projector Pp = 0 or Pag

h
= 0 , the fictitious domain stiff-

ness that is commonly employed in the finite cell method 
is recovered [225]. Fictitious domain stiffness requires 
𝜏1 ≪ 1 , however, as this stabilization term is not consist-
ent with the original problem. Therefore, with a fictitious 
domain stiffness, stability and conditioning need to be bal-
anced with consistency.

4.4.3 � Implementation Aspects

To implement any of the aforementioned stabilization 
forms, one must be able to find face neighbors of given 
elements and assemble contributions from pairs of ele-
ments sharing a face. For higher-order elements, the face-
based ghost penalty requires computation of higher-order 
derivatives. The element-based formulation may then be 
preferable. All the stabilization terms lead to additional 
coupling and, as a consequence, fill-in in the stiffness 
matrix [55, 226]. Systems stabilized by the ghost penalty 
have similar condition number bounds as boundary-fitted 
formulations, and therefore larger systems (i.e., finer grids) 
yield larger condition numbers and require more iterations 
in iterative solvers. This can be overcome by combining 
the ghost penalty with a multigrid solver; see the discus-
sion on this in Sect. 3.2.

(4.17)

s
ag

h
(wh, vh) =

∑
Th

�0h
−2
(
wh − P

ag

h
wh, vh − P

ag

h
vh
)
T
,

s
ag

h
(wh, vh) =

∑
Th

�1
(
∇(wh − P

ag

h
wh),∇(vh − P

ag

h
vh)

)
T

4.4.4 � Extension to Other Problems

The ghost penalty can also be applied to stabilize time-
dependent problems, for which generally the mass form 
needs to be stabilized as well. In that case the scaling is 
chosen in such a way that the stabilization terms scale with 
the mesh parameter in the same way as the mass matrix; see 
(4.13). Similar to Schwarz preconditioning and aggregation, 
the ghost penalty can also be applied to provide inf-sup sta-
ble discretization of mixed formulations such as that of the 
Stokes problem; see, e.g., [26, 32, 55, 227]. Furthermore, 
the ghost penalty can also be applied to stabilize discretiza-
tions of codimensional manifolds, such as partial differen-
tial equations posed on non-planar surfaces discretized with 
three-dimensional meshes; see, e.g., [78, 137, 228, 229].

4.5 � A Unified Analysis of Aggregation 
and Stabilization

In this section, we present a framework for the analysis 
of stable higher-order immersed finite element methods. 
We consider aggregated and ghost-penalty-stabilized tech-
niques at the same time, to identify the common parts and 
the main differences. It is recalled from Sect. 4.1 that when 
Nitsche’s method is applied without any stability-enhanc-
ing technique, the bilinear form is only coercive with an a 
priori unbounded Nitsche parameter � , depending on the 
cut-element thickness. In that case, most of the properties 
and estimates presented in this section do not apply, and 
error bounds cannot be provided. Remark 4.2 at the end of 
this section discusses which specific analyses still hold and 
which no longer hold without any form of stabilization.

4.5.1 � Methods and Formulations

We recall from (2.6) and (2.7) that the standard Nitsche 
finite element method takes the form

with bilinear form ah(⋅, ⋅) according to

We note that this is consistent with the strong formulation in 
(2.1), i.e., the exact solution u to the corresponding continu-
ous problem satisfies

(4.18)
{

find uh ∈ Vh such that:

ah(uh, vh) = lh(vh) ∀vh ∈ Vh

(4.19)
ah(wh, vh) = (∇wh,∇vh)Ω − (wh, �nvh)�ΩD

− (�nwh, vh)�ΩD
+ (�wh, vh)�ΩD

(4.20)ah(u, vh) = lh(vh) vh ∈ Vh
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provided that u is regular enough, for instance if u ∈ H2(Ω) . 
To accommodate both stabilized approaches presented in 
Sects. 4.3 and 4.4 in the same analysis, we consider the 
formulation

where the finite dimensional function space is defined by

and the bilinear form is defined by

with

that only requires � inversely proportional to the mesh size 
of the background grid. For the ghost-penalty method, the 
stabilization form is included in the definition of aΩ(⋅, ⋅) 
because the stabilization form sh(⋅, ⋅) is naturally paired with 
the bulk or volumetric term (∇⋅,∇⋅)Ω to enable bounds of the 
form (4.7) and (4.9).

4.5.2 � Properties

For the analysis, we start from the following intrinsic proper-
ties of aggregation methods and ghost-penalty formulations:

•	 There is a constant independent of the mesh size and the 
cut elements (hidden in the binary operator ≲ ) such that 

 where as before Ωh = ∪T∈Th
T  is the union of all the 

active elements, such that Ωh ⊃ Ω . See, respectively, 
(4.3) and (4.10) for these estimates in the context of 
aggregated and weakly stabilized methods. This property 
forms the basis of the effectiveness of weakly stabilized 
and aggregated methods. Essentially, it indicates that the 
solution on the extended domain Ωh , including the ficti-
tious parts outside Ω of active elements, is controlled 
by aΩ(⋅, ⋅) . Consequently, this precludes the very small 
eigenvalues on small cut elements discussed in Sect. 3.1, 
and it provides control of the normal gradients which 
enables bounding the Nitsche parameter � from above 

(4.21)
{

find uh ∈ Vh,★ such that:

ah,★(uh, vh) = lh(vh) ∀vh ∈ Vh,★

(4.22)Vh,★ =

{
V
ag

h
⊂ Vh aggregation

Vh weak stabilization

(4.23)
ah,★(wh, vh) =aΩ(wh, vh) − (wh, �nvh)�ΩD

− (�nwh, vh)�ΩD
+ (�wh, vh)�ΩD

(4.24)

aΩ(wh, vh)

=

{
(∇wh,∇vh)Ω aggregation

(∇wh,∇vh)Ω + sh(wh, vh) weak stabilization

(4.25)‖∇vh‖2Ωh
≲ aΩ(vh, vh) = ‖vh‖2aΩ vh ∈ Vh,★

as discussed in Sect. 4.1 and 4.2. With aggregation this 
is achieved by directly precluding basis functions with a 
very small support in the physical domain as discussed 
in Sect. 4.3, while with the ghost penalty such functions 
are given a contribution in aΩ(⋅, ⋅) by sh(⋅, ⋅) as discussed 
in Sect. 4.4.

•	 There is an interpolation operator �h ∶ Hs(Ω) → Vh,★ , 
s ≥ 2 , such that independent of how Ω intersects ele-
ments 

 We use a  continuous extension operator 
E ∶ v ∈ Hs(Ω) → Hs(ℝd) to extend v outside of Ω . For 
ghost-penalty-stabilized methods, the interpolation 
operator is generally constructed by first extending the 
function v outside of Ω and then applying a standard 
interpolation operator, for instance the Clément opera-
tor [230]. For the aggregated finite element space, a spe-
cific construction of the extension is used to establish the 
interpolation estimate [206, 231].

•	 The stabilization form sh(⋅, ⋅) satisfies 

 independently of how elements are cut. This is a consist-
ency assumption on the stabilization form sh(⋅, ⋅) , for-
mulated in such a way that the stabilization form only 
acts directly on functions in the finite element space, 
and acts on other functions v indirectly via their projec-
tion �hv . Note that the stabilization form sh(⋅, ⋅) may for 
instance involve higher-order derivatives, which are not 
generally well defined for the exact solution or the solu-
tion to a dual problem used in an error analysis. This 
complication is avoided by formulating the consistency 
condition (4.27) in terms of projections onto the finite 
element space.

	   To provide an example we verify this consistency 
assumption (4.27) for the face-based stabilization form 
(4.5) in the case of linear elements. Consider a face 
F ∈ Fh shared by the two elements T1 and T2 . Then for 
any linear function w ∈ P1(T1 ∪ T2) we have 

 where we used a trace inverse estimate to pass from the 
face to the elements [100]. Using the Bramble-Hilbert 
lemma (see, e.g., [232]) we can choose w in such a way 
that 

(4.26)
‖∇m(v − 𝜋hv)‖Ωh

≲ hs−m‖v‖Hs(Ω)

0 ≤ m ≤ s ≤ p + 1

(4.27)
‖𝜋hv‖2sh = sh(𝜋hv,𝜋hv) ≲ hs−1‖v‖Hs(Ω) 1 ≤ s ≤ p + 1

(4.28)

h‖[[𝜕n𝜋hv]]‖2F = h‖[[𝜕n(𝜋hv − w)]]‖2
F
≲

2�
i=1

‖∇(𝜋hv − w)‖2
Ti
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 where S(Ti) is the union of the set of elements in Th that 
share a node with T.

Element aggregation and ghost-penalty stabilization are con-
ceptually different in the manner in which they approach 
the conditions (4.25)–(4.27). Aggregation methods aim to 
satisfy condition (4.25) by restricting the approximation 
to a suitable subspace Vag

h
⊂ Vh . On the other hand, condi-

tion (4.26) demands optimal approximation properties of 
the (sequence of) aggregated approximation spaces Vag

h
 and, 

hence, the aggregated approximation spaces cannot be too 
small. Because the stabilization operator sh(⋅, ⋅) vanishes 
in aggregation methods, condition (4.27) is trivially satis-
fied. Ghost-penalty stabilization requires that the stabili-
zation term sh(⋅, ⋅) is strong enough to comply with condi-
tion (4.25). On the other hand, condition (4.27) insists that 
the stabilization cannot be too strong, as this will affect the 
solution. Because ghost-penalty stabilization imposes no 
auxiliary conditions on the approximation spaces, condi-
tion (4.26) is trivially satisfied.

4.5.3 � Coercivity and Continuity

We define the following energy norms

and note that

Note that these norms are different from the �-norm that 
was applied in [1] and presented in (4.1) in Sect. 4.1. First, 
||| ⋅ |||h,★ employs h−1 , which is uniformly bounded, instead 
of � , which is not bounded in case no stabilization technique 
is applied. Second, in case of ghost-penalty stabilization, 
||| ⋅ |||h,★ also includes a ghost-penalty contribution. Conse-
quently, whereas the �-norm admits a natural analysis of 
unstabilized forms, the |||vh|||h,★-norm naturally accompanies 
weakly stabilized and aggregated formulations.

Lemma 4.1  The form ah,★(⋅, ⋅) is continuous on Vh,★ ⊕ H2(Ω)

(4.29)

2�
i=1

‖∇(𝜋hv − w)‖2
Ti
≤

2�
i=1

‖∇(𝜋hv − v)‖2
Ti

+ ‖∇(v − w)‖2
Ti
≲

2�
i=1

h2‖v‖2
H2(S(Ti))

(4.30)���v���2
h
= ‖∇v‖2

Ω
+ ‖h− 1

2 v‖2
�ΩD

+ ‖h 1

2 �nv‖2�ΩD

(4.31)���vh���2h,★ = aΩ(vh, vh) + ‖h− 1

2 vh‖2�ΩD
+ ‖h 1

2 �nvh‖2�ΩD

(4.32)���vh���2h,★ =

� ���vh���2h aggregation

���vh���2h + ‖vh‖2sh weak stabilization

and, if � is chosen large enough, ah,★(⋅, ⋅) is coercive on 
Vh,★ independently of how elements are intersected by the 
boundary

Proof  Under the notion that with aggregation or weak sta-
bilization 𝛽 ≲ h−1 , the continuity follows directly from the 
Cauchy-Schwarz inequality together with the observation 
that �nv ∈ L2(�ΩD) for v ∈ Vh,★ ⊕ H2(Ω) and therefore 
‖�nv‖�ΩD

 is well defined. For the coercivity we use the ele-
ment-wise trace inverse inequality [100] (note that the right 
hand side considers the full background element T and not 
only the intersection with Ω)

and (4.25) to conclude that independent of how the elements 
are cut

where T cut

h
 is the set of elements that intersect the boundary. 

Next, for any 𝛿 > 0 , we have

which leads to

where C is the hidden constant between the first and final 
expressions in  (4.36) that does not depend on how ele-
ments intersect Ω . Taking � small enough to guarantee that 
𝛿C ≲ 1∕2 and � large enough such that 𝛽 − (h𝛿)−1 > h−1∕2 
on each element in T cut

h
 , the coercivity follows. 	�  ◻

Assuming that lh(vh) is continuous, i.e., lh(vh) ≲ |||vh|||h,★ 
for vh ∈ Vh,★ , we may now apply the Lax–Milgram lemma 
to show that there is a unique and stable solution uh ∈ Vh,★ 
to (4.21).

(4.33)
ah,★(w, v) ≤ |||w|||h,★|||v|||h,★ w, v ∈ Vh,★ ⊕ H2(Ω)

(4.34)|||vh|||2h,★ ≲ ah,★(vh, vh) vh ∈ Vh,★

(4.35)h‖𝜕nv‖2T∩𝜕ΩD
≲ ‖∇v‖2

T
v ∈ Pp(T)

(4.36)
‖h 1

2 𝜕
n
v
h
‖2
𝜕Ω

D

≲
�

T∈T cut

h

‖∇v
h
‖2
T
≲

�
T∈T

h

‖∇v
h
‖2
T

≲ ‖∇v
h
‖2
Ω

h

≲ ‖v
h
‖2
aΩ

v
h
∈ V

h,★

(4.37)
2(�nv, v)�ΩD

≤ 2‖�nv‖�ΩD
‖v‖�ΩD

≤ ‖(h�) 1

2 �nv‖2�ΩD
+ ‖(h�)− 1

2 v‖2
�ΩD

(4.38)

ah,★(vh, vh) = ‖vh‖2aΩ − 2(�nvh, vh)�ΩD
+ ‖� 1

2 vh‖2�ΩD

≥ ‖vh‖2aΩ − ‖(h�) 1

2 �nvh‖2�ΩD

− ‖(h�)− 1

2 vh‖2�ΩD
+ ‖� 1

2 v‖2
�ΩD

≥ (1 − �C)‖vh‖2aΩ + ‖(� − (h�)−1)
1

2 vh‖2�ΩD

vh ∈ Vh,★
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4.5.4 � Error Estimates

Conditions  (4.25)–(4.27) ensure that the corresponding 
immersed finite-element approximation according to (4.18) 
has optimal approximation properties in the energy norm.

Theorem 4.1  Consider the immersed finite-element approxi-
mation (4.18). Assume that conditions (4.25)–(4.27) hold. 
The approximate solution uh satisfies the energy-norm error 
estimate independently of how elements are cut

Proof  We start by splitting the error in two parts using the 
interpolation operator

We first consider the first term and show that

To establish (4.41), we note that by virtue of a standard trace 
inequality (see, e.g., [232], note that again the full back-
ground element T is considered)

it holds that

for v ∈ Vh,★ + H2(Ω) . Setting v = u − �hu and using (4.26), 
we obtain (4.41). Equation (4.43) applies the definition of 
||| ⋅ |||2

h
 given in (4.30).

Considering the second term in (4.40), we note that the 
definition of ||| ⋅ |||h,★ and the coercivity property (4.34) imply

In the case of the aggregation method, we have 
ah,★(⋅, ⋅) = ah(⋅, ⋅) and ||| ⋅ |||h,★ = ||| ⋅ |||h and it immediately 
follows that independent of how elements intersect Ω

(4.39)���u − uh���h ≲ hp‖u‖Hp+1(Ω)

(4.40)|||u − uh|||h ≲ |||u − 𝜋hu|||h + |||𝜋hu − uh|||h

(4.41)���u − 𝜋hu���h ≲ hp‖u‖Hp+1(Ω)

(4.42)‖v‖2
T∩𝜕ΩD

≲ h−1‖v‖2
T
+ h‖∇v‖2

T
v ∈ H1(T)

(4.43)
���v���2

h
= ‖∇v‖2

Ω
+ ‖h− 1

2 v‖2
𝜕ΩD

+ ‖h 1

2 𝜕nv‖2𝜕ΩD

≲ ‖∇v‖2
Ωh

+ ‖h−1v‖2
Ωh

+ ‖h∇2v‖2
Ωh

(4.44)

|||𝜋hu − uh|||h ≲ |||𝜋hu − uh|||h,★
≲ sup

wh∈Vh,★⧵{0}

ah,★(𝜋hu − uh,wh)

|||wh|||h,★

(4.45)

ah,★(𝜋hu − uh,wh) = ah(𝜋hu − uh,wh)

= ah(𝜋hu,wh) − lh(wh)

= ah(𝜋hu − u,wh)

≲ ���𝜋hu − u���h���wh���h
≲ hp‖u‖Hp+1(Ω)���wh���h

where we used, consecutively, the consistency relation 
(4.20) to replace lh(wh) by ah(u,wh) , continuity of ah accord-
ing to (4.33), and the interpolation error estimate (4.41). In 
the case of ghost-penalty stabilization, it holds that inde-
pendent of how elements are cut

where we used the interpolation error estimate (4.41) and 
the weak consistency condition  (4.27) on sh(⋅, ⋅) . From 
(4.44)–(4.46) it follows that the second term in (4.40) is 
also bounded in accordance with (4.39). 	�  ◻

4.5.5 � Condition Number Estimate

Under certain (non-restrictive) conditions, both aggrega-
tion and ghost-penalty stabilization engender stiffness 
matrices that exhibit similar condition numbers as conven-
tional boundary-fitted finite element methods. To analyze 
the condition numbers corresponding to both methods, we 
consider the basis {�i}

N
i=1

 in Vh,★ , so that any vh ∈ Vh,★ can 
be expanded as

where y ∈ ℝ
N is the coefficient vector. It is to be noted that 

with ghost-penalty stabilization the basis Vh,★ = Vh is a 
standard nodal basis, while with aggregation Vh,★ = V

ag

h
 is 

the basis that is modified at the boundary in such a way that 
the support of each basis function has a sufficiently large 
intersection with Ω , more precisely |supp(�i) ∩ Ω| ∼ hd . The 
stiffness matrix A ∈ ℝ

N×N is defined as

and for the considered symmetric bilinear forms, the condi-
tion number of the stiffness matrix A corresponds to

where �max and �min are the maximum and minimum eigen-
values of A , respectively. To estimate the condition num-
ber we start from the following basic bounds, which hold 
by construction for both aggregated and weakly stabilized 
methods:

(4.46)

ah,★(𝜋hu − uh,wh) = ah,★(𝜋hu,wh) − lh(wh)

= ah(𝜋hu,wh) − lh(wh) + sh(𝜋hu,wh)

= ah(𝜋hu − u,wh) + sh(𝜋hu,wh)

≲ ���𝜋hu − u���h���wh���h + ‖𝜋hu‖sh‖wh‖sh
≲
�
���𝜋hu − u���2

h
+ ‖𝜋hu‖2sh

�1∕2���wh���h,★
≲ hp‖u‖Hp+1(Ω)���wh���h,★

(4.47)vh =

N∑
i=1

yi�i

(4.48)zTAy = ah,★(wh, vh) wh, vh ∈ Vh,★

(4.49)�(A) =
�max

�min
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•	 There is a constant (hidden in the binary relation ≲ ) such 
that independent of how elements are intersected by the 
boundary 

 Both for weakly stabilized and aggregated methods, this 
bound follows from standard inverse inequalities; see 
(4.11) for the inverse estimate of the ghost-penalty form.

•	 There is a (hidden) constant independent of how elements 
are cut such that 

 This is a Poincaré inequality, requiring aggregation of 
the approximation space or ghost-penalty stabilization 
of the bilinear form to gain control on the approximate 
solution outside Ω.

•	 There are constants such that the following equivalence 
holds: 

 For weakly stabilized methods we have Vh,★ = Vh and 
this is a standard estimate that follows from the quasi-
uniformity of the mesh and the sufficient linear independ-
ence of the basis functions. For the aggregated finite ele-
ment space Vh,★ = V

ag

h
 , this estimate holds by virtue of 

the construction of the extension operator.

Theorem  4.2  Consider the stiffness matrix in  (4.48). 
Assume that the bilinear form ah,★(⋅, ⋅) is coercive accord-
ing to (4.34) and that conditions (4.50)–(4.52) hold. The 
condition number �(A) of the stiffness matrix satisfies the 
following bound

independently of how elements intersect Ω.

Proof  To estimate the condition number according to (4.49), 
we use the following Rayleigh quotient characterization of 
the eigenvalues to bound the maximum (resp. minimum) 
eigenvalue from above (resp. below):

We bound the Rayleigh quotient from above as follows

where we used, consecutively, the definition (4.48) of the 
stiffness matrix, the equivalence (4.52), and continuity 

(4.50)���vh���h,★ ≲ h−1‖vh‖Ωh
vh ∈ Vh,★

(4.51)‖vh‖Ωh
≲ ���vh���h,★ vh ∈ Vh,★

(4.52)hd‖y‖2
2
∼ ‖vh‖2Ωh

vh ∈ Vh,★

(4.53)𝜅(A) ≲ h−2

(4.54)�max = max
y∈ℝN⧵{0}

yTAy

‖y‖2
2

, �min = min
y∈ℝN⧵{0}

yTAy

‖y‖2
2

(4.55)

yTAy

‖y‖2
2

∼
ah,★(vh, vh)

h−d‖vh‖2Ωh

= hd
ah,★(vh, vh)

���vh���2h,★
���vh���2h,★
‖vh‖2Ωh

≲ hd−2

of ah,★(⋅, ⋅) according to (4.33) and the inverse inequality 
(4.50). Conversely, to bound the quotient from below, we 
infer from the equivalence relation (4.52), coercivity condi-
tion (4.34), and the Poincaré inequality (4.51) that

Combining the upper and lower bounds, we obtain the 
desired estimate

	�  ◻

Remark 4.2  Comparison to Nitsche’s method without sta-
bilization We here briefly discuss which aspects of Sect. 4.5 
do, and do not, apply when Nitsche’s method is applied in 
an immersed setting without an additional stability-enhanc-
ing technique. First and foremost, the intrinsic property 
(4.25) will not be satisfied. Consequently, the normal gradi-
ents on the boundary are not sufficiently controlled by the 
gradients in the bulk, such that coercivity only holds with 
locally very large (i.e., a priori unbounded) values for the 
Nitsche parameter � . Nevertheless, with the Nitsche param-
eter large enough, in the �-norm both (4.33) and (4.34) hold 
(i.e., respectively continuity and coercivity), and only the 
continuous dependence on the data in the Lax–Milgram 
lemma can formally not be verified as the right-hand-side 
operator lh(⋅) is not bounded in the �-norm such that |||uh|||� 
cannot be a priori bounded. The error estimate provided in 
(4.39) does not hold for unstabilized formulations in combi-
nation with the �-norm, as 𝛽 ∼ h−1

TΩ
≳ h−1 such that (4.43), 

and consequently (4.41), do not apply. Note that (4.41) is 
also employed in the proof of the bound on the second part 
of the right-hand-side of (4.40). As discussed in Sect. 4.1, 
this conclusion is also obtained in [1], which shows that a 
best approximation property in the �-norm can be demon-
strated following Céa’s lemma, but that the problem lies in 
the error estimates because a bound on the error of the best 
approximation in the �-norm cannot be provided. As already 
demonstrated in Sect. 3.1, condition number bounds cannot 
be provided and tailored preconditioning is required. Related 
to the analysis presented in this section, both (4.50) and 
(4.51) are contingent on ghost-penalty stabilization or aggre-
gation. For (4.50) the bound cannot be provided as there is 
no a priori upper bound on � . Nevertheless, this lack of an 
upper bound to the eigenvalues is generally not the cause of 
the conditioning problems of these methods, and this type 
of large eigenvalues only occurs on highly irregularly shaped 
cut elements. The main problem with the conditioning is that 
without additional stabilization, (4.51) does not hold, and as 

(4.56)
yTAy

‖y‖2
2

≳
���vh���2h,★
h−d‖vh‖2Ωh

≳ hd

(4.57)𝜅 =
𝜆max

𝜆min

≲
hd−2

hd
≲ h−2
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demonstrated in Sect. 3.1 it is this lack of a lower bound to 
the eigenvalues that generally causes the ill-conditioning of 
unstabilized immersed methods.

5 � Discussion and Conclusion

In this review, we considered the problems resulting from 
small cut elements in immersed finite element methods, as 
well as the solutions that have been developed to counter 
these problems. This section assesses the current state of the 
field and presents a discussion about future research direc-
tions. Similarities and differences between the different tech-
niques that are discussed in this manuscript are treated in the 
respective sections, and we do not provide a qualitative com-
parison here. This is because, first, the presented techniques 
pursue different goals related to the different problems on 
small cut elements, i.e., stability and conditioning. Second, 
the approaches are not mutually exclusive and combinations 
can be made. In Sect. 4 the combination of aggregation and 
ghost-penalty stabilization is already discussed, and simi-
larly it is possible to combine it with, e.g., the minimal sta-
bilization procedure, which fixes the stability but not the 
conditioning, with a preconditioning approach.

The field of immersed finite element methods has sub-
stantially grown and developed over the past decade. The 
employed formulations have matured, and are currently 
based on rigorous theoretical and mathematical founda-
tions. Furthermore, efficient parallel implementations have 
been developed that enable the application to large prob-
lems into the billions of degrees of freedom. Certain aspects 
are still challenging, however, which particularly manifest 
in the application to real-world problems. These challeng-
ing aspects, and the corresponding unresolved questions, 
form the basis of future research directions that we believe 
are important for the further advancement of the field of 
immersed finite element methods. In this section we dis-
cuss these open research questions in a general sense, and 
indicate it if these are specifically related to one of the tech-
niques that are discussed in this manuscript.

While nearly all publications on immersed methods 
provide qualitative arguments to compare immersed and 
boundary-fitted discretizations (such as in the first para-
graph of the introduction of this manuscript, a detailed 
discussion is included in [233]), quantitative comparisons 
are scarce. This is largely caused by the difficulty of such a 
comparison, which requires the assessment of aspects that 
are difficult to correlate such as level of automation, com-
putational cost, parallelizability, accuracy, and robustness. 
Furthermore, comparisons are heavily test-case specific, par-
ticularly since the cost and the accuracy of boundary-fitted 
methods strongly depend on the complexity and quality of 
mesh-generation, and additionally both approaches are gen-
erally not (equally well) implemented in a single code. Most 

quantitative comparisons only compare the accuracy versus 
the number of degrees of freedom in benchmark computa-
tions, such as [11, 106, 234] and the benchmark treated in 
both [55, 226], and do not show large differences. A compre-
hensive, unbiased, and rigorous study to quantitatively com-
pare these techniques on all relevant aspects would therefore 
be very welcome to the field, where it should nevertheless 
be noted that such a study will never be conclusive since 
contributions continue to be made.

An aspect that requires further consideration to advance 
the field of immersed finite element methods, is the detec-
tion of small features in the geometry or the solution. In 
boundary-fitted discretizations, the mesh size is commonly 
connected to the resolution of geometrical features, and 
defeaturing may be required to simplify the meshing pro-
cedure [235]. The decoupling of the geometry description 
from the finite element mesh provides immersed formula-
tions with flexibility in this regard, and makes the consid-
eration of adaptive discretizations natural. It is notable that 
grid refinements in the vicinity of domain boundaries are 
commonly considered in the hp-adaptive finite cell method 
[21, 106, 236, 237]. Such refinements are not required along 
all boundaries, but mainly in regions where small solution 
features such as large gradients are expected. For efficiency 
purposes, we therefore consider the further advancement 
of error estimators and error-estimation-based adaptivity 
schemes tailored to immersed formulations as presented 
in [238, 239] a desired development. One complication in 
regard of a posteriori error estimates is that the bilinear form 
is only coercive on discrete spaces, and that the dependence 
of the bilinear form on the discretization (both on the mesh 
size and on the order) complicates saturation assumptions. 
Besides the accuracy considerations related to enriched 
approximation spaces along small geometrical features, 
stabilized methods also require a certain level of geom-
etry resolution, which makes local adaptive schemes well 
suited for the application of these techniques to problems 
on (scan-based) porous domains, as the refinements reduce 
the ratio of elements that are cut. Since element aggregation 
strongly ties degrees of freedom on badly cut elements to 
well posed degrees of freedom, local refinement procedures 
can be beneficial in cases where a large portion (or in certain 
regions even the majority) of the active mesh consists of 
badly cut elements. This is similar for ghost-penalty stabi-
lization terms on domains with (relative to the mesh) thin 
structures, which can potentially make the domain artifi-
cially stiff in such cases. Note that in these cases the choice 
of the parameters �∗ (with aggregation; see Sect. 4.3) and 
� (with ghost-penalty stabilization; see Sect. 4.4) is par-
ticularly critical, and that in many cases problems can be 
avoided by a adequate parameter choice. Nevertheless, the 
accurate approximation of problems with very thin features 
in an unfitted setting remains a difficult problem for any 
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method, and deserves further attention. Schwarz precondi-
tioners are not affected by the matter of mesh resolution, but 
it should be noted that this only pertains to the solving of 
the linear system. With a natural boundary condition on the 
unfitted boundary and a preconditioner to resolve the con-
ditioning problems, a relatively low level of mesh resolve-
ment can therefore lead to reasonable solutions. It should be 
mentioned that this can still result in artificial couplings as 
described in e.g., [51, 172], however. With Nitsche’s method 
to enforce essential boundary conditions on the unfitted 
boundary, such as with flow problems in porous media, the 
application of a preconditioner without an additional stabi-
lization technique can lead to inaccurate approximations, as 
described in Sect. 4.

While this manuscript focuses on single-field prob-
lems, mixed formulations, in particular flow problems, are 
an important application area of immersed finite element 
methods. The techniques presented in this manuscript are 
all applicable to such problems, and can retain or precondi-
tion inf-sup stable formulations (see, e.g., [212] for aggrega-
tion, [26, 240] for ghost penalty, and [64] for precondition-
ing). An unresolved topic is the application of (pointwise) 
divergence-conforming or geometry-preserving discretiza-
tions for incompressible problems. Compatible pairs of 
approximation spaces that result in pointwise divergence-
free approximations for boundary-fitted discretizations, 
generally lose this property in an unfitted setting. Further-
more, stabilization techniques complicate the formulation 
of pointwise divergence-free methods. Ghost-penalty terms 
interfere with the enforcement of incompressibility in the 
bilinear form, and it has not been thoroughly investigated 
how the existing discrete aggregation and extension opera-
tors affect the compatibility of structure-preserving pairs 
of approximation spaces. Besides these comments about 
H(div)-conforming discretizations for the conservation of 
geometry, similar considerations can be made about H(curl)-
conforming discretizations when solving the Maxwell equa-
tions in electromagnetism.

An aspect that relates to both of the previous topics of 
mesh adaptivity and flow problems is the consideration of 
anisotropic grid refinements. To accurately capture boundary 
layers at a reasonable computational cost, boundary layer 
meshes are commonly anisotropic with a much finer resolu-
tion normal to the boundary. While the aspect of boundary 
layers in immersed methods has already been considered in 
multiple studies (see, e.g., [28, 241]), present understanding 
of this aspect is incomplete, and this is a topic that requires 
further investigation.

While only briefly considered in Sect. 2.2.3, a topic that 
is strongly related to small cut elements is explicit time inte-
gration for problems in dynamics. This is particularly inter-
esting for crash simulations, as such problems are commonly 
solved by explicit time steppers [159]. Although tools exist 

that result in stable time steps that are not affected by the 
cut elements (i.e., element aggregation, ghost penalty terms 
in the mass matrix, or lumping of the mass matrix [154, 
158, 159]), the research on this topic is not exhaustive. In 
particular, a comprehensive analysis of stable time-step sizes 
with different choices for the mass and stiffness forms (i.e., 
boundary condition enforcement technique, ghost-penalty 
stabilization of both forms, lumping of the mass matrix, etc.) 
does, to the authors’ knowledge, not yet exist.

Another open question deals with the choice, or the opti-
mization, of parameters in the presented approaches. This 
does not only concern, e.g., the parameters �∗ and � that are 
explicitly contained in element aggregation and the ghost 
penalty, but also hidden parameters (or choices) in the setup 
such as the choice of the index blocks with Schwarz precon-
ditioning. While these parameters generally do not affect the 
asymptotic behavior, well-chosen (or, conversely, poorly-
chosen) parameters can significantly affect the performance 
pre-asymptotically. We therefore consider an optimal 
choice of (hidden) parameters an important topic for future 
research. This specifically applies to the dependence of this 
optimality on the basis-function type and the discretization 
order and, in particular for discretizations with local refine-
ments or local order elevations, to the option of choosing 
parameters locally or element-wise (similar to the Nitsche 
parameter without stabilization).

Over the past years, many well-developed, well-docu-
mented, and user-friendly open source codes have become 
available that aid the application of immersed finite element 
methods, a comprehensive list of which is beyond the scope 
of this work. These toolboxes support all facets of immersed 
finite element computations, such as pre-processing steps 
(in particular integration and the application of boundary 
conditions), the solution process itself, and also post-pro-
cessing, where often a subtriangulation is employed like this 
is also done for higher-order boundary-fitted finite elements. 
Something that is not yet available is a graphical user inter-
face that makes immersed finite element methods accessi-
ble also to non-expert users. Besides the developments in 
open source codes, also commercial software has adopted 
(aspects of) immersed methods. To provide some examples: 
in Ansys Fluent the Immersed Boundary Method (IBM) is 
available [66, 242]; Ansys LS-DYNA facilitates the appli-
cation of trimmed isogeometric analysis in both shell and 
solid models for static and dynamic analyses [243, 244]; in 
Abaqus it is possible to (partially) include and exclude ele-
ments from a computation with element progressive activa-
tion [245, 246], which is mainly intended for the simulation 
of additive manufacturing; and the platform Hyperganic 
[247] employs immersed finite element techniques to per-
form simulations. The implementation of the stabilization 
methods discussed in this work can require tools that are 
not generally available in existing software and codes. For 
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instance, face-based ghost-penalty stabilization requires the 
computation of jumps in normal gradients up to the order 
of approximation. For quadratic and higher-order discretiza-
tions, this functionality is generally not available, even for 
software frameworks that include the possibility to perform 
face loops and compute jumps for standard Discontinuous 
Galerkin (DG) formulations. The implementation of aggre-
gation or patch-based ghost-penalty stabilization requires 
the computation of aggregate-wise terms. These terms can 
be implemented using standard element-wise terms if the 
finite element software provides functionality to enforce 
linear constraints. Many codes already provide this func-
tionality as this is essential for local grid refinements and 
periodic boundary conditions (e.g., ����.�� [248], ������ 
[249], ������ [250], ������ [209], ������ [251], or ���� 
[252]). While (geometric) multigrid routines are intrusive to 
the finite element software, the implementation of tailored 
Schwarz preconditioners is exceptionally non-intrusive and 
only requires the matrix itself and the basis function connec-
tivity. Furthermore, as additive Schwarz preconditioning is 
a well-established concept also in boundary-fitted finite ele-
ment methods, these preconditioners are available in many 
codes. The construction of the index blocks is not generally 
the same in existing software, however, and it should be 
noted that the effectivity for immersed methods relies on the 
specific construction of these blocks. Additionally, advanced 
procedures in which e.g., index blocks are only devised for 
basis functions with support on cut elements, require the 
availability of this information or a routine to extract it.

By virtue of the stabilization, aggregation, and precon-
ditioning techniques as discussed in this review, immersed 
finite element methods have developed into reliable and 
versatile computational analysis instruments. In our assess-
ment, the potential of immersed methods and, in particu-
lar, their ability to provide new simulation workflows with 
minimal user intervention, has not been fully exploited yet. 
Another recommendation therefore pertains to the explora-
tion of immersed methods in new application fields, such as 
hyperbolic systems, diffuse interface models, poro-elasticity, 
computational aeroacoustics, and phase field fracture.
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