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ABSTRACT
Introducing Chirpy, a hardware module designed for swarm robots

that enables them to locate each other and communicate through

audio. With the help of its deep learning module (AudioLocNet),

Chirpy is capable of performing localization in challenging environ-

ments, such as those with non-line-of-sight and reverb. To support

concurrent transmission, Chirpy uses orthogonal audio chirps and

has an audio message frame design that balances localization ac-

curacy and communication speed. As a result, a swarm of robots

equipped with Chirpies can on-the-fly construct a path (or a po-

tential field) to a location of interest without the need for a map,

making them ideal for tasks such as search and rescue missions.

Our experiments show that Chirpy can decode messages from four

concurrent transmissions with a Bit Error Rate (BER) of 𝐵𝐸𝑅 ≈ 2%

at a distance of 250 cm, and it can communicate at Signal-to-Noise

Ratios (SNRs) as low as -32 dB while maintaining ≈ 0BER. Fur-

thermore, AudioLocNet demonstrates high accuracy in classifying

the location of a transmitter, even in adverse conditions such as

non-line-of-sight and reverberant environments.
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1 INTRODUCTION
The use of audio for inter-swarm-robots communication and lo-

calization has several advantages due to the local communication

range of audio, its ability to bend around obstacles, and its atten-

uation by dense materials like walls. These characteristics enable

the development of an efficient search and retrieval swarm robotic
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Figure 1: A swarm of simple robots find an object of interest
and construct an audio-based potential field to guide a spe-
cialized robot to bring the object back.

system, amongst other applications. A swarm of robots with micro-

phones and speakers can form a “vector field” that spans connected
paths toward a location of interest (Figure 1). Such a guidance mech-

anism can lead a specialized robot (or a person) to retrieve an object

of interest, for example. Let us consider the example presented

in Figure 1 to better understand the benefits of using audio as a

pathfinder and guidance system. As depicted, robot_0 finds an

object of interest and sends a chirp to other robots to communicate

that. Because audio does not penetrate walls easily, robot_9 does
not hear the chirp but robot_1 does. This is desirable because the

direction of arrival (DOA) of a sound signal points to its source

through an open path (the red arrows in Figure 1 represent DOAs).

robot_1 relays the message to other robots. robot_2 hears it but
the walls block the audio message from reaching robot_8 and

robot_9. By keep relaying the message, it will eventually reach the

specialized robot at the start location. The specialized robot then

follows the DOA from one swarm robot to another to reach the

found object and retrieve it.

Such a guidance system does not require the swarm robots to

map their environment and synchronous the maps to localize things

on a common map. Thereby, it lowers the cost of manufacturing
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swarm robots and the technical difficulties of scaling a swarm

system.

At this point, the reader might rightfully question why not use

a more common communication medium such as radio transmis-

sions (RF) and light. RF penetrates non-metal obstacles easily and

therefore it is challenging to identify a traversable (or connected)

path between a transmitter and receiver. However, audio signals

get attenuated through walls, thus aids in avoiding too many cross

talks. For double plasterboard walls, the power loss of an audio

signal is 10 to 70 dB greater (based on the frequency) than that of

an RF signal [14, 17, 19].

Light and mmWave-based methods, on the other hand, require

a line of sight between the transmitter and receiver to function.

Therefore, to ensure connectivity between the robots in an area

with many obstacles the density of the swarmmust be much greater

than that of a swarm connected by audio. As a result, developing an

RF- or light-connected swarm will be undesirable for the targeted

application. In conclusion, we consider audio to be the best fit for

such an application despite its low data rate. Thus we develop and

present a detailed system design and experimental evaluation of

Chirpy an audio-based localization and communication module for

swarms.

A Chirpy can localize and communicate simultaneously on the

same signal. It uses orthogonal chirps to enhance the communi-

cation and localization performance in adversarial environments,

such as environments with background noise and/or echo, and to

lower the network load as a swarm network can be dense.

We equipped Chirpies with two sound source localization ap-

proaches (i) a lightweight classical approach that targets environ-

ments with line-of-sight connectivity and (ii) a deep learning-based

approach for environments with novel settings such as localiz-

ing the source in a non-line-of-sight scenario. For the DNN-based

method, we formulate the localization problem as a classification

problem. Consequently, Chirpy’s DNN-based localizer (AudioLoc-

Net) estimates the DOA and the distance of a sound source on a

predefined grid.

Our results show that using audio and AI has great potential

for swarm robotic applications, as they provide reliable local com-

munication and accurate localization. Such characteristics enables

a swarm of robots to more intelligently explore unknown areas

and better coordinate their moves. In our experiments four chipies

talking simultaneously achieve a bit error rate (BER) of only 1.4%

while being 250 cm apart. And, the AudioLocNet can classify the

location of the talker to the correct tile with an accuracy of ≈ 99%.

(1) Chirpy. An audio communication and localization module

that can easily be attached to a robot or deployed as a static

network (Figure 2). To best of our knowledge, this is the first

work to combine audio, swarm robots, and AI to construct a

guidance path (or field) towards a location of interest.

(2) Audio-based communication protocol. Utilizing orthog-

onal acoustic chirps, we developed a communication system

that operates in dense deployment scenarios such as robotic

swarms. Chirpy decodes messages from four concurrent

transmissions with a BER of 𝐵𝐸𝑅 ≈ 2% at 250 cm. Addition-

ally, our system and message design enable users to increase

the data rate while maintaining the same localization accu-

racy.

(3) Audio-based localization.We developed AudioLocNet, a

DNN for localizing Chirpies. AudioLocNet shows high local-

ization accuracy (on our testbed, AudioLocNet’s accuracy

is about 99%) in a variety of novel environments such as

non-line-of-sight, and reverberant environment.

(4) Real hardware. We extensively evaluated Chirpy’s local-

ization and communication under realistic scenarios.

2 RELATEDWORK
Since this work involves multiple domains of research, we present

only the most relevant literature.

2.1 Localization
Simultaneous Localization and Mapping (SLAM):-. SLAM algo-

rithms (such as GMapping [16], HectorSLAM [29], and KartoSLAM [30])

were originally developed for single robots. Adapting a SLAM algo-

rithm to a multi-robot system presents challenges such as dealing

with a dynamic number of robots, scaling the size of an environ-

ment, and operating in dynamic scenarios [42]. Developing a SLAM

for decentralized multi-robot systems or swarms magnifies the

said challenges and introduces new ones such as how should the

robots share the gathered information? [26]. Given the limitations

of SLAM for swarms, our investigation for relative robot localiza-

tion envisions a different approach that takes advantage of audio

characteristics and recent advances in Artificial Intelligence (AI).

Audio Localization:-. A large body of literature can be found on

acoustic localization systems [4, 33, 35, 41]. Traditionally, one of

the most used features for localization is the Time Difference of

Arrival (TDOA) [21, 49]. Two components of a source position can

be estimated – the bearing (azimuth) and the distance. Systems

such as [38] are able to estimate both but require reference points

in the environment. Majid et al. [34] mounted a set of microphones

and a speaker on a robot to enable relative localization between the

robots without the need of reference points. However, the presented

method does not support multiple access. Khyam et al. [27] present

a method to design chirp-like waveforms that can be used to imple-

ment multi-robot localization. More advanced techniques such as

beamforming could also be used for localization [7, 12, 50]. How-

ever, multi-source localization becomes difficult when the number

of transmitting sources exceeds the number of microphones [2, 41].

This affects the scalability and flexibility of systems such as a swarm

of robots. Nemec et al. [37] propose multiplexing sound signals with

frequency tones to identify swarm robots in close proximity. How-

ever, such a method can only be used for identification, and data

has to be transmitted over a different medium. Wang et al. [47]

present a method to localize a sound source using a microphone

array. However, since it makes use of nearby wall reflections, this

method is very much environment-dependent.

Similar to prior work our lightweight localization method de-

pends on TDOA to estimate the Direction of Arrival (DOA) of a

sound signal. Unlike prior work, however, in our study, we investi-

gate the possibility of using orthogonal audio chirps to simultane-

ously localize multiple sound sources.
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Deep Learning-based Audio Localization:-. Deep learning excels

when the relationship between the input and output is non-linear.

This makes it an effective tool for sound source localization. He

et al. [20] used a Deep Neural Network (DNN) to enable a humanoid

robot to localize up to two simultaneous speakers. Adavanne et al.

[1] showed that their proposed DNN is capable of determining the

bearings of up to three overlapping sounds from different sources.

Chakrabarty and Habets [9] presented a DNN that consists of only

convolutional and fully connected layers to determine the DOA of

up to 3 speakers. They used a classification network to locate each

of the many sources in one of 37 DOA classes spanning half a circle.

Vera-Diaz et al. [46] present an end-to-end localization method that

uses the raw recorded signals as inputs to the network. The authors

first trained the DNN in simulation and then fine-tuned it with small

real-world data set. The authors of [10, 11] present a simulated robot

capable of detecting and navigating towards a sound event using a

DNN that processes both visual and audio signals. The use of the

W-disjoint orthogonality principle to localize two speakers using

convolutional networks is conceived by Hammer et al. [18]. This

allowed them to achieve a high time resolution for the localisation.

Xu et al. [48] show how a DNN can use the outputs from many

microphones (64 positioned on a single plane) to locate up to 25

sources in a 1 × 1 m plane that faces the array. Our work targets

swarm robotics applications. Consequently, we chose the hardware

with a small form factor and our focus is on environments where

non-line-of-sight operation is needed; moreover, the environments

could be highly reverberating.

2.2 Audio based Communication
Next, we briefly discuss the related work of Aerial Acoustic Com-

munication (AAC). Sounds good [25] presents a primitive audio

communication platform for robots, where the robots announce

physical markers in the area by using the Dual Tone Multiple Fre-

quency (DTMF), or touch-tones. Suddrey et al. [45] present a novel

DTMF-based backup communication protocol for swarm robots.

The system encodes messages into words, which are mapped to one

of the 16 tones supported by DTMF. Nakayama et al. [36] created

CyberPerformerAudio that can remotely control an animatronic

doll at a distance of 2 m by encoding DTMF codes into existing au-

dio. Drew et al. [13] present acoustic communication for inflatable

robots with Frequency Shift Keying (FSK) and ALOHA, achieving

a bit rate of 200 bps on physical contact. Anguelov et al. [3] discuss

the difficulties regarding communication in multi-robot systems

and propose a model for communications based on a hybrid im-

plementation between light and ultrasonic AAC. Different from

the aforementioned work, we use orthogonal chirps to support

concurrent transmissions and simultaneous localization between

swarm robots.

Our design using the orthogonal chirps is based on the method-

ology presented in [27]. Prior work on AAC with orthogonal chirps

has mainly focused on increasing the bit rate [8, 23, 32] of the

communication protocol. Our work, however, is centred around

allowing concurrent transmissions and relative localization, and we

present the entire communication stack. Furthermore, orthogonal

audio chirps design prior to [27] do not scale well with increas-

ing the dimensionality of orthogonal chirps. This is because these
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Figure 2: Chirpy: An audio-based communication and local-
ization module for swarm robots.
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Figure 3: Eight orthogonal chirpswith eight sub-chirps,𝑀 = 8

and 𝑇𝑠 = 24 ms and and frequency range 5.5-9.5 kHz [27].

methods either split the bandwidth [8], apply quaternary on-off

keying [23] or shift the symbols circularly in time [32]. The method

conceived by Khyam et al. [27] simply increases the time of the

orthogonal chirp linearly to support a higher number of symbols.

To the best of our knowledge, we are the first to use audio for lo-

calization in a robot swarm to construct a guidance path between

two points.

3 CHIRPY: SYSTEM OVERVIEW
Figure 2 shows the hardware and software architecture of the pro-

posed communication and localization system. To provide a com-

plete solution for the problem of path finding using a swarm of

robots, our software comprises a communication and localization

stack.

3.1 Acoustic Communication
As audio has a limited local communication range, an acoustic

communication protocol can scale well with the number of devices

(e.g., a swarm) because of spatial reuse. Further, with orthogonal

chirps, Chirpies achieve higher networking throughput.

3.1.1 Orthogonal chirps design. Narrowband audio signals suffer

significantly from constructive and destructive interference [34].

This renders themuseless for robot localization. Alternatively, white

gaussian audio noise can be used for distance and direction estima-

tion between swarm robots [34]. However, distinguishing it from

ambient noise is hard as white noise does not possess correlation

properties. Chirp audio signals, on the other hand, are wideband

signals with strong correlation properties. Therefore, they suffer

less significantly from multipath effects than narrowband signals

and are distinguishable from ambient noise. Our system uses lin-

ear
1
orthogonal audio chips for localization and communication

to mitigate the effect of concurrent transmissions in swarms. We

1
linear chirps are chirps whose frequency changes linearly over time.
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(b) Dynamic sub-chirp length with 𝐿𝑚𝑖𝑛 = 10 guaranteed by (3)

Figure 4: Orthogonal chirps from 1 kHz to 5 kHz with 𝑀 = 8.
We take half the symbol timewithout violating theminimum
required cycles 𝐿𝑚𝑖𝑛 per sub-chirp.

based our initial orthogonal chirp design on [27] (Figure 3). The

number of sub-chirps𝑀 and chirp duration𝑇𝑠 are input parameters

for our system that can be set according to the users requirements

(in our case, 𝑀 = 8 and 𝑇𝑠 = 24 ms). However, we observed that

when the sub-chirp length is too short (i.e., containing just several

or no oscillations), the orthogonality and correlation properties of

the signal decrease, which negatively impacts the performance of

the system. This is due to hardware limitations introduced by the

speakers. To prevent transmitting chirps that are too short and to

guarantee a certain number of cycles (oscillations) in the chirp, the

following formula can be used [39],

𝑇𝑏 =
2𝐿

𝑓 𝑠
0
+ 𝑓 𝑠𝑒

, (1)

where𝑇𝑏 is the time required to construct a chirp with 𝐿 cycles, and

𝑓 𝑠
0
and 𝑓 𝑠𝑒 are the start and end frequency of the chirp. To ensure

that the sub-chirps of an orthogonal chirp contains numbers of

cycles greater than a certain minimum, i.e., 𝐿 ≥ 𝐿𝑚𝑖𝑛 , the following

expression is utilized,

𝑇𝑠 = 𝑀 · 2𝐿𝑚𝑖𝑛

2𝑓0 + 𝑓𝑒−𝑓0
𝑀

, (2)

where𝑇𝑠 is the time needed tomeet the constraint on𝐿 and 𝑓0 and 𝑓𝑒
are the start and end frequency of the orthogonal chirp. However,

while this would guarantee 𝐿 cycles for the lowest frequency sub-

chirp, all other sub-chirps would have more cycles because the

length of the sub-chirps is fixed (Figure 4a). To reduce the symbol

time without violating 𝐿 ≥ 𝐿𝑚𝑖𝑛 , we use the following,

𝑇𝑠 =

𝑀∑︁
𝑖=1

2𝐿

2𝑓0 + (2𝑖 − 1) 𝑓𝑒−𝑓0
𝑀

. (3)

This reduces the symbol time by shortening every individual

sub-chirp to fit exactly 𝐿 cycles. However, this does result in an

orthogonal chirp with sub-chirps of different lengths (Figure 4b).

Additionally, regardless of whether Equation (2) or (3) is used, every

sub-chirp is shaped by a Kaiser window with 𝛽 = 4 to reduce the

out-of-band leakage [40] and the clicking effect caused by any phase

differences between the sub-chirps.

3.1.2 Frame composition. An acoustic frame consists of the fol-

lowing fields: sender_id, message_id, data, and CRC. For the pre-
amble, we use 24 ms orthogonal chirps. To distinguish them from

the rest of the frame, the preamble chirps use a different frequency

band than the data chirps. For the proposed application a fixed data

field contains the direction of arrival and a hop count is consid-

ered. To check for errors an 8-bit CRC is appended. However, the

aforementioned values can easily be changed to meet application

requirements.

3.1.3 Medium access control. A simple Carrier-Sense Multiple Ac-

cess (CSMA) protocol is adopted. Before transmitting, a Chirpy

listens for 𝑇𝑓 𝑝 + 𝜖 , where 𝑇𝑓 𝑝 is the duration of a frame plus an

additional preamble, and 𝜖 is a small random delay drawn from

a uniform distribution to reduce the probability of repeated colli-

sions. However, it should be highlighted that a Chirpy scans the

medium only for orthogonal chirps that are assigned to itself, and

otherwise it is permitted to transmit.If two or more robots close to

each other and transmit concurrently using the same chirp symbols

the medium access control (MAC) layer resolves their conflict and

enables them to communicate. At this stage, we consider the error-

correcting code and routing protocol to be out of scope. However,

in Section 6 we elaborate more on these topics and their relation to

the proposed application.

3.2 Localization
For the relative localization amongst Chirpies, two approaches are

considered – a classical and DL-based one.

3.2.1 Classical approach. To estimate the Direction of Arrival

(DOA) of a received audio signal, several processing steps are re-

quired, which are shown in Figure 2b. The signal is received through

six microphones (channels). The preprocessing steps are used to

determine when a preamble is present and record the frame. A

single-chirp recording on all six channels is passed to the classical

localization module. The TDOA values between each pair of micro-

phones are then found by correlating the recording of a single chirp

with a stored copy using a matched filter on all of the six channels

and identifying the time differences between the peaks. The DOA

is estimated with the derived TDOA values using the algorithm

explained in Section 4.3.1. Additionally, the DOA estimates found

for each adjacent pair of microphones are averaged to reduce the

error in the estimate.

3.2.2 AudioLocNet: DNN-based localization. The second localiza-

tion method uses a Deep Neural Network (DNN), referred to as

AudioLocNet, to locate a sound source. It comprises an input layer,

3 hidden layers, and an output layer (Figure 5a). AudioLocNet is

a classification network that maps an audio signal to a class rep-

resenting the source location. Two separate localization grids are

considered: a coarse and a fine one (Figure 5b) & (5c). For each grid

a separate version of AudioLocNet was trained. Apart form the the

output layer, both versions have the same architecture.

The input of AudioLocNet consists of a 6 × 1060 array which

at a sampling frequency of 44.1 kHz portrays a 24 ms recording

captured by each microphone. This input comes from the pream-

ble of a message. The message to localize on is identified by the

communication stack and its preamble is passed to the localization

module (Figure 2b).

The output layer has 96 nodes when trained for the coarse

grid (Figure 5b) and 180 nodes when trained for the fine grid
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Figure 5: AudioLocNet (5a) is a DNN that is trained to localize a sound source on a coarse (5b) or fine (5c) grid. The blue dots
represent possible sound transmitter locations and the green hexagon represents the location of the receiver.
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Figure 6: Setup for the recording in reverberating and non-
line-of-sight scenarios for the coarse grid (Figure 5b), where
the blue dots represent possible sound transmitter locations.

(Figure 5c). The fine grid is constructed out of 9 rings centered

around the microphone array. These rings have radii ranging from

50 to 250 cm, in steps of 25 cm. Where the three smallest rings con-

tain 12, uniformly spaced, locations each and the remaining rings

contain 24 locations per ring. All odd numbered rings (i.e. those

at 50, 100, 150, 200, 250, cm) have their first location aligned with

the 0
◦
direction, whereas the ring at 75 cm has it’s first location at

an offset of 15
◦
and the remaining rings have their first locations at

an offset of 7.5◦. The locations of the coarse grid form a subset of

those of the fine grid. Specifically it contains the locations on the

rings at 50, 100, 150, 200 and 250 cm from the microphone array.

These rings are summarised in Table 1, where the rings marked

with an asterisk (*) are only used in the fine grid.

In the input layer, the 6×1060 input array is cylindrically padded

in order to account for the physical locations of the microphones.

Without this padding, microphones 1 and 6 would be on opposite

ends of the data array even though they are located next to each

other on the microphone array. We observed difficulties in the

training due to the first convolutional layer struggling with finding

features between the mics at the ends of the array without this

Ring 1 2* 3 4* 5 6* 7 8* 9

Radius [cm] 50 75 100 125 150 175 200 225 250

Angle [
◦
] 30 30 30 15 15 15 15 15 15

Offset [
◦
] 0 15 0 7.5 0 7.5 0 7.5 0

Table 1: Parameters for the rings which form the location
grids of Figure 5b and 5c. Angle denotes the angular distance
between two subsequent locations; and Offset denotes the
angular offset from the 0

◦ direction. Columns denoted with
‘*’ are only used for constructing the fine grid.

padding. The padded array is 11 channels by 1060 time samples in

size. The first hidden layer is a convolutional layer with a 50 × 1

kernel. By going over the individual channels, this layer helps with

finding the chirps. The second layer is a 20 × 6 kernel which shifts

over all six microphone channels at a time, where the 20 time steps

per kernel ensure that a signal arriving at a first microphone during

the first time step will be received by a microphone farthest away

from said first microphone before the end of the kernel. The final

hidden layer layer comprises another convolutional layer with a

10 × 3 kernel. All convolutional layers consist of 64 filters and

use rectified linear unit (ReLU) activation functions. It should be

mentioned that we intentionally dropped the use of a max-pooling

layer after the convolutional layer, which is a common practice. This

is to maintain the time differences between the signals received via

different microphones. Lastly, the output layer is a fully connected

layer with 96 or 108 nodes, depending on which localization grid

was used. A softmax activation function then normalises the values

of the output nodes into a probability distribution. The output node

with the highest value is then taken as the predicted source location.

3.2.3 Localization dataset. In order to train the network for dif-

ferent scenarios, data was collected from known sound source

locations around the microphone array. Three different indoor en-

vironments were selected:

(1) Less reverberating, line-of-sight. In this environment the

microphone array was placed away from any walls and with

a direct line of sight to the source.
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Table 2: A database summary of orthogonal audio chirps.

Parameter Value
Total sample size 1324800

Environments LOS, reverberant and NLOS

Source locations 180 (Figure 5)

Orthogonal chirp types 8

Symbol duration 24 and 48 ms
*

Samples per

200

location

*
The 48 ms samples are only available for locations on the

coarse grid of Figure 5b

Table 3: Training parameters

Parameter Value
Learn rate 0.005

Learn rate schedule constant

𝛽1 0.9

𝛽2 0.999

𝜖 10
−8

L2 regularization factor 0.0005

Mini batch size 256

(2) Highly reverberating, line-of-sight. In this environment

the microphone array was placed in a corner in between two

walls, this creates an environment where reverberations are

more prevalent. There is, as with the previous environment,

a line of sight between the array and the source. Figure 6a.

(3) Non-line-of-sight. In this environment the microphone

array and source are placed in such a way that the corner of

a wall breaks the line of sight between them. Figure 6b.

Throughout this paper these environments are refferenced with

the labels LOS, reverberant and NLOS respectively. If the walls

prevented access to all of the source locations, then the microphone

array is rotated and the newly available source locations are used for

recordings. This process is repeated until recordings from all loca-

tions were gathered. Per source location 200 individual orthogonal

chirps were recorded for each of the 8 different chirp-waveforms.

For the coarse grid locations, chirps with a 𝑇𝑠 of 24 and 48ms were

recorded, for the additional rings of the fine grid, only chirps with

a 𝑇𝑠 of 24 ms were recorded. In this way, 1.3 million samples were

collected (Table 2).

4 CHIRPY: IMPLEMENTATION
4.1 Hardware
Chirpy comprises a Raspberry Pi 4 with a microphone array and a

speaker. The array consists of six microphones equally spaced on a

circle with a diameter of 10 cm [44]. The speaker placed on top of

the array is 6 Ω 2 W [43] (Figure 2a).

Table 4: Communication Parameters.

Parameter Value
Preamble Duration 24 ms

Preamble Freq. Band 5.5-9.5 kHz

Symbol Duration 24 ms/18.8 ms
*

Symbol L 17.5

Data Freq. Band 9.5-13.5 kHz

Frame length 40 bits

Frame Duration 984 ms/776 ms
*

*
We test both with dynamic and fixed-length sub-chirps (Eq. (2) and (3)),

for this reason, we have two different symbol times.

4.2 Acoustic Communication
4.2.1 Frame composition and symbol distribution. One of the key
benefits of AAC in our application is that it allows for synergy

between localization and communication. However, typically, opti-

mizing the bit rate for communication often conflicts with the need

for high SNR in classical localization for accurate positioning. To

address this challenge, we propose a novel solution of constructing

the preamble in such a way that localization can still be achieved,

while also allowing for greater flexibility in the design of the data

chirps. This approach has the potential to increase the bit rate while

maintaining high localization accuracy.

Symbol distribution. As mentioned previously, creating orthog-

onal chirps with𝑀 = 8 results in a set of eight chirps. These chirps

are divided into four sets of two symbols, (𝑠𝑖
0
, 𝑠𝑖

1
), representing

logical digits 0 and 1 for robot 𝑖 . Each Chirpy module in a swarm

is assigned a set such that a uniform distribution is approached.

Consequently, the AAC allows four simultaneous transmissions

without (or with minimal) interference.

Preamble design. The preamble is a 24 ms orthogonal chirp with

the same sub-chirp distribution as symbol 𝑠𝑖
0
. To simplify frame

detection and decoding, the preamble is transmitted on a different

frequency band than the rest of the frame (Figure 7a). Equation (2)

is used for creating the preamble to ensure fixed-length sub-chirps.

Beyond frame detection, the preamble is used for localization.

Frame layout. Each frame starts with a preamble. The body of

the frame contains the following fields: sender_id, message_id,
data and CRC. Each field is one byte long, except for data which

is of two bytes — encoding distance and angle. Table 4 gives an

overview of the communication parameters used.

4.2.2 Transmission. The signal is encoded as follows. Starting with
the first data bit, we map every bit to a symbol (𝑠𝑖

0
, 𝑠𝑖

1
). Then, ev-

ery symbol is designed with either Equation (2) or (3), depending

on whether dynamic sub-chirps are desired. These symbols are

then concatenated, appended to the preamble, and played over the

speaker.

4.2.3 Reception. Algorithm 1 outlines the reception and decoding

process of our AAC. First, the receiver scans the acoustic medium

for a potential preamble signal. Once a preamble symbol is detected,

the receiver records the maximum possible frame.

Decoding. As there is a one-to-one mapping between the preamble

symbols and data symbols, the receiver directly convolutes the

recorded signal with the appropriate pair of the orthogonal chirps
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Algorithm 1 Decode Acoustic Messages

1: 𝑥 (𝑡) ← Record( )

2: if ContainsPreamble(𝑥 ) then
3: 𝑐𝑖

0,1
(𝑡) ← conv(𝑥 (𝑡), 𝑠𝑖

0,1
)

4: 𝑐𝑖
0,1
(𝑡) ← abs(𝐻 (𝑐𝑖

0,1
))

5: 𝑐 (𝑡) ← max(𝑐𝑖
0
(𝑡), 𝑐𝑖

1
(𝑡))

6: 𝑝𝑚𝑎𝑥 ← max(𝑐 (𝑡))
7: 𝑝𝑒𝑎𝑘𝑠 ← FindPeaks(𝑝𝑚𝑎𝑥 , 𝑝𝑠𝑡𝑒𝑝 , 𝑐 (𝑡))
8: 𝑝𝑒𝑎𝑘𝑠 ← 𝑝𝑒𝑎𝑘𝑠 ∪ FindPeaks(𝑝𝑚𝑎𝑥 ,−𝑝𝑠𝑡𝑒𝑝 , 𝑐 (𝑡))
9: 𝑝𝑒𝑎𝑘𝑠 ← sort(𝑝𝑒𝑎𝑘𝑠)
10: 𝑝𝑒𝑎𝑘𝑠 ← TrimPeaks(𝑝𝑒𝑎𝑘𝑠) ⊲ remove peaks on edges

11: 𝑏𝑖𝑡𝑠 ← GetBits(𝑝𝑒𝑎𝑘𝑠, 𝑐𝑖
0,1
)

12: end if

13: function FindPeaks(𝑝𝑚𝑎𝑥 , 𝑝𝑠𝑡𝑒𝑝 , 𝑑𝑎𝑡𝑎)

14: 𝑝𝑒𝑎𝑘𝑠 ← ∅
15: 𝑝 ← 𝑝𝑚𝑎𝑥

16: while 0 < 𝑝 < 𝑙𝑒𝑛(𝑐 (𝑡)) do
17: 𝑝 ← FindLocalMax(𝑝,𝑑𝑎𝑡𝑎) ⊲ return max value

around the given peak

18: 𝑝𝑒𝑎𝑘𝑠 ← 𝑝𝑒𝑎𝑘𝑠 ∪ 𝑝
19: 𝑝 ← 𝑝 + Δ
20: end while
21: return 𝑝𝑒𝑎𝑘𝑠

22: end function

(Line 3). Moreover, to reduce the time complexity of the convolution

process (which is O(𝑁 2)) we implemented the overlap-add method

[6]. This method is optimized for convolution between a large

time series and a set of smaller ones. Then we use the Hilbert
transform to get the envelope of the correlated signals (Line 4).

Taking advantage of the orthogonality, we zip the two outputs of the

previous step and select the maximum points. Then, by selecting the

point with the highest value, a peak is detected (Line 5-6). Starting

from this peak we search bidirectionally for other peaks to extract

the digital data. Given that these peaks are spaced 𝑇𝑠 · 𝑓𝑠𝑎𝑚𝑝𝑙𝑒

samples apart, the algorithm searches only around these potential

points. More specifically, we specify a search area of 10 % around a

potential peak point to account for multipath, rounding, and timing

inaccuracies. The highest point in this range is assumed to be the

actual peak (Line 7). In a low-SNR scenario, the start and end of

transmission might be difficult to discern accurately. Therefore, we

simply create a window with size 𝑏, which is the number of bits in

a single transmission. Then, we slide this window over the found

peaks and select the offset which gives us the highest average peak

value and select these peaks as the transmission (Figure 7b).

Then we convert the found peaks to data. For every peak 𝑝𝑖 ∈
𝑐 (𝑡) we select the symbol with the highest amplitude in 𝑐0,1 (𝑡),
since the other is cross-correlation. Figure 7a shows the output of

the matched filter and peak detection for 8 bits of data. Moreover,

Figure 7b zooms in on the first three symbols of Figure 7a and ap-

pends some zeros to the sides to better visualize the peak detection

algorithm.

4.3 Localization
4.3.1 Implementation of the classical approach. Our method for

estimating the Direction of Arrival (DOA) of a received acoustic

signal is inspired by [24]. First, we calculate the Time Difference

of Arrival (TDOA) between each pair of the received six audio sig-

nals (from adjacent microphones). This is done by cross-correlating

them with a stored copy of the transmitted chirp (matched filter),

detecting the times 𝜏𝑚𝑖
of the peaks, and computing the difference

between them. Then we apply the following expression to com-

pute an average estimate of the Direction of Arrival (DOA) of the

received signal,

DOA =
1

𝑀

(
𝑀∑︁
𝑖=0

arcsin

(
𝜏𝑚𝑖𝑚𝑖−1

· 𝑐
𝑙𝑚𝑖𝑚𝑖−1

)
− (𝑖 − 1)𝛼,

)
(4)

where 𝜏𝑚𝑖𝑚𝑖−1
and 𝑙𝑚𝑖𝑚𝑖−1

are the TDOA and the distance between

microphone𝑚𝑖 and𝑚𝑖−1,𝑀 is the number of microphones, 𝛼 is the

angle between the microphones on the array relative to the center,

which is in this case 60°, and 𝑐 is the speed of sound. Further, 𝜃 is

observed relative to the line perpendicular to𝑀1𝑀2, as shown in

Figure 2a.

4.3.2 Implementation of AudioLocNet. The deep learning (DL)method

of sound source localization works as follows: the microphone ar-

ray records a 24 ms frame for all six microphones. This recording

contains an orthogonal chirp as discussed in Section 3.1 and the

recording is done with a sampling frequency of 44.1 kHz. This

recording is then loaded into the deep neural network (DNN) to

estimate the source location. The network does this by finding the

most likely source locations among the location grid from Figure 5.

Training. AudioLocNet was trained using a data set sampled

from the full data set summarised in Table 2. This sampled data

set comprises 150000 samples with orthogonal chirps with a dura-

tion of 24ms, sampled randomly from the different locations. The

sampled set is split into a training, validation, and testing set, each

containing 75%, 15%, and 15% of the samples from the sampled data

set, respectively.

The networkwas trained using the Adam training algorithm [28],

with cross-entropy loss as the loss function. The used parameters

can be found in the Table 3, which generally match the suggestions

of the original paper [28]. Two mechanisms were used to prevent

overfitting, L2 regularisation and dropout. During the training, a

dropout layer with a dropout probability of 0.2 was added after

the input layer to increase the network localization robustness.

L2 regularization comprises adding a term to the loss function

to penalize high network weights. This incentivizes the trainer

to make a simple network over a complex one, thereby reducing

overfitting [5].

After each epoch, the validation set is run through the current

network. The results from this set are used to monitor the training

progress and fitting characteristics and not to update the weights

of the network. As long as the validation loss follows the loss in

the training samples we can conclude that the network is not over-

fitting. Once the validation loss stops improving the training is

stopped and the network with the lowest validation loss is selected.

Figure 8 depicts the training process both in terms of the classifica-

tion accuracy in the top graph and the loss (which is used by the
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(a) The output of the matched filter and peak detection. The red
crosses are the found peaks. We only show the sender ID (8 bits) in
the bottom plot.
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which gives the correct offset.

Figure 7: Visualization of the decoding method.
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Figure 8: Plots showing the training process in terms of both
the accuracy and loss.
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Figure 9: Chirpy’s communication performance under dif-
ferent SNR values. It should be highlighted that while fixed-
length chirps achieve higher BER, the dynamic ones haver a
higher bit rate (BR) as they are shorter.

trainer to improve the network) in the bottom graph. The accuracy

is the mean of the number of correctly identified samples over the

total number of samples in a mini-batch. The plot also shows how

the validation accuracy and loss follow the training accuracy and

loss respectively, implying that the DNN is not overfitting.

5 EVALUATION
In this section, we examine the performance of communication

and localization methods in Chirpy under increasingly challenging

scenarios.

5.1 Experimental setup
All the communication and localization experiments were done in

an indoor environment. As we imagine that Chirpy will be mounted

on robots, we designed the experiments while taking common

swarm robotic platforms. For example, robots in a warehouse of-

ten meet while crossing an intersection-like configuration. This

scenario is captured by the non-line-of-sight (NLOS) setting. For

the line-of-sight (LOS) experiments there were no obstacles in the

proximity of the receivers and transmitters. Figure 11 shows one of

our experiment scenarios where Chirpies are mounted on robots.

Moreover, for the NLOS experiments, the transmitters and receivers

were positioned around a corner as shown in Figure 6b. Further,

to examine the effects of echos on the performance of Chirpy, a

Chirpy receiver was positioned in a corner between two walls as

shown in Figure 6a. Finally, for all the experiments the transmitters

and receivers were positioned at the same height on a flat surface.

5.2 Communication
Table 4 gives an overview of the communication parameters. All

tests refer to these parameters, unless stated otherwise.

5.2.1 Signal to Noise Ratio. We used a common source of noise,

namely, Babble noise from [22], to analyze the performance of

communication capability of Chirpy under different levels of signal-

to-noise ratio (SNR). Most importantly, the babble noise provides a

very realistic scenario where these robots with Chirpy should be

working. Babble noise creates a challenging scenario for Chirpy,

since they overlap in the frequency spectrum. For each SNR setting,

a noise signal was sampled out of the recording at random and

mixed with the audio signal. The superimposed signal was then

fed to the receiver of Chirpy and the bit error rate (BER) is calcu-

lated. Each presented data point is the average of 30 iterations, and

we varied the SNR from -44 dB to -24 dB with an interval of 1 dB

(Figure 9). We notice that the system reaches zero BER at -32 dB for

the fixed-length chirps and -30 dB for the dynamic ones. It should

be highlighted that while the fixed-length chirps have better BER,

the dynamic ones have a higher bit rate (BR) as they are shorter in
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Figure 10: Themean BER for line-of-sight (LOS), non-line-of-sight (NLOS) and reverberant scenarios from one to four concurrent
transmissions. Two types of sub-chirps are tested: Fixed (Equation (2)) and Dynamic (Equation (3)).

Figure 11: Robots mounted with Chirpy

length. Overall, Chirpy can communicate reliably under severely

low SNR values.

5.2.2 Concurrent transmissions. To test the ability of a receiver to

decode signals of interest in a concurrent transmissions scenario,

we superimposed signals from other transmitters (i.e., transmitters

with different pairs of orthogonal chirps) on the signals of the

original transmitter. Then the superimposed signals are transmitted

and the BER is observed at the receiver. Figure 10 shows the mean

BER over various distances (50 cm - 250 cm), scenarios (LOS, NLOS

and reverberating) and concurrent transmissions (1-4). The data is

generated with 400 repetitions per sample.

Figure 10 clearly shows that communication with all transmitters

up to 150 cm is fully functional. Within the aforementioned range

the 𝐵𝐸𝑅 did not exceed 2.1%. There is an interesting small spike of

≈ 1.4% in the BER of the NLOS Fixed configuration at 50 cm. This

is also the case for the LOS scenario at 150 cm. We hypothesize

that these are due to multipath caused by the testing environment

or coincidental outside interference. Furthermore, at 200 cm, the

performance of the NLOS scenario degrades to 𝐵𝐸𝑅 ≤ 3%, while

the rest maintains a 𝐵𝐸𝑅 ≈ 1%. From 200 cm onward, there is a clear

distinction between the performance of the fixed and dynamic sub-

chirps. The dynamic sub-chirps degrade to 𝐵𝐸𝑅 ≤ 6.1% while the

fixed sub-chirps maintain 𝐵𝐸𝑅 ≤ 3%. The combination of a shorter

symbol time and a low SNR is the main reason behind the lower
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Figure 12: DOA estimation error of Chirpy’s classical local-
ization method.

performance of the dynamic sub-chirps. Since this combination

leads to small correlation peaks that are hard to distinguish from

noise during the decoding process. However, our evaluation shows

that the communication system of Chirpy supports concurrent

transmissions with minimum interference between the signals.

5.3 Localization: Classical Approach
The signals used for the classical evaluation are 24 ms orthogonal

chirps transmitted by a single transmitter. Figure 12 shows themean

absolute error (MAE) of the estimated DOA for classical localization

in three different scenarios. The MAE is computed such that it is

in the range [−180, 180]; this is to ensure that the MAE of a signal

with a DOA of 0° and an estimated DOA of 350° is normalized to

10°.
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Figure 13: Mean hop error and accuracy of for two implemen-
tations of AudioLocNet—Chirpy’s DNN-based localization
method.

In the LOS environment, the MAE only slightly increases over

distance with a maximum value of ≈ 10°. Meanwhile, in the rever-

berant environment (shown in Figure 6a), the error increases more

strongly over distance and reaches a maximum value of ≈ 27° at the

farthest testing point. The NLOS environment (Figure 6b) yields

the worst accuracy. At distances beyond 1.5 m the MAE fluctuates

around 40°. From these results, we can conclude that despite being

a computationally light approach (compared to the DNN-based

approach), this localization method cannot generalize across differ-

ent environments and should be used only when the transmitter

and receiver have a direct line-of-sight connection and the level of

reverberation is low.

5.4 Localization: Deep Learning Approach
For the testing of the performance of AudioLocNet, the testing data

set was used since none of the sound samples from this set have

been seen by the network before.

Hop error. Usually, the performance of a classification network

like AudioLocNet is measured using metrics like the accuracy and

the F1-score [15]. However, these metrics only look at the results

from a pure classification perspective and do not take into account

that the classes correspond to physical locations. Meaning that they

would penalize being one class next to the correct class the same

as when the prediction is on the opposite end of the location grid.

Therefore, we first introduce the hop error to more closely reflect

the relations between (miss) classifications and the true classes.

Finally, we discuss the classification performance of the network.

The hop error is defined as the number of classes from the true

class to the predicted class. It is determined by drawing a straight

line between the true and predicted classes and counting the num-

ber of classes the line passes through. For a correct prediction,

the hop error is set to 0. This metric is chosen over the distance

error between the corresponding physical locations of true and

predicted classes because the distances between adjacent class are

not constant due to the circular nature of the location grid.

Network performance. The performance for the two versions

(coarse and fine) of AudioLocNet can be observed in Figure 13. The

results show that AudioLocNet is able to find a Chripy of interest

around itself, as depicted by the lowmean hop errors. For the coarse

grid (Figure 13a) the performance seems to decrease as the distance

increases, as indicated by the decreased accuracy and increased

MHE. The version trained on the fine grid (Figure 13b) trades some

of the performance for the finer localization grid. This version also

seems to be more resilient to changes in the distance. AudioLocNet

shows less differences in its performance for the different environ-

ments when compaired with the classical method. For the coarse

network the accuracies for the LOS, reverberant and NLOS environ-

ments are 99.96%, 99.99% and 99.92%, respectively, and for the fine

network they are 99.88%, 99.93% and 99.86%, respectively. Over all

environments, the coarse network reaches an accuracy of 99.96%

and the fine network has an accuracy of 99.89%.

6 DISCUSSIONS
Performance under concurrent transmissions: We notice that in

low SNR scenarios concurrent transmissions lead to a higher BER.

This degradation in performance becomes severe when chirps with

shorter duration are considered. We hypothesize that the orthogo-

nal chirps from [27] gradually lose orthogonality due to two factors:

i) Signal degradation due to frequency selectivity of the hardware

& environment and ii) Low number of cycles 𝐿 compared to the

reference [27]. Namely, Chirpy has 17.5 cycles in a 24 ms chirp,

while [27] has 77 in a 12 ms chirp (ultrasound band). However,

while our results show that performance degrades with concurrent

transmissions, we strongly believe that the performance of non-

orthogonal chirps would be significantly worse due to constructive

and destructive interference.

Furthermore, a rake receiver could be employed to improve per-

formance of the AAC [31, 32], especially since Chirpy already has

multiple microphones. Further, the J-shape-dection from [23] and

normalization method and rate adaption scheme from [8] could fur-

ther improve the performance of the system, which is not covered

in this work.

Usage of orthogonal chirps: Our current implementation of the

orthogonal chirp allows up to four concurrent transmissions. This is

under the assumption that each Chirpy uses two orthogonal chirps

to represent data bit 0 and 1. However, to support more concurrent

transmissions, one can assign a single orthogonal chirp per chirpy

and use the frequency slope of the sub-chirps (up/down) to encode

the bits. Other options include color-coding chirpy’s network, such

that chirp sets can be re-used, or encoding the data in the length or

presence of a symbol.

Performance under varying channel conditions: Swarm robots are

often moving and searching. This means that the communication

channels between the robots will not stay consistent. While our

concurrency tests and simulations do evaluate this to a certain

extent, they do not take Doppler shift and multipath effects due to

movement into account. However, this is pronounced only if the

speed of the robots is comparable with audio frequencies used [8].

In general, we think mobility deserves its own separate study as

when it is considered we must not only consider localization but

tacking also. Therefore, it is left as future work.

Error-correcting code: Messages from a Chirpy have a relatively

long duration (100s of ms); therefore, repeat requests are expensive

and can quickly delay the network. For this reason, we envision

181



AI-based Simultaneous Audio Localization and Communication for Robots IoTDI ’23, May 09–12, 2023, San Antonio, TX, USA

the use of forward correcting codes to make the communication

more robust.

Analysis of our results shows that most errors occur in bursts,

either because, (a) a transmission overlaps with another and the

cross-correlation lowers the SNR too much or (b) the channel con-

ditions change during the transmission of a frame. For this reason,

interleaving should be applied, since this is more robust against

burst errors. Moreover, since the communication is already quite

slow, the extra latency induced by buffering is not significant com-

pared to a retransmission.

Routing: Audio Swarm Potential Field (ASPF) acts as a guiding

mechanism; therefore, the routing scheme propagating the message

constructing the ASPF must maintain a notion of directionality. In

other words, circularly or randomly routing the message of interest

may make constructing the ASPF challenging. Designing routing

scheme for ASPF is an open question that still needs an answer.

Hop versus absolute error: We formulated the sound localization

problem as a classification and not a regression problem because we

wanted to have the potential to localize multiple sound sources at

once. Due to this design decision, our accuracy results are reported

in hop error rate and not in absolute error, which without our

objective is more natural for measuring localization accuracy.

Real-world scenario: As mentioned earlier, we consider swarms

of ground wheeled robots in an indoor environment. Therefore,

we only considered localization in two dimensions. However, in

real-world scenario, wherein the terrain can be of different heights,

such as in rescue operations, Chirpy can perform well when the

height difference between the robots is comparatively negligible

with respect to the distances between them. As the terrain height

increases, the FoV of the microphones need to be wider so that

the neighboring robots can communicate and localize. If the robots

have significantly high height differences, then three dimensional

localization is required. Three-dimensional spaces is not in the

scope of the our work.

Another point that should be highlighted is the performance

of AudioLocNet in a completely different environment. While it is

logical to expect the performance to degrade in such settings—as

with any DL model—the solution to this challenge is well know:

collect more data and retrain the model.

Classical approach: The deep learning approach estimates both

the distance and DOA of a signal, while our classical approach only

estimates the DOA. Given the hardware, a classical approach was

unlikely to handle a ranging problem well [7]. For estimating the

DOA, there are numerous approaches that could have been used,

some of which might have outperformed our classical approach.

However, our approach was chosen since it was lightweight, simple,

and not relying on reference points in the environment.

7 CONCLUSION
We presented Chirpy, an audio-based communication and localiza-

tion device. Chirpy can estimate the direction of arrivals of audio

signals. This feature enables a swarm of robots equipped with

Chirpies to construct a guiding mechanism that can guide special-

ized robots, rescuers, or explorers through unknown terrains to a

location of interest. Chirpies use orthogonal audio chirps to com-

municate concurrently (our implementation supports up to four

simultaneous talkers). Despite the concurrent transmissions, the

bit error rate is 1.4 % for fixed-length chirps at a distance of 250 cm

between the transmitters and the receiver. To enable Chirpies to

tackle novel environments we developed AudioLocNet: a Deep

Learning-based audio source localization model. With AudioLoc-

Net, Chirpies localize each other in a variety of environments such

as a non-line-of-sight and reverberant environment. Our results

show that AudioLocNet has ≈ 99% classification accuracy.
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